A Web-based Distributed Voluntary Computing Platform for Large Scale Hydrological Computations
NASA Astrophysics Data System (ADS)
Demir, I.; Agliamzanov, R.
2014-12-01
Distributed volunteer computing can enable researchers and scientist to form large parallel computing environments to utilize the computing power of the millions of computers on the Internet, and use them towards running large scale environmental simulations and models to serve the common good of local communities and the world. Recent developments in web technologies and standards allow client-side scripting languages to run at speeds close to native application, and utilize the power of Graphics Processing Units (GPU). Using a client-side scripting language like JavaScript, we have developed an open distributed computing framework that makes it easy for researchers to write their own hydrologic models, and run them on volunteer computers. Users will easily enable their websites for visitors to volunteer sharing their computer resources to contribute running advanced hydrological models and simulations. Using a web-based system allows users to start volunteering their computational resources within seconds without installing any software. The framework distributes the model simulation to thousands of nodes in small spatial and computational sizes. A relational database system is utilized for managing data connections and queue management for the distributed computing nodes. In this paper, we present a web-based distributed volunteer computing platform to enable large scale hydrological simulations and model runs in an open and integrated environment.
NASA Astrophysics Data System (ADS)
Manfredi, Sabato
2016-06-01
Large-scale dynamic systems are becoming highly pervasive in their occurrence with applications ranging from system biology, environment monitoring, sensor networks, and power systems. They are characterised by high dimensionality, complexity, and uncertainty in the node dynamic/interactions that require more and more computational demanding methods for their analysis and control design, as well as the network size and node system/interaction complexity increase. Therefore, it is a challenging problem to find scalable computational method for distributed control design of large-scale networks. In this paper, we investigate the robust distributed stabilisation problem of large-scale nonlinear multi-agent systems (briefly MASs) composed of non-identical (heterogeneous) linear dynamical systems coupled by uncertain nonlinear time-varying interconnections. By employing Lyapunov stability theory and linear matrix inequality (LMI) technique, new conditions are given for the distributed control design of large-scale MASs that can be easily solved by the toolbox of MATLAB. The stabilisability of each node dynamic is a sufficient assumption to design a global stabilising distributed control. The proposed approach improves some of the existing LMI-based results on MAS by both overcoming their computational limits and extending the applicative scenario to large-scale nonlinear heterogeneous MASs. Additionally, the proposed LMI conditions are further reduced in terms of computational requirement in the case of weakly heterogeneous MASs, which is a common scenario in real application where the network nodes and links are affected by parameter uncertainties. One of the main advantages of the proposed approach is to allow to move from a centralised towards a distributed computing architecture so that the expensive computation workload spent to solve LMIs may be shared among processors located at the networked nodes, thus increasing the scalability of the approach than the network size. Finally, a numerical example shows the applicability of the proposed method and its advantage in terms of computational complexity when compared with the existing approaches.
Distributed intrusion detection system based on grid security model
NASA Astrophysics Data System (ADS)
Su, Jie; Liu, Yahui
2008-03-01
Grid computing has developed rapidly with the development of network technology and it can solve the problem of large-scale complex computing by sharing large-scale computing resource. In grid environment, we can realize a distributed and load balance intrusion detection system. This paper first discusses the security mechanism in grid computing and the function of PKI/CA in the grid security system, then gives the application of grid computing character in the distributed intrusion detection system (IDS) based on Artificial Immune System. Finally, it gives a distributed intrusion detection system based on grid security system that can reduce the processing delay and assure the detection rates.
Architecture and Programming Models for High Performance Intensive Computation
2016-06-29
Applications Systems and Large-Scale-Big-Data & Large-Scale-Big-Computing (DDDAS- LS ). ICCS 2015, June 2015. Reykjavk, Ice- land. 2. Bo YT, Wang P, Guo ZL...The Mahali project,” Communications Magazine , vol. 52, pp. 111–133, Aug 2014. 14 DISTRIBUTION A: Distribution approved for public release. Response ID
Information Power Grid Posters
NASA Technical Reports Server (NTRS)
Vaziri, Arsi
2003-01-01
This document is a summary of the accomplishments of the Information Power Grid (IPG). Grids are an emerging technology that provide seamless and uniform access to the geographically dispersed, computational, data storage, networking, instruments, and software resources needed for solving large-scale scientific and engineering problems. The goal of the NASA IPG is to use NASA's remotely located computing and data system resources to build distributed systems that can address problems that are too large or complex for a single site. The accomplishments outlined in this poster presentation are: access to distributed data, IPG heterogeneous computing, integration of large-scale computing node into distributed environment, remote access to high data rate instruments,and exploratory grid environment.
NASA's Information Power Grid: Large Scale Distributed Computing and Data Management
NASA Technical Reports Server (NTRS)
Johnston, William E.; Vaziri, Arsi; Hinke, Tom; Tanner, Leigh Ann; Feiereisen, William J.; Thigpen, William; Tang, Harry (Technical Monitor)
2001-01-01
Large-scale science and engineering are done through the interaction of people, heterogeneous computing resources, information systems, and instruments, all of which are geographically and organizationally dispersed. The overall motivation for Grids is to facilitate the routine interactions of these resources in order to support large-scale science and engineering. Multi-disciplinary simulations provide a good example of a class of applications that are very likely to require aggregation of widely distributed computing, data, and intellectual resources. Such simulations - e.g. whole system aircraft simulation and whole system living cell simulation - require integrating applications and data that are developed by different teams of researchers frequently in different locations. The research team's are the only ones that have the expertise to maintain and improve the simulation code and/or the body of experimental data that drives the simulations. This results in an inherently distributed computing and data management environment.
Wan, Shixiang; Zou, Quan
2017-01-01
Multiple sequence alignment (MSA) plays a key role in biological sequence analyses, especially in phylogenetic tree construction. Extreme increase in next-generation sequencing results in shortage of efficient ultra-large biological sequence alignment approaches for coping with different sequence types. Distributed and parallel computing represents a crucial technique for accelerating ultra-large (e.g. files more than 1 GB) sequence analyses. Based on HAlign and Spark distributed computing system, we implement a highly cost-efficient and time-efficient HAlign-II tool to address ultra-large multiple biological sequence alignment and phylogenetic tree construction. The experiments in the DNA and protein large scale data sets, which are more than 1GB files, showed that HAlign II could save time and space. It outperformed the current software tools. HAlign-II can efficiently carry out MSA and construct phylogenetic trees with ultra-large numbers of biological sequences. HAlign-II shows extremely high memory efficiency and scales well with increases in computing resource. THAlign-II provides a user-friendly web server based on our distributed computing infrastructure. HAlign-II with open-source codes and datasets was established at http://lab.malab.cn/soft/halign.
Performance of distributed multiscale simulations
Borgdorff, J.; Ben Belgacem, M.; Bona-Casas, C.; Fazendeiro, L.; Groen, D.; Hoenen, O.; Mizeranschi, A.; Suter, J. L.; Coster, D.; Coveney, P. V.; Dubitzky, W.; Hoekstra, A. G.; Strand, P.; Chopard, B.
2014-01-01
Multiscale simulations model phenomena across natural scales using monolithic or component-based code, running on local or distributed resources. In this work, we investigate the performance of distributed multiscale computing of component-based models, guided by six multiscale applications with different characteristics and from several disciplines. Three modes of distributed multiscale computing are identified: supplementing local dependencies with large-scale resources, load distribution over multiple resources, and load balancing of small- and large-scale resources. We find that the first mode has the apparent benefit of increasing simulation speed, and the second mode can increase simulation speed if local resources are limited. Depending on resource reservation and model coupling topology, the third mode may result in a reduction of resource consumption. PMID:24982258
NASA Astrophysics Data System (ADS)
Senthilkumar, K.; Ruchika Mehra Vijayan, E.
2017-11-01
This paper aims to illustrate real time analysis of large scale data. For practical implementation we are performing sentiment analysis on live Twitter feeds for each individual tweet. To analyze sentiments we will train our data model on sentiWordNet, a polarity assigned wordNet sample by Princeton University. Our main objective will be to efficiency analyze large scale data on the fly using distributed computation. Apache Spark and Apache Hadoop eco system is used as distributed computation platform with Java as development language
Supporting large scale applications on networks of workstations
NASA Technical Reports Server (NTRS)
Cooper, Robert; Birman, Kenneth P.
1989-01-01
Distributed applications on networks of workstations are an increasingly common way to satisfy computing needs. However, existing mechanisms for distributed programming exhibit poor performance and reliability as application size increases. Extension of the ISIS distributed programming system to support large scale distributed applications by providing hierarchical process groups is discussed. Incorporation of hierarchy in the program structure and exploitation of this to limit the communication and storage required in any one component of the distributed system is examined.
Large-scale anisotropy of the cosmic microwave background radiation
NASA Technical Reports Server (NTRS)
Silk, J.; Wilson, M. L.
1981-01-01
Inhomogeneities in the large-scale distribution of matter inevitably lead to the generation of large-scale anisotropy in the cosmic background radiation. The dipole, quadrupole, and higher order fluctuations expected in an Einstein-de Sitter cosmological model have been computed. The dipole and quadrupole anisotropies are comparable to the measured values, and impose important constraints on the allowable spectrum of large-scale matter density fluctuations. A significant dipole anisotropy is generated by the matter distribution on scales greater than approximately 100 Mpc. The large-scale anisotropy is insensitive to the ionization history of the universe since decoupling, and cannot easily be reconciled with a galaxy formation theory that is based on primordial adiabatic density fluctuations.
Workflow management in large distributed systems
NASA Astrophysics Data System (ADS)
Legrand, I.; Newman, H.; Voicu, R.; Dobre, C.; Grigoras, C.
2011-12-01
The MonALISA (Monitoring Agents using a Large Integrated Services Architecture) framework provides a distributed service system capable of controlling and optimizing large-scale, data-intensive applications. An essential part of managing large-scale, distributed data-processing facilities is a monitoring system for computing facilities, storage, networks, and the very large number of applications running on these systems in near realtime. All this monitoring information gathered for all the subsystems is essential for developing the required higher-level services—the components that provide decision support and some degree of automated decisions—and for maintaining and optimizing workflow in large-scale distributed systems. These management and global optimization functions are performed by higher-level agent-based services. We present several applications of MonALISA's higher-level services including optimized dynamic routing, control, data-transfer scheduling, distributed job scheduling, dynamic allocation of storage resource to running jobs and automated management of remote services among a large set of grid facilities.
Distributed weighted least-squares estimation with fast convergence for large-scale systems.
Marelli, Damián Edgardo; Fu, Minyue
2015-01-01
In this paper we study a distributed weighted least-squares estimation problem for a large-scale system consisting of a network of interconnected sub-systems. Each sub-system is concerned with a subset of the unknown parameters and has a measurement linear in the unknown parameters with additive noise. The distributed estimation task is for each sub-system to compute the globally optimal estimate of its own parameters using its own measurement and information shared with the network through neighborhood communication. We first provide a fully distributed iterative algorithm to asymptotically compute the global optimal estimate. The convergence rate of the algorithm will be maximized using a scaling parameter and a preconditioning method. This algorithm works for a general network. For a network without loops, we also provide a different iterative algorithm to compute the global optimal estimate which converges in a finite number of steps. We include numerical experiments to illustrate the performances of the proposed methods.
Distributed weighted least-squares estimation with fast convergence for large-scale systems☆
Marelli, Damián Edgardo; Fu, Minyue
2015-01-01
In this paper we study a distributed weighted least-squares estimation problem for a large-scale system consisting of a network of interconnected sub-systems. Each sub-system is concerned with a subset of the unknown parameters and has a measurement linear in the unknown parameters with additive noise. The distributed estimation task is for each sub-system to compute the globally optimal estimate of its own parameters using its own measurement and information shared with the network through neighborhood communication. We first provide a fully distributed iterative algorithm to asymptotically compute the global optimal estimate. The convergence rate of the algorithm will be maximized using a scaling parameter and a preconditioning method. This algorithm works for a general network. For a network without loops, we also provide a different iterative algorithm to compute the global optimal estimate which converges in a finite number of steps. We include numerical experiments to illustrate the performances of the proposed methods. PMID:25641976
Large-Scale Distributed Computational Fluid Dynamics on the Information Power Grid Using Globus
NASA Technical Reports Server (NTRS)
Barnard, Stephen; Biswas, Rupak; Saini, Subhash; VanderWijngaart, Robertus; Yarrow, Maurice; Zechtzer, Lou; Foster, Ian; Larsson, Olle
1999-01-01
This paper describes an experiment in which a large-scale scientific application development for tightly-coupled parallel machines is adapted to the distributed execution environment of the Information Power Grid (IPG). A brief overview of the IPG and a description of the computational fluid dynamics (CFD) algorithm are given. The Globus metacomputing toolkit is used as the enabling device for the geographically-distributed computation. Modifications related to latency hiding and Load balancing were required for an efficient implementation of the CFD application in the IPG environment. Performance results on a pair of SGI Origin 2000 machines indicate that real scientific applications can be effectively implemented on the IPG; however, a significant amount of continued effort is required to make such an environment useful and accessible to scientists and engineers.
GLAD: a system for developing and deploying large-scale bioinformatics grid.
Teo, Yong-Meng; Wang, Xianbing; Ng, Yew-Kwong
2005-03-01
Grid computing is used to solve large-scale bioinformatics problems with gigabytes database by distributing the computation across multiple platforms. Until now in developing bioinformatics grid applications, it is extremely tedious to design and implement the component algorithms and parallelization techniques for different classes of problems, and to access remotely located sequence database files of varying formats across the grid. In this study, we propose a grid programming toolkit, GLAD (Grid Life sciences Applications Developer), which facilitates the development and deployment of bioinformatics applications on a grid. GLAD has been developed using ALiCE (Adaptive scaLable Internet-based Computing Engine), a Java-based grid middleware, which exploits the task-based parallelism. Two bioinformatics benchmark applications, such as distributed sequence comparison and distributed progressive multiple sequence alignment, have been developed using GLAD.
Drawert, Brian; Trogdon, Michael; Toor, Salman; Petzold, Linda; Hellander, Andreas
2016-01-01
Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools and a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments.
The Computing and Data Grid Approach: Infrastructure for Distributed Science Applications
NASA Technical Reports Server (NTRS)
Johnston, William E.
2002-01-01
With the advent of Grids - infrastructure for using and managing widely distributed computing and data resources in the science environment - there is now an opportunity to provide a standard, large-scale, computing, data, instrument, and collaboration environment for science that spans many different projects and provides the required infrastructure and services in a relatively uniform and supportable way. Grid technology has evolved over the past several years to provide the services and infrastructure needed for building 'virtual' systems and organizations. We argue that Grid technology provides an excellent basis for the creation of the integrated environments that can combine the resources needed to support the large- scale science projects located at multiple laboratories and universities. We present some science case studies that indicate that a paradigm shift in the process of science will come about as a result of Grids providing transparent and secure access to advanced and integrated information and technologies infrastructure: powerful computing systems, large-scale data archives, scientific instruments, and collaboration tools. These changes will be in the form of services that can be integrated with the user's work environment, and that enable uniform and highly capable access to these computers, data, and instruments, regardless of the location or exact nature of these resources. These services will integrate transient-use resources like computing systems, scientific instruments, and data caches (e.g., as they are needed to perform a simulation or analyze data from a single experiment); persistent-use resources. such as databases, data catalogues, and archives, and; collaborators, whose involvement will continue for the lifetime of a project or longer. While we largely address large-scale science in this paper, Grids, particularly when combined with Web Services, will address a broad spectrum of science scenarios. both large and small scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2012-09-25
The Megatux platform enables the emulation of large scale (multi-million node) distributed systems. In particular, it allows for the emulation of large-scale networks interconnecting a very large number of emulated computer systems. It does this by leveraging virtualization and associated technologies to allow hundreds of virtual computers to be hosted on a single moderately sized server or workstation. Virtualization technology provided by modern processors allows for multiple guest OSs to run at the same time, sharing the hardware resources. The Megatux platform can be deployed on a single PC, a small cluster of a few boxes or a large clustermore » of computers. With a modest cluster, the Megatux platform can emulate complex organizational networks. By using virtualization, we emulate the hardware, but run actual software enabling large scale without sacrificing fidelity.« less
The MIT Alewife Machine: A Large-Scale Distributed-Memory Multiprocessor
1991-06-01
Symposium on Compiler Construction, June 1986. [14] Daniel Gajski , David Kuck, Duncan Lawrie, and Ahmed Saleh. Cedar - A Large Scale Multiprocessor. In...Directory Methods. In Proceedings 17th Annual International Symposium on Computer Architecture, June 1990. [31] G . M. Papadopoulos and D.E. Culler...Monsoon: An Explicit Token-Store Ar- chitecture. In Proceedings 17th Annual International Symposium on Computer Architecture, June 1990. [32] G . F
Coalescence computations for large samples drawn from populations of time-varying sizes
Polanski, Andrzej; Szczesna, Agnieszka; Garbulowski, Mateusz; Kimmel, Marek
2017-01-01
We present new results concerning probability distributions of times in the coalescence tree and expected allele frequencies for coalescent with large sample size. The obtained results are based on computational methodologies, which involve combining coalescence time scale changes with techniques of integral transformations and using analytical formulae for infinite products. We show applications of the proposed methodologies for computing probability distributions of times in the coalescence tree and their limits, for evaluation of accuracy of approximate expressions for times in the coalescence tree and expected allele frequencies, and for analysis of large human mitochondrial DNA dataset. PMID:28170404
Extracting Useful Semantic Information from Large Scale Corpora of Text
ERIC Educational Resources Information Center
Mendoza, Ray Padilla, Jr.
2012-01-01
Extracting and representing semantic information from large scale corpora is at the crux of computer-assisted knowledge generation. Semantic information depends on collocation extraction methods, mathematical models used to represent distributional information, and weighting functions which transform the space. This dissertation provides a…
NASA Technical Reports Server (NTRS)
Deardorff, Glenn; Djomehri, M. Jahed; Freeman, Ken; Gambrel, Dave; Green, Bryan; Henze, Chris; Hinke, Thomas; Hood, Robert; Kiris, Cetin; Moran, Patrick;
2001-01-01
A series of NASA presentations for the Supercomputing 2001 conference are summarized. The topics include: (1) Mars Surveyor Landing Sites "Collaboratory"; (2) Parallel and Distributed CFD for Unsteady Flows with Moving Overset Grids; (3) IP Multicast for Seamless Support of Remote Science; (4) Consolidated Supercomputing Management Office; (5) Growler: A Component-Based Framework for Distributed/Collaborative Scientific Visualization and Computational Steering; (6) Data Mining on the Information Power Grid (IPG); (7) Debugging on the IPG; (8) Debakey Heart Assist Device: (9) Unsteady Turbopump for Reusable Launch Vehicle; (10) Exploratory Computing Environments Component Framework; (11) OVERSET Computational Fluid Dynamics Tools; (12) Control and Observation in Distributed Environments; (13) Multi-Level Parallelism Scaling on NASA's Origin 1024 CPU System; (14) Computing, Information, & Communications Technology; (15) NAS Grid Benchmarks; (16) IPG: A Large-Scale Distributed Computing and Data Management System; and (17) ILab: Parameter Study Creation and Submission on the IPG.
Drawert, Brian; Trogdon, Michael; Toor, Salman; Petzold, Linda; Hellander, Andreas
2017-01-01
Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools and a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments. PMID:28190948
NASA Astrophysics Data System (ADS)
Dednam, W.; Botha, A. E.
2015-01-01
Solvation of bio-molecules in water is severely affected by the presence of co-solvent within the hydration shell of the solute structure. Furthermore, since solute molecules can range from small molecules, such as methane, to very large protein structures, it is imperative to understand the detailed structure-function relationship on the microscopic level. For example, it is useful know the conformational transitions that occur in protein structures. Although such an understanding can be obtained through large-scale molecular dynamic simulations, it is often the case that such simulations would require excessively large simulation times. In this context, Kirkwood-Buff theory, which connects the microscopic pair-wise molecular distributions to global thermodynamic properties, together with the recently developed technique, called finite size scaling, may provide a better method to reduce system sizes, and hence also the computational times. In this paper, we present molecular dynamics trial simulations of biologically relevant low-concentration solvents, solvated by aqueous co-solvent solutions. In particular we compare two different methods of calculating the relevant Kirkwood-Buff integrals. The first (traditional) method computes running integrals over the radial distribution functions, which must be obtained from large system-size NVT or NpT simulations. The second, newer method, employs finite size scaling to obtain the Kirkwood-Buff integrals directly by counting the particle number fluctuations in small, open sub-volumes embedded within a larger reservoir that can be well approximated by a much smaller simulation cell. In agreement with previous studies, which made a similar comparison for aqueous co-solvent solutions, without the additional solvent, we conclude that the finite size scaling method is also applicable to the present case, since it can produce computationally more efficient results which are equivalent to the more costly radial distribution function method.
Simulation Framework for Intelligent Transportation Systems
DOT National Transportation Integrated Search
1996-10-01
A simulation framework has been developed for a large-scale, comprehensive, scaleable simulation of an Intelligent Transportation System. The simulator is designed for running on parellel computers and distributed (networked) computer systems, but ca...
Computer-generated forces in distributed interactive simulation
NASA Astrophysics Data System (ADS)
Petty, Mikel D.
1995-04-01
Distributed Interactive Simulation (DIS) is an architecture for building large-scale simulation models from a set of independent simulator nodes communicating via a common network protocol. DIS is most often used to create a simulated battlefield for military training. Computer Generated Forces (CGF) systems control large numbers of autonomous battlefield entities in a DIS simulation using computer equipment and software rather than humans in simulators. CGF entities serve as both enemy forces and supplemental friendly forces in a DIS exercise. Research into various aspects of CGF systems is ongoing. Several CGF systems have been implemented.
Semantics-based distributed I/O with the ParaMEDIC framework.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balaji, P.; Feng, W.; Lin, H.
2008-01-01
Many large-scale applications simultaneously rely on multiple resources for efficient execution. For example, such applications may require both large compute and storage resources; however, very few supercomputing centers can provide large quantities of both. Thus, data generated at the compute site oftentimes has to be moved to a remote storage site for either storage or visualization and analysis. Clearly, this is not an efficient model, especially when the two sites are distributed over a wide-area network. Thus, we present a framework called 'ParaMEDIC: Parallel Metadata Environment for Distributed I/O and Computing' which uses application-specific semantic information to convert the generatedmore » data to orders-of-magnitude smaller metadata at the compute site, transfer the metadata to the storage site, and re-process the metadata at the storage site to regenerate the output. Specifically, ParaMEDIC trades a small amount of additional computation (in the form of data post-processing) for a potentially significant reduction in data that needs to be transferred in distributed environments.« less
Rapid solution of large-scale systems of equations
NASA Technical Reports Server (NTRS)
Storaasli, Olaf O.
1994-01-01
The analysis and design of complex aerospace structures requires the rapid solution of large systems of linear and nonlinear equations, eigenvalue extraction for buckling, vibration and flutter modes, structural optimization and design sensitivity calculation. Computers with multiple processors and vector capabilities can offer substantial computational advantages over traditional scalar computer for these analyses. These computers fall into two categories: shared memory computers and distributed memory computers. This presentation covers general-purpose, highly efficient algorithms for generation/assembly or element matrices, solution of systems of linear and nonlinear equations, eigenvalue and design sensitivity analysis and optimization. All algorithms are coded in FORTRAN for shared memory computers and many are adapted to distributed memory computers. The capability and numerical performance of these algorithms will be addressed.
Cormode, Graham; Dasgupta, Anirban; Goyal, Amit; Lee, Chi Hoon
2018-01-01
Many modern applications of AI such as web search, mobile browsing, image processing, and natural language processing rely on finding similar items from a large database of complex objects. Due to the very large scale of data involved (e.g., users' queries from commercial search engines), computing such near or nearest neighbors is a non-trivial task, as the computational cost grows significantly with the number of items. To address this challenge, we adopt Locality Sensitive Hashing (a.k.a, LSH) methods and evaluate four variants in a distributed computing environment (specifically, Hadoop). We identify several optimizations which improve performance, suitable for deployment in very large scale settings. The experimental results demonstrate our variants of LSH achieve the robust performance with better recall compared with "vanilla" LSH, even when using the same amount of space.
A distributed computing approach to mission operations support. [for spacecraft
NASA Technical Reports Server (NTRS)
Larsen, R. L.
1975-01-01
Computing mission operation support includes orbit determination, attitude processing, maneuver computation, resource scheduling, etc. The large-scale third-generation distributed computer network discussed is capable of fulfilling these dynamic requirements. It is shown that distribution of resources and control leads to increased reliability, and exhibits potential for incremental growth. Through functional specialization, a distributed system may be tuned to very specific operational requirements. Fundamental to the approach is the notion of process-to-process communication, which is effected through a high-bandwidth communications network. Both resource-sharing and load-sharing may be realized in the system.
Visualization, documentation, analysis, and communication of large scale gene regulatory networks
Longabaugh, William J.R.; Davidson, Eric H.; Bolouri, Hamid
2009-01-01
Summary Genetic regulatory networks (GRNs) are complex, large-scale, and spatially and temporally distributed. These characteristics impose challenging demands on computational GRN modeling tools, and there is a need for custom modeling tools. In this paper, we report on our ongoing development of BioTapestry, an open source, freely available computational tool designed specifically for GRN modeling. We also outline our future development plans, and give some examples of current applications of BioTapestry. PMID:18757046
Afshar, Yaser; Sbalzarini, Ivo F.
2016-01-01
Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 1010 pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments. PMID:27046144
Afshar, Yaser; Sbalzarini, Ivo F
2016-01-01
Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 10(10) pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katz, Daniel S; Jha, Shantenu; Weissman, Jon
2017-01-31
This is the final technical report for the AIMES project. Many important advances in science and engineering are due to large-scale distributed computing. Notwithstanding this reliance, we are still learning how to design and deploy large-scale production Distributed Computing Infrastructures (DCI). This is evidenced by missing design principles for DCI, and an absence of generally acceptable and usable distributed computing abstractions. The AIMES project was conceived against this backdrop, following on the heels of a comprehensive survey of scientific distributed applications. AIMES laid the foundations to address the tripartite challenge of dynamic resource management, integrating information, and portable and interoperablemore » distributed applications. Four abstractions were defined and implemented: skeleton, resource bundle, pilot, and execution strategy. The four abstractions were implemented into software modules and then aggregated into the AIMES middleware. This middleware successfully integrates information across the application layer (skeletons) and resource layer (Bundles), derives a suitable execution strategy for the given skeleton and enacts its execution by means of pilots on one or more resources, depending on the application requirements, and resource availabilities and capabilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weissman, Jon; Katz, Dan; Jha, Shantenu
2017-01-31
This is the final technical report for the AIMES project. Many important advances in science and engineering are due to large scale distributed computing. Notwithstanding this reliance, we are still learning how to design and deploy large-scale production Distributed Computing Infrastructures (DCI). This is evidenced by missing design principles for DCI, and an absence of generally acceptable and usable distributed computing abstractions. The AIMES project was conceived against this backdrop, following on the heels of a comprehensive survey of scientific distributed applications. AIMES laid the foundations to address the tripartite challenge of dynamic resource management, integrating information, and portable andmore » interoperable distributed applications. Four abstractions were defined and implemented: skeleton, resource bundle, pilot, and execution strategy. The four abstractions were implemented into software modules and then aggregated into the AIMES middleware. This middleware successfully integrates information across the application layer (skeletons) and resource layer (Bundles), derives a suitable execution strategy for the given skeleton and enacts its execution by means of pilots on one or more resources, depending on the application requirements, and resource availabilities and capabilities.« less
Scalable parallel distance field construction for large-scale applications
Yu, Hongfeng; Xie, Jinrong; Ma, Kwan -Liu; ...
2015-10-01
Computing distance fields is fundamental to many scientific and engineering applications. Distance fields can be used to direct analysis and reduce data. In this paper, we present a highly scalable method for computing 3D distance fields on massively parallel distributed-memory machines. Anew distributed spatial data structure, named parallel distance tree, is introduced to manage the level sets of data and facilitate surface tracking overtime, resulting in significantly reduced computation and communication costs for calculating the distance to the surface of interest from any spatial locations. Our method supports several data types and distance metrics from real-world applications. We demonstrate itsmore » efficiency and scalability on state-of-the-art supercomputers using both large-scale volume datasets and surface models. We also demonstrate in-situ distance field computation on dynamic turbulent flame surfaces for a petascale combustion simulation. In conclusion, our work greatly extends the usability of distance fields for demanding applications.« less
Scalable Parallel Distance Field Construction for Large-Scale Applications.
Yu, Hongfeng; Xie, Jinrong; Ma, Kwan-Liu; Kolla, Hemanth; Chen, Jacqueline H
2015-10-01
Computing distance fields is fundamental to many scientific and engineering applications. Distance fields can be used to direct analysis and reduce data. In this paper, we present a highly scalable method for computing 3D distance fields on massively parallel distributed-memory machines. A new distributed spatial data structure, named parallel distance tree, is introduced to manage the level sets of data and facilitate surface tracking over time, resulting in significantly reduced computation and communication costs for calculating the distance to the surface of interest from any spatial locations. Our method supports several data types and distance metrics from real-world applications. We demonstrate its efficiency and scalability on state-of-the-art supercomputers using both large-scale volume datasets and surface models. We also demonstrate in-situ distance field computation on dynamic turbulent flame surfaces for a petascale combustion simulation. Our work greatly extends the usability of distance fields for demanding applications.
2018-01-01
Many modern applications of AI such as web search, mobile browsing, image processing, and natural language processing rely on finding similar items from a large database of complex objects. Due to the very large scale of data involved (e.g., users’ queries from commercial search engines), computing such near or nearest neighbors is a non-trivial task, as the computational cost grows significantly with the number of items. To address this challenge, we adopt Locality Sensitive Hashing (a.k.a, LSH) methods and evaluate four variants in a distributed computing environment (specifically, Hadoop). We identify several optimizations which improve performance, suitable for deployment in very large scale settings. The experimental results demonstrate our variants of LSH achieve the robust performance with better recall compared with “vanilla” LSH, even when using the same amount of space. PMID:29346410
NASA Astrophysics Data System (ADS)
Carvalho, D.; Gavillet, Ph.; Delgado, V.; Albert, J. N.; Bellas, N.; Javello, J.; Miere, Y.; Ruffinoni, D.; Smith, G.
Large Scientific Equipments are controlled by Computer Systems whose complexity is growing driven, on the one hand by the volume and variety of the information, its distributed nature, the sophistication of its treatment and, on the other hand by the fast evolution of the computer and network market. Some people call them genetically Large-Scale Distributed Data Intensive Information Systems or Distributed Computer Control Systems (DCCS) for those systems dealing more with real time control. Taking advantage of (or forced by) the distributed architecture, the tasks are more and more often implemented as Client-Server applications. In this framework the monitoring of the computer nodes, the communications network and the applications becomes of primary importance for ensuring the safe running and guaranteed performance of the system. With the future generation of HEP experiments, such as those at the LHC in view, it is proposed to integrate the various functions of DCCS monitoring into one general purpose Multi-layer System.
cOSPREY: A Cloud-Based Distributed Algorithm for Large-Scale Computational Protein Design
Pan, Yuchao; Dong, Yuxi; Zhou, Jingtian; Hallen, Mark; Donald, Bruce R.; Xu, Wei
2016-01-01
Abstract Finding the global minimum energy conformation (GMEC) of a huge combinatorial search space is the key challenge in computational protein design (CPD) problems. Traditional algorithms lack a scalable and efficient distributed design scheme, preventing researchers from taking full advantage of current cloud infrastructures. We design cloud OSPREY (cOSPREY), an extension to a widely used protein design software OSPREY, to allow the original design framework to scale to the commercial cloud infrastructures. We propose several novel designs to integrate both algorithm and system optimizations, such as GMEC-specific pruning, state search partitioning, asynchronous algorithm state sharing, and fault tolerance. We evaluate cOSPREY on three different cloud platforms using different technologies and show that it can solve a number of large-scale protein design problems that have not been possible with previous approaches. PMID:27154509
Karthikeyan, M; Krishnan, S; Pandey, Anil Kumar; Bender, Andreas; Tropsha, Alexander
2008-04-01
We present the application of a Java remote method invocation (RMI) based open source architecture to distributed chemical computing. This architecture was previously employed for distributed data harvesting of chemical information from the Internet via the Google application programming interface (API; ChemXtreme). Due to its open source character and its flexibility, the underlying server/client framework can be quickly adopted to virtually every computational task that can be parallelized. Here, we present the server/client communication framework as well as an application to distributed computing of chemical properties on a large scale (currently the size of PubChem; about 18 million compounds), using both the Marvin toolkit as well as the open source JOELib package. As an application, for this set of compounds, the agreement of log P and TPSA between the packages was compared. Outliers were found to be mostly non-druglike compounds and differences could usually be explained by differences in the underlying algorithms. ChemStar is the first open source distributed chemical computing environment built on Java RMI, which is also easily adaptable to user demands due to its "plug-in architecture". The complete source codes as well as calculated properties along with links to PubChem resources are available on the Internet via a graphical user interface at http://moltable.ncl.res.in/chemstar/.
GISpark: A Geospatial Distributed Computing Platform for Spatiotemporal Big Data
NASA Astrophysics Data System (ADS)
Wang, S.; Zhong, E.; Wang, E.; Zhong, Y.; Cai, W.; Li, S.; Gao, S.
2016-12-01
Geospatial data are growing exponentially because of the proliferation of cost effective and ubiquitous positioning technologies such as global remote-sensing satellites and location-based devices. Analyzing large amounts of geospatial data can provide great value for both industrial and scientific applications. Data- and compute- intensive characteristics inherent in geospatial big data increasingly pose great challenges to technologies of data storing, computing and analyzing. Such challenges require a scalable and efficient architecture that can store, query, analyze, and visualize large-scale spatiotemporal data. Therefore, we developed GISpark - a geospatial distributed computing platform for processing large-scale vector, raster and stream data. GISpark is constructed based on the latest virtualized computing infrastructures and distributed computing architecture. OpenStack and Docker are used to build multi-user hosting cloud computing infrastructure for GISpark. The virtual storage systems such as HDFS, Ceph, MongoDB are combined and adopted for spatiotemporal data storage management. Spark-based algorithm framework is developed for efficient parallel computing. Within this framework, SuperMap GIScript and various open-source GIS libraries can be integrated into GISpark. GISpark can also integrated with scientific computing environment (e.g., Anaconda), interactive computing web applications (e.g., Jupyter notebook), and machine learning tools (e.g., TensorFlow/Orange). The associated geospatial facilities of GISpark in conjunction with the scientific computing environment, exploratory spatial data analysis tools, temporal data management and analysis systems make up a powerful geospatial computing tool. GISpark not only provides spatiotemporal big data processing capacity in the geospatial field, but also provides spatiotemporal computational model and advanced geospatial visualization tools that deals with other domains related with spatial property. We tested the performance of the platform based on taxi trajectory analysis. Results suggested that GISpark achieves excellent run time performance in spatiotemporal big data applications.
A Weibull distribution accrual failure detector for cloud computing.
Liu, Jiaxi; Wu, Zhibo; Wu, Jin; Dong, Jian; Zhao, Yao; Wen, Dongxin
2017-01-01
Failure detectors are used to build high availability distributed systems as the fundamental component. To meet the requirement of a complicated large-scale distributed system, accrual failure detectors that can adapt to multiple applications have been studied extensively. However, several implementations of accrual failure detectors do not adapt well to the cloud service environment. To solve this problem, a new accrual failure detector based on Weibull Distribution, called the Weibull Distribution Failure Detector, has been proposed specifically for cloud computing. It can adapt to the dynamic and unexpected network conditions in cloud computing. The performance of the Weibull Distribution Failure Detector is evaluated and compared based on public classical experiment data and cloud computing experiment data. The results show that the Weibull Distribution Failure Detector has better performance in terms of speed and accuracy in unstable scenarios, especially in cloud computing.
The revolution in data gathering systems
NASA Technical Reports Server (NTRS)
Cambra, J. M.; Trover, W. F.
1975-01-01
Data acquisition systems used in NASA's wind tunnels from the 1950's through the present time are summarized as a baseline for assessing the impact of minicomputers and microcomputers on data acquisition and data processing. Emphasis is placed on the cyclic evolution in computer technology which transformed the central computer system, and finally the distributed computer system. Other developments discussed include: medium scale integration, large scale integration, combining the functions of data acquisition and control, and micro and minicomputers.
Warris, Sven; Boymans, Sander; Muiser, Iwe; Noback, Michiel; Krijnen, Wim; Nap, Jan-Peter
2014-01-13
Small RNAs are important regulators of genome function, yet their prediction in genomes is still a major computational challenge. Statistical analyses of pre-miRNA sequences indicated that their 2D structure tends to have a minimal free energy (MFE) significantly lower than MFE values of equivalently randomized sequences with the same nucleotide composition, in contrast to other classes of non-coding RNA. The computation of many MFEs is, however, too intensive to allow for genome-wide screenings. Using a local grid infrastructure, MFE distributions of random sequences were pre-calculated on a large scale. These distributions follow a normal distribution and can be used to determine the MFE distribution for any given sequence composition by interpolation. It allows on-the-fly calculation of the normal distribution for any candidate sequence composition. The speedup achieved makes genome-wide screening with this characteristic of a pre-miRNA sequence practical. Although this particular property alone will not be able to distinguish miRNAs from other sequences sufficiently discriminative, the MFE-based P-value should be added to the parameters of choice to be included in the selection of potential miRNA candidates for experimental verification.
Investigation of low-latitude hydrogen emission in terms of a two-component interstellar gas model
NASA Technical Reports Server (NTRS)
Baker, P. L.; Burton, W. B.
1975-01-01
High-resolution 21-cm hydrogen line observations at low galactic latitude are analyzed to determine the large-scale distribution of galactic hydrogen. Distribution parameters are found by model fitting, optical depth effects are computed using a two-component gas model suggested by the observations, and calculations are made for a one-component uniform spin-temperature gas model to show the systematic departures between this model and data obtained by incorrect treatment of the optical depth effects. Synthetic 21-cm line profiles are computed from the two-component model, and the large-scale trends of the observed emission profiles are reproduced together with the magnitude of the small-scale emission irregularities. Values are determined for the thickness of the galactic hydrogen disk between half density points, the total observed neutral hydrogen mass of the galaxy, and the central number density of the intercloud hydrogen atoms. It is shown that typical hydrogen clouds must be between 1 and 13 pc in diameter and that optical thinness exists on large-scale despite the presence of optically thin gas.
Extraction of drainage networks from large terrain datasets using high throughput computing
NASA Astrophysics Data System (ADS)
Gong, Jianya; Xie, Jibo
2009-02-01
Advanced digital photogrammetry and remote sensing technology produces large terrain datasets (LTD). How to process and use these LTD has become a big challenge for GIS users. Extracting drainage networks, which are basic for hydrological applications, from LTD is one of the typical applications of digital terrain analysis (DTA) in geographical information applications. Existing serial drainage algorithms cannot deal with large data volumes in a timely fashion, and few GIS platforms can process LTD beyond the GB size. High throughput computing (HTC), a distributed parallel computing mode, is proposed to improve the efficiency of drainage networks extraction from LTD. Drainage network extraction using HTC involves two key issues: (1) how to decompose the large DEM datasets into independent computing units and (2) how to merge the separate outputs into a final result. A new decomposition method is presented in which the large datasets are partitioned into independent computing units using natural watershed boundaries instead of using regular 1-dimensional (strip-wise) and 2-dimensional (block-wise) decomposition. Because the distribution of drainage networks is strongly related to watershed boundaries, the new decomposition method is more effective and natural. The method to extract natural watershed boundaries was improved by using multi-scale DEMs instead of single-scale DEMs. A HTC environment is employed to test the proposed methods with real datasets.
Universal distribution of component frequencies in biological and technological systems
Pang, Tin Yau; Maslov, Sergei
2013-01-01
Bacterial genomes and large-scale computer software projects both consist of a large number of components (genes or software packages) connected via a network of mutual dependencies. Components can be easily added or removed from individual systems, and their use frequencies vary over many orders of magnitude. We study this frequency distribution in genomes of ∼500 bacterial species and in over 2 million Linux computers and find that in both cases it is described by the same scale-free power-law distribution with an additional peak near the tail of the distribution corresponding to nearly universal components. We argue that the existence of a power law distribution of frequencies of components is a general property of any modular system with a multilayered dependency network. We demonstrate that the frequency of a component is positively correlated with its dependency degree given by the total number of upstream components whose operation directly or indirectly depends on the selected component. The observed frequency/dependency degree distributions are reproduced in a simple mathematically tractable model introduced and analyzed in this study. PMID:23530195
NASA Astrophysics Data System (ADS)
Lin, Y.; O'Malley, D.; Vesselinov, V. V.
2015-12-01
Inverse modeling seeks model parameters given a set of observed state variables. However, for many practical problems due to the facts that the observed data sets are often large and model parameters are often numerous, conventional methods for solving the inverse modeling can be computationally expensive. We have developed a new, computationally-efficient Levenberg-Marquardt method for solving large-scale inverse modeling. Levenberg-Marquardt methods require the solution of a dense linear system of equations which can be prohibitively expensive to compute for large-scale inverse problems. Our novel method projects the original large-scale linear problem down to a Krylov subspace, such that the dimensionality of the measurements can be significantly reduced. Furthermore, instead of solving the linear system for every Levenberg-Marquardt damping parameter, we store the Krylov subspace computed when solving the first damping parameter and recycle it for all the following damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved by using these computational techniques. We apply this new inverse modeling method to invert for a random transitivity field. Our algorithm is fast enough to solve for the distributed model parameters (transitivity) at each computational node in the model domain. The inversion is also aided by the use regularization techniques. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). Julia is an advanced high-level scientific programing language that allows for efficient memory management and utilization of high-performance computational resources. By comparing with a Levenberg-Marquardt method using standard linear inversion techniques, our Levenberg-Marquardt method yields speed-up ratio of 15 in a multi-core computational environment and a speed-up ratio of 45 in a single-core computational environment. Therefore, our new inverse modeling method is a powerful tool for large-scale applications.
Towards Portable Large-Scale Image Processing with High-Performance Computing.
Huo, Yuankai; Blaber, Justin; Damon, Stephen M; Boyd, Brian D; Bao, Shunxing; Parvathaneni, Prasanna; Noguera, Camilo Bermudez; Chaganti, Shikha; Nath, Vishwesh; Greer, Jasmine M; Lyu, Ilwoo; French, William R; Newton, Allen T; Rogers, Baxter P; Landman, Bennett A
2018-05-03
High-throughput, large-scale medical image computing demands tight integration of high-performance computing (HPC) infrastructure for data storage, job distribution, and image processing. The Vanderbilt University Institute for Imaging Science (VUIIS) Center for Computational Imaging (CCI) has constructed a large-scale image storage and processing infrastructure that is composed of (1) a large-scale image database using the eXtensible Neuroimaging Archive Toolkit (XNAT), (2) a content-aware job scheduling platform using the Distributed Automation for XNAT pipeline automation tool (DAX), and (3) a wide variety of encapsulated image processing pipelines called "spiders." The VUIIS CCI medical image data storage and processing infrastructure have housed and processed nearly half-million medical image volumes with Vanderbilt Advanced Computing Center for Research and Education (ACCRE), which is the HPC facility at the Vanderbilt University. The initial deployment was natively deployed (i.e., direct installations on a bare-metal server) within the ACCRE hardware and software environments, which lead to issues of portability and sustainability. First, it could be laborious to deploy the entire VUIIS CCI medical image data storage and processing infrastructure to another HPC center with varying hardware infrastructure, library availability, and software permission policies. Second, the spiders were not developed in an isolated manner, which has led to software dependency issues during system upgrades or remote software installation. To address such issues, herein, we describe recent innovations using containerization techniques with XNAT/DAX which are used to isolate the VUIIS CCI medical image data storage and processing infrastructure from the underlying hardware and software environments. The newly presented XNAT/DAX solution has the following new features: (1) multi-level portability from system level to the application level, (2) flexible and dynamic software development and expansion, and (3) scalable spider deployment compatible with HPC clusters and local workstations.
Scientific Services on the Cloud
NASA Astrophysics Data System (ADS)
Chapman, David; Joshi, Karuna P.; Yesha, Yelena; Halem, Milt; Yesha, Yaacov; Nguyen, Phuong
Scientific Computing was one of the first every applications for parallel and distributed computation. To this date, scientific applications remain some of the most compute intensive, and have inspired creation of petaflop compute infrastructure such as the Oak Ridge Jaguar and Los Alamos RoadRunner. Large dedicated hardware infrastructure has become both a blessing and a curse to the scientific community. Scientists are interested in cloud computing for much the same reason as businesses and other professionals. The hardware is provided, maintained, and administrated by a third party. Software abstraction and virtualization provide reliability, and fault tolerance. Graduated fees allow for multi-scale prototyping and execution. Cloud computing resources are only a few clicks away, and by far the easiest high performance distributed platform to gain access to. There may still be dedicated infrastructure for ultra-scale science, but the cloud can easily play a major part of the scientific computing initiative.
A Weibull distribution accrual failure detector for cloud computing
Wu, Zhibo; Wu, Jin; Zhao, Yao; Wen, Dongxin
2017-01-01
Failure detectors are used to build high availability distributed systems as the fundamental component. To meet the requirement of a complicated large-scale distributed system, accrual failure detectors that can adapt to multiple applications have been studied extensively. However, several implementations of accrual failure detectors do not adapt well to the cloud service environment. To solve this problem, a new accrual failure detector based on Weibull Distribution, called the Weibull Distribution Failure Detector, has been proposed specifically for cloud computing. It can adapt to the dynamic and unexpected network conditions in cloud computing. The performance of the Weibull Distribution Failure Detector is evaluated and compared based on public classical experiment data and cloud computing experiment data. The results show that the Weibull Distribution Failure Detector has better performance in terms of speed and accuracy in unstable scenarios, especially in cloud computing. PMID:28278229
HEPCloud, a New Paradigm for HEP Facilities: CMS Amazon Web Services Investigation
Holzman, Burt; Bauerdick, Lothar A. T.; Bockelman, Brian; ...
2017-09-29
Historically, high energy physics computing has been performed on large purpose-built computing systems. These began as single-site compute facilities, but have evolved into the distributed computing grids used today. Recently, there has been an exponential increase in the capacity and capability of commercial clouds. Cloud resources are highly virtualized and intended to be able to be flexibly deployed for a variety of computing tasks. There is a growing interest among the cloud providers to demonstrate the capability to perform large-scale scientific computing. In this paper, we discuss results from the CMS experiment using the Fermilab HEPCloud facility, which utilized bothmore » local Fermilab resources and virtual machines in the Amazon Web Services Elastic Compute Cloud. We discuss the planning, technical challenges, and lessons learned involved in performing physics workflows on a large-scale set of virtualized resources. Additionally, we will discuss the economics and operational efficiencies when executing workflows both in the cloud and on dedicated resources.« less
HEPCloud, a New Paradigm for HEP Facilities: CMS Amazon Web Services Investigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holzman, Burt; Bauerdick, Lothar A. T.; Bockelman, Brian
Historically, high energy physics computing has been performed on large purpose-built computing systems. These began as single-site compute facilities, but have evolved into the distributed computing grids used today. Recently, there has been an exponential increase in the capacity and capability of commercial clouds. Cloud resources are highly virtualized and intended to be able to be flexibly deployed for a variety of computing tasks. There is a growing interest among the cloud providers to demonstrate the capability to perform large-scale scientific computing. In this paper, we discuss results from the CMS experiment using the Fermilab HEPCloud facility, which utilized bothmore » local Fermilab resources and virtual machines in the Amazon Web Services Elastic Compute Cloud. We discuss the planning, technical challenges, and lessons learned involved in performing physics workflows on a large-scale set of virtualized resources. Additionally, we will discuss the economics and operational efficiencies when executing workflows both in the cloud and on dedicated resources.« less
Portable parallel stochastic optimization for the design of aeropropulsion components
NASA Technical Reports Server (NTRS)
Sues, Robert H.; Rhodes, G. S.
1994-01-01
This report presents the results of Phase 1 research to develop a methodology for performing large-scale Multi-disciplinary Stochastic Optimization (MSO) for the design of aerospace systems ranging from aeropropulsion components to complete aircraft configurations. The current research recognizes that such design optimization problems are computationally expensive, and require the use of either massively parallel or multiple-processor computers. The methodology also recognizes that many operational and performance parameters are uncertain, and that uncertainty must be considered explicitly to achieve optimum performance and cost. The objective of this Phase 1 research was to initialize the development of an MSO methodology that is portable to a wide variety of hardware platforms, while achieving efficient, large-scale parallelism when multiple processors are available. The first effort in the project was a literature review of available computer hardware, as well as review of portable, parallel programming environments. The first effort was to implement the MSO methodology for a problem using the portable parallel programming language, Parallel Virtual Machine (PVM). The third and final effort was to demonstrate the example on a variety of computers, including a distributed-memory multiprocessor, a distributed-memory network of workstations, and a single-processor workstation. Results indicate the MSO methodology can be well-applied towards large-scale aerospace design problems. Nearly perfect linear speedup was demonstrated for computation of optimization sensitivity coefficients on both a 128-node distributed-memory multiprocessor (the Intel iPSC/860) and a network of workstations (speedups of almost 19 times achieved for 20 workstations). Very high parallel efficiencies (75 percent for 31 processors and 60 percent for 50 processors) were also achieved for computation of aerodynamic influence coefficients on the Intel. Finally, the multi-level parallelization strategy that will be needed for large-scale MSO problems was demonstrated to be highly efficient. The same parallel code instructions were used on both platforms, demonstrating portability. There are many applications for which MSO can be applied, including NASA's High-Speed-Civil Transport, and advanced propulsion systems. The use of MSO will reduce design and development time and testing costs dramatically.
A distributed parallel storage architecture and its potential application within EOSDIS
NASA Technical Reports Server (NTRS)
Johnston, William E.; Tierney, Brian; Feuquay, Jay; Butzer, Tony
1994-01-01
We describe the architecture, implementation, use of a scalable, high performance, distributed-parallel data storage system developed in the ARPA funded MAGIC gigabit testbed. A collection of wide area distributed disk servers operate in parallel to provide logical block level access to large data sets. Operated primarily as a network-based cache, the architecture supports cooperation among independently owned resources to provide fast, large-scale, on-demand storage to support data handling, simulation, and computation.
Parallel Simulation of Unsteady Turbulent Flames
NASA Technical Reports Server (NTRS)
Menon, Suresh
1996-01-01
Time-accurate simulation of turbulent flames in high Reynolds number flows is a challenging task since both fluid dynamics and combustion must be modeled accurately. To numerically simulate this phenomenon, very large computer resources (both time and memory) are required. Although current vector supercomputers are capable of providing adequate resources for simulations of this nature, the high cost and their limited availability, makes practical use of such machines less than satisfactory. At the same time, the explicit time integration algorithms used in unsteady flow simulations often possess a very high degree of parallelism, making them very amenable to efficient implementation on large-scale parallel computers. Under these circumstances, distributed memory parallel computers offer an excellent near-term solution for greatly increased computational speed and memory, at a cost that may render the unsteady simulations of the type discussed above more feasible and affordable.This paper discusses the study of unsteady turbulent flames using a simulation algorithm that is capable of retaining high parallel efficiency on distributed memory parallel architectures. Numerical studies are carried out using large-eddy simulation (LES). In LES, the scales larger than the grid are computed using a time- and space-accurate scheme, while the unresolved small scales are modeled using eddy viscosity based subgrid models. This is acceptable for the moment/energy closure since the small scales primarily provide a dissipative mechanism for the energy transferred from the large scales. However, for combustion to occur, the species must first undergo mixing at the small scales and then come into molecular contact. Therefore, global models cannot be used. Recently, a new model for turbulent combustion was developed, in which the combustion is modeled, within the subgrid (small-scales) using a methodology that simulates the mixing and the molecular transport and the chemical kinetics within each LES grid cell. Finite-rate kinetics can be included without any closure and this approach actually provides a means to predict the turbulent rates and the turbulent flame speed. The subgrid combustion model requires resolution of the local time scales associated with small-scale mixing, molecular diffusion and chemical kinetics and, therefore, within each grid cell, a significant amount of computations must be carried out before the large-scale (LES resolved) effects are incorporated. Therefore, this approach is uniquely suited for parallel processing and has been implemented on various systems such as: Intel Paragon, IBM SP-2, Cray T3D and SGI Power Challenge (PC) using the system independent Message Passing Interface (MPI) compiler. In this paper, timing data on these machines is reported along with some characteristic results.
Spectral fingerprints of large-scale neuronal interactions.
Siegel, Markus; Donner, Tobias H; Engel, Andreas K
2012-01-11
Cognition results from interactions among functionally specialized but widely distributed brain regions; however, neuroscience has so far largely focused on characterizing the function of individual brain regions and neurons therein. Here we discuss recent studies that have instead investigated the interactions between brain regions during cognitive processes by assessing correlations between neuronal oscillations in different regions of the primate cerebral cortex. These studies have opened a new window onto the large-scale circuit mechanisms underlying sensorimotor decision-making and top-down attention. We propose that frequency-specific neuronal correlations in large-scale cortical networks may be 'fingerprints' of canonical neuronal computations underlying cognitive processes.
Access control and privacy in large distributed systems
NASA Technical Reports Server (NTRS)
Leiner, B. M.; Bishop, M.
1986-01-01
Large scale distributed systems consists of workstations, mainframe computers, supercomputers and other types of servers, all connected by a computer network. These systems are being used in a variety of applications including the support of collaborative scientific research. In such an environment, issues of access control and privacy arise. Access control is required for several reasons, including the protection of sensitive resources and cost control. Privacy is also required for similar reasons, including the protection of a researcher's proprietary results. A possible architecture for integrating available computer and communications security technologies into a system that meet these requirements is described. This architecture is meant as a starting point for discussion, rather that the final answer.
Network placement optimization for large-scale distributed system
NASA Astrophysics Data System (ADS)
Ren, Yu; Liu, Fangfang; Fu, Yunxia; Zhou, Zheng
2018-01-01
The network geometry strongly influences the performance of the distributed system, i.e., the coverage capability, measurement accuracy and overall cost. Therefore the network placement optimization represents an urgent issue in the distributed measurement, even in large-scale metrology. This paper presents an effective computer-assisted network placement optimization procedure for the large-scale distributed system and illustrates it with the example of the multi-tracker system. To get an optimal placement, the coverage capability and the coordinate uncertainty of the network are quantified. Then a placement optimization objective function is developed in terms of coverage capabilities, measurement accuracy and overall cost. And a novel grid-based encoding approach for Genetic algorithm is proposed. So the network placement is optimized by a global rough search and a local detailed search. Its obvious advantage is that there is no need for a specific initial placement. At last, a specific application illustrates this placement optimization procedure can simulate the measurement results of a specific network and design the optimal placement efficiently.
Exact Extremal Statistics in the Classical 1D Coulomb Gas
NASA Astrophysics Data System (ADS)
Dhar, Abhishek; Kundu, Anupam; Majumdar, Satya N.; Sabhapandit, Sanjib; Schehr, Grégory
2017-08-01
We consider a one-dimensional classical Coulomb gas of N -like charges in a harmonic potential—also known as the one-dimensional one-component plasma. We compute, analytically, the probability distribution of the position xmax of the rightmost charge in the limit of large N . We show that the typical fluctuations of xmax around its mean are described by a nontrivial scaling function, with asymmetric tails. This distribution is different from the Tracy-Widom distribution of xmax for Dyson's log gas. We also compute the large deviation functions of xmax explicitly and show that the system exhibits a third-order phase transition, as in the log gas. Our theoretical predictions are verified numerically.
Scalable Automated Model Search
2014-05-20
ma- chines. Categories and Subject Descriptors Big Data [Distributed Computing]: Large scale optimization 1. INTRODUCTION Modern scientific and...from Continuum Analytics[1], and Apache Spark 0.8.1. Additionally, we made use of Hadoop 1.0.4 configured on local disks as our data store for the large...Borkar et al. Hyracks: A flexible and extensible foundation for data -intensive computing. In ICDE, 2011. [16] J. Canny and H. Zhao. Big data
Large scale cardiac modeling on the Blue Gene supercomputer.
Reumann, Matthias; Fitch, Blake G; Rayshubskiy, Aleksandr; Keller, David U; Weiss, Daniel L; Seemann, Gunnar; Dössel, Olaf; Pitman, Michael C; Rice, John J
2008-01-01
Multi-scale, multi-physical heart models have not yet been able to include a high degree of accuracy and resolution with respect to model detail and spatial resolution due to computational limitations of current systems. We propose a framework to compute large scale cardiac models. Decomposition of anatomical data in segments to be distributed on a parallel computer is carried out by optimal recursive bisection (ORB). The algorithm takes into account a computational load parameter which has to be adjusted according to the cell models used. The diffusion term is realized by the monodomain equations. The anatomical data-set was given by both ventricles of the Visible Female data-set in a 0.2 mm resolution. Heterogeneous anisotropy was included in the computation. Model weights as input for the decomposition and load balancing were set to (a) 1 for tissue and 0 for non-tissue elements; (b) 10 for tissue and 1 for non-tissue elements. Scaling results for 512, 1024, 2048, 4096 and 8192 computational nodes were obtained for 10 ms simulation time. The simulations were carried out on an IBM Blue Gene/L parallel computer. A 1 s simulation was then carried out on 2048 nodes for the optimal model load. Load balances did not differ significantly across computational nodes even if the number of data elements distributed to each node differed greatly. Since the ORB algorithm did not take into account computational load due to communication cycles, the speedup is close to optimal for the computation time but not optimal overall due to the communication overhead. However, the simulation times were reduced form 87 minutes on 512 to 11 minutes on 8192 nodes. This work demonstrates that it is possible to run simulations of the presented detailed cardiac model within hours for the simulation of a heart beat.
The future of PanDA in ATLAS distributed computing
NASA Astrophysics Data System (ADS)
De, K.; Klimentov, A.; Maeno, T.; Nilsson, P.; Oleynik, D.; Panitkin, S.; Petrosyan, A.; Schovancova, J.; Vaniachine, A.; Wenaus, T.
2015-12-01
Experiments at the Large Hadron Collider (LHC) face unprecedented computing challenges. Heterogeneous resources are distributed worldwide at hundreds of sites, thousands of physicists analyse the data remotely, the volume of processed data is beyond the exabyte scale, while data processing requires more than a few billion hours of computing usage per year. The PanDA (Production and Distributed Analysis) system was developed to meet the scale and complexity of LHC distributed computing for the ATLAS experiment. In the process, the old batch job paradigm of locally managed computing in HEP was discarded in favour of a far more automated, flexible and scalable model. The success of PanDA in ATLAS is leading to widespread adoption and testing by other experiments. PanDA is the first exascale workload management system in HEP, already operating at more than a million computing jobs per day, and processing over an exabyte of data in 2013. There are many new challenges that PanDA will face in the near future, in addition to new challenges of scale, heterogeneity and increasing user base. PanDA will need to handle rapidly changing computing infrastructure, will require factorization of code for easier deployment, will need to incorporate additional information sources including network metrics in decision making, be able to control network circuits, handle dynamically sized workload processing, provide improved visualization, and face many other challenges. In this talk we will focus on the new features, planned or recently implemented, that are relevant to the next decade of distributed computing workload management using PanDA.
Scale-free Graphs for General Aviation Flight Schedules
NASA Technical Reports Server (NTRS)
Alexandov, Natalia M. (Technical Monitor); Kincaid, Rex K.
2003-01-01
In the late 1990s a number of researchers noticed that networks in biology, sociology, and telecommunications exhibited similar characteristics unlike standard random networks. In particular, they found that the cummulative degree distributions of these graphs followed a power law rather than a binomial distribution and that their clustering coefficients tended to a nonzero constant as the number of nodes, n, became large rather than O(1/n). Moreover, these networks shared an important property with traditional random graphs as n becomes large the average shortest path length scales with log n. This latter property has been coined the small-world property. When taken together these three properties small-world, power law, and constant clustering coefficient describe what are now most commonly referred to as scale-free networks. Since 1997 at least six books and over 400 articles have been written about scale-free networks. In this manuscript an overview of the salient characteristics of scale-free networks. Computational experience will be provided for two mechanisms that grow (dynamic) scale-free graphs. Additional computational experience will be given for constructing (static) scale-free graphs via a tabu search optimization approach. Finally, a discussion of potential applications to general aviation networks is given.
2014-01-01
Background Small RNAs are important regulators of genome function, yet their prediction in genomes is still a major computational challenge. Statistical analyses of pre-miRNA sequences indicated that their 2D structure tends to have a minimal free energy (MFE) significantly lower than MFE values of equivalently randomized sequences with the same nucleotide composition, in contrast to other classes of non-coding RNA. The computation of many MFEs is, however, too intensive to allow for genome-wide screenings. Results Using a local grid infrastructure, MFE distributions of random sequences were pre-calculated on a large scale. These distributions follow a normal distribution and can be used to determine the MFE distribution for any given sequence composition by interpolation. It allows on-the-fly calculation of the normal distribution for any candidate sequence composition. Conclusion The speedup achieved makes genome-wide screening with this characteristic of a pre-miRNA sequence practical. Although this particular property alone will not be able to distinguish miRNAs from other sequences sufficiently discriminative, the MFE-based P-value should be added to the parameters of choice to be included in the selection of potential miRNA candidates for experimental verification. PMID:24418292
Trace: a high-throughput tomographic reconstruction engine for large-scale datasets.
Bicer, Tekin; Gürsoy, Doğa; Andrade, Vincent De; Kettimuthu, Rajkumar; Scullin, William; Carlo, Francesco De; Foster, Ian T
2017-01-01
Modern synchrotron light sources and detectors produce data at such scale and complexity that large-scale computation is required to unleash their full power. One of the widely used imaging techniques that generates data at tens of gigabytes per second is computed tomography (CT). Although CT experiments result in rapid data generation, the analysis and reconstruction of the collected data may require hours or even days of computation time with a medium-sized workstation, which hinders the scientific progress that relies on the results of analysis. We present Trace, a data-intensive computing engine that we have developed to enable high-performance implementation of iterative tomographic reconstruction algorithms for parallel computers. Trace provides fine-grained reconstruction of tomography datasets using both (thread-level) shared memory and (process-level) distributed memory parallelization. Trace utilizes a special data structure called replicated reconstruction object to maximize application performance. We also present the optimizations that we apply to the replicated reconstruction objects and evaluate them using tomography datasets collected at the Advanced Photon Source. Our experimental evaluations show that our optimizations and parallelization techniques can provide 158× speedup using 32 compute nodes (384 cores) over a single-core configuration and decrease the end-to-end processing time of a large sinogram (with 4501 × 1 × 22,400 dimensions) from 12.5 h to <5 min per iteration. The proposed tomographic reconstruction engine can efficiently process large-scale tomographic data using many compute nodes and minimize reconstruction times.
IP-Based Video Modem Extender Requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierson, L G; Boorman, T M; Howe, R E
2003-12-16
Visualization is one of the keys to understanding large complex data sets such as those generated by the large computing resources purchased and developed by the Advanced Simulation and Computing program (aka ASCI). In order to be convenient to researchers, visualization data must be distributed to offices and large complex visualization theaters. Currently, local distribution of the visual data is accomplished by distance limited modems and RGB switches that simply do not scale to hundreds of users across the local, metropolitan, and WAN distances without incurring large costs in fiber plant installation and maintenance. Wide Area application over the DOEmore » Complex is infeasible using these limited distance RGB extenders. On the other hand, Internet Protocols (IP) over Ethernet is a scalable well-proven technology that can distribute large volumes of data over these distances. Visual data has been distributed at lower resolutions over IP in industrial applications. This document describes requirements of the ASCI program in visual signal distribution for the purpose of identifying industrial partners willing to develop products to meet ASCI's needs.« less
USDA-ARS?s Scientific Manuscript database
Transcription initiation, essential to gene expression regulation, involves recruitment of basal transcription factors to the core promoter elements (CPEs). The distribution of currently known CPEs across plant genomes is largely unknown. This is the first large scale genome-wide report on the compu...
Extreme-Scale De Novo Genome Assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Georganas, Evangelos; Hofmeyr, Steven; Egan, Rob
De novo whole genome assembly reconstructs genomic sequence from short, overlapping, and potentially erroneous DNA segments and is one of the most important computations in modern genomics. This work presents HipMER, a high-quality end-to-end de novo assembler designed for extreme scale analysis, via efficient parallelization of the Meraculous code. Genome assembly software has many components, each of which stresses different components of a computer system. This chapter explains the computational challenges involved in each step of the HipMer pipeline, the key distributed data structures, and communication costs in detail. We present performance results of assembling the human genome and themore » large hexaploid wheat genome on large supercomputers up to tens of thousands of cores.« less
A Grid Infrastructure for Supporting Space-based Science Operations
NASA Technical Reports Server (NTRS)
Bradford, Robert N.; Redman, Sandra H.; McNair, Ann R. (Technical Monitor)
2002-01-01
Emerging technologies for computational grid infrastructures have the potential for revolutionizing the way computers are used in all aspects of our lives. Computational grids are currently being implemented to provide a large-scale, dynamic, and secure research and engineering environments based on standards and next-generation reusable software, enabling greater science and engineering productivity through shared resources and distributed computing for less cost than traditional architectures. Combined with the emerging technologies of high-performance networks, grids provide researchers, scientists and engineers the first real opportunity for an effective distributed collaborative environment with access to resources such as computational and storage systems, instruments, and software tools and services for the most computationally challenging applications.
Trace: a high-throughput tomographic reconstruction engine for large-scale datasets
Bicer, Tekin; Gursoy, Doga; Andrade, Vincent De; ...
2017-01-28
Here, synchrotron light source and detector technologies enable scientists to perform advanced experiments. These scientific instruments and experiments produce data at such scale and complexity that large-scale computation is required to unleash their full power. One of the widely used data acquisition technique at light sources is Computed Tomography, which can generate tens of GB/s depending on x-ray range. A large-scale tomographic dataset, such as mouse brain, may require hours of computation time with a medium size workstation. In this paper, we present Trace, a data-intensive computing middleware we developed for implementation and parallelization of iterative tomographic reconstruction algorithms. Tracemore » provides fine-grained reconstruction of tomography datasets using both (thread level) shared memory and (process level) distributed memory parallelization. Trace utilizes a special data structure called replicated reconstruction object to maximize application performance. We also present the optimizations we have done on the replicated reconstruction objects and evaluate them using a shale and a mouse brain sinogram. Our experimental evaluations show that the applied optimizations and parallelization techniques can provide 158x speedup (using 32 compute nodes) over single core configuration, which decreases the reconstruction time of a sinogram (with 4501 projections and 22400 detector resolution) from 12.5 hours to less than 5 minutes per iteration.« less
Trace: a high-throughput tomographic reconstruction engine for large-scale datasets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bicer, Tekin; Gursoy, Doga; Andrade, Vincent De
Here, synchrotron light source and detector technologies enable scientists to perform advanced experiments. These scientific instruments and experiments produce data at such scale and complexity that large-scale computation is required to unleash their full power. One of the widely used data acquisition technique at light sources is Computed Tomography, which can generate tens of GB/s depending on x-ray range. A large-scale tomographic dataset, such as mouse brain, may require hours of computation time with a medium size workstation. In this paper, we present Trace, a data-intensive computing middleware we developed for implementation and parallelization of iterative tomographic reconstruction algorithms. Tracemore » provides fine-grained reconstruction of tomography datasets using both (thread level) shared memory and (process level) distributed memory parallelization. Trace utilizes a special data structure called replicated reconstruction object to maximize application performance. We also present the optimizations we have done on the replicated reconstruction objects and evaluate them using a shale and a mouse brain sinogram. Our experimental evaluations show that the applied optimizations and parallelization techniques can provide 158x speedup (using 32 compute nodes) over single core configuration, which decreases the reconstruction time of a sinogram (with 4501 projections and 22400 detector resolution) from 12.5 hours to less than 5 minutes per iteration.« less
Hydra: a scalable proteomic search engine which utilizes the Hadoop distributed computing framework
2012-01-01
Background For shotgun mass spectrometry based proteomics the most computationally expensive step is in matching the spectra against an increasingly large database of sequences and their post-translational modifications with known masses. Each mass spectrometer can generate data at an astonishingly high rate, and the scope of what is searched for is continually increasing. Therefore solutions for improving our ability to perform these searches are needed. Results We present a sequence database search engine that is specifically designed to run efficiently on the Hadoop MapReduce distributed computing framework. The search engine implements the K-score algorithm, generating comparable output for the same input files as the original implementation. The scalability of the system is shown, and the architecture required for the development of such distributed processing is discussed. Conclusion The software is scalable in its ability to handle a large peptide database, numerous modifications and large numbers of spectra. Performance scales with the number of processors in the cluster, allowing throughput to expand with the available resources. PMID:23216909
Hydra: a scalable proteomic search engine which utilizes the Hadoop distributed computing framework.
