Science.gov

Sample records for large-scale field trial

  1. Large-scale field trials of active immunizing agents

    PubMed Central

    Cockburn, W. Charles

    1955-01-01

    In this discussion of the methods to be used in large-scale field trials of active immunizing agents and of the results to be expected from such trials, special emphasis is laid on pertussis vaccine trials in Great Britain. After a review of the criteria for strictly controlled field studies and of the investigation of typhoid vaccines conducted in 1904-08 by the Antityphoid Committee of the British Army, the author describes the pertussis vaccine studies which have been and are now being carried by the Whooping-Cough Immunization Committee of the Medical Research Council of Great Britain. The original strictly controlled trials have been completed and the results published. Studies are now being made of vaccines prepared by different methods and evaluated both in the field and in the laboratory. Each vaccine is given to some 2000-3000 children of 4-6 months to 4 years of age. By the end of the studies 30 000-40 000 children will have been followed up for a period of two years. Since in the current studies all the children are vaccinated and none are left as unvaccinated controls, the relative and not the absolute protective value of the vaccines will be measured. PMID:13270079

  2. Not a load of rubbish: simulated field trials in large-scale containers.

    PubMed

    Hohmann, M; Stahl, A; Rudloff, J; Wittkop, B; Snowdon, R J

    2016-09-01

    Assessment of yield performance under fluctuating environmental conditions is a major aim of crop breeders. Unfortunately, results from controlled-environment evaluations of complex agronomic traits rarely translate to field performance. A major cause is that crops grown over their complete lifecycle in a greenhouse or growth chamber are generally constricted in their root growth, which influences their response to important abiotic constraints like water or nutrient availability. To overcome this poor transferability, we established a plant growth system comprising large refuse containers (120 L 'wheelie bins') that allow detailed phenotyping of small field-crop populations under semi-controlled growth conditions. Diverse winter oilseed rape cultivars were grown at field densities throughout the crop lifecycle, in different experiments over 2 years, to compare seed yields from individual containers to plot yields from multi-environment field trials. We found that we were able to predict yields in the field with high accuracy from container-grown plants. The container system proved suitable for detailed studies of stress response physiology and performance in pre-breeding populations. Investment in automated large-container systems may help breeders improve field transferability of greenhouse experiments, enabling screening of pre-breeding materials for abiotic stress response traits with a positive influence on yield. PMID:27144906

  3. Use of accelerometers as an ergonomic assessment method for arm acceleration-a large-scale field trial.

    PubMed

    Estill, C F; MacDonald, L A; Wenzl, T B; Petersen, M R

    2000-09-01

    Ergonomists need easy-to-use, quantitative job evaluation methods to assess risk factors for upper extremity work-related musculoskeletal disorders in field-based epidemiology studies. One device that may provide an objective measure of exposure to arm acceleration is a wrist-worn accelerometer or activity monitor. A field trial was conducted to evaluate the performance of a single-axis accelerometer using an industrial population (n=158) known to have diverse upper limb motion characteristics. The second phase of the field trial involved an examination of the relationship between more traditional observation-based ergonomic exposure measures and the monitor output among a group of assembly-line production employees (n=48) performing work tasks with highly stereotypic upper limb motion patterns. As expected, the linear acceleration data obtained from the activity monitor showed statistically significant differences between three occupational groups known observationally to have different upper limb motion requirements. Among the assembly-line production employees who performed different short-cycle assembly work tasks, statistically significant differences were also observed. Several observation-based ergonomic exposure measures were found to explain differences in the acceleration measure among the production employees who performed different jobs: hand and arm motion speed, use of the hand as a hammer, and, negatively, resisting forearm rotation from the torque of a power tool. The activity monitors were found to be easy to use and non-intrusive, and to be able to distinguish arm acceleration among groups with diverse upper limb motion characteristics as well as between different assembly job tasks where arm monitors were performed repeatedly at a fixed rate.

  4. A large-scale field trial of malathion as an insecticide for antimalarial work in southern Uganda

    PubMed Central

    Najera, J. A.; Shidrawi, G. R.; Gibson, F. D.; Stafford, J. S.

    1967-01-01

    Malathion shows promise as a substitute for chlorinated-hydrocarbon insecticides in the control of malaria whenever the latter are unsuitable because of Anopheles resistance or other reasons. A field trial of malathion was carried out in 1963-64, covering an area of about 500 km2 with a population of about 26 000, in Masaka District, southern Uganda. All houses and animal shelters were sprayed with malathion at 2 g/m2 at roughly 4-month intervals. The average combined densities of the females of the two main malaria vectors, Anopheles funestus and An. gambiae, fell from an average of 66 per shelter per day in a pre-trial survey in 1960-61 to 0.0011 at the end of 1964 in the sprayed area; no significant changes were noted in unsprayed comparison areas. The transmission of the infection in humans was apparently interrupted when allowance was made for imported cases. The presence of unsprayed surfaces in houses which had recently been built or altered interfered somewhat with complete coverage. Case detection was reliable and achieved excellent coverage. No toxic effects of malathion in humans were noted, while the effect on mosquitos was considerable even in the absence of direct contact. This effect of malathion lasted for a considerably shorter period of time in houses roofed with corrugated iron than with thatch; this should be borne in mind in the design of spraying programmes. PMID:5299860

  5. Considerations for Managing Large-Scale Clinical Trials.

    ERIC Educational Resources Information Center

    Tuttle, Waneta C.; And Others

    1989-01-01

    Research management strategies used effectively in a large-scale clinical trial to determine the health effects of exposure to Agent Orange in Vietnam are discussed, including pre-project planning, organization according to strategy, attention to scheduling, a team approach, emphasis on guest relations, cross-training of personnel, and preparing…

  6. Magnetic Helicity and Large Scale Magnetic Fields: A Primer

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.

    2015-05-01

    Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. Here I discuss how magnetic helicity has come to help us understand the saturation of and sustenance of large scale dynamos, the need for either local or global helicity fluxes to avoid dynamo quenching, and the associated observational consequences. I also discuss how magnetic helicity acts as a hindrance to turbulent diffusion of large scale fields, and thus a helper for fossil remnant large scale field origin models in some contexts. I briefly discuss the connection between large scale fields and accretion disk theory as well. The goal here is to provide a conceptual primer to help the reader efficiently penetrate the literature.

  7. Large scale meteorological influence during the Geysers 1979 field experiment

    SciTech Connect

    Barr, S.

    1980-01-01

    A series of meteorological field measurements conducted during July 1979 near Cobb Mountain in Northern California reveals evidence of several scales of atmospheric circulation consistent with the climatic pattern of the area. The scales of influence are reflected in the structure of wind and temperature in vertically stratified layers at a given observation site. Large scale synoptic gradient flow dominates the wind field above about twice the height of the topographic ridge. Below that there is a mixture of effects with evidence of a diurnal sea breeze influence and a sublayer of katabatic winds. The July observations demonstrate that weak migratory circulations in the large scale synoptic meteorological pattern have a significant influence on the day-to-day gradient winds and must be accounted for in planning meteorological programs including tracer experiments.

  8. Relic vector field and CMB large scale anomalies

    SciTech Connect

    Chen, Xingang; Wang, Yi E-mail: yw366@cam.ac.uk

    2014-10-01

    We study the most general effects of relic vector fields on the inflationary background and density perturbations. Such effects are observable if the number of inflationary e-folds is close to the minimum requirement to solve the horizon problem. We show that this can potentially explain two CMB large scale anomalies: the quadrupole-octopole alignment and the quadrupole power suppression. We discuss its effect on the parity anomaly. We also provide analytical template for more detailed data comparison.

  9. THE LARGE-SCALE MAGNETIC FIELDS OF THIN ACCRETION DISKS

    SciTech Connect

    Cao Xinwu; Spruit, Hendrik C. E-mail: henk@mpa-garching.mpg.de

    2013-03-10

    Large-scale magnetic field threading an accretion disk is a key ingredient in the jet formation model. The most attractive scenario for the origin of such a large-scale field is the advection of the field by the gas in the accretion disk from the interstellar medium or a companion star. However, it is realized that outward diffusion of the accreted field is fast compared with the inward accretion velocity in a geometrically thin accretion disk if the value of the Prandtl number P{sub m} is around unity. In this work, we revisit this problem considering the angular momentum of the disk to be removed predominantly by the magnetically driven outflows. The radial velocity of the disk is significantly increased due to the presence of the outflows. Using a simplified model for the vertical disk structure, we find that even moderately weak fields can cause sufficient angular momentum loss via a magnetic wind to balance outward diffusion. There are two equilibrium points, one at low field strengths corresponding to a plasma-beta at the midplane of order several hundred, and one for strong accreted fields, {beta} {approx} 1. We surmise that the first is relevant for the accretion of weak, possibly external, fields through the outer parts of the disk, while the latter one could explain the tendency, observed in full three-dimensional numerical simulations, of strong flux bundles at the centers of disk to stay confined in spite of strong magnetororational instability turbulence surrounding them.

  10. Scalable parallel distance field construction for large-scale applications

    SciTech Connect

    Yu, Hongfeng; Xie, Jinrong; Ma, Kwan -Liu; Kolla, Hemanth; Chen, Jacqueline H.

    2015-10-01

    Computing distance fields is fundamental to many scientific and engineering applications. Distance fields can be used to direct analysis and reduce data. In this paper, we present a highly scalable method for computing 3D distance fields on massively parallel distributed-memory machines. Anew distributed spatial data structure, named parallel distance tree, is introduced to manage the level sets of data and facilitate surface tracking overtime, resulting in significantly reduced computation and communication costs for calculating the distance to the surface of interest from any spatial locations. Our method supports several data types and distance metrics from real-world applications. We demonstrate its efficiency and scalability on state-of-the-art supercomputers using both large-scale volume datasets and surface models. We also demonstrate in-situ distance field computation on dynamic turbulent flame surfaces for a petascale combustion simulation. In conclusion, our work greatly extends the usability of distance fields for demanding applications.

  11. Scalable Parallel Distance Field Construction for Large-Scale Applications.

    PubMed

    Yu, Hongfeng; Xie, Jinrong; Ma, Kwan-Liu; Kolla, Hemanth; Chen, Jacqueline H

    2015-10-01

    Computing distance fields is fundamental to many scientific and engineering applications. Distance fields can be used to direct analysis and reduce data. In this paper, we present a highly scalable method for computing 3D distance fields on massively parallel distributed-memory machines. A new distributed spatial data structure, named parallel distance tree, is introduced to manage the level sets of data and facilitate surface tracking over time, resulting in significantly reduced computation and communication costs for calculating the distance to the surface of interest from any spatial locations. Our method supports several data types and distance metrics from real-world applications. We demonstrate its efficiency and scalability on state-of-the-art supercomputers using both large-scale volume datasets and surface models. We also demonstrate in-situ distance field computation on dynamic turbulent flame surfaces for a petascale combustion simulation. Our work greatly extends the usability of distance fields for demanding applications. PMID:26357251

  12. Scalable Parallel Distance Field Construction for Large-Scale Applications.

    PubMed

    Yu, Hongfeng; Xie, Jinrong; Ma, Kwan-Liu; Kolla, Hemanth; Chen, Jacqueline H

    2015-10-01

    Computing distance fields is fundamental to many scientific and engineering applications. Distance fields can be used to direct analysis and reduce data. In this paper, we present a highly scalable method for computing 3D distance fields on massively parallel distributed-memory machines. A new distributed spatial data structure, named parallel distance tree, is introduced to manage the level sets of data and facilitate surface tracking over time, resulting in significantly reduced computation and communication costs for calculating the distance to the surface of interest from any spatial locations. Our method supports several data types and distance metrics from real-world applications. We demonstrate its efficiency and scalability on state-of-the-art supercomputers using both large-scale volume datasets and surface models. We also demonstrate in-situ distance field computation on dynamic turbulent flame surfaces for a petascale combustion simulation. Our work greatly extends the usability of distance fields for demanding applications.

  13. Strong CP Violation in Large Scale Magnetic Fields

    SciTech Connect

    Faccioli, P.; Millo, R.

    2007-11-19

    We explore the possibility of improving on the present experimental bounds on Strong CP violation, by studying processes in which the smallness of {theta} is compensated by the presence of some other very large scale. In particular, we study the response of the {theta} vacuum to large-scale magnetic fields, whose correlation lengths can be as large as the size of galaxy clusters. We find that, if strong interactions break CP, an external magnetic field would induce an electric vacuum polarization along the same direction. As a consequence, u,d-bar and d,u-bar quarks would accumulate in the opposite regions of the space, giving raise to an electric dipole moment. We estimate the magnitude of this effect both at T = 0 and for 0field is very intense.

  14. Large-scale magnetic fields in magnetohydrodynamic turbulence.

    PubMed

    Alexakis, Alexandros

    2013-02-22

    High Reynolds number magnetohydrodynamic turbulence in the presence of zero-flux large-scale magnetic fields is investigated as a function of the magnetic field strength. For a variety of flow configurations, the energy dissipation rate [symbol: see text] follows the scaling [Symbol: see text] proportional U(rms)(3)/ℓ even when the large-scale magnetic field energy is twenty times larger than the kinetic energy. A further increase of the magnetic energy showed a transition to the [Symbol: see text] proportional U(rms)(2) B(rms)/ℓ scaling implying that magnetic shear becomes more efficient at this point at cascading the energy than the velocity fluctuations. Strongly helical configurations form nonturbulent helicity condensates that deviate from these scalings. Weak turbulence scaling was absent from the investigation. Finally, the magnetic energy spectra support the Kolmogorov spectrum k(-5/3) while kinetic energy spectra are closer to the Iroshnikov-Kraichnan spectrum k(-3/2) as observed in the solar wind.

  15. Large scale reconstruction of the solar coronal magnetic field

    NASA Astrophysics Data System (ADS)

    Amari, T.; Aly, J.-J.; Chopin, P.; Canou, A.; Mikic, Z.