Lewis, Steven; Csordas, Attila; Killcoyne, Sarah; Hermjakob, Henning; Hoopmann, Michael R; Moritz, Robert L; Deutsch, Eric W; Boyle, John
2012-12-05
For shotgun mass spectrometry based proteomics the most computationally expensive step is in matching the spectra against an increasingly large database of sequences and their post-translational modifications with known masses. Each mass spectrometer can generate data at an astonishingly high rate, and the scope of what is searched for is continually increasing. Therefore solutions for improving our ability to perform these searches are needed. We present a sequence database search engine that is specifically designed to run efficiently on the Hadoop MapReduce distributed computing framework. The search engine implements the K-score algorithm, generating comparable output for the same input files as the original implementation. The scalability of the system is shown, and the architecture required for the development of such distributed processing is discussed. The software is scalable in its ability to handle a large peptide database, numerous modifications and large numbers of spectra. Performance scales with the number of processors in the cluster, allowing throughput to expand with the available resources.
Incorporating linguistic knowledge for learning distributed word representations.
Wang, Yan; Liu, Zhiyuan; Sun, Maosong
2015-01-01
Combined with neural language models, distributed word representations achieve significant advantages in computational linguistics and text mining. Most existing models estimate distributed word vectors from large-scale data in an unsupervised fashion, which, however, do not take rich linguistic knowledge into consideration. Linguistic knowledge can be represented as either link-based knowledge or preference-based knowledge, and we propose knowledge regularized word representation models (KRWR) to incorporate these prior knowledge for learning distributed word representations. Experiment results demonstrate that our estimated word representation achieves better performance in task of semantic relatedness ranking. This indicates that our methods can efficiently encode both prior knowledge from knowledge bases and statistical knowledge from large-scale text corpora into a unified word representation model, which will benefit many tasks in text mining.
Incorporating Linguistic Knowledge for Learning Distributed Word Representations
Wang, Yan; Liu, Zhiyuan; Sun, Maosong
2015-01-01
Combined with neural language models, distributed word representations achieve significant advantages in computational linguistics and text mining. Most existing models estimate distributed word vectors from large-scale data in an unsupervised fashion, which, however, do not take rich linguistic knowledge into consideration. Linguistic knowledge can be represented as either link-based knowledge or preference-based knowledge, and we propose knowledge regularized word representation models (KRWR) to incorporate these prior knowledge for learning distributed word representations. Experiment results demonstrate that our estimated word representation achieves better performance in task of semantic relatedness ranking. This indicates that our methods can efficiently encode both prior knowledge from knowledge bases and statistical knowledge from large-scale text corpora into a unified word representation model, which will benefit many tasks in text mining. PMID:25874581
Standard Model parton distributions at very high energies
Bauer, Christian W.; Ferland, Nicolas; Webber, Bryan R.
2017-08-09
We compute the leading-order evolution of parton distribution functions for all the Standard Model fermions and bosons up to energy scales far above the electroweak scale, where electroweak symmetry is restored. Our results include the 52 PDFs of the unpolarized proton, evolving according to the SU(3), SU(2), U(1), mixed SU(2)×U(1) and Yukawa interactions. We illustrate the numerical effects on parton distributions at large energies, and show that this can lead to important corrections to parton luminosities at a future 100 TeV collider.
Standard Model parton distributions at very high energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Christian W.; Ferland, Nicolas; Webber, Bryan R.
We compute the leading-order evolution of parton distribution functions for all the Standard Model fermions and bosons up to energy scales far above the electroweak scale, where electroweak symmetry is restored. Our results include the 52 PDFs of the unpolarized proton, evolving according to the SU(3), SU(2), U(1), mixed SU(2)×U(1) and Yukawa interactions. We illustrate the numerical effects on parton distributions at large energies, and show that this can lead to important corrections to parton luminosities at a future 100 TeV collider.
Next Generation Distributed Computing for Cancer Research
Agarwal, Pankaj; Owzar, Kouros
2014-01-01
Advances in next generation sequencing (NGS) and mass spectrometry (MS) technologies have provided many new opportunities and angles for extending the scope of translational cancer research while creating tremendous challenges in data management and analysis. The resulting informatics challenge is invariably not amenable to the use of traditional computing models. Recent advances in scalable computing and associated infrastructure, particularly distributed computing for Big Data, can provide solutions for addressing these challenges. In this review, the next generation of distributed computing technologies that can address these informatics problems is described from the perspective of three key components of a computational platform, namely computing, data storage and management, and networking. A broad overview of scalable computing is provided to set the context for a detailed description of Hadoop, a technology that is being rapidly adopted for large-scale distributed computing. A proof-of-concept Hadoop cluster, set up for performance benchmarking of NGS read alignment, is described as an example of how to work with Hadoop. Finally, Hadoop is compared with a number of other current technologies for distributed computing. PMID:25983539
Next generation distributed computing for cancer research.
Agarwal, Pankaj; Owzar, Kouros
2014-01-01
Advances in next generation sequencing (NGS) and mass spectrometry (MS) technologies have provided many new opportunities and angles for extending the scope of translational cancer research while creating tremendous challenges in data management and analysis. The resulting informatics challenge is invariably not amenable to the use of traditional computing models. Recent advances in scalable computing and associated infrastructure, particularly distributed computing for Big Data, can provide solutions for addressing these challenges. In this review, the next generation of distributed computing technologies that can address these informatics problems is described from the perspective of three key components of a computational platform, namely computing, data storage and management, and networking. A broad overview of scalable computing is provided to set the context for a detailed description of Hadoop, a technology that is being rapidly adopted for large-scale distributed computing. A proof-of-concept Hadoop cluster, set up for performance benchmarking of NGS read alignment, is described as an example of how to work with Hadoop. Finally, Hadoop is compared with a number of other current technologies for distributed computing.
Large-scale expensive black-box function optimization
NASA Astrophysics Data System (ADS)
Rashid, Kashif; Bailey, William; Couët, Benoît
2012-09-01
This paper presents the application of an adaptive radial basis function method to a computationally expensive black-box reservoir simulation model of many variables. An iterative proxy-based scheme is used to tune the control variables, distributed for finer control over a varying number of intervals covering the total simulation period, to maximize asset NPV. The method shows that large-scale simulation-based function optimization of several hundred variables is practical and effective.
Design for Run-Time Monitor on Cloud Computing
NASA Astrophysics Data System (ADS)
Kang, Mikyung; Kang, Dong-In; Yun, Mira; Park, Gyung-Leen; Lee, Junghoon
Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is the type of a parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring the system status change, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design Run-Time Monitor (RTM) which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize resources on cloud computing. RTM monitors application software through library instrumentation as well as underlying hardware through performance counter optimizing its computing configuration based on the analyzed data.
NASA Technical Reports Server (NTRS)
Mckay, Charles W.; Feagin, Terry; Bishop, Peter C.; Hallum, Cecil R.; Freedman, Glenn B.
1987-01-01
The principle focus of one of the RICIS (Research Institute for Computing and Information Systems) components is computer systems and software engineering in-the-large of the lifecycle of large, complex, distributed systems which: (1) evolve incrementally over a long time; (2) contain non-stop components; and (3) must simultaneously satisfy a prioritized balance of mission and safety critical requirements at run time. This focus is extremely important because of the contribution of the scaling direction problem to the current software crisis. The Computer Systems and Software Engineering (CSSE) component addresses the lifestyle issues of three environments: host, integration, and target.
A rapid local singularity analysis algorithm with applications
NASA Astrophysics Data System (ADS)
Chen, Zhijun; Cheng, Qiuming; Agterberg, Frits
2015-04-01
The local singularity model developed by Cheng is fast gaining popularity in characterizing mineralization and detecting anomalies of geochemical, geophysical and remote sensing data. However in one of the conventional algorithms involving the moving average values with different scales is time-consuming especially while analyzing a large dataset. Summed area table (SAT), also called as integral image, is a fast algorithm used within the Viola-Jones object detection framework in computer vision area. Historically, the principle of SAT is well-known in the study of multi-dimensional probability distribution functions, namely in computing 2D (or ND) probabilities (area under the probability distribution) from the respective cumulative distribution functions. We introduce SAT and it's variation Rotated Summed Area Table in the isotropic, anisotropic or directional local singularity mapping in this study. Once computed using SAT, any one of the rectangular sum can be computed at any scale or location in constant time. The area for any rectangular region in the image can be computed by using only 4 array accesses in constant time independently of the size of the region; effectively reducing the time complexity from O(n) to O(1). New programs using Python, Julia, matlab and C++ are implemented respectively to satisfy different applications, especially to the big data analysis. Several large geochemical and remote sensing datasets are tested. A wide variety of scale changes (linear spacing or log spacing) for non-iterative or iterative approach are adopted to calculate the singularity index values and compare the results. The results indicate that the local singularity analysis with SAT is more robust and superior to traditional approach in identifying anomalies.
NASA Astrophysics Data System (ADS)
Septiani, Eka Lutfi; Widiyastuti, W.; Winardi, Sugeng; Machmudah, Siti; Nurtono, Tantular; Kusdianto
2016-02-01
Flame assisted spray dryer are widely uses for large-scale production of nanoparticles because of it ability. Numerical approach is needed to predict combustion and particles production in scale up and optimization process due to difficulty in experimental observation and relatively high cost. Computational Fluid Dynamics (CFD) can provide the momentum, energy and mass transfer, so that CFD more efficient than experiment due to time and cost. Here, two turbulence models, k-ɛ and Large Eddy Simulation were compared and applied in flame assisted spray dryer system. The energy sources for particle drying was obtained from combustion between LPG as fuel and air as oxidizer and carrier gas that modelled by non-premixed combustion in simulation. Silica particles was used to particle modelling from sol silica solution precursor. From the several comparison result, i.e. flame contour, temperature distribution and particle size distribution, Large Eddy Simulation turbulence model can provide the closest data to the experimental result.
Job Superscheduler Architecture and Performance in Computational Grid Environments
NASA Technical Reports Server (NTRS)
Shan, Hongzhang; Oliker, Leonid; Biswas, Rupak
2003-01-01
Computational grids hold great promise in utilizing geographically separated heterogeneous resources to solve large-scale complex scientific problems. However, a number of major technical hurdles, including distributed resource management and effective job scheduling, stand in the way of realizing these gains. In this paper, we propose a novel grid superscheduler architecture and three distributed job migration algorithms. We also model the critical interaction between the superscheduler and autonomous local schedulers. Extensive performance comparisons with ideal, central, and local schemes using real workloads from leading computational centers are conducted in a simulation environment. Additionally, synthetic workloads are used to perform a detailed sensitivity analysis of our superscheduler. Several key metrics demonstrate that substantial performance gains can be achieved via smart superscheduling in distributed computational grids.
NASA Astrophysics Data System (ADS)
Forrester, Peter J.; Trinh, Allan K.
2018-05-01
The neighbourhood of the largest eigenvalue λmax in the Gaussian unitary ensemble (GUE) and Laguerre unitary ensemble (LUE) is referred to as the soft edge. It is known that there exists a particular centring and scaling such that the distribution of λmax tends to a universal form, with an error term bounded by 1/N2/3. We take up the problem of computing the exact functional form of the leading error term in a large N asymptotic expansion for both the GUE and LUE—two versions of the LUE are considered, one with the parameter a fixed and the other with a proportional to N. Both settings in the LUE case allow for an interpretation in terms of the distribution of a particular weighted path length in a model involving exponential variables on a rectangular grid, as the grid size gets large. We give operator theoretic forms of the corrections, which are corollaries of knowledge of the first two terms in the large N expansion of the scaled kernel and are readily computed using a method due to Bornemann. We also give expressions in terms of the solutions of particular systems of coupled differential equations, which provide an alternative method of computation. Both characterisations are well suited to a thinned generalisation of the original ensemble, whereby each eigenvalue is deleted independently with probability (1 - ξ). In Sec. V, we investigate using simulation the question of whether upon an appropriate centring and scaling a wider class of complex Hermitian random matrix ensembles have their leading correction to the distribution of λmax proportional to 1/N2/3.
NASA Astrophysics Data System (ADS)
Lynch, Amanda H.; Abramson, David; Görgen, Klaus; Beringer, Jason; Uotila, Petteri
2007-10-01
Fires in the Australian savanna have been hypothesized to affect monsoon evolution, but the hypothesis is controversial and the effects have not been quantified. A distributed computing approach allows the development of a challenging experimental design that permits simultaneous variation of all fire attributes. The climate model simulations are distributed around multiple independent computer clusters in six countries, an approach that has potential for a range of other large simulation applications in the earth sciences. The experiment clarifies that savanna burning can shape the monsoon through two mechanisms. Boundary-layer circulation and large-scale convergence is intensified monotonically through increasing fire intensity and area burned. However, thresholds of fire timing and area are evident in the consequent influence on monsoon rainfall. In the optimal band of late, high intensity fires with a somewhat limited extent, it is possible for the wet season to be significantly enhanced.
Gallicchio, Emilio; Deng, Nanjie; He, Peng; Wickstrom, Lauren; Perryman, Alexander L.; Santiago, Daniel N.; Forli, Stefano; Olson, Arthur J.; Levy, Ronald M.
2014-01-01
As part of the SAMPL4 blind challenge, filtered AutoDock Vina ligand docking predictions and large scale binding energy distribution analysis method binding free energy calculations have been applied to the virtual screening of a focused library of candidate binders to the LEDGF site of the HIV integrase protein. The computational protocol leveraged docking and high level atomistic models to improve enrichment. The enrichment factor of our blind predictions ranked best among all of the computational submissions, and second best overall. This work represents to our knowledge the first example of the application of an all-atom physics-based binding free energy model to large scale virtual screening. A total of 285 parallel Hamiltonian replica exchange molecular dynamics absolute protein-ligand binding free energy simulations were conducted starting from docked poses. The setup of the simulations was fully automated, calculations were distributed on multiple computing resources and were completed in a 6-weeks period. The accuracy of the docked poses and the inclusion of intramolecular strain and entropic losses in the binding free energy estimates were the major factors behind the success of the method. Lack of sufficient time and computing resources to investigate additional protonation states of the ligands was a major cause of mispredictions. The experiment demonstrated the applicability of binding free energy modeling to improve hit rates in challenging virtual screening of focused ligand libraries during lead optimization. PMID:24504704
NASA Technical Reports Server (NTRS)
Gott, J. Richard, III; Weinberg, David H.; Melott, Adrian L.
1987-01-01
A quantitative measure of the topology of large-scale structure: the genus of density contours in a smoothed density distribution, is described and applied. For random phase (Gaussian) density fields, the mean genus per unit volume exhibits a universal dependence on threshold density, with a normalizing factor that can be calculated from the power spectrum. If large-scale structure formed from the gravitational instability of small-amplitude density fluctuations, the topology observed today on suitable scales should follow the topology in the initial conditions. The technique is illustrated by applying it to simulations of galaxy clustering in a flat universe dominated by cold dark matter. The technique is also applied to a volume-limited sample of the CfA redshift survey and to a model in which galaxies reside on the surfaces of polyhedral 'bubbles'. The topology of the evolved mass distribution and 'biased' galaxy distribution in the cold dark matter models closely matches the topology of the density fluctuations in the initial conditions. The topology of the observational sample is consistent with the random phase, cold dark matter model.
A Latency-Tolerant Partitioner for Distributed Computing on the Information Power Grid
NASA Technical Reports Server (NTRS)
Das, Sajal K.; Harvey, Daniel J.; Biwas, Rupak; Kwak, Dochan (Technical Monitor)
2001-01-01
NASA's Information Power Grid (IPG) is an infrastructure designed to harness the power of graphically distributed computers, databases, and human expertise, in order to solve large-scale realistic computational problems. This type of a meta-computing environment is necessary to present a unified virtual machine to application developers that hides the intricacies of a highly heterogeneous environment and yet maintains adequate security. In this paper, we present a novel partitioning scheme. called MinEX, that dynamically balances processor workloads while minimizing data movement and runtime communication, for applications that are executed in a parallel distributed fashion on the IPG. We also analyze the conditions that are required for the IPG to be an effective tool for such distributed computations. Our results show that MinEX is a viable load balancer provided the nodes of the IPG are connected by a high-speed asynchronous interconnection network.
Shared versus distributed memory multiprocessors
NASA Technical Reports Server (NTRS)
Jordan, Harry F.
1991-01-01
The question of whether multiprocessors should have shared or distributed memory has attracted a great deal of attention. Some researchers argue strongly for building distributed memory machines, while others argue just as strongly for programming shared memory multiprocessors. A great deal of research is underway on both types of parallel systems. Special emphasis is placed on systems with a very large number of processors for computation intensive tasks and considers research and implementation trends. It appears that the two types of systems will likely converge to a common form for large scale multiprocessors.
NASA Astrophysics Data System (ADS)
Ajami, H.; Sharma, A.; Lakshmi, V.
2017-12-01
Application of semi-distributed hydrologic modeling frameworks is a viable alternative to fully distributed hyper-resolution hydrologic models due to computational efficiency and resolving fine-scale spatial structure of hydrologic fluxes and states. However, fidelity of semi-distributed model simulations is impacted by (1) formulation of hydrologic response units (HRUs), and (2) aggregation of catchment properties for formulating simulation elements. Here, we evaluate the performance of a recently developed Soil Moisture and Runoff simulation Toolkit (SMART) for large catchment scale simulations. In SMART, topologically connected HRUs are delineated using thresholds obtained from topographic and geomorphic analysis of a catchment, and simulation elements are equivalent cross sections (ECS) representative of a hillslope in first order sub-basins. Earlier investigations have shown that formulation of ECSs at the scale of a first order sub-basin reduces computational time significantly without compromising simulation accuracy. However, the implementation of this approach has not been fully explored for catchment scale simulations. To assess SMART performance, we set-up the model over the Little Washita watershed in Oklahoma. Model evaluations using in-situ soil moisture observations show satisfactory model performance. In addition, we evaluated the performance of a number of soil moisture disaggregation schemes recently developed to provide spatially explicit soil moisture outputs at fine scale resolution. Our results illustrate that the statistical disaggregation scheme performs significantly better than the methods based on topographic data. Future work is focused on assessing the performance of SMART using remotely sensed soil moisture observations using spatially based model evaluation metrics.
NASA Technical Reports Server (NTRS)
Johnston, William E.; Gannon, Dennis; Nitzberg, Bill; Feiereisen, William (Technical Monitor)
2000-01-01
The term "Grid" refers to distributed, high performance computing and data handling infrastructure that incorporates geographically and organizationally dispersed, heterogeneous resources that are persistent and supported. The vision for NASN's Information Power Grid - a computing and data Grid - is that it will provide significant new capabilities to scientists and engineers by facilitating routine construction of information based problem solving environments / frameworks that will knit together widely distributed computing, data, instrument, and human resources into just-in-time systems that can address complex and large-scale computing and data analysis problems. IPG development and deployment is addressing requirements obtained by analyzing a number of different application areas, in particular from the NASA Aero-Space Technology Enterprise. This analysis has focussed primarily on two types of users: The scientist / design engineer whose primary interest is problem solving (e.g., determining wing aerodynamic characteristics in many different operating environments), and whose primary interface to IPG will be through various sorts of problem solving frameworks. The second type of user if the tool designer: The computational scientists who convert physics and mathematics into code that can simulate the physical world. These are the two primary users of IPG, and they have rather different requirements. This paper describes the current state of IPG (the operational testbed), the set of capabilities being put into place for the operational prototype IPG, as well as some of the longer term R&D tasks.
Distributed-Memory Computing With the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA)
NASA Technical Reports Server (NTRS)
Riley, Christopher J.; Cheatwood, F. McNeil
1997-01-01
The Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA), a Navier-Stokes solver, has been modified for use in a parallel, distributed-memory environment using the Message-Passing Interface (MPI) standard. A standard domain decomposition strategy is used in which the computational domain is divided into subdomains with each subdomain assigned to a processor. Performance is examined on dedicated parallel machines and a network of desktop workstations. The effect of domain decomposition and frequency of boundary updates on performance and convergence is also examined for several realistic configurations and conditions typical of large-scale computational fluid dynamic analysis.
CD-ROM technology at the EROS data center
Madigan, Michael E.; Weinheimer, Mary C.
1993-01-01
The vast amount of digital spatial data often required by a single user has created a demand for media alternatives to 1/2" magnetic tape. One such medium that has been recently adopted at the U.S. Geological Survey's EROS Data Center is the compact disc (CD). CD's are a versatile, dynamic, and low-cost method for providing a variety of data on a single media device and are compatible with various computer platforms. CD drives are available for personal computers, UNIX workstations, and mainframe systems, either directly connected, or through a network. This medium furnishes a quick method of reproducing and distributing large amounts of data on a single CD. Several data sets are already available on CD's, including collections of historical Landsat multispectral scanner data and biweekly composites of Advanced Very High Resolution Radiometer data for the conterminous United States. The EROS Data Center intends to provide even more data sets on CD's. Plans include specific data sets on a customized disc to fulfill individual requests, and mass production of unique data sets for large-scale distribution. Requests for a single compact disc-read only memory (CD-ROM) containing a large volume of data either for archiving or for one-time distribution can be addressed with a CD-write once (CD-WO) unit. Mass production and large-scale distribution will require CD-ROM replication and mastering.
Beyond Scale-Free Small-World Networks: Cortical Columns for Quick Brains
NASA Astrophysics Data System (ADS)
Stoop, Ralph; Saase, Victor; Wagner, Clemens; Stoop, Britta; Stoop, Ruedi
2013-03-01
We study to what extent cortical columns with their particular wiring boost neural computation. Upon a vast survey of columnar networks performing various real-world cognitive tasks, we detect no signs of enhancement. It is on a mesoscopic—intercolumnar—scale that the existence of columns, largely irrespective of their inner organization, enhances the speed of information transfer and minimizes the total wiring length required to bind distributed columnar computations towards spatiotemporally coherent results. We suggest that brain efficiency may be related to a doubly fractal connectivity law, resulting in networks with efficiency properties beyond those by scale-free networks.
Developing science gateways for drug discovery in a grid environment.
Pérez-Sánchez, Horacio; Rezaei, Vahid; Mezhuyev, Vitaliy; Man, Duhu; Peña-García, Jorge; den-Haan, Helena; Gesing, Sandra
2016-01-01
Methods for in silico screening of large databases of molecules increasingly complement and replace experimental techniques to discover novel compounds to combat diseases. As these techniques become more complex and computationally costly we are faced with an increasing problem to provide the research community of life sciences with a convenient tool for high-throughput virtual screening on distributed computing resources. To this end, we recently integrated the biophysics-based drug-screening program FlexScreen into a service, applicable for large-scale parallel screening and reusable in the context of scientific workflows. Our implementation is based on Pipeline Pilot and Simple Object Access Protocol and provides an easy-to-use graphical user interface to construct complex workflows, which can be executed on distributed computing resources, thus accelerating the throughput by several orders of magnitude.
Halligan, Brian D.; Geiger, Joey F.; Vallejos, Andrew K.; Greene, Andrew S.; Twigger, Simon N.
2009-01-01
One of the major difficulties for many laboratories setting up proteomics programs has been obtaining and maintaining the computational infrastructure required for the analysis of the large flow of proteomics data. We describe a system that combines distributed cloud computing and open source software to allow laboratories to set up scalable virtual proteomics analysis clusters without the investment in computational hardware or software licensing fees. Additionally, the pricing structure of distributed computing providers, such as Amazon Web Services, allows laboratories or even individuals to have large-scale computational resources at their disposal at a very low cost per run. We provide detailed step by step instructions on how to implement the virtual proteomics analysis clusters as well as a list of current available preconfigured Amazon machine images containing the OMSSA and X!Tandem search algorithms and sequence databases on the Medical College of Wisconsin Proteomics Center website (http://proteomics.mcw.edu/vipdac). PMID:19358578
Halligan, Brian D; Geiger, Joey F; Vallejos, Andrew K; Greene, Andrew S; Twigger, Simon N
2009-06-01
One of the major difficulties for many laboratories setting up proteomics programs has been obtaining and maintaining the computational infrastructure required for the analysis of the large flow of proteomics data. We describe a system that combines distributed cloud computing and open source software to allow laboratories to set up scalable virtual proteomics analysis clusters without the investment in computational hardware or software licensing fees. Additionally, the pricing structure of distributed computing providers, such as Amazon Web Services, allows laboratories or even individuals to have large-scale computational resources at their disposal at a very low cost per run. We provide detailed step-by-step instructions on how to implement the virtual proteomics analysis clusters as well as a list of current available preconfigured Amazon machine images containing the OMSSA and X!Tandem search algorithms and sequence databases on the Medical College of Wisconsin Proteomics Center Web site ( http://proteomics.mcw.edu/vipdac ).
Van de Kamer, J B; Lagendijk, J J W
2002-05-21
SAR distributions in a healthy female adult head as a result of a radiating vertical dipole antenna (frequency 915 MHz) representing a hand-held mobile phone have been computed for three different resolutions: 2 mm, 1 mm and 0.4 mm. The extremely high resolution of 0.4 mm was obtained with our quasistatic zooming technique, which is briefly described in this paper. For an effectively transmitted power of 0.25 W, the maximum averaged SAR values in both cubic- and arbitrary-shaped volumes are, respectively, about 1.72 and 2.55 W kg(-1) for 1 g and 0.98 and 1.73 W kg(-1) for 10 g of tissue. These numbers do not vary much (<8%) for the different resolutions, indicating that SAR computations at a resolution of 2 mm are sufficiently accurate to describe the large-scale distribution. However, considering the detailed SAR pattern in the head, large differences may occur if high-resolution computations are performed rather than low-resolution ones. These deviations are caused by both increased modelling accuracy and improved anatomical description in higher resolution simulations. For example, the SAR profile across a boundary between tissues with high dielectric contrast is much more accurately described at higher resolutions. Furthermore, low-resolution dielectric geometries may suffer from loss of anatomical detail, which greatly affects small-scale SAR distributions. Thus. for strongly inhomogeneous regions high-resolution SAR modelling is an absolute necessity.
NASA Astrophysics Data System (ADS)
Schruff, T.; Liang, R.; Rüde, U.; Schüttrumpf, H.; Frings, R. M.
2018-01-01
The knowledge of structural properties of granular materials such as porosity is highly important in many application-oriented and scientific fields. In this paper we present new results of computer-based packing simulations where we use the non-smooth granular dynamics (NSGD) method to simulate gravitational random dense packing of spherical particles with various particle size distributions and two types of depositional conditions. A bin packing scenario was used to compare simulation results to laboratory porosity measurements and to quantify the sensitivity of the NSGD regarding critical simulation parameters such as time step size. The results of the bin packing simulations agree well with laboratory measurements across all particle size distributions with all absolute errors below 1%. A large-scale packing scenario with periodic side walls was used to simulate the packing of up to 855,600 spherical particles with various particle size distributions (PSD). Simulation outcomes are used to quantify the effect of particle-domain-size ratio on the packing compaction. A simple correction model, based on the coordination number, is employed to compensate for this effect on the porosity and to determine the relationship between PSD and porosity. Promising accuracy and stability results paired with excellent computational performance recommend the application of NSGD for large-scale packing simulations, e.g. to further enhance the generation of representative granular deposits.
Effect of Variable Spatial Scales on USLE-GIS Computations
NASA Astrophysics Data System (ADS)
Patil, R. J.; Sharma, S. K.
2017-12-01
Use of appropriate spatial scale is very important in Universal Soil Loss Equation (USLE) based spatially distributed soil erosion modelling. This study aimed at assessment of annual rates of soil erosion at different spatial scales/grid sizes and analysing how changes in spatial scales affect USLE-GIS computations using simulation and statistical variabilities. Efforts have been made in this study to recommend an optimum spatial scale for further USLE-GIS computations for management and planning in the study area. The present research study was conducted in Shakkar River watershed, situated in Narsinghpur and Chhindwara districts of Madhya Pradesh, India. Remote Sensing and GIS techniques were integrated with Universal Soil Loss Equation (USLE) to predict spatial distribution of soil erosion in the study area at four different spatial scales viz; 30 m, 50 m, 100 m, and 200 m. Rainfall data, soil map, digital elevation model (DEM) and an executable C++ program, and satellite image of the area were used for preparation of the thematic maps for various USLE factors. Annual rates of soil erosion were estimated for 15 years (1992 to 2006) at four different grid sizes. The statistical analysis of four estimated datasets showed that sediment loss dataset at 30 m spatial scale has a minimum standard deviation (2.16), variance (4.68), percent deviation from observed values (2.68 - 18.91 %), and highest coefficient of determination (R2 = 0.874) among all the four datasets. Thus, it is recommended to adopt this spatial scale for USLE-GIS computations in the study area due to its minimum statistical variability and better agreement with the observed sediment loss data. This study also indicates large scope for use of finer spatial scales in spatially distributed soil erosion modelling.
NASA Technical Reports Server (NTRS)
Blair, M. F.
1991-01-01
A combined experimental and computational program was conducted to examine the heat transfer distribution in a turbine rotor passage geometrically similar to the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP). Heat transfer was measured and computed for both the full span suction and pressure surfaces of the rotor airfoil as well as for the hub endwall surface. The objective of the program was to provide a benchmark-quality database for the assessment of rotor heat transfer computational techniques. The experimental portion of the study was conducted in a large scale, ambient temperature, rotating turbine model. The computational portion consisted of the application of a well-posed parabolized Navier-Stokes analysis of the calculation of the three-dimensional viscous flow through ducts simulating a gas turbine package. The results of this assessment indicate that the procedure has the potential to predict the aerodynamics and the heat transfer in a gas turbine passage and can be used to develop detailed three dimensional turbulence models for the prediction of skin friction and heat transfer in complex three dimensional flow passages.
Non-Gaussian Nature of Fracture and the Survival of Fat-Tail Exponents
NASA Astrophysics Data System (ADS)
Tallakstad, Ken Tore; Toussaint, Renaud; Santucci, Stephane; Måløy, Knut Jørgen
2013-04-01
We study the fluctuations of the global velocity Vl(t), computed at various length scales l, during the intermittent mode-I propagation of a crack front. The statistics converge to a non-Gaussian distribution, with an asymmetric shape and a fat tail. This breakdown of the central limit theorem (CLT) is due to the diverging variance of the underlying local crack front velocity distribution, displaying a power law tail. Indeed, by the application of a generalized CLT, the full shape of our experimental velocity distribution at large scale is shown to follow the stable Levy distribution, which preserves the power law tail exponent under upscaling. This study aims to demonstrate in general for crackling noise systems how one can infer the complete scale dependence of the activity—and extreme event distributions—by measuring only at a global scale.
Topological analysis of the CfA redshift survey
NASA Technical Reports Server (NTRS)
Vogeley, Michael S.; Park, Changbom; Geller, Margaret J.; Huchra, John P.; Gott, J. Richard, III
1994-01-01
We study the topology of large-scale structure in the Center for Astrophysics Redshift Survey, which now includes approximately 12,000 galaxies with limiting magnitude m(sub B) is less than or equal to 15.5. The dense sampling and large volume of this survey allow us to compute the topology on smoothing scales from 6 to 20/h Mpc; we thus examine the topology of structure in both 'nonlinear' and 'linear' regimes. On smoothing scales less than or equal to 10/h Mpc this sample has 3 times the number of resolution elements of samples examined in previous studies. Isodensity surface of the smoothed galaxy density field demonstrate that coherent high-density structures and large voids dominate the galaxy distribution. We compute the genus-threshold density relation for isodensity surfaces of the CfA survey. To quantify phase correlation in these data, we compare the CfA genus with the genus of realizations of Gaussian random fields with the power spectrum measured for the CfA survey. On scales less than or equal to 10/h Mpc the observed genus amplitude is smaller than random phase (96% confidence level). This decrement reflects the degree of phase coherence in the observed galaxy distribution. In other words the genus amplitude on these scales is not good measure of the power spectrum slope. On scales greater than 10/h Mpc, where the galaxy distribution is rougly in the 'linear' regime, the genus ampitude is consistent with the random phase amplitude. The shape of the genus curve reflects the strong coherence in the observed structure; the observed genus curve appears broader than random phase (94% confidence level for smoothing scales less than or equal to 10/h Mpc) because the topolgoy is spongelike over a very large range of density threshold. This departre from random phase consistent with a distribution like a filamentary net of 'walls with holes.' On smoothing scales approaching approximately 20/h Mpc the shape of the CfA genus curve is consistent with random phase. There is very weak evidence for a shift of the genus toward a 'bubble-like' topology. To test cosmological models, we compute the genus for mock CfA surveys drawn from large (L greater than or approximately 400/h Mpc) N-body simulations of three variants of the cold dark matter (CDM) cosmogony. The genus amplitude of the 'standard' CDM model (omega h = 0.5, b = 1.5) differs from the observations (96% confidence level) on smoothing scales is less than or approximately 10/h Mpc. An open CDM model (omega h = 0.2) and a CDM model with nonzero cosmological constant (omega h = 0.24, lambda (sub 0) = 0.6) are consistent with the observed genus amplitude over the full range of smoothing scales. All of these models fail (97% confidence level) to match the broadness of the observed genus curve on smoothing scales is less than or equal to 10/h Mpc.
Large-Scale Optimization for Bayesian Inference in Complex Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willcox, Karen; Marzouk, Youssef
2013-11-12
The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimization) Project focused on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimization and inversion methods. The project was a collaborative effort among MIT, the University of Texas at Austin, Georgia Institute of Technology, and Sandia National Laboratories. The research was directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. The MIT--Sandia component of themore » SAGUARO Project addressed the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas--Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to-observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as ``reduce then sample'' and ``sample then reduce.'' In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to achieve their speedups.« less
Final Report: Large-Scale Optimization for Bayesian Inference in Complex Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghattas, Omar
2013-10-15
The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimiza- tion) Project focuses on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimiza- tion and inversion methods. Our research is directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. Our efforts are integrated in the context of a challenging testbed problem that considers subsurface reacting flow and transport. The MIT component of the SAGUAROmore » Project addresses the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas-Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to- observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as "reduce then sample" and "sample then reduce." In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to achieve their speedups.« less
Developing eThread pipeline using SAGA-pilot abstraction for large-scale structural bioinformatics.
Ragothaman, Anjani; Boddu, Sairam Chowdary; Kim, Nayong; Feinstein, Wei; Brylinski, Michal; Jha, Shantenu; Kim, Joohyun
2014-01-01
While most of computational annotation approaches are sequence-based, threading methods are becoming increasingly attractive because of predicted structural information that could uncover the underlying function. However, threading tools are generally compute-intensive and the number of protein sequences from even small genomes such as prokaryotes is large typically containing many thousands, prohibiting their application as a genome-wide structural systems biology tool. To leverage its utility, we have developed a pipeline for eThread--a meta-threading protein structure modeling tool, that can use computational resources efficiently and effectively. We employ a pilot-based approach that supports seamless data and task-level parallelism and manages large variation in workload and computational requirements. Our scalable pipeline is deployed on Amazon EC2 and can efficiently select resources based upon task requirements. We present runtime analysis to characterize computational complexity of eThread and EC2 infrastructure. Based on results, we suggest a pathway to an optimized solution with respect to metrics such as time-to-solution or cost-to-solution. Our eThread pipeline can scale to support a large number of sequences and is expected to be a viable solution for genome-scale structural bioinformatics and structure-based annotation, particularly, amenable for small genomes such as prokaryotes. The developed pipeline is easily extensible to other types of distributed cyberinfrastructure.
Developing eThread Pipeline Using SAGA-Pilot Abstraction for Large-Scale Structural Bioinformatics
Ragothaman, Anjani; Feinstein, Wei; Jha, Shantenu; Kim, Joohyun
2014-01-01
While most of computational annotation approaches are sequence-based, threading methods are becoming increasingly attractive because of predicted structural information that could uncover the underlying function. However, threading tools are generally compute-intensive and the number of protein sequences from even small genomes such as prokaryotes is large typically containing many thousands, prohibiting their application as a genome-wide structural systems biology tool. To leverage its utility, we have developed a pipeline for eThread—a meta-threading protein structure modeling tool, that can use computational resources efficiently and effectively. We employ a pilot-based approach that supports seamless data and task-level parallelism and manages large variation in workload and computational requirements. Our scalable pipeline is deployed on Amazon EC2 and can efficiently select resources based upon task requirements. We present runtime analysis to characterize computational complexity of eThread and EC2 infrastructure. Based on results, we suggest a pathway to an optimized solution with respect to metrics such as time-to-solution or cost-to-solution. Our eThread pipeline can scale to support a large number of sequences and is expected to be a viable solution for genome-scale structural bioinformatics and structure-based annotation, particularly, amenable for small genomes such as prokaryotes. The developed pipeline is easily extensible to other types of distributed cyberinfrastructure. PMID:24995285
Distributed and grid computing projects with research focus in human health.
Diomidous, Marianna; Zikos, Dimitrios
2012-01-01
Distributed systems and grid computing systems are used to connect several computers to obtain a higher level of performance, in order to solve a problem. During the last decade, projects use the World Wide Web to aggregate individuals' CPU power for research purposes. This paper presents the existing active large scale distributed and grid computing projects with research focus in human health. There have been found and presented 11 active projects with more than 2000 Processing Units (PUs) each. The research focus for most of them is molecular biology and, specifically on understanding or predicting protein structure through simulation, comparing proteins, genomic analysis for disease provoking genes and drug design. Though not in all cases explicitly stated, common target diseases include research to find cure against HIV, dengue, Duchene dystrophy, Parkinson's disease, various types of cancer and influenza. Other diseases include malaria, anthrax, Alzheimer's disease. The need for national initiatives and European Collaboration for larger scale projects is stressed, to raise the awareness of citizens to participate in order to create a culture of internet volunteering altruism.
A uniform approach for programming distributed heterogeneous computing systems
Grasso, Ivan; Pellegrini, Simone; Cosenza, Biagio; Fahringer, Thomas
2014-01-01
Large-scale compute clusters of heterogeneous nodes equipped with multi-core CPUs and GPUs are getting increasingly popular in the scientific community. However, such systems require a combination of different programming paradigms making application development very challenging. In this article we introduce libWater, a library-based extension of the OpenCL programming model that simplifies the development of heterogeneous distributed applications. libWater consists of a simple interface, which is a transparent abstraction of the underlying distributed architecture, offering advanced features such as inter-context and inter-node device synchronization. It provides a runtime system which tracks dependency information enforced by event synchronization to dynamically build a DAG of commands, on which we automatically apply two optimizations: collective communication pattern detection and device-host-device copy removal. We assess libWater’s performance in three compute clusters available from the Vienna Scientific Cluster, the Barcelona Supercomputing Center and the University of Innsbruck, demonstrating improved performance and scaling with different test applications and configurations. PMID:25844015
A uniform approach for programming distributed heterogeneous computing systems.
Grasso, Ivan; Pellegrini, Simone; Cosenza, Biagio; Fahringer, Thomas
2014-12-01
Large-scale compute clusters of heterogeneous nodes equipped with multi-core CPUs and GPUs are getting increasingly popular in the scientific community. However, such systems require a combination of different programming paradigms making application development very challenging. In this article we introduce libWater, a library-based extension of the OpenCL programming model that simplifies the development of heterogeneous distributed applications. libWater consists of a simple interface, which is a transparent abstraction of the underlying distributed architecture, offering advanced features such as inter-context and inter-node device synchronization. It provides a runtime system which tracks dependency information enforced by event synchronization to dynamically build a DAG of commands, on which we automatically apply two optimizations: collective communication pattern detection and device-host-device copy removal. We assess libWater's performance in three compute clusters available from the Vienna Scientific Cluster, the Barcelona Supercomputing Center and the University of Innsbruck, demonstrating improved performance and scaling with different test applications and configurations.
NASA Technical Reports Server (NTRS)
Johnston, William E.; Gannon, Dennis; Nitzberg, Bill
2000-01-01
We use the term "Grid" to refer to distributed, high performance computing and data handling infrastructure that incorporates geographically and organizationally dispersed, heterogeneous resources that are persistent and supported. This infrastructure includes: (1) Tools for constructing collaborative, application oriented Problem Solving Environments / Frameworks (the primary user interfaces for Grids); (2) Programming environments, tools, and services providing various approaches for building applications that use aggregated computing and storage resources, and federated data sources; (3) Comprehensive and consistent set of location independent tools and services for accessing and managing dynamic collections of widely distributed resources: heterogeneous computing systems, storage systems, real-time data sources and instruments, human collaborators, and communications systems; (4) Operational infrastructure including management tools for distributed systems and distributed resources, user services, accounting and auditing, strong and location independent user authentication and authorization, and overall system security services The vision for NASA's Information Power Grid - a computing and data Grid - is that it will provide significant new capabilities to scientists and engineers by facilitating routine construction of information based problem solving environments / frameworks. Such Grids will knit together widely distributed computing, data, instrument, and human resources into just-in-time systems that can address complex and large-scale computing and data analysis problems. Examples of these problems include: (1) Coupled, multidisciplinary simulations too large for single systems (e.g., multi-component NPSS turbomachine simulation); (2) Use of widely distributed, federated data archives (e.g., simultaneous access to metrological, topological, aircraft performance, and flight path scheduling databases supporting a National Air Space Simulation systems}; (3) Coupling large-scale computing and data systems to scientific and engineering instruments (e.g., realtime interaction with experiments through real-time data analysis and interpretation presented to the experimentalist in ways that allow direct interaction with the experiment (instead of just with instrument control); (5) Highly interactive, augmented reality and virtual reality remote collaborations (e.g., Ames / Boeing Remote Help Desk providing field maintenance use of coupled video and NDI to a remote, on-line airframe structures expert who uses this data to index into detailed design databases, and returns 3D internal aircraft geometry to the field); (5) Single computational problems too large for any single system (e.g. the rotocraft reference calculation). Grids also have the potential to provide pools of resources that could be called on in extraordinary / rapid response situations (such as disaster response) because they can provide common interfaces and access mechanisms, standardized management, and uniform user authentication and authorization, for large collections of distributed resources (whether or not they normally function in concert). IPG development and deployment is addressing requirements obtained by analyzing a number of different application areas, in particular from the NASA Aero-Space Technology Enterprise. This analysis has focussed primarily on two types of users: the scientist / design engineer whose primary interest is problem solving (e.g. determining wing aerodynamic characteristics in many different operating environments), and whose primary interface to IPG will be through various sorts of problem solving frameworks. The second type of user is the tool designer: the computational scientists who convert physics and mathematics into code that can simulate the physical world. These are the two primary users of IPG, and they have rather different requirements. The results of the analysis of the needs of these two types of users provides a broad set of requirements that gives rise to a general set of required capabilities. The IPG project is intended to address all of these requirements. In some cases the required computing technology exists, and in some cases it must be researched and developed. The project is using available technology to provide a prototype set of capabilities in a persistent distributed computing testbed. Beyond this, there are required capabilities that are not immediately available, and whose development spans the range from near-term engineering development (one to two years) to much longer term R&D (three to six years). Additional information is contained in the original.
Design and Development of a Run-Time Monitor for Multi-Core Architectures in Cloud Computing
Kang, Mikyung; Kang, Dong-In; Crago, Stephen P.; Park, Gyung-Leen; Lee, Junghoon
2011-01-01
Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is a type of parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring system status changes, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design and develop a Run-Time Monitor (RTM) which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize cloud computing resources for multi-core architectures. RTM monitors application software through library instrumentation as well as underlying hardware through a performance counter optimizing its computing configuration based on the analyzed data. PMID:22163811
Design and development of a run-time monitor for multi-core architectures in cloud computing.
Kang, Mikyung; Kang, Dong-In; Crago, Stephen P; Park, Gyung-Leen; Lee, Junghoon
2011-01-01
Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is a type of parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring system status changes, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design and develop a Run-Time Monitor (RTM) which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize cloud computing resources for multi-core architectures. RTM monitors application software through library instrumentation as well as underlying hardware through a performance counter optimizing its computing configuration based on the analyzed data.
Reproducible Large-Scale Neuroimaging Studies with the OpenMOLE Workflow Management System.
Passerat-Palmbach, Jonathan; Reuillon, Romain; Leclaire, Mathieu; Makropoulos, Antonios; Robinson, Emma C; Parisot, Sarah; Rueckert, Daniel
2017-01-01
OpenMOLE is a scientific workflow engine with a strong emphasis on workload distribution. Workflows are designed using a high level Domain Specific Language (DSL) built on top of Scala. It exposes natural parallelism constructs to easily delegate the workload resulting from a workflow to a wide range of distributed computing environments. OpenMOLE hides the complexity of designing complex experiments thanks to its DSL. Users can embed their own applications and scale their pipelines from a small prototype running on their desktop computer to a large-scale study harnessing distributed computing infrastructures, simply by changing a single line in the pipeline definition. The construction of the pipeline itself is decoupled from the execution context. The high-level DSL abstracts the underlying execution environment, contrary to classic shell-script based pipelines. These two aspects allow pipelines to be shared and studies to be replicated across different computing environments. Workflows can be run as traditional batch pipelines or coupled with OpenMOLE's advanced exploration methods in order to study the behavior of an application, or perform automatic parameter tuning. In this work, we briefly present the strong assets of OpenMOLE and detail recent improvements targeting re-executability of workflows across various Linux platforms. We have tightly coupled OpenMOLE with CARE, a standalone containerization solution that allows re-executing on a Linux host any application that has been packaged on another Linux host previously. The solution is evaluated against a Python-based pipeline involving packages such as scikit-learn as well as binary dependencies. All were packaged and re-executed successfully on various HPC environments, with identical numerical results (here prediction scores) obtained on each environment. Our results show that the pair formed by OpenMOLE and CARE is a reliable solution to generate reproducible results and re-executable pipelines. A demonstration of the flexibility of our solution showcases three neuroimaging pipelines harnessing distributed computing environments as heterogeneous as local clusters or the European Grid Infrastructure (EGI).
Reproducible Large-Scale Neuroimaging Studies with the OpenMOLE Workflow Management System
Passerat-Palmbach, Jonathan; Reuillon, Romain; Leclaire, Mathieu; Makropoulos, Antonios; Robinson, Emma C.; Parisot, Sarah; Rueckert, Daniel
2017-01-01
OpenMOLE is a scientific workflow engine with a strong emphasis on workload distribution. Workflows are designed using a high level Domain Specific Language (DSL) built on top of Scala. It exposes natural parallelism constructs to easily delegate the workload resulting from a workflow to a wide range of distributed computing environments. OpenMOLE hides the complexity of designing complex experiments thanks to its DSL. Users can embed their own applications and scale their pipelines from a small prototype running on their desktop computer to a large-scale study harnessing distributed computing infrastructures, simply by changing a single line in the pipeline definition. The construction of the pipeline itself is decoupled from the execution context. The high-level DSL abstracts the underlying execution environment, contrary to classic shell-script based pipelines. These two aspects allow pipelines to be shared and studies to be replicated across different computing environments. Workflows can be run as traditional batch pipelines or coupled with OpenMOLE's advanced exploration methods in order to study the behavior of an application, or perform automatic parameter tuning. In this work, we briefly present the strong assets of OpenMOLE and detail recent improvements targeting re-executability of workflows across various Linux platforms. We have tightly coupled OpenMOLE with CARE, a standalone containerization solution that allows re-executing on a Linux host any application that has been packaged on another Linux host previously. The solution is evaluated against a Python-based pipeline involving packages such as scikit-learn as well as binary dependencies. All were packaged and re-executed successfully on various HPC environments, with identical numerical results (here prediction scores) obtained on each environment. Our results show that the pair formed by OpenMOLE and CARE is a reliable solution to generate reproducible results and re-executable pipelines. A demonstration of the flexibility of our solution showcases three neuroimaging pipelines harnessing distributed computing environments as heterogeneous as local clusters or the European Grid Infrastructure (EGI). PMID:28381997
Gibbs sampling on large lattice with GMRF
NASA Astrophysics Data System (ADS)
Marcotte, Denis; Allard, Denis
2018-02-01
Gibbs sampling is routinely used to sample truncated Gaussian distributions. These distributions naturally occur when associating latent Gaussian fields to category fields obtained by discrete simulation methods like multipoint, sequential indicator simulation and object-based simulation. The latent Gaussians are often used in data assimilation and history matching algorithms. When the Gibbs sampling is applied on a large lattice, the computing cost can become prohibitive. The usual practice of using local neighborhoods is unsatisfying as it can diverge and it does not reproduce exactly the desired covariance. A better approach is to use Gaussian Markov Random Fields (GMRF) which enables to compute the conditional distributions at any point without having to compute and invert the full covariance matrix. As the GMRF is locally defined, it allows simultaneous updating of all points that do not share neighbors (coding sets). We propose a new simultaneous Gibbs updating strategy on coding sets that can be efficiently computed by convolution and applied with an acceptance/rejection method in the truncated case. We study empirically the speed of convergence, the effect of choice of boundary conditions, of the correlation range and of GMRF smoothness. We show that the convergence is slower in the Gaussian case on the torus than for the finite case studied in the literature. However, in the truncated Gaussian case, we show that short scale correlation is quickly restored and the conditioning categories at each lattice point imprint the long scale correlation. Hence our approach enables to realistically apply Gibbs sampling on large 2D or 3D lattice with the desired GMRF covariance.
Distributed sensor networks: a cellular nonlinear network perspective.
Haenggi, Martin
2003-12-01
Large-scale networks of integrated wireless sensors become increasingly tractable. Advances in hardware technology and engineering design have led to dramatic reductions in size, power consumption, and cost for digital circuitry, and wireless communications. Networking, self-organization, and distributed operation are crucial ingredients to harness the sensing, computing, and computational capabilities of the nodes into a complete system. This article shows that those networks can be considered as cellular nonlinear networks (CNNs), and that their analysis and design may greatly benefit from the rich theoretical results available for CNNs.
Squid - a simple bioinformatics grid.
Carvalho, Paulo C; Glória, Rafael V; de Miranda, Antonio B; Degrave, Wim M
2005-08-03
BLAST is a widely used genetic research tool for analysis of similarity between nucleotide and protein sequences. This paper presents a software application entitled "Squid" that makes use of grid technology. The current version, as an example, is configured for BLAST applications, but adaptation for other computing intensive repetitive tasks can be easily accomplished in the open source version. This enables the allocation of remote resources to perform distributed computing, making large BLAST queries viable without the need of high-end computers. Most distributed computing / grid solutions have complex installation procedures requiring a computer specialist, or have limitations regarding operating systems. Squid is a multi-platform, open-source program designed to "keep things simple" while offering high-end computing power for large scale applications. Squid also has an efficient fault tolerance and crash recovery system against data loss, being able to re-route jobs upon node failure and recover even if the master machine fails. Our results show that a Squid application, working with N nodes and proper network resources, can process BLAST queries almost N times faster than if working with only one computer. Squid offers high-end computing, even for the non-specialist, and is freely available at the project web site. Its open-source and binary Windows distributions contain detailed instructions and a "plug-n-play" instalation containing a pre-configured example.
MultiPhyl: a high-throughput phylogenomics webserver using distributed computing
Keane, Thomas M.; Naughton, Thomas J.; McInerney, James O.
2007-01-01
With the number of fully sequenced genomes increasing steadily, there is greater interest in performing large-scale phylogenomic analyses from large numbers of individual gene families. Maximum likelihood (ML) has been shown repeatedly to be one of the most accurate methods for phylogenetic construction. Recently, there have been a number of algorithmic improvements in maximum-likelihood-based tree search methods. However, it can still take a long time to analyse the evolutionary history of many gene families using a single computer. Distributed computing refers to a method of combining the computing power of multiple computers in order to perform some larger overall calculation. In this article, we present the first high-throughput implementation of a distributed phylogenetics platform, MultiPhyl, capable of using the idle computational resources of many heterogeneous non-dedicated machines to form a phylogenetics supercomputer. MultiPhyl allows a user to upload hundreds or thousands of amino acid or nucleotide alignments simultaneously and perform computationally intensive tasks such as model selection, tree searching and bootstrapping of each of the alignments using many desktop machines. The program implements a set of 88 amino acid models and 56 nucleotide maximum likelihood models and a variety of statistical methods for choosing between alternative models. A MultiPhyl webserver is available for public use at: http://www.cs.nuim.ie/distributed/multiphyl.php. PMID:17553837
Fan-out Estimation in Spin-based Quantum Computer Scale-up.
Nguyen, Thien; Hill, Charles D; Hollenberg, Lloyd C L; James, Matthew R
2017-10-17
Solid-state spin-based qubits offer good prospects for scaling based on their long coherence times and nexus to large-scale electronic scale-up technologies. However, high-threshold quantum error correction requires a two-dimensional qubit array operating in parallel, posing significant challenges in fabrication and control. While architectures incorporating distributed quantum control meet this challenge head-on, most designs rely on individual control and readout of all qubits with high gate densities. We analysed the fan-out routing overhead of a dedicated control line architecture, basing the analysis on a generalised solid-state spin qubit platform parameterised to encompass Coulomb confined (e.g. donor based spin qubits) or electrostatically confined (e.g. quantum dot based spin qubits) implementations. The spatial scalability under this model is estimated using standard electronic routing methods and present-day fabrication constraints. Based on reasonable assumptions for qubit control and readout we estimate 10 2 -10 5 physical qubits, depending on the quantum interconnect implementation, can be integrated and fanned-out independently. Assuming relatively long control-free interconnects the scalability can be extended. Ultimately, the universal quantum computation may necessitate a much higher number of integrated qubits, indicating that higher dimensional electronics fabrication and/or multiplexed distributed control and readout schemes may be the preferredstrategy for large-scale implementation.
Jafari, G Reza; Sahimi, Muhammad; Rasaei, M Reza; Tabar, M Reza Rahimi
2011-02-01
Several methods have been developed in the past for analyzing the porosity and other types of well logs for large-scale porous media, such as oil reservoirs, as well as their permeability distributions. We developed a method for analyzing the porosity logs ϕ(h) (where h is the depth) and similar data that are often nonstationary stochastic series. In this method one first generates a new stationary series based on the original data, and then analyzes the resulting series. It is shown that the series based on the successive increments of the log y(h)=ϕ(h+δh)-ϕ(h) is a stationary and Markov process, characterized by a Markov length scale h(M). The coefficients of the Kramers-Moyal expansion for the conditional probability density function (PDF) P(y,h|y(0),h(0)) are then computed. The resulting PDFs satisfy a Fokker-Planck (FP) equation, which is equivalent to a Langevin equation for y(h) that provides probabilistic predictions for the porosity logs. We also show that the Hurst exponent H of the self-affine distributions, which have been used in the past to describe the porosity logs, is directly linked to the drift and diffusion coefficients that we compute for the FP equation. Also computed are the level-crossing probabilities that provide insight into identifying the high or low values of the porosity beyond the depth interval in which the data have been measured. ©2011 American Physical Society
A Neural Information Field Approach to Computational Cognition
2016-11-18
We have extended our perceptual decision making model to account for the effects of context in this flexible DISTRIBUTION A. Approved for public...developed a new perceptual decision making model; demonstrated adaptive motor control in a large-scale cognitive simulation with spiking neurons (Spaun...TERMS EOARD, Computational Cognition, Mixed-initiative decision making 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF
Parallel computing for probabilistic fatigue analysis
NASA Technical Reports Server (NTRS)
Sues, Robert H.; Lua, Yuan J.; Smith, Mark D.
1993-01-01
This paper presents the results of Phase I research to investigate the most effective parallel processing software strategies and hardware configurations for probabilistic structural analysis. We investigate the efficiency of both shared and distributed-memory architectures via a probabilistic fatigue life analysis problem. We also present a parallel programming approach, the virtual shared-memory paradigm, that is applicable across both types of hardware. Using this approach, problems can be solved on a variety of parallel configurations, including networks of single or multiprocessor workstations. We conclude that it is possible to effectively parallelize probabilistic fatigue analysis codes; however, special strategies will be needed to achieve large-scale parallelism to keep large number of processors busy and to treat problems with the large memory requirements encountered in practice. We also conclude that distributed-memory architecture is preferable to shared-memory for achieving large scale parallelism; however, in the future, the currently emerging hybrid-memory architectures will likely be optimal.
Globus | Informatics Technology for Cancer Research (ITCR)
Globus software services provide secure cancer research data transfer, synchronization, and sharing in distributed environments at large scale. These services can be integrated into applications and research data gateways, leveraging Globus identity management, single sign-on, search, and authorization capabilities. Globus Genomics integrates Globus with the Galaxy genomics workflow engine and Amazon Web Services to enable cancer genomics analysis that can elastically scale compute resources with demand.
Distributed Coordinated Control of Large-Scale Nonlinear Networks
Kundu, Soumya; Anghel, Marian
2015-11-08
We provide a distributed coordinated approach to the stability analysis and control design of largescale nonlinear dynamical systems by using a vector Lyapunov functions approach. In this formulation the large-scale system is decomposed into a network of interacting subsystems and the stability of the system is analyzed through a comparison system. However finding such comparison system is not trivial. In this work, we propose a sum-of-squares based completely decentralized approach for computing the comparison systems for networks of nonlinear systems. Moreover, based on the comparison systems, we introduce a distributed optimal control strategy in which the individual subsystems (agents) coordinatemore » with their immediate neighbors to design local control policies that can exponentially stabilize the full system under initial disturbances.We illustrate the control algorithm on a network of interacting Van der Pol systems.« less
Baity-Jesi, Marco; Calore, Enrico; Cruz, Andres; Fernandez, Luis Antonio; Gil-Narvión, José Miguel; Gordillo-Guerrero, Antonio; Iñiguez, David; Maiorano, Andrea; Marinari, Enzo; Martin-Mayor, Victor; Monforte-Garcia, Jorge; Muñoz Sudupe, Antonio; Navarro, Denis; Parisi, Giorgio; Perez-Gaviro, Sergio; Ricci-Tersenghi, Federico; Ruiz-Lorenzo, Juan Jesus; Schifano, Sebastiano Fabio; Tarancón, Alfonso; Tripiccione, Raffaele; Yllanes, David
2017-01-01
We have performed a very accurate computation of the nonequilibrium fluctuation–dissipation ratio for the 3D Edwards–Anderson Ising spin glass, by means of large-scale simulations on the special-purpose computers Janus and Janus II. This ratio (computed for finite times on very large, effectively infinite, systems) is compared with the equilibrium probability distribution of the spin overlap for finite sizes. Our main result is a quantitative statics-dynamics dictionary, which could allow the experimental exploration of important features of the spin-glass phase without requiring uncontrollable extrapolations to infinite times or system sizes. PMID:28174274
Azad, Ariful; Ouzounis, Christos A; Kyrpides, Nikos C; Buluç, Aydin
2018-01-01
Abstract Biological networks capture structural or functional properties of relevant entities such as molecules, proteins or genes. Characteristic examples are gene expression networks or protein–protein interaction networks, which hold information about functional affinities or structural similarities. Such networks have been expanding in size due to increasing scale and abundance of biological data. While various clustering algorithms have been proposed to find highly connected regions, Markov Clustering (MCL) has been one of the most successful approaches to cluster sequence similarity or expression networks. Despite its popularity, MCL’s scalability to cluster large datasets still remains a bottleneck due to high running times and memory demands. Here, we present High-performance MCL (HipMCL), a parallel implementation of the original MCL algorithm that can run on distributed-memory computers. We show that HipMCL can efficiently utilize 2000 compute nodes and cluster a network of ∼70 million nodes with ∼68 billion edges in ∼2.4 h. By exploiting distributed-memory environments, HipMCL clusters large-scale networks several orders of magnitude faster than MCL and enables clustering of even bigger networks. HipMCL is based on MPI and OpenMP and is freely available under a modified BSD license. PMID:29315405
Azad, Ariful; Pavlopoulos, Georgios A.; Ouzounis, Christos A.; ...
2018-01-05
Biological networks capture structural or functional properties of relevant entities such as molecules, proteins or genes. Characteristic examples are gene expression networks or protein–protein interaction networks, which hold information about functional affinities or structural similarities. Such networks have been expanding in size due to increasing scale and abundance of biological data. While various clustering algorithms have been proposed to find highly connected regions, Markov Clustering (MCL) has been one of the most successful approaches to cluster sequence similarity or expression networks. Despite its popularity, MCL’s scalability to cluster large datasets still remains a bottleneck due to high running times andmore » memory demands. In this paper, we present High-performance MCL (HipMCL), a parallel implementation of the original MCL algorithm that can run on distributed-memory computers. We show that HipMCL can efficiently utilize 2000 compute nodes and cluster a network of ~70 million nodes with ~68 billion edges in ~2.4 h. By exploiting distributed-memory environments, HipMCL clusters large-scale networks several orders of magnitude faster than MCL and enables clustering of even bigger networks. Finally, HipMCL is based on MPI and OpenMP and is freely available under a modified BSD license.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azad, Ariful; Pavlopoulos, Georgios A.; Ouzounis, Christos A.
Biological networks capture structural or functional properties of relevant entities such as molecules, proteins or genes. Characteristic examples are gene expression networks or protein–protein interaction networks, which hold information about functional affinities or structural similarities. Such networks have been expanding in size due to increasing scale and abundance of biological data. While various clustering algorithms have been proposed to find highly connected regions, Markov Clustering (MCL) has been one of the most successful approaches to cluster sequence similarity or expression networks. Despite its popularity, MCL’s scalability to cluster large datasets still remains a bottleneck due to high running times andmore » memory demands. In this paper, we present High-performance MCL (HipMCL), a parallel implementation of the original MCL algorithm that can run on distributed-memory computers. We show that HipMCL can efficiently utilize 2000 compute nodes and cluster a network of ~70 million nodes with ~68 billion edges in ~2.4 h. By exploiting distributed-memory environments, HipMCL clusters large-scale networks several orders of magnitude faster than MCL and enables clustering of even bigger networks. Finally, HipMCL is based on MPI and OpenMP and is freely available under a modified BSD license.« less
Jade: using on-demand cloud analysis to give scientists back their flow
NASA Astrophysics Data System (ADS)
Robinson, N.; Tomlinson, J.; Hilson, A. J.; Arribas, A.; Powell, T.
2017-12-01
The UK's Met Office generates 400 TB weather and climate data every day by running physical models on its Top 20 supercomputer. As data volumes explode, there is a danger that analysis workflows become dominated by watching progress bars, and not thinking about science. We have been researching how we can use distributed computing to allow analysts to process these large volumes of high velocity data in a way that's easy, effective and cheap.Our prototype analysis stack, Jade, tries to encapsulate this. Functionality includes: An under-the-hood Dask engine which parallelises and distributes computations, without the need to retrain analysts Hybrid compute clusters (AWS, Alibaba, and local compute) comprising many thousands of cores Clusters which autoscale up/down in response to calculation load using Kubernetes, and balances the cluster across providers based on the current price of compute Lazy data access from cloud storage via containerised OpenDAP This technology stack allows us to perform calculations many orders of magnitude faster than is possible on local workstations. It is also possible to outperform dedicated local compute clusters, as cloud compute can, in principle, scale to much larger scales. The use of ephemeral compute resources also makes this implementation cost efficient.
Applied Distributed Model Predictive Control for Energy Efficient Buildings and Ramp Metering
NASA Astrophysics Data System (ADS)
Koehler, Sarah Muraoka
Industrial large-scale control problems present an interesting algorithmic design challenge. A number of controllers must cooperate in real-time on a network of embedded hardware with limited computing power in order to maximize system efficiency while respecting constraints and despite communication delays. Model predictive control (MPC) can automatically synthesize a centralized controller which optimizes an objective function subject to a system model, constraints, and predictions of disturbance. Unfortunately, the computations required by model predictive controllers for large-scale systems often limit its industrial implementation only to medium-scale slow processes. Distributed model predictive control (DMPC) enters the picture as a way to decentralize a large-scale model predictive control problem. The main idea of DMPC is to split the computations required by the MPC problem amongst distributed processors that can compute in parallel and communicate iteratively to find a solution. Some popularly proposed solutions are distributed optimization algorithms such as dual decomposition and the alternating direction method of multipliers (ADMM). However, these algorithms ignore two practical challenges: substantial communication delays present in control systems and also problem non-convexity. This thesis presents two novel and practically effective DMPC algorithms. The first DMPC algorithm is based on a primal-dual active-set method which achieves fast convergence, making it suitable for large-scale control applications which have a large communication delay across its communication network. In particular, this algorithm is suited for MPC problems with a quadratic cost, linear dynamics, forecasted demand, and box constraints. We measure the performance of this algorithm and show that it significantly outperforms both dual decomposition and ADMM in the presence of communication delay. The second DMPC algorithm is based on an inexact interior point method which is suited for nonlinear optimization problems. The parallel computation of the algorithm exploits iterative linear algebra methods for the main linear algebra computations in the algorithm. We show that the splitting of the algorithm is flexible and can thus be applied to various distributed platform configurations. The two proposed algorithms are applied to two main energy and transportation control problems. The first application is energy efficient building control. Buildings represent 40% of energy consumption in the United States. Thus, it is significant to improve the energy efficiency of buildings. The goal is to minimize energy consumption subject to the physics of the building (e.g. heat transfer laws), the constraints of the actuators as well as the desired operating constraints (thermal comfort of the occupants), and heat load on the system. In this thesis, we describe the control systems of forced air building systems in practice. We discuss the "Trim and Respond" algorithm which is a distributed control algorithm that is used in practice, and show that it performs similarly to a one-step explicit DMPC algorithm. Then, we apply the novel distributed primal-dual active-set method and provide extensive numerical results for the building MPC problem. The second main application is the control of ramp metering signals to optimize traffic flow through a freeway system. This application is particularly important since urban congestion has more than doubled in the past few decades. The ramp metering problem is to maximize freeway throughput subject to freeway dynamics (derived from mass conservation), actuation constraints, freeway capacity constraints, and predicted traffic demand. In this thesis, we develop a hybrid model predictive controller for ramp metering that is guaranteed to be persistently feasible and stable. This contrasts to previous work on MPC for ramp metering where such guarantees are absent. We apply a smoothing method to the hybrid model predictive controller and apply the inexact interior point method to this nonlinear non-convex ramp metering problem.
Harrigan, Robert L; Yvernault, Benjamin C; Boyd, Brian D; Damon, Stephen M; Gibney, Kyla David; Conrad, Benjamin N; Phillips, Nicholas S; Rogers, Baxter P; Gao, Yurui; Landman, Bennett A
2016-01-01
The Vanderbilt University Institute for Imaging Science (VUIIS) Center for Computational Imaging (CCI) has developed a database built on XNAT housing over a quarter of a million scans. The database provides framework for (1) rapid prototyping, (2) large scale batch processing of images and (3) scalable project management. The system uses the web-based interfaces of XNAT and REDCap to allow for graphical interaction. A python middleware layer, the Distributed Automation for XNAT (DAX) package, distributes computation across the Vanderbilt Advanced Computing Center for Research and Education high performance computing center. All software are made available in open source for use in combining portable batch scripting (PBS) grids and XNAT servers. Copyright © 2015 Elsevier Inc. All rights reserved.
AGIS: Evolution of Distributed Computing information system for ATLAS
NASA Astrophysics Data System (ADS)
Anisenkov, A.; Di Girolamo, A.; Alandes, M.; Karavakis, E.
2015-12-01
ATLAS, a particle physics experiment at the Large Hadron Collider at CERN, produces petabytes of data annually through simulation production and tens of petabytes of data per year from the detector itself. The ATLAS computing model embraces the Grid paradigm and a high degree of decentralization of computing resources in order to meet the ATLAS requirements of petabytes scale data operations. It has been evolved after the first period of LHC data taking (Run-1) in order to cope with new challenges of the upcoming Run- 2. In this paper we describe the evolution and recent developments of the ATLAS Grid Information System (AGIS), developed in order to integrate configuration and status information about resources, services and topology of the computing infrastructure used by the ATLAS Distributed Computing applications and services.
Multi-scale Material Appearance
NASA Astrophysics Data System (ADS)
Wu, Hongzhi
Modeling and rendering the appearance of materials is important for a diverse range of applications of computer graphics - from automobile design to movies and cultural heritage. The appearance of materials varies considerably at different scales, posing significant challenges due to the sheer complexity of the data, as well the need to maintain inter-scale consistency constraints. This thesis presents a series of studies around the modeling, rendering and editing of multi-scale material appearance. To efficiently render material appearance at multiple scales, we develop an object-space precomputed adaptive sampling method, which precomputes a hierarchy of view-independent points that preserve multi-level appearance. To support bi-scale material appearance design, we propose a novel reflectance filtering algorithm, which rapidly computes the large-scale appearance from small-scale details, by exploiting the low-rank structures of Bidirectional Visible Normal Distribution Functions and pre-rotated Bidirectional Reflectance Distribution Functions in the matrix formulation of the rendering algorithm. This approach can guide the physical realization of appearance, as well as the modeling of real-world materials using very sparse measurements. Finally, we present a bi-scale-inspired high-quality general representation for material appearance described by Bidirectional Texture Functions. Our representation is at once compact, easily editable, and amenable to efficient rendering.
Magnetic pattern at supergranulation scale: the void size distribution
NASA Astrophysics Data System (ADS)
Berrilli, F.; Scardigli, S.; Del Moro, D.
2014-08-01
The large-scale magnetic pattern observed in the photosphere of the quiet Sun is dominated by the magnetic network. This network, created by photospheric magnetic fields swept into convective downflows, delineates the boundaries of large-scale cells of overturning plasma and exhibits "voids" in magnetic organization. These voids include internetwork fields, which are mixed-polarity sparse magnetic fields that populate the inner part of network cells. To single out voids and to quantify their intrinsic pattern we applied a fast circle-packing-based algorithm to 511 SOHO/MDI high-resolution magnetograms acquired during the unusually long solar activity minimum between cycles 23 and 24. The computed void distribution function shows a quasi-exponential decay behavior in the range 10-60 Mm. The lack of distinct flow scales in this range corroborates the hypothesis of multi-scale motion flows at the solar surface. In addition to the quasi-exponential decay, we have found that the voids depart from a simple exponential decay at about 35 Mm.
AGIS: The ATLAS Grid Information System
NASA Astrophysics Data System (ADS)
Anisenkov, A.; Di Girolamo, A.; Klimentov, A.; Oleynik, D.; Petrosyan, A.; Atlas Collaboration
2014-06-01
ATLAS, a particle physics experiment at the Large Hadron Collider at CERN, produced petabytes of data annually through simulation production and tens of petabytes of data per year from the detector itself. The ATLAS computing model embraces the Grid paradigm and a high degree of decentralization and computing resources able to meet ATLAS requirements of petabytes scale data operations. In this paper we describe the ATLAS Grid Information System (AGIS), designed to integrate configuration and status information about resources, services and topology of the computing infrastructure used by the ATLAS Distributed Computing applications and services.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Chase Qishi; Zhu, Michelle Mengxia
The advent of large-scale collaborative scientific applications has demonstrated the potential for broad scientific communities to pool globally distributed resources to produce unprecedented data acquisition, movement, and analysis. System resources including supercomputers, data repositories, computing facilities, network infrastructures, storage systems, and display devices have been increasingly deployed at national laboratories and academic institutes. These resources are typically shared by large communities of users over Internet or dedicated networks and hence exhibit an inherent dynamic nature in their availability, accessibility, capacity, and stability. Scientific applications using either experimental facilities or computation-based simulations with various physical, chemical, climatic, and biological models featuremore » diverse scientific workflows as simple as linear pipelines or as complex as a directed acyclic graphs, which must be executed and supported over wide-area networks with massively distributed resources. Application users oftentimes need to manually configure their computing tasks over networks in an ad hoc manner, hence significantly limiting the productivity of scientists and constraining the utilization of resources. The success of these large-scale distributed applications requires a highly adaptive and massively scalable workflow platform that provides automated and optimized computing and networking services. This project is to design and develop a generic Scientific Workflow Automation and Management Platform (SWAMP), which contains a web-based user interface specially tailored for a target application, a set of user libraries, and several easy-to-use computing and networking toolkits for application scientists to conveniently assemble, execute, monitor, and control complex computing workflows in heterogeneous high-performance network environments. SWAMP will enable the automation and management of the entire process of scientific workflows with the convenience of a few mouse clicks while hiding the implementation and technical details from end users. Particularly, we will consider two types of applications with distinct performance requirements: data-centric and service-centric applications. For data-centric applications, the main workflow task involves large-volume data generation, catalog, storage, and movement typically from supercomputers or experimental facilities to a team of geographically distributed users; while for service-centric applications, the main focus of workflow is on data archiving, preprocessing, filtering, synthesis, visualization, and other application-specific analysis. We will conduct a comprehensive comparison of existing workflow systems and choose the best suited one with open-source code, a flexible system structure, and a large user base as the starting point for our development. Based on the chosen system, we will develop and integrate new components including a black box design of computing modules, performance monitoring and prediction, and workflow optimization and reconfiguration, which are missing from existing workflow systems. A modular design for separating specification, execution, and monitoring aspects will be adopted to establish a common generic infrastructure suited for a wide spectrum of science applications. We will further design and develop efficient workflow mapping and scheduling algorithms to optimize the workflow performance in terms of minimum end-to-end delay, maximum frame rate, and highest reliability. We will develop and demonstrate the SWAMP system in a local environment, the grid network, and the 100Gpbs Advanced Network Initiative (ANI) testbed. The demonstration will target scientific applications in climate modeling and high energy physics and the functions to be demonstrated include workflow deployment, execution, steering, and reconfiguration. Throughout the project period, we will work closely with the science communities in the fields of climate modeling and high energy physics including Spallation Neutron Source (SNS) and Large Hadron Collider (LHC) projects to mature the system for production use.« less
A new parallel-vector finite element analysis software on distributed-memory computers
NASA Technical Reports Server (NTRS)
Qin, Jiangning; Nguyen, Duc T.
1993-01-01
A new parallel-vector finite element analysis software package MPFEA (Massively Parallel-vector Finite Element Analysis) is developed for large-scale structural analysis on massively parallel computers with distributed-memory. MPFEA is designed for parallel generation and assembly of the global finite element stiffness matrices as well as parallel solution of the simultaneous linear equations, since these are often the major time-consuming parts of a finite element analysis. Block-skyline storage scheme along with vector-unrolling techniques are used to enhance the vector performance. Communications among processors are carried out concurrently with arithmetic operations to reduce the total execution time. Numerical results on the Intel iPSC/860 computers (such as the Intel Gamma with 128 processors and the Intel Touchstone Delta with 512 processors) are presented, including an aircraft structure and some very large truss structures, to demonstrate the efficiency and accuracy of MPFEA.
Decentralized Optimal Dispatch of Photovoltaic Inverters in Residential Distribution Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall'Anese, Emiliano; Dhople, Sairaj V.; Johnson, Brian B.
Summary form only given. Decentralized methods for computing optimal real and reactive power setpoints for residential photovoltaic (PV) inverters are developed in this paper. It is known that conventional PV inverter controllers, which are designed to extract maximum power at unity power factor, cannot address secondary performance objectives such as voltage regulation and network loss minimization. Optimal power flow techniques can be utilized to select which inverters will provide ancillary services, and to compute their optimal real and reactive power setpoints according to well-defined performance criteria and economic objectives. Leveraging advances in sparsity-promoting regularization techniques and semidefinite relaxation, this papermore » shows how such problems can be solved with reduced computational burden and optimality guarantees. To enable large-scale implementation, a novel algorithmic framework is introduced - based on the so-called alternating direction method of multipliers - by which optimal power flow-type problems in this setting can be systematically decomposed into sub-problems that can be solved in a decentralized fashion by the utility and customer-owned PV systems with limited exchanges of information. Since the computational burden is shared among multiple devices and the requirement of all-to-all communication can be circumvented, the proposed optimization approach scales favorably to large distribution networks.« less
Large-Scale Distributed Coalition Formation
2009-09-01
Ripeanu, Matei, Adriana Iamnitchi, and Ian Foster. “Mapping the Gnutella Network”. IEEE Internet Computing, 6(1):50–57, 2002. 78. Rowstron, Antony I...for Search. Working Papers 95-02-010, Santa Fe Institute, February 1995. 97. Xu, Yang, Paul Scerri, Bin Yu, Steven Okamoto, Michael Lewis, and Ka
A Development of Lightweight Grid Interface
NASA Astrophysics Data System (ADS)
Iwai, G.; Kawai, Y.; Sasaki, T.; Watase, Y.
2011-12-01
In order to help a rapid development of Grid/Cloud aware applications, we have developed API to abstract the distributed computing infrastructures based on SAGA (A Simple API for Grid Applications). SAGA, which is standardized in the OGF (Open Grid Forum), defines API specifications to access distributed computing infrastructures, such as Grid, Cloud and local computing resources. The Universal Grid API (UGAPI), which is a set of command line interfaces (CLI) and APIs, aims to offer simpler API to combine several SAGA interfaces with richer functionalities. These CLIs of the UGAPI offer typical functionalities required by end users for job management and file access to the different distributed computing infrastructures as well as local computing resources. We have also built a web interface for the particle therapy simulation and demonstrated the large scale calculation using the different infrastructures at the same time. In this paper, we would like to present how the web interface based on UGAPI and SAGA achieve more efficient utilization of computing resources over the different infrastructures with technical details and practical experiences.
Scale-dependent coupling of hysteretic capillary pressure, trapping, and fluid mobilities
NASA Astrophysics Data System (ADS)
Doster, F.; Celia, M. A.; Nordbotten, J. M.
2012-12-01
Many applications of multiphase flow in porous media, including CO2-storage and enhanced oil recovery, require mathematical models that span a large range of length scales. In the context of numerical simulations, practical grid sizes are often on the order of tens of meters, thereby de facto defining a coarse model scale. Under particular conditions, it is possible to approximate the sub-grid-scale distribution of the fluid saturation within a grid cell; that reconstructed saturation can then be used to compute effective properties at the coarse scale. If both the density difference between the fluids and the vertical extend of the grid cell are large, and buoyant segregation within the cell on a sufficiently shorte time scale, then the phase pressure distributions are essentially hydrostatic and the saturation profile can be reconstructed from the inferred capillary pressures. However, the saturation reconstruction may not be unique because the parameters and parameter functions of classical formulations of two-phase flow in porous media - the relative permeability functions, the capillary pressure -saturation relationship, and the residual saturations - show path dependence, i.e. their values depend not only on the state variables but also on their drainage and imbibition histories. In this study we focus on capillary pressure hysteresis and trapping and show that the contribution of hysteresis to effective quantities is dependent on the vertical length scale. By studying the transition from the two extreme cases - the homogeneous saturation distribution for small vertical extents and the completely segregated distribution for large extents - we identify how hysteretic capillary pressure at the local scale induces hysteresis in all coarse-scale quantities for medium vertical extents and finally vanishes for large vertical extents. Our results allow for more accurate vertically integrated modeling while improving our understanding of the coupling of capillary pressure and relative permeabilities over larger length scales.
NASA Astrophysics Data System (ADS)
Jang, W.; Engda, T. A.; Neff, J. C.; Herrick, J.
2017-12-01
Many crop models are increasingly used to evaluate crop yields at regional and global scales. However, implementation of these models across large areas using fine-scale grids is limited by computational time requirements. In order to facilitate global gridded crop modeling with various scenarios (i.e., different crop, management schedule, fertilizer, and irrigation) using the Environmental Policy Integrated Climate (EPIC) model, we developed a distributed parallel computing framework in Python. Our local desktop with 14 cores (28 threads) was used to test the distributed parallel computing framework in Iringa, Tanzania which has 406,839 grid cells. High-resolution soil data, SoilGrids (250 x 250 m), and climate data, AgMERRA (0.25 x 0.25 deg) were also used as input data for the gridded EPIC model. The framework includes a master file for parallel computing, input database, input data formatters, EPIC model execution, and output analyzers. Through the master file for parallel computing, the user-defined number of threads of CPU divides the EPIC simulation into jobs. Then, Using EPIC input data formatters, the raw database is formatted for EPIC input data and the formatted data moves into EPIC simulation jobs. Then, 28 EPIC jobs run simultaneously and only interesting results files are parsed and moved into output analyzers. We applied various scenarios with seven different slopes and twenty-four fertilizer ranges. Parallelized input generators create different scenarios as a list for distributed parallel computing. After all simulations are completed, parallelized output analyzers are used to analyze all outputs according to the different scenarios. This saves significant computing time and resources, making it possible to conduct gridded modeling at regional to global scales with high-resolution data. For example, serial processing for the Iringa test case would require 113 hours, while using the framework developed in this study requires only approximately 6 hours, a nearly 95% reduction in computing time.
Simulation framework for intelligent transportation systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewing, T.; Doss, E.; Hanebutte, U.
1996-10-01
A simulation framework has been developed for a large-scale, comprehensive, scaleable simulation of an Intelligent Transportation System (ITS). The simulator is designed for running on parallel computers and distributed (networked) computer systems, but can run on standalone workstations for smaller simulations. The simulator currently models instrumented smart vehicles with in-vehicle navigation units capable of optimal route planning and Traffic Management Centers (TMC). The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide two-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphicalmore » user interfaces to support human-factors studies. Realistic modeling of variations of the posted driving speed are based on human factors studies that take into consideration weather, road conditions, driver personality and behavior, and vehicle type. The prototype has been developed on a distributed system of networked UNIX computers but is designed to run on parallel computers, such as ANL`s IBM SP-2, for large-scale problems. A novel feature of the approach is that vehicles are represented by autonomous computer processes which exchange messages with other processes. The vehicles have a behavior model which governs route selection and driving behavior, and can react to external traffic events much like real vehicles. With this approach, the simulation is scaleable to take advantage of emerging massively parallel processor (MPP) systems.« less
NASA Astrophysics Data System (ADS)
Shi, X.
2015-12-01
As NSF indicated - "Theory and experimentation have for centuries been regarded as two fundamental pillars of science. It is now widely recognized that computational and data-enabled science forms a critical third pillar." Geocomputation is the third pillar of GIScience and geosciences. With the exponential growth of geodata, the challenge of scalable and high performance computing for big data analytics become urgent because many research activities are constrained by the inability of software or tool that even could not complete the computation process. Heterogeneous geodata integration and analytics obviously magnify the complexity and operational time frame. Many large-scale geospatial problems may be not processable at all if the computer system does not have sufficient memory or computational power. Emerging computer architectures, such as Intel's Many Integrated Core (MIC) Architecture and Graphics Processing Unit (GPU), and advanced computing technologies provide promising solutions to employ massive parallelism and hardware resources to achieve scalability and high performance for data intensive computing over large spatiotemporal and social media data. Exploring novel algorithms and deploying the solutions in massively parallel computing environment to achieve the capability for scalable data processing and analytics over large-scale, complex, and heterogeneous geodata with consistent quality and high-performance has been the central theme of our research team in the Department of Geosciences at the University of Arkansas (UARK). New multi-core architectures combined with application accelerators hold the promise to achieve scalability and high performance by exploiting task and data levels of parallelism that are not supported by the conventional computing systems. Such a parallel or distributed computing environment is particularly suitable for large-scale geocomputation over big data as proved by our prior works, while the potential of such advanced infrastructure remains unexplored in this domain. Within this presentation, our prior and on-going initiatives will be summarized to exemplify how we exploit multicore CPUs, GPUs, and MICs, and clusters of CPUs, GPUs and MICs, to accelerate geocomputation in different applications.
NASA Technical Reports Server (NTRS)
Gorski, Krzysztof M.; Silk, Joseph; Vittorio, Nicola
1992-01-01
A new technique is used to compute the correlation function for large-angle cosmic microwave background anisotropies resulting from both the space and time variations in the gravitational potential in flat, vacuum-dominated, cold dark matter cosmological models. Such models with Omega sub 0 of about 0.2, fit the excess power, relative to the standard cold dark matter model, observed in the large-scale galaxy distribution and allow a high value for the Hubble constant. The low order multipoles and quadrupole anisotropy that are potentially observable by COBE and other ongoing experiments should definitively test these models.
NASA Technical Reports Server (NTRS)
Avizienis, A.; Gunningberg, P.; Kelly, J. P. J.; Strigini, L.; Traverse, P. J.; Tso, K. S.; Voges, U.
1986-01-01
To establish a long-term research facility for experimental investigations of design diversity as a means of achieving fault-tolerant systems, a distributed testbed for multiple-version software was designed. It is part of a local network, which utilizes the Locus distributed operating system to operate a set of 20 VAX 11/750 computers. It is used in experiments to measure the efficacy of design diversity and to investigate reliability increases under large-scale, controlled experimental conditions.
Temporal coding of reward-guided choice in the posterior parietal cortex
Hawellek, David J.; Wong, Yan T.; Pesaran, Bijan
2016-01-01
Making a decision involves computations across distributed cortical and subcortical networks. How such distributed processing is performed remains unclear. We test how the encoding of choice in a key decision-making node, the posterior parietal cortex (PPC), depends on the temporal structure of the surrounding population activity. We recorded spiking and local field potential (LFP) activity in the PPC while two rhesus macaques performed a decision-making task. We quantified the mutual information that neurons carried about an upcoming choice and its dependence on LFP activity. The spiking of PPC neurons was correlated with LFP phases at three distinct time scales in the theta, beta, and gamma frequency bands. Importantly, activity at these time scales encoded upcoming decisions differently. Choice information contained in neural firing varied with the phase of beta and gamma activity. For gamma activity, maximum choice information occurred at the same phase as the maximum spike count. However, for beta activity, choice information and spike count were greatest at different phases. In contrast, theta activity did not modulate the encoding properties of PPC units directly but was correlated with beta and gamma activity through cross-frequency coupling. We propose that the relative timing of local spiking and choice information reveals temporal reference frames for computations in either local or large-scale decision networks. Differences between the timing of task information and activity patterns may be a general signature of distributed processing across large-scale networks. PMID:27821752
Remote maintenance monitoring system
NASA Technical Reports Server (NTRS)
Simpkins, Lorenz G. (Inventor); Owens, Richard C. (Inventor); Rochette, Donn A. (Inventor)
1992-01-01
A remote maintenance monitoring system retrofits to a given hardware device with a sensor implant which gathers and captures failure data from the hardware device, without interfering with its operation. Failure data is continuously obtained from predetermined critical points within the hardware device, and is analyzed with a diagnostic expert system, which isolates failure origin to a particular component within the hardware device. For example, monitoring of a computer-based device may include monitoring of parity error data therefrom, as well as monitoring power supply fluctuations therein, so that parity error and power supply anomaly data may be used to trace the failure origin to a particular plane or power supply within the computer-based device. A plurality of sensor implants may be rerofit to corresponding plural devices comprising a distributed large-scale system. Transparent interface of the sensors to the devices precludes operative interference with the distributed network. Retrofit capability of the sensors permits monitoring of even older devices having no built-in testing technology. Continuous real time monitoring of a distributed network of such devices, coupled with diagnostic expert system analysis thereof, permits capture and analysis of even intermittent failures, thereby facilitating maintenance of the monitored large-scale system.
NASA Technical Reports Server (NTRS)
Wentz, F. J.
1977-01-01
The general problem of bistatic scattering from a two scale surface was evaluated. The treatment was entirely two-dimensional and in a vector formulation independent of any particular coordinate system. The two scale scattering model was then applied to backscattering from the sea surface. In particular, the model was used in conjunction with the JONSWAP 1975 aircraft scatterometer measurements to determine the sea surface's two scale roughness distributions, namely the probability density of the large scale surface slope and the capillary wavenumber spectrum. Best fits yield, on the average, a 0.7 dB rms difference between the model computations and the vertical polarization measurements of the normalized radar cross section. Correlations between the distribution parameters and the wind speed were established from linear, least squares regressions.
Latest COBE results, large-scale data, and predictions of inflation
NASA Technical Reports Server (NTRS)
Kashlinsky, A.
1992-01-01
One of the predictions of the inflationary scenario of cosmology is that the initial spectrum of primordial density fluctuations (PDFs) must have the Harrison-Zeldovich (HZ) form. Here, in order to test the inflationary scenario, predictions of the microwave background radiation (MBR) anisotropies measured by COBE are computed based on large-scale data for the universe and assuming Omega-1 and the HZ spectrum on large scales. It is found that the minimal scale where the spectrum can first enter the HZ regime is found, constraining the power spectrum of the mass distribution to within the bias factor b. This factor is determined and used to predict parameters of the MBR anisotropy field. For the spectrum of PDFs that reaches the HZ regime immediately after the scale accessible to the APM catalog, the numbers on MBR anisotropies are consistent with the COBE detections and thus the standard inflation can indeed be considered a viable theory for the origin of the large-scale structure in the universe.
NASA Technical Reports Server (NTRS)
Klumpar, D. M. (Principal Investigator)
1981-01-01
Progress is reported in reading MAGSAT tapes in modeling procedure developed to compute the magnetic fields at satellite orbit due to current distributions in the ionosphere. The modeling technique utilizes a linear current element representation of the large-scale space-current system.
A Rich Metadata Filesystem for Scientific Data
ERIC Educational Resources Information Center
Bui, Hoang
2012-01-01
As scientific research becomes more data intensive, there is an increasing need for scalable, reliable, and high performance storage systems. Such data repositories must provide both data archival services and rich metadata, and cleanly integrate with large scale computing resources. ROARS is a hybrid approach to distributed storage that provides…
Disaggregated Effects of Device on Score Comparability
ERIC Educational Resources Information Center
Davis, Laurie; Morrison, Kristin; Kong, Xiaojing; McBride, Yuanyuan
2017-01-01
The use of tablets for large-scale testing programs has transitioned from concept to reality for many state testing programs. This study extended previous research on score comparability between tablets and computers with high school students to compare score distributions across devices for reading, math, and science and to evaluate device…
Efficient 3D inversions using the Richards equation
NASA Astrophysics Data System (ADS)
Cockett, Rowan; Heagy, Lindsey J.; Haber, Eldad
2018-07-01
Fluid flow in the vadose zone is governed by the Richards equation; it is parameterized by hydraulic conductivity, which is a nonlinear function of pressure head. Investigations in the vadose zone typically require characterizing distributed hydraulic properties. Water content or pressure head data may include direct measurements made from boreholes. Increasingly, proxy measurements from hydrogeophysics are being used to supply more spatially and temporally dense data sets. Inferring hydraulic parameters from such datasets requires the ability to efficiently solve and optimize the nonlinear time domain Richards equation. This is particularly important as the number of parameters to be estimated in a vadose zone inversion continues to grow. In this paper, we describe an efficient technique to invert for distributed hydraulic properties in 1D, 2D, and 3D. Our technique does not store the Jacobian matrix, but rather computes its product with a vector. Existing literature for the Richards equation inversion explicitly calculates the sensitivity matrix using finite difference or automatic differentiation, however, for large scale problems these methods are constrained by computation and/or memory. Using an implicit sensitivity algorithm enables large scale inversion problems for any distributed hydraulic parameters in the Richards equation to become tractable on modest computational resources. We provide an open source implementation of our technique based on the SimPEG framework, and show it in practice for a 3D inversion of saturated hydraulic conductivity using water content data through time.
Prospects of Detecting HI using Redshifted 21-cm Radiation at z˜3
NASA Astrophysics Data System (ADS)
Gehlot, Bharat Kumar; Bagla, J. S.
2017-03-01
Distribution of cold gas in the post-reionization era provides an important link between distribution of galaxies and the process of star formation. Redshifted 21-cm radiation from the hyperfine transition of neutral hydrogen allows us to probe the neutral component of cold gas, most of which is to be found in the interstellar medium of galaxies. Existing and upcoming radio telescopes can probe the large scale distribution of neutral hydrogen via HI intensity mapping. In this paper, we use an estimate of the HI power spectrum derived using an ansatz to compute the expected signal from the large scale HI distribution at z˜3. We find that the scale dependence of bias at small scales makes a significant difference to the expected signal even at large angular scales. We compare the predicted signal strength with the sensitivity of radio telescopes that can observe such radiation and calculate the observation time required for detecting neutral hydrogen at these redshifts. We find that OWFA (Ooty Wide Field Array) offers the best possibility to detect neutral hydrogen at z˜3 before the SKA (Square Kilometer Array) becomes operational. We find that the OWFA should be able to make a 3 σ or a more significant detection in 2000 hours of observations at several angular scales. Calculations done using the Fisher matrix approach indicate that a 5 σ detection of the binned HI power spectrum via measurement of the amplitude of the HI power spectrum is possible in 1000 h (Sarkar et al. 2017).
Open source tools for large-scale neuroscience.
Freeman, Jeremy
2015-06-01
New technologies for monitoring and manipulating the nervous system promise exciting biology but pose challenges for analysis and computation. Solutions can be found in the form of modern approaches to distributed computing, machine learning, and interactive visualization. But embracing these new technologies will require a cultural shift: away from independent efforts and proprietary methods and toward an open source and collaborative neuroscience. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Iwasawa, Masaki; Tanikawa, Ataru; Hosono, Natsuki; Nitadori, Keigo; Muranushi, Takayuki; Makino, Junichiro
2016-08-01
We present the basic idea, implementation, measured performance, and performance model of FDPS (Framework for Developing Particle Simulators). FDPS is an application-development framework which helps researchers to develop simulation programs using particle methods for large-scale distributed-memory parallel supercomputers. A particle-based simulation program for distributed-memory parallel computers needs to perform domain decomposition, exchange of particles which are not in the domain of each computing node, and gathering of the particle information in other nodes which are necessary for interaction calculation. Also, even if distributed-memory parallel computers are not used, in order to reduce the amount of computation, algorithms such as the Barnes-Hut tree algorithm or the Fast Multipole Method should be used in the case of long-range interactions. For short-range interactions, some methods to limit the calculation to neighbor particles are required. FDPS provides all of these functions which are necessary for efficient parallel execution of particle-based simulations as "templates," which are independent of the actual data structure of particles and the functional form of the particle-particle interaction. By using FDPS, researchers can write their programs with the amount of work necessary to write a simple, sequential and unoptimized program of O(N2) calculation cost, and yet the program, once compiled with FDPS, will run efficiently on large-scale parallel supercomputers. A simple gravitational N-body program can be written in around 120 lines. We report the actual performance of these programs and the performance model. The weak scaling performance is very good, and almost linear speed-up was obtained for up to the full system of the K computer. The minimum calculation time per timestep is in the range of 30 ms (N = 107) to 300 ms (N = 109). These are currently limited by the time for the calculation of the domain decomposition and communication necessary for the interaction calculation. We discuss how we can overcome these bottlenecks.
NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations
NASA Astrophysics Data System (ADS)
Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Van Dam, H. J. J.; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T. L.; de Jong, W. A.
2010-09-01
The latest release of NWChem delivers an open-source computational chemistry package with extensive capabilities for large scale simulations of chemical and biological systems. Utilizing a common computational framework, diverse theoretical descriptions can be used to provide the best solution for a given scientific problem. Scalable parallel implementations and modular software design enable efficient utilization of current computational architectures. This paper provides an overview of NWChem focusing primarily on the core theoretical modules provided by the code and their parallel performance. Program summaryProgram title: NWChem Catalogue identifier: AEGI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGI_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Open Source Educational Community License No. of lines in distributed program, including test data, etc.: 11 709 543 No. of bytes in distributed program, including test data, etc.: 680 696 106 Distribution format: tar.gz Programming language: Fortran 77, C Computer: all Linux based workstations and parallel supercomputers, Windows and Apple machines Operating system: Linux, OS X, Windows Has the code been vectorised or parallelized?: Code is parallelized Classification: 2.1, 2.2, 3, 7.3, 7.7, 16.1, 16.2, 16.3, 16.10, 16.13 Nature of problem: Large-scale atomistic simulations of chemical and biological systems require efficient and reliable methods for ground and excited solutions of many-electron Hamiltonian, analysis of the potential energy surface, and dynamics. Solution method: Ground and excited solutions of many-electron Hamiltonian are obtained utilizing density-functional theory, many-body perturbation approach, and coupled cluster expansion. These solutions or a combination thereof with classical descriptions are then used to analyze potential energy surface and perform dynamical simulations. Additional comments: Full documentation is provided in the distribution file. This includes an INSTALL file giving details of how to build the package. A set of test runs is provided in the examples directory. The distribution file for this program is over 90 Mbytes and therefore is not delivered directly when download or Email is requested. Instead a html file giving details of how the program can be obtained is sent. Running time: Running time depends on the size of the chemical system, complexity of the method, number of cpu's and the computational task. It ranges from several seconds for serial DFT energy calculations on a few atoms to several hours for parallel coupled cluster energy calculations on tens of atoms or ab-initio molecular dynamics simulation on hundreds of atoms.
Laser-induced plasmonic colours on metals
NASA Astrophysics Data System (ADS)
Guay, Jean-Michel; Calà Lesina, Antonino; Côté, Guillaume; Charron, Martin; Poitras, Daniel; Ramunno, Lora; Berini, Pierre; Weck, Arnaud
2017-07-01
Plasmonic resonances in metallic nanoparticles have been used since antiquity to colour glasses. The use of metal nanostructures for surface colourization has attracted considerable interest following recent developments in plasmonics. However, current top-down colourization methods are not ideally suited to large-scale industrial applications. Here we use a bottom-up approach where picosecond laser pulses can produce a full palette of non-iridescent colours on silver, gold, copper and aluminium. We demonstrate the process on silver coins weighing up to 5 kg and bearing large topographic variations (~1.5 cm). We find that colours are related to a single parameter, the total accumulated fluence, making the process suitable for high-throughput industrial applications. Statistical image analyses of laser-irradiated surfaces reveal various nanoparticle size distributions. Large-scale finite-difference time-domain computations based on these nanoparticle distributions reproduce trends seen in reflectance measurements, and demonstrate the key role of plasmonic resonances in colour formation.
Laser-induced plasmonic colours on metals
Guay, Jean-Michel; Calà Lesina, Antonino; Côté, Guillaume; Charron, Martin; Poitras, Daniel; Ramunno, Lora; Berini, Pierre; Weck, Arnaud
2017-01-01
Plasmonic resonances in metallic nanoparticles have been used since antiquity to colour glasses. The use of metal nanostructures for surface colourization has attracted considerable interest following recent developments in plasmonics. However, current top-down colourization methods are not ideally suited to large-scale industrial applications. Here we use a bottom-up approach where picosecond laser pulses can produce a full palette of non-iridescent colours on silver, gold, copper and aluminium. We demonstrate the process on silver coins weighing up to 5 kg and bearing large topographic variations (∼1.5 cm). We find that colours are related to a single parameter, the total accumulated fluence, making the process suitable for high-throughput industrial applications. Statistical image analyses of laser-irradiated surfaces reveal various nanoparticle size distributions. Large-scale finite-difference time-domain computations based on these nanoparticle distributions reproduce trends seen in reflectance measurements, and demonstrate the key role of plasmonic resonances in colour formation. PMID:28719576
NASA Astrophysics Data System (ADS)
Singh, Surya P. N.; Thayer, Scott M.
2002-02-01
This paper presents a novel algorithmic architecture for the coordination and control of large scale distributed robot teams derived from the constructs found within the human immune system. Using this as a guide, the Immunology-derived Distributed Autonomous Robotics Architecture (IDARA) distributes tasks so that broad, all-purpose actions are refined and followed by specific and mediated responses based on each unit's utility and capability to timely address the system's perceived need(s). This method improves on initial developments in this area by including often overlooked interactions of the innate immune system resulting in a stronger first-order, general response mechanism. This allows for rapid reactions in dynamic environments, especially those lacking significant a priori information. As characterized via computer simulation of a of a self-healing mobile minefield having up to 7,500 mines and 2,750 robots, IDARA provides an efficient, communications light, and scalable architecture that yields significant operation and performance improvements for large-scale multi-robot coordination and control.
On the Computation of Sound by Large-Eddy Simulations
NASA Technical Reports Server (NTRS)
Piomelli, Ugo; Streett, Craig L.; Sarkar, Sutanu
1997-01-01
The effect of the small scales on the source term in Lighthill's acoustic analogy is investigated, with the objective of determining the accuracy of large-eddy simulations when applied to studies of flow-generated sound. The distribution of the turbulent quadrupole is predicted accurately, if models that take into account the trace of the SGS stresses are used. Its spatial distribution is also correct, indicating that the low-wave-number (or frequency) part of the sound spectrum can be predicted well by LES. Filtering, however, removes the small-scale fluctuations that contribute significantly to the higher derivatives in space and time of Lighthill's stress tensor T(sub ij). The rms fluctuations of the filtered derivatives are substantially lower than those of the unfiltered quantities. The small scales, however, are not strongly correlated, and are not expected to contribute significantly to the far-field sound; separate modeling of the subgrid-scale density fluctuations might, however, be required in some configurations.
Classical boson sampling algorithms with superior performance to near-term experiments
NASA Astrophysics Data System (ADS)
Neville, Alex; Sparrow, Chris; Clifford, Raphaël; Johnston, Eric; Birchall, Patrick M.; Montanaro, Ashley; Laing, Anthony
2017-12-01
It is predicted that quantum computers will dramatically outperform their conventional counterparts. However, large-scale universal quantum computers are yet to be built. Boson sampling is a rudimentary quantum algorithm tailored to the platform of linear optics, which has sparked interest as a rapid way to demonstrate such quantum supremacy. Photon statistics are governed by intractable matrix functions, which suggests that sampling from the distribution obtained by injecting photons into a linear optical network could be solved more quickly by a photonic experiment than by a classical computer. The apparently low resource requirements for large boson sampling experiments have raised expectations of a near-term demonstration of quantum supremacy by boson sampling. Here we present classical boson sampling algorithms and theoretical analyses of prospects for scaling boson sampling experiments, showing that near-term quantum supremacy via boson sampling is unlikely. Our classical algorithm, based on Metropolised independence sampling, allowed the boson sampling problem to be solved for 30 photons with standard computing hardware. Compared to current experiments, a demonstration of quantum supremacy over a successful implementation of these classical methods on a supercomputer would require the number of photons and experimental components to increase by orders of magnitude, while tackling exponentially scaling photon loss.
SciSpark's SRDD : A Scientific Resilient Distributed Dataset for Multidimensional Data
NASA Astrophysics Data System (ADS)
Palamuttam, R. S.; Wilson, B. D.; Mogrovejo, R. M.; Whitehall, K. D.; Mattmann, C. A.; McGibbney, L. J.; Ramirez, P.
2015-12-01
Remote sensing data and climate model output are multi-dimensional arrays of massive sizes locked away in heterogeneous file formats (HDF5/4, NetCDF 3/4) and metadata models (HDF-EOS, CF) making it difficult to perform multi-stage, iterative science processing since each stage requires writing and reading data to and from disk. We have developed SciSpark, a robust Big Data framework, that extends ApacheTM Spark for scaling scientific computations. Apache Spark improves the map-reduce implementation in ApacheTM Hadoop for parallel computing on a cluster, by emphasizing in-memory computation, "spilling" to disk only as needed, and relying on lazy evaluation. Central to Spark is the Resilient Distributed Dataset (RDD), an in-memory distributed data structure that extends the functional paradigm provided by the Scala programming language. However, RDDs are ideal for tabular or unstructured data, and not for highly dimensional data. The SciSpark project introduces the Scientific Resilient Distributed Dataset (sRDD), a distributed-computing array structure which supports iterative scientific algorithms for multidimensional data. SciSpark processes data stored in NetCDF and HDF files by partitioning them across time or space and distributing the partitions among a cluster of compute nodes. We show usability and extensibility of SciSpark by implementing distributed algorithms for geospatial operations on large collections of multi-dimensional grids. In particular we address the problem of scaling an automated method for finding Mesoscale Convective Complexes. SciSpark provides a tensor interface to support the pluggability of different matrix libraries. We evaluate performance of the various matrix libraries in distributed pipelines, such as Nd4jTM and BreezeTM. We detail the architecture and design of SciSpark, our efforts to integrate climate science algorithms, parallel ingest and partitioning (sharding) of A-Train satellite observations from model grids. These solutions are encompassed in SciSpark, an open-source software framework for distributed computing on scientific data.
GEANT4 distributed computing for compact clusters
NASA Astrophysics Data System (ADS)
Harrawood, Brian P.; Agasthya, Greeshma A.; Lakshmanan, Manu N.; Raterman, Gretchen; Kapadia, Anuj J.
2014-11-01
A new technique for distribution of GEANT4 processes is introduced to simplify running a simulation in a parallel environment such as a tightly coupled computer cluster. Using a new C++ class derived from the GEANT4 toolkit, multiple runs forming a single simulation are managed across a local network of computers with a simple inter-node communication protocol. The class is integrated with the GEANT4 toolkit and is designed to scale from a single symmetric multiprocessing (SMP) machine to compact clusters ranging in size from tens to thousands of nodes. User designed 'work tickets' are distributed to clients using a client-server work flow model to specify the parameters for each individual run of the simulation. The new g4DistributedRunManager class was developed and well tested in the course of our Neutron Stimulated Emission Computed Tomography (NSECT) experiments. It will be useful for anyone running GEANT4 for large discrete data sets such as covering a range of angles in computed tomography, calculating dose delivery with multiple fractions or simply speeding the through-put of a single model.
NASA Astrophysics Data System (ADS)
Huang, Dong; Liu, Yangang
2014-12-01
Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-scale models. Although some parameterizations started to address the issue of subgrid variability by introducing a subgrid probability distribution function for relevant quantities, the spatial structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted for physically. Here we present a new statistical-physics-like approach whereby the spatial autocorrelation function can be used to physically capture the net effects of subgrid cloud interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D simulation results with several orders less computational cost, allowing for more realistic representation of cloud radiation interactions in large-scale models.
TomoMiner and TomoMinerCloud: A software platform for large-scale subtomogram structural analysis
Frazier, Zachary; Xu, Min; Alber, Frank
2017-01-01
SUMMARY Cryo-electron tomography (cryoET) captures the 3D electron density distribution of macromolecular complexes in close to native state. With the rapid advance of cryoET acquisition technologies, it is possible to generate large numbers (>100,000) of subtomograms, each containing a macromolecular complex. Often, these subtomograms represent a heterogeneous sample due to variations in structure and composition of a complex in situ form or because particles are a mixture of different complexes. In this case subtomograms must be classified. However, classification of large numbers of subtomograms is a time-intensive task and often a limiting bottleneck. This paper introduces an open source software platform, TomoMiner, for large-scale subtomogram classification, template matching, subtomogram averaging, and alignment. Its scalable and robust parallel processing allows efficient classification of tens to hundreds of thousands of subtomograms. Additionally, TomoMiner provides a pre-configured TomoMinerCloud computing service permitting users without sufficient computing resources instant access to TomoMiners high-performance features. PMID:28552576
Learning from Massive Distributed Data Sets (Invited)
NASA Astrophysics Data System (ADS)
Kang, E. L.; Braverman, A. J.
2013-12-01
Technologies for remote sensing and ever-expanding computer experiments in climate science are generating massive data sets. Meanwhile, it has been common in all areas of large-scale science to have these 'big data' distributed over multiple different physical locations, and moving large amounts of data can be impractical. In this talk, we will discuss efficient ways for us to summarize and learn from distributed data. We formulate a graphical model to mimic the main characteristics of a distributed-data network, including the size of the data sets and speed of moving data. With this nominal model, we investigate the trade off between prediction accurate and cost of data movement, theoretically and through simulation experiments. We will also discuss new implementations of spatial and spatio-temporal statistical methods optimized for distributed data.
GoFFish: A Sub-Graph Centric Framework for Large-Scale Graph Analytics1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmhan, Yogesh; Kumbhare, Alok; Wickramaarachchi, Charith
2014-08-25
Large scale graph processing is a major research area for Big Data exploration. Vertex centric programming models like Pregel are gaining traction due to their simple abstraction that allows for scalable execution on distributed systems naturally. However, there are limitations to this approach which cause vertex centric algorithms to under-perform due to poor compute to communication overhead ratio and slow convergence of iterative superstep. In this paper we introduce GoFFish a scalable sub-graph centric framework co-designed with a distributed persistent graph storage for large scale graph analytics on commodity clusters. We introduce a sub-graph centric programming abstraction that combines themore » scalability of a vertex centric approach with the flexibility of shared memory sub-graph computation. We map Connected Components, SSSP and PageRank algorithms to this model to illustrate its flexibility. Further, we empirically analyze GoFFish using several real world graphs and demonstrate its significant performance improvement, orders of magnitude in some cases, compared to Apache Giraph, the leading open source vertex centric implementation. We map Connected Components, SSSP and PageRank algorithms to this model to illustrate its flexibility. Further, we empirically analyze GoFFish using several real world graphs and demonstrate its significant performance improvement, orders of magnitude in some cases, compared to Apache Giraph, the leading open source vertex centric implementation.« less
Design and Implement of Astronomical Cloud Computing Environment In China-VO
NASA Astrophysics Data System (ADS)
Li, Changhua; Cui, Chenzhou; Mi, Linying; He, Boliang; Fan, Dongwei; Li, Shanshan; Yang, Sisi; Xu, Yunfei; Han, Jun; Chen, Junyi; Zhang, Hailong; Yu, Ce; Xiao, Jian; Wang, Chuanjun; Cao, Zihuang; Fan, Yufeng; Liu, Liang; Chen, Xiao; Song, Wenming; Du, Kangyu
2017-06-01
Astronomy cloud computing environment is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences). Based on virtualization technology, astronomy cloud computing environment was designed and implemented by China-VO team. It consists of five distributed nodes across the mainland of China. Astronomer can get compuitng and storage resource in this cloud computing environment. Through this environments, astronomer can easily search and analyze astronomical data collected by different telescopes and data centers , and avoid the large scale dataset transportation.
AGIS: The ATLAS Grid Information System
NASA Astrophysics Data System (ADS)
Anisenkov, Alexey; Belov, Sergey; Di Girolamo, Alessandro; Gayazov, Stavro; Klimentov, Alexei; Oleynik, Danila; Senchenko, Alexander
2012-12-01
ATLAS is a particle physics experiment at the Large Hadron Collider at CERN. The experiment produces petabytes of data annually through simulation production and tens petabytes of data per year from the detector itself. The ATLAS Computing model embraces the Grid paradigm and a high degree of decentralization and computing resources able to meet ATLAS requirements of petabytes scale data operations. In this paper we present ATLAS Grid Information System (AGIS) designed to integrate configuration and status information about resources, services and topology of whole ATLAS Grid needed by ATLAS Distributed Computing applications and services.
Assembling Large, Multi-Sensor Climate Datasets Using the SciFlo Grid Workflow System
NASA Astrophysics Data System (ADS)
Wilson, B.; Manipon, G.; Xing, Z.; Fetzer, E.
2009-04-01
NASA's Earth Observing System (EOS) is an ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the "A-Train" platforms (AIRS, AMSR-E, MODIS, MISR, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over periods of years to decades. However, moving from predominantly single-instrument studies to a multi-sensor, measurement-based model for long-duration analysis of important climate variables presents serious challenges for large-scale data mining and data fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another instrument (MODIS), and to a model (ECMWF), stratify the comparisons using a classification of the "cloud scenes" from CloudSat, and repeat the entire analysis over years of AIRS data. To perform such an analysis, one must discover & access multiple datasets from remote sites, find the space/time "matchups" between instruments swaths and model grids, understand the quality flags and uncertainties for retrieved physical variables, assemble merged datasets, and compute fused products for further scientific and statistical analysis. To meet these large-scale challenges, we are utilizing a Grid computing and dataflow framework, named SciFlo, in which we are deploying a set of versatile and reusable operators for data query, access, subsetting, co-registration, mining, fusion, and advanced statistical analysis. SciFlo is a semantically-enabled ("smart") Grid Workflow system that ties together a peer-to-peer network of computers into an efficient engine for distributed computation. The SciFlo workflow engine enables scientists to do multi-instrument Earth Science by assembling remotely-invokable Web Services (SOAP or http GET URLs), native executables, command-line scripts, and Python codes into a distributed computing flow. A scientist visually authors the graph of operation in the VizFlow GUI, or uses a text editor to modify the simple XML workflow documents. The SciFlo client & server engines optimize the execution of such distributed workflows and allow the user to transparently find and use datasets and operators without worrying about the actual location of the Grid resources. The engine transparently moves data to the operators, and moves operators to the data (on the dozen trusted SciFlo nodes). SciFlo also deploys a variety of Data Grid services to: query datasets in space and time, locate & retrieve on-line data granules, provide on-the-fly variable and spatial subsetting, perform pairwise instrument matchups for A-Train datasets, and compute fused products. These services are combined into efficient workflows to assemble the desired large-scale, merged climate datasets. SciFlo is currently being applied in several large climate studies: comparisons of aerosol optical depth between MODIS, MISR, AERONET ground network, and U. Michigan's IMPACT aerosol transport model; characterization of long-term biases in microwave and infrared instruments (AIRS, MLS) by comparisons to GPS temperature retrievals accurate to 0.1 degrees Kelvin; and construction of a decade-long, multi-sensor water vapor climatology stratified by classified cloud scene by bringing together datasets from AIRS/AMSU, AMSR-E, MLS, MODIS, and CloudSat (NASA MEASUREs grant, Fetzer PI). The presentation will discuss the SciFlo technologies, their application in these distributed workflows, and the many challenges encountered in assembling and analyzing these massive datasets.
Divide and Conquer (DC) BLAST: fast and easy BLAST execution within HPC environments
Yim, Won Cheol; Cushman, John C.
2017-07-22
Bioinformatics is currently faced with very large-scale data sets that lead to computational jobs, especially sequence similarity searches, that can take absurdly long times to run. For example, the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST and BLAST+) suite, which is by far the most widely used tool for rapid similarity searching among nucleic acid or amino acid sequences, is highly central processing unit (CPU) intensive. While the BLAST suite of programs perform searches very rapidly, they have the potential to be accelerated. In recent years, distributed computing environments have become more widely accessible andmore » used due to the increasing availability of high-performance computing (HPC) systems. Therefore, simple solutions for data parallelization are needed to expedite BLAST and other sequence analysis tools. However, existing software for parallel sequence similarity searches often requires extensive computational experience and skill on the part of the user. In order to accelerate BLAST and other sequence analysis tools, Divide and Conquer BLAST (DCBLAST) was developed to perform NCBI BLAST searches within a cluster, grid, or HPC environment by using a query sequence distribution approach. Scaling from one (1) to 256 CPU cores resulted in significant improvements in processing speed. Thus, DCBLAST dramatically accelerates the execution of BLAST searches using a simple, accessible, robust, and parallel approach. DCBLAST works across multiple nodes automatically and it overcomes the speed limitation of single-node BLAST programs. DCBLAST can be used on any HPC system, can take advantage of hundreds of nodes, and has no output limitations. Thus, this freely available tool simplifies distributed computation pipelines to facilitate the rapid discovery of sequence similarities between very large data sets.« less
Divide and Conquer (DC) BLAST: fast and easy BLAST execution within HPC environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yim, Won Cheol; Cushman, John C.
Bioinformatics is currently faced with very large-scale data sets that lead to computational jobs, especially sequence similarity searches, that can take absurdly long times to run. For example, the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST and BLAST+) suite, which is by far the most widely used tool for rapid similarity searching among nucleic acid or amino acid sequences, is highly central processing unit (CPU) intensive. While the BLAST suite of programs perform searches very rapidly, they have the potential to be accelerated. In recent years, distributed computing environments have become more widely accessible andmore » used due to the increasing availability of high-performance computing (HPC) systems. Therefore, simple solutions for data parallelization are needed to expedite BLAST and other sequence analysis tools. However, existing software for parallel sequence similarity searches often requires extensive computational experience and skill on the part of the user. In order to accelerate BLAST and other sequence analysis tools, Divide and Conquer BLAST (DCBLAST) was developed to perform NCBI BLAST searches within a cluster, grid, or HPC environment by using a query sequence distribution approach. Scaling from one (1) to 256 CPU cores resulted in significant improvements in processing speed. Thus, DCBLAST dramatically accelerates the execution of BLAST searches using a simple, accessible, robust, and parallel approach. DCBLAST works across multiple nodes automatically and it overcomes the speed limitation of single-node BLAST programs. DCBLAST can be used on any HPC system, can take advantage of hundreds of nodes, and has no output limitations. Thus, this freely available tool simplifies distributed computation pipelines to facilitate the rapid discovery of sequence similarities between very large data sets.« less
Distributed computing testbed for a remote experimental environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butner, D.N.; Casper, T.A.; Howard, B.C.
1995-09-18
Collaboration is increasing as physics research becomes concentrated on a few large, expensive facilities, particularly in magnetic fusion energy research, with national and international participation. These facilities are designed for steady state operation and interactive, real-time experimentation. We are developing tools to provide for the establishment of geographically distant centers for interactive operations; such centers would allow scientists to participate in experiments from their home institutions. A testbed is being developed for a Remote Experimental Environment (REE), a ``Collaboratory.`` The testbed will be used to evaluate the ability of a remotely located group of scientists to conduct research on themore » DIII-D Tokamak at General Atomics. The REE will serve as a testing environment for advanced control and collaboration concepts applicable to future experiments. Process-to-process communications over high speed wide area networks provide real-time synchronization and exchange of data among multiple computer networks, while the ability to conduct research is enhanced by adding audio/video communication capabilities. The Open Software Foundation`s Distributed Computing Environment is being used to test concepts in distributed control, security, naming, remote procedure calls and distributed file access using the Distributed File Services. We are exploring the technology and sociology of remotely participating in the operation of a large scale experimental facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenberg, Duane L; Pouquet, Dr. Annick; Mininni, Dr. Pablo D.
2015-01-01
We report results on rotating stratified turbulence in the absence of forcing, with large-scale isotropic initial conditions, using direct numerical simulations computed on grids of up tomore » $4096^3$ points. The Reynolds and Froude numbers are respectively equal to $$Re=5.4\\times 10^4$$ and $Fr=0.0242$$. The ratio of the Brunt-V\\"ais\\"al\\"a to the inertial wave frequency, $$N/f$, is taken to be equal to 5, a choice appropriate to model the dynamics of the southern abyssal ocean at mid latitudes. This gives a global buoyancy Reynolds number $$R_B=ReFr^2=32$$, a value sufficient for some isotropy to be recovered in the small scales beyond the Ozmidov scale, but still moderate enough that the intermediate scales where waves are prevalent are well resolved. We concentrate on the large-scale dynamics and confirm that the Froude number based on a typical vertical length scale is of order unity, with strong gradients in the vertical. Two characteristic scales emerge from this computation, and are identified from sharp variations in the spectral distribution of either total energy or helicity. A spectral break is also observed at a scale at which the partition of energy between the kinetic and potential modes changes abruptly, and beyond which a Kolmogorov-like spectrum recovers. Large slanted layers are ubiquitous in the flow in the velocity and temperature fields, and a large-scale enhancement of energy is also observed, directly attributable to the effect of rotation.« less
NASA Technical Reports Server (NTRS)
Klumpar, D. M. (Principal Investigator)
1982-01-01
The status of the initial testing of the modeling procedure developed to compute the magnetic fields at satellite orbit due to current distributions in the ionosphere and magnetosphere is reported. The modeling technique utilizes a linear current element representation of the large scale space-current system.
NASA Astrophysics Data System (ADS)
Lucas, Charles E.; Walters, Eric A.; Jatskevich, Juri; Wasynczuk, Oleg; Lamm, Peter T.
2003-09-01
In this paper, a new technique useful for the numerical simulation of large-scale systems is presented. This approach enables the overall system simulation to be formed by the dynamic interconnection of the various interdependent simulations, each representing a specific component or subsystem such as control, electrical, mechanical, hydraulic, or thermal. Each simulation may be developed separately using possibly different commercial-off-the-shelf simulation programs thereby allowing the most suitable language or tool to be used based on the design/analysis needs. These subsystems communicate the required interface variables at specific time intervals. A discussion concerning the selection of appropriate communication intervals is presented herein. For the purpose of demonstration, this technique is applied to a detailed simulation of a representative aircraft power system, such as that found on the Joint Strike Fighter (JSF). This system is comprised of ten component models each developed using MATLAB/Simulink, EASY5, or ACSL. When the ten component simulations were distributed across just four personal computers (PCs), a greater than 15-fold improvement in simulation speed (compared to the single-computer implementation) was achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajbhandari, Samyam; NIkam, Akshay; Lai, Pai-Wei
Tensor contractions represent the most compute-intensive core kernels in ab initio computational quantum chemistry and nuclear physics. Symmetries in these tensor contractions makes them difficult to load balance and scale to large distributed systems. In this paper, we develop an efficient and scalable algorithm to contract symmetric tensors. We introduce a novel approach that avoids data redistribution in contracting symmetric tensors while also avoiding redundant storage and maintaining load balance. We present experimental results on two parallel supercomputers for several symmetric contractions that appear in the CCSD quantum chemistry method. We also present a novel approach to tensor redistribution thatmore » can take advantage of parallel hyperplanes when the initial distribution has replicated dimensions, and use collective broadcast when the final distribution has replicated dimensions, making the algorithm very efficient.« less
Singh, Dadabhai T; Trehan, Rahul; Schmidt, Bertil; Bretschneider, Timo
2008-01-01
Preparedness for a possible global pandemic caused by viruses such as the highly pathogenic influenza A subtype H5N1 has become a global priority. In particular, it is critical to monitor the appearance of any new emerging subtypes. Comparative phyloinformatics can be used to monitor, analyze, and possibly predict the evolution of viruses. However, in order to utilize the full functionality of available analysis packages for large-scale phyloinformatics studies, a team of computer scientists, biostatisticians and virologists is needed--a requirement which cannot be fulfilled in many cases. Furthermore, the time complexities of many algorithms involved leads to prohibitive runtimes on sequential computer platforms. This has so far hindered the use of comparative phyloinformatics as a commonly applied tool in this area. In this paper the graphical-oriented workflow design system called Quascade and its efficient usage for comparative phyloinformatics are presented. In particular, we focus on how this task can be effectively performed in a distributed computing environment. As a proof of concept, the designed workflows are used for the phylogenetic analysis of neuraminidase of H5N1 isolates (micro level) and influenza viruses (macro level). The results of this paper are hence twofold. Firstly, this paper demonstrates the usefulness of a graphical user interface system to design and execute complex distributed workflows for large-scale phyloinformatics studies of virus genes. Secondly, the analysis of neuraminidase on different levels of complexity provides valuable insights of this virus's tendency for geographical based clustering in the phylogenetic tree and also shows the importance of glycan sites in its molecular evolution. The current study demonstrates the efficiency and utility of workflow systems providing a biologist friendly approach to complex biological dataset analysis using high performance computing. In particular, the utility of the platform Quascade for deploying distributed and parallelized versions of a variety of computationally intensive phylogenetic algorithms has been shown. Secondly, the analysis of the utilized H5N1 neuraminidase datasets at macro and micro levels has clearly indicated a pattern of spatial clustering of the H5N1 viral isolates based on geographical distribution rather than temporal or host range based clustering.
Implementing Parquet equations using HPX
NASA Astrophysics Data System (ADS)
Kellar, Samuel; Wagle, Bibek; Yang, Shuxiang; Tam, Ka-Ming; Kaiser, Hartmut; Moreno, Juana; Jarrell, Mark
A new C++ runtime system (HPX) enables simulations of complex systems to run more efficiently on parallel and heterogeneous systems. This increased efficiency allows for solutions to larger simulations of the parquet approximation for a system with impurities. The relevancy of the parquet equations depends upon the ability to solve systems which require long runs and large amounts of memory. These limitations, in addition to numerical complications arising from stability of the solutions, necessitate running on large distributed systems. As the computational resources trend towards the exascale and the limitations arising from computational resources vanish efficiency of large scale simulations becomes a focus. HPX facilitates efficient simulations through intelligent overlapping of computation and communication. Simulations such as the parquet equations which require the transfer of large amounts of data should benefit from HPX implementations. Supported by the the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents.
NASA Astrophysics Data System (ADS)
Andreeva, J.; Dzhunov, I.; Karavakis, E.; Kokoszkiewicz, L.; Nowotka, M.; Saiz, P.; Tuckett, D.
2012-12-01
Improvements in web browser performance and web standards compliance, as well as the availability of comprehensive JavaScript libraries, provides an opportunity to develop functionally rich yet intuitive web applications that allow users to access, render and analyse data in novel ways. However, the development of such large-scale JavaScript web applications presents new challenges, in particular with regard to code sustainability and team-based work. We present an approach that meets the challenges of large-scale JavaScript web application design and development, including client-side model-view-controller architecture, design patterns, and JavaScript libraries. Furthermore, we show how the approach leads naturally to the encapsulation of the data source as a web API, allowing applications to be easily ported to new data sources. The Experiment Dashboard framework is used for the development of applications for monitoring the distributed computing activities of virtual organisations on the Worldwide LHC Computing Grid. We demonstrate the benefits of the approach for large-scale JavaScript web applications in this context by examining the design of several Experiment Dashboard applications for data processing, data transfer and site status monitoring, and by showing how they have been ported for different virtual organisations and technologies.
Lagerlöf, Jakob H; Bernhardt, Peter
2016-01-01
To develop a general model that utilises a stochastic method to generate a vessel tree based on experimental data, and an associated irregular, macroscopic tumour. These will be used to evaluate two different methods for computing oxygen distribution. A vessel tree structure, and an associated tumour of 127 cm3, were generated, using a stochastic method and Bresenham's line algorithm to develop trees on two different scales and fusing them together. The vessel dimensions were adjusted through convolution and thresholding and each vessel voxel was assigned an oxygen value. Diffusion and consumption were modelled using a Green's function approach together with Michaelis-Menten kinetics. The computations were performed using a combined tree method (CTM) and an individual tree method (ITM). Five tumour sub-sections were compared, to evaluate the methods. The oxygen distributions of the same tissue samples, using different methods of computation, were considerably less similar (root mean square deviation, RMSD≈0.02) than the distributions of different samples using CTM (0.001< RMSD<0.01). The deviations of ITM from CTM increase with lower oxygen values, resulting in ITM severely underestimating the level of hypoxia in the tumour. Kolmogorov Smirnov (KS) tests showed that millimetre-scale samples may not represent the whole. The stochastic model managed to capture the heterogeneous nature of hypoxic fractions and, even though the simplified computation did not considerably alter the oxygen distribution, it leads to an evident underestimation of tumour hypoxia, and thereby radioresistance. For a trustworthy computation of tumour oxygenation, the interaction between adjacent microvessel trees must not be neglected, why evaluation should be made using high resolution and the CTM, applied to the entire tumour.
Contention Modeling for Multithreaded Distributed Shared Memory Machines: The Cray XMT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Secchi, Simone; Tumeo, Antonino; Villa, Oreste
Distributed Shared Memory (DSM) machines are a wide class of multi-processor computing systems where a large virtually-shared address space is mapped on a network of physically distributed memories. High memory latency and network contention are two of the main factors that limit performance scaling of such architectures. Modern high-performance computing DSM systems have evolved toward exploitation of massive hardware multi-threading and fine-grained memory hashing to tolerate irregular latencies, avoid network hot-spots and enable high scaling. In order to model the performance of such large-scale machines, parallel simulation has been proved to be a promising approach to achieve good accuracy inmore » reasonable times. One of the most critical factors in solving the simulation speed-accuracy trade-off is network modeling. The Cray XMT is a massively multi-threaded supercomputing architecture that belongs to the DSM class, since it implements a globally-shared address space abstraction on top of a physically distributed memory substrate. In this paper, we discuss the development of a contention-aware network model intended to be integrated in a full-system XMT simulator. We start by measuring the effects of network contention in a 128-processor XMT machine and then investigate the trade-off that exists between simulation accuracy and speed, by comparing three network models which operate at different levels of accuracy. The comparison and model validation is performed by executing a string-matching algorithm on the full-system simulator and on the XMT, using three datasets that generate noticeably different contention patterns.« less
A scalable parallel black oil simulator on distributed memory parallel computers
NASA Astrophysics Data System (ADS)
Wang, Kun; Liu, Hui; Chen, Zhangxin
2015-11-01
This paper presents our work on developing a parallel black oil simulator for distributed memory computers based on our in-house parallel platform. The parallel simulator is designed to overcome the performance issues of common simulators that are implemented for personal computers and workstations. The finite difference method is applied to discretize the black oil model. In addition, some advanced techniques are employed to strengthen the robustness and parallel scalability of the simulator, including an inexact Newton method, matrix decoupling methods, and algebraic multigrid methods. A new multi-stage preconditioner is proposed to accelerate the solution of linear systems from the Newton methods. Numerical experiments show that our simulator is scalable and efficient, and is capable of simulating extremely large-scale black oil problems with tens of millions of grid blocks using thousands of MPI processes on parallel computers.
Hyperswitch communication network
NASA Technical Reports Server (NTRS)
Peterson, J.; Pniel, M.; Upchurch, E.
1991-01-01
The Hyperswitch Communication Network (HCN) is a large scale parallel computer prototype being developed at JPL. Commercial versions of the HCN computer are planned. The HCN computer being designed is a message passing multiple instruction multiple data (MIMD) computer, and offers many advantages in price-performance ratio, reliability and availability, and manufacturing over traditional uniprocessors and bus based multiprocessors. The design of the HCN operating system is a uniquely flexible environment that combines both parallel processing and distributed processing. This programming paradigm can achieve a balance among the following competing factors: performance in processing and communications, user friendliness, and fault tolerance. The prototype is being designed to accommodate a maximum of 64 state of the art microprocessors. The HCN is classified as a distributed supercomputer. The HCN system is described, and the performance/cost analysis and other competing factors within the system design are reviewed.
Staghorn: An Automated Large-Scale Distributed System Analysis Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabert, Kasimir; Burns, Ian; Elliott, Steven
2016-09-01
Conducting experiments on large-scale distributed computing systems is becoming significantly easier with the assistance of emulation. Researchers can now create a model of a distributed computing environment and then generate a virtual, laboratory copy of the entire system composed of potentially thousands of virtual machines, switches, and software. The use of real software, running at clock rate in full virtual machines, allows experiments to produce meaningful results without necessitating a full understanding of all model components. However, the ability to inspect and modify elements within these models is bound by the limitation that such modifications must compete with the model,more » either running in or alongside it. This inhibits entire classes of analyses from being conducted upon these models. We developed a mechanism to snapshot an entire emulation-based model as it is running. This allows us to \\freeze time" and subsequently fork execution, replay execution, modify arbitrary parts of the model, or deeply explore the model. This snapshot includes capturing packets in transit and other input/output state along with the running virtual machines. We were able to build this system in Linux using Open vSwitch and Kernel Virtual Machines on top of Sandia's emulation platform Firewheel. This primitive opens the door to numerous subsequent analyses on models, including state space exploration, debugging distributed systems, performance optimizations, improved training environments, and improved experiment repeatability.« less
A k-space method for acoustic propagation using coupled first-order equations in three dimensions.
Tillett, Jason C; Daoud, Mohammad I; Lacefield, James C; Waag, Robert C
2009-09-01
A previously described two-dimensional k-space method for large-scale calculation of acoustic wave propagation in tissues is extended to three dimensions. The three-dimensional method contains all of the two-dimensional method features that allow accurate and stable calculation of propagation. These features are spectral calculation of spatial derivatives, temporal correction that produces exact propagation in a homogeneous medium, staggered spatial and temporal grids, and a perfectly matched boundary layer. Spectral evaluation of spatial derivatives is accomplished using a fast Fourier transform in three dimensions. This computational bottleneck requires all-to-all communication; execution time in a parallel implementation is therefore sensitive to node interconnect latency and bandwidth. Accuracy of the three-dimensional method is evaluated through comparisons with exact solutions for media having spherical inhomogeneities. Large-scale calculations in three dimensions were performed by distributing the nearly 50 variables per voxel that are used to implement the method over a cluster of computers. Two computer clusters used to evaluate method accuracy are compared. Comparisons of k-space calculations with exact methods including absorption highlight the need to model accurately the medium dispersion relationships, especially in large-scale media. Accurately modeled media allow the k-space method to calculate acoustic propagation in tissues over hundreds of wavelengths.
NASA Astrophysics Data System (ADS)
Jougnot, D.; Jimenez-Martinez, J.; Legendre, R.; Le Borgne, T.; Meheust, Y.; Linde, N.
2017-12-01
The use of time-lapse electrical resistivity tomography has been largely developed in environmental studies to remotely monitor water saturation and contaminant plumes migration. However, subsurface heterogeneities, and corresponding preferential transport paths, yield a potentially large anisotropy in the electrical properties of the subsurface. In order to study this effect, we have used a newly developed geoelectrical milli-fluidic experimental set-up with a flow cell that contains a 2D porous medium consisting of a single layer of cylindrical solid grains. We performed saline tracer tests under full and partial water saturations in that cell by jointly injecting air and aqueous solutions with different salinities. The flow cell is equipped with four electrodes to measure the bulk electrical resistivity at the cell's scale. The spatial distribution of the water/air phases and the saline solute concentration field in the water phase are captured simultaneously with a high-resolution camera by combining a fluorescent tracer with the saline solute. These data are used to compute the longitudinal and transverse effective electrical resistivity numerically from the measured spatial distributions of the fluid phases and the salinity field. This approach is validated as the computed longitudinal effective resistivities are in good agreement with the laboratory measurements. The anisotropy in electrical resistivity is then inferred from the computed longitudinal and transverse effective resistivities. We find that the spatial distribution of saline tracer, and potentially air phase, drive temporal changes in the effective resistivity through preferential paths or barriers for electrical current at the pore scale. The resulting heterogeneities in the solute concentrations lead to strong anisotropy of the effective bulk electrical resistivity, especially for partially saturated conditions. Therefore, considering the electrical resistivity as a tensor could improve our understanding of transport properties from field-scale time-lapse ERT.
Geospatial Data as a Service: Towards planetary scale real-time analytics
NASA Astrophysics Data System (ADS)
Evans, B. J. K.; Larraondo, P. R.; Antony, J.; Richards, C. J.
2017-12-01
The rapid growth of earth systems, environmental and geophysical datasets poses a challenge to both end-users and infrastructure providers. For infrastructure and data providers, tasks like managing, indexing and storing large collections of geospatial data needs to take into consideration the various use cases by which consumers will want to access and use the data. Considerable investment has been made by the Earth Science community to produce suitable real-time analytics platforms for geospatial data. There are currently different interfaces that have been defined to provide data services. Unfortunately, there is considerable difference on the standards, protocols or data models which have been designed to target specific communities or working groups. The Australian National University's National Computational Infrastructure (NCI) is used for a wide range of activities in the geospatial community. Earth observations, climate and weather forecasting are examples of these communities which generate large amounts of geospatial data. The NCI has been carrying out significant effort to develop a data and services model that enables the cross-disciplinary use of data. Recent developments in cloud and distributed computing provide a publicly accessible platform where new infrastructures can be built. One of the key components these technologies offer is the possibility of having "limitless" compute power next to where the data is stored. This model is rapidly transforming data delivery from centralised monolithic services towards ubiquitous distributed services that scale up and down adapting to fluctuations in the demand. NCI has developed GSKY, a scalable, distributed server which presents a new approach for geospatial data discovery and delivery based on OGC standards. We will present the architecture and motivating use-cases that drove GSKY's collaborative design, development and production deployment. We show our approach offers the community valuable exploratory analysis capabilities, for dealing with petabyte-scale geospatial data collections.
Harvey, Benjamin Simeon; Ji, Soo-Yeon
2017-01-01
As microarray data available to scientists continues to increase in size and complexity, it has become overwhelmingly important to find multiple ways to bring forth oncological inference to the bioinformatics community through the analysis of large-scale cancer genomic (LSCG) DNA and mRNA microarray data that is useful to scientists. Though there have been many attempts to elucidate the issue of bringing forth biological interpretation by means of wavelet preprocessing and classification, there has not been a research effort that focuses on a cloud-scale distributed parallel (CSDP) separable 1-D wavelet decomposition technique for denoising through differential expression thresholding and classification of LSCG microarray data. This research presents a novel methodology that utilizes a CSDP separable 1-D method for wavelet-based transformation in order to initialize a threshold which will retain significantly expressed genes through the denoising process for robust classification of cancer patients. Additionally, the overall study was implemented and encompassed within CSDP environment. The utilization of cloud computing and wavelet-based thresholding for denoising was used for the classification of samples within the Global Cancer Map, Cancer Cell Line Encyclopedia, and The Cancer Genome Atlas. The results proved that separable 1-D parallel distributed wavelet denoising in the cloud and differential expression thresholding increased the computational performance and enabled the generation of higher quality LSCG microarray datasets, which led to more accurate classification results.
Incorporation of the TIP4P water model into a continuum solvent for computing solvation free energy
NASA Astrophysics Data System (ADS)
Yang, Pei-Kun
2014-10-01
The continuum solvent model is one of the commonly used strategies to compute solvation free energy especially for large-scale conformational transitions such as protein folding or to calculate the binding affinity of protein-protein/ligand interactions. However, the dielectric polarization for computing solvation free energy from the continuum solvent is different than that obtained from molecular dynamic simulations. To mimic the dielectric polarization surrounding a solute in molecular dynamic simulations, the first-shell water molecules was modeled using a charge distribution of TIP4P in a hard sphere; the time-averaged charge distribution from the first-shell water molecules were estimated based on the coordination number of the solute, and the orientation distribution of the first-shell waters and the intermediate water molecules were treated as that of a bulk solvent. Based on this strategy, an equation describing the solvation free energy of ions was derived.