    2014-10-01

    It is now becoming necessary to access the global magnetic structure of the solar low corona at a large scale in order to understand its physics and more particularly the conditions of energization of the magnetic fields and the multiple connections between distant active regions (ARs) which may trigger eruptive events in an almost coordinated way. Various vector magnetographs, either on board spacecraft or ground-based, currently allow to obtain vector synoptic maps, composite magnetograms made of multiple interactive ARs, and full disk magnetograms. We present a method recently developed for reconstructing the global solar coronal magnetic field as a nonlinear force-free magnetic field in spherical geometry, generalizing our previous results in Cartesian geometry. This method is implemented in the new code XTRAPOLS, which thus appears as an extension of our active region scale code XTRAPOL. We apply our method by performing a reconstruction at a specific time for which we dispose of a set of composite data constituted of a vector magnetogram provided by SDO/HMI, embedded in a larger full disk vector magnetogram provided by the same instrument, finally embedded in a synoptic map provided by SOLIS. It turns out to be possible to access the large scale structure of the corona and its energetic contents, and also the AR scale, at which we recover the presence of a twisted flux rope in equilibrium.

  16. Penetration of Large Scale Electric Field to Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Chen, S. H.; Fok, M. C. H.; Sibeck, D. G.; Wygant, J. R.; Spence, H. E.; Larsen, B.; Reeves, G. D.; Funsten, H. O.

    2015-12-01

    The direct penetration of large scale global electric field to the inner magnetosphere is a critical element in controlling how the background thermal plasma populates within the radiation belts. These plasma populations provide the source of particles and free energy needed for the generation and growth of various plasma waves that, at critical points of resonances in time and phase space, can scatter or energize radiation belt particles to regulate the flux level of the relativistic electrons in the system. At high geomagnetic activity levels, the distribution of large scale electric fields serves as an important indicator of how prevalence of strong wave-particle interactions extend over local times and radial distances. To understand the complex relationship between the global electric fields and thermal plasmas, particularly due to the ionospheric dynamo and the magnetospheric convection effects, and their relations to the geomagnetic activities, we analyze the electric field and cold plasma measurements from Van Allen Probes over more than two years period and simulate a geomagnetic storm event using Coupled Inner Magnetosphere-Ionosphere Model (CIMI). Our statistical analysis of the measurements from Van Allan Probes and CIMI simulations of the March 17, 2013 storm event indicate that: (1) Global dawn-dusk electric field can penetrate the inner magnetosphere inside the inner belt below L~2. (2) Stronger convections occurred in the dusk and midnight sectors than those in the noon and dawn sectors. (3) Strong convections at multiple locations exist at all activity levels but more complex at higher activity levels. (4) At the high activity levels, strongest convections occur in the midnight sectors at larger distances from the Earth and in the dusk sector at closer distances. (5) Two plasma populations of distinct ion temperature isotropies divided at L-Shell ~2, indicating distinct heating mechanisms between inner and outer radiation belts. (6) CIMI

  17. The effective field theory of cosmological large scale structures

    SciTech Connect

    Carrasco, John Joseph M.; Hertzberg, Mark P.; Senatore, Leonardo

    2012-09-20

    Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c2s ≈ 10–6c2 and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations δ(k) for all the observables. As an example, we calculate the correction to the power spectrum at order δ(k)4. As a result, the predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ≃ 0.24h Mpc–1.

  18. Large-scale electric fields in the earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1977-01-01

    Studies of the earth's magnetosphere have indicated that a large-scale electric field E plays a central role in its electrodynamics and in the flow and acceleration of charged particles there; while many observations relevant to E have accumulated, quite a few basic problems involving the origin and structure of this field remain unsolved. The ultimate source of E is presumably the flow of the solar wind past the earth, but the mechanism by which E arises is still unclear, and several independent sources may contribute to it, some of them being of a rather transient nature. This review attempts to sum up the main observed facts and theoretical concepts related to E.

  19. A large-scale field trial of thin-layer capping of PCDD/F-contaminated sediments: Sediment-to-water fluxes up to 5 years post-amendment.

    PubMed

    Cornelissen, Gerard; Schaanning, Morten; Gunnarsson, Jonas S; Eek, Espen

    2016-04-01

    The longer-term effect (3-5 y) of thin-layer capping on in situ sediment-to-surface water fluxes was monitored in a large-scale field experiment in the polychlorinated dibenzodioxin and dibenzofuran (PCDD/F) contaminated Grenlandfjords, Norway (4 trial plots of 10,000 to 40,000 m(2) at 30 to 100 m water depth). Active caps (designed thickness 2.5 cm) were established in 2 fjords, consisting of dredged clean clay amended with powdered activated carbon (PAC) from anthracite. These active caps were compared to 2 nonactive caps in one of the fjords (designed thickness 5 cm) consisting of either clay only (i.e., without PAC) or crushed limestone. Sediment-to-water PCDD/F fluxes were measured in situ using diffusion chambers. An earlier study showed that during the first 2 years after thin-layer capping, flux reductions relative to noncapped reference fields were more extensive at the fields capped with nonactive caps (70%-90%) than at the ones with PAC-containing caps (50%-60%). However, the present work shows that between 3 and 5 years after thin-layer capping, this trend was reversed and cap effectiveness in reducing fluxes was increasing to 80% to 90% for the PAC caps, whereas cap effectiveness of the nonactive caps decreased to 20% to 60%. The increasing effectiveness over time of PAC-containing "active" caps is explained by a combination of slow sediment-to-PAC mass transfer of PCDD/Fs and bioturbation by benthic organisms. The decreasing effectiveness of "nonactive" limestone and clay caps is explained by deposition of contaminated particles on top of the caps. The present field data indicate that the capping efficiency of thin active caps (i.e., enriched with PAC) can improve over time as a result of slow diffusive PCDD/F transfer from sediment to PAC particles and better mixing of the PAC by bioturbation. PMID:26012529

  20. Large-scale magnetic fields, dark energy, and QCD

    SciTech Connect

    Urban, Federico R.; Zhitnitsky, Ariel R.

    2010-08-15

    Cosmological magnetic fields are being observed with ever increasing correlation lengths, possibly reaching the size of superclusters, therefore disfavoring the conventional picture of generation through primordial seeds later amplified by galaxy-bound dynamo mechanisms. In this paper we put forward a fundamentally different approach that links such large-scale magnetic fields to the cosmological vacuum energy. In our scenario the dark energy is due to the Veneziano ghost (which solves the U(1){sub A} problem in QCD). The Veneziano ghost couples through the triangle anomaly to the electromagnetic field with a constant which is unambiguously fixed in the standard model. While this interaction does not produce any physical effects in Minkowski space, it triggers the generation of a magnetic field in an expanding universe at every epoch. The induced energy of the magnetic field is thus proportional to cosmological vacuum energy: {rho}{sub EM{approx_equal}}B{sup 2{approx_equal}}(({alpha}/4{pi})){sup 2{rho}}{sub DE}, {rho}{sub DE} hence acting as a source for the magnetic energy {rho}{sub EM}. The corresponding numerical estimate leads to a magnitude in the nG range. There are two unique and distinctive predictions of our proposal: an uninterrupted active generation of Hubble size correlated magnetic fields throughout the evolution of the Universe; the presence of parity violation on the enormous scales 1/H, which apparently has been already observed in CMB. These predictions are entirely rooted into the standard model of particle physics.

  1. Scalable parallel distance field construction for large-scale applications

    DOE PAGESBeta

    Yu, Hongfeng; Xie, Jinrong; Ma, Kwan -Liu; Kolla, Hemanth; Chen, Jacqueline H.

    2015-10-01

    Computing distance fields is fundamental to many scientific and engineering applications. Distance fields can be used to direct analysis and reduce data. In this paper, we present a highly scalable method for computing 3D distance fields on massively parallel distributed-memory machines. Anew distributed spatial data structure, named parallel distance tree, is introduced to manage the level sets of data and facilitate surface tracking overtime, resulting in significantly reduced computation and communication costs for calculating the distance to the surface of interest from any spatial locations. Our method supports several data types and distance metrics from real-world applications. We demonstrate itsmore » efficiency and scalability on state-of-the-art supercomputers using both large-scale volume datasets and surface models. We also demonstrate in-situ distance field computation on dynamic turbulent flame surfaces for a petascale combustion simulation. In conclusion, our work greatly extends the usability of distance fields for demanding applications.« less

  2. Numerically modelling the large scale coronal magnetic field

    NASA Astrophysics Data System (ADS)

    Panja, Mayukh; Nandi, Dibyendu

    2016-07-01

    The solar corona spews out vast amounts of magnetized plasma into the heliosphere which has a direct impact on the Earth's magnetosphere. Thus it is important that we develop an understanding of the dynamics of the solar corona. With our present technology it has not been possible to generate 3D magnetic maps of the solar corona; this warrants the use of numerical simulations to study the coronal magnetic field. A very popular method of doing this, is to extrapolate the photospheric magnetic field using NLFF or PFSS codes. However the extrapolations at different time intervals are completely independent of each other and do not capture the temporal evolution of magnetic fields. On the other hand full MHD simulations of the global coronal field, apart from being computationally very expensive would be physically less transparent, owing to the large number of free parameters that are typically used in such codes. This brings us to the Magneto-frictional model which is relatively simpler and computationally more economic. We have developed a Magnetofrictional Model, in 3D spherical polar co-ordinates to study the large scale global coronal field. Here we present studies of changing connectivities between active regions, in response to photospheric motions.

  3. Field-aligned currents and large scale magnetospheric electric fields

    NASA Technical Reports Server (NTRS)

    Dangelo, N.

    1980-01-01

    D'Angelo's model of polar cap electric fields (1977) was used to visualize how high-latitude field-aligned currents are driven by the solar wind generator. The region 1 and region 2 currents of Iijima and Potemra (1976) and the cusp field-aligned currents of Wilhjelm et al. (1978) and McDiarmid et al. (1978) are apparently driven by different generators, although in both cases the solar wind is their ultimate source.

  4. The CRASH trial: the first large-scale, randomised, controlled trial in head injury

    PubMed Central

    Roberts, Ian

    2001-01-01

    The global epidemic of head injuries is just beginning. Many are caused by road traffic crashes. It is estimated that, by 2020, road traffic crashes will have moved from its present position of ninth to third in the world disease burden ranking, as measured in disability adjusted life years. In developing countries, it will have moved to second. The Corticosteroid Randomisation After Significant Head Injury (CRASH) trial is a large-scale, randomised, controlled trial, among adults with head injury and impaired consciousness, of the effects of a short-term infusion of corticosteroids on death and on neurological disability. Following a successful pilot phase, which included over 1000 randomised participants, the main phase of the trial is now underway. Over the next 5 years, the trial aims to recruit a total of 20,000 patients. Such large numbers will only be possible if hundreds of doctors and nurses can collaborate in emergency departments all over the world. The trial is currently recruiting, and new collaborators are welcome to join the trial (see ). PMID:11737908

  5. Bias in the effective field theory of large scale structures

    SciTech Connect

    Senatore, Leonardo

    2015-11-01

    We study how to describe collapsed objects, such as galaxies, in the context of the Effective Field Theory of Large Scale Structures. The overdensity of galaxies at a given location and time is determined by the initial tidal tensor, velocity gradients and spatial derivatives of the regions of dark matter that, during the evolution of the universe, ended up at that given location. Similarly to what was recently done for dark matter, we show how this Lagrangian space description can be recovered by upgrading simpler Eulerian calculations. We describe the Eulerian theory. We show that it is perturbatively local in space, but non-local in time, and we explain the observational consequences of this fact. We give an argument for why to a certain degree of accuracy the theory can be considered as quasi time-local and explain what the operator structure is in this case. We describe renormalization of the bias coefficients so that, after this and after upgrading the Eulerian calculation to a Lagrangian one, the perturbative series for galaxies correlation functions results in a manifestly convergent expansion in powers of k/k{sub NL} and k/k{sub M}, where k is the wavenumber of interest, k{sub NL} is the wavenumber associated to the non-linear scale, and k{sub M} is the comoving wavenumber enclosing the mass of a galaxy.

  6. Bias in the effective field theory of large scale structures

    SciTech Connect

    Senatore, Leonardo

    2015-11-05

    We study how to describe collapsed objects, such as galaxies, in the context of the Effective Field Theory of Large Scale Structures. The overdensity of galaxies at a given location and time is determined by the initial tidal tensor, velocity gradients and spatial derivatives of the regions of dark matter that, during the evolution of the universe, ended up at that given location. Similarly to what was recently done for dark matter, we show how this Lagrangian space description can be recovered by upgrading simpler Eulerian calculations. We describe the Eulerian theory. We show that it is perturbatively local in space, but non-local in time, and we explain the observational consequences of this fact. We give an argument for why to a certain degree of accuracy the theory can be considered as quasi time-local and explain what the operator structure is in this case. Furthermore, we describe renormalization of the bias coefficients so that, after this and after upgrading the Eulerian calculation to a Lagrangian one, the perturbative series for galaxies correlation functions results in a manifestly convergent expansion in powers of k/kNL and k/kM, where k is the wavenumber of interest, kNL is the wavenumber associated to the non-linear scale, and kM is the comoving wavenumber enclosing the mass of a galaxy.