The Numerical Propulsion System Simulation: An Overview
NASA Technical Reports Server (NTRS)
Lytle, John K.
2000-01-01
Advances in computational technology and in physics-based modeling are making large-scale, detailed simulations of complex systems possible within the design environment. For example, the integration of computing, communications, and aerodynamics has reduced the time required to analyze major propulsion system components from days and weeks to minutes and hours. This breakthrough has enabled the detailed simulation of major propulsion system components to become a routine part of designing systems, providing the designer with critical information about the components early in the design process. This paper describes the development of the numerical propulsion system simulation (NPSS), a modular and extensible framework for the integration of multicomponent and multidisciplinary analysis tools using geographically distributed resources such as computing platforms, data bases, and people. The analysis is currently focused on large-scale modeling of complete aircraft engines. This will provide the product developer with a "virtual wind tunnel" that will reduce the number of hardware builds and tests required during the development of advanced aerospace propulsion systems.
NASA Astrophysics Data System (ADS)
Brcka, Jozef
2016-07-01
A multi inductively coupled plasma (ICP) system can be used to maintain the plasma uniformity and increase the area processed by a high-density plasma. This article presents a source in two different configurations. The distributed planar multi ICP (DM-ICP) source comprises individual ICP sources that are not overlapped and produce plasma independently. Mutual coupling of the ICPs may affect the distribution of the produced plasma. The integrated multicoil ICP (IMC-ICP) source consists of four low-inductance ICP antennas that are superimposed in an azimuthal manner. The identical geometry of the ICP coils was assumed in this work. Both configurations have highly asymmetric components. A three-dimensional (3D) plasma model of the multicoil ICP configurations with asymmetric features is used to investigate the plasma characteristics in a large chamber and the operation of the sources in inert and reactive gases. The feasibility of the computational calculation, the speed, and the computational resources of the coupled multiphysics solver are investigated in the framework of a large realistic geometry and complex reaction processes. It was determined that additional variables can be used to control large-area plasmas. Both configurations can form a plasma, that azimuthally moves in a controlled manner, the so-called “sweeping mode” (SM) or “polyphase mode” (PPM), and thus they have the potential for large-area and high-density plasma applications. The operation in the azimuthal mode has the potential to adjust the plasma distribution, the reaction chemistry, and increase or modulate the production of the radicals. The intrinsic asymmetry of the individual coils and their combined operation were investigated within a source assembly primarily in argon and CO gases. Limited investigations were also performed on operation in CH4 gas. The plasma parameters and the resulting chemistry are affected by the geometrical relation between individual antennas. The aim of this work is to incorporate the technological, computational, dimensional scaling, and reaction chemistry aspects of the plasma under one computational framework. The 3D simulation is utilized to geometrically scale up the reactive plasma that is produced by multiple ICP sources.
The accurate particle tracer code
NASA Astrophysics Data System (ADS)
Wang, Yulei; Liu, Jian; Qin, Hong; Yu, Zhi; Yao, Yicun
2017-11-01
The Accurate Particle Tracer (APT) code is designed for systematic large-scale applications of geometric algorithms for particle dynamical simulations. Based on a large variety of advanced geometric algorithms, APT possesses long-term numerical accuracy and stability, which are critical for solving multi-scale and nonlinear problems. To provide a flexible and convenient I/O interface, the libraries of Lua and Hdf5 are used. Following a three-step procedure, users can efficiently extend the libraries of electromagnetic configurations, external non-electromagnetic forces, particle pushers, and initialization approaches by use of the extendible module. APT has been used in simulations of key physical problems, such as runaway electrons in tokamaks and energetic particles in Van Allen belt. As an important realization, the APT-SW version has been successfully distributed on the world's fastest computer, the Sunway TaihuLight supercomputer, by supporting master-slave architecture of Sunway many-core processors. Based on large-scale simulations of a runaway beam under parameters of the ITER tokamak, it is revealed that the magnetic ripple field can disperse the pitch-angle distribution significantly and improve the confinement of energetic runaway beam on the same time.
A Hybrid Method for Accelerated Simulation of Coulomb Collisions in a Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caflisch, R; Wang, C; Dimarco, G
2007-10-09
If the collisional time scale for Coulomb collisions is comparable to the characteristic time scales for a plasma, then simulation of Coulomb collisions may be important for computation of kinetic plasma dynamics. This can be a computational bottleneck because of the large number of simulated particles and collisions (or phase-space resolution requirements in continuum algorithms), as well as the wide range of collision rates over the velocity distribution function. This paper considers Monte Carlo simulation of Coulomb collisions using the binary collision models of Takizuka & Abe and Nanbu. It presents a hybrid method for accelerating the computation of Coulombmore » collisions. The hybrid method represents the velocity distribution function as a combination of a thermal component (a Maxwellian distribution) and a kinetic component (a set of discrete particles). Collisions between particles from the thermal component preserve the Maxwellian; collisions between particles from the kinetic component are performed using the method of or Nanbu. Collisions between the kinetic and thermal components are performed by sampling a particle from the thermal component and selecting a particle from the kinetic component. Particles are also transferred between the two components according to thermalization and dethermalization probabilities, which are functions of phase space.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Dong; Liu, Yangang
2014-12-18
Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-scale models. Although some parameterizations started to address the issue of subgrid variability by introducing a subgrid probability distribution function for relevant quantities, the spatial structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted for physically. Here we present a new statistical-physics-like approach whereby the spatial autocorrelation function can be used to physically capture the net effects of subgrid cloud interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D simulation results with several orders less computational cost,more » allowing for more realistic representation of cloud radiation interactions in large-scale models.« less
Fast numerical methods for simulating large-scale integrate-and-fire neuronal networks.
Rangan, Aaditya V; Cai, David
2007-02-01
We discuss numerical methods for simulating large-scale, integrate-and-fire (I&F) neuronal networks. Important elements in our numerical methods are (i) a neurophysiologically inspired integrating factor which casts the solution as a numerically tractable integral equation, and allows us to obtain stable and accurate individual neuronal trajectories (i.e., voltage and conductance time-courses) even when the I&F neuronal equations are stiff, such as in strongly fluctuating, high-conductance states; (ii) an iterated process of spike-spike corrections within groups of strongly coupled neurons to account for spike-spike interactions within a single large numerical time-step; and (iii) a clustering procedure of firing events in the network to take advantage of localized architectures, such as spatial scales of strong local interactions, which are often present in large-scale computational models-for example, those of the primary visual cortex. (We note that the spike-spike corrections in our methods are more involved than the correction of single neuron spike-time via a polynomial interpolation as in the modified Runge-Kutta methods commonly used in simulations of I&F neuronal networks.) Our methods can evolve networks with relatively strong local interactions in an asymptotically optimal way such that each neuron fires approximately once in [Formula: see text] operations, where N is the number of neurons in the system. We note that quantifications used in computational modeling are often statistical, since measurements in a real experiment to characterize physiological systems are typically statistical, such as firing rate, interspike interval distributions, and spike-triggered voltage distributions. We emphasize that it takes much less computational effort to resolve statistical properties of certain I&F neuronal networks than to fully resolve trajectories of each and every neuron within the system. For networks operating in realistic dynamical regimes, such as strongly fluctuating, high-conductance states, our methods are designed to achieve statistical accuracy when very large time-steps are used. Moreover, our methods can also achieve trajectory-wise accuracy when small time-steps are used.
Software environment for implementing engineering applications on MIMD computers
NASA Technical Reports Server (NTRS)
Lopez, L. A.; Valimohamed, K. A.; Schiff, S.
1990-01-01
In this paper the concept for a software environment for developing engineering application systems for multiprocessor hardware (MIMD) is presented. The philosophy employed is to solve the largest problems possible in a reasonable amount of time, rather than solve existing problems faster. In the proposed environment most of the problems concerning parallel computation and handling of large distributed data spaces are hidden from the application program developer, thereby facilitating the development of large-scale software applications. Applications developed under the environment can be executed on a variety of MIMD hardware; it protects the application software from the effects of a rapidly changing MIMD hardware technology.
Infrastructures for Distributed Computing: the case of BESIII
NASA Astrophysics Data System (ADS)
Pellegrino, J.
2018-05-01
The BESIII is an electron-positron collision experiment hosted at BEPCII in Beijing and aimed to investigate Tau-Charm physics. Now BESIII has been running for several years and gathered more than 1PB raw data. In order to analyze these data and perform massive Monte Carlo simulations, a large amount of computing and storage resources is needed. The distributed computing system is based up on DIRAC and it is in production since 2012. It integrates computing and storage resources from different institutes and a variety of resource types such as cluster, grid, cloud or volunteer computing. About 15 sites from BESIII Collaboration from all over the world joined this distributed computing infrastructure, giving a significant contribution to the IHEP computing facility. Nowadays cloud computing is playing a key role in the HEP computing field, due to its scalability and elasticity. Cloud infrastructures take advantages of several tools, such as VMDirac, to manage virtual machines through cloud managers according to the job requirements. With the virtually unlimited resources from commercial clouds, the computing capacity could scale accordingly in order to deal with any burst demands. General computing models have been discussed in the talk and are addressed herewith, with particular focus on the BESIII infrastructure. Moreover new computing tools and upcoming infrastructures will be addressed.
Tortuosity of lightning return stroke channels
NASA Technical Reports Server (NTRS)
Levine, D. M.; Gilson, B.
1984-01-01
Data obtained from photographs of lightning are presented on the tortuosity of return stroke channels. The data were obtained by making piecewise linear fits to the channels, and recording the cartesian coordinates of the ends of each linear segment. The mean change between ends of the segments was nearly zero in the horizontal direction and was about eight meters in the vertical direction. Histograms of these changes are presented. These data were used to create model lightning channels and to predict the electric fields radiated during return strokes. This was done using a computer generated random walk in which linear segments were placed end-to-end to form a piecewise linear representation of the channel. The computer selected random numbers for the ends of the segments assuming a normal distribution with the measured statistics. Once the channels were simulated, the electric fields radiated during a return stroke were predicted using a transmission line model on each segment. It was found that realistic channels are obtained with this procedure, but only if the model includes two scales of tortuosity: fine scale irregularities corresponding to the local channel tortuosity which are superimposed on large scale horizontal drifts. The two scales of tortuosity are also necessary to obtain agreement between the electric fields computed mathematically from the simulated channels and the electric fields radiated from real return strokes. Without large scale drifts, the computed electric fields do not have the undulations characteristics of the data.
NASA Astrophysics Data System (ADS)
Lee, Jonghyun; Yoon, Hongkyu; Kitanidis, Peter K.; Werth, Charles J.; Valocchi, Albert J.
2016-07-01
Characterizing subsurface properties is crucial for reliable and cost-effective groundwater supply management and contaminant remediation. With recent advances in sensor technology, large volumes of hydrogeophysical and geochemical data can be obtained to achieve high-resolution images of subsurface properties. However, characterization with such a large amount of information requires prohibitive computational costs associated with "big data" processing and numerous large-scale numerical simulations. To tackle such difficulties, the principal component geostatistical approach (PCGA) has been proposed as a "Jacobian-free" inversion method that requires much smaller forward simulation runs for each iteration than the number of unknown parameters and measurements needed in the traditional inversion methods. PCGA can be conveniently linked to any multiphysics simulation software with independent parallel executions. In this paper, we extend PCGA to handle a large number of measurements (e.g., 106 or more) by constructing a fast preconditioner whose computational cost scales linearly with the data size. For illustration, we characterize the heterogeneous hydraulic conductivity (K) distribution in a laboratory-scale 3-D sand box using about 6 million transient tracer concentration measurements obtained using magnetic resonance imaging. Since each individual observation has little information on the K distribution, the data were compressed by the zeroth temporal moment of breakthrough curves, which is equivalent to the mean travel time under the experimental setting. Only about 2000 forward simulations in total were required to obtain the best estimate with corresponding estimation uncertainty, and the estimated K field captured key patterns of the original packing design, showing the efficiency and effectiveness of the proposed method.
BlueSNP: R package for highly scalable genome-wide association studies using Hadoop clusters.
Huang, Hailiang; Tata, Sandeep; Prill, Robert J
2013-01-01
Computational workloads for genome-wide association studies (GWAS) are growing in scale and complexity outpacing the capabilities of single-threaded software designed for personal computers. The BlueSNP R package implements GWAS statistical tests in the R programming language and executes the calculations across computer clusters configured with Apache Hadoop, a de facto standard framework for distributed data processing using the MapReduce formalism. BlueSNP makes computationally intensive analyses, such as estimating empirical p-values via data permutation, and searching for expression quantitative trait loci over thousands of genes, feasible for large genotype-phenotype datasets. http://github.com/ibm-bioinformatics/bluesnp
3D fast adaptive correlation imaging for large-scale gravity data based on GPU computation
NASA Astrophysics Data System (ADS)
Chen, Z.; Meng, X.; Guo, L.; Liu, G.
2011-12-01
In recent years, large scale gravity data sets have been collected and employed to enhance gravity problem-solving abilities of tectonics studies in China. Aiming at the large scale data and the requirement of rapid interpretation, previous authors have carried out a lot of work, including the fast gradient module inversion and Euler deconvolution depth inversion ,3-D physical property inversion using stochastic subspaces and equivalent storage, fast inversion using wavelet transforms and a logarithmic barrier method. So it can be say that 3-D gravity inversion has been greatly improved in the last decade. Many authors added many different kinds of priori information and constraints to deal with nonuniqueness using models composed of a large number of contiguous cells of unknown property and obtained good results. However, due to long computation time, instability and other shortcomings, 3-D physical property inversion has not been widely applied to large-scale data yet. In order to achieve 3-D interpretation with high efficiency and precision for geological and ore bodies and obtain their subsurface distribution, there is an urgent need to find a fast and efficient inversion method for large scale gravity data. As an entirely new geophysical inversion method, 3D correlation has a rapid development thanks to the advantage of requiring no a priori information and demanding small amount of computer memory. This method was proposed to image the distribution of equivalent excess masses of anomalous geological bodies with high resolution both longitudinally and transversely. In order to tranform the equivalence excess masses into real density contrasts, we adopt the adaptive correlation imaging for gravity data. After each 3D correlation imaging, we change the equivalence into density contrasts according to the linear relationship, and then carry out forward gravity calculation for each rectangle cells. Next, we compare the forward gravity data with real data, and comtinue to perform 3D correlation imaging for the redisual gravity data. After several iterations, we can obtain a satisfactoy results. Newly developed general purpose computing technology from Nvidia GPU (Graphics Processing Unit) has been put into practice and received widespread attention in many areas. Based on the GPU programming mode and two parallel levels, five CPU loops for the main computation of 3D correlation imaging are converted into three loops in GPU kernel functions, thus achieving GPU/CPU collaborative computing. The two inner loops are defined as the dimensions of blocks and the three outer loops are defined as the dimensions of threads, thus realizing the double loop block calculation. Theoretical and real gravity data tests show that results are reliable and the computing time is greatly reduced. Acknowledgments We acknowledge the financial support of Sinoprobe project (201011039 and 201011049-03), the Fundamental Research Funds for the Central Universities (2010ZY26 and 2011PY0183), the National Natural Science Foundation of China (41074095) and the Open Project of State Key Laboratory of Geological Processes and Mineral Resources (GPMR0945).
NASA Astrophysics Data System (ADS)
Vucinic, Dean; Deen, Danny; Oanta, Emil; Batarilo, Zvonimir; Lacor, Chris
This paper focuses on visualization and manipulation of graphical content in distributed network environments. The developed graphical middleware and 3D desktop prototypes were specialized for situational awareness. This research was done in the LArge Scale COllaborative decision support Technology (LASCOT) project, which explored and combined software technologies to support human-centred decision support system for crisis management (earthquake, tsunami, flooding, airplane or oil-tanker incidents, chemical, radio-active or other pollutants spreading, etc.). The performed state-of-the-art review did not identify any publicly available large scale distributed application of this kind. Existing proprietary solutions rely on the conventional technologies and 2D representations. Our challenge was to apply the "latest" available technologies, such Java3D, X3D and SOAP, compatible with average computer graphics hardware. The selected technologies are integrated and we demonstrate: the flow of data, which originates from heterogeneous data sources; interoperability across different operating systems and 3D visual representations to enhance the end-users interactions.
Anisotropic Galaxy-Galaxy Lensing in the Illustris-1 Simulation
NASA Astrophysics Data System (ADS)
Brainerd, Tereasa G.
2017-06-01
In Cold Dark Matter universes, the dark matter halos of galaxies are expected to be triaxial, leading to a surface mass density that is not circularly symmetric. In principle, this "flattening" of the dark matter halos of galaxies should be observable as an anisotropy in the weak galaxy-galaxy lensing signal. The degree to which the weak lensing signal is observed to be anisotropic, however, will depend strongly on the degree to which mass (i.e., the dark matter) is aligned with light in the lensing galaxies. That is, the anisotropy will be maximized when the major axis of the projected mass distribution is well aligned with the projected light distribution of the lens galaxies. Observational studies of anisotropic galaxy-galaxy lensing have found an anisotropic weak lensing signal around massive, red galaxies. Detecting the signal around blue, disky galaxies has, however, been more elusive. A possible explanation for this is that mass and light are well aligned within red galaxies and poorly aligned within blue galaxies (an explanation that is supported by studies of the locations of satellites of large, relatively isolated galaxies). Here we compute the weak lensing signal of isolated central galaxies in the Illustris-1 simulation. We compute the anisotropy of the weak lensing signal using two definitions of the geometry: [1] the major axis of the projected dark matter mass distribution and [2] the major axis of the projected stellar mass. On projected scales less than 15% of the virial radius, an anisotropy of order 10% is found for both definitions of the geometry. On larger scales, the anisotropy computed relative to the major axis of the projected light distribution is less than the anisotropy computed relative to the major axis of the projected dark matter. On projected scales of order the virial radius, the anisotropy obtained when using the major axis of the light is an order of magnitude less than the anisotropy obtained when using the major axis of the dark matter. The suppression of the anisotropy when using the major axis of the light to define the geometry is indicative of a significant misalignment of mass and light in the Illustris-1 galaxies at large physical radii.
Transverse momentum dependent parton distributions at small- x
Xiao, Bo-Wen; Yuan, Feng; Zhou, Jian
2017-05-23
We study the transverse momentum dependent (TMD) parton distributions at small-x in a consistent framework that takes into account the TMD evolution and small-x evolution simultaneously. The small-x evolution effects are included by computing the TMDs at appropriate scales in terms of the dipole scattering amplitudes, which obey the relevant Balitsky–Kovchegov equation. Meanwhile, the TMD evolution is obtained by resumming the Collins–Soper type large logarithms emerged from the calculations in small-x formalism into Sudakov factors.
Transverse momentum dependent parton distributions at small-x
NASA Astrophysics Data System (ADS)
Xiao, Bo-Wen; Yuan, Feng; Zhou, Jian
2017-08-01
We study the transverse momentum dependent (TMD) parton distributions at small-x in a consistent framework that takes into account the TMD evolution and small-x evolution simultaneously. The small-x evolution effects are included by computing the TMDs at appropriate scales in terms of the dipole scattering amplitudes, which obey the relevant Balitsky-Kovchegov equation. Meanwhile, the TMD evolution is obtained by resumming the Collins-Soper type large logarithms emerged from the calculations in small-x formalism into Sudakov factors.
Transverse momentum dependent parton distributions at small- x
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Bo-Wen; Yuan, Feng; Zhou, Jian
We study the transverse momentum dependent (TMD) parton distributions at small-x in a consistent framework that takes into account the TMD evolution and small-x evolution simultaneously. The small-x evolution effects are included by computing the TMDs at appropriate scales in terms of the dipole scattering amplitudes, which obey the relevant Balitsky–Kovchegov equation. Meanwhile, the TMD evolution is obtained by resumming the Collins–Soper type large logarithms emerged from the calculations in small-x formalism into Sudakov factors.
A redshift survey of IRAS galaxies. V - The acceleration on the Local Group
NASA Technical Reports Server (NTRS)
Strauss, Michael A.; Yahil, Amos; Davis, Marc; Huchra, John P.; Fisher, Karl
1992-01-01
The acceleration on the Local Group is calculated based on a full-sky redshift survey of 5288 galaxies detected by IRAS. A formalism is developed to compute the distribution function of the IRAS acceleration for a given power spectrum of initial perturbations. The computed acceleration on the Local Group points 18-28 deg from the direction of the Local Group peculiar velocity vector. The data suggest that the CMB dipole is indeed due to the motion of the Local Group, that this motion is gravitationally induced, and that the distribution of IRAS galaxies on large scales is related to that of dark matter by a simple linear biasing model.
An interactive web-based system using cloud for large-scale visual analytics
NASA Astrophysics Data System (ADS)
Kaseb, Ahmed S.; Berry, Everett; Rozolis, Erik; McNulty, Kyle; Bontrager, Seth; Koh, Youngsol; Lu, Yung-Hsiang; Delp, Edward J.
2015-03-01
Network cameras have been growing rapidly in recent years. Thousands of public network cameras provide tremendous amount of visual information about the environment. There is a need to analyze this valuable information for a better understanding of the world around us. This paper presents an interactive web-based system that enables users to execute image analysis and computer vision techniques on a large scale to analyze the data from more than 65,000 worldwide cameras. This paper focuses on how to use both the system's website and Application Programming Interface (API). Given a computer program that analyzes a single frame, the user needs to make only slight changes to the existing program and choose the cameras to analyze. The system handles the heterogeneity of the geographically distributed cameras, e.g. different brands, resolutions. The system allocates and manages Amazon EC2 and Windows Azure cloud resources to meet the analysis requirements.
Strategies for Large Scale Implementation of a Multiscale, Multiprocess Integrated Hydrologic Model
NASA Astrophysics Data System (ADS)
Kumar, M.; Duffy, C.
2006-05-01
Distributed models simulate hydrologic state variables in space and time while taking into account the heterogeneities in terrain, surface, subsurface properties and meteorological forcings. Computational cost and complexity associated with these model increases with its tendency to accurately simulate the large number of interacting physical processes at fine spatio-temporal resolution in a large basin. A hydrologic model run on a coarse spatial discretization of the watershed with limited number of physical processes needs lesser computational load. But this negatively affects the accuracy of model results and restricts physical realization of the problem. So it is imperative to have an integrated modeling strategy (a) which can be universally applied at various scales in order to study the tradeoffs between computational complexity (determined by spatio- temporal resolution), accuracy and predictive uncertainty in relation to various approximations of physical processes (b) which can be applied at adaptively different spatial scales in the same domain by taking into account the local heterogeneity of topography and hydrogeologic variables c) which is flexible enough to incorporate different number and approximation of process equations depending on model purpose and computational constraint. An efficient implementation of this strategy becomes all the more important for Great Salt Lake river basin which is relatively large (~89000 sq. km) and complex in terms of hydrologic and geomorphic conditions. Also the types and the time scales of hydrologic processes which are dominant in different parts of basin are different. Part of snow melt runoff generated in the Uinta Mountains infiltrates and contributes as base flow to the Great Salt Lake over a time scale of decades to centuries. The adaptive strategy helps capture the steep topographic and climatic gradient along the Wasatch front. Here we present the aforesaid modeling strategy along with an associated hydrologic modeling framework which facilitates a seamless, computationally efficient and accurate integration of the process model with the data model. The flexibility of this framework leads to implementation of multiscale, multiresolution, adaptive refinement/de-refinement and nested modeling simulations with least computational burden. However, performing these simulations and related calibration of these models over a large basin at higher spatio- temporal resolutions is computationally intensive and requires use of increasing computing power. With the advent of parallel processing architectures, high computing performance can be achieved by parallelization of existing serial integrated-hydrologic-model code. This translates to running the same model simulation on a network of large number of processors thereby reducing the time needed to obtain solution. The paper also discusses the implementation of the integrated model on parallel processors. Also will be discussed the mapping of the problem on multi-processor environment, method to incorporate coupling between hydrologic processes using interprocessor communication models, model data structure and parallel numerical algorithms to obtain high performance.
NASA Astrophysics Data System (ADS)
Casu, F.; Bonano, M.; de Luca, C.; Lanari, R.; Manunta, M.; Manzo, M.; Zinno, I.
2017-12-01
Since its launch in 2014, the Sentinel-1 (S1) constellation has played a key role on SAR data availability and dissemination all over the World. Indeed, the free and open access data policy adopted by the European Copernicus program together with the global coverage acquisition strategy, make the Sentinel constellation as a game changer in the Earth Observation scenario. Being the SAR data become ubiquitous, the technological and scientific challenge is focused on maximizing the exploitation of such huge data flow. In this direction, the use of innovative processing algorithms and distributed computing infrastructures, such as the Cloud Computing platforms, can play a crucial role. In this work we present a Cloud Computing solution for the advanced interferometric (DInSAR) processing chain based on the Parallel SBAS (P-SBAS) approach, aimed at processing S1 Interferometric Wide Swath (IWS) data for the generation of large spatial scale deformation time series in efficient, automatic and systematic way. Such a DInSAR chain ingests Sentinel 1 SLC images and carries out several processing steps, to finally compute deformation time series and mean deformation velocity maps. Different parallel strategies have been designed ad hoc for each processing step of the P-SBAS S1 chain, encompassing both multi-core and multi-node programming techniques, in order to maximize the computational efficiency achieved within a Cloud Computing environment and cut down the relevant processing times. The presented P-SBAS S1 processing chain has been implemented on the Amazon Web Services platform and a thorough analysis of the attained parallel performances has been performed to identify and overcome the major bottlenecks to the scalability. The presented approach is used to perform national-scale DInSAR analyses over Italy, involving the processing of more than 3000 S1 IWS images acquired from both ascending and descending orbits. Such an experiment confirms the big advantage of exploiting large computational and storage resources of Cloud Computing platforms for large scale DInSAR analysis. The presented Cloud Computing P-SBAS processing chain can be a precious tool in the perspective of developing operational services disposable for the EO scientific community related to hazard monitoring and risk prevention and mitigation.
Job Scheduling in a Heterogeneous Grid Environment
NASA Technical Reports Server (NTRS)
Shan, Hong-Zhang; Smith, Warren; Oliker, Leonid; Biswas, Rupak
2004-01-01
Computational grids have the potential for solving large-scale scientific problems using heterogeneous and geographically distributed resources. However, a number of major technical hurdles must be overcome before this potential can be realized. One problem that is critical to effective utilization of computational grids is the efficient scheduling of jobs. This work addresses this problem by describing and evaluating a grid scheduling architecture and three job migration algorithms. The architecture is scalable and does not assume control of local site resources. The job migration policies use the availability and performance of computer systems, the network bandwidth available between systems, and the volume of input and output data associated with each job. An extensive performance comparison is presented using real workloads from leading computational centers. The results, based on several key metrics, demonstrate that the performance of our distributed migration algorithms is significantly greater than that of a local scheduling framework and comparable to a non-scalable global scheduling approach.
The Quantitative Analysis of User Behavior Online - Data, Models and Algorithms
NASA Astrophysics Data System (ADS)
Raghavan, Prabhakar
By blending principles from mechanism design, algorithms, machine learning and massive distributed computing, the search industry has become good at optimizing monetization on sound scientific principles. This represents a successful and growing partnership between computer science and microeconomics. When it comes to understanding how online users respond to the content and experiences presented to them, we have more of a lacuna in the collaboration between computer science and certain social sciences. We will use a concrete technical example from image search results presentation, developing in the process some algorithmic and machine learning problems of interest in their own right. We then use this example to motivate the kinds of studies that need to grow between computer science and the social sciences; a critical element of this is the need to blend large-scale data analysis with smaller-scale eye-tracking and "individualized" lab studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sreepathi, Sarat; Kumar, Jitendra; Mills, Richard T.
A proliferation of data from vast networks of remote sensing platforms (satellites, unmanned aircraft systems (UAS), airborne etc.), observational facilities (meteorological, eddy covariance etc.), state-of-the-art sensors, and simulation models offer unprecedented opportunities for scientific discovery. Unsupervised classification is a widely applied data mining approach to derive insights from such data. However, classification of very large data sets is a complex computational problem that requires efficient numerical algorithms and implementations on high performance computing (HPC) platforms. Additionally, increasing power, space, cooling and efficiency requirements has led to the deployment of hybrid supercomputing platforms with complex architectures and memory hierarchies like themore » Titan system at Oak Ridge National Laboratory. The advent of such accelerated computing architectures offers new challenges and opportunities for big data analytics in general and specifically, large scale cluster analysis in our case. Although there is an existing body of work on parallel cluster analysis, those approaches do not fully meet the needs imposed by the nature and size of our large data sets. Moreover, they had scaling limitations and were mostly limited to traditional distributed memory computing platforms. We present a parallel Multivariate Spatio-Temporal Clustering (MSTC) technique based on k-means cluster analysis that can target hybrid supercomputers like Titan. We developed a hybrid MPI, CUDA and OpenACC implementation that can utilize both CPU and GPU resources on computational nodes. We describe performance results on Titan that demonstrate the scalability and efficacy of our approach in processing large ecological data sets.« less
NASA Astrophysics Data System (ADS)
Fonseca, R. A.; Vieira, J.; Fiuza, F.; Davidson, A.; Tsung, F. S.; Mori, W. B.; Silva, L. O.
2013-12-01
A new generation of laser wakefield accelerators (LWFA), supported by the extreme accelerating fields generated in the interaction of PW-Class lasers and underdense targets, promises the production of high quality electron beams in short distances for multiple applications. Achieving this goal will rely heavily on numerical modelling to further understand the underlying physics and identify optimal regimes, but large scale modelling of these scenarios is computationally heavy and requires the efficient use of state-of-the-art petascale supercomputing systems. We discuss the main difficulties involved in running these simulations and the new developments implemented in the OSIRIS framework to address these issues, ranging from multi-dimensional dynamic load balancing and hybrid distributed/shared memory parallelism to the vectorization of the PIC algorithm. We present the results of the OASCR Joule Metric program on the issue of large scale modelling of LWFA, demonstrating speedups of over 1 order of magnitude on the same hardware. Finally, scalability to over ˜106 cores and sustained performance over ˜2 P Flops is demonstrated, opening the way for large scale modelling of LWFA scenarios.
Bernhardt, Peter
2016-01-01
Purpose To develop a general model that utilises a stochastic method to generate a vessel tree based on experimental data, and an associated irregular, macroscopic tumour. These will be used to evaluate two different methods for computing oxygen distribution. Methods A vessel tree structure, and an associated tumour of 127 cm3, were generated, using a stochastic method and Bresenham’s line algorithm to develop trees on two different scales and fusing them together. The vessel dimensions were adjusted through convolution and thresholding and each vessel voxel was assigned an oxygen value. Diffusion and consumption were modelled using a Green’s function approach together with Michaelis-Menten kinetics. The computations were performed using a combined tree method (CTM) and an individual tree method (ITM). Five tumour sub-sections were compared, to evaluate the methods. Results The oxygen distributions of the same tissue samples, using different methods of computation, were considerably less similar (root mean square deviation, RMSD≈0.02) than the distributions of different samples using CTM (0.001< RMSD<0.01). The deviations of ITM from CTM increase with lower oxygen values, resulting in ITM severely underestimating the level of hypoxia in the tumour. Kolmogorov Smirnov (KS) tests showed that millimetre-scale samples may not represent the whole. Conclusions The stochastic model managed to capture the heterogeneous nature of hypoxic fractions and, even though the simplified computation did not considerably alter the oxygen distribution, it leads to an evident underestimation of tumour hypoxia, and thereby radioresistance. For a trustworthy computation of tumour oxygenation, the interaction between adjacent microvessel trees must not be neglected, why evaluation should be made using high resolution and the CTM, applied to the entire tumour. PMID:27861529
Multiscale modeling and distributed computing to predict cosmesis outcome after a lumpectomy
NASA Astrophysics Data System (ADS)
Garbey, M.; Salmon, R.; Thanoon, D.; Bass, B. L.
2013-07-01
Surgery for early stage breast carcinoma is either total mastectomy (complete breast removal) or surgical lumpectomy (only tumor removal). The lumpectomy or partial mastectomy is intended to preserve a breast that satisfies the woman's cosmetic, emotional and physical needs. But in a fairly large number of cases the cosmetic outcome is not satisfactory. Today, predicting that surgery outcome is essentially based on heuristic. Modeling such a complex process must encompass multiple scales, in space from cells to tissue, as well as in time, from minutes for the tissue mechanics to months for healing. The goal of this paper is to present a first step in multiscale modeling of the long time scale prediction of breast shape after tumor resection. This task requires coupling very different mechanical and biological models with very different computing needs. We provide a simple illustration of the application of heterogeneous distributed computing and modular software design to speed up the model development. Our computational framework serves currently to test hypothesis on breast tissue healing in a pilot study with women who have been elected to undergo BCT and are being treated at the Methodist Hospital in Houston, TX.
Parallel Tensor Compression for Large-Scale Scientific Data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolda, Tamara G.; Ballard, Grey; Austin, Woody Nathan
As parallel computing trends towards the exascale, scientific data produced by high-fidelity simulations are growing increasingly massive. For instance, a simulation on a three-dimensional spatial grid with 512 points per dimension that tracks 64 variables per grid point for 128 time steps yields 8 TB of data. By viewing the data as a dense five way tensor, we can compute a Tucker decomposition to find inherent low-dimensional multilinear structure, achieving compression ratios of up to 10000 on real-world data sets with negligible loss in accuracy. So that we can operate on such massive data, we present the first-ever distributed memorymore » parallel implementation for the Tucker decomposition, whose key computations correspond to parallel linear algebra operations, albeit with nonstandard data layouts. Our approach specifies a data distribution for tensors that avoids any tensor data redistribution, either locally or in parallel. We provide accompanying analysis of the computation and communication costs of the algorithms. To demonstrate the compression and accuracy of the method, we apply our approach to real-world data sets from combustion science simulations. We also provide detailed performance results, including parallel performance in both weak and strong scaling experiments.« less
A new tool called DISSECT for analysing large genomic data sets using a Big Data approach
Canela-Xandri, Oriol; Law, Andy; Gray, Alan; Woolliams, John A.; Tenesa, Albert
2015-01-01
Large-scale genetic and genomic data are increasingly available and the major bottleneck in their analysis is a lack of sufficiently scalable computational tools. To address this problem in the context of complex traits analysis, we present DISSECT. DISSECT is a new and freely available software that is able to exploit the distributed-memory parallel computational architectures of compute clusters, to perform a wide range of genomic and epidemiologic analyses, which currently can only be carried out on reduced sample sizes or under restricted conditions. We demonstrate the usefulness of our new tool by addressing the challenge of predicting phenotypes from genotype data in human populations using mixed-linear model analysis. We analyse simulated traits from 470,000 individuals genotyped for 590,004 SNPs in ∼4 h using the combined computational power of 8,400 processor cores. We find that prediction accuracies in excess of 80% of the theoretical maximum could be achieved with large sample sizes. PMID:26657010
Large-Scale 1:1 Computing Initiatives: An Open Access Database
ERIC Educational Resources Information Center
Richardson, Jayson W.; McLeod, Scott; Flora, Kevin; Sauers, Nick J.; Kannan, Sathiamoorthy; Sincar, Mehmet
2013-01-01
This article details the spread and scope of large-scale 1:1 computing initiatives around the world. What follows is a review of the existing literature around 1:1 programs followed by a description of the large-scale 1:1 database. Main findings include: 1) the XO and the Classmate PC dominate large-scale 1:1 initiatives; 2) if professional…
Understanding I/O workload characteristics of a Peta-scale storage system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Youngjae; Gunasekaran, Raghul
2015-01-01
Understanding workload characteristics is critical for optimizing and improving the performance of current systems and software, and architecting new storage systems based on observed workload patterns. In this paper, we characterize the I/O workloads of scientific applications of one of the world s fastest high performance computing (HPC) storage cluster, Spider, at the Oak Ridge Leadership Computing Facility (OLCF). OLCF flagship petascale simulation platform, Titan, and other large HPC clusters, in total over 250 thousands compute cores, depend on Spider for their I/O needs. We characterize the system utilization, the demands of reads and writes, idle time, storage space utilization,more » and the distribution of read requests to write requests for the Peta-scale Storage Systems. From this study, we develop synthesized workloads, and we show that the read and write I/O bandwidth usage as well as the inter-arrival time of requests can be modeled as a Pareto distribution. We also study the I/O load imbalance problems using I/O performance data collected from the Spider storage system.« less
Structure and modeling of turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novikov, E.A.
The {open_quotes}vortex strings{close_quotes} scale l{sub s} {approximately} LRe{sup -3/10} (L-external scale, Re - Reynolds number) is suggested as a grid scale for the large-eddy simulation. Various aspects of the structure of turbulence and subgrid modeling are described in terms of conditional averaging, Markov processes with dependent increments and infinitely divisible distributions. The major request from the energy, naval, aerospace and environmental engineering communities to the theory of turbulence is to reduce the enormous number of degrees of freedom in turbulent flows to a level manageable by computer simulations. The vast majority of these degrees of freedom is in the small-scalemore » motion. The study of the structure of turbulence provides a basis for subgrid-scale (SGS) models, which are necessary for the large-eddy simulations (LES).« less
Pesce, Lorenzo L.; Lee, Hyong C.; Hereld, Mark; ...
2013-01-01
Our limited understanding of the relationship between the behavior of individual neurons and large neuronal networks is an important limitation in current epilepsy research and may be one of the main causes of our inadequate ability to treat it. Addressing this problem directly via experiments is impossibly complex; thus, we have been developing and studying medium-large-scale simulations of detailed neuronal networks to guide us. Flexibility in the connection schemas and a complete description of the cortical tissue seem necessary for this purpose. In this paper we examine some of the basic issues encountered in these multiscale simulations. We have determinedmore » the detailed behavior of two such simulators on parallel computer systems. The observed memory and computation-time scaling behavior for a distributed memory implementation were very good over the range studied, both in terms of network sizes (2,000 to 400,000 neurons) and processor pool sizes (1 to 256 processors). Our simulations required between a few megabytes and about 150 gigabytes of RAM and lasted between a few minutes and about a week, well within the capability of most multinode clusters. Therefore, simulations of epileptic seizures on networks with millions of cells should be feasible on current supercomputers.« less
Bibliography--Unclassified Technical Reports, Special Reports, and Technical Notes: FY 1982.
1982-11-01
in each category are listed in chronological order under seven areas: manpower management, personnel administration , organization management, education...7633). Technical reports listed that have unlimited distribution can also be obtained from the National Technical Information Service , 5285 Port Royal...simulations of manpower systems. This research exploits the technology of computer-managed large-scale data bases. PERSONNEL ADMINISTRATION The personnel
Bringing the CMS distributed computing system into scalable operations
NASA Astrophysics Data System (ADS)
Belforte, S.; Fanfani, A.; Fisk, I.; Flix, J.; Hernández, J. M.; Kress, T.; Letts, J.; Magini, N.; Miccio, V.; Sciabà, A.
2010-04-01
Establishing efficient and scalable operations of the CMS distributed computing system critically relies on the proper integration, commissioning and scale testing of the data and workload management tools, the various computing workflows and the underlying computing infrastructure, located at more than 50 computing centres worldwide and interconnected by the Worldwide LHC Computing Grid. Computing challenges periodically undertaken by CMS in the past years with increasing scale and complexity have revealed the need for a sustained effort on computing integration and commissioning activities. The Processing and Data Access (PADA) Task Force was established at the beginning of 2008 within the CMS Computing Program with the mandate of validating the infrastructure for organized processing and user analysis including the sites and the workload and data management tools, validating the distributed production system by performing functionality, reliability and scale tests, helping sites to commission, configure and optimize the networking and storage through scale testing data transfers and data processing, and improving the efficiency of accessing data across the CMS computing system from global transfers to local access. This contribution reports on the tools and procedures developed by CMS for computing commissioning and scale testing as well as the improvements accomplished towards efficient, reliable and scalable computing operations. The activities include the development and operation of load generators for job submission and data transfers with the aim of stressing the experiment and Grid data management and workload management systems, site commissioning procedures and tools to monitor and improve site availability and reliability, as well as activities targeted to the commissioning of the distributed production, user analysis and monitoring systems.
Cloud computing for genomic data analysis and collaboration.
Langmead, Ben; Nellore, Abhinav
2018-04-01
Next-generation sequencing has made major strides in the past decade. Studies based on large sequencing data sets are growing in number, and public archives for raw sequencing data have been doubling in size every 18 months. Leveraging these data requires researchers to use large-scale computational resources. Cloud computing, a model whereby users rent computers and storage from large data centres, is a solution that is gaining traction in genomics research. Here, we describe how cloud computing is used in genomics for research and large-scale collaborations, and argue that its elasticity, reproducibility and privacy features make it ideally suited for the large-scale reanalysis of publicly available archived data, including privacy-protected data.
NASA Astrophysics Data System (ADS)
Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.
2016-09-01
Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace such that the dimensionality of the problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2-D and a random hydraulic conductivity field in 3-D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ˜101 to ˜102 in a multicore computational environment. Therefore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate to large-scale problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Junghyun; Gangwon, Jo; Jaehoon, Jung
Applications written solely in OpenCL or CUDA cannot execute on a cluster as a whole. Most previous approaches that extend these programming models to clusters are based on a common idea: designating a centralized host node and coordinating the other nodes with the host for computation. However, the centralized host node is a serious performance bottleneck when the number of nodes is large. In this paper, we propose a scalable and distributed OpenCL framework called SnuCL-D for large-scale clusters. SnuCL-D's remote device virtualization provides an OpenCL application with an illusion that all compute devices in a cluster are confined inmore » a single node. To reduce the amount of control-message and data communication between nodes, SnuCL-D replicates the OpenCL host program execution and data in each node. We also propose a new OpenCL host API function and a queueing optimization technique that significantly reduce the overhead incurred by the previous centralized approaches. To show the effectiveness of SnuCL-D, we evaluate SnuCL-D with a microbenchmark and eleven benchmark applications on a large-scale CPU cluster and a medium-scale GPU cluster.« less
NASA Technical Reports Server (NTRS)
Birman, Kenneth; Cooper, Robert; Marzullo, Keith
1990-01-01
The ISIS project has developed a new methodology, virtual synchony, for writing robust distributed software. High performance multicast, large scale applications, and wide area networks are the focus of interest. Several interesting applications that exploit the strengths of ISIS, including an NFS-compatible replicated file system, are being developed. The META project is distributed control in a soft real-time environment incorporating feedback. This domain encompasses examples as diverse as monitoring inventory and consumption on a factory floor, and performing load-balancing on a distributed computing system. One of the first uses of META is for distributed application management: the tasks of configuring a distributed program, dynamically adapting to failures, and monitoring its performance. Recent progress and current plans are reported.
HammerCloud: A Stress Testing System for Distributed Analysis
NASA Astrophysics Data System (ADS)
van der Ster, Daniel C.; Elmsheuser, Johannes; Úbeda García, Mario; Paladin, Massimo
2011-12-01
Distributed analysis of LHC data is an I/O-intensive activity which places large demands on the internal network, storage, and local disks at remote computing facilities. Commissioning and maintaining a site to provide an efficient distributed analysis service is therefore a challenge which can be aided by tools to help evaluate a variety of infrastructure designs and configurations. HammerCloud is one such tool; it is a stress testing service which is used by central operations teams, regional coordinators, and local site admins to (a) submit arbitrary number of analysis jobs to a number of sites, (b) maintain at a steady-state a predefined number of jobs running at the sites under test, (c) produce web-based reports summarizing the efficiency and performance of the sites under test, and (d) present a web-interface for historical test results to both evaluate progress and compare sites. HammerCloud was built around the distributed analysis framework Ganga, exploiting its API for grid job management. HammerCloud has been employed by the ATLAS experiment for continuous testing of many sites worldwide, and also during large scale computing challenges such as STEP'09 and UAT'09, where the scale of the tests exceeded 10,000 concurrently running and 1,000,000 total jobs over multi-day periods. In addition, HammerCloud is being adopted by the CMS experiment; the plugin structure of HammerCloud allows the execution of CMS jobs using their official tool (CRAB).
Oryspayev, Dossay; Aktulga, Hasan Metin; Sosonkina, Masha; ...
2015-07-14
In this article, sparse matrix vector multiply (SpMVM) is an important kernel that frequently arises in high performance computing applications. Due to its low arithmetic intensity, several approaches have been proposed in literature to improve its scalability and efficiency in large scale computations. In this paper, our target systems are high end multi-core architectures and we use messaging passing interface + open multiprocessing hybrid programming model for parallelism. We analyze the performance of recently proposed implementation of the distributed symmetric SpMVM, originally developed for large sparse symmetric matrices arising in ab initio nuclear structure calculations. We also study important featuresmore » of this implementation and compare with previously reported implementations that do not exploit underlying symmetry. Our SpMVM implementations leverage the hybrid paradigm to efficiently overlap expensive communications with computations. Our main comparison criterion is the "CPU core hours" metric, which is the main measure of resource usage on supercomputers. We analyze the effects of topology-aware mapping heuristic using simplified network load model. Furthermore, we have tested the different SpMVM implementations on two large clusters with 3D Torus and Dragonfly topology. Our results show that the distributed SpMVM implementation that exploits matrix symmetry and hides communication yields the best value for the "CPU core hours" metric and significantly reduces data movement overheads.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerrier, C.; Holcman, D., E-mail: david.holcman@ens.fr; Mathematical Institute, Oxford OX2 6GG, Newton Institute
The main difficulty in simulating diffusion processes at a molecular level in cell microdomains is due to the multiple scales involving nano- to micrometers. Few to many particles have to be simulated and simultaneously tracked while there are exploring a large portion of the space for binding small targets, such as buffers or active sites. Bridging the small and large spatial scales is achieved by rare events representing Brownian particles finding small targets and characterized by long-time distribution. These rare events are the bottleneck of numerical simulations. A naive stochastic simulation requires running many Brownian particles together, which is computationallymore » greedy and inefficient. Solving the associated partial differential equations is also difficult due to the time dependent boundary conditions, narrow passages and mixed boundary conditions at small windows. We present here two reduced modeling approaches for a fast computation of diffusing fluxes in microdomains. The first approach is based on a Markov mass-action law equations coupled to a Markov chain. The second is a Gillespie's method based on the narrow escape theory for coarse-graining the geometry of the domain into Poissonian rates. The main application concerns diffusion in cellular biology, where we compute as an example the distribution of arrival times of calcium ions to small hidden targets to trigger vesicular release.« less
Large-scale machine learning and evaluation platform for real-time traffic surveillance
NASA Astrophysics Data System (ADS)
Eichel, Justin A.; Mishra, Akshaya; Miller, Nicholas; Jankovic, Nicholas; Thomas, Mohan A.; Abbott, Tyler; Swanson, Douglas; Keller, Joel
2016-09-01
In traffic engineering, vehicle detectors are trained on limited datasets, resulting in poor accuracy when deployed in real-world surveillance applications. Annotating large-scale high-quality datasets is challenging. Typically, these datasets have limited diversity; they do not reflect the real-world operating environment. There is a need for a large-scale, cloud-based positive and negative mining process and a large-scale learning and evaluation system for the application of automatic traffic measurements and classification. The proposed positive and negative mining process addresses the quality of crowd sourced ground truth data through machine learning review and human feedback mechanisms. The proposed learning and evaluation system uses a distributed cloud computing framework to handle data-scaling issues associated with large numbers of samples and a high-dimensional feature space. The system is trained using AdaBoost on 1,000,000 Haar-like features extracted from 70,000 annotated video frames. The trained real-time vehicle detector achieves an accuracy of at least 95% for 1/2 and about 78% for 19/20 of the time when tested on ˜7,500,000 video frames. At the end of 2016, the dataset is expected to have over 1 billion annotated video frames.
Very Large Scale Integration (VLSI).
ERIC Educational Resources Information Center
Yeaman, Andrew R. J.
Very Large Scale Integration (VLSI), the state-of-the-art production techniques for computer chips, promises such powerful, inexpensive computing that, in the future, people will be able to communicate with computer devices in natural language or even speech. However, before full-scale VLSI implementation can occur, certain salient factors must be…
Kasam, Vinod; Salzemann, Jean; Botha, Marli; Dacosta, Ana; Degliesposti, Gianluca; Isea, Raul; Kim, Doman; Maass, Astrid; Kenyon, Colin; Rastelli, Giulio; Hofmann-Apitius, Martin; Breton, Vincent
2009-05-01
Despite continuous efforts of the international community to reduce the impact of malaria on developing countries, no significant progress has been made in the recent years and the discovery of new drugs is more than ever needed. Out of the many proteins involved in the metabolic activities of the Plasmodium parasite, some are promising targets to carry out rational drug discovery. Recent years have witnessed the emergence of grids, which are highly distributed computing infrastructures particularly well fitted for embarrassingly parallel computations like docking. In 2005, a first attempt at using grids for large-scale virtual screening focused on plasmepsins and ended up in the identification of previously unknown scaffolds, which were confirmed in vitro to be active plasmepsin inhibitors. Following this success, a second deployment took place in the fall of 2006 focussing on one well known target, dihydrofolate reductase (DHFR), and on a new promising one, glutathione-S-transferase. In silico drug design, especially vHTS is a widely and well-accepted technology in lead identification and lead optimization. This approach, therefore builds, upon the progress made in computational chemistry to achieve more accurate in silico docking and in information technology to design and operate large scale grid infrastructures. On the computational side, a sustained infrastructure has been developed: docking at large scale, using different strategies in result analysis, storing of the results on the fly into MySQL databases and application of molecular dynamics refinement are MM-PBSA and MM-GBSA rescoring. The modeling results obtained are very promising. Based on the modeling results, In vitro results are underway for all the targets against which screening is performed. The current paper describes the rational drug discovery activity at large scale, especially molecular docking using FlexX software on computational grids in finding hits against three different targets (PfGST, PfDHFR, PvDHFR (wild type and mutant forms) implicated in malaria. Grid-enabled virtual screening approach is proposed to produce focus compound libraries for other biological targets relevant to fight the infectious diseases of the developing world.
The accurate particle tracer code
Wang, Yulei; Liu, Jian; Qin, Hong; ...
2017-07-20
The Accurate Particle Tracer (APT) code is designed for systematic large-scale applications of geometric algorithms for particle dynamical simulations. Based on a large variety of advanced geometric algorithms, APT possesses long-term numerical accuracy and stability, which are critical for solving multi-scale and nonlinear problems. To provide a flexible and convenient I/O interface, the libraries of Lua and Hdf5 are used. Following a three-step procedure, users can efficiently extend the libraries of electromagnetic configurations, external non-electromagnetic forces, particle pushers, and initialization approaches by use of the extendible module. APT has been used in simulations of key physical problems, such as runawaymore » electrons in tokamaks and energetic particles in Van Allen belt. As an important realization, the APT-SW version has been successfully distributed on the world’s fastest computer, the Sunway TaihuLight supercomputer, by supporting master–slave architecture of Sunway many-core processors. Here, based on large-scale simulations of a runaway beam under parameters of the ITER tokamak, it is revealed that the magnetic ripple field can disperse the pitch-angle distribution significantly and improve the confinement of energetic runaway beam on the same time.« less
The accurate particle tracer code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yulei; Liu, Jian; Qin, Hong
The Accurate Particle Tracer (APT) code is designed for systematic large-scale applications of geometric algorithms for particle dynamical simulations. Based on a large variety of advanced geometric algorithms, APT possesses long-term numerical accuracy and stability, which are critical for solving multi-scale and nonlinear problems. To provide a flexible and convenient I/O interface, the libraries of Lua and Hdf5 are used. Following a three-step procedure, users can efficiently extend the libraries of electromagnetic configurations, external non-electromagnetic forces, particle pushers, and initialization approaches by use of the extendible module. APT has been used in simulations of key physical problems, such as runawaymore » electrons in tokamaks and energetic particles in Van Allen belt. As an important realization, the APT-SW version has been successfully distributed on the world’s fastest computer, the Sunway TaihuLight supercomputer, by supporting master–slave architecture of Sunway many-core processors. Here, based on large-scale simulations of a runaway beam under parameters of the ITER tokamak, it is revealed that the magnetic ripple field can disperse the pitch-angle distribution significantly and improve the confinement of energetic runaway beam on the same time.« less
Computer programs for smoothing and scaling airfoil coordinates
NASA Technical Reports Server (NTRS)
Morgan, H. L., Jr.
1983-01-01
Detailed descriptions are given of the theoretical methods and associated computer codes of a program to smooth and a program to scale arbitrary airfoil coordinates. The smoothing program utilizes both least-squares polynomial and least-squares cubic spline techniques to smooth interatively the second derivatives of the y-axis airfoil coordinates with respect to a transformed x-axis system which unwraps the airfoil and stretches the nose and trailing-edge regions. The corresponding smooth airfoil coordinates are then determined by solving a tridiagonal matrix of simultaneous cubic-spline equations relating the y-axis coordinates and their corresponding second derivatives. A technique for computing the camber and thickness distribution of the smoothed airfoil is also discussed. The scaling program can then be used to scale the thickness distribution generated by the smoothing program to a specific maximum thickness which is then combined with the camber distribution to obtain the final scaled airfoil contour. Computer listings of the smoothing and scaling programs are included.
Large Scale EOF Analysis of Climate Data
NASA Astrophysics Data System (ADS)
Prabhat, M.; Gittens, A.; Kashinath, K.; Cavanaugh, N. R.; Mahoney, M.
2016-12-01
We present a distributed approach towards extracting EOFs from 3D climate data. We implement the method in Apache Spark, and process multi-TB sized datasets on O(1000-10,000) cores. We apply this method to latitude-weighted ocean temperature data from CSFR, a 2.2 terabyte-sized data set comprising ocean and subsurface reanalysis measurements collected at 41 levels in the ocean, at 6 hour intervals over 31 years. We extract the first 100 EOFs of this full data set and compare to the EOFs computed simply on the surface temperature field. Our analyses provide evidence of Kelvin and Rossy waves and components of large-scale modes of oscillation including the ENSO and PDO that are not visible in the usual SST EOFs. Further, they provide information on the the most influential parts of the ocean, such as the thermocline, that exist below the surface. Work is ongoing to understand the factors determining the depth-varying spatial patterns observed in the EOFs. We will experiment with weighting schemes to appropriately account for the differing depths of the observations. We also plan to apply the same distributed approach to analysis of analysis of 3D atmospheric climatic data sets, including multiple variables. Because the atmosphere changes on a quicker time-scale than the ocean, we expect that the results will demonstrate an even greater advantage to computing 3D EOFs in lieu of 2D EOFs.
Parallel Computing for Probabilistic Response Analysis of High Temperature Composites
NASA Technical Reports Server (NTRS)
Sues, R. H.; Lua, Y. J.; Smith, M. D.
1994-01-01
The objective of this Phase I research was to establish the required software and hardware strategies to achieve large scale parallelism in solving PCM problems. To meet this objective, several investigations were conducted. First, we identified the multiple levels of parallelism in PCM and the computational strategies to exploit these parallelisms. Next, several software and hardware efficiency investigations were conducted. These involved the use of three different parallel programming paradigms and solution of two example problems on both a shared-memory multiprocessor and a distributed-memory network of workstations.
Exploring Contextual Models in Chemical Patent Search
NASA Astrophysics Data System (ADS)
Urbain, Jay; Frieder, Ophir
We explore the development of probabilistic retrieval models for integrating term statistics with entity search using multiple levels of document context to improve the performance of chemical patent search. A distributed indexing model was developed to enable efficient named entity search and aggregation of term statistics at multiple levels of patent structure including individual words, sentences, claims, descriptions, abstracts, and titles. The system can be scaled to an arbitrary number of compute instances in a cloud computing environment to support concurrent indexing and query processing operations on large patent collections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Supinski, B.; Caliga, D.
2017-09-28
The primary objective of this project was to develop memory optimization technology to efficiently deliver data to, and distribute data within, the SRC-6's Field Programmable Gate Array- ("FPGA") based Multi-Adaptive Processors (MAPs). The hardware/software approach was to explore efficient MAP configurations and generate the compiler technology to exploit those configurations. This memory accessing technology represents an important step towards making reconfigurable symmetric multi-processor (SMP) architectures that will be a costeffective solution for large-scale scientific computing.
Analyzing large scale genomic data on the cloud with Sparkhit
Huang, Liren; Krüger, Jan
2018-01-01
Abstract Motivation The increasing amount of next-generation sequencing data poses a fundamental challenge on large scale genomic analytics. Existing tools use different distributed computational platforms to scale-out bioinformatics workloads. However, the scalability of these tools is not efficient. Moreover, they have heavy run time overheads when pre-processing large amounts of data. To address these limitations, we have developed Sparkhit: a distributed bioinformatics framework built on top of the Apache Spark platform. Results Sparkhit integrates a variety of analytical methods. It is implemented in the Spark extended MapReduce model. It runs 92–157 times faster than MetaSpark on metagenomic fragment recruitment and 18–32 times faster than Crossbow on data pre-processing. We analyzed 100 terabytes of data across four genomic projects in the cloud in 21 h, which includes the run times of cluster deployment and data downloading. Furthermore, our application on the entire Human Microbiome Project shotgun sequencing data was completed in 2 h, presenting an approach to easily associate large amounts of public datasets with reference data. Availability and implementation Sparkhit is freely available at: https://rhinempi.github.io/sparkhit/. Contact asczyrba@cebitec.uni-bielefeld.de Supplementary information Supplementary data are available at Bioinformatics online. PMID:29253074
Lee, Jonghyun; Yoon, Hongkyu; Kitanidis, Peter K.; ...
2016-06-09
When characterizing subsurface properties is crucial for reliable and cost-effective groundwater supply management and contaminant remediation. With recent advances in sensor technology, large volumes of hydro-geophysical and geochemical data can be obtained to achieve high-resolution images of subsurface properties. However, characterization with such a large amount of information requires prohibitive computational costs associated with “big data” processing and numerous large-scale numerical simulations. To tackle such difficulties, the Principal Component Geostatistical Approach (PCGA) has been proposed as a “Jacobian-free” inversion method that requires much smaller forward simulation runs for each iteration than the number of unknown parameters and measurements needed inmore » the traditional inversion methods. PCGA can be conveniently linked to any multi-physics simulation software with independent parallel executions. In our paper, we extend PCGA to handle a large number of measurements (e.g. 106 or more) by constructing a fast preconditioner whose computational cost scales linearly with the data size. For illustration, we characterize the heterogeneous hydraulic conductivity (K) distribution in a laboratory-scale 3-D sand box using about 6 million transient tracer concentration measurements obtained using magnetic resonance imaging. Since each individual observation has little information on the K distribution, the data was compressed by the zero-th temporal moment of breakthrough curves, which is equivalent to the mean travel time under the experimental setting. Moreover, only about 2,000 forward simulations in total were required to obtain the best estimate with corresponding estimation uncertainty, and the estimated K field captured key patterns of the original packing design, showing the efficiency and effectiveness of the proposed method. This article is protected by copyright. All rights reserved.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jonghyun; Yoon, Hongkyu; Kitanidis, Peter K.
When characterizing subsurface properties is crucial for reliable and cost-effective groundwater supply management and contaminant remediation. With recent advances in sensor technology, large volumes of hydro-geophysical and geochemical data can be obtained to achieve high-resolution images of subsurface properties. However, characterization with such a large amount of information requires prohibitive computational costs associated with “big data” processing and numerous large-scale numerical simulations. To tackle such difficulties, the Principal Component Geostatistical Approach (PCGA) has been proposed as a “Jacobian-free” inversion method that requires much smaller forward simulation runs for each iteration than the number of unknown parameters and measurements needed inmore » the traditional inversion methods. PCGA can be conveniently linked to any multi-physics simulation software with independent parallel executions. In our paper, we extend PCGA to handle a large number of measurements (e.g. 106 or more) by constructing a fast preconditioner whose computational cost scales linearly with the data size. For illustration, we characterize the heterogeneous hydraulic conductivity (K) distribution in a laboratory-scale 3-D sand box using about 6 million transient tracer concentration measurements obtained using magnetic resonance imaging. Since each individual observation has little information on the K distribution, the data was compressed by the zero-th temporal moment of breakthrough curves, which is equivalent to the mean travel time under the experimental setting. Moreover, only about 2,000 forward simulations in total were required to obtain the best estimate with corresponding estimation uncertainty, and the estimated K field captured key patterns of the original packing design, showing the efficiency and effectiveness of the proposed method. This article is protected by copyright. All rights reserved.« less
OpenCluster: A Flexible Distributed Computing Framework for Astronomical Data Processing
NASA Astrophysics Data System (ADS)
Wei, Shoulin; Wang, Feng; Deng, Hui; Liu, Cuiyin; Dai, Wei; Liang, Bo; Mei, Ying; Shi, Congming; Liu, Yingbo; Wu, Jingping
2017-02-01
The volume of data generated by modern astronomical telescopes is extremely large and rapidly growing. However, current high-performance data processing architectures/frameworks are not well suited for astronomers because of their limitations and programming difficulties. In this paper, we therefore present OpenCluster, an open-source distributed computing framework to support rapidly developing high-performance processing pipelines of astronomical big data. We first detail the OpenCluster design principles and implementations and present the APIs facilitated by the framework. We then demonstrate a case in which OpenCluster is used to resolve complex data processing problems for developing a pipeline for the Mingantu Ultrawide Spectral Radioheliograph. Finally, we present our OpenCluster performance evaluation. Overall, OpenCluster provides not only high fault tolerance and simple programming interfaces, but also a flexible means of scaling up the number of interacting entities. OpenCluster thereby provides an easily integrated distributed computing framework for quickly developing a high-performance data processing system of astronomical telescopes and for significantly reducing software development expenses.
NASA Technical Reports Server (NTRS)
Storaasli, Olaf O. (Editor); Housner, Jerrold M. (Editor)
1993-01-01
Computing speed is leaping forward by several orders of magnitude each decade. Engineers and scientists gathered at a NASA Langley symposium to discuss these exciting trends as they apply to parallel computational methods for large-scale structural analysis and design. Among the topics discussed were: large-scale static analysis; dynamic, transient, and thermal analysis; domain decomposition (substructuring); and nonlinear and numerical methods.
Jeltsch, Florian; Wurst, Susanne
2015-01-01
Small scale distribution of insect root herbivores may promote plant species diversity by creating patches of different herbivore pressure. However, determinants of small scale distribution of insect root herbivores, and impact of land use intensity on their small scale distribution are largely unknown. We sampled insect root herbivores and measured vegetation parameters and soil water content along transects in grasslands of different management intensity in three regions in Germany. We calculated community-weighted mean plant traits to test whether the functional plant community composition determines the small scale distribution of insect root herbivores. To analyze spatial patterns in plant species and trait composition and insect root herbivore abundance we computed Mantel correlograms. Insect root herbivores mainly comprised click beetle (Coleoptera, Elateridae) larvae (43%) in the investigated grasslands. Total insect root herbivore numbers were positively related to community-weighted mean traits indicating high plant growth rates and biomass (specific leaf area, reproductive- and vegetative plant height), and negatively related to plant traits indicating poor tissue quality (leaf C/N ratio). Generalist Elaterid larvae, when analyzed independently, were also positively related to high plant growth rates and furthermore to root dry mass, but were not related to tissue quality. Insect root herbivore numbers were not related to plant cover, plant species richness and soil water content. Plant species composition and to a lesser extent plant trait composition displayed spatial autocorrelation, which was not influenced by land use intensity. Insect root herbivore abundance was not spatially autocorrelated. We conclude that in semi-natural grasslands with a high share of generalist insect root herbivores, insect root herbivores affiliate with large, fast growing plants, presumably because of availability of high quantities of food. Affiliation of insect root herbivores with large, fast growing plants may counteract dominance of those species, thus promoting plant diversity. PMID:26517119
NASA Astrophysics Data System (ADS)
Langford, Z. L.; Kumar, J.; Hoffman, F. M.
2015-12-01
Observations indicate that over the past several decades, landscape processes in the Arctic have been changing or intensifying. A dynamic Arctic landscape has the potential to alter ecosystems across a broad range of scales. Accurate characterization is useful to understand the properties and organization of the landscape, optimal sampling network design, measurement and process upscaling and to establish a landscape-based framework for multi-scale modeling of ecosystem processes. This study seeks to delineate the landscape at Seward Peninsula of Alaska into ecoregions using large volumes (terabytes) of high spatial resolution satellite remote-sensing data. Defining high-resolution ecoregion boundaries is difficult because many ecosystem processes in Arctic ecosystems occur at small local to regional scales, which are often resolved in by coarse resolution satellites (e.g., MODIS). We seek to use data-fusion techniques and data analytics algorithms applied to Phased Array type L-band Synthetic Aperture Radar (PALSAR), Interferometric Synthetic Aperture Radar (IFSAR), Satellite for Observation of Earth (SPOT), WorldView-2, WorldView-3, and QuickBird-2 to develop high-resolution (˜5m) ecoregion maps for multiple time periods. Traditional analysis methods and algorithms are insufficient for analyzing and synthesizing such large geospatial data sets, and those algorithms rarely scale out onto large distributed- memory parallel computer systems. We seek to develop computationally efficient algorithms and techniques using high-performance computing for characterization of Arctic landscapes. We will apply a variety of data analytics algorithms, such as cluster analysis, complex object-based image analysis (COBIA), and neural networks. We also propose to use representativeness analysis within the Seward Peninsula domain to determine optimal sampling locations for fine-scale measurements. This methodology should provide an initial framework for analyzing dynamic landscape trends in Arctic ecosystems, such as shrubification and disturbances, and integration of ecoregions into multi-scale models.
O'Donnell, Michael
2015-01-01
State-and-transition simulation modeling relies on knowledge of vegetation composition and structure (states) that describe community conditions, mechanistic feedbacks such as fire that can affect vegetation establishment, and ecological processes that drive community conditions as well as the transitions between these states. However, as the need for modeling larger and more complex landscapes increase, a more advanced awareness of computing resources becomes essential. The objectives of this study include identifying challenges of executing state-and-transition simulation models, identifying common bottlenecks of computing resources, developing a workflow and software that enable parallel processing of Monte Carlo simulations, and identifying the advantages and disadvantages of different computing resources. To address these objectives, this study used the ApexRMS® SyncroSim software and embarrassingly parallel tasks of Monte Carlo simulations on a single multicore computer and on distributed computing systems. The results demonstrated that state-and-transition simulation models scale best in distributed computing environments, such as high-throughput and high-performance computing, because these environments disseminate the workloads across many compute nodes, thereby supporting analysis of larger landscapes, higher spatial resolution vegetation products, and more complex models. Using a case study and five different computing environments, the top result (high-throughput computing versus serial computations) indicated an approximate 96.6% decrease of computing time. With a single, multicore compute node (bottom result), the computing time indicated an 81.8% decrease relative to using serial computations. These results provide insight into the tradeoffs of using different computing resources when research necessitates advanced integration of ecoinformatics incorporating large and complicated data inputs and models. - See more at: http://aimspress.com/aimses/ch/reader/view_abstract.aspx?file_no=Environ2015030&flag=1#sthash.p1XKDtF8.dpuf
NASA Technical Reports Server (NTRS)
Wehrbein, W. M.; Leovy, C. B.
1981-01-01
A Curtis matrix is used to compute cooling by the 15 micron and 10 micron bands of carbon dioxide. Escape of radiation to space and exchange the lower boundary are used for the 9.6 micron band of ozone. Voigt line shape, vibrational relaxation, line overlap, and the temperature dependence of line strength distributions and transmission functions are incorporated into the Curtis matrices. The distributions of the atmospheric constituents included in the algorithm, and the method used to compute the Curtis matrices are discussed as well as cooling or heating by the 9.6 micron band of ozone. The FORTRAN programs and subroutines that were developed are described and listed.
Enabling Diverse Software Stacks on Supercomputers using High Performance Virtual Clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younge, Andrew J.; Pedretti, Kevin; Grant, Ryan
While large-scale simulations have been the hallmark of the High Performance Computing (HPC) community for decades, Large Scale Data Analytics (LSDA) workloads are gaining attention within the scientific community not only as a processing component to large HPC simulations, but also as standalone scientific tools for knowledge discovery. With the path towards Exascale, new HPC runtime systems are also emerging in a way that differs from classical distributed com- puting models. However, system software for such capabilities on the latest extreme-scale DOE supercomputing needs to be enhanced to more appropriately support these types of emerging soft- ware ecosystems. In thismore » paper, we propose the use of Virtual Clusters on advanced supercomputing resources to enable systems to support not only HPC workloads, but also emerging big data stacks. Specifi- cally, we have deployed the KVM hypervisor within Cray's Compute Node Linux on a XC-series supercomputer testbed. We also use libvirt and QEMU to manage and provision VMs directly on compute nodes, leveraging Ethernet-over-Aries network emulation. To our knowledge, this is the first known use of KVM on a true MPP supercomputer. We investigate the overhead our solution using HPC benchmarks, both evaluating single-node performance as well as weak scaling of a 32-node virtual cluster. Overall, we find single node performance of our solution using KVM on a Cray is very efficient with near-native performance. However overhead increases by up to 20% as virtual cluster size increases, due to limitations of the Ethernet-over-Aries bridged network. Furthermore, we deploy Apache Spark with large data analysis workloads in a Virtual Cluster, ef- fectively demonstrating how diverse software ecosystems can be supported by High Performance Virtual Clusters.« less
Parallel computing method for simulating hydrological processesof large rivers under climate change
NASA Astrophysics Data System (ADS)
Wang, H.; Chen, Y.
2016-12-01
Climate change is one of the proverbial global environmental problems in the world.Climate change has altered the watershed hydrological processes in time and space distribution, especially in worldlarge rivers.Watershed hydrological process simulation based on physically based distributed hydrological model can could have better results compared with the lumped models.However, watershed hydrological process simulation includes large amount of calculations, especially in large rivers, thus needing huge computing resources that may not be steadily available for the researchers or at high expense, this seriously restricted the research and application. To solve this problem, the current parallel method are mostly parallel computing in space and time dimensions.They calculate the natural features orderly thatbased on distributed hydrological model by grid (unit, a basin) from upstream to downstream.This articleproposes ahigh-performancecomputing method of hydrological process simulation with high speedratio and parallel efficiency.It combinedthe runoff characteristics of time and space of distributed hydrological model withthe methods adopting distributed data storage, memory database, distributed computing, parallel computing based on computing power unit.The method has strong adaptability and extensibility,which means it canmake full use of the computing and storage resources under the condition of limited computing resources, and the computing efficiency can be improved linearly with the increase of computing resources .This method can satisfy the parallel computing requirements ofhydrological process simulation in small, medium and large rivers.
NASA Technical Reports Server (NTRS)
Krasteva, Denitza T.
1998-01-01
Multidisciplinary design optimization (MDO) for large-scale engineering problems poses many challenges (e.g., the design of an efficient concurrent paradigm for global optimization based on disciplinary analyses, expensive computations over vast data sets, etc.) This work focuses on the application of distributed schemes for massively parallel architectures to MDO problems, as a tool for reducing computation time and solving larger problems. The specific problem considered here is configuration optimization of a high speed civil transport (HSCT), and the efficient parallelization of the embedded paradigm for reasonable design space identification. Two distributed dynamic load balancing techniques (random polling and global round robin with message combining) and two necessary termination detection schemes (global task count and token passing) were implemented and evaluated in terms of effectiveness and scalability to large problem sizes and a thousand processors. The effect of certain parameters on execution time was also inspected. Empirical results demonstrated stable performance and effectiveness for all schemes, and the parametric study showed that the selected algorithmic parameters have a negligible effect on performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmintier, Bryan; Hale, Elaine; Hodge, Bri-Mathias
2016-08-11
This paper discusses the development of, approaches for, experiences with, and some results from a large-scale, high-performance-computer-based (HPC-based) co-simulation of electric power transmission and distribution systems using the Integrated Grid Modeling System (IGMS). IGMS was developed at the National Renewable Energy Laboratory (NREL) as a novel Independent System Operator (ISO)-to-appliance scale electric power system modeling platform that combines off-the-shelf tools to simultaneously model 100s to 1000s of distribution systems in co-simulation with detailed ISO markets, transmission power flows, and AGC-level reserve deployment. Lessons learned from the co-simulation architecture development are shared, along with a case study that explores the reactivemore » power impacts of PV inverter voltage support on the bulk power system.« less
A Bayesian Analysis of Scale-Invariant Processes
2012-01-01
Earth Grid (EASE- Grid). The NED raster elevation data of one arc-second resolution (30 m) over the continental US are derived from multiple satellites ...instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send...empirical and ME distributions, yet ensuring computational efficiency. Instead of com- puting empirical histograms from large amount of data , only some
Predictive Anomaly Management for Resilient Virtualized Computing Infrastructures
2015-05-27
PREC: Practical Root Exploit Containment for Android Devices, ACM Conference on Data and Application Security and Privacy (CODASPY) . 03-MAR-14...05-OCT-11, . : , Hiep Nguyen, Yongmin Tan, Xiaohui Gu. Propagation-aware Anomaly Localization for Cloud Hosted Distributed Applications , ACM...Workshop on Managing Large-Scale Systems via the Analysis of System Logs and the Application of Machine Learning Techniques (SLAML) in conjunction with SOSP
A Computational framework for telemedicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foster, I.; von Laszewski, G.; Thiruvathukal, G. K.
1998-07-01
Emerging telemedicine applications require the ability to exploit diverse and geographically distributed resources. Highspeed networks are used to integrate advanced visualization devices, sophisticated instruments, large databases, archival storage devices, PCs, workstations, and supercomputers. This form of telemedical environment is similar to networked virtual supercomputers, also known as metacomputers. Metacomputers are already being used in many scientific application areas. In this article, we analyze requirements necessary for a telemedical computing infrastructure and compare them with requirements found in a typical metacomputing environment. We will show that metacomputing environments can be used to enable a more powerful and unified computational infrastructure formore » telemedicine. The Globus metacomputing toolkit can provide the necessary low level mechanisms to enable a large scale telemedical infrastructure. The Globus toolkit components are designed in a modular fashion and can be extended to support the specific requirements for telemedicine.« less
Large Scale Analysis of Geospatial Data with Dask and XArray
NASA Astrophysics Data System (ADS)
Zender, C. S.; Hamman, J.; Abernathey, R.; Evans, K. J.; Rocklin, M.; Zender, C. S.; Rocklin, M.
2017-12-01
The analysis of geospatial data with high level languages has acceleratedinnovation and the impact of existing data resources. However, as datasetsgrow beyond single-machine memory, data structures within these high levellanguages can become a bottleneck. New libraries like Dask and XArray resolve some of these scalability issues,providing interactive workflows that are both familiar tohigh-level-language researchers while also scaling out to much largerdatasets. This broadens the access of researchers to larger datasets on highperformance computers and, through interactive development, reducestime-to-insight when compared to traditional parallel programming techniques(MPI). This talk describes Dask, a distributed dynamic task scheduler, Dask.array, amulti-dimensional array that copies the popular NumPy interface, and XArray,a library that wraps NumPy/Dask.array with labeled and indexes axes,implementing the CF conventions. We discuss both the basic design of theselibraries and how they change interactive analysis of geospatial data, and alsorecent benefits and challenges of distributed computing on clusters ofmachines.
NASA Technical Reports Server (NTRS)
Devenport, William J.; Ragab, Saad A.
2000-01-01
Work was performed under this grant with a view to providing the experimental and computational results needed to improve the prediction of broadband stator noise in large bypass ratio aircraft engines. The central hypothesis of our study was that a large fraction of this noise was generated by the fan tip leakage vortices. More specifically, that these vortices are a significant component of the fan wake turbulence and they contain turbulent eddies of a type that can produce significant broadband noise. To test this hypothesis we originally proposed experimental work and computations with the following objectives: (1) to build a large scale two-dimensional cascade with a tip gap and a stationary endwall that, as far as possible, simulates the fan tip geometry, (2) to build a moving endwall for use with the large scale cascade, (3) to measure, in detail, the turbulence structure and spectrum generated by the blade wake and tip leakage vortex, for both endwall configurations, (4) to use the CFD to compute the flow and turbulence distributions for both the experimental configurations and the ADP fan, (5) to provide the experimental and CFD results for the cascades and the physical understanding gained from their study as a basis for improving the broadband noise prediction method. In large part these objectives have been achieved. The most important achievements and findings of our experimental and computational efforts are summarized below. The bibliography at the end of this report includes a list of all publications produced to date under this project. Note that this list is necessarily incomplete the task of publication (particularly in journal papers) continues.
Parallelization of Nullspace Algorithm for the computation of metabolic pathways
Jevremović, Dimitrije; Trinh, Cong T.; Srienc, Friedrich; Sosa, Carlos P.; Boley, Daniel
2011-01-01
Elementary mode analysis is a useful metabolic pathway analysis tool in understanding and analyzing cellular metabolism, since elementary modes can represent metabolic pathways with unique and minimal sets of enzyme-catalyzed reactions of a metabolic network under steady state conditions. However, computation of the elementary modes of a genome- scale metabolic network with 100–1000 reactions is very expensive and sometimes not feasible with the commonly used serial Nullspace Algorithm. In this work, we develop a distributed memory parallelization of the Nullspace Algorithm to handle efficiently the computation of the elementary modes of a large metabolic network. We give an implementation in C++ language with the support of MPI library functions for the parallel communication. Our proposed algorithm is accompanied with an analysis of the complexity and identification of major bottlenecks during computation of all possible pathways of a large metabolic network. The algorithm includes methods to achieve load balancing among the compute-nodes and specific communication patterns to reduce the communication overhead and improve efficiency. PMID:22058581
NASA Astrophysics Data System (ADS)
Georgiev, K.; Zlatev, Z.
2010-11-01
The Danish Eulerian Model (DEM) is an Eulerian model for studying the transport of air pollutants on large scale. Originally, the model was developed at the National Environmental Research Institute of Denmark. The model computational domain covers Europe and some neighbour parts belong to the Atlantic Ocean, Asia and Africa. If DEM model is to be applied by using fine grids, then its discretization leads to a huge computational problem. This implies that such a model as DEM must be run only on high-performance computer architectures. The implementation and tuning of such a complex large-scale model on each different computer is a non-trivial task. Here, some comparison results of running of this model on different kind of vector (CRAY C92A, Fujitsu, etc.), parallel computers with distributed memory (IBM SP, CRAY T3E, Beowulf clusters, Macintosh G4 clusters, etc.), parallel computers with shared memory (SGI Origin, SUN, etc.) and parallel computers with two levels of parallelism (IBM SMP, IBM BlueGene/P, clusters of multiprocessor nodes, etc.) will be presented. The main idea in the parallel version of DEM is domain partitioning approach. Discussions according to the effective use of the cache and hierarchical memories of the modern computers as well as the performance, speed-ups and efficiency achieved will be done. The parallel code of DEM, created by using MPI standard library, appears to be highly portable and shows good efficiency and scalability on different kind of vector and parallel computers. Some important applications of the computer model output are presented in short.
NASA Astrophysics Data System (ADS)
Land, Walker H., Jr.; Lewis, Michael; Sadik, Omowunmi; Wong, Lut; Wanekaya, Adam; Gonzalez, Richard J.; Balan, Arun
2004-04-01
This paper extends the classification approaches described in reference [1] in the following way: (1.) developing and evaluating a new method for evolving organophosphate nerve agent Support Vector Machine (SVM) classifiers using Evolutionary Programming, (2.) conducting research experiments using a larger database of organophosphate nerve agents, and (3.) upgrading the architecture to an object-based grid system for evaluating the classification of EP derived SVMs. Due to the increased threats of chemical and biological weapons of mass destruction (WMD) by international terrorist organizations, a significant effort is underway to develop tools that can be used to detect and effectively combat biochemical warfare. This paper reports the integration of multi-array sensors with Support Vector Machines (SVMs) for the detection of organophosphates nerve agents using a grid computing system called Legion. Grid computing is the use of large collections of heterogeneous, distributed resources (including machines, databases, devices, and users) to support large-scale computations and wide-area data access. Finally, preliminary results using EP derived support vector machines designed to operate on distributed systems have provided accurate classification results. In addition, distributed training time architectures are 50 times faster when compared to standard iterative training time methods.
Argonne simulation framework for intelligent transportation systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewing, T.; Doss, E.; Hanebutte, U.
1996-04-01
A simulation framework has been developed which defines a high-level architecture for a large-scale, comprehensive, scalable simulation of an Intelligent Transportation System (ITS). The simulator is designed to run on parallel computers and distributed (networked) computer systems; however, a version for a stand alone workstation is also available. The ITS simulator includes an Expert Driver Model (EDM) of instrumented ``smart`` vehicles with in-vehicle navigation units. The EDM is capable of performing optimal route planning and communicating with Traffic Management Centers (TMC). A dynamic road map data base is sued for optimum route planning, where the data is updated periodically tomore » reflect any changes in road or weather conditions. The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide 2-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphical user interfaces that includes human-factors studies to support safety and operational research. Realistic modeling of variations of the posted driving speed are based on human factor studies that take into consideration weather, road conditions, driver`s personality and behavior and vehicle type. The simulator has been developed on a distributed system of networked UNIX computers, but is designed to run on ANL`s IBM SP-X parallel computer system for large scale problems. A novel feature of the developed simulator is that vehicles will be represented by autonomous computer processes, each with a behavior model which performs independent route selection and reacts to external traffic events much like real vehicles. Vehicle processes interact with each other and with ITS components by exchanging messages. With this approach, one will be able to take advantage of emerging massively parallel processor (MPP) systems.« less
Multivariate quadrature for representing cloud condensation nuclei activity of aerosol populations
Fierce, Laura; McGraw, Robert L.
2017-07-26
Here, sparse representations of atmospheric aerosols are needed for efficient regional- and global-scale chemical transport models. Here we introduce a new framework for representing aerosol distributions, based on the quadrature method of moments. Given a set of moment constraints, we show how linear programming, combined with an entropy-inspired cost function, can be used to construct optimized quadrature representations of aerosol distributions. The sparse representations derived from this approach accurately reproduce cloud condensation nuclei (CCN) activity for realistically complex distributions simulated by a particleresolved model. Additionally, the linear programming techniques described in this study can be used to bound key aerosolmore » properties, such as the number concentration of CCN. Unlike the commonly used sparse representations, such as modal and sectional schemes, the maximum-entropy approach described here is not constrained to pre-determined size bins or assumed distribution shapes. This study is a first step toward a particle-based aerosol scheme that will track multivariate aerosol distributions with sufficient computational efficiency for large-scale simulations.« less
Multivariate quadrature for representing cloud condensation nuclei activity of aerosol populations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fierce, Laura; McGraw, Robert L.
Here, sparse representations of atmospheric aerosols are needed for efficient regional- and global-scale chemical transport models. Here we introduce a new framework for representing aerosol distributions, based on the quadrature method of moments. Given a set of moment constraints, we show how linear programming, combined with an entropy-inspired cost function, can be used to construct optimized quadrature representations of aerosol distributions. The sparse representations derived from this approach accurately reproduce cloud condensation nuclei (CCN) activity for realistically complex distributions simulated by a particleresolved model. Additionally, the linear programming techniques described in this study can be used to bound key aerosolmore » properties, such as the number concentration of CCN. Unlike the commonly used sparse representations, such as modal and sectional schemes, the maximum-entropy approach described here is not constrained to pre-determined size bins or assumed distribution shapes. This study is a first step toward a particle-based aerosol scheme that will track multivariate aerosol distributions with sufficient computational efficiency for large-scale simulations.« less
Parallel Optimization of Polynomials for Large-scale Problems in Stability and Control
NASA Astrophysics Data System (ADS)
Kamyar, Reza
In this thesis, we focus on some of the NP-hard problems in control theory. Thanks to the converse Lyapunov theory, these problems can often be modeled as optimization over polynomials. To avoid the problem of intractability, we establish a trade off between accuracy and complexity. In particular, we develop a sequence of tractable optimization problems --- in the form of Linear Programs (LPs) and/or Semi-Definite Programs (SDPs) --- whose solutions converge to the exact solution of the NP-hard problem. However, the computational and memory complexity of these LPs and SDPs grow exponentially with the progress of the sequence - meaning that improving the accuracy of the solutions requires solving SDPs with tens of thousands of decision variables and constraints. Setting up and solving such problems is a significant challenge. The existing optimization algorithms and software are only designed to use desktop computers or small cluster computers --- machines which do not have sufficient memory for solving such large SDPs. Moreover, the speed-up of these algorithms does not scale beyond dozens of processors. This in fact is the reason we seek parallel algorithms for setting-up and solving large SDPs on large cluster- and/or super-computers. We propose parallel algorithms for stability analysis of two classes of systems: 1) Linear systems with a large number of uncertain parameters; 2) Nonlinear systems defined by polynomial vector fields. First, we develop a distributed parallel algorithm which applies Polya's and/or Handelman's theorems to some variants of parameter-dependent Lyapunov inequalities with parameters defined over the standard simplex. The result is a sequence of SDPs which possess a block-diagonal structure. We then develop a parallel SDP solver which exploits this structure in order to map the computation, memory and communication to a distributed parallel environment. Numerical tests on a supercomputer demonstrate the ability of the algorithm to efficiently utilize hundreds and potentially thousands of processors, and analyze systems with 100+ dimensional state-space. Furthermore, we extend our algorithms to analyze robust stability over more complicated geometries such as hypercubes and arbitrary convex polytopes. Our algorithms can be readily extended to address a wide variety of problems in control such as Hinfinity synthesis for systems with parametric uncertainty and computing control Lyapunov functions.
NASA Technical Reports Server (NTRS)
Bushnell, Peter
1988-01-01
The aerodynamic pressure distribution was determined on a rotating Prop-Fan blade at the S1-MA wind tunnel facility operated by the Office National D'Etudes et de Recherches Aerospatiale (ONERA) in Modane, France. The pressure distributions were measured at thirteen radial stations on a single rotation Large Scale Advanced Prop-Fan (LAP/SR7) blade, for a sequence of operating conditions including inflow Mach numbers ranging from 0.03 to 0.78. Pressure distributions for more than one power coefficient and/or advanced ratio setting were measured for most of the inflow Mach numbers investigated. Due to facility power limitations the Prop-Fan test installation was a two bladed version of the eight design configuration. The power coefficient range investigated was therefore selected to cover typical power loading per blade conditions which occur within the Prop-Fan operating envelope. The experimental results provide an extensive source of information on the aerodynamic behavior of the swept Prop-Fan blade, including details which were elusive to current computational models and do not appear in the two-dimensional airfoil data.
Saura, Santiago; Rondinini, Carlo
2016-01-01
One of the biggest challenges in large-scale conservation is quantifying connectivity at broad geographic scales and for a large set of species. Because connectivity analyses can be computationally intensive, and the planning process quite complex when multiple taxa are involved, assessing connectivity at large spatial extents for many species turns to be often intractable. Such limitation results in that conducted assessments are often partial by focusing on a few key species only, or are generic by considering a range of dispersal distances and a fixed set of areas to connect that are not directly linked to the actual spatial distribution or mobility of particular species. By using a graph theory framework, here we propose an approach to reduce computational effort and effectively consider large assemblages of species in obtaining multi-species connectivity priorities. We demonstrate the potential of the approach by identifying defragmentation priorities in the Italian road network focusing on medium and large terrestrial mammals. We show that by combining probabilistic species graphs prior to conducting the network analysis (i) it is possible to analyse connectivity once for all species simultaneously, obtaining conservation or restoration priorities that apply for the entire species assemblage; and that (ii) those priorities are well aligned with the ones that would be obtained by aggregating the results of separate connectivity analysis for each of the individual species. This approach offers great opportunities to extend connectivity assessments to large assemblages of species and broad geographic scales. PMID:27768718
Ma, Li; Runesha, H Birali; Dvorkin, Daniel; Garbe, John R; Da, Yang
2008-01-01
Background Genome-wide association studies (GWAS) using single nucleotide polymorphism (SNP) markers provide opportunities to detect epistatic SNPs associated with quantitative traits and to detect the exact mode of an epistasis effect. Computational difficulty is the main bottleneck for epistasis testing in large scale GWAS. Results The EPISNPmpi and EPISNP computer programs were developed for testing single-locus and epistatic SNP effects on quantitative traits in GWAS, including tests of three single-locus effects for each SNP (SNP genotypic effect, additive and dominance effects) and five epistasis effects for each pair of SNPs (two-locus interaction, additive × additive, additive × dominance, dominance × additive, and dominance × dominance) based on the extended Kempthorne model. EPISNPmpi is the parallel computing program for epistasis testing in large scale GWAS and achieved excellent scalability for large scale analysis and portability for various parallel computing platforms. EPISNP is the serial computing program based on the EPISNPmpi code for epistasis testing in small scale GWAS using commonly available operating systems and computer hardware. Three serial computing utility programs were developed for graphical viewing of test results and epistasis networks, and for estimating CPU time and disk space requirements. Conclusion The EPISNPmpi parallel computing program provides an effective computing tool for epistasis testing in large scale GWAS, and the epiSNP serial computing programs are convenient tools for epistasis analysis in small scale GWAS using commonly available computer hardware. PMID:18644146
Computing the universe: how large-scale simulations illuminate galaxies and dark energy
NASA Astrophysics Data System (ADS)
O'Shea, Brian
2015-04-01
High-performance and large-scale computing is absolutely to understanding astronomical objects such as stars, galaxies, and the cosmic web. This is because these are structures that operate on physical, temporal, and energy scales that cannot be reasonably approximated in the laboratory, and whose complexity and nonlinearity often defies analytic modeling. In this talk, I show how the growth of computing platforms over time has facilitated our understanding of astrophysical and cosmological phenomena, focusing primarily on galaxies and large-scale structure in the Universe.
Assembling Large, Multi-Sensor Climate Datasets Using the SciFlo Grid Workflow System
NASA Astrophysics Data System (ADS)
Wilson, B. D.; Manipon, G.; Xing, Z.; Fetzer, E.
2008-12-01
NASA's Earth Observing System (EOS) is the world's most ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the A-Train platforms (AIRS, AMSR-E, MODIS, MISR, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over periods of years to decades. However, moving from predominantly single-instrument studies to a multi-sensor, measurement-based model for long-duration analysis of important climate variables presents serious challenges for large-scale data mining and data fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another instrument (MODIS), and to a model (ECMWF), stratify the comparisons using a classification of the cloud scenes from CloudSat, and repeat the entire analysis over years of AIRS data. To perform such an analysis, one must discover & access multiple datasets from remote sites, find the space/time matchups between instruments swaths and model grids, understand the quality flags and uncertainties for retrieved physical variables, and assemble merged datasets for further scientific and statistical analysis. To meet these large-scale challenges, we are utilizing a Grid computing and dataflow framework, named SciFlo, in which we are deploying a set of versatile and reusable operators for data query, access, subsetting, co-registration, mining, fusion, and advanced statistical analysis. SciFlo is a semantically-enabled ("smart") Grid Workflow system that ties together a peer-to-peer network of computers into an efficient engine for distributed computation. The SciFlo workflow engine enables scientists to do multi-instrument Earth Science by assembling remotely-invokable Web Services (SOAP or http GET URLs), native executables, command-line scripts, and Python codes into a distributed computing flow. A scientist visually authors the graph of operation in the VizFlow GUI, or uses a text editor to modify the simple XML workflow documents. The SciFlo client & server engines optimize the execution of such distributed workflows and allow the user to transparently find and use datasets and operators without worrying about the actual location of the Grid resources. The engine transparently moves data to the operators, and moves operators to the data (on the dozen trusted SciFlo nodes). SciFlo also deploys a variety of Data Grid services to: query datasets in space and time, locate & retrieve on-line data granules, provide on-the-fly variable and spatial subsetting, and perform pairwise instrument matchups for A-Train datasets. These services are combined into efficient workflows to assemble the desired large-scale, merged climate datasets. SciFlo is currently being applied in several large climate studies: comparisons of aerosol optical depth between MODIS, MISR, AERONET ground network, and U. Michigan's IMPACT aerosol transport model; characterization of long-term biases in microwave and infrared instruments (AIRS, MLS) by comparisons to GPS temperature retrievals accurate to 0.1 degrees Kelvin; and construction of a decade-long, multi-sensor water vapor climatology stratified by classified cloud scene by bringing together datasets from AIRS/AMSU, AMSR-E, MLS, MODIS, and CloudSat (NASA MEASUREs grant, Fetzer PI). The presentation will discuss the SciFlo technologies, their application in these distributed workflows, and the many challenges encountered in assembling and analyzing these massive datasets.
Reduced-Order Biogeochemical Flux Model for High-Resolution Multi-Scale Biophysical Simulations
NASA Astrophysics Data System (ADS)
Smith, Katherine; Hamlington, Peter; Pinardi, Nadia; Zavatarelli, Marco
2017-04-01
Biogeochemical tracers and their interactions with upper ocean physical processes such as submesoscale circulations and small-scale turbulence are critical for understanding the role of the ocean in the global carbon cycle. These interactions can cause small-scale spatial and temporal heterogeneity in tracer distributions that can, in turn, greatly affect carbon exchange rates between the atmosphere and interior ocean. For this reason, it is important to take into account small-scale biophysical interactions when modeling the global carbon cycle. However, explicitly resolving these interactions in an earth system model (ESM) is currently infeasible due to the enormous associated computational cost. As a result, understanding and subsequently parameterizing how these small-scale heterogeneous distributions develop and how they relate to larger resolved scales is critical for obtaining improved predictions of carbon exchange rates in ESMs. In order to address this need, we have developed the reduced-order, 17 state variable Biogeochemical Flux Model (BFM-17) that follows the chemical functional group approach, which allows for non-Redfield stoichiometric ratios and the exchange of matter through units of carbon, nitrate, and phosphate. This model captures the behavior of open-ocean biogeochemical systems without substantially increasing computational cost, thus allowing the model to be combined with computationally-intensive, fully three-dimensional, non-hydrostatic large eddy simulations (LES). In this talk, we couple BFM-17 with the Princeton Ocean Model and show good agreement between predicted monthly-averaged results and Bermuda testbed area field data (including the Bermuda-Atlantic Time-series Study and Bermuda Testbed Mooring). Through these tests, we demonstrate the capability of BFM-17 to accurately model open-ocean biochemistry. Additionally, we discuss the use of BFM-17 within a multi-scale LES framework and outline how this will further our understanding of turbulent biophysical interactions in the upper ocean.
Reduced-Order Biogeochemical Flux Model for High-Resolution Multi-Scale Biophysical Simulations
NASA Astrophysics Data System (ADS)
Smith, K.; Hamlington, P.; Pinardi, N.; Zavatarelli, M.; Milliff, R. F.
2016-12-01
Biogeochemical tracers and their interactions with upper ocean physical processes such as submesoscale circulations and small-scale turbulence are critical for understanding the role of the ocean in the global carbon cycle. These interactions can cause small-scale spatial and temporal heterogeneity in tracer distributions which can, in turn, greatly affect carbon exchange rates between the atmosphere and interior ocean. For this reason, it is important to take into account small-scale biophysical interactions when modeling the global carbon cycle. However, explicitly resolving these interactions in an earth system model (ESM) is currently infeasible due to the enormous associated computational cost. As a result, understanding and subsequently parametrizing how these small-scale heterogeneous distributions develop and how they relate to larger resolved scales is critical for obtaining improved predictions of carbon exchange rates in ESMs. In order to address this need, we have developed the reduced-order, 17 state variable Biogeochemical Flux Model (BFM-17). This model captures the behavior of open-ocean biogeochemical systems without substantially increasing computational cost, thus allowing the model to be combined with computationally-intensive, fully three-dimensional, non-hydrostatic large eddy simulations (LES). In this talk, we couple BFM-17 with the Princeton Ocean Model and show good agreement between predicted monthly-averaged results and Bermuda testbed area field data (including the Bermuda-Atlantic Time Series and Bermuda Testbed Mooring). Through these tests, we demonstrate the capability of BFM-17 to accurately model open-ocean biochemistry. Additionally, we discuss the use of BFM-17 within a multi-scale LES framework and outline how this will further our understanding of turbulent biophysical interactions in the upper ocean.
Performance of the Heavy Flavor Tracker (HFT) detector in star experiment at RHIC
NASA Astrophysics Data System (ADS)
Alruwaili, Manal
With the growing technology, the number of the processors is becoming massive. Current supercomputer processing will be available on desktops in the next decade. For mass scale application software development on massive parallel computing available on desktops, existing popular languages with large libraries have to be augmented with new constructs and paradigms that exploit massive parallel computing and distributed memory models while retaining the user-friendliness. Currently, available object oriented languages for massive parallel computing such as Chapel, X10 and UPC++ exploit distributed computing, data parallel computing and thread-parallelism at the process level in the PGAS (Partitioned Global Address Space) memory model. However, they do not incorporate: 1) any extension at for object distribution to exploit PGAS model; 2) the programs lack the flexibility of migrating or cloning an object between places to exploit load balancing; and 3) lack the programming paradigms that will result from the integration of data and thread-level parallelism and object distribution. In the proposed thesis, I compare different languages in PGAS model; propose new constructs that extend C++ with object distribution and object migration; and integrate PGAS based process constructs with these extensions on distributed objects. Object cloning and object migration. Also a new paradigm MIDD (Multiple Invocation Distributed Data) is presented when different copies of the same class can be invoked, and work on different elements of a distributed data concurrently using remote method invocations. I present new constructs, their grammar and their behavior. The new constructs have been explained using simple programs utilizing these constructs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.
Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally-efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace, such that the dimensionality of themore » problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2D and a random hydraulic conductivity field in 3D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ~10 1 to ~10 2 in a multi-core computational environment. Furthermore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate- to large-scale problems.« less
Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.
2016-09-01
Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally-efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace, such that the dimensionality of themore » problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2D and a random hydraulic conductivity field in 3D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ~10 1 to ~10 2 in a multi-core computational environment. Furthermore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate- to large-scale problems.« less
Dynamic Load Balancing for Adaptive Computations on Distributed-Memory Machines
NASA Technical Reports Server (NTRS)
1999-01-01
Dynamic load balancing is central to adaptive mesh-based computations on large-scale parallel computers. The principal investigator has investigated various issues on the dynamic load balancing problem under NASA JOVE and JAG rants. The major accomplishments of the project are two graph partitioning algorithms and a load balancing framework. The S-HARP dynamic graph partitioner is known to be the fastest among the known dynamic graph partitioners to date. It can partition a graph of over 100,000 vertices in 0.25 seconds on a 64- processor Cray T3E distributed-memory multiprocessor while maintaining the scalability of over 16-fold speedup. Other known and widely used dynamic graph partitioners take over a second or two while giving low scalability of a few fold speedup on 64 processors. These results have been published in journals and peer-reviewed flagship conferences.
Turbulent kinetics of a large wind farm and their impact in the neutral boundary layer
Na, Ji Sung; Koo, Eunmo; Munoz-Esparza, Domingo; ...
2015-12-28
High-resolution large-eddy simulation of the flow over a large wind farm (64 wind turbines) is performed using the HIGRAD/FIRETEC-WindBlade model, which is a high-performance computing wind turbine–atmosphere interaction model that uses the Lagrangian actuator line method to represent rotating turbine blades. These high-resolution large-eddy simulation results are used to parameterize the thrust and power coefficients that contain information about turbine interference effects within the wind farm. Those coefficients are then incorporated into the WRF (Weather Research and Forecasting) model in order to evaluate interference effects in larger-scale models. In the high-resolution WindBlade wind farm simulation, insufficient distance between turbines createsmore » the interference between turbines, including significant vertical variations in momentum and turbulent intensity. The characteristics of the wake are further investigated by analyzing the distribution of the vorticity and turbulent intensity. Quadrant analysis in the turbine and post-turbine areas reveals that the ejection motion induced by the presence of the wind turbines is dominant compared to that in the other quadrants, indicating that the sweep motion is increased at the location where strong wake recovery occurs. Regional-scale WRF simulations reveal that although the turbulent mixing induced by the wind farm is partly diffused to the upper region, there is no significant change in the boundary layer depth. The velocity deficit does not appear to be very sensitive to the local distribution of turbine coefficients. However, differences of about 5% on parameterized turbulent kinetic energy were found depending on the turbine coefficient distribution. Furthermore, turbine coefficients that consider interference in the wind farm should be used in wind farm parameterization for larger-scale models to better describe sub-grid scale turbulent processes.« less
Investigating Darcy-scale assumptions by means of a multiphysics algorithm
NASA Astrophysics Data System (ADS)
Tomin, Pavel; Lunati, Ivan
2016-09-01
Multiphysics (or hybrid) algorithms, which couple Darcy and pore-scale descriptions of flow through porous media in a single numerical framework, are usually employed to decrease the computational cost of full pore-scale simulations or to increase the accuracy of pure Darcy-scale simulations when a simple macroscopic description breaks down. Despite the massive increase in available computational power, the application of these techniques remains limited to core-size problems and upscaling remains crucial for practical large-scale applications. In this context, the Hybrid Multiscale Finite Volume (HMsFV) method, which constructs the macroscopic (Darcy-scale) problem directly by numerical averaging of pore-scale flow, offers not only a flexible framework to efficiently deal with multiphysics problems, but also a tool to investigate the assumptions used to derive macroscopic models and to better understand the relationship between pore-scale quantities and the corresponding macroscale variables. Indeed, by direct comparison of the multiphysics solution with a reference pore-scale simulation, we can assess the validity of the closure assumptions inherent to the multiphysics algorithm and infer the consequences for macroscopic models at the Darcy scale. We show that the definition of the scale ratio based on the geometric properties of the porous medium is well justified only for single-phase flow, whereas in case of unstable multiphase flow the nonlinear interplay between different forces creates complex fluid patterns characterized by new spatial scales, which emerge dynamically and weaken the scale-separation assumption. In general, the multiphysics solution proves very robust even when the characteristic size of the fluid-distribution patterns is comparable with the observation length, provided that all relevant physical processes affecting the fluid distribution are considered. This suggests that macroscopic constitutive relationships (e.g., the relative permeability) should account for the fact that they depend not only on the saturation but also on the actual characteristics of the fluid distribution.
Dependence of Snowmelt Simulations on Scaling of the Forcing Processes (Invited)
NASA Astrophysics Data System (ADS)
Winstral, A. H.; Marks, D. G.; Gurney, R. J.
2009-12-01
The spatial organization and scaling relationships of snow distribution in mountain environs is ultimately dependent on the controlling processes. These processes include interactions between weather, topography, vegetation, snow state, and seasonally-dependent radiation inputs. In large scale snow modeling it is vital to know these dependencies to obtain accurate predictions while reducing computational costs. This study examined the scaling characteristics of the forcing processes and the dependency of distributed snowmelt simulations to their scaling. A base model simulation characterized these processes with 10m resolution over a 14.0 km2 basin with an elevation range of 1474 - 2244 masl. Each of the major processes affecting snow accumulation and melt - precipitation, wind speed, solar radiation, thermal radiation, temperature, and vapor pressure - were independently degraded to 1 km resolution. Seasonal and event-specific results were analyzed. Results indicated that scale effects on melt vary by process and weather conditions. The dependence of melt simulations on the scaling of solar radiation fluxes also had a seasonal component. These process-based scaling characteristics should remain static through time as they are based on physical considerations. As such, these results not only provide guidance for current modeling efforts, but are also well suited to predicting how potential climate changes will affect the heterogeneity of mountain snow distributions.
Fast distributed large-pixel-count hologram computation using a GPU cluster.
Pan, Yuechao; Xu, Xuewu; Liang, Xinan
2013-09-10
Large-pixel-count holograms are one essential part for big size holographic three-dimensional (3D) display, but the generation of such holograms is computationally demanding. In order to address this issue, we have built a graphics processing unit (GPU) cluster with 32.5 Tflop/s computing power and implemented distributed hologram computation on it with speed improvement techniques, such as shared memory on GPU, GPU level adaptive load balancing, and node level load distribution. Using these speed improvement techniques on the GPU cluster, we have achieved 71.4 times computation speed increase for 186M-pixel holograms. Furthermore, we have used the approaches of diffraction limits and subdivision of holograms to overcome the GPU memory limit in computing large-pixel-count holograms. 745M-pixel and 1.80G-pixel holograms were computed in 343 and 3326 s, respectively, for more than 2 million object points with RGB colors. Color 3D objects with 1.02M points were successfully reconstructed from 186M-pixel hologram computed in 8.82 s with all the above three speed improvement techniques. It is shown that distributed hologram computation using a GPU cluster is a promising approach to increase the computation speed of large-pixel-count holograms for large size holographic display.
Potjans, Wiebke; Morrison, Abigail; Diesmann, Markus
2010-01-01
A major puzzle in the field of computational neuroscience is how to relate system-level learning in higher organisms to synaptic plasticity. Recently, plasticity rules depending not only on pre- and post-synaptic activity but also on a third, non-local neuromodulatory signal have emerged as key candidates to bridge the gap between the macroscopic and the microscopic level of learning. Crucial insights into this topic are expected to be gained from simulations of neural systems, as these allow the simultaneous study of the multiple spatial and temporal scales that are involved in the problem. In particular, synaptic plasticity can be studied during the whole learning process, i.e., on a time scale of minutes to hours and across multiple brain areas. Implementing neuromodulated plasticity in large-scale network simulations where the neuromodulatory signal is dynamically generated by the network itself is challenging, because the network structure is commonly defined purely by the connectivity graph without explicit reference to the embedding of the nodes in physical space. Furthermore, the simulation of networks with realistic connectivity entails the use of distributed computing. A neuromodulated synapse must therefore be informed in an efficient way about the neuromodulatory signal, which is typically generated by a population of neurons located on different machines than either the pre- or post-synaptic neuron. Here, we develop a general framework to solve the problem of implementing neuromodulated plasticity in a time-driven distributed simulation, without reference to a particular implementation language, neuromodulator, or neuromodulated plasticity mechanism. We implement our framework in the simulator NEST and demonstrate excellent scaling up to 1024 processors for simulations of a recurrent network incorporating neuromodulated spike-timing dependent plasticity. PMID:21151370
Large-N kinetic theory for highly occupied systems
NASA Astrophysics Data System (ADS)
Walz, R.; Boguslavski, K.; Berges, J.
2018-06-01
We consider an effective kinetic description for quantum many-body systems, which is not based on a weak-coupling or diluteness expansion. Instead, it employs an expansion in the number of field components N of the underlying scalar quantum field theory. Extending previous studies, we demonstrate that the large-N kinetic theory at next-to-leading order is able to describe important aspects of highly occupied systems, which are beyond standard perturbative kinetic approaches. We analyze the underlying quasiparticle dynamics by computing the effective scattering matrix elements analytically and solve numerically the large-N kinetic equation for a highly occupied system far from equilibrium. This allows us to compute the universal scaling form of the distribution function at an infrared nonthermal fixed point within a kinetic description, and we compare to existing lattice field theory simulation results.
Linear static structural and vibration analysis on high-performance computers
NASA Technical Reports Server (NTRS)
Baddourah, M. A.; Storaasli, O. O.; Bostic, S. W.
1993-01-01
Parallel computers offer the oppurtunity to significantly reduce the computation time necessary to analyze large-scale aerospace structures. This paper presents algorithms developed for and implemented on massively-parallel computers hereafter referred to as Scalable High-Performance Computers (SHPC), for the most computationally intensive tasks involved in structural analysis, namely, generation and assembly of system matrices, solution of systems of equations and calculation of the eigenvalues and eigenvectors. Results on SHPC are presented for large-scale structural problems (i.e. models for High-Speed Civil Transport). The goal of this research is to develop a new, efficient technique which extends structural analysis to SHPC and makes large-scale structural analyses tractable.
Direct Computation of Sound Radiation by Jet Flow Using Large-scale Equations
NASA Technical Reports Server (NTRS)
Mankbadi, R. R.; Shih, S. H.; Hixon, D. R.; Povinelli, L. A.
1995-01-01
Jet noise is directly predicted using large-scale equations. The computational domain is extended in order to directly capture the radiated field. As in conventional large-eddy-simulations, the effect of the unresolved scales on the resolved ones is accounted for. Special attention is given to boundary treatment to avoid spurious modes that can render the computed fluctuations totally unacceptable. Results are presented for a supersonic jet at Mach number 2.1.
Jung, Yousung; Shao, Yihan; Head-Gordon, Martin
2007-09-01
The scaled opposite spin Møller-Plesset method (SOS-MP2) is an economical way of obtaining correlation energies that are computationally cheaper, and yet, in a statistical sense, of higher quality than standard MP2 theory, by introducing one empirical parameter. But SOS-MP2 still has a fourth-order scaling step that makes the method inapplicable to very large molecular systems. We reduce the scaling of SOS-MP2 by exploiting the sparsity of expansion coefficients and local integral matrices, by performing local auxiliary basis expansions for the occupied-virtual product distributions. To exploit sparsity of 3-index local quantities, we use a blocking scheme in which entire zero-rows and columns, for a given third global index, are deleted by comparison against a numerical threshold. This approach minimizes sparse matrix book-keeping overhead, and also provides sufficiently large submatrices after blocking, to allow efficient matrix-matrix multiplies. The resulting algorithm is formally cubic scaling, and requires only moderate computational resources (quadratic memory and disk space) and, in favorable cases, is shown to yield effective quadratic scaling behavior in the size regime we can apply it to. Errors associated with local fitting using the attenuated Coulomb metric and numerical thresholds in the blocking procedure are found to be insignificant in terms of the predicted relative energies. A diverse set of test calculations shows that the size of system where significant computational savings can be achieved depends strongly on the dimensionality of the system, and the extent of localizability of the molecular orbitals. Copyright 2007 Wiley Periodicals, Inc.
Levy, Scott; Ferreira, Kurt B.; Bridges, Patrick G.; ...
2014-12-09
Building the next-generation of extreme-scale distributed systems will require overcoming several challenges related to system resilience. As the number of processors in these systems grow, the failure rate increases proportionally. One of the most common sources of failure in large-scale systems is memory. In this paper, we propose a novel runtime for transparently exploiting memory content similarity to improve system resilience by reducing the rate at which memory errors lead to node failure. We evaluate the viability of this approach by examining memory snapshots collected from eight high-performance computing (HPC) applications and two important HPC operating systems. Based on themore » characteristics of the similarity uncovered, we conclude that our proposed approach shows promise for addressing system resilience in large-scale systems.« less
Parallel Computation of the Regional Ocean Modeling System (ROMS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, P; Song, Y T; Chao, Y
2005-04-05
The Regional Ocean Modeling System (ROMS) is a regional ocean general circulation modeling system solving the free surface, hydrostatic, primitive equations over varying topography. It is free software distributed world-wide for studying both complex coastal ocean problems and the basin-to-global scale ocean circulation. The original ROMS code could only be run on shared-memory systems. With the increasing need to simulate larger model domains with finer resolutions and on a variety of computer platforms, there is a need in the ocean-modeling community to have a ROMS code that can be run on any parallel computer ranging from 10 to hundreds ofmore » processors. Recently, we have explored parallelization for ROMS using the MPI programming model. In this paper, an efficient parallelization strategy for such a large-scale scientific software package, based on an existing shared-memory computing model, is presented. In addition, scientific applications and data-performance issues on a couple of SGI systems, including Columbia, the world's third-fastest supercomputer, are discussed.« less
Extending the length and time scales of Gram-Schmidt Lyapunov vector computations
NASA Astrophysics Data System (ADS)
Costa, Anthony B.; Green, Jason R.
2013-08-01
Lyapunov vectors have found growing interest recently due to their ability to characterize systems out of thermodynamic equilibrium. The computation of orthogonal Gram-Schmidt vectors requires multiplication and QR decomposition of large matrices, which grow as N2 (with the particle count). This expense has limited such calculations to relatively small systems and short time scales. Here, we detail two implementations of an algorithm for computing Gram-Schmidt vectors. The first is a distributed-memory message-passing method using Scalapack. The second uses the newly-released MAGMA library for GPUs. We compare the performance of both codes for Lennard-Jones fluids from N=100 to 1300 between Intel Nahalem/Infiniband DDR and NVIDIA C2050 architectures. To our best knowledge, these are the largest systems for which the Gram-Schmidt Lyapunov vectors have been computed, and the first time their calculation has been GPU-accelerated. We conclude that Lyapunov vector calculations can be significantly extended in length and time by leveraging the power of GPU-accelerated linear algebra.
High Performance Geostatistical Modeling of Biospheric Resources
NASA Astrophysics Data System (ADS)
Pedelty, J. A.; Morisette, J. T.; Smith, J. A.; Schnase, J. L.; Crosier, C. S.; Stohlgren, T. J.
2004-12-01
We are using parallel geostatistical codes to study spatial relationships among biospheric resources in several study areas. For example, spatial statistical models based on large- and small-scale variability have been used to predict species richness of both native and exotic plants (hot spots of diversity) and patterns of exotic plant invasion. However, broader use of geostastics in natural resource modeling, especially at regional and national scales, has been limited due to the large computing requirements of these applications. To address this problem, we implemented parallel versions of the kriging spatial interpolation algorithm. The first uses the Message Passing Interface (MPI) in a master/slave paradigm on an open source Linux Beowulf cluster, while the second is implemented with the new proprietary Xgrid distributed processing system on an Xserve G5 cluster from Apple Computer, Inc. These techniques are proving effective and provide the basis for a national decision support capability for invasive species management that is being jointly developed by NASA and the US Geological Survey.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grossman, Max; Pritchard Jr., Howard Porter; Budimlic, Zoran
2016-12-22
Graph500 [14] is an effort to offer a standardized benchmark across large-scale distributed platforms which captures the behavior of common communicationbound graph algorithms. Graph500 differs from other large-scale benchmarking efforts (such as HPL [6] or HPGMG [7]) primarily in the irregularity of its computation and data access patterns. The core computational kernel of Graph500 is a breadth-first search (BFS) implemented on an undirected graph. The output of Graph500 is a spanning tree of the input graph, usually represented by a predecessor mapping for every node in the graph. The Graph500 benchmark defines several pre-defined input sizes for implementers to testmore » against. This report summarizes investigation into implementing the Graph500 benchmark on OpenSHMEM, and focuses on first building a strong and practical understanding of the strengths and limitations of past work before proposing and developing novel extensions.« less
NASA Technical Reports Server (NTRS)
Ameri, Ali A.; Rigby, David L.; Steinthorsson, Erlendur; Heidmann, James D.; Fabian, John C.
2008-01-01
The effect of the upstream wake on the blade heat transfer has been numerically examined. The geometry and the flow conditions of the first stage turbine blade of GE s E3 engine with a tip clearance equal to 2 percent of the span was utilized. Based on numerical calculations of the vane, a set of wake boundary conditions were approximated, which were subsequently imposed upon the downstream blade. This set consisted of the momentum and thermal wakes as well as the variation in modeled turbulence quantities of turbulence intensity and the length scale. Using a one-blade periodic domain, the distributions of unsteady heat transfer rate on the turbine blade and its tip, as affected by the wake, were determined. Such heat transfer coefficient distribution was computed using the wall heat flux and the adiabatic wall temperature to desensitize the heat transfer coefficient to the wall temperature. For the determination of the wall heat flux and the adiabatic wall temperatures, two sets of computations were required. The results were used in a phase-locked manner to compute the unsteady or steady heat transfer coefficients. It has been found that the unsteady wake has some effect on the distribution of the time averaged heat transfer coefficient on the blade and that this distribution is different from the distribution that is obtainable from a steady computation. This difference was found to be as large as 20 percent of the average heat transfer on the blade surface. On the tip surface, this difference is comparatively smaller and can be as large as four percent of the average.
Testing Collisional Scaling Laws: Comparing with Observables
NASA Astrophysics Data System (ADS)
Davis, D. R.; Marzari, F.; Farinella, P.
1999-09-01
How large bodies break up in response to energetic collisions is a problem that has attracted considerable attention in recent years. Ever more sophisticated computation methods have also been developed; prominent among these are hydrocode simulations of collisional disruption by Benz and Asphaug (1999, Icarus, in press), Love and Ahrens (1996, LPSC XXVII, 777-778), and Melosh and Ryan (1997, Icarus 129, 562-564). Durda et al. (1998, Icarus 135, 431-440) used the observed asteroid size distribution to infer a scaling algorithm. The present situation is that there are several proposed scaling laws that differ by as much as two orders of magnitude at particular sizes. We have expanded upon the work of Davis et al. (1994, Goutelas Proceedings) and tested the suite of proposed scaling algorithms against observations of the main-belt asteroids. The effects of collisions among the asteroids produce the following observables: (a) the size distribution has been significantly shaped by collisions, (b) collisions have produced about 25 well recognized asteroid families, and (c) the basaltic crust of Vesta has been largely preserved in the face of about 4.5 Byr of impacts. We will present results from a numerical simulation of asteroid collisional evolution over the age of the solar system using proposed scaling laws and a range of hypothetical initial populations.
High-Resiliency and Auto-Scaling of Large-Scale Cloud Computing for OCO-2 L2 Full Physics Processing
NASA Astrophysics Data System (ADS)
Hua, H.; Manipon, G.; Starch, M.; Dang, L. B.; Southam, P.; Wilson, B. D.; Avis, C.; Chang, A.; Cheng, C.; Smyth, M.; McDuffie, J. L.; Ramirez, P.
2015-12-01
Next generation science data systems are needed to address the incoming flood of data from new missions such as SWOT and NISAR where data volumes and data throughput rates are order of magnitude larger than present day missions. Additionally, traditional means of procuring hardware on-premise are already limited due to facilities capacity constraints for these new missions. Existing missions, such as OCO-2, may also require high turn-around time for processing different science scenarios where on-premise and even traditional HPC computing environments may not meet the high processing needs. We present our experiences on deploying a hybrid-cloud computing science data system (HySDS) for the OCO-2 Science Computing Facility to support large-scale processing of their Level-2 full physics data products. We will explore optimization approaches to getting best performance out of hybrid-cloud computing as well as common issues that will arise when dealing with large-scale computing. Novel approaches were utilized to do processing on Amazon's spot market, which can potentially offer ~10X costs savings but with an unpredictable computing environment based on market forces. We will present how we enabled high-tolerance computing in order to achieve large-scale computing as well as operational cost savings.
Investigations of grain size dependent sediment transport phenomena on multiple scales
NASA Astrophysics Data System (ADS)
Thaxton, Christopher S.
Sediment transport processes in coastal and fluvial environments resulting from disturbances such as urbanization, mining, agriculture, military operations, and climatic change have significant impact on local, regional, and global environments. Primarily, these impacts include the erosion and deposition of sediment, channel network modification, reduction in downstream water quality, and the delivery of chemical contaminants. The scale and spatial distribution of these effects are largely attributable to the size distribution of the sediment grains that become eligible for transport. An improved understanding of advective and diffusive grain-size dependent sediment transport phenomena will lead to the development of more accurate predictive models and more effective control measures. To this end, three studies were performed that investigated grain-size dependent sediment transport on three different scales. Discrete particle computer simulations of sheet flow bedload transport on the scale of 0.1--100 millimeters were performed on a heterogeneous population of grains of various grain sizes. The relative transport rates and diffusivities of grains under both oscillatory and uniform, steady flow conditions were quantified. These findings suggest that boundary layer formalisms should describe surface roughness through a representative grain size that is functionally dependent on the applied flow parameters. On the scale of 1--10m, experiments were performed to quantify the hydrodynamics and sediment capture efficiency of various baffles installed in a sediment retention pond, a commonly used sedimentation control measure in watershed applications. Analysis indicates that an optimum sediment capture effectiveness may be achieved based on baffle permeability, pond geometry and flow rate. Finally, on the scale of 10--1,000m, a distributed, bivariate watershed terain evolution module was developed within GRASS GIS. Simulation results for variable grain sizes and for distributed rainfall infiltration and land cover matched observations. Although a unique set of governing equations applies to each scale, an improved physics-based understanding of small and medium scale behavior may yield more accurate parameterization of key variables used in large scale predictive models.
Development and Applications of a Modular Parallel Process for Large Scale Fluid/Structures Problems
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; Byun, Chansup; Kwak, Dochan (Technical Monitor)
2001-01-01
A modular process that can efficiently solve large scale multidisciplinary problems using massively parallel super computers is presented. The process integrates disciplines with diverse physical characteristics by retaining the efficiency of individual disciplines. Computational domain independence of individual disciplines is maintained using a meta programming approach. The process integrates disciplines without affecting the combined performance. Results are demonstrated for large scale aerospace problems on several supercomputers. The super scalability and portability of the approach is demonstrated on several parallel computers.
SmallTool - a toolkit for realizing shared virtual environments on the Internet
NASA Astrophysics Data System (ADS)
Broll, Wolfgang
1998-09-01
With increasing graphics capabilities of computers and higher network communication speed, networked virtual environments have become available to a large number of people. While the virtual reality modelling language (VRML) provides users with the ability to exchange 3D data, there is still a lack of appropriate support to realize large-scale multi-user applications on the Internet. In this paper we will present SmallTool, a toolkit to support shared virtual environments on the Internet. The toolkit consists of a VRML-based parsing and rendering library, a device library, and a network library. This paper will focus on the networking architecture, provided by the network library - the distributed worlds transfer and communication protocol (DWTP). DWTP provides an application-independent network architecture to support large-scale multi-user environments on the Internet.
The emerging role of cloud computing in molecular modelling.
Ebejer, Jean-Paul; Fulle, Simone; Morris, Garrett M; Finn, Paul W
2013-07-01
There is a growing recognition of the importance of cloud computing for large-scale and data-intensive applications. The distinguishing features of cloud computing and their relationship to other distributed computing paradigms are described, as are the strengths and weaknesses of the approach. We review the use made to date of cloud computing for molecular modelling projects and the availability of front ends for molecular modelling applications. Although the use of cloud computing technologies for molecular modelling is still in its infancy, we demonstrate its potential by presenting several case studies. Rapid growth can be expected as more applications become available and costs continue to fall; cloud computing can make a major contribution not just in terms of the availability of on-demand computing power, but could also spur innovation in the development of novel approaches that utilize that capacity in more effective ways. Copyright © 2013 Elsevier Inc. All rights reserved.
High Performance Computing for Modeling Wind Farms and Their Impact
NASA Astrophysics Data System (ADS)
Mavriplis, D.; Naughton, J. W.; Stoellinger, M. K.
2016-12-01
As energy generated by wind penetrates further into our electrical system, modeling of power production, power distribution, and the economic impact of wind-generated electricity is growing in importance. The models used for this work can range in fidelity from simple codes that run on a single computer to those that require high performance computing capabilities. Over the past several years, high fidelity models have been developed and deployed on the NCAR-Wyoming Supercomputing Center's Yellowstone machine. One of the primary modeling efforts focuses on developing the capability to compute the behavior of a wind farm in complex terrain under realistic atmospheric conditions. Fully modeling this system requires the simulation of continental flows to modeling the flow over a wind turbine blade, including down to the blade boundary level, fully 10 orders of magnitude in scale. To accomplish this, the simulations are broken up by scale, with information from the larger scales being passed to the lower scale models. In the code being developed, four scale levels are included: the continental weather scale, the local atmospheric flow in complex terrain, the wind plant scale, and the turbine scale. The current state of the models in the latter three scales will be discussed. These simulations are based on a high-order accurate dynamic overset and adaptive mesh approach, which runs at large scale on the NWSC Yellowstone machine. A second effort on modeling the economic impact of new wind development as well as improvement in wind plant performance and enhancements to the transmission infrastructure will also be discussed.
Deterministically estimated fission source distributions for Monte Carlo k-eigenvalue problems
Biondo, Elliott D.; Davidson, Gregory G.; Pandya, Tara M.; ...
2018-04-30
The standard Monte Carlo (MC) k-eigenvalue algorithm involves iteratively converging the fission source distribution using a series of potentially time-consuming inactive cycles before quantities of interest can be tallied. One strategy for reducing the computational time requirements of these inactive cycles is the Sourcerer method, in which a deterministic eigenvalue calculation is performed to obtain an improved initial guess for the fission source distribution. This method has been implemented in the Exnihilo software suite within SCALE using the SPNSPN or SNSN solvers in Denovo and the Shift MC code. The efficacy of this method is assessed with different Denovo solutionmore » parameters for a series of typical k-eigenvalue problems including small criticality benchmarks, full-core reactors, and a fuel cask. Here it is found that, in most cases, when a large number of histories per cycle are required to obtain a detailed flux distribution, the Sourcerer method can be used to reduce the computational time requirements of the inactive cycles.« less
Deterministically estimated fission source distributions for Monte Carlo k-eigenvalue problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biondo, Elliott D.; Davidson, Gregory G.; Pandya, Tara M.
The standard Monte Carlo (MC) k-eigenvalue algorithm involves iteratively converging the fission source distribution using a series of potentially time-consuming inactive cycles before quantities of interest can be tallied. One strategy for reducing the computational time requirements of these inactive cycles is the Sourcerer method, in which a deterministic eigenvalue calculation is performed to obtain an improved initial guess for the fission source distribution. This method has been implemented in the Exnihilo software suite within SCALE using the SPNSPN or SNSN solvers in Denovo and the Shift MC code. The efficacy of this method is assessed with different Denovo solutionmore » parameters for a series of typical k-eigenvalue problems including small criticality benchmarks, full-core reactors, and a fuel cask. Here it is found that, in most cases, when a large number of histories per cycle are required to obtain a detailed flux distribution, the Sourcerer method can be used to reduce the computational time requirements of the inactive cycles.« less
NASA Astrophysics Data System (ADS)
Colaïtis, A.; Chapman, T.; Strozzi, D.; Divol, L.; Michel, P.
2018-03-01
A three-dimensional laser propagation model for computation of laser-plasma interactions is presented. It is focused on indirect drive geometries in inertial confinement fusion and formulated for use at large temporal and spatial scales. A modified tesselation-based estimator and a relaxation scheme are used to estimate the intensity distribution in plasma from geometrical optics rays. Comparisons with reference solutions show that this approach is well-suited to reproduce realistic 3D intensity field distributions of beams smoothed by phase plates. It is shown that the method requires a reduced number of rays compared to traditional rigid-scale intensity estimation. Using this field estimator, we have implemented laser refraction, inverse-bremsstrahlung absorption, and steady-state crossed-beam energy transfer with a linear kinetic model in the numerical code Vampire. Probe beam amplification and laser spot shapes are compared with experimental results and pf3d paraxial simulations. These results are promising for the efficient and accurate computation of laser intensity distributions in holhraums, which is of importance for determining the capsule implosion shape and risks of laser-plasma instabilities such as hot electron generation and backscatter in multi-beam configurations.
Beowulf Distributed Processing and the United States Geological Survey
Maddox, Brian G.
2002-01-01
Introduction In recent years, the United States Geological Survey's (USGS) National Mapping Discipline (NMD) has expanded its scientific and research activities. Work is being conducted in areas such as emergency response research, scientific visualization, urban prediction, and other simulation activities. Custom-produced digital data have become essential for these types of activities. High-resolution, remotely sensed datasets are also seeing increased use. Unfortunately, the NMD is also finding that it lacks the resources required to perform some of these activities. Many of these projects require large amounts of computer processing resources. Complex urban-prediction simulations, for example, involve large amounts of processor-intensive calculations on large amounts of input data. This project was undertaken to learn and understand the concepts of distributed processing. Experience was needed in developing these types of applications. The idea was that this type of technology could significantly aid the needs of the NMD scientific and research programs. Porting a numerically intensive application currently being used by an NMD science program to run in a distributed fashion would demonstrate the usefulness of this technology. There are several benefits that this type of technology can bring to the USGS's research programs. Projects can be performed that were previously impossible due to a lack of computing resources. Other projects can be performed on a larger scale than previously possible. For example, distributed processing can enable urban dynamics research to perform simulations on larger areas without making huge sacrifices in resolution. The processing can also be done in a more reasonable amount of time than with traditional single-threaded methods (a scaled version of Chester County, Pennsylvania, took about fifty days to finish its first calibration phase with a single-threaded program). This paper has several goals regarding distributed processing technology. It will describe the benefits of the technology. Real data about a distributed application will be presented as an example of the benefits that this technology can bring to USGS scientific programs. Finally, some of the issues with distributed processing that relate to USGS work will be discussed.
Flexible services for the support of research.
Turilli, Matteo; Wallom, David; Williams, Chris; Gough, Steve; Curran, Neal; Tarrant, Richard; Bretherton, Dan; Powell, Andy; Johnson, Matt; Harmer, Terry; Wright, Peter; Gordon, John
2013-01-28
Cloud computing has been increasingly adopted by users and providers to promote a flexible, scalable and tailored access to computing resources. Nonetheless, the consolidation of this paradigm has uncovered some of its limitations. Initially devised by corporations with direct control over large amounts of computational resources, cloud computing is now being endorsed by organizations with limited resources or with a more articulated, less direct control over these resources. The challenge for these organizations is to leverage the benefits of cloud computing while dealing with limited and often widely distributed computing resources. This study focuses on the adoption of cloud computing by higher education institutions and addresses two main issues: flexible and on-demand access to a large amount of storage resources, and scalability across a heterogeneous set of cloud infrastructures. The proposed solutions leverage a federated approach to cloud resources in which users access multiple and largely independent cloud infrastructures through a highly customizable broker layer. This approach allows for a uniform authentication and authorization infrastructure, a fine-grained policy specification and the aggregation of accounting and monitoring. Within a loosely coupled federation of cloud infrastructures, users can access vast amount of data without copying them across cloud infrastructures and can scale their resource provisions when the local cloud resources become insufficient.
NASA Technical Reports Server (NTRS)
Leonard, A.
1980-01-01
Three recent simulations of tubulent shear flow bounded by a wall using the Illiac computer are reported. These are: (1) vibrating-ribbon experiments; (2) study of the evolution of a spot-like disturbance in a laminar boundary layer; and (3) investigation of turbulent channel flow. A number of persistent flow structures were observed, including streamwise and vertical vorticity distributions near the wall, low-speed and high-speed streaks, and local regions of intense vertical velocity. The role of these structures in, for example, the growth or maintenance of turbulence is discussed. The problem of representing the large range of turbulent scales in a computer simulation is also discussed.
Distributed wavefront reconstruction with SABRE for real-time large scale adaptive optics control
NASA Astrophysics Data System (ADS)
Brunner, Elisabeth; de Visser, Cornelis C.; Verhaegen, Michel
2014-08-01
We present advances on Spline based ABerration REconstruction (SABRE) from (Shack-)Hartmann (SH) wavefront measurements for large-scale adaptive optics systems. SABRE locally models the wavefront with simplex B-spline basis functions on triangular partitions which are defined on the SH subaperture array. This approach allows high accuracy through the possible use of nonlinear basis functions and great adaptability to any wavefront sensor and pupil geometry. The main contribution of this paper is a distributed wavefront reconstruction method, D-SABRE, which is a 2 stage procedure based on decomposing the sensor domain into sub-domains each supporting a local SABRE model. D-SABRE greatly decreases the computational complexity of the method and removes the need for centralized reconstruction while obtaining a reconstruction accuracy for simulated E-ELT turbulences within 1% of the global method's accuracy. Further, a generalization of the methodology is proposed making direct use of SH intensity measurements which leads to an improved accuracy of the reconstruction compared to centroid algorithms using spatial gradients.
Gething, Peter W; Patil, Anand P; Hay, Simon I
2010-04-01
Risk maps estimating the spatial distribution of infectious diseases are required to guide public health policy from local to global scales. The advent of model-based geostatistics (MBG) has allowed these maps to be generated in a formal statistical framework, providing robust metrics of map uncertainty that enhances their utility for decision-makers. In many settings, decision-makers require spatially aggregated measures over large regions such as the mean prevalence within a country or administrative region, or national populations living under different levels of risk. Existing MBG mapping approaches provide suitable metrics of local uncertainty--the fidelity of predictions at each mapped pixel--but have not been adapted for measuring uncertainty over large areas, due largely to a series of fundamental computational constraints. Here the authors present a new efficient approximating algorithm that can generate for the first time the necessary joint simulation of prevalence values across the very large prediction spaces needed for global scale mapping. This new approach is implemented in conjunction with an established model for P. falciparum allowing robust estimates of mean prevalence at any specified level of spatial aggregation. The model is used to provide estimates of national populations at risk under three policy-relevant prevalence thresholds, along with accompanying model-based measures of uncertainty. By overcoming previously unchallenged computational barriers, this study illustrates how MBG approaches, already at the forefront of infectious disease mapping, can be extended to provide large-scale aggregate measures appropriate for decision-makers.
Response of deep and shallow tropical maritime cumuli to large-scale processes
NASA Technical Reports Server (NTRS)
Yanai, M.; Chu, J.-H.; Stark, T. E.; Nitta, T.
1976-01-01
The bulk diagnostic method of Yanai et al. (1973) and a simplified version of the spectral diagnostic method of Nitta (1975) are used for a more quantitative evaluation of the response of various types of cumuliform clouds to large-scale processes, using the same data set in the Marshall Islands area for a 100-day period in 1956. The dependence of the cloud mass flux distribution on radiative cooling, large-scale vertical motion, and evaporation from the sea is examined. It is shown that typical radiative cooling rates in the tropics tend to produce a bimodal distribution of mass spectrum exhibiting deep and shallow clouds. The bimodal distribution is further enhanced when the large-scale vertical motion is upward, and a nearly unimodal distribution of shallow clouds prevails when the relative cooling is compensated by the heating due to the large-scale subsidence. Both deep and shallow clouds are modulated by large-scale disturbances. The primary role of surface evaporation is to maintain the moisture flux at the cloud base.
Distributed multimodal data fusion for large scale wireless sensor networks
NASA Astrophysics Data System (ADS)
Ertin, Emre
2006-05-01
Sensor network technology has enabled new surveillance systems where sensor nodes equipped with processing and communication capabilities can collaboratively detect, classify and track targets of interest over a large surveillance area. In this paper we study distributed fusion of multimodal sensor data for extracting target information from a large scale sensor network. Optimal tracking, classification, and reporting of threat events require joint consideration of multiple sensor modalities. Multiple sensor modalities improve tracking by reducing the uncertainty in the track estimates as well as resolving track-sensor data association problems. Our approach to solving the fusion problem with large number of multimodal sensors is construction of likelihood maps. The likelihood maps provide a summary data for the solution of the detection, tracking and classification problem. The likelihood map presents the sensory information in an easy format for the decision makers to interpret and is suitable with fusion of spatial prior information such as maps, imaging data from stand-off imaging sensors. We follow a statistical approach to combine sensor data at different levels of uncertainty and resolution. The likelihood map transforms each sensor data stream to a spatio-temporal likelihood map ideally suitable for fusion with imaging sensor outputs and prior geographic information about the scene. We also discuss distributed computation of the likelihood map using a gossip based algorithm and present simulation results.
NASA Astrophysics Data System (ADS)
Sagui, Celeste
2006-03-01
An accurate and numerically efficient treatment of electrostatics is essential for biomolecular simulations, as this stabilizes much of the delicate 3-d structure associated with biomolecules. Currently, force fields such as AMBER and CHARMM assign ``partial charges'' to every atom in a simulation in order to model the interatomic electrostatic forces, so that the calculation of the electrostatics rapidly becomes the computational bottleneck in large-scale simulations. There are two main issues associated with the current treatment of classical electrostatics: (i) how does one eliminate the artifacts associated with the point-charges (e.g., the underdetermined nature of the current RESP fitting procedure for large, flexible molecules) used in the force fields in a physically meaningful way? (ii) how does one efficiently simulate the very costly long-range electrostatic interactions? Recently, we have dealt with both of these challenges as follows. In order to improve the description of the molecular electrostatic potentials (MEPs), a new distributed multipole analysis based on localized functions -- Wannier, Boys, and Edminston-Ruedenberg -- was introduced, which allows for a first principles calculation of the partial charges and multipoles. Through a suitable generalization of the particle mesh Ewald (PME) and multigrid method, one can treat electrostatic multipoles all the way to hexadecapoles all without prohibitive extra costs. The importance of these methods for large-scale simulations will be discussed, and examplified by simulations from polarizable DNA models.
CERN data services for LHC computing
NASA Astrophysics Data System (ADS)
Espinal, X.; Bocchi, E.; Chan, B.; Fiorot, A.; Iven, J.; Lo Presti, G.; Lopez, J.; Gonzalez, H.; Lamanna, M.; Mascetti, L.; Moscicki, J.; Pace, A.; Peters, A.; Ponce, S.; Rousseau, H.; van der Ster, D.