  7. Bias in the effective field theory of large scale structures

    DOE PAGESBeta

    Senatore, Leonardo

    2015-11-05

    We study how to describe collapsed objects, such as galaxies, in the context of the Effective Field Theory of Large Scale Structures. The overdensity of galaxies at a given location and time is determined by the initial tidal tensor, velocity gradients and spatial derivatives of the regions of dark matter that, during the evolution of the universe, ended up at that given location. Similarly to what was recently done for dark matter, we show how this Lagrangian space description can be recovered by upgrading simpler Eulerian calculations. We describe the Eulerian theory. We show that it is perturbatively local inmore » space, but non-local in time, and we explain the observational consequences of this fact. We give an argument for why to a certain degree of accuracy the theory can be considered as quasi time-local and explain what the operator structure is in this case. Furthermore, we describe renormalization of the bias coefficients so that, after this and after upgrading the Eulerian calculation to a Lagrangian one, the perturbative series for galaxies correlation functions results in a manifestly convergent expansion in powers of k/kNL and k/kM, where k is the wavenumber of interest, kNL is the wavenumber associated to the non-linear scale, and kM is the comoving wavenumber enclosing the mass of a galaxy.« less

  8. Large-scale electric fields in post-flare loops

    NASA Technical Reports Server (NTRS)

    Hinata, Satoshi

    1987-01-01

    As the electrical conductivity along the magnetic field in the solar atmosphere is large, parallel electric fields have been neglected in most investigations. The importance of such fields is demonstrated for post-flare loops, and a model for them is introduced which takes into account the effect of parallel electric fields. The electric field calculated from the model is consistent with the electric field observed by Foukal et al. (1983).

  9. Large-scale properties of the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.

    1972-01-01

    Early theoretical work of Parker is presented along with the observational evidence supporting his Archimedes spiral model. Variations present in the interplanetary magnetic field from the spiral angle are related to structures in the solar wind. The causes of these structures are found to be either nonuniform radial solar wind flow or the time evolution of the photospheric field. Coronal magnetic models are related to the connection between the solar magnetic field and the interplanetary magnetic field. Direct extension of the solar field-magnetic nozzle controversy is discussed along with the coronal magnetic models. Effects of active regions on the interplanetary magnetic field is discussed with particular reference to the evolution of interplanetary sectors. Interplanetary magnetic field magnitude variations are shown throughout the solar cycle. The percentage of time the field magnitude is greater than 10 gamma is shown to closely parallel sunspot number. The sun's polar field influence on the interplanetary field and alternative views of the magnetic field structure out of the ecliptic plane are presented. In addition, a variety of significantly different interplanetary field structures are discussed.

  10. CONSTRAINING PRIMORDIAL MAGNETIC FIELDS THROUGH LARGE-SCALE STRUCTURE

    SciTech Connect

    Kahniashvili, Tina; Natarajan, Aravind; Battaglia, Nicholas; Maravin, Yurii; Tevzadze, Alexander G.

    2013-06-10

    We study primordial magnetic field effects on the matter perturbations in the universe. We assume magnetic field generation prior to the big bang nucleosynthesis (BBN), i.e., during the radiation-dominated epoch of the universe expansion, but do not limit analysis by considering a particular magnetogenesis scenario. Contrary to previous studies, we limit the total magnetic field energy density and not the smoothed amplitude of the magnetic field at large (of the order of 1 Mpc) scales. We review several cosmological signatures, such as halo abundance, thermal Sunyaev-Zel'dovich effect, and Ly{alpha} data. For a cross-check, we compare our limits with that obtained through the cosmic microwave background faraday rotation effect and BBN. The limits range between 1.5 nG and 4.5 nG for n{sub B} in (- 3; -1.5).

  11. Imprints of massive primordial fields on large-scale structure

    NASA Astrophysics Data System (ADS)

    Dimastrogiovanni, Emanuela; Fasiello, Matteo; Kamionkowski, Marc

    2016-02-01

    Attention has focussed recently on models of inflation that involve a second or more fields with a mass near the inflationary Hubble parameter H, as may occur in supersymmetric theories if the supersymmetry-breaking scale is not far from H. Quasi-single-field (QsF) inflation is a relatively simple family of phenomenological models that serve as a proxy for theories with additional fields with masses m~ H. Since QsF inflation involves fields in addition to the inflaton, the consistency conditions between correlations that arise in single-clock inflation are not necessarily satisfied. As a result, correlation functions in the squeezed limit may be larger than in single-field inflation. Scalar non-Gaussianities mediated by the massive isocurvature field in QsF have been shown to be potentially observable. These are especially interesting since they would convey information about the mass of the isocurvature field. Here we consider non-Gaussian correlators involving tensor modes and their observational signatures. A physical correlation between a (long-wavelength) tensor mode and two scalar modes (tss), for instance, may give rise to local departures from statistical isotropy or, in other words, a non-trivial four-point function. The presence of the tensor mode may moreover be inferred geometrically from the shape dependence of the four-point function. We compute tss and stt (one soft curvature mode and two hard tensors) bispectra in QsF inflation, identifying the conditions necessary for these to "violate" the consistency relations. We find that while consistency conditions are violated by stt correlations, they are preserved by the tss in the minimal QsF model. Our study of primordial correlators which include gravitons in seeking imprints of additional fields with masses m~ H during inflation can be seen as complementary to the recent ``cosmological collider physics'' proposal.

  12. Large Scale High-Latitude Ionospheric Electrodynamic Fields and Currents

    NASA Astrophysics Data System (ADS)

    Lu, Gang

    2016-07-01

    This paper provides an overview as well as the application of the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) procedure. AMIE synthesizes observations from various ground-based and space-born instruments to derive global patterns of ionospheric conductance, electric fields, ionospheric equivalent current, horizontal currents, field-aligned currents, and other related electrodynamic fields simultaneously. Examples are presented to illustrate the effects of the different data inputs on the AMIE outputs. The AMIE patterns derived from ground magnetometer data are generally similar to those derived from satellite magnetometer data. But ground magnetometer data yield a cross-polar potential drop that is about 15-45 % smaller than that derived from satellite magnetometer data. Ground magnetometers also grossly underestimate the magnetic perturbations in space when compared with the in situ satellite magnetometer data. However, when satellite magnetometer data are employed, AMIE is able to replicate the observed magnetic perturbations along the satellite tracks with a mean root-mean-square (RMS) error of 17-21 %. In addition to derive snapshots of ionospheric electrodynamic fields, the utility of AMIE can be easily expanded to obtain the average distributions of these fields along with their associated variability. Such information should be valuable to the analysis and interpretation of the Swarm observations.

  13. Single-field consistency relations of large scale structure

    SciTech Connect

    Creminelli, Paolo; Noreña, Jorge; Simonović, Marko; Vernizzi, Filippo E-mail: jorge.norena@icc.ub.edu E-mail: filippo.vernizzi@cea.fr

    2013-12-01

    We derive consistency relations for the late universe (CDM and ΛCDM): relations between an n-point function of the density contrast δ and an (n+1)-point function in the limit in which one of the (n+1) momenta becomes much smaller than the others. These are based on the observation that a long mode, in single-field models of inflation, reduces to a diffeomorphism since its freezing during inflation all the way until the late universe, even when the long mode is inside the horizon (but out of the sound horizon). These results are derived in Newtonian gauge, at first and second order in the small momentum q of the long mode and they are valid non-perturbatively in the short-scale δ. In the non-relativistic limit our results match with [1]. These relations are a consequence of diffeomorphism invariance; they are not satisfied in the presence of extra degrees of freedom during inflation or violation of the Equivalence Principle (extra forces) in the late universe.

  14. Field-aligned currents and large-scale magnetospheric electric fields

    NASA Technical Reports Server (NTRS)

    Dangelo, N.

    1979-01-01

    The existence of field-aligned currents (FAC) at northern and southern high latitudes was confirmed by a number of observations, most clearly by experiments on the TRIAD and ISIS 2 satellites. The high-latitude FAC system is used to relate what is presently known about the large-scale pattern of high-latitude ionospheric electric fields and their relation to solar wind parameters. Recently a simplified model was presented for polar cap electric fields. The model is of considerable help in visualizing the large-scale features of FAC systems. A summary of the FAC observations is given. The simplified model is used to visualize how the FAC systems are driven by their generators.

  15. Generation of Large-Scale Magnetic Fields by Small-Scale Dynamo in Shear Flows.

    PubMed

    Squire, J; Bhattacharjee, A

    2015-10-23

    We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic nature of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects. PMID:26551120

  16. Generation of large-scale magnetic fields by small-scale dynamo in shear flows

    SciTech Connect

    Squire, J.; Bhattacharjee, A.

    2015-10-20

    We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Furthermore, given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic nature of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects.

  17. Generation of large-scale magnetic fields by small-scale dynamo in shear flows

    DOE PAGESBeta

    Squire, J.; Bhattacharjee, A.

    2015-10-20

    We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Furthermore, given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic naturemore » of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects.« less

  18. Large scale photospheric magnetic field: The diffusion of active region fields

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.; Leighton, R. B.; Howard, R.; Wilcox, J. M.

    1972-01-01

    The large-scale phototospheric magnetic field was computed by allowing observed active region fields to diffuse and to be sheared by differential rotation in accordance with the Leighton (1969) magneto-kinematic model of the solar cycle. The differential rotation of the computed field patterns as determined by autocorrelation curves is similar to that of the observed photospheric field, and poleward of 20 deg. latitude both are significantly different from the differential rotation of the long-lived sunspots (Newton and Nunn, 1951) used as an input into the computations.

  19. Nonlinear Generation of shear flows and large scale magnetic fields by small scale

    NASA Astrophysics Data System (ADS)

    Aburjania, G.

    2009-04-01

    EGU2009-233 Nonlinear Generation of shear flows and large scale magnetic fields by small scale turbulence in the ionosphere by G. Aburjania Contact: George Aburjania, g.aburjania@gmail.com,aburj@mymail.ge

  20. Large-scale negative polarity magnetic fields on the sun and particle-emitting flares

    NASA Technical Reports Server (NTRS)

    Bumba, V.

    1972-01-01

    Some observational facts about the large-scale patterns formed by solar negative polarity magnetic fields during the 19th and 20th cycles of solar activity are presented. The close relation of the position of occurrence of very large flares accompanied by cosmic ray and PCA events as well as other phenomena of solar activity during the declining part of the 19th cycle of the regularities in the internal structure of large scale negative polarity features are demonstrated.

  1. An Empirical Relation between the Large-scale Magnetic Field and the Dynamical Mass in Galaxies

    NASA Astrophysics Data System (ADS)

    Tabatabaei, F. S.; Martinsson, T. P. K.; Knapen, J. H.; Beckman, J. E.; Koribalski, B.; Elmegreen, B. G.

    2016-02-01

    The origin and evolution of cosmic magnetic fields as well as the influence of the magnetic fields on the evolution of galaxies are unknown. Though not without challenges, the dynamo theory can explain the large-scale coherent magnetic fields that govern galaxies, but observational evidence for the theory is so far very scarce. Putting together the available data of non-interacting, non-cluster galaxies with known large-scale magnetic fields, we find a tight correlation between the integrated polarized flux density, SPI, and the rotation speed, vrot, of galaxies. This leads to an almost linear correlation between the large-scale magnetic field \\bar{B} and vrot, assuming that the number of cosmic-ray electrons is proportional to the star formation rate, and a super-linear correlation assuming equipartition between magnetic fields and cosmic rays. This correlation cannot be attributed to an active linear α-Ω dynamo, as no correlation holds with global shear or angular speed. It indicates instead a coupling between the large-scale magnetic field and the dynamical mass of the galaxies, \\bar{B}˜ \\{M}{{dyn}}0.25-0.4. Hence, faster rotating and/or more massive galaxies have stronger large-scale magnetic fields. The observed \\bar{B}-{v}{{rot}} correlation shows that the anisotropic turbulent magnetic field dominates \\bar{B} in fast rotating galaxies as the turbulent magnetic field, coupled with gas, is enhanced and ordered due to the strong gas compression and/or local shear in these systems. This study supports a stationary condition for the large-scale magnetic field as long as the dynamical mass of galaxies is constant.

  2. Large-scale modeling of rain fields from a rain cell deterministic model

    NASA Astrophysics Data System (ADS)

    FéRal, Laurent; Sauvageot, Henri; Castanet, Laurent; Lemorton, JoëL.; Cornet, FréDéRic; Leconte, Katia

    2006-04-01

    A methodology to simulate two-dimensional rain rate fields at large scale (1000 × 1000 km2, the scale of a satellite telecommunication beam or a terrestrial fixed broadband wireless access network) is proposed. It relies on a rain rate field cellular decomposition. At small scale (˜20 × 20 km2), the rain field is split up into its macroscopic components, the rain cells, described by the Hybrid Cell (HYCELL) cellular model. At midscale (˜150 × 150 km2), the rain field results from the conglomeration of rain cells modeled by HYCELL. To account for the rain cell spatial distribution at midscale, the latter is modeled by a doubly aggregative isotropic random walk, the optimal parameterization of which is derived from radar observations at midscale. The extension of the simulation area from the midscale to the large scale (1000 × 1000 km2) requires the modeling of the weather frontal area. The latter is first modeled by a Gaussian field with anisotropic covariance function. The Gaussian field is then turned into a binary field, giving the large-scale locations over which it is raining. This transformation requires the definition of the rain occupation rate over large-scale areas. Its probability distribution is determined from observations by the French operational radar network ARAMIS. The coupling with the rain field modeling at midscale is immediate whenever the large-scale field is split up into midscale subareas. The rain field thus generated accounts for the local CDF at each point, defining a structure spatially correlated at small scale, midscale, and large scale. It is then suggested that this approach be used by system designers to evaluate diversity gain, terrestrial path attenuation, or slant path attenuation for different azimuth and elevation angle directions.

  3. Inertial-acoustic oscillations of black hole accretion discs with large-scale poloidal magnetic fields

    NASA Astrophysics Data System (ADS)

    Yu, Cong; Lai, Dong

    2015-07-01

    We study the effect of large-scale magnetic fields on the non-axisymmetric inertial-acoustic modes (also called p modes) trapped in the innermost regions of accretion discs around black holes (BHs). These global modes could provide an explanation for the high-frequency quasi-periodic oscillations (HFQPOs) observed in BH X-ray binaries. There may be observational evidence for the presence of such large-scale magnetic fields in the discs since episodic jets are observed in the same spectral state when HFQPOs are detected. We find that a large-scale poloidal magnetic field can enhance the corotational instability and increase the growth rate of the purely hydrodynamic overstable p modes. In addition, we show that the frequencies of these overstable p modes could be further reduced by such magnetic fields, making them agree better with observations.