2017-10-01
Dependability, resilience, adaptability and efficiency. Growing requirements require tailoring storage services and novel solutions. Unprecedented volumes of data coming from the broad number of experiments at CERN need to be quickly available in a highly scalable way for large-scale processing and data distribution while in parallel they are routed to tape for long-term archival. These activities are critical for the success of HEP experiments. Nowadays we operate at high incoming throughput (14GB/s during 2015 LHC Pb-Pb run and 11PB in July 2016) and with concurrent complex production work-loads. In parallel our systems provide the platform for the continuous user and experiment driven work-loads for large-scale data analysis, including end-user access and sharing. The storage services at CERN cover the needs of our community: EOS and CASTOR as a large-scale storage; CERNBox for end-user access and sharing; Ceph as data back-end for the CERN OpenStack infrastructure, NFS services and S3 functionality; AFS for legacy distributed-file-system services. In this paper we will summarise the experience in supporting LHC experiments and the transition of our infrastructure from static monolithic systems to flexible components providing a more coherent environment with pluggable protocols, tuneable QoS, sharing capabilities and fine grained ACLs management while continuing to guarantee dependable and robust services.
Architectural Strategies for Enabling Data-Driven Science at Scale
NASA Astrophysics Data System (ADS)
Crichton, D. J.; Law, E. S.; Doyle, R. J.; Little, M. M.
2017-12-01
The analysis of large data collections from NASA or other agencies is often executed through traditional computational and data analysis approaches, which require users to bring data to their desktops and perform local data analysis. Alternatively, data are hauled to large computational environments that provide centralized data analysis via traditional High Performance Computing (HPC). Scientific data archives, however, are not only growing massive, but are also becoming highly distributed. Neither traditional approach provides a good solution for optimizing analysis into the future. Assumptions across the NASA mission and science data lifecycle, which historically assume that all data can be collected, transmitted, processed, and archived, will not scale as more capable instruments stress legacy-based systems. New paradigms are needed to increase the productivity and effectiveness of scientific data analysis. This paradigm must recognize that architectural and analytical choices are interrelated, and must be carefully coordinated in any system that aims to allow efficient, interactive scientific exploration and discovery to exploit massive data collections, from point of collection (e.g., onboard) to analysis and decision support. The most effective approach to analyzing a distributed set of massive data may involve some exploration and iteration, putting a premium on the flexibility afforded by the architectural framework. The framework should enable scientist users to assemble workflows efficiently, manage the uncertainties related to data analysis and inference, and optimize deep-dive analytics to enhance scalability. In many cases, this "data ecosystem" needs to be able to integrate multiple observing assets, ground environments, archives, and analytics, evolving from stewardship of measurements of data to using computational methodologies to better derive insight from the data that may be fused with other sets of data. This presentation will discuss architectural strategies, including a 2015-2016 NASA AIST Study on Big Data, for evolving scientific research towards massively distributed data-driven discovery. It will include example use cases across earth science, planetary science, and other disciplines.
An Adaptive Priority Tuning System for Optimized Local CPU Scheduling using BOINC Clients
NASA Astrophysics Data System (ADS)
Mnaouer, Adel B.; Ragoonath, Colin
2010-11-01
Volunteer Computing (VC) is a Distributed Computing model which utilizes idle CPU cycles from computing resources donated by volunteers who are connected through the Internet to form a very large-scale, loosely coupled High Performance Computing environment. Distributed Volunteer Computing environments such as the BOINC framework is concerned mainly with the efficient scheduling of the available resources to the applications which require them. The BOINC framework thus contains a number of scheduling policies/algorithms both on the server-side and on the client which work together to maximize the available resources and to provide a degree of QoS in an environment which is highly volatile. This paper focuses on the BOINC client and introduces an adaptive priority tuning client side middleware application which improves the execution times of Work Units (WUs) while maintaining an acceptable Maximum Response Time (MRT) for the end user. We have conducted extensive experimentation of the proposed system and the results show clear speedup of BOINC applications using our optimized middleware as opposed to running using the original BOINC client.
The Parallel System for Integrating Impact Models and Sectors (pSIMS)
NASA Technical Reports Server (NTRS)
Elliott, Joshua; Kelly, David; Chryssanthacopoulos, James; Glotter, Michael; Jhunjhnuwala, Kanika; Best, Neil; Wilde, Michael; Foster, Ian
2014-01-01
We present a framework for massively parallel climate impact simulations: the parallel System for Integrating Impact Models and Sectors (pSIMS). This framework comprises a) tools for ingesting and converting large amounts of data to a versatile datatype based on a common geospatial grid; b) tools for translating this datatype into custom formats for site-based models; c) a scalable parallel framework for performing large ensemble simulations, using any one of a number of different impacts models, on clusters, supercomputers, distributed grids, or clouds; d) tools and data standards for reformatting outputs to common datatypes for analysis and visualization; and e) methodologies for aggregating these datatypes to arbitrary spatial scales such as administrative and environmental demarcations. By automating many time-consuming and error-prone aspects of large-scale climate impacts studies, pSIMS accelerates computational research, encourages model intercomparison, and enhances reproducibility of simulation results. We present the pSIMS design and use example assessments to demonstrate its multi-model, multi-scale, and multi-sector versatility.
Zheng, Wei; Yan, Xiaoyong; Zhao, Wei; Qian, Chengshan
2017-12-20
A novel large-scale multi-hop localization algorithm based on regularized extreme learning is proposed in this paper. The large-scale multi-hop localization problem is formulated as a learning problem. Unlike other similar localization algorithms, the proposed algorithm overcomes the shortcoming of the traditional algorithms which are only applicable to an isotropic network, therefore has a strong adaptability to the complex deployment environment. The proposed algorithm is composed of three stages: data acquisition, modeling and location estimation. In data acquisition stage, the training information between nodes of the given network is collected. In modeling stage, the model among the hop-counts and the physical distances between nodes is constructed using regularized extreme learning. In location estimation stage, each node finds its specific location in a distributed manner. Theoretical analysis and several experiments show that the proposed algorithm can adapt to the different topological environments with low computational cost. Furthermore, high accuracy can be achieved by this method without setting complex parameters.
On the Large-Scaling Issues of Cloud-based Applications for Earth Science Dat
NASA Astrophysics Data System (ADS)
Hua, H.
2016-12-01
Next generation science data systems are needed to address the incoming flood of data from new missions such as NASA's SWOT and NISAR where its SAR data volumes and data throughput rates are order of magnitude larger than present day missions. Existing missions, such as OCO-2, may also require high turn-around time for processing different science scenarios where on-premise and even traditional HPC computing environments may not meet the high processing needs. Additionally, traditional means of procuring hardware on-premise are already limited due to facilities capacity constraints for these new missions. Experiences have shown that to embrace efficient cloud computing approaches for large-scale science data systems requires more than just moving existing code to cloud environments. At large cloud scales, we need to deal with scaling and cost issues. We present our experiences on deploying multiple instances of our hybrid-cloud computing science data system (HySDS) to support large-scale processing of Earth Science data products. We will explore optimization approaches to getting best performance out of hybrid-cloud computing as well as common issues that will arise when dealing with large-scale computing. Novel approaches were utilized to do processing on Amazon's spot market, which can potentially offer 75%-90% costs savings but with an unpredictable computing environment based on market forces.
Large Eddy Simulation in the Computation of Jet Noise
NASA Technical Reports Server (NTRS)
Mankbadi, R. R.; Goldstein, M. E.; Povinelli, L. A.; Hayder, M. E.; Turkel, E.
1999-01-01
Noise can be predicted by solving Full (time-dependent) Compressible Navier-Stokes Equation (FCNSE) with computational domain. The fluctuating near field of the jet produces propagating pressure waves that produce far-field sound. The fluctuating flow field as a function of time is needed in order to calculate sound from first principles. Noise can be predicted by solving the full, time-dependent, compressible Navier-Stokes equations with the computational domain extended to far field - but this is not feasible as indicated above. At high Reynolds number of technological interest turbulence has large range of scales. Direct numerical simulations (DNS) can not capture the small scales of turbulence. The large scales are more efficient than the small scales in radiating sound. The emphasize is thus on calculating sound radiated by large scales.
NASA Technical Reports Server (NTRS)
Mcclelland, J.; Silk, J.
1979-01-01
The evolution of the two-point correlation function for the large-scale distribution of galaxies in an expanding universe is studied on the assumption that the perturbation densities lie in a Gaussian distribution centered on any given mass scale. The perturbations are evolved according to the Friedmann equation, and the correlation function for the resulting distribution of perturbations at the present epoch is calculated. It is found that: (1) the computed correlation function gives a satisfactory fit to the observed function in cosmological models with a density parameter (Omega) of approximately unity, provided that a certain free parameter is suitably adjusted; (2) the power-law slope in the nonlinear regime reflects the initial fluctuation spectrum, provided that the density profile of individual perturbations declines more rapidly than the -2.4 power of distance; and (3) both positive and negative contributions to the correlation function are predicted for cosmological models with Omega less than unity.
A Large Scale Computer Terminal Output Controller.
ERIC Educational Resources Information Center
Tucker, Paul Thomas
This paper describes the design and implementation of a large scale computer terminal output controller which supervises the transfer of information from a Control Data 6400 Computer to a PLATO IV data network. It discusses the cost considerations leading to the selection of educational television channels rather than telephone lines for…
Research on distributed virtual reality system in electronic commerce
NASA Astrophysics Data System (ADS)
Xue, Qiang; Wang, Jiening; Sun, Jizhou
2004-03-01
In this paper, Distributed Virtual Reality (DVR) technology applied in Electronical Commerce (EC) is discussed. DVR has the capability of providing a new means for human being to recognize, analyze and resolve the large scale, complex problems, which makes it develop quickly in EC fields. The technology of CSCW (Computer Supported Cooperative Work) and middleware is introduced into the development of EC-DVR system to meet the need of a platform which can provide the necessary cooperation and communication services to avoid developing the basic module repeatedly. Finally, the paper gives a platform structure of EC-DVR system.
Service Discovery Oriented Management System Construction Method
NASA Astrophysics Data System (ADS)
Li, Huawei; Ren, Ying
2017-10-01
In order to solve the problem that there is no uniform method for design service quality management system in large-scale complex service environment, this paper proposes a distributed service-oriented discovery management system construction method. Three measurement functions are proposed to compute nearest neighbor user similarity at different levels. At present in view of the low efficiency of service quality management systems, three solutions are proposed to improve the efficiency of the system. Finally, the key technologies of distributed service quality management system based on service discovery are summarized through the factor addition and subtraction of quantitative experiment.
Are X-rays the key to integrated computational materials engineering?
Ice, Gene E.
2015-11-01
The ultimate dream of materials science is to predict materials behavior from composition and processing history. Owing to the growing power of computers, this long-time dream has recently found expression through worldwide excitement in a number of computation-based thrusts: integrated computational materials engineering, materials by design, computational materials design, three-dimensional materials physics and mesoscale physics. However, real materials have important crystallographic structures at multiple length scales, which evolve during processing and in service. Moreover, real materials properties can depend on the extreme tails in their structural and chemical distributions. This makes it critical to map structural distributions with sufficient resolutionmore » to resolve small structures and with sufficient statistics to capture the tails of distributions. For two-dimensional materials, there are high-resolution nondestructive probes of surface and near-surface structures with atomic or near-atomic resolution that can provide detailed structural, chemical and functional distributions over important length scales. Furthermore, there are no nondestructive three-dimensional probes with atomic resolution over the multiple length scales needed to understand most materials.« less
Neuroimaging Study Designs, Computational Analyses and Data Provenance Using the LONI Pipeline
Dinov, Ivo; Lozev, Kamen; Petrosyan, Petros; Liu, Zhizhong; Eggert, Paul; Pierce, Jonathan; Zamanyan, Alen; Chakrapani, Shruthi; Van Horn, John; Parker, D. Stott; Magsipoc, Rico; Leung, Kelvin; Gutman, Boris; Woods, Roger; Toga, Arthur
2010-01-01
Modern computational neuroscience employs diverse software tools and multidisciplinary expertise to analyze heterogeneous brain data. The classical problems of gathering meaningful data, fitting specific models, and discovering appropriate analysis and visualization tools give way to a new class of computational challenges—management of large and incongruous data, integration and interoperability of computational resources, and data provenance. We designed, implemented and validated a new paradigm for addressing these challenges in the neuroimaging field. Our solution is based on the LONI Pipeline environment [3], [4], a graphical workflow environment for constructing and executing complex data processing protocols. We developed study-design, database and visual language programming functionalities within the LONI Pipeline that enable the construction of complete, elaborate and robust graphical workflows for analyzing neuroimaging and other data. These workflows facilitate open sharing and communication of data and metadata, concrete processing protocols, result validation, and study replication among different investigators and research groups. The LONI Pipeline features include distributed grid-enabled infrastructure, virtualized execution environment, efficient integration, data provenance, validation and distribution of new computational tools, automated data format conversion, and an intuitive graphical user interface. We demonstrate the new LONI Pipeline features using large scale neuroimaging studies based on data from the International Consortium for Brain Mapping [5] and the Alzheimer's Disease Neuroimaging Initiative [6]. User guides, forums, instructions and downloads of the LONI Pipeline environment are available at http://pipeline.loni.ucla.edu. PMID:20927408
NASA Astrophysics Data System (ADS)
Gorelick, Noel
2013-04-01
The Google Earth Engine platform is a system designed to enable petabyte-scale, scientific analysis and visualization of geospatial datasets. Earth Engine provides a consolidated environment including a massive data catalog co-located with thousands of computers for analysis. The user-friendly front-end provides a workbench environment to allow interactive data and algorithm development and exploration and provides a convenient mechanism for scientists to share data, visualizations and analytic algorithms via URLs. The Earth Engine data catalog contains a wide variety of popular, curated datasets, including the world's largest online collection of Landsat scenes (> 2.0M), numerous MODIS collections, and many vector-based data sets. The platform provides a uniform access mechanism to a variety of data types, independent of their bands, projection, bit-depth, resolution, etc..., facilitating easy multi-sensor analysis. Additionally, a user is able to add and curate their own data and collections. Using a just-in-time, distributed computation model, Earth Engine can rapidly process enormous quantities of geo-spatial data. All computation is performed lazily; nothing is computed until it's required either for output or as input to another step. This model allows real-time feedback and preview during algorithm development, supporting a rapid algorithm development, test, and improvement cycle that scales seamlessly to large-scale production data processing. Through integration with a variety of other services, Earth Engine is able to bring to bear considerable analytic and technical firepower in a transparent fashion, including: AI-based classification via integration with Google's machine learning infrastructure, publishing and distribution at Google scale through integration with the Google Maps API, Maps Engine and Google Earth, and support for in-the-field activities such as validation, ground-truthing, crowd-sourcing and citizen science though the Android Open Data Kit.
NASA Astrophysics Data System (ADS)
Gorelick, N.
2012-12-01
The Google Earth Engine platform is a system designed to enable petabyte-scale, scientific analysis and visualization of geospatial datasets. Earth Engine provides a consolidated environment including a massive data catalog co-located with thousands of computers for analysis. The user-friendly front-end provides a workbench environment to allow interactive data and algorithm development and exploration and provides a convenient mechanism for scientists to share data, visualizations and analytic algorithms via URLs. The Earth Engine data catalog contains a wide variety of popular, curated datasets, including the world's largest online collection of Landsat scenes (> 2.0M), numerous MODIS collections, and many vector-based data sets. The platform provides a uniform access mechanism to a variety of data types, independent of their bands, projection, bit-depth, resolution, etc..., facilitating easy multi-sensor analysis. Additionally, a user is able to add and curate their own data and collections. Using a just-in-time, distributed computation model, Earth Engine can rapidly process enormous quantities of geo-spatial data. All computation is performed lazily; nothing is computed until it's required either for output or as input to another step. This model allows real-time feedback and preview during algorithm development, supporting a rapid algorithm development, test, and improvement cycle that scales seamlessly to large-scale production data processing. Through integration with a variety of other services, Earth Engine is able to bring to bear considerable analytic and technical firepower in a transparent fashion, including: AI-based classification via integration with Google's machine learning infrastructure, publishing and distribution at Google scale through integration with the Google Maps API, Maps Engine and Google Earth, and support for in-the-field activities such as validation, ground-truthing, crowd-sourcing and citizen science though the Android Open Data Kit.
Ergatis: a web interface and scalable software system for bioinformatics workflows
Orvis, Joshua; Crabtree, Jonathan; Galens, Kevin; Gussman, Aaron; Inman, Jason M.; Lee, Eduardo; Nampally, Sreenath; Riley, David; Sundaram, Jaideep P.; Felix, Victor; Whitty, Brett; Mahurkar, Anup; Wortman, Jennifer; White, Owen; Angiuoli, Samuel V.
2010-01-01
Motivation: The growth of sequence data has been accompanied by an increasing need to analyze data on distributed computer clusters. The use of these systems for routine analysis requires scalable and robust software for data management of large datasets. Software is also needed to simplify data management and make large-scale bioinformatics analysis accessible and reproducible to a wide class of target users. Results: We have developed a workflow management system named Ergatis that enables users to build, execute and monitor pipelines for computational analysis of genomics data. Ergatis contains preconfigured components and template pipelines for a number of common bioinformatics tasks such as prokaryotic genome annotation and genome comparisons. Outputs from many of these components can be loaded into a Chado relational database. Ergatis was designed to be accessible to a broad class of users and provides a user friendly, web-based interface. Ergatis supports high-throughput batch processing on distributed compute clusters and has been used for data management in a number of genome annotation and comparative genomics projects. Availability: Ergatis is an open-source project and is freely available at http://ergatis.sourceforge.net Contact: jorvis@users.sourceforge.net PMID:20413634
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmintier, Bryan; Broderick, Robert; Mather, Barry
2016-05-01
This report analyzes distribution-integration challenges, solutions, and research needs in the context of distributed generation from PV (DGPV) deployment to date and the much higher levels of deployment expected with achievement of the U.S. Department of Energy's SunShot targets. Recent analyses have improved estimates of the DGPV hosting capacities of distribution systems. This report uses these results to statistically estimate the minimum DGPV hosting capacity for the contiguous United States using traditional inverters of approximately 170 GW without distribution system modifications. This hosting capacity roughly doubles if advanced inverters are used to manage local voltage and additional minor, low-cost changesmore » could further increase these levels substantially. Key to achieving these deployment levels at minimum cost is siting DGPV based on local hosting capacities, suggesting opportunities for regulatory, incentive, and interconnection innovation. Already, pre-computed hosting capacity is beginning to expedite DGPV interconnection requests and installations in select regions; however, realizing SunShot-scale deployment will require further improvements to DGPV interconnection processes, standards and codes, and compensation mechanisms so they embrace the contributions of DGPV to system-wide operations. SunShot-scale DGPV deployment will also require unprecedented coordination of the distribution and transmission systems. This includes harnessing DGPV's ability to relieve congestion and reduce system losses by generating closer to loads; minimizing system operating costs and reserve deployments through improved DGPV visibility; developing communication and control architectures that incorporate DGPV into system operations; providing frequency response, transient stability, and synthesized inertia with DGPV in the event of large-scale system disturbances; and potentially managing reactive power requirements due to large-scale deployment of advanced inverter functions. Finally, additional local and system-level value could be provided by integrating DGPV with energy storage and 'virtual storage,' which exploits improved management of electric vehicle charging, building energy systems, and other large loads. Together, continued innovation across this rich distribution landscape can enable the very-high deployment levels envisioned by SunShot.« less
NASA Astrophysics Data System (ADS)
Yang, D.; Fu, C. S.; Binford, M. W.
2017-12-01
The southeastern United States has high landscape heterogeneity, withheavily managed forestlands, highly developed agriculture lands, and multiple metropolitan areas. Human activities are transforming and altering land patterns and structures in both negative and positive manners. A land-use map for at the greater scale is a heavy computation task but is critical to most landowners, researchers, and decision makers, enabling them to make informed decisions for varying objectives. There are two major difficulties in generating the classification maps at the regional scale: the necessity of large training point sets and the expensive computation cost-in terms of both money and time-in classifier modeling. Volunteered Geographic Information (VGI) opens a new era in mapping and visualizing our world, where the platform is open for collecting valuable georeferenced information by volunteer citizens, and the data is freely available to the public. As one of the most well-known VGI initiatives, OpenStreetMap (OSM) contributes not only road network distribution, but also the potential for using this data to justify land cover and land use classifications. Google Earth Engine (GEE) is a platform designed for cloud-based mapping with a robust and fast computing power. Most large scale and national mapping approaches confuse "land cover" and "land-use", or build up the land-use database based on modeled land cover datasets. Unlike most other large-scale approaches, we distinguish and differentiate land-use from land cover. By focusing our prime objective of mapping land-use and management practices, a robust regional land-use mapping approach is developed by incorporating the OpenstreepMap dataset into Earth observation remote sensing imageries instead of the often-used land cover base maps.
Federated learning of predictive models from federated Electronic Health Records.
Brisimi, Theodora S; Chen, Ruidi; Mela, Theofanie; Olshevsky, Alex; Paschalidis, Ioannis Ch; Shi, Wei
2018-04-01
In an era of "big data," computationally efficient and privacy-aware solutions for large-scale machine learning problems become crucial, especially in the healthcare domain, where large amounts of data are stored in different locations and owned by different entities. Past research has been focused on centralized algorithms, which assume the existence of a central data repository (database) which stores and can process the data from all participants. Such an architecture, however, can be impractical when data are not centrally located, it does not scale well to very large datasets, and introduces single-point of failure risks which could compromise the integrity and privacy of the data. Given scores of data widely spread across hospitals/individuals, a decentralized computationally scalable methodology is very much in need. We aim at solving a binary supervised classification problem to predict hospitalizations for cardiac events using a distributed algorithm. We seek to develop a general decentralized optimization framework enabling multiple data holders to collaborate and converge to a common predictive model, without explicitly exchanging raw data. We focus on the soft-margin l 1 -regularized sparse Support Vector Machine (sSVM) classifier. We develop an iterative cluster Primal Dual Splitting (cPDS) algorithm for solving the large-scale sSVM problem in a decentralized fashion. Such a distributed learning scheme is relevant for multi-institutional collaborations or peer-to-peer applications, allowing the data holders to collaborate, while keeping every participant's data private. We test cPDS on the problem of predicting hospitalizations due to heart diseases within a calendar year based on information in the patients Electronic Health Records prior to that year. cPDS converges faster than centralized methods at the cost of some communication between agents. It also converges faster and with less communication overhead compared to an alternative distributed algorithm. In both cases, it achieves similar prediction accuracy measured by the Area Under the Receiver Operating Characteristic Curve (AUC) of the classifier. We extract important features discovered by the algorithm that are predictive of future hospitalizations, thus providing a way to interpret the classification results and inform prevention efforts. Copyright © 2018 Elsevier B.V. All rights reserved.
Parallel Clustering Algorithm for Large-Scale Biological Data Sets
Wang, Minchao; Zhang, Wu; Ding, Wang; Dai, Dongbo; Zhang, Huiran; Xie, Hao; Chen, Luonan; Guo, Yike; Xie, Jiang
2014-01-01
Backgrounds Recent explosion of biological data brings a great challenge for the traditional clustering algorithms. With increasing scale of data sets, much larger memory and longer runtime are required for the cluster identification problems. The affinity propagation algorithm outperforms many other classical clustering algorithms and is widely applied into the biological researches. However, the time and space complexity become a great bottleneck when handling the large-scale data sets. Moreover, the similarity matrix, whose constructing procedure takes long runtime, is required before running the affinity propagation algorithm, since the algorithm clusters data sets based on the similarities between data pairs. Methods Two types of parallel architectures are proposed in this paper to accelerate the similarity matrix constructing procedure and the affinity propagation algorithm. The memory-shared architecture is used to construct the similarity matrix, and the distributed system is taken for the affinity propagation algorithm, because of its large memory size and great computing capacity. An appropriate way of data partition and reduction is designed in our method, in order to minimize the global communication cost among processes. Result A speedup of 100 is gained with 128 cores. The runtime is reduced from serval hours to a few seconds, which indicates that parallel algorithm is capable of handling large-scale data sets effectively. The parallel affinity propagation also achieves a good performance when clustering large-scale gene data (microarray) and detecting families in large protein superfamilies. PMID:24705246
NASA Technical Reports Server (NTRS)
Blair, Michael F.; Anderson, Olof L.
1989-01-01
A combined experimental and computational program was conducted to examine the heat transfer distribution in a turbine rotor passage geometrically similiar to the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP). Heat transfer was measured and computed for both the full-span suction and pressure surfaces of the rotor airfoil as well as for the hub endwall surface. The primary objective of the program was to provide a benchmark-quality data base for the assessment of rotor passage heat transfer computational procedures. The experimental portion of the study was conducted in a large-scale, ambient temperature, rotating turbine model. Heat transfer data were obtained using thermocouple and liquid-crystal techniques to measure temperature distributions on the thin, electrically-heated skin of the rotor passage model. Test data were obtained for various combinations of Reynolds number, rotor incidence angle and model surface roughness. The data are reported in the form of contour maps of Stanton number. These heat distribution maps revealed numerous local effects produced by the three-dimensional flows within the rotor passage. Of particular importance were regions of local enhancement produced on the airfoil suction surface by the main-passage and tip-leakage vortices and on the hub endwall by the leading-edge horseshoe vortex system. The computational portion consisted of the application of a well-posed parabolized Navier-Stokes analysis to the calculation of the three-dimensional viscous flow through ducts simulating the a gas turbine passage. These cases include a 90 deg turning duct, a gas turbine cascade simulating a stator passage, and a gas turbine rotor passage including Coriolis forces. The calculated results were evaluated using experimental data of the three-dimensional velocity fields, wall static pressures, and wall heat transfer on the suction surface of the turbine airfoil and on the end wall. Particular attention was paid to an accurate modeling of the passage vortex and to the development of the wall boundary layers including crossflow.
NASA Astrophysics Data System (ADS)
Morikawa, Y.; Murata, K. T.; Watari, S.; Kato, H.; Yamamoto, K.; Inoue, S.; Tsubouchi, K.; Fukazawa, K.; Kimura, E.; Tatebe, O.; Shimojo, S.
2010-12-01
Main methodologies of Solar-Terrestrial Physics (STP) so far are theoretical, experimental and observational, and computer simulation approaches. Recently "informatics" is expected as a new (fourth) approach to the STP studies. Informatics is a methodology to analyze large-scale data (observation data and computer simulation data) to obtain new findings using a variety of data processing techniques. At NICT (National Institute of Information and Communications Technology, Japan) we are now developing a new research environment named "OneSpaceNet". The OneSpaceNet is a cloud-computing environment specialized for science works, which connects many researchers with high-speed network (JGN: Japan Gigabit Network). The JGN is a wide-area back-born network operated by NICT; it provides 10G network and many access points (AP) over Japan. The OneSpaceNet also provides with rich computer resources for research studies, such as super-computers, large-scale data storage area, licensed applications, visualization devices (like tiled display wall: TDW), database/DBMS, cluster computers (4-8 nodes) for data processing and communication devices. What is amazing in use of the science cloud is that a user simply prepares a terminal (low-cost PC). Once connecting the PC to JGN2plus, the user can make full use of the rich resources of the science cloud. Using communication devices, such as video-conference system, streaming and reflector servers, and media-players, the users on the OneSpaceNet can make research communications as if they belong to a same (one) laboratory: they are members of a virtual laboratory. The specification of the computer resources on the OneSpaceNet is as follows: The size of data storage we have developed so far is almost 1PB. The number of the data files managed on the cloud storage is getting larger and now more than 40,000,000. What is notable is that the disks forming the large-scale storage are distributed to 5 data centers over Japan (but the storage system performs as one disk). There are three supercomputers allocated on the cloud, one from Tokyo, one from Osaka and the other from Nagoya. One's simulation job data on any supercomputers are saved on the cloud data storage (same directory); it is a kind of virtual computing environment. The tiled display wall has 36 panels acting as one display; the pixel (resolution) size of it is as large as 18000x4300. This size is enough to preview or analyze the large-scale computer simulation data. It also allows us to take a look of multiple (e.g., 100 pictures) on one screen together with many researchers. In our talk we also present a brief report of the initial results using the OneSpaceNet for Global MHD simulations as an example of successful use of our science cloud; (i) Ultra-high time resolution visualization of Global MHD simulations on the large-scale storage and parallel processing system on the cloud, (ii) Database of real-time Global MHD simulation and statistic analyses of the data, and (iii) 3D Web service of Global MHD simulations.
End-to-end distance and contour length distribution functions of DNA helices
NASA Astrophysics Data System (ADS)
Zoli, Marco
2018-06-01
I present a computational method to evaluate the end-to-end and the contour length distribution functions of short DNA molecules described by a mesoscopic Hamiltonian. The method generates a large statistical ensemble of possible configurations for each dimer in the sequence, selects the global equilibrium twist conformation for the molecule, and determines the average base pair distances along the molecule backbone. Integrating over the base pair radial and angular fluctuations, I derive the room temperature distribution functions as a function of the sequence length. The obtained values for the most probable end-to-end distance and contour length distance, providing a measure of the global molecule size, are used to examine the DNA flexibility at short length scales. It is found that, also in molecules with less than ˜60 base pairs, coiled configurations maintain a large statistical weight and, consistently, the persistence lengths may be much smaller than in kilo-base DNA.
Modeling the evolution of channel shape: Balancing computational efficiency with hydraulic fidelity
Wobus, C.W.; Kean, J.W.; Tucker, G.E.; Anderson, R. Scott
2008-01-01
The cross-sectional shape of a natural river channel controls the capacity of the system to carry water off a landscape, to convey sediment derived from hillslopes, and to erode its bed and banks. Numerical models that describe the response of a landscape to changes in climate or tectonics therefore require formulations that can accommodate evolution of channel cross-sectional geometry. However, fully two-dimensional (2-D) flow models are too computationally expensive to implement in large-scale landscape evolution models, while available simple empirical relationships between width and discharge do not adequately capture the dynamics of channel adjustment. We have developed a simplified 2-D numerical model of channel evolution in a cohesive, detachment-limited substrate subject to steady, unidirectional flow. Erosion is assumed to be proportional to boundary shear stress, which is calculated using an approximation of the flow field in which log-velocity profiles are assumed to apply along vectors that are perpendicular to the local channel bed. Model predictions of the velocity structure, peak boundary shear stress, and equilibrium channel shape compare well with predictions of a more sophisticated but more computationally demanding ray-isovel model. For example, the mean velocities computed by the two models are consistent to within ???3%, and the predicted peak shear stress is consistent to within ???7%. Furthermore, the shear stress distributions predicted by our model compare favorably with available laboratory measurements for prescribed channel shapes. A modification to our simplified code in which the flow includes a high-velocity core allows the model to be extended to estimate shear stress distributions in channels with large width-to-depth ratios. Our model is efficient enough to incorporate into large-scale landscape evolution codes and can be used to examine how channels adjust both cross-sectional shape and slope in response to tectonic and climatic forcing. Copyright 2008 by the American Geophysical Union.
Nonextensive Entropy Approach to Space Plasma Fluctuations and Turbulence
NASA Astrophysics Data System (ADS)
Leubner, M. P.; Vörös, Z.; Baumjohann, W.
Spatial intermittency in fully developed turbulence is an established feature of astrophysical plasma fluctuations and in particular apparent in the interplanetary medium by in situ observations. In this situation, the classical Boltzmann— Gibbs extensive thermo-statistics, applicable when microscopic interactions and memory are short ranged and the environment is a continuous and differentiable manifold, fails. Upon generalization of the entropy function to nonextensivity, accounting for long-range interactions and thus for correlations in the system, it is demonstrated that the corresponding probability distribution functions (PDFs) are members of a family of specific power-law distributions. In particular, the resulting theoretical bi-κ functional reproduces accurately the observed global leptokurtic, non-Gaussian shape of the increment PDFs of characteristic solar wind variables on all scales, where nonlocality in turbulence is controlled via a multiscale coupling parameter. Gradual decoupling is obtained by enhancing the spatial separation scale corresponding to increasing κ-values in case of slow solar wind conditions where a Gaussian is approached in the limit of large scales. Contrary, the scaling properties in the high speed solar wind are predominantly governed by the mean energy or variance of the distribution, appearing as second parameter in the theory. The PDFs of solar wind scalar field differences are computed from WIND and ACE data for different time-lags and bulk speeds and analyzed within the nonextensive theory, where also a particular nonlinear dependence of the coupling parameter and variance with scale arises for best fitting theoretical PDFs. Consequently, nonlocality in fluctuations, related to both, turbulence and its large scale driving, should be related to long-range interactions in the context of nonextensive entropy generalization, providing fundamentally the physical background of the observed scale dependence of fluctuations in intermittent space plasmas.
Large fluctuations in anti-coordination games on scale-free graphs
NASA Astrophysics Data System (ADS)
Sabsovich, Daniel; Mobilia, Mauro; Assaf, Michael
2017-05-01
We study the influence of the complex topology of scale-free graphs on the dynamics of anti-coordination games (e.g. snowdrift games). These reference models are characterized by the coexistence (evolutionary stable mixed strategy) of two competing species, say ‘cooperators’ and ‘defectors’, and, in finite systems, by metastability and large-fluctuation-driven fixation. In this work, we use extensive computer simulations and an effective diffusion approximation (in the weak selection limit) to determine under which circumstances, depending on the individual-based update rules, the topology drastically affects the long-time behavior of anti-coordination games. In particular, we compute the variance of the number of cooperators in the metastable state and the mean fixation time when the dynamics is implemented according to the voter model (death-first/birth-second process) and the link dynamics (birth/death or death/birth at random). For the voter update rule, we show that the scale-free topology effectively renormalizes the population size and as a result the statistics of observables depend on the network’s degree distribution. In contrast, such a renormalization does not occur with the link dynamics update rule and we recover the same behavior as on complete graphs.
Using the High-Level Based Program Interface to Facilitate the Large Scale Scientific Computing
Shang, Yizi; Shang, Ling; Gao, Chuanchang; Lu, Guiming; Ye, Yuntao; Jia, Dongdong
2014-01-01
This paper is to make further research on facilitating the large-scale scientific computing on the grid and the desktop grid platform. The related issues include the programming method, the overhead of the high-level program interface based middleware, and the data anticipate migration. The block based Gauss Jordan algorithm as a real example of large-scale scientific computing is used to evaluate those issues presented above. The results show that the high-level based program interface makes the complex scientific applications on large-scale scientific platform easier, though a little overhead is unavoidable. Also, the data anticipation migration mechanism can improve the efficiency of the platform which needs to process big data based scientific applications. PMID:24574931
Sun, Xiaobo; Gao, Jingjing; Jin, Peng; Eng, Celeste; Burchard, Esteban G; Beaty, Terri H; Ruczinski, Ingo; Mathias, Rasika A; Barnes, Kathleen; Wang, Fusheng; Qin, Zhaohui S
2018-06-01
Sorted merging of genomic data is a common data operation necessary in many sequencing-based studies. It involves sorting and merging genomic data from different subjects by their genomic locations. In particular, merging a large number of variant call format (VCF) files is frequently required in large-scale whole-genome sequencing or whole-exome sequencing projects. Traditional single-machine based methods become increasingly inefficient when processing large numbers of files due to the excessive computation time and Input/Output bottleneck. Distributed systems and more recent cloud-based systems offer an attractive solution. However, carefully designed and optimized workflow patterns and execution plans (schemas) are required to take full advantage of the increased computing power while overcoming bottlenecks to achieve high performance. In this study, we custom-design optimized schemas for three Apache big data platforms, Hadoop (MapReduce), HBase, and Spark, to perform sorted merging of a large number of VCF files. These schemas all adopt the divide-and-conquer strategy to split the merging job into sequential phases/stages consisting of subtasks that are conquered in an ordered, parallel, and bottleneck-free way. In two illustrating examples, we test the performance of our schemas on merging multiple VCF files into either a single TPED or a single VCF file, which are benchmarked with the traditional single/parallel multiway-merge methods, message passing interface (MPI)-based high-performance computing (HPC) implementation, and the popular VCFTools. Our experiments suggest all three schemas either deliver a significant improvement in efficiency or render much better strong and weak scalabilities over traditional methods. Our findings provide generalized scalable schemas for performing sorted merging on genetics and genomics data using these Apache distributed systems.
Gao, Jingjing; Jin, Peng; Eng, Celeste; Burchard, Esteban G; Beaty, Terri H; Ruczinski, Ingo; Mathias, Rasika A; Barnes, Kathleen; Wang, Fusheng
2018-01-01
Abstract Background Sorted merging of genomic data is a common data operation necessary in many sequencing-based studies. It involves sorting and merging genomic data from different subjects by their genomic locations. In particular, merging a large number of variant call format (VCF) files is frequently required in large-scale whole-genome sequencing or whole-exome sequencing projects. Traditional single-machine based methods become increasingly inefficient when processing large numbers of files due to the excessive computation time and Input/Output bottleneck. Distributed systems and more recent cloud-based systems offer an attractive solution. However, carefully designed and optimized workflow patterns and execution plans (schemas) are required to take full advantage of the increased computing power while overcoming bottlenecks to achieve high performance. Findings In this study, we custom-design optimized schemas for three Apache big data platforms, Hadoop (MapReduce), HBase, and Spark, to perform sorted merging of a large number of VCF files. These schemas all adopt the divide-and-conquer strategy to split the merging job into sequential phases/stages consisting of subtasks that are conquered in an ordered, parallel, and bottleneck-free way. In two illustrating examples, we test the performance of our schemas on merging multiple VCF files into either a single TPED or a single VCF file, which are benchmarked with the traditional single/parallel multiway-merge methods, message passing interface (MPI)–based high-performance computing (HPC) implementation, and the popular VCFTools. Conclusions Our experiments suggest all three schemas either deliver a significant improvement in efficiency or render much better strong and weak scalabilities over traditional methods. Our findings provide generalized scalable schemas for performing sorted merging on genetics and genomics data using these Apache distributed systems. PMID:29762754
Design and implementation of a distributed large-scale spatial database system based on J2EE
NASA Astrophysics Data System (ADS)
Gong, Jianya; Chen, Nengcheng; Zhu, Xinyan; Zhang, Xia
2003-03-01
With the increasing maturity of distributed object technology, CORBA, .NET and EJB are universally used in traditional IT field. However, theories and practices of distributed spatial database need farther improvement in virtue of contradictions between large scale spatial data and limited network bandwidth or between transitory session and long transaction processing. Differences and trends among of CORBA, .NET and EJB are discussed in details, afterwards the concept, architecture and characteristic of distributed large-scale seamless spatial database system based on J2EE is provided, which contains GIS client application, web server, GIS application server and spatial data server. Moreover the design and implementation of components of GIS client application based on JavaBeans, the GIS engine based on servlet, the GIS Application server based on GIS enterprise JavaBeans(contains session bean and entity bean) are explained.Besides, the experiments of relation of spatial data and response time under different conditions are conducted, which proves that distributed spatial database system based on J2EE can be used to manage, distribute and share large scale spatial data on Internet. Lastly, a distributed large-scale seamless image database based on Internet is presented.
NGScloud: RNA-seq analysis of non-model species using cloud computing.
Mora-Márquez, Fernando; Vázquez-Poletti, José Luis; López de Heredia, Unai
2018-05-03
RNA-seq analysis usually requires large computing infrastructures. NGScloud is a bioinformatic system developed to analyze RNA-seq data using the cloud computing services of Amazon that permit the access to ad hoc computing infrastructure scaled according to the complexity of the experiment, so its costs and times can be optimized. The application provides a user-friendly front-end to operate Amazon's hardware resources, and to control a workflow of RNA-seq analysis oriented to non-model species, incorporating the cluster concept, which allows parallel runs of common RNA-seq analysis programs in several virtual machines for faster analysis. NGScloud is freely available at https://github.com/GGFHF/NGScloud/. A manual detailing installation and how-to-use instructions is available with the distribution. unai.lopezdeheredia@upm.es.
NASA Astrophysics Data System (ADS)
Acedo, L.; Villanueva-Oller, J.; Moraño, J. A.; Villanueva, R.-J.
2013-01-01
The Berkeley Open Infrastructure for Network Computing (BOINC) has become the standard open source solution for grid computing in the Internet. Volunteers use their computers to complete an small part of the task assigned by a dedicated server. We have developed a BOINC project called Neurona@Home whose objective is to simulate a cellular automata random network with, at least, one million neurons. We consider a cellular automata version of the integrate-and-fire model in which excitatory and inhibitory nodes can activate or deactivate neighbor nodes according to a set of probabilistic rules. Our aim is to determine the phase diagram of the model and its behaviour and to compare it with the electroencephalographic signals measured in real brains.
Corridor One:An Integrated Distance Visualization Enuronments for SSI+ASCI Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christopher R. Johnson, Charles D. Hansen
2001-10-29
The goal of Corridor One: An Integrated Distance Visualization Environment for ASCI and SSI Application was to combine the forces of six leading edge laboratories working in the areas of visualization and distributed computing and high performance networking (Argonne National Laboratory, Lawrence Berkeley National Laboratory, Los Alamos National Laboratory, University of Illinois, University of Utah and Princeton University) to develop and deploy the most advanced integrated distance visualization environment for large-scale scientific visualization and demonstrate it on applications relevant to the DOE SSI and ASCI programs. The Corridor One team brought world class expertise in parallel rendering, deep image basedmore » rendering, immersive environment technology, large-format multi-projector wall based displays, volume and surface visualization algorithms, collaboration tools and streaming media technology, network protocols for image transmission, high-performance networking, quality of service technology and distributed computing middleware. Our strategy was to build on the very successful teams that produced the I-WAY, ''Computational Grids'' and CAVE technology and to add these to the teams that have developed the fastest parallel visualizations systems and the most widely used networking infrastructure for multicast and distributed media. Unfortunately, just as we were getting going on the Corridor One project, DOE cut the program after the first year. As such, our final report consists of our progress during year one of the grant.« less
Findings and Challenges in Fine-Resolution Large-Scale Hydrological Modeling
NASA Astrophysics Data System (ADS)
Her, Y. G.
2017-12-01
Fine-resolution large-scale (FL) modeling can provide the overall picture of the hydrological cycle and transport while taking into account unique local conditions in the simulation. It can also help develop water resources management plans consistent across spatial scales by describing the spatial consequences of decisions and hydrological events extensively. FL modeling is expected to be common in the near future as global-scale remotely sensed data are emerging, and computing resources have been advanced rapidly. There are several spatially distributed models available for hydrological analyses. Some of them rely on numerical methods such as finite difference/element methods (FDM/FEM), which require excessive computing resources (implicit scheme) to manipulate large matrices or small simulation time intervals (explicit scheme) to maintain the stability of the solution, to describe two-dimensional overland processes. Others make unrealistic assumptions such as constant overland flow velocity to reduce the computational loads of the simulation. Thus, simulation efficiency often comes at the expense of precision and reliability in FL modeling. Here, we introduce a new FL continuous hydrological model and its application to four watersheds in different landscapes and sizes from 3.5 km2 to 2,800 km2 at the spatial resolution of 30 m on an hourly basis. The model provided acceptable accuracy statistics in reproducing hydrological observations made in the watersheds. The modeling outputs including the maps of simulated travel time, runoff depth, soil water content, and groundwater recharge, were animated, visualizing the dynamics of hydrological processes occurring in the watersheds during and between storm events. Findings and challenges were discussed in the context of modeling efficiency, accuracy, and reproducibility, which we found can be improved by employing advanced computing techniques and hydrological understandings, by using remotely sensed hydrological observations such as soil moisture and radar rainfall depth and by sharing the model and its codes in public domain, respectively.
The International Conference on Vector and Parallel Computing (2nd)
1989-01-17
Computation of the SVD of Bidiagonal Matrices" ...................................... 11 " Lattice QCD -As a Large Scale Scientific Computation...vectorizcd for the IBM 3090 Vector Facility. In addition, elapsed times " Lattice QCD -As a Large Scale Scientific have been reduced by using 3090...benchmarked Lattice QCD on a large number ofcompu- come from the wavefront solver routine. This was exten- ters: CrayX-MP and Cray 2 (vector
Calculation of absolute protein-ligand binding free energy using distributed replica sampling.
Rodinger, Tomas; Howell, P Lynne; Pomès, Régis
2008-10-21
Distributed replica sampling [T. Rodinger et al., J. Chem. Theory Comput. 2, 725 (2006)] is a simple and general scheme for Boltzmann sampling of conformational space by computer simulation in which multiple replicas of the system undergo a random walk in reaction coordinate or temperature space. Individual replicas are linked through a generalized Hamiltonian containing an extra potential energy term or bias which depends on the distribution of all replicas, thus enforcing the desired sampling distribution along the coordinate or parameter of interest regardless of free energy barriers. In contrast to replica exchange methods, efficient implementation of the algorithm does not require synchronicity of the individual simulations. The algorithm is inherently suited for large-scale simulations using shared or heterogeneous computing platforms such as a distributed network. In this work, we build on our original algorithm by introducing Boltzmann-weighted jumping, which allows moves of a larger magnitude and thus enhances sampling efficiency along the reaction coordinate. The approach is demonstrated using a realistic and biologically relevant application; we calculate the standard binding free energy of benzene to the L99A mutant of T4 lysozyme. Distributed replica sampling is used in conjunction with thermodynamic integration to compute the potential of mean force for extracting the ligand from protein and solvent along a nonphysical spatial coordinate. Dynamic treatment of the reaction coordinate leads to faster statistical convergence of the potential of mean force than a conventional static coordinate, which suffers from slow transitions on a rugged potential energy surface.
Calculation of absolute protein-ligand binding free energy using distributed replica sampling
NASA Astrophysics Data System (ADS)
Rodinger, Tomas; Howell, P. Lynne; Pomès, Régis
2008-10-01
Distributed replica sampling [T. Rodinger et al., J. Chem. Theory Comput. 2, 725 (2006)] is a simple and general scheme for Boltzmann sampling of conformational space by computer simulation in which multiple replicas of the system undergo a random walk in reaction coordinate or temperature space. Individual replicas are linked through a generalized Hamiltonian containing an extra potential energy term or bias which depends on the distribution of all replicas, thus enforcing the desired sampling distribution along the coordinate or parameter of interest regardless of free energy barriers. In contrast to replica exchange methods, efficient implementation of the algorithm does not require synchronicity of the individual simulations. The algorithm is inherently suited for large-scale simulations using shared or heterogeneous computing platforms such as a distributed network. In this work, we build on our original algorithm by introducing Boltzmann-weighted jumping, which allows moves of a larger magnitude and thus enhances sampling efficiency along the reaction coordinate. The approach is demonstrated using a realistic and biologically relevant application; we calculate the standard binding free energy of benzene to the L99A mutant of T4 lysozyme. Distributed replica sampling is used in conjunction with thermodynamic integration to compute the potential of mean force for extracting the ligand from protein and solvent along a nonphysical spatial coordinate. Dynamic treatment of the reaction coordinate leads to faster statistical convergence of the potential of mean force than a conventional static coordinate, which suffers from slow transitions on a rugged potential energy surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubel, Oliver; Loring, Burlen; Vay, Jean -Luc
The generation of short pulses of ion beams through the interaction of an intense laser with a plasma sheath offers the possibility of compact and cheaper ion sources for many applications--from fast ignition and radiography of dense targets to hadron therapy and injection into conventional accelerators. To enable the efficient analysis of large-scale, high-fidelity particle accelerator simulations using the Warp simulation suite, the authors introduce the Warp In situ Visualization Toolkit (WarpIV). WarpIV integrates state-of-the-art in situ visualization and analysis using VisIt with Warp, supports management and control of complex in situ visualization and analysis workflows, and implements integrated analyticsmore » to facilitate query- and feature-based data analytics and efficient large-scale data analysis. WarpIV enables for the first time distributed parallel, in situ visualization of the full simulation data using high-performance compute resources as the data is being generated by Warp. The authors describe the application of WarpIV to study and compare large 2D and 3D ion accelerator simulations, demonstrating significant differences in the acceleration process in 2D and 3D simulations. WarpIV is available to the public via https://bitbucket.org/berkeleylab/warpiv. The Warp In situ Visualization Toolkit (WarpIV) supports large-scale, parallel, in situ visualization and analysis and facilitates query- and feature-based analytics, enabling for the first time high-performance analysis of large-scale, high-fidelity particle accelerator simulations while the data is being generated by the Warp simulation suite. Furthermore, this supplemental material https://extras.computer.org/extra/mcg2016030022s1.pdf provides more details regarding the memory profiling and optimization and the Yee grid recentering optimization results discussed in the main article.« less
WarpIV: In situ visualization and analysis of ion accelerator simulations
Rubel, Oliver; Loring, Burlen; Vay, Jean -Luc; ...
2016-05-09
The generation of short pulses of ion beams through the interaction of an intense laser with a plasma sheath offers the possibility of compact and cheaper ion sources for many applications--from fast ignition and radiography of dense targets to hadron therapy and injection into conventional accelerators. To enable the efficient analysis of large-scale, high-fidelity particle accelerator simulations using the Warp simulation suite, the authors introduce the Warp In situ Visualization Toolkit (WarpIV). WarpIV integrates state-of-the-art in situ visualization and analysis using VisIt with Warp, supports management and control of complex in situ visualization and analysis workflows, and implements integrated analyticsmore » to facilitate query- and feature-based data analytics and efficient large-scale data analysis. WarpIV enables for the first time distributed parallel, in situ visualization of the full simulation data using high-performance compute resources as the data is being generated by Warp. The authors describe the application of WarpIV to study and compare large 2D and 3D ion accelerator simulations, demonstrating significant differences in the acceleration process in 2D and 3D simulations. WarpIV is available to the public via https://bitbucket.org/berkeleylab/warpiv. The Warp In situ Visualization Toolkit (WarpIV) supports large-scale, parallel, in situ visualization and analysis and facilitates query- and feature-based analytics, enabling for the first time high-performance analysis of large-scale, high-fidelity particle accelerator simulations while the data is being generated by the Warp simulation suite. Furthermore, this supplemental material https://extras.computer.org/extra/mcg2016030022s1.pdf provides more details regarding the memory profiling and optimization and the Yee grid recentering optimization results discussed in the main article.« less
He, Hui; Fan, Guotao; Ye, Jianwei; Zhang, Weizhe
2013-01-01
It is of great significance to research the early warning system for large-scale network security incidents. It can improve the network system's emergency response capabilities, alleviate the cyber attacks' damage, and strengthen the system's counterattack ability. A comprehensive early warning system is presented in this paper, which combines active measurement and anomaly detection. The key visualization algorithm and technology of the system are mainly discussed. The large-scale network system's plane visualization is realized based on the divide and conquer thought. First, the topology of the large-scale network is divided into some small-scale networks by the MLkP/CR algorithm. Second, the sub graph plane visualization algorithm is applied to each small-scale network. Finally, the small-scale networks' topologies are combined into a topology based on the automatic distribution algorithm of force analysis. As the algorithm transforms the large-scale network topology plane visualization problem into a series of small-scale network topology plane visualization and distribution problems, it has higher parallelism and is able to handle the display of ultra-large-scale network topology.
NASA Astrophysics Data System (ADS)
Xu, Jincheng; Liu, Wei; Wang, Jin; Liu, Linong; Zhang, Jianfeng
2018-02-01
De-absorption pre-stack time migration (QPSTM) compensates for the absorption and dispersion of seismic waves by introducing an effective Q parameter, thereby making it an effective tool for 3D, high-resolution imaging of seismic data. Although the optimal aperture obtained via stationary-phase migration reduces the computational cost of 3D QPSTM and yields 3D stationary-phase QPSTM, the associated computational efficiency is still the main problem in the processing of 3D, high-resolution images for real large-scale seismic data. In the current paper, we proposed a division method for large-scale, 3D seismic data to optimize the performance of stationary-phase QPSTM on clusters of graphics processing units (GPU). Then, we designed an imaging point parallel strategy to achieve an optimal parallel computing performance. Afterward, we adopted an asynchronous double buffering scheme for multi-stream to perform the GPU/CPU parallel computing. Moreover, several key optimization strategies of computation and storage based on the compute unified device architecture (CUDA) were adopted to accelerate the 3D stationary-phase QPSTM algorithm. Compared with the initial GPU code, the implementation of the key optimization steps, including thread optimization, shared memory optimization, register optimization and special function units (SFU), greatly improved the efficiency. A numerical example employing real large-scale, 3D seismic data showed that our scheme is nearly 80 times faster than the CPU-QPSTM algorithm. Our GPU/CPU heterogeneous parallel computing framework significant reduces the computational cost and facilitates 3D high-resolution imaging for large-scale seismic data.
Transport on percolation clusters with power-law distributed bond strengths.
Alava, Mikko; Moukarzel, Cristian F
2003-05-01
The simplest transport problem, namely finding the maximum flow of current, or maxflow, is investigated on critical percolation clusters in two and three dimensions, using a combination of extremal statistics arguments and exact numerical computations, for power-law distributed bond strengths of the type P(sigma) approximately sigma(-alpha). Assuming that only cutting bonds determine the flow, the maxflow critical exponent v is found to be v(alpha)=(d-1)nu+1/(1-alpha). This prediction is confirmed with excellent accuracy using large-scale numerical simulation in two and three dimensions. However, in the region of anomalous bond capacity distributions (0< or =alpha< or =1) we demonstrate that, due to cluster-structure fluctuations, it is not the cutting bonds but the blobs that set the transport properties of the backbone. This "blob dominance" avoids a crossover to a regime where structural details, the distribution of the number of red or cutting bonds, would set the scaling. The restored scaling exponents, however, still follow the simplistic red bond estimate. This is argued to be due to the existence of a hierarchy of so-called minimum cut configurations, for which cutting bonds form the lowest level, and whose transport properties scale all in the same way. We point out the relevance of our findings to other scalar transport problems (i.e., conductivity).
Large-scale structure non-Gaussianities with modal methods
NASA Astrophysics Data System (ADS)
Schmittfull, Marcel
2016-10-01
Relying on a separable modal expansion of the bispectrum, the implementation of a fast estimator for the full bispectrum of a 3d particle distribution is presented. The computational cost of accurate bispectrum estimation is negligible relative to simulation evolution, so the bispectrum can be used as a standard diagnostic whenever the power spectrum is evaluated. As an application, the time evolution of gravitational and primordial dark matter bispectra was measured in a large suite of N-body simulations. The bispectrum shape changes characteristically when the cosmic web becomes dominated by filaments and halos, therefore providing a quantitative probe of 3d structure formation. Our measured bispectra are determined by ~ 50 coefficients, which can be used as fitting formulae in the nonlinear regime and for non-Gaussian initial conditions. We also compare the measured bispectra with predictions from the Effective Field Theory of Large Scale Structures (EFTofLSS).
Large-scale neuromorphic computing systems
NASA Astrophysics Data System (ADS)
Furber, Steve
2016-10-01
Neuromorphic computing covers a diverse range of approaches to information processing all of which demonstrate some degree of neurobiological inspiration that differentiates them from mainstream conventional computing systems. The philosophy behind neuromorphic computing has its origins in the seminal work carried out by Carver Mead at Caltech in the late 1980s. This early work influenced others to carry developments forward, and advances in VLSI technology supported steady growth in the scale and capability of neuromorphic devices. Recently, a number of large-scale neuromorphic projects have emerged, taking the approach to unprecedented scales and capabilities. These large-scale projects are associated with major new funding initiatives for brain-related research, creating a sense that the time and circumstances are right for progress in our understanding of information processing in the brain. In this review we present a brief history of neuromorphic engineering then focus on some of the principal current large-scale projects, their main features, how their approaches are complementary and distinct, their advantages and drawbacks, and highlight the sorts of capabilities that each can deliver to neural modellers.
Expanding the user base beyond HEP for the Ganga distributed analysis user interface
NASA Astrophysics Data System (ADS)
Currie, R.; Egede, U.; Richards, A.; Slater, M.; Williams, M.
2017-10-01
This document presents the result of recent developments within Ganga[1] project to support users from new communities outside of HEP. In particular I will examine the case of users from the Large Scale Survey Telescope (LSST) group looking to use resources provided by the UK based GridPP[2][3] DIRAC[4][5] instance. An example use case is work performed with users from the LSST Virtual Organisation (VO) to distribute the workflow used for galaxy shape identification analyses. This work highlighted some LSST specific challenges which could be well solved by common tools within the HEP community. As a result of this work the LSST community was able to take advantage of GridPP[2][3] resources to perform large computing tasks within the UK.
2006-10-01
NCAPS ) Christina M. Underhill, Ph.D. Approved for public release; distribution is unlimited. NPRST-TN-06-9 October 2006...Investigation of Item-Pair Presentation and Construct Validity of the Navy Computer Adaptive Personality Scales ( NCAPS ) Christina M. Underhill, Ph.D...documents one of the steps in our development of the Navy Computer Adaptive Personality Scales ( NCAPS ). NCAPS is a computer adaptive personality measure
The Role of Free Stream Turbulence on the Aerodynamic Performance of a Wind Turbine Blade
NASA Astrophysics Data System (ADS)
Maldonado, Victor; Thormann, Adrien; Meneveau, Charles; Castillo, Luciano
2014-11-01
Effects of free stream turbulence with large integral scale on the aerodynamic performance of an S809 airfoil-based wind turbine blade at low Reynolds number are studied using wind tunnel experiments. A constant chord (2-D) S809 airfoil wind turbine blade model with an operating Reynolds number of 208,000 based on chord length was tested for a range of angles of attack representative of fully attached and stalled flow as encountered in typical wind turbine operation. The smooth-surface blade was subjected to a quasi-laminar free stream with very low free-stream turbulence as well as to elevated free-stream turbulence generated by an active grid. This turbulence contained large-scale eddies with levels of free-stream turbulence intensity of up to 6.14% and an integral length scale of about 60% of chord-length. The pressure distribution was acquired using static pressure taps and the lift was subsequently computed by numerical integration. The wake velocity deficit was measured utilizing hot-wire anemometry to compute the drag coefficient also via integration. In addition, the mean flow was quantified using 2-D particle image velocimetry (PIV) over the suction surface of the blade. Results indicate that turbulence, even with very large-scale eddies comparable in size to the chord-length, significantly improves the aerodynamic performance of the blade by increasing the lift coefficient and overall lift-to-drag ratio, L/D for all angles tested except zero degrees.
Albattat, Ali; Gruenwald, Benjamin C.; Yucelen, Tansel
2016-01-01
The last decade has witnessed an increased interest in physical systems controlled over wireless networks (networked control systems). These systems allow the computation of control signals via processors that are not attached to the physical systems, and the feedback loops are closed over wireless networks. The contribution of this paper is to design and analyze event-triggered decentralized and distributed adaptive control architectures for uncertain networked large-scale modular systems; that is, systems consist of physically-interconnected modules controlled over wireless networks. Specifically, the proposed adaptive architectures guarantee overall system stability while reducing wireless network utilization and achieving a given system performance in the presence of system uncertainties that can result from modeling and degraded modes of operation of the modules and their interconnections between each other. In addition to the theoretical findings including rigorous system stability and the boundedness analysis of the closed-loop dynamical system, as well as the characterization of the effect of user-defined event-triggering thresholds and the design parameters of the proposed adaptive architectures on the overall system performance, an illustrative numerical example is further provided to demonstrate the efficacy of the proposed decentralized and distributed control approaches. PMID:27537894
Albattat, Ali; Gruenwald, Benjamin C; Yucelen, Tansel
2016-08-16
The last decade has witnessed an increased interest in physical systems controlled over wireless networks (networked control systems). These systems allow the computation of control signals via processors that are not attached to the physical systems, and the feedback loops are closed over wireless networks. The contribution of this paper is to design and analyze event-triggered decentralized and distributed adaptive control architectures for uncertain networked large-scale modular systems; that is, systems consist of physically-interconnected modules controlled over wireless networks. Specifically, the proposed adaptive architectures guarantee overall system stability while reducing wireless network utilization and achieving a given system performance in the presence of system uncertainties that can result from modeling and degraded modes of operation of the modules and their interconnections between each other. In addition to the theoretical findings including rigorous system stability and the boundedness analysis of the closed-loop dynamical system, as well as the characterization of the effect of user-defined event-triggering thresholds and the design parameters of the proposed adaptive architectures on the overall system performance, an illustrative numerical example is further provided to demonstrate the efficacy of the proposed decentralized and distributed control approaches.
Machine Learning, deep learning and optimization in computer vision
NASA Astrophysics Data System (ADS)
Canu, Stéphane
2017-03-01
As quoted in the Large Scale Computer Vision Systems NIPS workshop, computer vision is a mature field with a long tradition of research, but recent advances in machine learning, deep learning, representation learning and optimization have provided models with new capabilities to better understand visual content. The presentation will go through these new developments in machine learning covering basic motivations, ideas, models and optimization in deep learning for computer vision, identifying challenges and opportunities. It will focus on issues related with large scale learning that is: high dimensional features, large variety of visual classes, and large number of examples.
Sensitivity of Age-of-Air Calculations to the Choice of Advection Scheme
NASA Technical Reports Server (NTRS)
Eluszkiewicz, Janusz; Hemler, Richard S.; Mahlman, Jerry D.; Bruhwiler, Lori; Takacs, Lawrence L.
2000-01-01
The age of air has recently emerged as a diagnostic of atmospheric transport unaffected by chemical parameterizations, and the features in the age distributions computed in models have been interpreted in terms of the models' large-scale circulation field. This study shows, however, that in addition to the simulated large-scale circulation, three-dimensional age calculations can also be affected by the choice of advection scheme employed in solving the tracer continuity equation, Specifically, using the 3.0deg latitude X 3.6deg longitude and 40 vertical level version of the Geophysical Fluid Dynamics Laboratory SKYHI GCM and six online transport schemes ranging from Eulerian through semi-Lagrangian to fully Lagrangian, it will be demonstrated that the oldest ages are obtained using the nondiffusive centered-difference schemes while the youngest ages are computed with a semi-Lagrangian transport (SLT) scheme. The centered- difference schemes are capable of producing ages older than 10 years in the mesosphere, thus eliminating the "young bias" found in previous age-of-air calculations. At this stage, only limited intuitive explanations can be advanced for this sensitivity of age-of-air calculations to the choice of advection scheme, In particular, age distributions computed online with the National Center for Atmospheric Research Community Climate Model (MACCM3) using different varieties of the SLT scheme are substantially older than the SKYHI SLT distribution. The different varieties, including a noninterpolating-in-the-vertical version (which is essentially centered-difference in the vertical), also produce a narrower range of age distributions than the suite of advection schemes employed in the SKYHI model. While additional MACCM3 experiments with a wider range of schemes would be necessary to provide more definitive insights, the older and less variable MACCM3 age distributions can plausibly be interpreted as being due to the semi-implicit semi-Lagrangian dynamics employed in the MACCM3. This type of dynamical core (employed with a 60-min time step) is likely to reduce SLT's interpolation errors that are compounded by the short-term variability characteristic of the explicit centered-difference dynamics employed in the SKYHI model (time step of 3 min). In the extreme case of a very slowly varying circulation, the choice of advection scheme has no effect on two-dimensional (latitude-height) age-of-air calculations, owing to the smooth nature of the transport circulation in 2D models. These results suggest that nondiffusive schemes may be the preferred choice for multiyear simulations of tracers not overly sensitive to the requirement of monotonicity (this category includes many greenhouse gases). At the same time, age-of-air calculations offer a simple quantitative diagnostic of a scheme's long-term diffusive properties and may help in the evaluation of dynamical cores in multiyear integrations. On the other hand, the sensitivity of the computed ages to the model numerics calls for caution in using age of air as a diagnostic of a GCM's large-scale circulation field.
Siragusa, Enrico; Haiminen, Niina; Utro, Filippo; Parida, Laxmi
2017-10-09
Computer simulations can be used to study population genetic methods, models and parameters, as well as to predict potential outcomes. For example, in plant populations, predicting the outcome of breeding operations can be studied using simulations. In-silico construction of populations with pre-specified characteristics is an important task in breeding optimization and other population genetic studies. We present two linear time Simulation using Best-fit Algorithms (SimBA) for two classes of problems where each co-fits two distributions: SimBA-LD fits linkage disequilibrium and minimum allele frequency distributions, while SimBA-hap fits founder-haplotype and polyploid allele dosage distributions. An incremental gap-filling version of previously introduced SimBA-LD is here demonstrated to accurately fit the target distributions, allowing efficient large scale simulations. SimBA-hap accuracy and efficiency is demonstrated by simulating tetraploid populations with varying numbers of founder haplotypes, we evaluate both a linear time greedy algoritm and an optimal solution based on mixed-integer programming. SimBA is available on http://researcher.watson.ibm.com/project/5669.
Qin, Changbo; Jia, Yangwen; Su, Z; Zhou, Zuhao; Qiu, Yaqin; Suhui, Shen
2008-07-29
This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspiration is retrieved from these 1×1 km resolution images using the SEBS (Surface Energy Balance System) algorithm. The physically-based distributed model WEP-L (Water and Energy transfer Process in Large river basins) is used to compute the water balance of the Haihe River basin in the same year. Comparison between model-derived and remote sensing retrieval basin-averaged evapotranspiration estimates shows a good piecewise linear relationship, but their spatial distribution within the Haihe basin is different. The remote sensing derived evapotranspiration shows variability at finer scales. An extended Kalman filter (EKF) data assimilation algorithm, suitable for non-linear problems, is used. Assimilation results indicate that remote sensing observations have a potentially important role in providing spatial information to the assimilation system for the spatially optical hydrological parameterization of the model. This is especially important for large basins, such as the Haihe River basin in this study. Combining and integrating the capabilities of and information from model simulation and remote sensing techniques may provide the best spatial and temporal characteristics for hydrological states/fluxes, and would be both appealing and necessary for improving our knowledge of fundamental hydrological processes and for addressing important water resource management problems.
Qin, Changbo; Jia, Yangwen; Su, Z.(Bob); Zhou, Zuhao; Qiu, Yaqin; Suhui, Shen
2008-01-01
This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspiration is retrieved from these 1×1 km resolution images using the SEBS (Surface Energy Balance System) algorithm. The physically-based distributed model WEP-L (Water and Energy transfer Process in Large river basins) is used to compute the water balance of the Haihe River basin in the same year. Comparison between model-derived and remote sensing retrieval basin-averaged evapotranspiration estimates shows a good piecewise linear relationship, but their spatial distribution within the Haihe basin is different. The remote sensing derived evapotranspiration shows variability at finer scales. An extended Kalman filter (EKF) data assimilation algorithm, suitable for non-linear problems, is used. Assimilation results indicate that remote sensing observations have a potentially important role in providing spatial information to the assimilation system for the spatially optical hydrological parameterization of the model. This is especially important for large basins, such as the Haihe River basin in this study. Combining and integrating the capabilities of and information from model simulation and remote sensing techniques may provide the best spatial and temporal characteristics for hydrological states/fluxes, and would be both appealing and necessary for improving our knowledge of fundamental hydrological processes and for addressing important water resource management problems. PMID:27879946
Numerical Upscaling of Solute Transport in Fractured Porous Media Based on Flow Aligned Blocks
NASA Astrophysics Data System (ADS)
Leube, P.; Nowak, W.; Sanchez-Vila, X.
2013-12-01
High-contrast or fractured-porous media (FPM) pose one of the largest unresolved challenges for simulating large hydrogeological systems. The high contrast in advective transport between fast conduits and low-permeability rock matrix, including complex mass transfer processes, leads to the typical complex characteristics of early bulk arrivals and long tailings. Adequate direct representation of FPM requires enormous numerical resolutions. For large scales, e.g. the catchment scale, and when allowing for uncertainty in the fracture network architecture or in matrix properties, computational costs quickly reach an intractable level. In such cases, multi-scale simulation techniques have become useful tools. They allow decreasing the complexity of models by aggregating and transferring their parameters to coarser scales and so drastically reduce the computational costs. However, these advantages come at a loss of detail and accuracy. In this work, we develop and test a new multi-scale or upscaled modeling approach based on block upscaling. The novelty is that individual blocks are defined by and aligned with the local flow coordinates. We choose a multi-rate mass transfer (MRMT) model to represent the remaining sub-block non-Fickian behavior within these blocks on the coarse scale. To make the scale transition simple and to save computational costs, we capture sub-block features by temporal moments (TM) of block-wise particle arrival times to be matched with the MRMT model. By predicting spatial mass distributions of injected tracers in a synthetic test scenario, our coarse-scale solution matches reasonably well with the corresponding fine-scale reference solution. For predicting higher TM-orders (such as arrival time and effective dispersion), the prediction accuracy steadily decreases. This is compensated to some extent by the MRMT model. If the MRMT model becomes too complex, it loses its effect. We also found that prediction accuracy is sensitive to the choice of the effective dispersion coefficients and on the block resolution. A key advantage of the flow-aligned blocks is that the small-scale velocity field is reproduced quite accurately on the block-scale through their flow alignment. Thus, the block-scale transverse dispersivities remain in the similar magnitude as local ones, and they do not have to represent macroscopic uncertainty. Also, the flow-aligned blocks minimize numerical dispersion when solving the large-scale transport problem.
Latency Hiding in Dynamic Partitioning and Load Balancing of Grid Computing Applications
NASA Technical Reports Server (NTRS)
Das, Sajal K.; Harvey, Daniel J.; Biswas, Rupak
2001-01-01
The Information Power Grid (IPG) concept developed by NASA is aimed to provide a metacomputing platform for large-scale distributed computations, by hiding the intricacies of highly heterogeneous environment and yet maintaining adequate security. In this paper, we propose a latency-tolerant partitioning scheme that dynamically balances processor workloads on the.IPG, and minimizes data movement and runtime communication. By simulating an unsteady adaptive mesh application on a wide area network, we study the performance of our load balancer under the Globus environment. The number of IPG nodes, the number of processors per node, and the interconnected speeds are parameterized to derive conditions under which the IPG would be suitable for parallel distributed processing of such applications. Experimental results demonstrate that effective solution are achieved when the IPG nodes are connected by a high-speed asynchronous interconnection network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Na, Ji Sung; Koo, Eunmo; Munoz-Esparza, Domingo
High-resolution large-eddy simulation of the flow over a large wind farm (64 wind turbines) is performed using the HIGRAD/FIRETEC-WindBlade model, which is a high-performance computing wind turbine–atmosphere interaction model that uses the Lagrangian actuator line method to represent rotating turbine blades. These high-resolution large-eddy simulation results are used to parameterize the thrust and power coefficients that contain information about turbine interference effects within the wind farm. Those coefficients are then incorporated into the WRF (Weather Research and Forecasting) model in order to evaluate interference effects in larger-scale models. In the high-resolution WindBlade wind farm simulation, insufficient distance between turbines createsmore » the interference between turbines, including significant vertical variations in momentum and turbulent intensity. The characteristics of the wake are further investigated by analyzing the distribution of the vorticity and turbulent intensity. Quadrant analysis in the turbine and post-turbine areas reveals that the ejection motion induced by the presence of the wind turbines is dominant compared to that in the other quadrants, indicating that the sweep motion is increased at the location where strong wake recovery occurs. Regional-scale WRF simulations reveal that although the turbulent mixing induced by the wind farm is partly diffused to the upper region, there is no significant change in the boundary layer depth. The velocity deficit does not appear to be very sensitive to the local distribution of turbine coefficients. However, differences of about 5% on parameterized turbulent kinetic energy were found depending on the turbine coefficient distribution. Furthermore, turbine coefficients that consider interference in the wind farm should be used in wind farm parameterization for larger-scale models to better describe sub-grid scale turbulent processes.« less
The seesaw space, a vector space to identify and characterize large-scale structures at 1 AU
NASA Astrophysics Data System (ADS)
Lara, A.; Niembro, T.
2017-12-01
We introduce the seesaw space, an orthonormal space formed by the local and the global fluctuations of any of the four basic solar parameters: velocity, density, magnetic field and temperature at any heliospheric distance. The fluctuations compare the standard deviation of a moving average of three hours against the running average of the parameter in a month (consider as the local fluctuations) and in a year (global fluctuations) We created this new vectorial spaces to identify the arrival of transients to any spacecraft without the need of an observer. We applied our method to the one-minute resolution data of WIND spacecraft from 1996 to 2016. To study the behavior of the seesaw norms in terms of the solar cycle, we computed annual histograms and fixed piecewise functions formed by two log-normal distributions and observed that one of the distributions is due to large-scale structures while the other to the ambient solar wind. The norm values in which the piecewise functions change vary in terms of the solar cycle. We compared the seesaw norms of each of the basic parameters due to the arrival of coronal mass ejections, co-rotating interaction regions and sector boundaries reported in literature. High seesaw norms are due to large-scale structures. We found three critical values of the norms that can be used to determined the arrival of coronal mass ejections. We present as well general comparisons of the norms during the two maxima and the minimum solar cycle periods and the differences of the norms due to large-scale structures depending on each period.
Computer Science Techniques Applied to Parallel Atomistic Simulation
NASA Astrophysics Data System (ADS)
Nakano, Aiichiro
1998-03-01
Recent developments in parallel processing technology and multiresolution numerical algorithms have established large-scale molecular dynamics (MD) simulations as a new research mode for studying materials phenomena such as fracture. However, this requires large system sizes and long simulated times. We have developed: i) Space-time multiresolution schemes; ii) fuzzy-clustering approach to hierarchical dynamics; iii) wavelet-based adaptive curvilinear-coordinate load balancing; iv) multilevel preconditioned conjugate gradient method; and v) spacefilling-curve-based data compression for parallel I/O. Using these techniques, million-atom parallel MD simulations are performed for the oxidation dynamics of nanocrystalline Al. The simulations take into account the effect of dynamic charge transfer between Al and O using the electronegativity equalization scheme. The resulting long-range Coulomb interaction is calculated efficiently with the fast multipole method. Results for temperature and charge distributions, residual stresses, bond lengths and bond angles, and diffusivities of Al and O will be presented. The oxidation of nanocrystalline Al is elucidated through immersive visualization in virtual environments. A unique dual-degree education program at Louisiana State University will also be discussed in which students can obtain a Ph.D. in Physics & Astronomy and a M.S. from the Department of Computer Science in five years. This program fosters interdisciplinary research activities for interfacing High Performance Computing and Communications with large-scale atomistic simulations of advanced materials. This work was supported by NSF (CAREER Program), ARO, PRF, and Louisiana LEQSF.
Survey of MapReduce frame operation in bioinformatics.
Zou, Quan; Li, Xu-Bin; Jiang, Wen-Rui; Lin, Zi-Yu; Li, Gui-Lin; Chen, Ke
2014-07-01
Bioinformatics is challenged by the fact that traditional analysis tools have difficulty in processing large-scale data from high-throughput sequencing. The open source Apache Hadoop project, which adopts the MapReduce framework and a distributed file system, has recently given bioinformatics researchers an opportunity to achieve scalable, efficient and reliable computing performance on Linux clusters and on cloud computing services. In this article, we present MapReduce frame-based applications that can be employed in the next-generation sequencing and other biological domains. In addition, we discuss the challenges faced by this field as well as the future works on parallel computing in bioinformatics. © The Author 2013. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks
Kaltenbacher, Barbara; Hasenauer, Jan
2017-01-01
Mechanistic mathematical modeling of biochemical reaction networks using ordinary differential equation (ODE) models has improved our understanding of small- and medium-scale biological processes. While the same should in principle hold for large- and genome-scale processes, the computational methods for the analysis of ODE models which describe hundreds or thousands of biochemical species and reactions are missing so far. While individual simulations are feasible, the inference of the model parameters from experimental data is computationally too intensive. In this manuscript, we evaluate adjoint sensitivity analysis for parameter estimation in large scale biochemical reaction networks. We present the approach for time-discrete measurement and compare it to state-of-the-art methods used in systems and computational biology. Our comparison reveals a significantly improved computational efficiency and a superior scalability of adjoint sensitivity analysis. The computational complexity is effectively independent of the number of parameters, enabling the analysis of large- and genome-scale models. Our study of a comprehensive kinetic model of ErbB signaling shows that parameter estimation using adjoint sensitivity analysis requires a fraction of the computation time of established methods. The proposed method will facilitate mechanistic modeling of genome-scale cellular processes, as required in the age of omics. PMID:28114351
LASSIE: simulating large-scale models of biochemical systems on GPUs.
Tangherloni, Andrea; Nobile, Marco S; Besozzi, Daniela; Mauri, Giancarlo; Cazzaniga, Paolo
2017-05-10
Mathematical modeling and in silico analysis are widely acknowledged as complementary tools to biological laboratory methods, to achieve a thorough understanding of emergent behaviors of cellular processes in both physiological and perturbed conditions. Though, the simulation of large-scale models-consisting in hundreds or thousands of reactions and molecular species-can rapidly overtake the capabilities of Central Processing Units (CPUs). The purpose of this work is to exploit alternative high-performance computing solutions, such as Graphics Processing Units (GPUs), to allow the investigation of these models at reduced computational costs. LASSIE is a "black-box" GPU-accelerated deterministic simulator, specifically designed for large-scale models and not requiring any expertise in mathematical modeling, simulation algorithms or GPU programming. Given a reaction-based model of a cellular process, LASSIE automatically generates the corresponding system of Ordinary Differential Equations (ODEs), assuming mass-action kinetics. The numerical solution of the ODEs is obtained by automatically switching between the Runge-Kutta-Fehlberg method in the absence of stiffness, and the Backward Differentiation Formulae of first order in presence of stiffness. The computational performance of LASSIE are assessed using a set of randomly generated synthetic reaction-based models of increasing size, ranging from 64 to 8192 reactions and species, and compared to a CPU-implementation of the LSODA numerical integration algorithm. LASSIE adopts a novel fine-grained parallelization strategy to distribute on the GPU cores all the calculations required to solve the system of ODEs. By virtue of this implementation, LASSIE achieves up to 92× speed-up with respect to LSODA, therefore reducing the running time from approximately 1 month down to 8 h to simulate models consisting in, for instance, four thousands of reactions and species. Notably, thanks to its smaller memory footprint, LASSIE is able to perform fast simulations of even larger models, whereby the tested CPU-implementation of LSODA failed to reach termination. LASSIE is therefore expected to make an important breakthrough in Systems Biology applications, for the execution of faster and in-depth computational analyses of large-scale models of complex biological systems.
An Approach to Experimental Design for the Computer Analysis of Complex Phenomenon
NASA Technical Reports Server (NTRS)
Rutherford, Brian
2000-01-01
The ability to make credible system assessments, predictions and design decisions related to engineered systems and other complex phenomenon is key to a successful program for many large-scale investigations in government and industry. Recently, many of these large-scale analyses have turned to computational simulation to provide much of the required information. Addressing specific goals in the computer analysis of these complex phenomenon is often accomplished through the use of performance measures that are based on system response models. The response models are constructed using computer-generated responses together with physical test results where possible. They are often based on probabilistically defined inputs and generally require estimation of a set of response modeling parameters. As a consequence, the performance measures are themselves distributed quantities reflecting these variabilities and uncertainties. Uncertainty in the values of the performance measures leads to uncertainties in predicted performance and can cloud the decisions required of the analysis. A specific goal of this research has been to develop methodology that will reduce this uncertainty in an analysis environment where limited resources and system complexity together restrict the number of simulations that can be performed. An approach has been developed that is based on evaluation of the potential information provided for each "intelligently selected" candidate set of computer runs. Each candidate is evaluated by partitioning the performance measure uncertainty into two components - one component that could be explained through the additional computational simulation runs and a second that would remain uncertain. The portion explained is estimated using a probabilistic evaluation of likely results for the additional computational analyses based on what is currently known about the system. The set of runs indicating the largest potential reduction in uncertainty is then selected and the computational simulations are performed. Examples are provided to demonstrate this approach on small scale problems. These examples give encouraging results. Directions for further research are indicated.
Aeroelastic-Acoustics Simulation of Flight Systems
NASA Technical Reports Server (NTRS)
Gupta, kajal K.; Choi, S.; Ibrahim, A.
2009-01-01
This paper describes the details of a numerical finite element (FE) based analysis procedure and a resulting code for the simulation of the acoustics phenomenon arising from aeroelastic interactions. Both CFD and structural simulations are based on FE discretization employing unstructured grids. The sound pressure level (SPL) on structural surfaces is calculated from the root mean square (RMS) of the unsteady pressure and the acoustic wave frequencies are computed from a fast Fourier transform (FFT) of the unsteady pressure distribution as a function of time. The resulting tool proves to be unique as it is designed to analyze complex practical problems, involving large scale computations, in a routine fashion.
Requirements for migration of NSSD code systems from LTSS to NLTSS
NASA Technical Reports Server (NTRS)
Pratt, M.
1984-01-01
The purpose of this document is to address the requirements necessary for a successful conversion of the Nuclear Design (ND) application code systems to the NLTSS environment. The ND application code system community can be characterized as large-scale scientific computation carried out on supercomputers. NLTSS is a distributed operating system being developed at LLNL to replace the LTSS system currently in use. The implications of change are examined including a description of the computational environment and users in ND. The discussion then turns to requirements, first in a general way, followed by specific requirements, including a proposal for managing the transition.
CloudMan as a platform for tool, data, and analysis distribution.
Afgan, Enis; Chapman, Brad; Taylor, James
2012-11-27
Cloud computing provides an infrastructure that facilitates large scale computational analysis in a scalable, democratized fashion, However, in this context it is difficult to ensure sharing of an analysis environment and associated data in a scalable and precisely reproducible way. CloudMan (usecloudman.org) enables individual researchers to easily deploy, customize, and share their entire cloud analysis environment, including data, tools, and configurations. With the enabled customization and sharing of instances, CloudMan can be used as a platform for collaboration. The presented solution improves accessibility of cloud resources, tools, and data to the level of an individual researcher and contributes toward reproducibility and transparency of research solutions.
Large-scale virtual screening on public cloud resources with Apache Spark.
Capuccini, Marco; Ahmed, Laeeq; Schaal, Wesley; Laure, Erwin; Spjuth, Ola
2017-01-01
Structure-based virtual screening is an in-silico method to screen a target receptor against a virtual molecular library. Applying docking-based screening to large molecular libraries can be computationally expensive, however it constitutes a trivially parallelizable task. Most of the available parallel implementations are based on message passing interface, relying on low failure rate hardware and fast network connection. Google's MapReduce revolutionized large-scale analysis, enabling the processing of massive datasets on commodity hardware and cloud resources, providing transparent scalability and fault tolerance at the software level. Open source implementations of MapReduce include Apache Hadoop and the more recent Apache Spark. We developed a method to run existing docking-based screening software on distributed cloud resources, utilizing the MapReduce approach. We benchmarked our method, which is implemented in Apache Spark, docking a publicly available target receptor against [Formula: see text]2.2 M compounds. The performance experiments show a good parallel efficiency (87%) when running in a public cloud environment. Our method enables parallel Structure-based virtual screening on public cloud resources or commodity computer clusters. The degree of scalability that we achieve allows for trying out our method on relatively small libraries first and then to scale to larger libraries. Our implementation is named Spark-VS and it is freely available as open source from GitHub (https://github.com/mcapuccini/spark-vs).Graphical abstract.
NASA Astrophysics Data System (ADS)
Loring, B.; Karimabadi, H.; Rortershteyn, V.
2015-10-01
The surface line integral convolution(LIC) visualization technique produces dense visualization of vector fields on arbitrary surfaces. We present a screen space surface LIC algorithm for use in distributed memory data parallel sort last rendering infrastructures. The motivations for our work are to support analysis of datasets that are too large to fit in the main memory of a single computer and compatibility with prevalent parallel scientific visualization tools such as ParaView and VisIt. By working in screen space using OpenGL we can leverage the computational power of GPUs when they are available and run without them when they are not. We address efficiency and performance issues that arise from the transformation of data from physical to screen space by selecting an alternate screen space domain decomposition. We analyze the algorithm's scaling behavior with and without GPUs on two high performance computing systems using data from turbulent plasma simulations.
Design and Verification of Remote Sensing Image Data Center Storage Architecture Based on Hadoop
NASA Astrophysics Data System (ADS)
Tang, D.; Zhou, X.; Jing, Y.; Cong, W.; Li, C.
2018-04-01
The data center is a new concept of data processing and application proposed in recent years. It is a new method of processing technologies based on data, parallel computing, and compatibility with different hardware clusters. While optimizing the data storage management structure, it fully utilizes cluster resource computing nodes and improves the efficiency of data parallel application. This paper used mature Hadoop technology to build a large-scale distributed image management architecture for remote sensing imagery. Using MapReduce parallel processing technology, it called many computing nodes to process image storage blocks and pyramids in the background to improve the efficiency of image reading and application and sovled the need for concurrent multi-user high-speed access to remotely sensed data. It verified the rationality, reliability and superiority of the system design by testing the storage efficiency of different image data and multi-users and analyzing the distributed storage architecture to improve the application efficiency of remote sensing images through building an actual Hadoop service system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loring, Burlen; Karimabadi, Homa; Rortershteyn, Vadim
2014-07-01
The surface line integral convolution(LIC) visualization technique produces dense visualization of vector fields on arbitrary surfaces. We present a screen space surface LIC algorithm for use in distributed memory data parallel sort last rendering infrastructures. The motivations for our work are to support analysis of datasets that are too large to fit in the main memory of a single computer and compatibility with prevalent parallel scientific visualization tools such as ParaView and VisIt. By working in screen space using OpenGL we can leverage the computational power of GPUs when they are available and run without them when they are not.more » We address efficiency and performance issues that arise from the transformation of data from physical to screen space by selecting an alternate screen space domain decomposition. We analyze the algorithm's scaling behavior with and without GPUs on two high performance computing systems using data from turbulent plasma simulations.« less
Simulating statistics of lightning-induced and man made fires
NASA Astrophysics Data System (ADS)
Krenn, R.; Hergarten, S.
2009-04-01
The frequency-area distributions of forest fires show power-law behavior with scaling exponents α in a quite narrow range, relating wildfire research to the theoretical framework of self-organized criticality. Examples of self-organized critical behavior can be found in computer simulations of simple cellular automata. The established self-organized critical Drossel-Schwabl forest fire model (DS-FFM) is one of the most widespread models in this context. Despite its qualitative agreement with event-size statistics from nature, its applicability is still questioned. Apart from general concerns that the DS-FFM apparently oversimplifies the complex nature of forest dynamics, it significantly overestimates the frequency of large fires. We present a straightforward modification of the model rules that increases the scaling exponent α by approximately 13 and brings the simulated event-size statistics close to those observed in nature. In addition, combined simulations of both the original and the modified model predict a dependence of the overall distribution on the ratio of lightning induced and man made fires as well as a difference between their respective event-size statistics. The increase of the scaling exponent with decreasing lightning probability as well as the splitting of the partial distributions are confirmed by the analysis of the Canadian Large Fire Database. As a consequence, lightning induced and man made forest fires cannot be treated separately in wildfire modeling, hazard assessment and forest management.
Simple Statistical Model to Quantify Maximum Expected EMC in Spacecraft and Avionics Boxes
NASA Technical Reports Server (NTRS)
Trout, Dawn H.; Bremner, Paul
2014-01-01
This study shows cumulative distribution function (CDF) comparisons of composite a fairing electromagnetic field data obtained by computational electromagnetic 3D full wave modeling and laboratory testing. Test and model data correlation is shown. In addition, this presentation shows application of the power balance and extention of this method to predict the variance and maximum exptected mean of the E-field data. This is valuable for large scale evaluations of transmission inside cavities.
2007-01-01
Mechanical Turk: Artificial Artificial Intelligence . Retrieved May 15, 2006 from http://www.mturk.com/ mturk/welcome Atkins, D. E., Droegemeier, K. K...Turk (Amazon, 2006) site goes beyond volunteers and pays people to do Human Intelligence Tasks, those that are difficult for computers but relatively...geographically distributed scientific collaboration, and the use of videogame technology for training. Address: U.S. Army Research Institute, 2511 Jefferson
2013-11-01
big data with R is relatively new. RHadoop is a mature product from Revolution Analytics that uses R with Hadoop Streaming [15] and provides...agnostic all- data summaries or computations, in which case we use MapReduce directly. 2.3 D&R Software Environment In this work, we use the Hadoop ...job scheduling and tracking, data distribu- tion, system architecture, heterogeneity, and fault-tolerance. Hadoop also provides a distributed key-value
Distributed Optimization of Multi-Agent Systems: Framework, Local Optimizer, and Applications
NASA Astrophysics Data System (ADS)
Zu, Yue
Convex optimization problem can be solved in a centralized or distributed manner. Compared with centralized methods based on single-agent system, distributed algorithms rely on multi-agent systems with information exchanging among connected neighbors, which leads to great improvement on the system fault tolerance. Thus, a task within multi-agent system can be completed with presence of partial agent failures. By problem decomposition, a large-scale problem can be divided into a set of small-scale sub-problems that can be solved in sequence/parallel. Hence, the computational complexity is greatly reduced by distributed algorithm in multi-agent system. Moreover, distributed algorithm allows data collected and stored in a distributed fashion, which successfully overcomes the drawbacks of using multicast due to the bandwidth limitation. Distributed algorithm has been applied in solving a variety of real-world problems. Our research focuses on the framework and local optimizer design in practical engineering applications. In the first one, we propose a multi-sensor and multi-agent scheme for spatial motion estimation of a rigid body. Estimation performance is improved in terms of accuracy and convergence speed. Second, we develop a cyber-physical system and implement distributed computation devices to optimize the in-building evacuation path when hazard occurs. The proposed Bellman-Ford Dual-Subgradient path planning method relieves the congestion in corridor and the exit areas. At last, highway traffic flow is managed by adjusting speed limits to minimize the fuel consumption and travel time in the third project. Optimal control strategy is designed through both centralized and distributed algorithm based on convex problem formulation. Moreover, a hybrid control scheme is presented for highway network travel time minimization. Compared with no controlled case or conventional highway traffic control strategy, the proposed hybrid control strategy greatly reduces total travel time on test highway network.
Cloud-based large-scale air traffic flow optimization
NASA Astrophysics Data System (ADS)
Cao, Yi
The ever-increasing traffic demand makes the efficient use of airspace an imperative mission, and this paper presents an effort in response to this call. Firstly, a new aggregate model, called Link Transmission Model (LTM), is proposed, which models the nationwide traffic as a network of flight routes identified by origin-destination pairs. The traversal time of a flight route is assumed to be the mode of distribution of historical flight records, and the mode is estimated by using Kernel Density Estimation. As this simplification abstracts away physical trajectory details, the complexity of modeling is drastically decreased, resulting in efficient traffic forecasting. The predicative capability of LTM is validated against recorded traffic data. Secondly, a nationwide traffic flow optimization problem with airport and en route capacity constraints is formulated based on LTM. The optimization problem aims at alleviating traffic congestions with minimal global delays. This problem is intractable due to millions of variables. A dual decomposition method is applied to decompose the large-scale problem such that the subproblems are solvable. However, the whole problem is still computational expensive to solve since each subproblem is an smaller integer programming problem that pursues integer solutions. Solving an integer programing problem is known to be far more time-consuming than solving its linear relaxation. In addition, sequential execution on a standalone computer leads to linear runtime increase when the problem size increases. To address the computational efficiency problem, a parallel computing framework is designed which accommodates concurrent executions via multithreading programming. The multithreaded version is compared with its monolithic version to show decreased runtime. Finally, an open-source cloud computing framework, Hadoop MapReduce, is employed for better scalability and reliability. This framework is an "off-the-shelf" parallel computing model that can be used for both offline historical traffic data analysis and online traffic flow optimization. It provides an efficient and robust platform for easy deployment and implementation. A small cloud consisting of five workstations was configured and used to demonstrate the advantages of cloud computing in dealing with large-scale parallelizable traffic problems.
Extending the length and time scales of Gram–Schmidt Lyapunov vector computations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, Anthony B., E-mail: acosta@northwestern.edu; Green, Jason R., E-mail: jason.green@umb.edu; Department of Chemistry, University of Massachusetts Boston, Boston, MA 02125
Lyapunov vectors have found growing interest recently due to their ability to characterize systems out of thermodynamic equilibrium. The computation of orthogonal Gram–Schmidt vectors requires multiplication and QR decomposition of large matrices, which grow as N{sup 2} (with the particle count). This expense has limited such calculations to relatively small systems and short time scales. Here, we detail two implementations of an algorithm for computing Gram–Schmidt vectors. The first is a distributed-memory message-passing method using Scalapack. The second uses the newly-released MAGMA library for GPUs. We compare the performance of both codes for Lennard–Jones fluids from N=100 to 1300 betweenmore » Intel Nahalem/Infiniband DDR and NVIDIA C2050 architectures. To our best knowledge, these are the largest systems for which the Gram–Schmidt Lyapunov vectors have been computed, and the first time their calculation has been GPU-accelerated. We conclude that Lyapunov vector calculations can be significantly extended in length and time by leveraging the power of GPU-accelerated linear algebra.« less
Consolidation and development roadmap of the EMI middleware
NASA Astrophysics Data System (ADS)
Kónya, B.; Aiftimiei, C.; Cecchi, M.; Field, L.; Fuhrmann, P.; Nilsen, J. K.; White, J.
2012-12-01
Scientific research communities have benefited recently from the increasing availability of computing and data infrastructures with unprecedented capabilities for large scale distributed initiatives. These infrastructures are largely defined and enabled by the middleware they deploy. One of the major issues in the current usage of research infrastructures is the need to use similar but often incompatible middleware solutions. The European Middleware Initiative (EMI) is a collaboration of the major European middleware providers ARC, dCache, gLite and UNICORE. EMI aims to: deliver a consolidated set of middleware components for deployment in EGI, PRACE and other Distributed Computing Infrastructures; extend the interoperability between grids and other computing infrastructures; strengthen the reliability of the services; establish a sustainable model to maintain and evolve the middleware; fulfil the requirements of the user communities. This paper presents the consolidation and development objectives of the EMI software stack covering the last two years. The EMI development roadmap is introduced along the four technical areas of compute, data, security and infrastructure. The compute area plan focuses on consolidation of standards and agreements through a unified interface for job submission and management, a common format for accounting, the wide adoption of GLUE schema version 2.0 and the provision of a common framework for the execution of parallel jobs. The security area is working towards a unified security model and lowering the barriers to Grid usage by allowing users to gain access with their own credentials. The data area is focusing on implementing standards to ensure interoperability with other grids and industry components and to reuse already existing clients in operating systems and open source distributions. One of the highlights of the infrastructure area is the consolidation of the information system services via the creation of a common information backbone.
Estimation Accuracy on Execution Time of Run-Time Tasks in a Heterogeneous Distributed Environment.
Liu, Qi; Cai, Weidong; Jin, Dandan; Shen, Jian; Fu, Zhangjie; Liu, Xiaodong; Linge, Nigel
2016-08-30
Distributed Computing has achieved tremendous development since cloud computing was proposed in 2006, and played a vital role promoting rapid growth of data collecting and analysis models, e.g., Internet of things, Cyber-Physical Systems, Big Data Analytics, etc. Hadoop has become a data convergence platform for sensor networks. As one of the core components, MapReduce facilitates allocating, processing and mining of collected large-scale data, where speculative execution strategies help solve straggler problems. However, there is still no efficient solution for accurate estimation on execution time of run-time tasks, which can affect task allocation and distribution in MapReduce. In this paper, task execution data have been collected and employed for the estimation. A two-phase regression (TPR) method is proposed to predict the finishing time of each task accurately. Detailed data of each task have drawn interests with detailed analysis report being made. According to the results, the prediction accuracy of concurrent tasks' execution time can be improved, in particular for some regular jobs.
DIALIGN P: fast pair-wise and multiple sequence alignment using parallel processors.
Schmollinger, Martin; Nieselt, Kay; Kaufmann, Michael; Morgenstern, Burkhard
2004-09-09
Parallel computing is frequently used to speed up computationally expensive tasks in Bioinformatics. Herein, a parallel version of the multi-alignment program DIALIGN is introduced. We propose two ways of dividing the program into independent sub-routines that can be run on different processors: (a) pair-wise sequence alignments that are used as a first step to multiple alignment account for most of the CPU time in DIALIGN. Since alignments of different sequence pairs are completely independent of each other, they can be distributed to multiple processors without any effect on the resulting output alignments. (b) For alignments of large genomic sequences, we use a heuristics by splitting up sequences into sub-sequences based on a previously introduced anchored alignment procedure. For our test sequences, this combined approach reduces the program running time of DIALIGN by up to 97%. By distributing sub-routines to multiple processors, the running time of DIALIGN can be crucially improved. With these improvements, it is possible to apply the program in large-scale genomics and proteomics projects that were previously beyond its scope.
Shibuta, Yasushi; Sakane, Shinji; Miyoshi, Eisuke; Okita, Shin; Takaki, Tomohiro; Ohno, Munekazu
2017-04-05
Can completely homogeneous nucleation occur? Large scale molecular dynamics simulations performed on a graphics-processing-unit rich supercomputer can shed light on this long-standing issue. Here, a billion-atom molecular dynamics simulation of homogeneous nucleation from an undercooled iron melt reveals that some satellite-like small grains surrounding previously formed large grains exist in the middle of the nucleation process, which are not distributed uniformly. At the same time, grains with a twin boundary are formed by heterogeneous nucleation from the surface of the previously formed grains. The local heterogeneity in the distribution of grains is caused by the local accumulation of the icosahedral structure in the undercooled melt near the previously formed grains. This insight is mainly attributable to the multi-graphics processing unit parallel computation combined with the rapid progress in high-performance computational environments.Nucleation is a fundamental physical process, however it is a long-standing issue whether completely homogeneous nucleation can occur. Here the authors reveal, via a billion-atom molecular dynamics simulation, that local heterogeneity exists during homogeneous nucleation in an undercooled iron melt.
Self-Consistent Large-Scale Magnetosphere-Ionosphere Coupling: Computational Aspects and Experiments
NASA Technical Reports Server (NTRS)
Newman, Timothy S.
2003-01-01
Both external and internal phenomena impact the terrestrial magnetosphere. For example, solar wind and particle precipitation effect the distribution of hot plasma in the magnetosphere. Numerous models exist to describe different aspects of magnetosphere characteristics. For example, Tsyganenko has developed a series of models (e.g., [TSYG89]) that describe the magnetic field, and Stern [STER75] and Volland [VOLL73] have developed an analytical model that describes the convection electric field. Over the past several years, NASA colleague Khazanov, working with Fok and others, has developed a large-scale coupled model that tracks particle flow to determine hot ion and electron phase space densities in the magnetosphere. This model utilizes external data such as solar wind densities and velocities and geomagnetic indices (e.g., Kp) to drive computational processes that evaluate magnetic, electric field, and plasma sheet models at any time point. These models are coupled such that energetic ion and electron fluxes are produced, with those fluxes capable of interacting with the electric field model. A diagrammatic representation of the coupled model is shown.
Yu, Yinan; Diamantaras, Konstantinos I; McKelvey, Tomas; Kung, Sun-Yuan
2018-02-01
In kernel-based classification models, given limited computational power and storage capacity, operations over the full kernel matrix becomes prohibitive. In this paper, we propose a new supervised learning framework using kernel models for sequential data processing. The framework is based on two components that both aim at enhancing the classification capability with a subset selection scheme. The first part is a subspace projection technique in the reproducing kernel Hilbert space using a CLAss-specific Subspace Kernel representation for kernel approximation. In the second part, we propose a novel structural risk minimization algorithm called the adaptive margin slack minimization to iteratively improve the classification accuracy by an adaptive data selection. We motivate each part separately, and then integrate them into learning frameworks for large scale data. We propose two such frameworks: the memory efficient sequential processing for sequential data processing and the parallelized sequential processing for distributed computing with sequential data acquisition. We test our methods on several benchmark data sets and compared with the state-of-the-art techniques to verify the validity of the proposed techniques.
Transverse momentum dependent (TMD) parton distribution functions: Status and prospects*
Angeles-Martinez, R.; Bacchetta, A.; Balitsky, Ian I.; ...
2015-01-01
In this study, we review transverse momentum dependent (TMD) parton distribution functions, their application to topical issues in high-energy physics phenomenology, and their theoretical connections with QCD resummation, evolution and factorization theorems. We illustrate the use of TMDs via examples of multi-scale problems in hadronic collisions. These include transverse momentum q T spectra of Higgs and vector bosons for low q T, and azimuthal correlations in the production of multiple jets associated with heavy bosons at large jet masses. We discuss computational tools for TMDs, and present the application of a new tool, TMD LIB, to parton density fits andmore » parameterizations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poidevin, Frédérick; Ade, Peter A. R.; Hargrave, Peter C.
2014-08-10
Turbulence and magnetic fields are expected to be important for regulating molecular cloud formation and evolution. However, their effects on sub-parsec to 100 parsec scales, leading to the formation of starless cores, are not well understood. We investigate the prestellar core structure morphologies obtained from analysis of the Herschel-SPIRE 350 μm maps of the Lupus I cloud. This distribution is first compared on a statistical basis to the large-scale shape of the main filament. We find the distribution of the elongation position angle of the cores to be consistent with a random distribution, which means no specific orientation of themore » morphology of the cores is observed with respect to the mean orientation of the large-scale filament in Lupus I, nor relative to a large-scale bent filament model. This distribution is also compared to the mean orientation of the large-scale magnetic fields probed at 350 μm with the Balloon-borne Large Aperture Telescope for Polarimetry during its 2010 campaign. Here again we do not find any correlation between the core morphology distribution and the average orientation of the magnetic fields on parsec scales. Our main conclusion is that the local filament dynamics—including secondary filaments that often run orthogonally to the primary filament—and possibly small-scale variations in the local magnetic field direction, could be the dominant factors for explaining the final orientation of each core.« less
Wong, William W L; Feng, Zeny Z; Thein, Hla-Hla
2016-11-01
Agent-based models (ABMs) are computer simulation models that define interactions among agents and simulate emergent behaviors that arise from the ensemble of local decisions. ABMs have been increasingly used to examine trends in infectious disease epidemiology. However, the main limitation of ABMs is the high computational cost for a large-scale simulation. To improve the computational efficiency for large-scale ABM simulations, we built a parallelizable sliding region algorithm (SRA) for ABM and compared it to a nonparallelizable ABM. We developed a complex agent network and performed two simulations to model hepatitis C epidemics based on the real demographic data from Saskatchewan, Canada. The first simulation used the SRA that processed on each postal code subregion subsequently. The second simulation processed the entire population simultaneously. It was concluded that the parallelizable SRA showed computational time saving with comparable results in a province-wide simulation. Using the same method, SRA can be generalized for performing a country-wide simulation. Thus, this parallel algorithm enables the possibility of using ABM for large-scale simulation with limited computational resources.
Detecting changes in the spatial distribution of nitrate contamination in ground water
Liu, Z.-J.; Hallberg, G.R.; Zimmerman, D.L.; Libra, R.D.
1997-01-01
Many studies of ground water pollution in general and nitrate contamination in particular have often relied on a one-time investigation, tracking of individual wells, or aggregate summaries. Studies of changes in spatial distribution of contaminants over time are lacking. This paper presents a method to compare spatial distributions for possible changes over time. The large-scale spatial distribution at a given time can be considered as a surface over the area (a trend surface). The changes in spatial distribution from period to period can be revealed by the differences in the shape and/or height of surfaces. If such a surface is described by a polynomial function, changes in surfaces can be detected by testing statistically for differences in their corresponding polynomial functions. This method was applied to nitrate concentration in a population of wells in an agricultural drainage basin in Iowa, sampled in three different years. For the period of 1981-1992, the large-scale spatial distribution of nitrate concentration did not show significant change in the shape of spatial surfaces; while the magnitude of nitrate concentration in the basin, or height of the computed surfaces showed significant fluctuations. The change in magnitude of nitrate concentration is closely related to climatic variations, especially in precipitation. The lack of change in the shape of spatial surfaces means that either the influence of land use/nitrogen management was overshadowed by climatic influence, or the changes in land use/management occurred in a random fashion.
Open solutions to distributed control in ground tracking stations
NASA Technical Reports Server (NTRS)
Heuser, William Randy
1994-01-01
The advent of high speed local area networks has made it possible to interconnect small, powerful computers to function together as a single large computer. Today, distributed computer systems are the new paradigm for large scale computing systems. However, the communications provided by the local area network is only one part of the solution. The services and protocols used by the application programs to communicate across the network are as indispensable as the local area network. And the selection of services and protocols that do not match the system requirements will limit the capabilities, performance, and expansion of the system. Proprietary solutions are available but are usually limited to a select set of equipment. However, there are two solutions based on 'open' standards. The question that must be answered is 'which one is the best one for my job?' This paper examines a model for tracking stations and their requirements for interprocessor communications in the next century. The model and requirements are matched with the model and services provided by the five different software architectures and supporting protocol solutions. Several key services are examined in detail to determine which services and protocols most closely match the requirements for the tracking station environment. The study reveals that the protocols are tailored to the problem domains for which they were originally designed. Further, the study reveals that the process control model is the closest match to the tracking station model.
Sound production due to large-scale coherent structures
NASA Technical Reports Server (NTRS)
Gatski, T. B.
1979-01-01
The acoustic pressure fluctuations due to large-scale finite amplitude disturbances in a free turbulent shear flow are calculated. The flow is decomposed into three component scales; the mean motion, the large-scale wave-like disturbance, and the small-scale random turbulence. The effect of the large-scale structure on the flow is isolated by applying both a spatial and phase average on the governing differential equations and by initially taking the small-scale turbulence to be in energetic equilibrium with the mean flow. The subsequent temporal evolution of the flow is computed from global energetic rate equations for the different component scales. Lighthill's theory is then applied to the region with the flowfield as the source and an observer located outside the flowfield in a region of uniform velocity. Since the time history of all flow variables is known, a minimum of simplifying assumptions for the Lighthill stress tensor is required, including no far-field approximations. A phase average is used to isolate the pressure fluctuations due to the large-scale structure, and also to isolate the dynamic process responsible. Variation of mean square pressure with distance from the source is computed to determine the acoustic far-field location and decay rate, and, in addition, spectra at various acoustic field locations are computed and analyzed. Also included are the effects of varying the growth and decay of the large-scale disturbance on the sound produced.
'Big data', Hadoop and cloud computing in genomics.
O'Driscoll, Aisling; Daugelaite, Jurate; Sleator, Roy D
2013-10-01
Since the completion of the Human Genome project at the turn of the Century, there has been an unprecedented proliferation of genomic sequence data. A consequence of this is that the medical discoveries of the future will largely depend on our ability to process and analyse large genomic data sets, which continue to expand as the cost of sequencing decreases. Herein, we provide an overview of cloud computing and big data technologies, and discuss how such expertise can be used to deal with biology's big data sets. In particular, big data technologies such as the Apache Hadoop project, which provides distributed and parallelised data processing and analysis of petabyte (PB) scale data sets will be discussed, together with an overview of the current usage of Hadoop within the bioinformatics community. Copyright © 2013 Elsevier Inc. All rights reserved.
Transport of cosmic-ray protons in intermittent heliospheric turbulence: Model and simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alouani-Bibi, Fathallah; Le Roux, Jakobus A., E-mail: fb0006@uah.edu
The transport of charged energetic particles in the presence of strong intermittent heliospheric turbulence is computationally analyzed based on known properties of the interplanetary magnetic field and solar wind plasma at 1 astronomical unit. The turbulence is assumed to be static, composite, and quasi-three-dimensional with a varying energy distribution between a one-dimensional Alfvénic (slab) and a structured two-dimensional component. The spatial fluctuations of the turbulent magnetic field are modeled either as homogeneous with a Gaussian probability distribution function (PDF), or as intermittent on large and small scales with a q-Gaussian PDF. Simulations showed that energetic particle diffusion coefficients both parallelmore » and perpendicular to the background magnetic field are significantly affected by intermittency in the turbulence. This effect is especially strong for parallel transport where for large-scale intermittency results show an extended phase of subdiffusive parallel transport during which cross-field transport diffusion dominates. The effects of intermittency are found to depend on particle rigidity and the fraction of slab energy in the turbulence, yielding a perpendicular to parallel mean free path ratio close to 1 for large-scale intermittency. Investigation of higher order transport moments (kurtosis) indicates that non-Gaussian statistical properties of the intermittent turbulent magnetic field are present in the parallel transport, especially for low rigidity particles at all times.« less
High-Performance Monitoring Architecture for Large-Scale Distributed Systems Using Event Filtering
NASA Technical Reports Server (NTRS)
Maly, K.
1998-01-01
Monitoring is an essential process to observe and improve the reliability and the performance of large-scale distributed (LSD) systems. In an LSD environment, a large number of events is generated by the system components during its execution or interaction with external objects (e.g. users or processes). Monitoring such events is necessary for observing the run-time behavior of LSD systems and providing status information required for debugging, tuning and managing such applications. However, correlated events are generated concurrently and could be distributed in various locations in the applications environment which complicates the management decisions process and thereby makes monitoring LSD systems an intricate task. We propose a scalable high-performance monitoring architecture for LSD systems to detect and classify interesting local and global events and disseminate the monitoring information to the corresponding end- points management applications such as debugging and reactive control tools to improve the application performance and reliability. A large volume of events may be generated due to the extensive demands of the monitoring applications and the high interaction of LSD systems. The monitoring architecture employs a high-performance event filtering mechanism to efficiently process the large volume of event traffic generated by LSD systems and minimize the intrusiveness of the monitoring process by reducing the event traffic flow in the system and distributing the monitoring computation. Our architecture also supports dynamic and flexible reconfiguration of the monitoring mechanism via its Instrumentation and subscription components. As a case study, we show how our monitoring architecture can be utilized to improve the reliability and the performance of the Interactive Remote Instruction (IRI) system which is a large-scale distributed system for collaborative distance learning. The filtering mechanism represents an Intrinsic component integrated with the monitoring architecture to reduce the volume of event traffic flow in the system, and thereby reduce the intrusiveness of the monitoring process. We are developing an event filtering architecture to efficiently process the large volume of event traffic generated by LSD systems (such as distributed interactive applications). This filtering architecture is used to monitor collaborative distance learning application for obtaining debugging and feedback information. Our architecture supports the dynamic (re)configuration and optimization of event filters in large-scale distributed systems. Our work represents a major contribution by (1) survey and evaluating existing event filtering mechanisms In supporting monitoring LSD systems and (2) devising an integrated scalable high- performance architecture of event filtering that spans several kev application domains, presenting techniques to improve the functionality, performance and scalability. This paper describes the primary characteristics and challenges of developing high-performance event filtering for monitoring LSD systems. We survey existing event filtering mechanisms and explain key characteristics for each technique. In addition, we discuss limitations with existing event filtering mechanisms and outline how our architecture will improve key aspects of event filtering.
Discriminative Random Field Models for Subsurface Contamination Uncertainty Quantification
NASA Astrophysics Data System (ADS)
Arshadi, M.; Abriola, L. M.; Miller, E. L.; De Paolis Kaluza, C.
2017-12-01
Application of flow and transport simulators for prediction of the release, entrapment, and persistence of dense non-aqueous phase liquids (DNAPLs) and associated contaminant plumes is a computationally intensive process that requires specification of a large number of material properties and hydrologic/chemical parameters. Given its computational burden, this direct simulation approach is particularly ill-suited for quantifying both the expected performance and uncertainty associated with candidate remediation strategies under real field conditions. Prediction uncertainties primarily arise from limited information about contaminant mass distributions, as well as the spatial distribution of subsurface hydrologic properties. Application of direct simulation to quantify uncertainty would, thus, typically require simulating multiphase flow and transport for a large number of permeability and release scenarios to collect statistics associated with remedial effectiveness, a computationally prohibitive process. The primary objective of this work is to develop and demonstrate a methodology that employs measured field data to produce equi-probable stochastic representations of a subsurface source zone that capture the spatial distribution and uncertainty associated with key features that control remediation performance (i.e., permeability and contamination mass). Here we employ probabilistic models known as discriminative random fields (DRFs) to synthesize stochastic realizations of initial mass distributions consistent with known, and typically limited, site characterization data. Using a limited number of full scale simulations as training data, a statistical model is developed for predicting the distribution of contaminant mass (e.g., DNAPL saturation and aqueous concentration) across a heterogeneous domain. Monte-Carlo sampling methods are then employed, in conjunction with the trained statistical model, to generate realizations conditioned on measured borehole data. Performance of the statistical model is illustrated through comparisons of generated realizations with the `true' numerical simulations. Finally, we demonstrate how these realizations can be used to determine statistically optimal locations for further interrogation of the subsurface.
A novel computational approach towards the certification of large-scale boson sampling
NASA Astrophysics Data System (ADS)
Huh, Joonsuk
Recent proposals of boson sampling and the corresponding experiments exhibit the possible disproof of extended Church-Turning Thesis. Furthermore, the application of boson sampling to molecular computation has been suggested theoretically. Till now, however, only small-scale experiments with a few photons have been successfully performed. The boson sampling experiments of 20-30 photons are expected to reveal the computational superiority of the quantum device. A novel theoretical proposal for the large-scale boson sampling using microwave photons is highly promising due to the deterministic photon sources and the scalability. Therefore, the certification protocol of large-scale boson sampling experiments should be presented to complete the exciting story. We propose, in this presentation, a computational protocol towards the certification of large-scale boson sampling. The correlations of paired photon modes and the time-dependent characteristic functional with its Fourier component can show the fingerprint of large-scale boson sampling. This work was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(NRF-2015R1A6A3A04059773), the ICT R&D program of MSIP/IITP [2015-019, Fundamental Research Toward Secure Quantum Communication] and Mueunjae Institute for Chemistry (MIC) postdoctoral fellowship.
NASA Astrophysics Data System (ADS)
Gregory, A. E.; Benedict, K. K.; Zhang, S.; Savickas, J.
2017-12-01
Large scale, high severity wildfires in forests have become increasingly prevalent in the western United States due to fire exclusion. Although past work has focused on the immediate consequences of wildfire (ie. runoff magnitude and debris flow), little has been done to understand the post wildfire hydrologic consequences of vegetation regrowth. Furthermore, vegetation is often characterized by static parameterizations within hydrological models. In order to understand the temporal relationship between hydrologic processes and revegetation, we modularized and partially automated the hydrologic modeling process to increase connectivity between remotely sensed data, the Virtual Watershed Platform (a data management resource, called the VWP), input meteorological data, and the Precipitation-Runoff Modeling System (PRMS). This process was used to run simulations in the Valles Caldera of NM, an area impacted by the 2011 Las Conchas Fire, in PRMS before and after the Las Conchas to evaluate hydrologic process changes. The modeling environment addressed some of the existing challenges faced by hydrological modelers. At present, modelers are somewhat limited in their ability to push the boundaries of hydrologic understanding. Specific issues faced by modelers include limited computational resources to model processes at large spatial and temporal scales, data storage capacity and accessibility from the modeling platform, computational and time contraints for experimental modeling, and the skills to integrate modeling software in ways that have not been explored. By taking an interdisciplinary approach, we were able to address some of these challenges by leveraging the skills of hydrologic, data, and computer scientists; and the technical capabilities provided by a combination of on-demand/high-performance computing, distributed data, and cloud services. The hydrologic modeling process was modularized to include options for distributing meteorological data, parameter space experimentation, data format transformation, looping, validation of models and containerization for enabling new analytic scenarios. The user interacts with the modules through Jupyter Notebooks which can be connected to an on-demand computing and HPC environment, and data services built as part of the VWP.
Towards scalable Byzantine fault-tolerant replication
NASA Astrophysics Data System (ADS)
Zbierski, Maciej
2017-08-01
Byzantine fault-tolerant (BFT) replication is a powerful technique, enabling distributed systems to remain available and correct even in the presence of arbitrary faults. Unfortunately, existing BFT replication protocols are mostly load-unscalable, i.e. they fail to respond with adequate performance increase whenever new computational resources are introduced into the system. This article proposes a universal architecture facilitating the creation of load-scalable distributed services based on BFT replication. The suggested approach exploits parallel request processing to fully utilize the available resources, and uses a load balancer module to dynamically adapt to the properties of the observed client workload. The article additionally provides a discussion on selected deployment scenarios, and explains how the proposed architecture could be used to increase the dependability of contemporary large-scale distributed systems.
Study of Solid State Drives performance in PROOF distributed analysis system
NASA Astrophysics Data System (ADS)
Panitkin, S. Y.; Ernst, M.; Petkus, R.; Rind, O.; Wenaus, T.
2010-04-01
Solid State Drives (SSD) is a promising storage technology for High Energy Physics parallel analysis farms. Its combination of low random access time and relatively high read speed is very well suited for situations where multiple jobs concurrently access data located on the same drive. It also has lower energy consumption and higher vibration tolerance than Hard Disk Drive (HDD) which makes it an attractive choice in many applications raging from personal laptops to large analysis farms. The Parallel ROOT Facility - PROOF is a distributed analysis system which allows to exploit inherent event level parallelism of high energy physics data. PROOF is especially efficient together with distributed local storage systems like Xrootd, when data are distributed over computing nodes. In such an architecture the local disk subsystem I/O performance becomes a critical factor, especially when computing nodes use multi-core CPUs. We will discuss our experience with SSDs in PROOF environment. We will compare performance of HDD with SSD in I/O intensive analysis scenarios. In particular we will discuss PROOF system performance scaling with a number of simultaneously running analysis jobs.
Towards a New Assessment of Urban Areas from Local to Global Scales
NASA Astrophysics Data System (ADS)
Bhaduri, B. L.; Roy Chowdhury, P. K.; McKee, J.; Weaver, J.; Bright, E.; Weber, E.
2015-12-01
Since early 2000s, starting with NASA MODIS, satellite based remote sensing has facilitated collection of imagery with medium spatial resolution but high temporal resolution (daily). This trend continues with an increasing number of sensors and data products. Increasing spatial and temporal resolutions of remotely sensed data archives, from both public and commercial sources, have significantly enhanced the quality of mapping and change data products. However, even with automation of such analysis on evolving computing platforms, rates of data processing have been suboptimal largely because of the ever-increasing pixel to processor ratio coupled with limitations of the computing architectures. Novel approaches utilizing spatiotemporal data mining techniques and computational architectures have emerged that demonstrates the potential for sustained and geographically scalable landscape monitoring to be operational. We exemplify this challenge with two broad research initiatives on High Performance Geocomputation at Oak Ridge National Laboratory: (a) mapping global settlement distribution; (b) developing national critical infrastructure databases. Our present effort, on large GPU based architectures, to exploit high resolution (1m or less) satellite and airborne imagery for extracting settlements at global scale is yielding understanding of human settlement patterns and urban areas at unprecedented resolution. Comparison of such urban land cover database, with existing national and global land cover products, at various geographic scales in selected parts of the world is revealing intriguing patterns and insights for urban assessment. Early results, from the USA, Taiwan, and Egypt, indicate closer agreements (5-10%) in urban area assessments among databases at larger, aggregated geographic extents. However, spatial variability at local scales could be significantly different (over 50% disagreement).
Large Survey Database: A Distributed Framework for Storage and Analysis of Large Datasets
NASA Astrophysics Data System (ADS)
Juric, Mario
2011-01-01
The Large Survey Database (LSD) is a Python framework and DBMS for distributed storage, cross-matching and querying of large survey catalogs (>10^9 rows, >1 TB). The primary driver behind its development is the analysis of Pan-STARRS PS1 data. It is specifically optimized for fast queries and parallel sweeps of positionally and temporally indexed datasets. It transparently scales to more than >10^2 nodes, and can be made to function in "shared nothing" architectures. An LSD database consists of a set of vertically and horizontally partitioned tables, physically stored as compressed HDF5 files. Vertically, we partition the tables into groups of related columns ('column groups'), storing together logically related data (e.g., astrometry, photometry). Horizontally, the tables are partitioned into partially overlapping ``cells'' by position in space (lon, lat) and time (t). This organization allows for fast lookups based on spatial and temporal coordinates, as well as data and task distribution. The design was inspired by the success of Google BigTable (Chang et al., 2006). Our programming model is a pipelined extension of MapReduce (Dean and Ghemawat, 2004). An SQL-like query language is used to access data. For complex tasks, map-reduce ``kernels'' that operate on query results on a per-cell basis can be written, with the framework taking care of scheduling and execution. The combination leverages users' familiarity with SQL, while offering a fully distributed computing environment. LSD adds little overhead compared to direct Python file I/O. In tests, we sweeped through 1.1 Grows of PanSTARRS+SDSS data (220GB) less than 15 minutes on a dual CPU machine. In a cluster environment, we achieved bandwidths of 17Gbits/sec (I/O limited). Based on current experience, we believe LSD should scale to be useful for analysis and storage of LSST-scale datasets. It can be downloaded from http://mwscience.net/lsd.
The Large -scale Distribution of Galaxies
NASA Astrophysics Data System (ADS)
Flin, Piotr
A review of the Large-scale structure of the Universe is given. A connection is made with the titanic work by Johannes Kepler in many areas of astronomy and cosmology. A special concern is made to spatial distribution of Galaxies, voids and walls (cellular structure of the Universe). Finaly, the author is concluding that the large scale structure of the Universe can be observed in much greater scale that it was thought twenty years ago.
NASA Technical Reports Server (NTRS)
Kramer, Williams T. C.; Simon, Horst D.
1994-01-01
This tutorial proposes to be a practical guide for the uninitiated to the main topics and themes of high-performance computing (HPC), with particular emphasis to distributed computing. The intent is first to provide some guidance and directions in the rapidly increasing field of scientific computing using both massively parallel and traditional supercomputers. Because of their considerable potential computational power, loosely or tightly coupled clusters of workstations are increasingly considered as a third alternative to both the more conventional supercomputers based on a small number of powerful vector processors, as well as high massively parallel processors. Even though many research issues concerning the effective use of workstation clusters and their integration into a large scale production facility are still unresolved, such clusters are already used for production computing. In this tutorial we will utilize the unique experience made at the NAS facility at NASA Ames Research Center. Over the last five years at NAS massively parallel supercomputers such as the Connection Machines CM-2 and CM-5 from Thinking Machines Corporation and the iPSC/860 (Touchstone Gamma Machine) and Paragon Machines from Intel were used in a production supercomputer center alongside with traditional vector supercomputers such as the Cray Y-MP and C90.
Unleashing spatially distributed ecohydrology modeling using Big Data tools
NASA Astrophysics Data System (ADS)
Miles, B.; Idaszak, R.
2015-12-01
Physically based spatially distributed ecohydrology models are useful for answering science and management questions related to the hydrology and biogeochemistry of prairie, savanna, forested, as well as urbanized ecosystems. However, these models can produce hundreds of gigabytes of spatial output for a single model run over decadal time scales when run at regional spatial scales and moderate spatial resolutions (~100-km2+ at 30-m spatial resolution) or when run for small watersheds at high spatial resolutions (~1-km2 at 3-m spatial resolution). Numerical data formats such as HDF5 can store arbitrarily large datasets. However even in HPC environments, there are practical limits on the size of single files that can be stored and reliably backed up. Even when such large datasets can be stored, querying and analyzing these data can suffer from poor performance due to memory limitations and I/O bottlenecks, for example on single workstations where memory and bandwidth are limited, or in HPC environments where data are stored separately from computational nodes. The difficulty of storing and analyzing spatial data from ecohydrology models limits our ability to harness these powerful tools. Big Data tools such as distributed databases have the potential to surmount the data storage and analysis challenges inherent to large spatial datasets. Distributed databases solve these problems by storing data close to computational nodes while enabling horizontal scalability and fault tolerance. Here we present the architecture of and preliminary results from PatchDB, a distributed datastore for managing spatial output from the Regional Hydro-Ecological Simulation System (RHESSys). The initial version of PatchDB uses message queueing to asynchronously write RHESSys model output to an Apache Cassandra cluster. Once stored in the cluster, these data can be efficiently queried to quickly produce both spatial visualizations for a particular variable (e.g. maps and animations), as well as point time series of arbitrary variables at arbitrary points in space within a watershed or river basin. By treating ecohydrology modeling as a Big Data problem, we hope to provide a platform for answering transformative science and management questions related to water quantity and quality in a world of non-stationary climate.
Male group size, female distribution and changes in sexual segregation by Roosevelt elk
Peterson, Leah M.
2017-01-01
Sexual segregation, or the differential use of space by males and females, is hypothesized to be a function of body size dimorphism. Sexual segregation can also manifest at small (social segregation) and large (habitat segregation) spatial scales for a variety of reasons. Furthermore, the connection between small- and large-scale sexual segregation has rarely been addressed. We studied a population of Roosevelt elk (Cervus elaphus roosevelti) across 21 years in north coastal California, USA, to assess small- and large-scale sexual segregation in winter. We hypothesized that male group size would associate with small-scale segregation and that a change in female distribution would associate with large-scale segregation. Variation in forage biomass might also be coupled to small and large-scale sexual segregation. Our findings were consistent with male group size associating with small-scale segregation and a change in female distribution associating with large-scale segregation. Females appeared to avoid large groups comprised of socially dominant males. Males appeared to occupy a habitat vacated by females because of a wider forage niche, greater tolerance to lethal risks, and, perhaps, to reduce encounters with other elk. Sexual segregation at both spatial scales was a poor predictor of forage biomass. Size dimorphism was coupled to change in sexual segregation at small and large spatial scales. Small scale segregation can seemingly manifest when all forage habitat is occupied by females and large scale segregation might happen when some forage habitat is not occupied by females. PMID:29121076
Large-scale Labeled Datasets to Fuel Earth Science Deep Learning Applications
NASA Astrophysics Data System (ADS)
Maskey, M.; Ramachandran, R.; Miller, J.
2017-12-01
Deep learning has revolutionized computer vision and natural language processing with various algorithms scaled using high-performance computing. However, generic large-scale labeled datasets such as the ImageNet are the fuel that drives the impressive accuracy of deep learning results. Large-scale labeled datasets already exist in domains such as medical science, but creating them in the Earth science domain is a challenge. While there are ways to apply deep learning using limited labeled datasets, there is a need in the Earth sciences for creating large-scale labeled datasets for benchmarking and scaling deep learning applications. At the NASA Marshall Space Flight Center, we are using deep learning for a variety of Earth science applications where we have encountered the need for large-scale labeled datasets. We will discuss our approaches for creating such datasets and why these datasets are just as valuable as deep learning algorithms. We will also describe successful usage of these large-scale labeled datasets with our deep learning based applications.
Dynamic Load Balancing for Grid Partitioning on a SP-2 Multiprocessor: A Framework
NASA Technical Reports Server (NTRS)
Sohn, Andrew; Simon, Horst; Lasinski, T. A. (Technical Monitor)
1994-01-01
Computational requirements of full scale computational fluid dynamics change as computation progresses on a parallel machine. The change in computational intensity causes workload imbalance of processors, which in turn requires a large amount of data movement at runtime. If parallel CFD is to be successful on a parallel or massively parallel machine, balancing of the runtime load is indispensable. Here a framework is presented for dynamic load balancing for CFD applications, called Jove. One processor is designated as a decision maker Jove while others are assigned to computational fluid dynamics. Processors running CFD send flags to Jove in a predetermined number of iterations to initiate load balancing. Jove starts working on load balancing while other processors continue working with the current data and load distribution. Jove goes through several steps to decide if the new data should be taken, including preliminary evaluate, partition, processor reassignment, cost evaluation, and decision. Jove running on a single EBM SP2 node has been completely implemented. Preliminary experimental results show that the Jove approach to dynamic load balancing can be effective for full scale grid partitioning on the target machine IBM SP2.
Dynamic Load Balancing For Grid Partitioning on a SP-2 Multiprocessor: A Framework
NASA Technical Reports Server (NTRS)
Sohn, Andrew; Simon, Horst; Lasinski, T. A. (Technical Monitor)
1994-01-01
Computational requirements of full scale computational fluid dynamics change as computation progresses on a parallel machine. The change in computational intensity causes workload imbalance of processors, which in turn requires a large amount of data movement at runtime. If parallel CFD is to be successful on a parallel or massively parallel machine, balancing of the runtime load is indispensable. Here a framework is presented for dynamic load balancing for CFD applications, called Jove. One processor is designated as a decision maker Jove while others are assigned to computational fluid dynamics. Processors running CFD send flags to Jove in a predetermined number of iterations to initiate load balancing. Jove starts working on load balancing while other processors continue working with the current data and load distribution. Jove goes through several steps to decide if the new data should be taken, including preliminary evaluate, partition, processor reassignment, cost evaluation, and decision. Jove running on a single IBM SP2 node has been completely implemented. Preliminary experimental results show that the Jove approach to dynamic load balancing can be effective for full scale grid partitioning on the target machine IBM SP2.
Architectural Optimization of Digital Libraries
NASA Technical Reports Server (NTRS)
Biser, Aileen O.
1998-01-01
This work investigates performance and scaling issues relevant to large scale distributed digital libraries. Presently, performance and scaling studies focus on specific implementations of production or prototype digital libraries. Although useful information is gained to aid these designers and other researchers with insights to performance and scaling issues, the broader issues relevant to very large scale distributed libraries are not addressed. Specifically, no current studies look at the extreme or worst case possibilities in digital library implementations. A survey of digital library research issues is presented. Scaling and performance issues are mentioned frequently in the digital library literature but are generally not the focus of much of the current research. In this thesis a model for a Generic Distributed Digital Library (GDDL) and nine cases of typical user activities are defined. This model is used to facilitate some basic analysis of scaling issues. Specifically, the calculation of Internet traffic generated for different configurations of the study parameters and an estimate of the future bandwidth needed for a large scale distributed digital library implementation. This analysis demonstrates the potential impact a future distributed digital library implementation would have on the Internet traffic load and raises questions concerning the architecture decisions being made for future distributed digital library designs.
Radiation breakage of DNA: a model based on random-walk chromatin structure
NASA Technical Reports Server (NTRS)
Ponomarev, A. L.; Sachs, R. K.
2001-01-01
Monte Carlo computer software, called DNAbreak, has recently been developed to analyze observed non-random clustering of DNA double strand breaks in chromatin after exposure to densely ionizing radiation. The software models coarse-grained configurations of chromatin and radiation tracks, small-scale details being suppressed in order to obtain statistical results for larger scales, up to the size of a whole chromosome. We here give an analytic counterpart of the numerical model, useful for benchmarks, for elucidating the numerical results, for analyzing the assumptions of a more general but less mechanistic "randomly-located-clusters" formalism, and, potentially, for speeding up the calculations. The equations characterize multi-track DNA fragment-size distributions in terms of one-track action; an important step in extrapolating high-dose laboratory results to the much lower doses of main interest in environmental or occupational risk estimation. The approach can utilize the experimental information on DNA fragment-size distributions to draw inferences about large-scale chromatin geometry during cell-cycle interphase.
Evolution of the ATLAS PanDA workload management system for exascale computational science
NASA Astrophysics Data System (ADS)
Maeno, T.; De, K.; Klimentov, A.; Nilsson, P.; Oleynik, D.; Panitkin, S.; Petrosyan, A.; Schovancova, J.; Vaniachine, A.; Wenaus, T.; Yu, D.; Atlas Collaboration
2014-06-01
An important foundation underlying the impressive success of data processing and analysis in the ATLAS experiment [1] at the LHC [2] is the Production and Distributed Analysis (PanDA) workload management system [3]. PanDA was designed specifically for ATLAS and proved to be highly successful in meeting all the distributed computing needs of the experiment. However, the core design of PanDA is not experiment specific. The PanDA workload management system is capable of meeting the needs of other data intensive scientific applications. Alpha-Magnetic Spectrometer [4], an astro-particle experiment on the International Space Station, and the Compact Muon Solenoid [5], an LHC experiment, have successfully evaluated PanDA and are pursuing its adoption. In this paper, a description of the new program of work to develop a generic version of PanDA will be given, as well as the progress in extending PanDA's capabilities to support supercomputers and clouds and to leverage intelligent networking. PanDA has demonstrated at a very large scale the value of automated dynamic brokering of diverse workloads across distributed computing resources. The next generation of PanDA will allow other data-intensive sciences and a wider exascale community employing a variety of computing platforms to benefit from ATLAS' experience and proven tools.
NASA Technical Reports Server (NTRS)
Dring, R. P.; Joslyn, H. D.; Blair, M. F.
1987-01-01
A combined experimental and analytical program was conducted to examine the effects of inlet turbulence and airfoil heat transfer. The experimental portion of the study was conducted in a large-scale (approx. 5X engine), ambient temperature, rotating turbine model configured in both single-stage and stage-and-a-half arrangements. Heat transfer measurements were obtained using low-conductivity airfoils with miniature thermocouples welded to a thin, electrically heated surface skin. Heat transfer data were acquired for various combinations of low or high inlet turbulence intensity, flow coefficient, first stator-rotor axial spacing, Reynolds number and relative circumferential position of the first and second stators. Aerodynamic measurements obtained include distributions of the mean and fluctuating velocities at the turbine inlet and, for each airfoil row, midspan airfoil surface pressures and circumferential distributions of the downstream steady state pressures and fluctuating velocities. Results include airfoil heat transfer predictions produced using existing 2-D boundary layer computation schemes and an examination of solutions of the unsteady boundary layer equations.
McLaughlin, David; Shapley, Robert; Shelley, Michael
2003-01-01
A large-scale computational model of a local patch of input layer 4 [Formula: see text] of the primary visual cortex (V1) of the macaque monkey, together with a coarse-grained reduction of the model, are used to understand potential effects of cortical architecture upon neuronal performance. Both the large-scale point neuron model and its asymptotic reduction are described. The work focuses upon orientation preference and selectivity, and upon the spatial distribution of neuronal responses across the cortical layer. Emphasis is given to the role of cortical architecture (the geometry of synaptic connectivity, of the ordered and disordered structure of input feature maps, and of their interplay) as mechanisms underlying cortical responses within the model. Specifically: (i) Distinct characteristics of model neuronal responses (firing rates and orientation selectivity) as they depend upon the neuron's location within the cortical layer relative to the pinwheel centers of the map of orientation preference; (ii) A time independent (DC) elevation in cortico-cortical conductances within the model, in contrast to a "push-pull" antagonism between excitation and inhibition; (iii) The use of asymptotic analysis to unveil mechanisms which underly these performances of the model; (iv) A discussion of emerging experimental data. The work illustrates that large-scale scientific computation--coupled together with analytical reduction, mathematical analysis, and experimental data, can provide significant understanding and intuition about the possible mechanisms of cortical response. It also illustrates that the idealization which is a necessary part of theoretical modeling can outline in sharp relief the consequences of differing alternative interpretations and mechanisms--with final arbiter being a body of experimental evidence whose measurements address the consequences of these analyses.
Analyzing big data with the hybrid interval regression methods.
Huang, Chia-Hui; Yang, Keng-Chieh; Kao, Han-Ying
2014-01-01
Big data is a new trend at present, forcing the significant impacts on information technologies. In big data applications, one of the most concerned issues is dealing with large-scale data sets that often require computation resources provided by public cloud services. How to analyze big data efficiently becomes a big challenge. In this paper, we collaborate interval regression with the smooth support vector machine (SSVM) to analyze big data. Recently, the smooth support vector machine (SSVM) was proposed as an alternative of the standard SVM that has been proved more efficient than the traditional SVM in processing large-scale data. In addition the soft margin method is proposed to modify the excursion of separation margin and to be effective in the gray zone that the distribution of data becomes hard to be described and the separation margin between classes.
Analyzing Big Data with the Hybrid Interval Regression Methods
Kao, Han-Ying
2014-01-01
Big data is a new trend at present, forcing the significant impacts on information technologies. In big data applications, one of the most concerned issues is dealing with large-scale data sets that often require computation resources provided by public cloud services. How to analyze big data efficiently becomes a big challenge. In this paper, we collaborate interval regression with the smooth support vector machine (SSVM) to analyze big data. Recently, the smooth support vector machine (SSVM) was proposed as an alternative of the standard SVM that has been proved more efficient than the traditional SVM in processing large-scale data. In addition the soft margin method is proposed to modify the excursion of separation margin and to be effective in the gray zone that the distribution of data becomes hard to be described and the separation margin between classes. PMID:25143968
Building and measuring a high performance network architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramer, William T.C.; Toole, Timothy; Fisher, Chuck
2001-04-20
Once a year, the SC conferences present a unique opportunity to create and build one of the most complex and highest performance networks in the world. At SC2000, large-scale and complex local and wide area networking connections were demonstrated, including large-scale distributed applications running on different architectures. This project was designed to use the unique opportunity presented at SC2000 to create a testbed network environment and then use that network to demonstrate and evaluate high performance computational and communication applications. This testbed was designed to incorporate many interoperable systems and services and was designed for measurement from the very beginning.more » The end results were key insights into how to use novel, high performance networking technologies and to accumulate measurements that will give insights into the networks of the future.« less
Proteinortho: detection of (co-)orthologs in large-scale analysis.
Lechner, Marcus; Findeiss, Sven; Steiner, Lydia; Marz, Manja; Stadler, Peter F; Prohaska, Sonja J
2011-04-28
Orthology analysis is an important part of data analysis in many areas of bioinformatics such as comparative genomics and molecular phylogenetics. The ever-increasing flood of sequence data, and hence the rapidly increasing number of genomes that can be compared simultaneously, calls for efficient software tools as brute-force approaches with quadratic memory requirements become infeasible in practise. The rapid pace at which new data become available, furthermore, makes it desirable to compute genome-wide orthology relations for a given dataset rather than relying on relations listed in databases. The program Proteinortho described here is a stand-alone tool that is geared towards large datasets and makes use of distributed computing techniques when run on multi-core hardware. It implements an extended version of the reciprocal best alignment heuristic. We apply Proteinortho to compute orthologous proteins in the complete set of all 717 eubacterial genomes available at NCBI at the beginning of 2009. We identified thirty proteins present in 99% of all bacterial proteomes. Proteinortho significantly reduces the required amount of memory for orthology analysis compared to existing tools, allowing such computations to be performed on off-the-shelf hardware.