  4. Evolution of the large-scale tail of primordial magnetic fields

    SciTech Connect

    Jedamzik, Karsten; Sigl, Guenter

    2011-05-15

    Cosmic magnetic fields may be generated during early cosmic phase transition, such as the QCD or electroweak transitions. The magnitude of the remainder of such fields at the present epoch crucially depends on the exponent n of their (initially super-Hubble) large-scale tail, i.e., B{sub {lambda}{approx}{lambda}}{sup -n}. It has been claimed that causality requires n=5/2, contrary to much earlier claims of n=3/2. Here we analyze this question in detail. First, we note that contrary to current belief, the large-scale magnetic field tail is not established at the phase transition itself, but rather continuously evolves up to the present epoch. Neglecting turbulent flows we find n=7/2, i.e., very strongly suppressed large-scale fields. However, in the inevitable presence of turbulent flows we find that the large-scale magnetic field tail has sufficient time to evolve to that of the fluid turbulence. For white noise fluid turbulence this yields n=3/2 up to a certain scale and n=5/2 beyond for the magnetic field spectrum. This picture is also not changed when primordial viscosity and fluid flow dissipation is taken into account. Appreciable primordial magnetic fields originating from cosmic phase transitions thus seem possible.

  5. Non-Gaussianity and large-scale structure in a two-field inflationary model

    SciTech Connect

    Tseliakhovich, Dmitriy; Hirata, Christopher

    2010-08-15

    Single-field inflationary models predict nearly Gaussian initial conditions, and hence a detection of non-Gaussianity would be a signature of the more complex inflationary scenarios. In this paper we study the effect on the cosmic microwave background and on large-scale structure from primordial non-Gaussianity in a two-field inflationary model in which both the inflaton and curvaton contribute to the density perturbations. We show that in addition to the previously described enhancement of the galaxy bias on large scales, this setup results in large-scale stochasticity. We provide joint constraints on the local non-Gaussianity parameter f-tilde{sub NL} and the ratio {xi} of the amplitude of primordial perturbations due to the inflaton and curvaton using WMAP and Sloan Digital Sky Survey data.

  6. Mechanisation of large-scale agricultural fields in developing countries - a review.

    PubMed

    Onwude, Daniel I; Abdulstter, Rafia; Gomes, Chandima; Hashim, Norhashila

    2016-09-01

    Mechanisation of large-scale agricultural fields often requires the application of modern technologies such as mechanical power, automation, control and robotics. These technologies are generally associated with relatively well developed economies. The application of these technologies in some developing countries in Africa and Asia is limited by factors such as technology compatibility with the environment, availability of resources to facilitate the technology adoption, cost of technology purchase, government policies, adequacy of technology and appropriateness in addressing the needs of the population. As a result, many of the available resources have been used inadequately by farmers, who continue to rely mostly on conventional means of agricultural production, using traditional tools and equipment in most cases. This has led to low productivity and high cost of production among others. Therefore this paper attempts to evaluate the application of present day technology and its limitations to the advancement of large-scale mechanisation in developing countries of Africa and Asia. Particular emphasis is given to a general understanding of the various levels of mechanisation, present day technology, its management and application to large-scale agricultural fields. This review also focuses on/gives emphasis to future outlook that will enable a gradual, evolutionary and sustainable technological change. The study concludes that large-scale-agricultural farm mechanisation for sustainable food production in Africa and Asia must be anchored on a coherent strategy based on the actual needs and priorities of the large-scale farmers. © 2016 Society of Chemical Industry.

  7. Mechanisation of large-scale agricultural fields in developing countries - a review.

    PubMed

    Onwude, Daniel I; Abdulstter, Rafia; Gomes, Chandima; Hashim, Norhashila

    2016-09-01

    Mechanisation of large-scale agricultural fields often requires the application of modern technologies such as mechanical power, automation, control and robotics. These technologies are generally associated with relatively well developed economies. The application of these technologies in some developing countries in Africa and Asia is limited by factors such as technology compatibility with the environment, availability of resources to facilitate the technology adoption, cost of technology purchase, government policies, adequacy of technology and appropriateness in addressing the needs of the population. As a result, many of the available resources have been used inadequately by farmers, who continue to rely mostly on conventional means of agricultural production, using traditional tools and equipment in most cases. This has led to low productivity and high cost of production among others. Therefore this paper attempts to evaluate the application of present day technology and its limitations to the advancement of large-scale mechanisation in developing countries of Africa and Asia. Particular emphasis is given to a general understanding of the various levels of mechanisation, present day technology, its management and application to large-scale agricultural fields. This review also focuses on/gives emphasis to future outlook that will enable a gradual, evolutionary and sustainable technological change. The study concludes that large-scale-agricultural farm mechanisation for sustainable food production in Africa and Asia must be anchored on a coherent strategy based on the actual needs and priorities of the large-scale farmers. © 2016 Society of Chemical Industry. PMID:26940194

  8. The Decay of a Weak Large-scale Magnetic Field in Two-dimensional Turbulence

    NASA Astrophysics Data System (ADS)

    Kondić, Todor; Hughes, David W.; Tobias, Steven M.

    2016-06-01

    We investigate the decay of a large-scale magnetic field in the context of incompressible, two-dimensional magnetohydrodynamic turbulence. It is well established that a very weak mean field, of strength significantly below equipartition value, induces a small-scale field strong enough to inhibit the process of turbulent magnetic diffusion. In light of ever-increasing computer power, we revisit this problem to investigate fluids and magnetic Reynolds numbers that were previously inaccessible. Furthermore, by exploiting the relation between the turbulent diffusion of the magnetic potential and that of the magnetic field, we are able to calculate the turbulent magnetic diffusivity extremely accurately through the imposition of a uniform mean magnetic field. We confirm the strong dependence of the turbulent diffusivity on the product of the magnetic Reynolds number and the energy of the large-scale magnetic field. We compare our findings with various theoretical descriptions of this process.

  9. Wintertime connections between extreme wind patterns in Spain and large-scale geopotential height field

    NASA Astrophysics Data System (ADS)

    Pascual, A.; Martín, M. L.; Valero, F.; Luna, M. Y.; Morata, A.

    2013-03-01

    The present study is focused on the study of the variability and the most significant wind speed patterns in Spain during the winter season analyzing as well connections between the wind speed field and the geopotential height at 1000 hPa over an Atlantic area. The daily wind speed variability is investigated by means of principal components using wind speed observations. Five main modes of variation, accounting 66% of the variance of the original data, have been identified, highlighting their differences in the Spanish wind speed behavior. Connections between the wind speeds and the large-scale atmospheric field were underlined by means of composite maps. Composite maps were built up to give an averaged atmospheric circulation associated with extreme wind speed variability in Spain. Moreover, the principal component analysis was also applied to the geopotential heights, providing relationships between the large-scale atmospheric modes and the observational local wind speeds. Such relationships are shown in terms of the cumulated frequency values of wind speed associated with the extreme scores of the obtained large-scale atmospheric modes, showing those large-scale atmospheric patterns more dominant in the wind field in Spain.

  10. Turbulence and magnetic fields in the large-scale structure of the universe.

    PubMed

    Ryu, Dongsu; Kang, Hyesung; Cho, Jungyeon; Das, Santabrata

    2008-05-16

    The nature and origin of turbulence and magnetic fields in the intergalactic space are important problems that are yet to be understood. We propose a scenario in which turbulent-flow motions are induced via the cascade of the vorticity generated at cosmological shocks during the formation of the large-scale structure. The turbulence in turn amplifies weak seed magnetic fields of any origin. Supercomputer simulations show that the turbulence is subsonic inside clusters and groups of galaxies, whereas it is transonic or mildly supersonic in filaments. Based on a turbulence dynamo model, we then estimated that the average magnetic field strength would be a few microgauss (microG) inside clusters and groups, approximately 0.1 muG around clusters and groups, and approximately 10 nanogauss in filaments. Our model presents a physical mechanism that transfers the gravitational energy to the turbulence and magnetic field energies in the large-scale structure of the universe.

  11. Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations.

    PubMed

    Hotta, H; Rempel, M; Yokoyama, T

    2016-03-25

    The 11-year solar magnetic cycle shows a high degree of coherence in spite of the turbulent nature of the solar convection zone. It has been found in recent high-resolution magnetohydrodynamics simulations that the maintenance of a large-scale coherent magnetic field is difficult with small viscosity and magnetic diffusivity (≲10 (12) square centimenters per second). We reproduced previous findings that indicate a reduction of the energy in the large-scale magnetic field for lower diffusivities and demonstrate the recovery of the global-scale magnetic field using unprecedentedly high resolution. We found an efficient small-scale dynamo that suppresses small-scale flows, which mimics the properties of large diffusivity. As a result, the global-scale magnetic field is maintained even in the regime of small diffusivities-that is, large Reynolds numbers.

  12. The concentration of the large-scale solar magnetic field by a meridional surface flow

    NASA Technical Reports Server (NTRS)

    Devore, C. R.; Boris, J. P.; Sheeley, N. R., Jr.

    1984-01-01

    Analytical and numerical solutions to the magnetic flux transport equation in the absence of new bipolar sources of flux are calculated for several meridional flow profiles and a range of peak flow speeds. It is found that a poleward flow with a broad profile and a nominal 10 m/s maximum speed concentrates the large-scale field into very small caps of less than 15 deg half-angle, with average field strengths of several tens of gauss, contrary to observations. A flow which reaches its peak speed at a relatively low latitude and then decreases rapidly to zero at higher latitudes leads to a large-scale field pattern which is consistent with observations. For such a flow, only lower latitude sunspot groups can contribute to interhemispheric flux annihilation and the resulting decay and reversal of the polar magnetic fields.

  13. Large-scale perturbations from the waterfall field in hybrid inflation

    SciTech Connect

    Fonseca, José; Wands, David; Sasaki, Misao E-mail: misao@yukawa.kyoto-u.ac.jp

    2010-09-01

    We estimate large-scale curvature perturbations from isocurvature fluctuations in the waterfall field during hybrid inflation, in addition to the usual inflaton field perturbations. The tachyonic instability at the end of inflation leads to an explosive growth of super-Hubble scale perturbations, but they retain the steep blue spectrum characteristic of vacuum fluctuations in a massive field during inflation. The power spectrum thus peaks around the Hubble-horizon scale at the end of inflation. We extend the usual δN formalism to include the essential role of these small fluctuations when estimating the large-scale curvature perturbation. The resulting curvature perturbation due to fluctuations in the waterfall field is second-order and the spectrum is expected to be of order 10{sup −54} on cosmological scales.

  14. Large-scale solar magnetic fields and H-alpha patterns

    NASA Technical Reports Server (NTRS)

    Mcintosh, P. S.

    1972-01-01

    Coronal and interplanetary magnetic fields computed from measurements of large-scale photospheric magnetic fields suffer from interruptions in day-to-day observations and the limitation of using only measurements made near the solar central meridian. Procedures were devised for inferring the lines of polarity reversal from H-alpha solar patrol photographs that map the same large-scale features found on Mt. Wilson magnetograms. These features may be monitored without interruption by combining observations from the global network of observatories associated with NOAA's Space Environment Services Center. The patterns of inferred magnetic fields may be followed accurately as far as 60 deg from central meridian. Such patterns will be used to improve predictions of coronal features during the next solar eclipse.

  15. The IR-resummed Effective Field Theory of Large Scale Structures

    SciTech Connect

    Senatore, Leonardo; Zaldarriaga, Matias E-mail: matiasz@ias.edu

    2015-02-01

    We present a new method to resum the effect of large scale motions in the Effective Field Theory of Large Scale Structures. Because the linear power spectrum in ΛCDM is not scale free the effects of the large scale flows are enhanced. Although previous EFT calculations of the equal-time density power spectrum at one and two loops showed a remarkable agreement with numerical results, they also showed a 2% residual which appeared related to the BAO oscillations. We show that this was indeed the case, explain the physical origin and show how a Lagrangian based calculation removes this differences. We propose a simple method to upgrade existing Eulerian calculations to effectively make them Lagrangian and compare the new results with existing fits to numerical simulations. Our new two-loop results agrees with numerical results up to k∼ 0.6 h Mpc{sup −1} to within 1% with no oscillatory residuals. We also compute power spectra involving momentum which is significantly more affected by the large scale flows. We show how keeping track of these velocities significantly enhances the UV reach of the momentum power spectrum in addition to removing the BAO related residuals. We compute predictions for the real space correlation function around the BAO scale and investigate its sensitivity to the EFT parameters and the details of the resummation technique.

  16. Advection/diffusion of large scale magnetic field in accretion disks

    NASA Astrophysics Data System (ADS)

    Lovelace, R. V. E.; Bisnovatyi-Kogan, G. S.; Rothstein, D. M.

    2009-02-01

    Activity of the nuclei of galaxies and stellar mass systems involving disk accretion to black holes is thought to be due to (1) a small-scale turbulent magnetic field in the disk (due to the magneto-rotational instability or MRI) which gives a large viscosity enhancing accretion, and (2) a large-scale magnetic field which gives rise to matter outflows and/or electromagnetic jets from the disk which also enhances accretion. An important problem with this picture is that the enhanced viscosity is accompanied by an enhanced magnetic diffusivity which acts to prevent the build up of a significant large-scale field. Recent work has pointed out that the disk's surface layers are non-turbulent and thus highly conducting (or non-diffusive) because the MRI is suppressed high in the disk where the magnetic and radiation pressures are larger than the thermal pressure. Here, we calculate the vertical (z) profiles of the stationary accretion flows (with radial and azimuthal components), and the profiles of the large-scale, magnetic field taking into account the turbulent viscosity and diffusivity due to the MRI and the fact that the turbulence vanishes at the surface of the disk. We derive a sixth-order differential equation for the radial flow velocity vr(z) which depends mainly on the midplane thermal to magnetic pressure ratio β>1 and the Prandtl number of the turbulence P=viscosity/diffusivity. Boundary conditions at the disk surface take into account a possible magnetic wind or jet and allow for a surface current in the highly conducting surface layer. The stationary solutions we find indicate that a weak (β>1) large-scale field does not diffuse away as suggested by earlier work.

  17. Advection/Diffusion of Large Scale Magnetic Field in Accretion Disks

    NASA Astrophysics Data System (ADS)

    Lovelace, Richard V. E.; Rothstein, David M.; Bisnovatyi-Kogan, Gennady S.

    Winds and jets of proto-stellar systems are thought to arise from disk accretion involving (1) a small-scale turbulent magnetic field in the disk (due to the magneto-rotational instability or MRI) and (2) a large-scale magnetic field which gives rise to the winds and/or jets. An important problem with this picture is that the enhanced viscosity is accompanied by an enhanced magnetic diffusivity which acts to prevent the build up of a significant large-scale field. Recent work has pointed out that the surface layers of the disk are non-turbulent and thus highly conducting (or non-diffusive). This is because the MRI is suppressed in the surface layers where the magnetic and radiation pressures are larger than the thermal pressure. Here, we calculate the vertical (z) profiles of the stationary accretion flows (with radial and azimuthal components), and the profiles of the large-scale, magnetic field taking into account the turbulent viscosity and diffusivity due to the MRI and the fact that the turbulence vanishes at the surface of the disk. We derive a sixth-order differential equation for the radial flow velocity v r (z) which depends mainly on the midplane thermal to magnetic pressure ratio β > 1 and the magnetic Prandtl number of the turbulence P = viscosity/diffusivity. Boundary conditions at the disk surfaces take into account possible magnetic winds or jets and allow for a surface current flow in the highly conducting surface layers. The stationary solutions we find indicate that a weak (β > 1) large-scale field does not diffuse away as suggested by earlier work.

  18. Generation of large-scale magnetic fields from inflation in teleparallelism

    SciTech Connect

    Bamba, Kazuharu; Geng, Chao-Qiang; Luo, Ling-Wei E-mail: geng@phys.nthu.edu.tw

    2012-10-01

    We explore the generation of large-scale magnetic fields from inflation in teleparallelism, in which the gravitational theory is described by the torsion scalar instead of the scalar curvature in general relativity. In particular, we examine the case that the conformal invariance of the electromagnetic field during inflation is broken by a non-minimal gravitational coupling between the torsion scalar and the electromagnetic field. It is shown that for a power-law type coupling, the magnetic field on 1 Mpc scale with its strength of ∼ 10{sup −9} G at the present time can be generated.

  19. Solar large-scale positive polarity magnetic fields and geomagnetic disturbances

    NASA Technical Reports Server (NTRS)

    Bumba, V.

    1972-01-01

    Unlike the negative polarity solar magnetic field large-scale regular features that correlate with enhanced solar activity regions, the positive polarity regular formations formed in the weak and old background magnetic fields seem to correlate well with geomagnetically enhanced periods of time (shifted for 4 days), which means that they seem to be the source of the quiet solar wind. This behavior of the large intervals of heliographic longitude with prevailing positive polarity fields may be followed to the end of the 18th cycle, during the declining part of the 19th cycle, and during the first half of the present 20th cycle of solar activity.

  20. PARTICLE ACCELERATION BY COLLISIONLESS SHOCKS CONTAINING LARGE-SCALE MAGNETIC-FIELD VARIATIONS

    SciTech Connect

    Guo, F.; Jokipii, J. R.; Kota, J. E-mail: jokipii@lpl.arizona.ed

    2010-12-10

    Diffusive shock acceleration at collisionless shocks is thought to be the source of many of the energetic particles observed in space. Large-scale spatial variations of the magnetic field have been shown to be important in understanding observations. The effects are complex, so here we consider a simple, illustrative model. Here we solve numerically the Parker transport equation for a shock in the presence of large-scale sinusoidal magnetic-field variations. We demonstrate that the familiar planar-shock results can be significantly altered as a consequence of large-scale, meandering magnetic lines of force. Because the perpendicular diffusion coefficient {kappa}{sub perpendicular} is generally much smaller than the parallel diffusion coefficient {kappa}{sub ||}, the energetic charged particles are trapped and preferentially accelerated along the shock front in the regions where the connection points of magnetic field lines intersecting the shock surface converge, and thus create the 'hot spots' of the accelerated particles. For the regions where the connection points separate from each other, the acceleration to high energies will be suppressed. Further, the particles diffuse away from the 'hot spot' regions and modify the spectra of downstream particle distribution. These features are qualitatively similar to the recent Voyager observations in the Heliosheath. These results are potentially important for particle acceleration at shocks propagating in turbulent magnetized plasmas as well as those which contain large-scale nonplanar structures. Examples include anomalous cosmic rays accelerated by the solar wind termination shock, energetic particles observed in propagating heliospheric shocks, galactic cosmic rays accelerated by supernova blast waves, etc.

  1. Structure and evolution of the large scale solar and heliospheric magnetic fields. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hoeksema, J. T.

    1984-01-01

    Structure and evolution of large scale photospheric and coronal magnetic fields in the interval 1976-1983 were studied using observations from the Stanford Solar Observatory and a potential field model. The solar wind in the heliosphere is organized into large regions in which the magnetic field has a componenet either toward or away from the sun. The model predicts the location of the current sheet separating these regions. Near solar minimum, in 1976, the current sheet lay within a few degrees of the solar equator having two extensions north and south of the equator. Soon after minimum the latitudinal extent began to increase. The sheet reached to at least 50 deg from 1978 through 1983. The complex structure near maximum occasionally included multiple current sheets. Large scale structures persist for up to two years during the entire interval. To minimize errors in determining the structure of the heliospheric field particular attention was paid to decreasing the distorting effects of rapid field evolution, finding the optimum source surface radius, determining the correction to the sun's polar field, and handling missing data. The predicted structure agrees with direct interplanetary field measurements taken near the ecliptic and with coronameter and interplanetary scintillation measurements which infer the three dimensional interplanetary magnetic structure. During most of the solar cycle the heliospheric field cannot be adequately described as a dipole.

  2. Pervasive large-scale magnetic fields in the Venus nightside ionosphere and their implications

    NASA Technical Reports Server (NTRS)

    Luhmann, J. G.

    1992-01-01

    When the solar wind dynamic pressure at Venus was extraordinarily high during the primary mission of the Pioneer Venus Orbiter (PVO), 'disappearing ionospheres' occurred on the nightside, with accompanying pervasive near-periapsis magnetic fields of tens of nanoteslas. These nightside counterparts of the generally horizontal large-scale magnetic fields in the dayside ionosphere are found to exhibit some dependence of field magnitude on the solar wind pressure but not on solar zenith angle. Their statistical behavior suggests a global configuration in which the low-altitude field wraps around the planet, while the field at higher altitudes is draped like the induced magnetotail field. The toroidal low-altitude field geometry implies the possible existence of magnetic x points in the low-altitude wake.

  3. On the renormalization of the effective field theory of large scale structures

    SciTech Connect

    Pajer, Enrico; Zaldarriaga, Matias E-mail: matiasz@ias.edu

    2013-08-01

    Standard perturbation theory (SPT) for large-scale matter inhomogeneities is unsatisfactory for at least three reasons: there is no clear expansion parameter since the density contrast is not small on all scales; it does not fully account for deviations at large scales from a perfect pressureless fluid induced by short-scale non-linearities; for generic initial conditions, loop corrections are UV-divergent, making predictions cutoff dependent and hence unphysical. The Effective Field Theory of Large Scale Structures successfully addresses all three issues. Here we focus on the third one and show explicitly that the terms induced by integrating out short scales, neglected in SPT, have exactly the right scale dependence to cancel all UV-divergences at one loop, and this should hold at all loops. A particularly clear example is an Einstein deSitter universe with no-scale initial conditions P{sub in} ∼ k{sup n}. After renormalizing the theory, we use self-similarity to derive a very simple result for the final power spectrum for any n, excluding two-loop corrections and higher. We show how the relative importance of different corrections depends on n. For n ∼ −1.5, relevant for our universe, pressure and dissipative corrections are more important than the two-loop corrections.

  4. Advection/Diffusion of Large-Scale B Field in Accretion Disks

    NASA Astrophysics Data System (ADS)

    Lovelace, R. V. E.; Rothstein, D. M.; Bisnovatyi-Kogan, G. S.

    2009-08-01

    Activity of the nuclei of galaxies and stellar mass systems involving disk accretion to black holes is thought to be due to (1) a small-scale turbulent magnetic field in the disk (due to the magnetorotational instability, MRI), which gives a large viscosity enhancing accretion, and (2) a large-scale magnetic field, which gives rise to matter outflows and/or electromagnetic jets from the disk which also enhances accretion. An important problem with this picture is that the enhanced viscosity is accompanied by an enhanced magnetic diffusivity, which acts to prevent the buildup of a significant large-scale field. Recent work has pointed out that the disk's surface layers are nonturbulent, and thus highly conducting (or nondiffusive) because the MRI is suppressed high in the disk where the magnetic and radiation pressures are larger than the thermal pressure. Here, we calculate the vertical (z) profiles of the stationary accretion flows (with radial and azimuthal components) and the profiles of the large-scale magnetic field, taking into account the turbulent viscosity and diffusivity due to the MRI and the fact that the turbulence vanishes at the surface of the disk. We derive a sixth-order differential equation for the radial flow velocity vr (z), which depends mainly on the midplane thermal to magnetic pressure ratio β>1 and the Prandtl number of the turbulence P= viscosity/diffusivity. Boundary conditions at the disk surface take into account a possible magnetic wind or jet and allow for a surface current in the highly conducting surface layer. The stationary solutions we find indicate that a weak (β>1) large-scale field does not diffuse away as suggested by earlier work. For a wide range of parameters β>1 and P≥ 1, we find stationary channel-type flows where the flow is radially outward near the midplane of the disk and radially inward in the top and bottom parts of the disk. Channel flows with inward flow near the midplane and outflow in the top and bottom

  5. Large-Scale Field Study of Landfill Covers at Sandia National Laboratories

    SciTech Connect

    Dwyer, S.F.

    1998-09-01

    A large-scale field demonstration comparing final landfill cover designs has been constructed and is currently being monitored at Sandia National Laboratories in Albuquerque, New Mexico. Two conventional designs (a RCRA Subtitle `D' Soil Cover and a RCRA Subtitle `C' Compacted Clay Cover) were constructed side-by-side with four alternative cover test plots designed for dry environments. The demonstration is intended to evaluate the various cover designs based on their respective water balance performance, ease and reliability of construction, and cost. This paper presents an overview of the ongoing demonstration.

  6. Effects of the galactic magnetic field upon large scale anisotropies of extragalactic cosmic rays

    SciTech Connect

    Harari, D.; Mollerach, S.; Roulet, E. E-mail: mollerach@cab.cnea.gov.ar

    2010-11-01

    The large scale pattern in the arrival directions of extragalactic cosmic rays that reach the Earth is different from that of the flux arriving to the halo of the Galaxy as a result of the propagation through the galactic magnetic field. Two different effects are relevant in this process: deflections of trajectories and (de)acceleration by the electric field component due to the galactic rotation. The deflection of the cosmic ray trajectories makes the flux intensity arriving to the halo from some direction to appear reaching the Earth from another direction. This applies to any intrinsic anisotropy in the extragalactic distribution or, even in the absence of intrinsic anisotropies, to the dipolar Compton-Getting anisotropy induced when the observer is moving with respect to the cosmic rays rest frame. For an observer moving with the solar system, cosmic rays traveling through far away regions of the Galaxy also experience an electric force coming from the relative motion (due to the rotation of the Galaxy) of the local system in which the field can be considered as being purely magnetic. This produces small changes in the particles momentum that can originate large scale anisotropies even for an isotropic extragalactic flux.

  7. Alignments of Dark Matter Halos with Large-scale Tidal Fields: Mass and Redshift Dependence

    NASA Astrophysics Data System (ADS)

    Chen, Sijie; Wang, Huiyuan; Mo, H. J.; Shi, Jingjing

    2016-07-01

    Large-scale tidal fields estimated directly from the distribution of dark matter halos are used to investigate how halo shapes and spin vectors are aligned with the cosmic web. The major, intermediate, and minor axes of halos are aligned with the corresponding tidal axes, and halo spin axes tend to be parallel with the intermediate axes and perpendicular to the major axes of the tidal field. The strengths of these alignments generally increase with halo mass and redshift, but the dependence is only on the peak height, ν \\equiv {δ }{{c}}/σ ({M}{{h}},z). The scaling relations of the alignment strengths with the value of ν indicate that the alignment strengths remain roughly constant when the structures within which the halos reside are still in a quasi-linear regime, but decreases as nonlinear evolution becomes more important. We also calculate the alignments in projection so that our results can be compared directly with observations. Finally, we investigate the alignments of tidal tensors on large scales, and use the results to understand alignments of halo pairs separated at various distances. Our results suggest that the coherent structure of the tidal field is the underlying reason for the alignments of halos and galaxies seen in numerical simulations and in observations.

  8. EFFECTS OF LARGE-SCALE NON-AXISYMMETRIC PERTURBATIONS IN THE MEAN-FIELD SOLAR DYNAMO

    SciTech Connect

    Pipin, V. V.; Kosovichev, A. G.

    2015-11-10

    We explore the response of a nonlinear non-axisymmetric mean-field solar dynamo model to shallow non-axisymmetric perturbations. After a relaxation period, the amplitude of the non-axisymmetric field depends on the initial condition, helicity conservation, and the depth of perturbation. It is found that a perturbation that is anchored at 0.9 R{sub ⊙} has a profound effect on the dynamo process, producing a transient magnetic cycle of the axisymmetric magnetic field, if it is initiated at the growing phase of the cycle. The non-symmetric, with respect to the equator, perturbation results in a hemispheric asymmetry of the magnetic activity. The evolution of the axisymmetric and non-axisymmetric fields depends on the turbulent magnetic Reynolds number R{sub m}. In the range of R{sub m} = 10{sup 4}–10{sup 6} the evolution returns to the normal course in the next cycle, in which the non-axisymmetric field is generated due to a nonlinear α-effect and magnetic buoyancy. In the stationary state, the large-scale magnetic field demonstrates a phenomenon of “active longitudes” with cyclic 180° “flip-flop” changes of the large-scale magnetic field orientation. The flip-flop effect is known from observations of solar and stellar magnetic cycles. However, this effect disappears in the model, which includes the meridional circulation pattern determined by helioseismology. The rotation rate of the non-axisymmetric field components varies during the relaxation period and carries important information about the dynamo process.