Task Assignment Heuristics for Distributed CFD Applications
NASA Technical Reports Server (NTRS)
Lopez-Benitez, N.; Djomehri, M. J.; Biswas, R.; Biegel, Bryan (Technical Monitor)
2001-01-01
CFD applications require high-performance computational platforms: 1. Complex physics and domain configuration demand strongly coupled solutions; 2. Applications are CPU and memory intensive; and 3. Huge resource requirements can only be satisfied by teraflop-scale machines or distributed computing.
Computing and Visualizing Reachable Volumes for Maneuvering Satellites
NASA Astrophysics Data System (ADS)
Jiang, M.; de Vries, W.; Pertica, A.; Olivier, S.
2011-09-01
Detecting and predicting maneuvering satellites is an important problem for Space Situational Awareness. The spatial envelope of all possible locations within reach of such a maneuvering satellite is known as the Reachable Volume (RV). As soon as custody of a satellite is lost, calculating the RV and its subsequent time evolution is a critical component in the rapid recovery of the satellite. In this paper, we present a Monte Carlo approach to computing the RV for a given object. Essentially, our approach samples all possible trajectories by randomizing thrust-vectors, thrust magnitudes and time of burn. At any given instance, the distribution of the "point-cloud" of the virtual particles defines the RV. For short orbital time-scales, the temporal evolution of the point-cloud can result in complex, multi-reentrant manifolds. Visualization plays an important role in gaining insight and understanding into this complex and evolving manifold. In the second part of this paper, we focus on how to effectively visualize the large number of virtual trajectories and the computed RV. We present a real-time out-of-core rendering technique for visualizing the large number of virtual trajectories. We also examine different techniques for visualizing the computed volume of probability density distribution, including volume slicing, convex hull and isosurfacing. We compare and contrast these techniques in terms of computational cost and visualization effectiveness, and describe the main implementation issues encountered during our development process. Finally, we will present some of the results from our end-to-end system for computing and visualizing RVs using examples of maneuvering satellites.
Nitzlnader, Michael; Schreier, Günter
2014-01-01
Dealing with data from different source domains is of increasing importance in today's large scale biomedical research endeavours. Within the European Network for Cancer research in Children and Adolescents (ENCCA) a solution to share such data for secondary use will be established. In this paper the solution arising from the aims of the ENCCA project and regulatory requirements concerning data protection and privacy is presented. Since the details of secondary biomedical dataset utilisation are often not known in advance, data protection regulations are met with an identity management concept that facilitates context-specific pseudonymisation and a way of data aggregation using a hidden reference table later on. Phonetic hashing is proposed to prevent duplicated patient registration and re-identification of patients is possible via a trusted third party only. Finally, the solution architecture allows for implementation in a distributed computing environment, including cloud-based elements.
Lipid Vesicle Shape Analysis from Populations Using Light Video Microscopy and Computer Vision
Zupanc, Jernej; Drašler, Barbara; Boljte, Sabina; Kralj-Iglič, Veronika; Iglič, Aleš; Erdogmus, Deniz; Drobne, Damjana
2014-01-01
We present a method for giant lipid vesicle shape analysis that combines manually guided large-scale video microscopy and computer vision algorithms to enable analyzing vesicle populations. The method retains the benefits of light microscopy and enables non-destructive analysis of vesicles from suspensions containing up to several thousands of lipid vesicles (1–50 µm in diameter). For each sample, image analysis was employed to extract data on vesicle quantity and size distributions of their projected diameters and isoperimetric quotients (measure of contour roundness). This process enables a comparison of samples from the same population over time, or the comparison of a treated population to a control. Although vesicles in suspensions are heterogeneous in sizes and shapes and have distinctively non-homogeneous distribution throughout the suspension, this method allows for the capture and analysis of repeatable vesicle samples that are representative of the population inspected. PMID:25426933
Application of the actor model to large scale NDE data analysis
NASA Astrophysics Data System (ADS)
Coughlin, Chris
2018-03-01
The Actor model of concurrent computation discretizes a problem into a series of independent units or actors that interact only through the exchange of messages. Without direct coupling between individual components, an Actor-based system is inherently concurrent and fault-tolerant. These traits lend themselves to so-called "Big Data" applications in which the volume of data to analyze requires a distributed multi-system design. For a practical demonstration of the Actor computational model, a system was developed to assist with the automated analysis of Nondestructive Evaluation (NDE) datasets using the open source Myriad Data Reduction Framework. A machine learning model trained to detect damage in two-dimensional slices of C-Scan data was deployed in a streaming data processing pipeline. To demonstrate the flexibility of the Actor model, the pipeline was deployed on a local system and re-deployed as a distributed system without recompiling, reconfiguring, or restarting the running application.
Using stroboscopic flow imaging to validate large-scale computational fluid dynamics simulations
NASA Astrophysics Data System (ADS)
Laurence, Ted A.; Ly, Sonny; Fong, Erika; Shusteff, Maxim; Randles, Amanda; Gounley, John; Draeger, Erik
2017-02-01
The utility and accuracy of computational modeling often requires direct validation against experimental measurements. The work presented here is motivated by taking a combined experimental and computational approach to determine the ability of large-scale computational fluid dynamics (CFD) simulations to understand and predict the dynamics of circulating tumor cells in clinically relevant environments. We use stroboscopic light sheet fluorescence imaging to track the paths and measure the velocities of fluorescent microspheres throughout a human aorta model. Performed over complex physiologicallyrealistic 3D geometries, large data sets are acquired with microscopic resolution over macroscopic distances.
Design of Availability-Dependent Distributed Services in Large-Scale Uncooperative Settings
ERIC Educational Resources Information Center
Morales, Ramses Victor
2009-01-01
Thesis Statement: "Availability-dependent global predicates can be efficiently and scalably realized for a class of distributed services, in spite of specific selfish and colluding behaviors, using local and decentralized protocols". Several types of large-scale distributed systems spanning the Internet have to deal with availability variations…
Development and Applications of a Modular Parallel Process for Large Scale Fluid/Structures Problems
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; Kwak, Dochan (Technical Monitor)
2002-01-01
A modular process that can efficiently solve large scale multidisciplinary problems using massively parallel supercomputers is presented. The process integrates disciplines with diverse physical characteristics by retaining the efficiency of individual disciplines. Computational domain independence of individual disciplines is maintained using a meta programming approach. The process integrates disciplines without affecting the combined performance. Results are demonstrated for large scale aerospace problems on several supercomputers. The super scalability and portability of the approach is demonstrated on several parallel computers.
Workshop on Advances in Scientific Computation and Differential Equations (SCADE)
1994-07-18
STATEMENT ~~’"j’’ Approved for public release; distribution unlimited. I ABSTRACT (MAMMU 200WOMW 94 808 1 64 4.L SUBIECT TERMS Ii11URE Of PAGES 12 16...called differential algebraic ODEs (DAES). (Some important early research on this topic was by L. Petzold.) Both theoretically and in terms of...completely specify the solution. In many physical systems, especially those in biology, or other large scale slowly responding systems, the inclusion of some
Exploring Cloud Computing for Large-scale Scientific Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Guang; Han, Binh; Yin, Jian
This paper explores cloud computing for large-scale data-intensive scientific applications. Cloud computing is attractive because it provides hardware and software resources on-demand, which relieves the burden of acquiring and maintaining a huge amount of resources that may be used only once by a scientific application. However, unlike typical commercial applications that often just requires a moderate amount of ordinary resources, large-scale scientific applications often need to process enormous amount of data in the terabyte or even petabyte range and require special high performance hardware with low latency connections to complete computation in a reasonable amount of time. To address thesemore » challenges, we build an infrastructure that can dynamically select high performance computing hardware across institutions and dynamically adapt the computation to the selected resources to achieve high performance. We have also demonstrated the effectiveness of our infrastructure by building a system biology application and an uncertainty quantification application for carbon sequestration, which can efficiently utilize data and computation resources across several institutions.« less
Condition number estimation of preconditioned matrices.
Kushida, Noriyuki
2015-01-01
The present paper introduces a condition number estimation method for preconditioned matrices. The newly developed method provides reasonable results, while the conventional method which is based on the Lanczos connection gives meaningless results. The Lanczos connection based method provides the condition numbers of coefficient matrices of systems of linear equations with information obtained through the preconditioned conjugate gradient method. Estimating the condition number of preconditioned matrices is sometimes important when describing the effectiveness of new preconditionerers or selecting adequate preconditioners. Operating a preconditioner on a coefficient matrix is the simplest method of estimation. However, this is not possible for large-scale computing, especially if computation is performed on distributed memory parallel computers. This is because, the preconditioned matrices become dense, even if the original matrices are sparse. Although the Lanczos connection method can be used to calculate the condition number of preconditioned matrices, it is not considered to be applicable to large-scale problems because of its weakness with respect to numerical errors. Therefore, we have developed a robust and parallelizable method based on Hager's method. The feasibility studies are curried out for the diagonal scaling preconditioner and the SSOR preconditioner with a diagonal matrix, a tri-daigonal matrix and Pei's matrix. As a result, the Lanczos connection method contains around 10% error in the results even with a simple problem. On the other hand, the new method contains negligible errors. In addition, the newly developed method returns reasonable solutions when the Lanczos connection method fails with Pei's matrix, and matrices generated with the finite element method.
Ishihara, Koji; Morimoto, Jun
2018-03-01
Humans use multiple muscles to generate such joint movements as an elbow motion. With multiple lightweight and compliant actuators, joint movements can also be efficiently generated. Similarly, robots can use multiple actuators to efficiently generate a one degree of freedom movement. For this movement, the desired joint torque must be properly distributed to each actuator. One approach to cope with this torque distribution problem is an optimal control method. However, solving the optimal control problem at each control time step has not been deemed a practical approach due to its large computational burden. In this paper, we propose a computationally efficient method to derive an optimal control strategy for a hybrid actuation system composed of multiple actuators, where each actuator has different dynamical properties. We investigated a singularly perturbed system of the hybrid actuator model that subdivided the original large-scale control problem into smaller subproblems so that the optimal control outputs for each actuator can be derived at each control time step and applied our proposed method to our pneumatic-electric hybrid actuator system. Our method derived a torque distribution strategy for the hybrid actuator by dealing with the difficulty of solving real-time optimal control problems. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Akkaynak, Derya; Siemann, Liese A.; Barbosa, Alexandra
2017-01-01
Flounder change colour and pattern for camouflage. We used a spectrometer to measure reflectance spectra and a digital camera to capture body patterns of two flounder species camouflaged on four natural backgrounds of different spatial scale (sand, small gravel, large gravel and rocks). We quantified the degree of spectral match between flounder and background relative to the situation of perfect camouflage in which flounder and background were assumed to have identical spectral distribution. Computations were carried out for three biologically relevant observers: monochromatic squid, dichromatic crab and trichromatic guitarfish. Our computations present a new approach to analysing datasets with multiple spectra that have large variance. Furthermore, to investigate the spatial match between flounder and background, images of flounder patterns were analysed using a custom program originally developed to study cuttlefish camouflage. Our results show that all flounder and background spectra fall within the same colour gamut and that, in terms of different observer visual systems, flounder matched most substrates in luminance and colour contrast. Flounder matched the spatial scales of all substrates except for rocks. We discuss findings in terms of flounder biology; furthermore, we discuss our methodology in light of hyperspectral technologies that combine high-resolution spectral and spatial imaging. PMID:28405370
Akkaynak, Derya; Siemann, Liese A; Barbosa, Alexandra; Mäthger, Lydia M
2017-03-01
Flounder change colour and pattern for camouflage. We used a spectrometer to measure reflectance spectra and a digital camera to capture body patterns of two flounder species camouflaged on four natural backgrounds of different spatial scale (sand, small gravel, large gravel and rocks). We quantified the degree of spectral match between flounder and background relative to the situation of perfect camouflage in which flounder and background were assumed to have identical spectral distribution. Computations were carried out for three biologically relevant observers: monochromatic squid, dichromatic crab and trichromatic guitarfish. Our computations present a new approach to analysing datasets with multiple spectra that have large variance. Furthermore, to investigate the spatial match between flounder and background, images of flounder patterns were analysed using a custom program originally developed to study cuttlefish camouflage. Our results show that all flounder and background spectra fall within the same colour gamut and that, in terms of different observer visual systems, flounder matched most substrates in luminance and colour contrast. Flounder matched the spatial scales of all substrates except for rocks. We discuss findings in terms of flounder biology; furthermore, we discuss our methodology in light of hyperspectral technologies that combine high-resolution spectral and spatial imaging.
Experiences with hypercube operating system instrumentation
NASA Technical Reports Server (NTRS)
Reed, Daniel A.; Rudolph, David C.
1989-01-01
The difficulties in conceptualizing the interactions among a large number of processors make it difficult both to identify the sources of inefficiencies and to determine how a parallel program could be made more efficient. This paper describes an instrumentation system that can trace the execution of distributed memory parallel programs by recording the occurrence of parallel program events. The resulting event traces can be used to compile summary statistics that provide a global view of program performance. In addition, visualization tools permit the graphic display of event traces. Visual presentation of performance data is particularly useful, indeed, necessary for large-scale parallel computers; the enormous volume of performance data mandates visual display.
PanDA for ATLAS distributed computing in the next decade
NASA Astrophysics Data System (ADS)
Barreiro Megino, F. H.; De, K.; Klimentov, A.; Maeno, T.; Nilsson, P.; Oleynik, D.; Padolski, S.; Panitkin, S.; Wenaus, T.; ATLAS Collaboration
2017-10-01
The Production and Distributed Analysis (PanDA) system has been developed to meet ATLAS production and analysis requirements for a data-driven workload management system capable of operating at the Large Hadron Collider (LHC) data processing scale. Heterogeneous resources used by the ATLAS experiment are distributed worldwide at hundreds of sites, thousands of physicists analyse the data remotely, the volume of processed data is beyond the exabyte scale, dozens of scientific applications are supported, while data processing requires more than a few billion hours of computing usage per year. PanDA performed very well over the last decade including the LHC Run 1 data taking period. However, it was decided to upgrade the whole system concurrently with the LHC’s first long shutdown in order to cope with rapidly changing computing infrastructure. After two years of reengineering efforts, PanDA has embedded capabilities for fully dynamic and flexible workload management. The static batch job paradigm was discarded in favor of a more automated and scalable model. Workloads are dynamically tailored for optimal usage of resources, with the brokerage taking network traffic and forecasts into account. Computing resources are partitioned based on dynamic knowledge of their status and characteristics. The pilot has been re-factored around a plugin structure for easier development and deployment. Bookkeeping is handled with both coarse and fine granularities for efficient utilization of pledged or opportunistic resources. An in-house security mechanism authenticates the pilot and data management services in off-grid environments such as volunteer computing and private local clusters. The PanDA monitor has been extensively optimized for performance and extended with analytics to provide aggregated summaries of the system as well as drill-down to operational details. There are as well many other challenges planned or recently implemented, and adoption by non-LHC experiments such as bioinformatics groups successfully running Paleomix (microbial genome and metagenomes) payload on supercomputers. In this paper we will focus on the new and planned features that are most important to the next decade of distributed computing workload management.
NASA Astrophysics Data System (ADS)
Sengupta, A.; Kletzing, C.; Howk, R.; Kurth, W. S.
2017-12-01
An important goal of the Van Allen Probes mission is to understand wave particle interactions that can energize relativistic electron in the Earth's Van Allen radiation belts. The EMFISIS instrumentation suite provides measurements of wave electric and magnetic fields of wave features such as chorus that participate in these interactions. Geometric signal processing discovers structural relationships, e.g. connectivity across ridge-like features in chorus elements to reveal properties such as dominant angles of the element (frequency sweep rate) and integrated power along the a given chorus element. These techniques disambiguate these wave features against background hiss-like chorus. This enables autonomous discovery of chorus elements across the large volumes of EMFISIS data. At the scale of individual or overlapping chorus elements, topological pattern recognition techniques enable interpretation of chorus microstructure by discovering connectivity and other geometric features within the wave signature of a single chorus element or between overlapping chorus elements. Thus chorus wave features can be quantified and studied at multiple scales of spectral geometry using geometric signal processing techniques. We present recently developed computational techniques that exploit spectral geometry of chorus elements and whistlers to enable large-scale automated discovery, detection and statistical analysis of these events over EMFISIS data. Specifically, we present different case studies across a diverse portfolio of chorus elements and discuss the performance of our algorithms regarding precision of detection as well as interpretation of chorus microstructure. We also provide large-scale statistical analysis on the distribution of dominant sweep rates and other properties of the detected chorus elements.
NASA Astrophysics Data System (ADS)
Guenther, A. B.; Duhl, T.
2011-12-01
Increasing computational resources have enabled a steady improvement in the spatial resolution used for earth system models. Land surface models and landcover distributions have kept ahead by providing higher spatial resolution than typically used in these models. Satellite observations have played a major role in providing high resolution landcover distributions over large regions or the entire earth surface but ground observations are needed to calibrate these data and provide accurate inputs for models. As our ability to resolve individual landscape components improves, it is important to consider what scale is sufficient for providing inputs to earth system models. The required spatial scale is dependent on the processes being represented and the scientific questions being addressed. This presentation will describe the development a contiguous U.S. landcover database using high resolution imagery (1 to 1000 meters) and surface observations of species composition and other landcover characteristics. The database includes plant functional types and species composition and is suitable for driving land surface models (CLM and MEGAN) that predict land surface exchange of carbon, water, energy and biogenic reactive gases (e.g., isoprene, sesquiterpenes, and NO). We investigate the sensitivity of model results to landcover distributions with spatial scales ranging over six orders of magnitude (1 meter to 1000000 meters). The implications for predictions of regional climate and air quality will be discussed along with recommendations for regional and global earth system modeling.
Grid-Enabled Quantitative Analysis of Breast Cancer
2010-10-01
large-scale, multi-modality computerized image analysis . The central hypothesis of this research is that large-scale image analysis for breast cancer...research, we designed a pilot study utilizing large scale parallel Grid computing harnessing nationwide infrastructure for medical image analysis . Also
Hydrodynamic Simulations and Tomographic Reconstructions of the Intergalactic Medium
NASA Astrophysics Data System (ADS)
Stark, Casey William
The Intergalactic Medium (IGM) is the dominant reservoir of matter in the Universe from which the cosmic web and galaxies form. The structure and physical state of the IGM provides insight into the cosmological model of the Universe, the origin and timeline of the reionization of the Universe, as well as being an essential ingredient in our understanding of galaxy formation and evolution. Our primary handle on this information is a signal known as the Lyman-alpha forest (or Ly-alpha forest) -- the collection of absorption features in high-redshift sources due to intervening neutral hydrogen, which scatters HI Ly-alpha photons out of the line of sight. The Ly-alpha forest flux traces density fluctuations at high redshift and at moderate overdensities, making it an excellent tool for mapping large-scale structure and constraining cosmological parameters. Although the computational methodology for simulating the Ly-alpha forest has existed for over a decade, we are just now approaching the scale of computing power required to simultaneously capture large cosmological scales and the scales of the smallest absorption systems. My thesis focuses on using simulations at the edge of modern computing to produce precise predictions of the statistics of the Ly-alpha forest and to better understand the structure of the IGM. In the first part of my thesis, I review the state of hydrodynamic simulations of the IGM, including pitfalls of the existing under-resolved simulations. Our group developed a new cosmological hydrodynamics code to tackle the computational challenge, and I developed a distributed analysis framework to compute flux statistics from our simulations. I present flux statistics derived from a suite of our large hydrodynamic simulations and demonstrate convergence to the per cent level. I also compare flux statistics derived from simulations using different discretizations and hydrodynamic schemes (Eulerian finite volume vs. smoothed particle hydrodynamics) and discuss differences in their convergence behavior, their overall agreement, and the implications for cosmological constraints. In the second part of my thesis, I present a tomographic reconstruction method that allows us to make 3D maps of the IGM with Mpc resolution. In order to make reconstructions of large surveys computationally feasible, I developed a new Wiener Filter application with an algorithm specialized to our problem, which significantly reduces the space and time complexity compared to previous implementations. I explore two scientific applications of the maps: finding protoclusters by searching the maps for large, contiguous regions of low flux and finding cosmic voids by searching the maps for regions of high flux. Using a large N-body simulation, I identify and characterize both protoclusters and voids at z = 2.5, in the middle of the redshift range being mapped by ongoing surveys. I provide simple methods for identifying protocluster and void candidates in the tomographic flux maps, and then test them on mock surveys and reconstructions. I present forecasts for sample purity and completeness and other scientific applications of these large, high-redshift objects.
NASA Astrophysics Data System (ADS)
Hostache, Renaud; Rains, Dominik; Chini, Marco; Lievens, Hans; Verhoest, Niko E. C.; Matgen, Patrick
2017-04-01
Motivated by climate change and its impact on the scarcity or excess of water in many parts of the world, several agencies and research institutions have taken initiatives in monitoring and predicting the hydrologic cycle at a global scale. Such a monitoring/prediction effort is important for understanding the vulnerability to extreme hydrological events and for providing early warnings. This can be based on an optimal combination of hydro-meteorological models and remote sensing, in which satellite measurements can be used as forcing or calibration data or for regularly updating the model states or parameters. Many advances have been made in these domains and the near future will bring new opportunities with respect to remote sensing as a result of the increasing number of spaceborn sensors enabling the large scale monitoring of water resources. Besides of these advances, there is currently a tendency to refine and further complicate physically-based hydrologic models to better capture the hydrologic processes at hand. However, this may not necessarily be beneficial for large-scale hydrology, as computational efforts are therefore increasing significantly. As a matter of fact, a novel thematic science question that is to be investigated is whether a flexible conceptual model can match the performance of a complex physically-based model for hydrologic simulations at large scale. In this context, the main objective of this study is to investigate how innovative techniques that allow for the estimation of soil moisture from satellite data can help in reducing errors and uncertainties in large scale conceptual hydro-meteorological modelling. A spatially distributed conceptual hydrologic model has been set up based on recent developments of the SUPERFLEX modelling framework. As it requires limited computational efforts, this model enables early warnings for large areas. Using as forcings the ERA-Interim public dataset and coupled with the CMEM radiative transfer model, SUPERFLEX is capable of predicting runoff, soil moisture, and SMOS-like brightness temperature time series. Such a model is traditionally calibrated using only discharge measurements. In this study we designed a multi-objective calibration procedure based on both discharge measurements and SMOS-derived brightness temperature observations in order to evaluate the added value of remotely sensed soil moisture data in the calibration process. As a test case we set up the SUPERFLEX model for the large scale Murray-Darling catchment in Australia ( 1 Million km2). When compared to in situ soil moisture time series, model predictions show good agreement resulting in correlation coefficients exceeding 70 % and Root Mean Squared Errors below 1 %. When benchmarked with the physically based land surface model CLM, SUPERFLEX exhibits similar performance levels. By adapting the runoff routing function within the SUPERFLEX model, the predicted discharge results in a Nash Sutcliff Efficiency exceeding 0.7 over both the calibration and the validation periods.
Effect of small scale transport processes on phytoplankton distribution in coastal seas.
Hernández-Carrasco, Ismael; Orfila, Alejandro; Rossi, Vincent; Garçon, Veronique
2018-06-05
Coastal ocean ecosystems are major contributors to the global biogeochemical cycles and biological productivity. Physical factors induced by the turbulent flow play a crucial role in regulating marine ecosystems. However, while large-scale open-ocean dynamics is well described by geostrophy, the role of multiscale transport processes in coastal regions is still poorly understood due to the lack of continuous high-resolution observations. Here, the influence of small-scale dynamics (O(3.5-25) km, i.e. spanning upper submesoscale and mesoscale processes) on surface phytoplankton derived from satellite chlorophyll-a (Chl-a) is studied using Lagrangian metrics computed from High-Frequency Radar currents. The combination of complementary Lagrangian diagnostics, including the Lagrangian divergence along fluid trajectories, provides an improved description of the 3D flow geometry which facilitates the interpretation of two non-exclusive physical mechanisms affecting phytoplankton dynamics and patchiness. Attracting small-scale fronts, unveiled by backwards Lagrangian Coherent Structures, are associated to negative divergence where particles and Chl-a standing stocks cluster. Filaments of positive divergence, representing large accumulated upward vertical velocities and suggesting accrued injection of subsurface nutrients, match areas with large Chl-a concentrations. Our findings demonstrate that an accurate characterization of small-scale transport processes is necessary to comprehend bio-physical interactions in coastal seas.
The International Symposium on Grids and Clouds
NASA Astrophysics Data System (ADS)
The International Symposium on Grids and Clouds (ISGC) 2012 will be held at Academia Sinica in Taipei from 26 February to 2 March 2012, with co-located events and workshops. The conference is hosted by the Academia Sinica Grid Computing Centre (ASGC). 2012 is the decennium anniversary of the ISGC which over the last decade has tracked the convergence, collaboration and innovation of individual researchers across the Asia Pacific region to a coherent community. With the continuous support and dedication from the delegates, ISGC has provided the primary international distributed computing platform where distinguished researchers and collaboration partners from around the world share their knowledge and experiences. The last decade has seen the wide-scale emergence of e-Infrastructure as a critical asset for the modern e-Scientist. The emergence of large-scale research infrastructures and instruments that has produced a torrent of electronic data is forcing a generational change in the scientific process and the mechanisms used to analyse the resulting data deluge. No longer can the processing of these vast amounts of data and production of relevant scientific results be undertaken by a single scientist. Virtual Research Communities that span organisations around the world, through an integrated digital infrastructure that connects the trust and administrative domains of multiple resource providers, have become critical in supporting these analyses. Topics covered in ISGC 2012 include: High Energy Physics, Biomedicine & Life Sciences, Earth Science, Environmental Changes and Natural Disaster Mitigation, Humanities & Social Sciences, Operations & Management, Middleware & Interoperability, Security and Networking, Infrastructure Clouds & Virtualisation, Business Models & Sustainability, Data Management, Distributed Volunteer & Desktop Grid Computing, High Throughput Computing, and High Performance, Manycore & GPU Computing.
Modeling and comparative study of fluid velocities in heterogeneous rocks
NASA Astrophysics Data System (ADS)
Hingerl, Ferdinand F.; Romanenko, Konstantin; Pini, Ronny; Balcom, Bruce; Benson, Sally
2013-04-01
Detailed knowledge of the distribution of effective porosity and fluid velocities in heterogeneous rock samples is crucial for understanding and predicting spatially resolved fluid residence times and kinetic reaction rates of fluid-rock interactions. The applicability of conventional MRI techniques to sedimentary rocks is limited by internal magnetic field gradients and short spin relaxation times. The approach developed at the UNB MRI Centre combines the 13-interval Alternating-Pulsed-Gradient Stimulated-Echo (APGSTE) scheme and three-dimensional Single Point Ramped Imaging with T1 Enhancement (SPRITE). These methods were designed to reduce the errors due to effects of background gradients and fast transverse relaxation. SPRITE is largely immune to time-evolution effects resulting from background gradients, paramagnetic impurities and chemical shift. Using these techniques quantitative 3D porosity maps as well as single-phase fluid velocity fields in sandstone core samples were measured. Using a new Magnetic Resonance Imaging technique developed at the MRI Centre at UNB, we created 3D maps of porosity distributions as well as single-phase fluid velocity distributions of sandstone rock samples. Then, we evaluated the applicability of the Kozeny-Carman relationship for modeling measured fluid velocity distributions in sandstones samples showing meso-scale heterogeneities using two different modeling approaches. The MRI maps were used as reference points for the modeling approaches. For the first modeling approach, we applied the Kozeny-Carman relationship to the porosity distributions and computed respective permeability maps, which in turn provided input for a CFD simulation - using the Stanford CFD code GPRS - to compute averaged velocity maps. The latter were then compared to the measured velocity maps. For the second approach, the measured velocity distributions were used as input for inversely computing permeabilities using the GPRS CFD code. The computed permeabilities were then correlated with the ones based on the porosity maps and the Kozeny-Carman relationship. The findings of the comparative modeling study are discussed and its potential impact on the modeling of fluid residence times and kinetic reaction rates of fluid-rock interactions in rocks containing meso-scale heterogeneities are reviewed.
NASA Technical Reports Server (NTRS)
Geller, Margaret J.; Huchra, J. P.
1991-01-01
Present-day understanding of the large-scale galaxy distribution is reviewed. The statistics of the CfA redshift survey are briefly discussed. The need for deeper surveys to clarify the issues raised by recent studies of large-scale galactic distribution is addressed.
Large eddy simulation of fine water sprays: comparative analysis of two models and computer codes
NASA Astrophysics Data System (ADS)
Tsoy, A. S.; Snegirev, A. Yu.
2015-09-01
The model and the computer code FDS, albeit widely used in engineering practice to predict fire development, is not sufficiently validated for fire suppression by fine water sprays. In this work, the effect of numerical resolution of the large scale turbulent pulsations on the accuracy of predicted time-averaged spray parameters is evaluated. Comparison of the simulation results obtained with the two versions of the model and code, as well as that of the predicted and measured radial distributions of the liquid flow rate revealed the need to apply monotonic and yet sufficiently accurate discrete approximations of the convective terms. Failure to do so delays jet break-up, otherwise induced by large turbulent eddies, thereby excessively focuses the predicted flow around its axis. The effect of the pressure drop in the spray nozzle is also examined, and its increase has shown to cause only weak increase of the evaporated fraction and vapor concentration despite the significant increase of flow velocity.
NASA Astrophysics Data System (ADS)
Norris, J. Q.
2016-12-01
Published 60 years ago, the Gutenburg-Richter law provides a universal frequency-magnitude distribution for natural and induced seismicity. The GR law is a two parameter power-law with the b-value specifying the relative frequency of small and large events. For large catalogs of natural seismicity, the observed b-values are near one, while fracking associated seismicity has observed b-values near two, indicating relatively fewer large events. We have developed a computationally inexpensive percolation model for fracking that allows us to generate large catalogs of fracking associated seismicity. Using these catalogs, we show that different power-law fitting procedures produce different b-values for the same data set. This shows that care must be taken when determining and comparing b-values for fracking associated seismicity.
Efficient computation of the joint sample frequency spectra for multiple populations.
Kamm, John A; Terhorst, Jonathan; Song, Yun S
2017-01-01
A wide range of studies in population genetics have employed the sample frequency spectrum (SFS), a summary statistic which describes the distribution of mutant alleles at a polymorphic site in a sample of DNA sequences and provides a highly efficient dimensional reduction of large-scale population genomic variation data. Recently, there has been much interest in analyzing the joint SFS data from multiple populations to infer parameters of complex demographic histories, including variable population sizes, population split times, migration rates, admixture proportions, and so on. SFS-based inference methods require accurate computation of the expected SFS under a given demographic model. Although much methodological progress has been made, existing methods suffer from numerical instability and high computational complexity when multiple populations are involved and the sample size is large. In this paper, we present new analytic formulas and algorithms that enable accurate, efficient computation of the expected joint SFS for thousands of individuals sampled from hundreds of populations related by a complex demographic model with arbitrary population size histories (including piecewise-exponential growth). Our results are implemented in a new software package called momi (MOran Models for Inference). Through an empirical study we demonstrate our improvements to numerical stability and computational complexity.
Efficient computation of the joint sample frequency spectra for multiple populations
Kamm, John A.; Terhorst, Jonathan; Song, Yun S.
2016-01-01
A wide range of studies in population genetics have employed the sample frequency spectrum (SFS), a summary statistic which describes the distribution of mutant alleles at a polymorphic site in a sample of DNA sequences and provides a highly efficient dimensional reduction of large-scale population genomic variation data. Recently, there has been much interest in analyzing the joint SFS data from multiple populations to infer parameters of complex demographic histories, including variable population sizes, population split times, migration rates, admixture proportions, and so on. SFS-based inference methods require accurate computation of the expected SFS under a given demographic model. Although much methodological progress has been made, existing methods suffer from numerical instability and high computational complexity when multiple populations are involved and the sample size is large. In this paper, we present new analytic formulas and algorithms that enable accurate, efficient computation of the expected joint SFS for thousands of individuals sampled from hundreds of populations related by a complex demographic model with arbitrary population size histories (including piecewise-exponential growth). Our results are implemented in a new software package called momi (MOran Models for Inference). Through an empirical study we demonstrate our improvements to numerical stability and computational complexity. PMID:28239248
Performance Studies on Distributed Virtual Screening
Krüger, Jens; de la Garza, Luis; Kohlbacher, Oliver; Nagel, Wolfgang E.
2014-01-01
Virtual high-throughput screening (vHTS) is an invaluable method in modern drug discovery. It permits screening large datasets or databases of chemical structures for those structures binding possibly to a drug target. Virtual screening is typically performed by docking code, which often runs sequentially. Processing of huge vHTS datasets can be parallelized by chunking the data because individual docking runs are independent of each other. The goal of this work is to find an optimal splitting maximizing the speedup while considering overhead and available cores on Distributed Computing Infrastructures (DCIs). We have conducted thorough performance studies accounting not only for the runtime of the docking itself, but also for structure preparation. Performance studies were conducted via the workflow-enabled science gateway MoSGrid (Molecular Simulation Grid). As input we used benchmark datasets for protein kinases. Our performance studies show that docking workflows can be made to scale almost linearly up to 500 concurrent processes distributed even over large DCIs, thus accelerating vHTS campaigns significantly. PMID:25032219
Advances and trends in computational structural mechanics
NASA Technical Reports Server (NTRS)
Noor, A. K.
1986-01-01
Recent developments in computational structural mechanics are reviewed with reference to computational needs for future structures technology, advances in computational models for material behavior, discrete element technology, assessment and control of numerical simulations of structural response, hybrid analysis, and techniques for large-scale optimization. Research areas in computational structural mechanics which have high potential for meeting future technological needs are identified. These include prediction and analysis of the failure of structural components made of new materials, development of computational strategies and solution methodologies for large-scale structural calculations, and assessment of reliability and adaptive improvement of response predictions.
Challenges in Managing Trustworthy Large-scale Digital Science
NASA Astrophysics Data System (ADS)
Evans, B. J. K.
2017-12-01
The increased use of large-scale international digital science has opened a number of challenges for managing, handling, using and preserving scientific information. The large volumes of information are driven by three main categories - model outputs including coupled models and ensembles, data products that have been processing to a level of usability, and increasingly heuristically driven data analysis. These data products are increasingly the ones that are usable by the broad communities, and far in excess of the raw instruments data outputs. The data, software and workflows are then shared and replicated to allow broad use at an international scale, which places further demands of infrastructure to support how the information is managed reliably across distributed resources. Users necessarily rely on these underlying "black boxes" so that they are productive to produce new scientific outcomes. The software for these systems depend on computational infrastructure, software interconnected systems, and information capture systems. This ranges from the fundamentals of the reliability of the compute hardware, system software stacks and libraries, and the model software. Due to these complexities and capacity of the infrastructure, there is an increased emphasis of transparency of the approach and robustness of the methods over the full reproducibility. Furthermore, with large volume data management, it is increasingly difficult to store the historical versions of all model and derived data. Instead, the emphasis is on the ability to access the updated products and the reliability by which both previous outcomes are still relevant and can be updated for the new information. We will discuss these challenges and some of the approaches underway that are being used to address these issues.
Load Balancing Unstructured Adaptive Grids for CFD Problems
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Oliker, Leonid
1996-01-01
Mesh adaption is a powerful tool for efficient unstructured-grid computations but causes load imbalance among processors on a parallel machine. A dynamic load balancing method is presented that balances the workload across all processors with a global view. After each parallel tetrahedral mesh adaption, the method first determines if the new mesh is sufficiently unbalanced to warrant a repartitioning. If so, the adapted mesh is repartitioned, with new partitions assigned to processors so that the redistribution cost is minimized. The new partitions are accepted only if the remapping cost is compensated by the improved load balance. Results indicate that this strategy is effective for large-scale scientific computations on distributed-memory multiprocessors.
CloudMan as a platform for tool, data, and analysis distribution
2012-01-01
Background Cloud computing provides an infrastructure that facilitates large scale computational analysis in a scalable, democratized fashion, However, in this context it is difficult to ensure sharing of an analysis environment and associated data in a scalable and precisely reproducible way. Results CloudMan (usecloudman.org) enables individual researchers to easily deploy, customize, and share their entire cloud analysis environment, including data, tools, and configurations. Conclusions With the enabled customization and sharing of instances, CloudMan can be used as a platform for collaboration. The presented solution improves accessibility of cloud resources, tools, and data to the level of an individual researcher and contributes toward reproducibility and transparency of research solutions. PMID:23181507
Adjoint-Based Aerodynamic Design of Complex Aerospace Configurations
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.
2016-01-01
An overview of twenty years of adjoint-based aerodynamic design research at NASA Langley Research Center is presented. Adjoint-based algorithms provide a powerful tool for efficient sensitivity analysis of complex large-scale computational fluid dynamics (CFD) simulations. Unlike alternative approaches for which computational expense generally scales with the number of design parameters, adjoint techniques yield sensitivity derivatives of a simulation output with respect to all input parameters at the cost of a single additional simulation. With modern large-scale CFD applications often requiring millions of compute hours for a single analysis, the efficiency afforded by adjoint methods is critical in realizing a computationally tractable design optimization capability for such applications.
A Comparative Study of Point Cloud Data Collection and Processing
NASA Astrophysics Data System (ADS)
Pippin, J. E.; Matheney, M.; Gentle, J. N., Jr.; Pierce, S. A.; Fuentes-Pineda, G.
2016-12-01
Over the past decade, there has been dramatic growth in the acquisition of publicly funded high-resolution topographic data for scientific, environmental, engineering and planning purposes. These data sets are valuable for applications of interest across a large and varied user community. However, because of the large volumes of data produced by high-resolution mapping technologies and expense of aerial data collection, it is often difficult to collect and distribute these datasets. Furthermore, the data can be technically challenging to process, requiring software and computing resources not readily available to many users. This study presents a comparison of advanced computing hardware and software that is used to collect and process point cloud datasets, such as LIDAR scans. Activities included implementation and testing of open source libraries and applications for point cloud data processing such as, Meshlab, Blender, PDAL, and PCL. Additionally, a suite of commercial scale applications, Skanect and Cloudcompare, were applied to raw datasets. Handheld hardware solutions, a Structure Scanner and Xbox 360 Kinect V1, were tested for their ability to scan at three field locations. The resultant data projects successfully scanned and processed subsurface karst features ranging from small stalactites to large rooms, as well as a surface waterfall feature. Outcomes support the feasibility of rapid sensing in 3D at field scales.
Large Scale Density Estimation of Blue and Fin Whales (LSD)
2014-09-30
172. McDonald, MA, Hildebrand, JA, and Mesnick, S (2009). Worldwide decline in tonal frequencies of blue whale songs . Endangered Species Research 9...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Large Scale Density Estimation of Blue and Fin Whales ...estimating blue and fin whale density that is effective over large spatial scales and is designed to cope with spatial variation in animal density utilizing
Is the S-Web the Secret to Observed Heliospheric Particle Distributions?
NASA Astrophysics Data System (ADS)
Higginson, A. K.; Antiochos, S. K.; DeVore, C. R.; Daldorff, L. K. S.; Wyper, P. F.; Ukhorskiy, A. Y.; Sorathia, K.
2017-12-01
Particle transport in the heliosphere remains an unsolved problem across energy regimes. Observations of slow solar wind show that plasma escapes from the closed-field corona, but ends up far away from the heliospheric current sheet, even though the release mechanisms are expected to occur at the HCS. Similarly, some impulsive SEP events have extreme longitudinal extents of 100 degrees or more. Recent theoretical and numerical work has shown that interchange reconnection near a coronal-hole corridor can release plasma from originally closed magnetic field lines into a large swath spread across the heliosphere, forming what is known as an S-Web arc. This is a promising mechanism for explaining both the slow solar wind, with its large latitudinal extent, and impulsive SEP particles, with their large longitudinal extent. Here we compute, for the first time, the dynamics of the S-Web when the photospheric driver is applied over a large portion of the solar surface compared to the scale of the driving. We examine the time scales for the interchange reconnection and compute the angular extent of the plasma released, in the context of understanding both the slow solar wind and flare-accelerated SEPs. We will make predictions for Solar Orbiter and Parker Solar Probe and discuss how these new measurements will help to both pinpoint the source of the slow solar wind and illuminate the transport mechanisms of wide-spread impulsive SEP events.
Data-Aware Retrodiction for Asynchronous Harmonic Measurement in a Cyber-Physical Energy System.
Liu, Youda; Wang, Xue; Liu, Yanchi; Cui, Sujin
2016-08-18
Cyber-physical energy systems provide a networked solution for safety, reliability and efficiency problems in smart grids. On the demand side, the secure and trustworthy energy supply requires real-time supervising and online power quality assessing. Harmonics measurement is necessary in power quality evaluation. However, under the large-scale distributed metering architecture, harmonic measurement faces the out-of-sequence measurement (OOSM) problem, which is the result of latencies in sensing or the communication process and brings deviations in data fusion. This paper depicts a distributed measurement network for large-scale asynchronous harmonic analysis and exploits a nonlinear autoregressive model with exogenous inputs (NARX) network to reorder the out-of-sequence measuring data. The NARX network gets the characteristics of the electrical harmonics from practical data rather than the kinematic equations. Thus, the data-aware network approximates the behavior of the practical electrical parameter with real-time data and improves the retrodiction accuracy. Theoretical analysis demonstrates that the data-aware method maintains a reasonable consumption of computing resources. Experiments on a practical testbed of a cyber-physical system are implemented, and harmonic measurement and analysis accuracy are adopted to evaluate the measuring mechanism under a distributed metering network. Results demonstrate an improvement of the harmonics analysis precision and validate the asynchronous measuring method in cyber-physical energy systems.
ERIC Educational Resources Information Center
Turner, Henry J.
2014-01-01
This dissertation of practice utilized a multiple case-study approach to examine distributed leadership within five school districts that were attempting to gain acceptance of a large-scale 1:1 technology initiative. Using frame theory and distributed leadership theory as theoretical frameworks, this study interviewed each district's…
Plagianakos, V P; Magoulas, G D; Vrahatis, M N
2006-03-01
Distributed computing is a process through which a set of computers connected by a network is used collectively to solve a single problem. In this paper, we propose a distributed computing methodology for training neural networks for the detection of lesions in colonoscopy. Our approach is based on partitioning the training set across multiple processors using a parallel virtual machine. In this way, interconnected computers of varied architectures can be used for the distributed evaluation of the error function and gradient values, and, thus, training neural networks utilizing various learning methods. The proposed methodology has large granularity and low synchronization, and has been implemented and tested. Our results indicate that the parallel virtual machine implementation of the training algorithms developed leads to considerable speedup, especially when large network architectures and training sets are used.
The circuit architecture of whole brains at the mesoscopic scale.
Mitra, Partha P
2014-09-17
Vertebrate brains of even moderate size are composed of astronomically large numbers of neurons and show a great degree of individual variability at the microscopic scale. This variation is presumably the result of phenotypic plasticity and individual experience. At a larger scale, however, relatively stable species-typical spatial patterns are observed in neuronal architecture, e.g., the spatial distributions of somata and axonal projection patterns, probably the result of a genetically encoded developmental program. The mesoscopic scale of analysis of brain architecture is the transitional point between a microscopic scale where individual variation is prominent and the macroscopic level where a stable, species-typical neural architecture is observed. The empirical existence of this scale, implicit in neuroanatomical atlases, combined with advances in computational resources, makes studying the circuit architecture of entire brains a practical task. A methodology has previously been proposed that employs a shotgun-like grid-based approach to systematically cover entire brain volumes with injections of neuronal tracers. This methodology is being employed to obtain mesoscale circuit maps in mouse and should be applicable to other vertebrate taxa. The resulting large data sets raise issues of data representation, analysis, and interpretation, which must be resolved. Even for data representation the challenges are nontrivial: the conventional approach using regional connectivity matrices fails to capture the collateral branching patterns of projection neurons. Future success of this promising research enterprise depends on the integration of previous neuroanatomical knowledge, partly through the development of suitable computational tools that encapsulate such expertise. Copyright © 2014 Elsevier Inc. All rights reserved.
Bayesian approach for three-dimensional aquifer characterization at the Hanford 300 Area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murakami, Haruko; Chen, X.; Hahn, Melanie S.
2010-10-21
This study presents a stochastic, three-dimensional characterization of a heterogeneous hydraulic conductivity field within DOE's Hanford 300 Area site, Washington, by assimilating large-scale, constant-rate injection test data with small-scale, three-dimensional electromagnetic borehole flowmeter (EBF) measurement data. We first inverted the injection test data to estimate the transmissivity field, using zeroth-order temporal moments of pressure buildup curves. We applied a newly developed Bayesian geostatistical inversion framework, the method of anchored distributions (MAD), to obtain a joint posterior distribution of geostatistical parameters and local log-transmissivities at multiple locations. The unique aspects of MAD that make it suitable for this purpose are itsmore » ability to integrate multi-scale, multi-type data within a Bayesian framework and to compute a nonparametric posterior distribution. After we combined the distribution of transmissivities with depth-discrete relative-conductivity profile from EBF data, we inferred the three-dimensional geostatistical parameters of the log-conductivity field, using the Bayesian model-based geostatistics. Such consistent use of the Bayesian approach throughout the procedure enabled us to systematically incorporate data uncertainty into the final posterior distribution. The method was tested in a synthetic study and validated using the actual data that was not part of the estimation. Results showed broader and skewed posterior distributions of geostatistical parameters except for the mean, which suggests the importance of inferring the entire distribution to quantify the parameter uncertainty.« less
On the use of distributed sensing in control of large flexible spacecraft
NASA Technical Reports Server (NTRS)
Montgomery, Raymond C.; Ghosh, Dave
1990-01-01
Distributed processing technology is being developed to process signals from distributed sensors using distributed computations. Thiw work presents a scheme for calculating the operators required to emulate a conventional Kalman filter and regulator using such a computer. The scheme makes use of conventional Kalman theory as applied to the control of large flexible structures. The required computation of the distributed operators given the conventional Kalman filter and regulator is explained. A straightforward application of this scheme may lead to nonsmooth operators whose convergence is not apparent. This is illustrated by application to the Mini-Mast, a large flexible truss at the Langley Research Center used for research in structural dynamics and control. Techniques for developing smooth operators are presented. These involve spatial filtering as well as adjusting the design constants in the Kalman theory. Results are presented that illustrate the degree of smoothness achieved.
Computational physiology and the Physiome Project.
Crampin, Edmund J; Halstead, Matthew; Hunter, Peter; Nielsen, Poul; Noble, Denis; Smith, Nicolas; Tawhai, Merryn
2004-01-01
Bioengineering analyses of physiological systems use the computational solution of physical conservation laws on anatomically detailed geometric models to understand the physiological function of intact organs in terms of the properties and behaviour of the cells and tissues within the organ. By linking behaviour in a quantitative, mathematically defined sense across multiple scales of biological organization--from proteins to cells, tissues, organs and organ systems--these methods have the potential to link patient-specific knowledge at the two ends of these spatial scales. A genetic profile linked to cardiac ion channel mutations, for example, can be interpreted in relation to body surface ECG measurements via a mathematical model of the heart and torso, which includes the spatial distribution of cardiac ion channels throughout the myocardium and the individual kinetics for each of the approximately 50 types of ion channel, exchanger or pump known to be present in the heart. Similarly, linking molecular defects such as mutations of chloride ion channels in lung epithelial cells to the integrated function of the intact lung requires models that include the detailed anatomy of the lungs, the physics of air flow, blood flow and gas exchange, together with the large deformation mechanics of breathing. Organizing this large body of knowledge into a coherent framework for modelling requires the development of ontologies, markup languages for encoding models, and web-accessible distributed databases. In this article we review the state of the field at all the relevant levels, and the tools that are being developed to tackle such complexity. Integrative physiology is central to the interpretation of genomic and proteomic data, and is becoming a highly quantitative, computer-intensive discipline.
DIALOG: An executive computer program for linking independent programs
NASA Technical Reports Server (NTRS)
Glatt, C. R.; Hague, D. S.; Watson, D. A.
1973-01-01
A very large scale computer programming procedure called the DIALOG executive system was developed for the CDC 6000 series computers. The executive computer program, DIALOG, controls the sequence of execution and data management function for a library of independent computer programs. Communication of common information is accomplished by DIALOG through a dynamically constructed and maintained data base of common information. Each computer program maintains its individual identity and is unaware of its contribution to the large scale program. This feature makes any computer program a candidate for use with the DIALOG executive system. The installation and uses of the DIALOG executive system are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trujillo, Angelina Michelle
Strategy, Planning, Acquiring- very large scale computing platforms come and go and planning for immensely scalable machines often precedes actual procurement by 3 years. Procurement can be another year or more. Integration- After Acquisition, machines must be integrated into the computing environments at LANL. Connection to scalable storage via large scale storage networking, assuring correct and secure operations. Management and Utilization – Ongoing operations, maintenance, and trouble shooting of the hardware and systems software at massive scale is required.
Power monitoring and control for large scale projects: SKA, a case study
NASA Astrophysics Data System (ADS)
Barbosa, Domingos; Barraca, João. Paulo; Maia, Dalmiro; Carvalho, Bruno; Vieira, Jorge; Swart, Paul; Le Roux, Gerhard; Natarajan, Swaminathan; van Ardenne, Arnold; Seca, Luis
2016-07-01
Large sensor-based science infrastructures for radio astronomy like the SKA will be among the most intensive datadriven projects in the world, facing very high demanding computation, storage, management, and above all power demands. The geographically wide distribution of the SKA and its associated processing requirements in the form of tailored High Performance Computing (HPC) facilities, require a Greener approach towards the Information and Communications Technologies (ICT) adopted for the data processing to enable operational compliance to potentially strict power budgets. Addressing the reduction of electricity costs, improve system power monitoring and the generation and management of electricity at system level is paramount to avoid future inefficiencies and higher costs and enable fulfillments of Key Science Cases. Here we outline major characteristics and innovation approaches to address power efficiency and long-term power sustainability for radio astronomy projects, focusing on Green ICT for science and Smart power monitoring and control.
Launch processing system transition from development to operation
NASA Technical Reports Server (NTRS)
Paul, H. C.
1977-01-01
The Launch Processing System has been under development at Kennedy Space Center since 1973. A prototype system was developed and delivered to Marshall Space Flight Center for Solid Rocket Booster checkout in July 1976. The first production hardware arrived in late 1976. The System uses a distributed computer network for command and monitoring and is supported by a dual large scale computer system for 'off line' processing. A high level of automation is anticipated for Shuttle and Payload testing and launch operations to gain the advantages of short turnaround capability, repeatability of operations, and minimization of operations and maintenance (O&M) manpower. Learning how to efficiently apply the system is our current problem. We are searching for more effective ways to convey LPS system performance characteristics from the designer to a large number of users. Once we have done this, we can realize the advantages of LPS system design.
Challenges and Opportunities in Modeling of the Global Atmosphere
NASA Astrophysics Data System (ADS)
Janjic, Zavisa; Djurdjevic, Vladimir; Vasic, Ratko
2016-04-01
Modeling paradigms on global scales may need to be reconsidered in order to better utilize the power of massively parallel processing. For high computational efficiency with distributed memory, each core should work on a small subdomain of the full integration domain, and exchange only few rows of halo data with the neighbouring cores. Note that the described scenario strongly favors horizontally local discretizations. This is relatively easy to achieve in regional models. However, the spherical geometry complicates the problem. The latitude-longitude grid with local in space and explicit in time differencing has been an early choice and remained in use ever since. The problem with this method is that the grid size in the longitudinal direction tends to zero as the poles are approached. So, in addition to having unnecessarily high resolution near the poles, polar filtering has to be applied in order to use a time step of a reasonable size. However, the polar filtering requires transpositions involving extra communications as well as more computations. The spectral transform method and the semi-implicit semi-Lagrangian schemes opened the way for application of spectral representation. With some variations, such techniques are currently dominating in global models. Unfortunately, the horizontal non-locality is inherent to the spectral representation and implicit time differencing, which inhibits scaling on a large number of cores. In this respect the lat-lon grid with polar filtering is a step in the right direction, particularly at high resolutions where the Legendre transforms become increasingly expensive. Other grids with reduced variability of grid distances, such as various versions of the cubed sphere and the hexagonal/pentagonal ("soccer ball") grids, were proposed almost fifty years ago. However, on these grids, large-scale (wavenumber 4 and 5) fictitious solutions ("grid imprinting") with significant amplitudes can develop. Due to their large scales, that are comparable to the scales of the dominant Rossby waves, such fictitious solutions are hard to identify and remove. Another new challenge on the global scale is that the limit of validity of the hydrostatic approximation is rapidly being approached. Relaxing the hydrostatic approximation requieres careful reformulation of the model dynamics and more computations and communications. The unified Non-hydrostatic Multi-scale Model (NMMB) will be briefly discussed as an example. The non-hydrostatic dynamics were designed in such a way as to avoid over-specification. The global version is run on the latitude-longitude grid, and the polar filter selectively slows down the waves that would otherwise be unstable without modifying their amplitudes. The model has been successfully tested on various scales. The skill of the medium range forecasts produced by the NMMB is comparable to that of other major medium range models, and its computational efficiency on parallel computers is good.
NASA Technical Reports Server (NTRS)
Wong, Sun; Del Genio, Anthony; Wang, Tao; Kahn, Brian; Fetzer, Eric J.; L'Ecuyer, Tristan S.
2015-01-01
Goals: Water budget-related dynamical phase space; Connect large-scale dynamical conditions to atmospheric water budget (including precipitation); Connect atmospheric water budget to cloud type distributions.
Map visualization of groundwater withdrawals at the sub-basin scale
NASA Astrophysics Data System (ADS)
Goode, Daniel J.
2016-06-01
A simple method is proposed to visualize the magnitude of groundwater withdrawals from wells relative to user-defined water-resource metrics. The map is solely an illustration of the withdrawal magnitudes, spatially centered on wells—it is not capture zones or source areas contributing recharge to wells. Common practice is to scale the size (area) of withdrawal well symbols proportional to pumping rate. Symbols are drawn large enough to be visible, but not so large that they overlap excessively. In contrast to such graphics-based symbol sizes, the proposed method uses a depth-rate index (length per time) to visualize the well withdrawal rates by volumetrically consistent areas, called "footprints". The area of each individual well's footprint is the withdrawal rate divided by the depth-rate index. For example, the groundwater recharge rate could be used as a depth-rate index to show how large withdrawals are relative to that recharge. To account for the interference of nearby wells, composite footprints are computed by iterative nearest-neighbor distribution of excess withdrawals on a computational and display grid having uniform square cells. The map shows circular footprints at individual isolated wells and merged footprint areas where wells' individual footprints overlap. Examples are presented for depth-rate indexes corresponding to recharge, to spatially variable stream baseflow (normalized by basin area), and to the average rate of water-table decline (scaled by specific yield). These depth-rate indexes are water-resource metrics, and the footprints visualize the magnitude of withdrawals relative to these metrics.
Map visualization of groundwater withdrawals at the sub-basin scale
Goode, Daniel J.
2016-01-01
A simple method is proposed to visualize the magnitude of groundwater withdrawals from wells relative to user-defined water-resource metrics. The map is solely an illustration of the withdrawal magnitudes, spatially centered on wells—it is not capture zones or source areas contributing recharge to wells. Common practice is to scale the size (area) of withdrawal well symbols proportional to pumping rate. Symbols are drawn large enough to be visible, but not so large that they overlap excessively. In contrast to such graphics-based symbol sizes, the proposed method uses a depth-rate index (length per time) to visualize the well withdrawal rates by volumetrically consistent areas, called “footprints”. The area of each individual well’s footprint is the withdrawal rate divided by the depth-rate index. For example, the groundwater recharge rate could be used as a depth-rate index to show how large withdrawals are relative to that recharge. To account for the interference of nearby wells, composite footprints are computed by iterative nearest-neighbor distribution of excess withdrawals on a computational and display grid having uniform square cells. The map shows circular footprints at individual isolated wells and merged footprint areas where wells’ individual footprints overlap. Examples are presented for depth-rate indexes corresponding to recharge, to spatially variable stream baseflow (normalized by basin area), and to the average rate of water-table decline (scaled by specific yield). These depth-rate indexes are water-resource metrics, and the footprints visualize the magnitude of withdrawals relative to these metrics.
Implications of the IRAS data for galactic gamma-ray astronomy and EGRET
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1990-01-01
Using the results of gamma-ray, millimeter wave and far infrared surveys of the galaxy, one can derive a logically consistent picture of the large scale distribution of galactic gas and cosmic rays, one tied to the overall processes of stellar birth and destruction on a galactic scale. Using the results of the IRAS far-infrared survey of the galaxy, the large scale radial distribution of galactic far-infrared emission were obtained independently for both the Northern and Southern Hemisphere sides of the Galaxy. It was found that the dominant feature in these distributions to be a broad peak coincident with the 5 kpc molecular gas cloud ring. Also found was evidence of spiral arm features. Strong correlations are evident between the large scale galactic distributions of far infrared emission, gamma-ray emission and total CO emission. There is a particularly tight correlation between the distribution of warm molecular clouds and far-infrared emission on a galactic scale.
Massively parallel sparse matrix function calculations with NTPoly
NASA Astrophysics Data System (ADS)
Dawson, William; Nakajima, Takahito
2018-04-01
We present NTPoly, a massively parallel library for computing the functions of sparse, symmetric matrices. The theory of matrix functions is a well developed framework with a wide range of applications including differential equations, graph theory, and electronic structure calculations. One particularly important application area is diagonalization free methods in quantum chemistry. When the input and output of the matrix function are sparse, methods based on polynomial expansions can be used to compute matrix functions in linear time. We present a library based on these methods that can compute a variety of matrix functions. Distributed memory parallelization is based on a communication avoiding sparse matrix multiplication algorithm. OpenMP task parallellization is utilized to implement hybrid parallelization. We describe NTPoly's interface and show how it can be integrated with programs written in many different programming languages. We demonstrate the merits of NTPoly by performing large scale calculations on the K computer.
The large scale microelectronics Computer-Aided Design and Test (CADAT) system
NASA Technical Reports Server (NTRS)
Gould, J. M.
1978-01-01
The CADAT system consists of a number of computer programs written in FORTRAN that provide the capability to simulate, lay out, analyze, and create the artwork for large scale microelectronics. The function of each software component of the system is described with references to specific documentation for each software component.
Multiscaling properties of coastal waters particle size distribution from LISST in situ measurements
NASA Astrophysics Data System (ADS)
Pannimpullath Remanan, R.; Schmitt, F. G.; Loisel, H.; Mériaux, X.
2013-12-01
An eulerian high frequency sampling of particle size distribution (PSD) is performed during 5 tidal cycles (65 hours) in a coastal environment of the eastern English Channel at 1 Hz. The particle data are recorded using a LISST-100x type C (Laser In Situ Scattering and Transmissometry, Sequoia Scientific), recording volume concentrations of particles having diameters ranging from 2.5 to 500 mu in 32 size classes in logarithmic scale. This enables the estimation at each time step (every second) of the probability density function of particle sizes. At every time step, the pdf of PSD is hyperbolic. We can thus estimate PSD slope time series. Power spectral analysis shows that the mean diameter of the suspended particles is scaling at high frequencies (from 1s to 1000s). The scaling properties of particle sizes is studied by computing the moment function, from the pdf of the size distribution. Moment functions at many different time scales (from 1s to 1000 s) are computed and their scaling properties considered. The Shannon entropy at each time scale is also estimated and is related to other parameters. The multiscaling properties of the turbidity (coefficient cp computed from the LISST) are also consider on the same time scales, using Empirical Mode Decomposition.
Dispersion in Fractures with Ramified Dissolution Patterns
NASA Astrophysics Data System (ADS)
Xu, Le; Marks, Benjy; Toussaint, Renaud; Flekkøy, Eirik G.; Måløy, Knut J.
2018-04-01
The injection of a reactive fluid into an open fracture may modify the fracture surface locally and create a ramified structure around the injection point. This structure will have a significant impact on the dispersion of the injected fluid due to increased permeability, which will introduce large velocity fluctuations into the fluid. Here, we have injected a fluorescent tracer fluid into a transparent artificial fracture with such a ramified structure. The transparency of the model makes it possible to follow the detailed dispersion of the tracer concentration. The experiments have been compared to two dimensional (2D) computer simulations which include both convective motion and molecular diffusion. A comparison was also performed between the dispersion from an initially ramified dissolution structure and the dispersion from an initially circular region. A significant difference was seen both at small and large length scales. At large length scales, the persistence of the anisotropy of the concentration distribution far from the ramified structure is discussed with reference to some theoretical considerations and comparison with simulations.
Web-based segmentation and display of three-dimensional radiologic image data.
Silverstein, J; Rubenstein, J; Millman, A; Panko, W
1998-01-01
In many clinical circumstances, viewing sequential radiological image data as three-dimensional models is proving beneficial. However, designing customized computer-generated radiological models is beyond the scope of most physicians, due to specialized hardware and software requirements. We have created a simple method for Internet users to remotely construct and locally display three-dimensional radiological models using only a standard web browser. Rapid model construction is achieved by distributing the hardware intensive steps to a remote server. Once created, the model is automatically displayed on the requesting browser and is accessible to multiple geographically distributed users. Implementation of our server software on large scale systems could be of great service to the worldwide medical community.
1001 Ways to run AutoDock Vina for virtual screening
NASA Astrophysics Data System (ADS)
Jaghoori, Mohammad Mahdi; Bleijlevens, Boris; Olabarriaga, Silvia D.
2016-03-01
Large-scale computing technologies have enabled high-throughput virtual screening involving thousands to millions of drug candidates. It is not trivial, however, for biochemical scientists to evaluate the technical alternatives and their implications for running such large experiments. Besides experience with the molecular docking tool itself, the scientist needs to learn how to run it on high-performance computing (HPC) infrastructures, and understand the impact of the choices made. Here, we review such considerations for a specific tool, AutoDock Vina, and use experimental data to illustrate the following points: (1) an additional level of parallelization increases virtual screening throughput on a multi-core machine; (2) capturing of the random seed is not enough (though necessary) for reproducibility on heterogeneous distributed computing systems; (3) the overall time spent on the screening of a ligand library can be improved by analysis of factors affecting execution time per ligand, including number of active torsions, heavy atoms and exhaustiveness. We also illustrate differences among four common HPC infrastructures: grid, Hadoop, small cluster and multi-core (virtual machine on the cloud). Our analysis shows that these platforms are suitable for screening experiments of different sizes. These considerations can guide scientists when choosing the best computing platform and set-up for their future large virtual screening experiments.
1001 Ways to run AutoDock Vina for virtual screening.
Jaghoori, Mohammad Mahdi; Bleijlevens, Boris; Olabarriaga, Silvia D
2016-03-01
Large-scale computing technologies have enabled high-throughput virtual screening involving thousands to millions of drug candidates. It is not trivial, however, for biochemical scientists to evaluate the technical alternatives and their implications for running such large experiments. Besides experience with the molecular docking tool itself, the scientist needs to learn how to run it on high-performance computing (HPC) infrastructures, and understand the impact of the choices made. Here, we review such considerations for a specific tool, AutoDock Vina, and use experimental data to illustrate the following points: (1) an additional level of parallelization increases virtual screening throughput on a multi-core machine; (2) capturing of the random seed is not enough (though necessary) for reproducibility on heterogeneous distributed computing systems; (3) the overall time spent on the screening of a ligand library can be improved by analysis of factors affecting execution time per ligand, including number of active torsions, heavy atoms and exhaustiveness. We also illustrate differences among four common HPC infrastructures: grid, Hadoop, small cluster and multi-core (virtual machine on the cloud). Our analysis shows that these platforms are suitable for screening experiments of different sizes. These considerations can guide scientists when choosing the best computing platform and set-up for their future large virtual screening experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Justin; Karra, Satish; Nakshatrala, Kalyana B.
It is well-known that the standard Galerkin formulation, which is often the formulation of choice under the finite element method for solving self-adjoint diffusion equations, does not meet maximum principles and the non-negative constraint for anisotropic diffusion equations. Recently, optimization-based methodologies that satisfy maximum principles and the non-negative constraint for steady-state and transient diffusion-type equations have been proposed. To date, these methodologies have been tested only on small-scale academic problems. The purpose of this paper is to systematically study the performance of the non-negative methodology in the context of high performance computing (HPC). PETSc and TAO libraries are, respectively, usedmore » for the parallel environment and optimization solvers. For large-scale problems, it is important for computational scientists to understand the computational performance of current algorithms available in these scientific libraries. The numerical experiments are conducted on the state-of-the-art HPC systems, and a single-core performance model is used to better characterize the efficiency of the solvers. Furthermore, our studies indicate that the proposed non-negative computational framework for diffusion-type equations exhibits excellent strong scaling for real-world large-scale problems.« less
Chang, Justin; Karra, Satish; Nakshatrala, Kalyana B.
2016-07-26
It is well-known that the standard Galerkin formulation, which is often the formulation of choice under the finite element method for solving self-adjoint diffusion equations, does not meet maximum principles and the non-negative constraint for anisotropic diffusion equations. Recently, optimization-based methodologies that satisfy maximum principles and the non-negative constraint for steady-state and transient diffusion-type equations have been proposed. To date, these methodologies have been tested only on small-scale academic problems. The purpose of this paper is to systematically study the performance of the non-negative methodology in the context of high performance computing (HPC). PETSc and TAO libraries are, respectively, usedmore » for the parallel environment and optimization solvers. For large-scale problems, it is important for computational scientists to understand the computational performance of current algorithms available in these scientific libraries. The numerical experiments are conducted on the state-of-the-art HPC systems, and a single-core performance model is used to better characterize the efficiency of the solvers. Furthermore, our studies indicate that the proposed non-negative computational framework for diffusion-type equations exhibits excellent strong scaling for real-world large-scale problems.« less
NASA Astrophysics Data System (ADS)
Ghaemi, Z.; Farnaghi, M.; Alimohammadi, A.
2015-12-01
The critical impact of air pollution on human health and environment in one hand and the complexity of pollutant concentration behavior in the other hand lead the scientists to look for advance techniques for monitoring and predicting the urban air quality. Additionally, recent developments in data measurement techniques have led to collection of various types of data about air quality. Such data is extremely voluminous and to be useful it must be processed at high velocity. Due to the complexity of big data analysis especially for dynamic applications, online forecasting of pollutant concentration trends within a reasonable processing time is still an open problem. The purpose of this paper is to present an online forecasting approach based on Support Vector Machine (SVM) to predict the air quality one day in advance. In order to overcome the computational requirements for large-scale data analysis, distributed computing based on the Hadoop platform has been employed to leverage the processing power of multiple processing units. The MapReduce programming model is adopted for massive parallel processing in this study. Based on the online algorithm and Hadoop framework, an online forecasting system is designed to predict the air pollution of Tehran for the next 24 hours. The results have been assessed on the basis of Processing Time and Efficiency. Quite accurate predictions of air pollutant indicator levels within an acceptable processing time prove that the presented approach is very suitable to tackle large scale air pollution prediction problems.
The distribution of free electrons in the inner galaxy from pulsar dispersion measures
NASA Technical Reports Server (NTRS)
Harding, D. S.; Harding, A. K.
1981-01-01
The dispersion measures of a sample of 149 pulsars in the inner Galaxy (absolute value of l 50 deg) were statistically analyzed to deduce the large-scale distribution of free thermal electrons in this region. The dispersion measure distribution of these pulsars shows significant evidence for a decrease in the electron scale height from a local value greater than the pulsar scale height to a value less than the pulsar scale height at galactocentric radii inside of approximately 7 kpc. An increase in the electron density (to a value around .15/cu cm at 4 to 5 kpc) must accompany such a decrease in scale height. There is also evidence for a large-scale warp in the electron distribution below the b + 0 deg plane inside the Solar circle. A model is proposed for the electron distribution which incorporates these features and Monte Carlo generated dispersion measure distributions are presented for parameters which best reproduce the observed pulsar distributions.
Formation of large-scale structure from cosmic strings and massive neutrinos
NASA Technical Reports Server (NTRS)
Scherrer, Robert J.; Melott, Adrian L.; Bertschinger, Edmund
1989-01-01
Numerical simulations of large-scale structure formation from cosmic strings and massive neutrinos are described. The linear power spectrum in this model resembles the cold-dark-matter power spectrum. Galaxy formation begins early, and the final distribution consists of isolated density peaks embedded in a smooth background, leading to a natural bias in the distribution of luminous matter. The distribution of clustered matter has a filamentary appearance with large voids.