  9. The Effective Field Theory of Large Scale Structures at two loops

    SciTech Connect

    Carrasco, John Joseph M.; Foreman, Simon; Green, Daniel; Senatore, Leonardo E-mail: sfore@stanford.edu E-mail: senatore@stanford.edu

    2014-07-01

    Large scale structure surveys promise to be the next leading probe of cosmological information. It is therefore crucial to reliably predict their observables. The Effective Field Theory of Large Scale Structures (EFTofLSS) provides a manifestly convergent perturbation theory for the weakly non-linear regime of dark matter, where correlation functions are computed in an expansion of the wavenumber k of a mode over the wavenumber associated with the non-linear scale k{sub NL}. Since most of the information is contained at high wavenumbers, it is necessary to compute higher order corrections to correlation functions. After the one-loop correction to the matter power spectrum, we estimate that the next leading one is the two-loop contribution, which we compute here. At this order in k/k{sub NL}, there is only one counterterm in the EFTofLSS that must be included, though this term contributes both at tree-level and in several one-loop diagrams. We also discuss correlation functions involving the velocity and momentum fields. We find that the EFTofLSS prediction at two loops matches to percent accuracy the non-linear matter power spectrum at redshift zero up to k∼ 0.6 h Mpc{sup −1}, requiring just one unknown coefficient that needs to be fit to observations. Given that Standard Perturbation Theory stops converging at redshift zero at k∼ 0.1 h Mpc{sup −1}, our results demonstrate the possibility of accessing a factor of order 200 more dark matter quasi-linear modes than naively expected. If the remaining observational challenges to accessing these modes can be addressed with similar success, our results show that there is tremendous potential for large scale structure surveys to explore the primordial universe.

  10. Mantle convection and the large scale structures of the Earth's gravitational field

    NASA Technical Reports Server (NTRS)

    Peltier, W. R.

    1985-01-01

    The connection between the observed large scale structure of the Earths' gravitational field, as represented by the GEM10 model, and the surface kinematic manifestations of plate tectonics, as represented by the absolute plate motion model of Minster and Jordan, is explored using a somewhat novel method of analysis. Two scalar derivatives of the field of surface plate velocities, namely the horizontal divergence and the radial vorticity, are computed from the plate motion data. These two scalars are respectively determined by the poloidal and toroidal scalars in terms of which any essentially solenoidal vector field may be completely represented. They provide a compact summary of the observed plate boundary types in nature, with oceanic ridges and trenches being essentially boundaries of divergence, and transform faults being essentially boundaries of vorticity.

  11. Effects of larval density in Ambystoma opacum: An experiment in large-scale field enclosures

    SciTech Connect

    Scott, D.E. )

    1990-02-01

    This experiment was designed to measure the effects of larval density on larval traits in the salamander Ambystoma opacum, and to ascertain whether previous studies conducted at smaller spatial scales or higher densities produced artifactual results. Density effects on larval growth, body size at metamorphosis, length of larval period, and survival to metamorphosis were studied in A. opacum in large-scale (41 m{sup 2} and 23 m{sup 2}) field enclosures in two temporary ponds. Each enclosure contained indigenous populations of prey (zooplankton and insects) and predators, as well as the range of microhabitats present in these natural ponds. Initial larval densities were chosen to represent high and low levels of naturally occurring mean densities. The results suggest that, in natural ponds, the importance of intraspecific competition is dependent upon hydroperiod, and the intensity of competition influences predation risk. Thus, both density-dependent and density-independent factors affect body size and recruitment of larval A. opacum into the adult population. The use of large-scale field enclosures has advantages and disadvantages: it allows the examination of density-dependent processes under natural conditions and provides high statistical power because of low variability in larval traits; however, experimental designs must be simple and underlying mechanisms are difficult to identify.

  12. On the possible origin of the large scale cosmic magnetic field

    SciTech Connect

    Coroniti, F. V.

    2014-01-10

    The possibility that the large scale cosmic magnetic field is directly generated at microgauss, equipartition levels during the reionization epoch by collisionless shocks that are forced to satisfy a downstream shear flow boundary condition is investigated through the development of two models—the accretion of an ionized plasma onto a weakly ionized cool galactic disk and onto a cool filament of the cosmic web. The dynamical structure and the physical parameters of the models are synthesized from recent cosmological simulations of the early reionization era after the formation of the first stars. The collisionless shock stands upstream of the disk and filament, and its dissipation is determined by ion inertial length Weibel turbulence. The downstream shear boundary condition is determined by the rotational neutral gas flow in the disk and the inward accretion flow along the filament. The shocked plasma is accelerated to the downstream shear flow velocity by the Weibel turbulence, and the relative shearing motion between the electrons and ions produces a strong, ion inertial scale current sheet that generates an equipartition strength, large scale downstream magnetic field, ∼10{sup –6} G for the disk and ∼6 × 10{sup –8} G for the filament. By assumption, hydrodynamic turbulence transports the shear-shock generated magnetic flux throughout the disk and filament volume.

  13. Coronal holes, large-scale magnetic field, and activity complexes in solar cycle 23

    NASA Astrophysics Data System (ADS)

    Tavastsherna, K. S.; Polyakow, E. V.

    2014-12-01

    A correlation among coronal holes (CH), a large-scale magnetic field (LMF), and activity complexes (AC) is studied in this work for 1997-2007 with the use of a coronal hole series obtained from observations at the Kitt Peak Observatory in the HeI 10830 Å line in 1975-2003 and SOHO/EIT-195 Å in 1996-2012 (Tlatov et al., 2014), synoptic Hα charts from Kislovodsk Mountain Astonomical Station, and the catalog of AC cores (Yazev, 2012). From the imposition of CH boundaries on Hα charts, which characterize the positions of neutral lines of the radial components of a large-scale solar magnetic field, it turns out that 70% of CH are located in unipolar regions of their sign during the above period, 10% are in the region of an opposite sign, and 20% are mainly very large CH, which are often crossed by the neutral lines of several unipolar regions. Data on mutual arrangement of CH and AC cores were obtained. It was shown that only some activity comples cores have genetic relationships with CH.

  14. Large-Scale Magnetic Field in Accretion Disks and Relativistic Poynting-Flux Jets

    NASA Astrophysics Data System (ADS)

    Lovelace, R. V. E.; Bisnovatyi-Kogan, G. S.

    In earlier works we pointed out that the disk's surface layers are non-turbulent and thus highly conducting (or non-diffusive) because of hydrodynamic and/or magnetorotational (MRI) instabilities are suppressed high in the disk where the magnetic and radiation pressures are larger than the plasma thermal pressure. We have derived equations for the vertical profiles of stationary accretion flows (with radial and azimuthal components), and the profiles of the large-scale, magnetic field taking into account the turbulent viscosity and diffusivity and the fact that the turbulence vanishes at the surface of the disk. Our recent analysis in Ref. 1 shows that the inward or outward advection of the large-scale magnetic field depends on the ratio {R} of the accretion power going into magnetic disk winds to the viscous power dissipation and the plasma-β which is the ratio of the midplane plasma pressure to the magnetic pressure. Recent radio emission, polarization, and Faraday rotation maps of the radio jet of the galaxy 3C303 have been obtained in Ref. 2 and show that one component of this jet has a galactic-scale electric current of 3 × 1018 A flowing along the jet axis. We show that this current can be used to calculate the electromagnetic energy flow in this magnetically dominated jet.

  15. The Large Scale Structure of the Galactic Magnetic Field and High Energy Cosmic Ray Anisotropy

    NASA Astrophysics Data System (ADS)

    Alvarez-Muñiz, Jaime; Stanev, Todor

    2006-10-01

    Measurements of the magnetic field in our Galaxy are complex and usually difficult to interpret. A spiral regular field in the disk is favored by observations, however the number of field reversals is still under debate. Measurements of the parity of the field across the Galactic plane are also very difficult due to the presence of the disk field itself. In this work we demonstrate that cosmic ray protons in the energy range 1018 to 1019eV, if accelerated near the center of the Galaxy, are sensitive to the large scale structure of the Galactic Magnetic Field (GMF). In particular if the field is of even parity, and the spiral field is bi-symmetric (BSS), ultra high energy protons will predominantly come from the Southern Galactic hemisphere, and predominantly from the Northern Galactic hemisphere if the field is of even parity and axi-symmetric (ASS). There is no sensitivity to the BSS or ASS configurations if the field is of odd parity.

  16. Large-scale geometry and temporal variability of the Martian external magnetic field

    NASA Astrophysics Data System (ADS)

    Mittelholz, A.; Johnson, C. L.; Langlais, B.

    2014-12-01

    The martian magnetic field is unique among the terrestrial planets, as it results from the interaction of fields caused by crustal remnant magnetization and a planetary ionosphere with the solar wind and the interplanetary magnetic field. Internal fields of crustal origin have been subject to extensive studies, whereas the focus of our work deals with average spatial structure and time variability in the martian external magnetic field. We use the Mars Global Surveyor (MGS) vector magnetic field data to investigate the large-scale geometry and magnitude of such external fields. We analyze the day-time and night-time magnetic signature for the duration of the MGS mission in mapping orbit (2000-2006). We use along-track vector field measurements to estimate the day-time and night-time external fields after the subtraction of predicted crustal magnetic fields at spacecraft altitudes. We also examine day/night differences (i.e., the daily variation) in external fields; these are independent of crustal fields. Because the external fields are modified by the crustal fields, we investigate their structure as a function of latitude in the local time frame and as a function of both latitude and longitude in the body-fixed frame. In the body-fixed-frame BΘis generally dominant in magnitude with a day/night variation described to first order by a zonal degree-2 spherical harmonic structure. Br is strongly correlated with the crustal magnetic field. BΦ shows variable spatial behaviour during both night and day. Seasonal variations are observed as stronger average magnetic fields in the hemisphere pointing towards the sun. Additional shorter time scale variations in the global external field structure are observed.

  17. DE-2 photoelectron measurements consistent with a large scale parallel electric field over the polar cap

    NASA Technical Reports Server (NTRS)

    Winningham, J. D.; Gurgiolo, C.

    1982-01-01

    Winningham and Heikkila (1974) presented observations of various polar cap particle morphologies. They interpreted observations of 'anomalous' photoelectron angular distribution over the polar caps to be indicative of a large scale, outwardly directed, parallel electric field over the polar cap. The parallel field was observed to be spatially and/or temporarily variable. However, results obtained by Winningham and Heikkila have one weakness, which is related to the lack of simultaneous observations at many pitch angles. The present investigation is, therefore, concerned with the presentation of results from Dynamics Explorer 2 (DE-2) which confirm the experimental results of Winningham and Heikkila. It is concluded that the earth's polar caps act much like any conductor immersed in a plasma and illuminated by sunlight. DE-1 and DE-2 would then represent tiny point probes examining the internal details in the sheath region of the polar cap.

  18. The structure of the white-light corona and the large-scale solar magnetic field

    NASA Technical Reports Server (NTRS)

    Sime, D. G.; Mccabe, M. K.

    1990-01-01

    The large-scale density structure of the white-light solar corona is compared to the organization of the solar magnetic field as identified by the appearance of neutral lines in the photosphere to examine whether any consistent relationship exists between the two. During the period covering Carrington rotations 1717 to 1736 brightness enhancements in the low corona tend to lie over the global neutral sheet identified in the photospheric magnetic field. The brightest of these enhancements are associated with neutral lines throguh active regions. These associations are not 1-1, but do hold both in stable and evolving conditions of the corona. A significant number of long-lived neutral lines is found, including filaments seen in H-alpha, for which there are not coronal enhancements.

  19. Generation of large scale field-aligned density irregularities in ionospheric heating experiments. [electromagnetic wave decay

    NASA Technical Reports Server (NTRS)

    Fejer, J. A.

    1974-01-01

    Threshold and growth rate for stimulated Brillouin scattering are calculated for a uniform magnetoplasma. These are then compared with the threshold and growth rate of a new thermal instability in which the nonlinear Lorentz force felt by the electrons at the beat frequency of the two electromagnetic waves is replaced by a pressure force due to differential heating in the interference pattern of the pump wave and the generated electromagnetic wave. This thermal instability, which is still essentially stimulated Brillouin scattering, has a threshold which is especially low when the propagation vector of the beat wave is almost normal to the magnetic field. The threshold is then considerably lower than the threshold for normal stimulated Brillouin scattering and therefore this new instability is probably responsible for the generation of large scale field aligned irregularities and ionospheric spread F.

  20. Feasibility of Large-Scale Genomic Testing to Facilitate Enrollment Onto Genomically Matched Clinical Trials

    PubMed Central

    Meric-Bernstam, Funda; Brusco, Lauren; Shaw, Kenna; Horombe, Chacha; Kopetz, Scott; Davies, Michael A.; Routbort, Mark; Piha-Paul, Sarina A.; Janku, Filip; Ueno, Naoto; Hong, David; De Groot, John; Ravi, Vinod; Li, Yisheng; Luthra, Raja; Patel, Keyur; Broaddus, Russell; Mendelsohn, John; Mills, Gordon B.

    2015-01-01

    Purpose We report the experience with 2,000 consecutive patients with advanced cancer who underwent testing on a genomic testing protocol, including the frequency of actionable alterations across tumor types, subsequent enrollment onto clinical trials, and the challenges for trial enrollment. Patients and Methods Standardized hotspot mutation analysis was performed in 2,000 patients, using either an 11-gene (251 patients) or a 46- or 50-gene (1,749 patients) multiplex platform. Thirty-five genes were considered potentially actionable based on their potential to be targeted with approved or investigational therapies. Results Seven hundred eighty-nine patients (39%) had at least one mutation in potentially actionable genes. Eighty-three patients (11%) with potentially actionable mutations went on genotype-matched trials targeting these alterations. Of 230 patients with PIK3CA/AKT1/PTEN/BRAF mutations that returned for therapy, 116 (50%) received a genotype-matched drug. Forty patients (17%) were treated on a genotype-selected trial requiring a mutation for eligibility, 16 (7%) were treated on a genotype-relevant trial targeting a genomic alteration without biomarker selection, and 40 (17%) received a genotype-relevant drug off trial. Challenges to trial accrual included patient preference of noninvestigational treatment or local treatment, poor performance status or other reasons for trial ineligibility, lack of trials/slots, and insurance denial. Conclusion Broad implementation of multiplex hotspot testing is feasible; however, only a small portion of patients with actionable alterations were actually enrolled onto genotype-matched trials. Increased awareness of therapeutic implications and access to novel therapeutics are needed to optimally leverage results from broad-based genomic testing. PMID:26014291

  1. Load-balanced parallel streamline generation on large scale vector fields.

    PubMed

    Nouanesengsy, Boonthanome; Lee, Teng-Yok; Shen, Han-Wei

    2011-12-01

    Because of the ever increasing size of output data from scientific simulations, supercomputers are increasingly relied upon to generate visualizations. One use of supercomputers is to generate field lines from large scale flow fields. When generating field lines in parallel, the vector field is generally decomposed into blocks, which are then assigned to processors. Since various regions of the vector field can have different flow complexity, processors will require varying amounts of computation time to trace their particles, causing load imbalance, and thus limiting the performance speedup. To achieve load-balanced streamline generation, we propose a workload-aware partitioning algorithm to decompose the vector field into partitions with near equal workloads. Since actual workloads are unknown beforehand, we propose a workload estimation algorithm to predict the workload in the local vector field. A graph-based representation of the vector field is employed to generate these estimates. Once the workloads have been estimated, our partitioning algorithm is hierarchically applied to distribute the workload to all partitions. We examine the performance of our workload estimation and workload-aware partitioning algorithm in several timings studies, which demonstrates that by employing these methods, better scalability can be achieved with little overhead. PMID:22034295

  2. On the velocity in the Effective Field Theory of Large Scale Structures

    NASA Astrophysics Data System (ADS)

    Mercolli, Lorenzo; Pajer, Enrico

    2014-03-01

    We compute the renormalized two-point functions of density, divergence and vorticity of the velocity in the Effective Field Theory of Large Scale Structures. Because of momentum and mass conservation, the corrections from short scales to the large-scale power spectra of density, divergence and vorticity must start at order k4. For the vorticity this constitutes one of the two leading terms. Exact (approximated) self-similarity of an Einstein-de Sitter (ΛCDM) background fixes the time dependence so that the vorticity power spectrum at leading order is determined by the symmetries of the problem and the power spectrum around the non-linear scale. We show that to cancel all divergences in the velocity correlators one needs new counterterms. These fix the definition of velocity and do not represent new properties of the system. For an Einstein-de Sitter universe, we show that all three renormalized cross- and auto-correlation functions have the same structure but different numerical coefficients, which we compute. We elucidate the differences between using momentum and velocity.

  3. On the velocity in the Effective Field Theory of Large Scale Structures

    SciTech Connect

    Mercolli, Lorenzo; Pajer, Enrico E-mail: enrico.pajer@gmail.com

    2014-03-01

    We compute the renormalized two-point functions of density, divergence and vorticity of the velocity in the Effective Field Theory of Large Scale Structures. Because of momentum and mass conservation, the corrections from short scales to the large-scale power spectra of density, divergence and vorticity must start at order k{sup 4}. For the vorticity this constitutes one of the two leading terms. Exact (approximated) self-similarity of an Einstein-de Sitter (ΛCDM) background fixes the time dependence so that the vorticity power spectrum at leading order is determined by the symmetries of the problem and the power spectrum around the non-linear scale. We show that to cancel all divergences in the velocity correlators one needs new counterterms. These fix the definition of velocity and do not represent new properties of the system. For an Einstein-de Sitter universe, we show that all three renormalized cross- and auto-correlation functions have the same structure but different numerical coefficients, which we compute. We elucidate the differences between using momentum and velocity.

  4. Calculation of large scale relative permeabilities from stochastic properties of the permeability field and fluid properties

    SciTech Connect

    Lenormand, R.; Thiele, M.R.

    1997-08-01

    The paper describes the method and presents preliminary results for the calculation of homogenized relative permeabilities using stochastic properties of the permeability field. In heterogeneous media, the spreading of an injected fluid is mainly sue to the permeability heterogeneity and viscosity fingering. At large scale, when the heterogeneous medium is replaced by a homogeneous one, we need to introduce a homogenized (or pseudo) relative permeability to obtain the same spreading. Generally, is derived by using fine-grid numerical simulations (Kyte and Berry). However, this operation is time consuming and cannot be performed for all the meshes of the reservoir. We propose an alternate method which uses the information given by the stochastic properties of the field without any numerical simulation. The method is based on recent developments on homogenized transport equations (the {open_quotes}MHD{close_quotes} equation, Lenormand SPE 30797). The MHD equation accounts for the three basic mechanisms of spreading of the injected fluid: (1) Dispersive spreading due to small scale randomness, characterized by a macrodispersion coefficient D. (2) Convective spreading due to large scale heterogeneities (layers) characterized by a heterogeneity factor H. (3) Viscous fingering characterized by an apparent viscosity ration M. In the paper, we first derive the parameters D and H as functions of variance and correlation length of the permeability field. The results are shown to be in good agreement with fine-grid simulations. The are then derived a function of D, H and M. The main result is that this approach lead to a time dependent . Finally, the calculated are compared to the values derived by history matching using fine-grid numerical simulations.

  5. Biodegradation of marine surface floating crude oil in a large-scale field simulated experiment.

    PubMed

    Bao, Mutai; Sun, Peiyan; Yang, Xiaofei; Wang, Xinping; Wang, Lina; Cao, Lixin; Li, Fujuan

    2014-08-01

    Biodegradation of marine surface floating crude oil with hydrocarbon degrading bacteria, rhamnolipid biosurfactants, and nutrients was carried out by a large-scale field simulated experiment in this paper. After a 103 day experiment, for n-alkanes, the maximum biodegradation rate reached 71% and the results showed hydrocarbon degrading bacteria, rhamnolipid biosurfactants, and nutrients have a comprehensive effect. It also showed that rhamnolipid biosurfactants could shorten the biodegradation time through an emulsifying function; the nutrients could greatly increase the biodegradation rate by promoting HDB production. For PAHs, the chrysene series had higher weathering resistance. For the same series, the weathering resistance ability is C1- < C2- < C3- < C4-. After 53 days, no comprehensive effect occurred and more biodegradation was found for different n-alkanes in two pools which only had added rhamnolipid biosurfactants or nutrients, respectively. Except for C14, C15 and C16 sesquiterpanes, most of the steranes and terpanes had high antibiodegradability.

  6. Far-field pattern of a coherently combined beam from large-scale laser diode arrays

    NASA Technical Reports Server (NTRS)

    Kwon, Jin H.; Lee, Ja H.; Williams, Michael D.

    1991-01-01

    The far-field pattern of a large-scale amplifier array (LSAA) consisting of a large number (2000) of diode laser amplifiers is numerically simulated, and the power collection efficiencies are determined. Random distributions of phase mismatches, misorientations, and element failures in the LSAA system are considered. Phase mismatches and misorientations of the element amplifiers are found to be the most critical parameters of those affecting the power-collection efficiency. Errors of 0.2 wavelength and 25 percent for phase and diffraction angle, respectively, cause a 10 percent reduction in power-collection efficiency. The results are used to evaluate the concept of space-laser power transmission. It is found that an overall transmission efficiency of 80 percent could be realized with a 5-m-diam. receiver at a distance of 10,000 km when an LSAA transmitter 6 m in diam. is aimed with state-of-the-art pointing accuracy.

  7. Large-Scale Magnetic Field Generation by Randomly Forced Shearing Waves

    NASA Astrophysics Data System (ADS)

    Heinemann, T.; McWilliams, J. C.; Schekochihin, A. A.

    2011-12-01

    A rigorous theory for the generation of a large-scale magnetic field by random nonhelically forced motions of a conducting fluid combined with a linear shear is presented in the analytically tractable limit of low magnetic Reynolds number (Rm) and weak shear. The dynamo is kinematic and due to fluctuations in the net (volume-averaged) electromotive force. This is a minimal proof-of-concept quasilinear calculation aiming to put the shear dynamo, a new effect recently found in numerical experiments, on a firm theoretical footing. Numerically observed scalings of the wave number and growth rate of the fastest-growing mode, previously not understood, are derived analytically. The simplicity of the model suggests that shear dynamo action may be a generic property of sheared magnetohydrodynamic turbulence.

  8. The trispectrum in the Effective Field Theory of Large Scale Structure

    NASA Astrophysics Data System (ADS)

    Bertolini, Daniele; Schutz, Katelin; Solon, Mikhail P.; Zurek, Kathryn M.

    2016-06-01

    We compute the connected four point correlation function (the trispectrum in Fourier space) of cosmological density perturbations at one-loop order in Standard Perturbation Theory (SPT) and the Effective Field Theory of Large Scale Structure (EFT of LSS). This paper is a companion to our earlier work on the non-Gaussian covariance of the matter power spectrum, which corresponds to a particular wavenumber configuration of the trispectrum. In the present calculation, we highlight and clarify some of the subtle aspects of the EFT framework that arise at third order in perturbation theory for general wavenumber configurations of the trispectrum. We consistently incorporate vorticity and non-locality in time into the EFT counterterms and lay out a complete basis of building blocks for the stress tensor. We show predictions for the one-loop SPT trispectrum and the EFT contributions, focusing on configurations which have particular relevance for using LSS to constrain primordial non-Gaussianity.

  9. Large-scale dynamic compaction demonstration using WIPP salt: Fielding and preliminary results

    SciTech Connect

    Ahrens, E.H.; Hansen, F.D.

    1995-10-01

    Reconsolidation of crushed rock salt is a phenomenon of great interest to programs studying isolation of hazardous materials in natural salt geologic settings. Of particular interest is the potential for disaggregated salt to be restored to nearly an impermeable state. For example, reconsolidated crushed salt is proposed as a major shaft seal component for the Waste Isolation Pilot Plant (WIPP) Project. The concept for a permanent shaft seal component of the WIPP repository is to densely compact crushed salt in the four shafts; an effective seal will then be developed as the surrounding salt creeps into the shafts, further consolidating the crushed salt. Fundamental information on placement density and permeability is required to ensure attainment of the design function. The work reported here is the first large-scale compaction demonstration to provide information on initial salt properties applicable to design, construction, and performance expectations. The shaft seals must function for 10,000 years. Over this period a crushed salt mass will become less permeable as it is compressed by creep closure of salt surrounding the shaft. These facts preclude the possibility of conducting a full-scale, real-time field test. Because permanent seals taking advantage of salt reconsolidation have never been constructed, performance measurements have not been made on an appropriately large scale. An understanding of potential construction methods, achievable initial density and permeability, and performance of reconsolidated salt over time is required for seal design and performance assessment. This report discusses fielding and operations of a nearly full-scale dynamic compaction of mine-run WIPP salt, and presents preliminary density and in situ (in place) gas permeability results.

  10. Constraining Large-Scale Solar Magnetic Field Models with Optical Coronal Observations

    NASA Astrophysics Data System (ADS)

    Uritsky, V. M.; Davila, J. M.; Jones, S. I.

    2015-12-01

    Scientific success of the Solar Probe Plus (SPP) and Solar Orbiter (SO) missions will depend to a large extent on the accuracy of the available coronal magnetic field models describing the connectivity of plasma disturbances in the inner heliosphere with their source regions. We argue that ground based and satellite coronagraph images can provide robust geometric constraints for the next generation of improved coronal magnetic field extrapolation models. In contrast to the previously proposed loop segmentation codes designed for detecting compact closed-field structures above solar active regions, we focus on the large-scale geometry of the open-field coronal regions located at significant radial distances from the solar surface. Details on the new feature detection algorithms will be presented. By applying the developed image processing methodology to high-resolution Mauna Loa Solar Observatory images, we perform an optimized 3D B-line tracing for a full Carrington rotation using the magnetic field extrapolation code presented in a companion talk by S.Jones at al. Tracing results are shown to be in a good qualitative agreement with the large-scalie configuration of the optical corona. Subsequent phases of the project and the related data products for SSP and SO missions as wwll as the supporting global heliospheric simulations will be discussed.

  11. Large-scale Magnetic Field Generation via the Kinetic Kelvin-Helmholtz Instability in Unmagnetized Scenarios

    NASA Astrophysics Data System (ADS)

    Alves, E. P.; Grismayer, T.; Martins, S. F.; Fiúza, F.; Fonseca, R. A.; Silva, L. O.

    2012-02-01

    Collisionless plasma instabilities are fundamental in magnetic field generation in astrophysical scenarios, but their role has been addressed in scenarios where velocity shear is absent. In this work we show that velocity shears must be considered when studying realistic astrophysical scenarios, since these trigger the collisionless Kelvin-Helmholtz instability (KHI). We present the first self-consistent three-dimensional particle-in-cell simulations of the KHI in conditions relevant for unmagnetized relativistic outflows with velocity shear, such as active galactic nuclei and gamma-ray bursts. We show the generation of a strong large-scale DC magnetic field, which extends over the entire shear-surface, reaching thicknesses of a few tens of electron skin depths, and persisting on timescales much longer than the electron timescale. This DC magnetic field is not captured by magnetohydrodynamic models since it arises from intrinsically kinetic effects. Our results indicate that the KHI can generate intense magnetic fields yielding equipartition values up to epsilon B /epsilon p ~= 10-3-10-2 in the electron timescale. The KHI-induced magnetic fields have a characteristic structure that will lead to a distinct radiation signature and can seed the turbulent dynamo amplification process. The dynamics of the KHI are relevant for non-thermal radiation modeling and can also have a strong impact on the formation of relativistic shocks in presence of velocity shears.

  12. DYNAMICAL FRICTION IN A GASEOUS MEDIUM WITH A LARGE-SCALE MAGNETIC FIELD

    SciTech Connect

    Sanchez-Salcedo, F. J.

    2012-02-01

    The dynamical friction force experienced by a massive gravitating body moving through a gaseous medium is modified by sufficiently strong large-scale magnetic fields. Using linear perturbation theory, we calculate the structure of the wake generated by, and the gravitational drag force on, a body traveling in a straight-line trajectory in a uniformly magnetized medium. The functional form of the drag force as a function of the Mach number ({identical_to} V{sub 0}/c{sub s} , where V{sub 0} is the velocity of the body and c{sub s} is the sound speed) depends on the strength of the magnetic field and on the angle between the velocity of the perturber and the direction of the magnetic field. In particular, the peak value of the drag force is not near Mach number {approx}1 for a perturber moving in a sufficiently magnetized medium. As a rule of thumb, we may state that for supersonic motion, magnetic fields act to suppress dynamical friction; for subsonic motion, they tend to enhance dynamical friction. For perturbers moving along the magnetic field lines, the drag force at some subsonic Mach numbers may be stronger than at supersonic velocities. We also mention the relevance of our findings to black hole coalescence in galactic nuclei.

  13. Merged interaction regions and large-scale magnetic field fluctuations during 1991: Voyager 2 observations

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Ness, N. F.

    1994-01-01

    This paper analyzes Voyager 2 observations of the magnetic field between 33.6 AU and 36.2 AU during 1991 when extraordinary events were observed on the Sun and in the heliosphere. The magnetic field strength signal B(t) has the unusual form of two large transient merged interaction regions (MIRs) on a fluctuating background. The two MIRs moved past the spacecraft in 32 days and 18 days, respectively. The mean field strength in each transient MIR was approx. equals 2.6 times the mean field during the remaining part of the year (0.11 nT). Each of the MIRs is related to a fast stream. The magnetic field is strong throughout each stream, suggesting that the strong fields are carried by the streams as well as produced by shock and stream compression. The fluctuations in B(t) during 1991 are not multifractal, and the MIRs cannot be approximated as multifractal clusters of intense magnetic fields. The distribution of the hour-averaged magnetic field strengths is approximately lognormal over 90% of its intermediate range, and it has an exponential tail for B greater than the average magnetic field strength. The elevation angles of B have a normal distribution with a standard deviation of 16 deg +/- 4 deg. The distributions of the azimuthal angles of B in the ranges 1 deg - 180 deg and 180 deg - 360 deg are approximately normal over a more limited range, and non-Gaussian tails associated with nearly radial magnetic fields; the standard deviations are approx. equal to 40 deg. Individual sectors are present throughout most of the interval, even in the MIRs, but there is no recurrent sector pattern. A model of the large-scale fluctuations in 1991 will have to include both determinaistic and statistical factors.

  14. Prospective large-scale field study generates predictive model identifying major contributors to colony losses.

    PubMed

    Kielmanowicz, Merav Gleit; Inberg, Alex; Lerner, Inbar Maayan; Golani, Yael; Brown, Nicholas; Turner, Catherine Louise; Hayes, Gerald J R; Ballam, Joan M

    2015-04-01

    Over the last decade, unusually high losses of colonies have been reported by beekeepers across the USA. Multiple factors such as Varroa destructor, bee viruses, Nosema ceranae, weather, beekeeping practices, nutrition, and pesticides have been shown to contribute to colony losses. Here we describe a large-scale controlled trial, in which different bee pathogens, bee population, and weather conditions across winter were monitored at three locations across the USA. In order to minimize influence of various known contributing factors and their interaction, the hives in the study were not treated with antibiotics or miticides. Additionally, the hives were kept at one location and were not exposed to potential stress factors associated with migration. Our results show that a linear association between load of viruses (DWV or IAPV) in Varroa and bees is present at high Varroa infestation levels (>3 mites per 100 bees). The collection of comprehensive data allowed us to draw a predictive model of colony losses and to show that Varroa destructor, along with bee viruses, mainly DWV replication, contributes to approximately 70% of colony losses. This correlation further supports the claim that insufficient control of the virus-vectoring Varroa mite would result in increased hive loss. The predictive model also indicates that a single factor may not be sufficient to trigger colony losses, whereas a combination of stressors appears to impact hive health. PMID:25875764

  15. Prospective large-scale field study generates predictive model identifying major contributors to colony losses.

    PubMed

    Kielmanowicz, Merav Gleit; Inberg, Alex; Lerner, Inbar Maayan; Golani, Yael; Brown, Nicholas; Turner, Catherine Louise; Hayes, Gerald J R; Ballam, Joan M

    2015-04-01

    Over the last decade, unusually high losses of colonies have been reported by beekeepers across the USA. Multiple factors such as Varroa destructor, bee viruses, Nosema ceranae, weather, beekeeping practices, nutrition, and pesticides have been shown to contribute to colony losses. Here we describe a large-scale controlled trial, in which different bee pathogens, bee population, and weather conditions across winter were monitored at three locations across the USA. In order to minimize influence of various known contributing factors and their interaction, the hives in the study were not treated with antibiotics or miticides. Additionally, the hives were kept at one location and were not exposed to potential stress factors associated with migration. Our results show that a linear association between load of viruses (DWV or IAPV) in Varroa and bees is present at high Varroa infestation levels (>3 mites per 100 bees). The collection of comprehensive data allowed us to draw a predictive model of colony losses and to show that Varroa destructor, along with bee viruses, mainly DWV replication, contributes to approximately 70% of colony losses. This correlation further supports the claim that insufficient control of the virus-vectoring Varroa mite would result in increased hive loss. The predictive model also indicates that a single factor may not be sufficient to trigger colony losses, whereas a combination of stressors appears to impact hive health.

  16. Prospective Large-Scale Field Study Generates Predictive Model Identifying Major Contributors to Colony Losses

    PubMed Central

    Kielmanowicz, Merav Gleit; Inberg, Alex; Lerner, Inbar Maayan; Golani, Yael; Brown, Nicholas; Turner, Catherine Louise; Hayes, Gerald J. R.; Ballam, Joan M.

    2015-01-01

    Over the last decade, unusually high losses of colonies have been reported by beekeepers across the USA. Multiple factors such as Varroa destructor, bee viruses, Nosema ceranae, weather, beekeeping practices, nutrition, and pesticides have been shown to contribute to colony losses. Here we describe a large-scale controlled trial, in which different bee pathogens, bee population, and weather conditions across winter were monitored at three locations across the USA. In order to minimize influence of various known contributing factors and their interaction, the hives in the study were not treated with antibiotics or miticides. Additionally, the hives were kept at one location and were not exposed to potential stress factors associated with migration. Our results show that a linear association between load of viruses (DWV or IAPV) in Varroa and bees is present at high Varroa infestation levels (>3 mites per 100 bees). The collection of comprehensive data allowed us to draw a predictive model of colony losses and to show that Varroa destructor, along with bee viruses, mainly DWV replication, contributes to approximately 70% of colony losses. This correlation further supports the claim that insufficient control of the virus-vectoring Varroa mite would result in increased hive loss. The predictive model also indicates that a single factor may not be sufficient to trigger colony losses, whereas a combination of stressors appears to impact hive health. PMID:25875764

  17. Development of Dynamic Flow Field Pressure Probes Suitable for Use in Large Scale Supersonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Porro, A. Robert

    2000-01-01

    A series of dynamic flow field pressure probes were developed for use in large-scale supersonic wind tunnels at NASA Glenn Research Center. These flow field probes include pitot, static, and five-hole conical pressure probes that are capable of capturing fast acting flow field pressure transients that occur on a millisecond time scale. The pitot and static probes can be used to determine local Mach number time histories during a transient event. The five-hole conical pressure probes are used primarily to determine local flow angularity, but can also determine local Mach number. These probes were designed, developed, and tested at the NASA Glenn Research Center. They were also used in a NASA Glenn 10-by 10-Foot Supersonic Wind Tunnel (SWT) test program where they successfully acquired flow field pressure data in the vicinity of a propulsion system during an engine compressor staff and inlet unstart transient event. Details of the design, development, and subsequent use of these probes are discussed in this report.

  18. The one-loop matter bispectrum in the Effective Field Theory of Large Scale Structures

    DOE PAGESBeta

    Angulo, Raul E.; Foreman, Simon; Schmittfull, Marcel; Senatore, Leonardo

    2015-10-14

    With this study, given the importance of future large scale structure surveys for delivering new cosmological information, it is crucial to reliably predict their observables. The Effective Field Theory of Large Scale Structures (EFTofLSS) provides a manifestly convergent perturbative scheme to compute the clustering of dark matter in the weakly nonlinear regime in an expansion in k/kNL, where k is the wavenumber of interest and kNL is the wavenumber associated to the nonlinear scale. It has been recently shown that the EFTofLSS matches to 1% level the dark matter power spectrum at redshift zero up to k ≃ 0.3 hmore » Mpc–1 and k ≃ 0.6 h Mpc–1 at one and two loops respectively, using only one counterterm that is fit to data. Similar results have been obtained for the momentum power spectrum at one loop. This is a remarkable improvement with respect to former analytical techniques. Here we study the prediction for the equal-time dark matter bispectrum at one loop. We find that at this order it is sufficient to consider the same counterterm that was measured in the power spectrum. Without any remaining free parameter, and in a cosmology for which kNL is smaller than in the previously considered cases (σ8=0.9), we find that the prediction from the EFTofLSS agrees very well with N-body simulations up to k ≃ 0.25 h Mpc–1, given the accuracy of the measurements, which is of order a few percent at the highest k's of interest. While the fit is very good on average up to k ≃ 0.25 h Mpc–1, the fit performs slightly worse on equilateral configurations, in agreement with expectations that for a given maximum k, equilateral triangles are the most nonlinear.« less

  19. From Efficacy Trial to Large Scale Effectiveness Trial: A Tier 2 Mathematics Intervention for First Graders with Difficulties in Mathematics

    ERIC Educational Resources Information Center

    Rolfhus, Eric; Clarke, Ben; Decker, Lauren E.; Williams, Chuck; Dimino, Joseph

    2013-01-01

    Large scale longitudinal research (Morgan, Farkas, & Wu, 2009) and a meta-analysis (Duncan et al., 2007) have found that early mathematics achievement is a strong predictor of later mathematics achievement. In fact, end of Kindergarten and end of grade 1 mathematics achievement on ECLS-K and similar mathematics proficiency measures tends to be…

  20. THE LARGE-SCALE MAGNETIC FIELDS OF ADVECTION-DOMINATED ACCRETION FLOWS

    SciTech Connect

    Cao Xinwu

    2011-08-20

    We calculate the advection/diffusion of the large-scale magnetic field threading an advection-dominated accretion flow (ADAF) and find that the magnetic field can be dragged inward by the accretion flow efficiently if the magnetic Prandtl number P{sub m}={eta}/{nu}{approx}1. This is due to the large radial velocity of the ADAF. It is found that the magnetic pressure can be as high as {approx}50% of the gas pressure in the inner region of the ADAF close to the black hole horizon, even if the external imposed homogeneous vertical field strength is {approx}< 5% of the gas pressure at the outer radius of the ADAF, which is caused by the gas in the ADAF plunging rapidly to the black hole within the marginal stable circular orbit. In the inner region of the ADAF, the accretion flow is significantly pressured in the vertical direction by the magnetic fields, and therefore its gas pressure can be two orders of magnitude higher than that in the ADAF without magnetic fields. This means that the magnetic field strength near the black hole is underestimated by assuming equipartition between magnetic and gas pressure with the conventional ADAF model. Our results show that the magnetic field strength of the flow near the black hole horizon can be more than one order of magnitude higher than that in the ADAF at {approx}3R{sub g} (R{sub g} = 2GM/c{sup 2}), which implies that the Blandford-Znajek mechanism could be more important than the Blandford-Payne mechanism for ADAFs. We find that the accretion flow is decelerated near the black hole by the magnetic field when the external imposed field is strong enough or the gas pressure of the flow is low at the outer radius, or both. This corresponds to a critical accretion rate, below which the accretion flow will be arrested by the magnetic field near the black hole for a given external imposed field. In this case, the gas may accrete as magnetically confined blobs diffusing through field lines in the region very close to the black

  1. Automated tracing of open-field coronal structures for an optimized large-scale magnetic field reconstruction

    NASA Astrophysics Data System (ADS)

    Uritsky, V. M.; Davila, J. M.; Jones, S. I.

    2014-12-01

    Solar Probe Plus and Solar Orbiter will provide detailed measurements in the inner heliosphere magnetically connected with the topologically complex and eruptive solar corona. Interpretation of these measurements will require accurate reconstruction of the large-scale coronal magnetic field. In a related presentation by S. Jones et al., we argue that such reconstruction can be performed using photospheric extrapolation methods constrained by white-light coronagraph images. Here, we present the image-processing component of this project dealing with an automated segmentation of fan-like coronal loop structures. In contrast to the existing segmentation codes designed for detecting small-scale closed loops in the vicinity of active regions, we focus on the large-scale geometry of the open-field coronal features observed at significant radial distances from the solar surface. The coronagraph images used for the loop segmentation are transformed into a polar coordinate system and undergo radial detrending and initial noise reduction. The preprocessed images are subject to an adaptive second order differentiation combining radial and azimuthal directions. An adjustable thresholding technique is applied to identify candidate coronagraph features associated with the large-scale coronal field. A blob detection algorithm is used to extract valid features and discard noisy data pixels. The obtained features are interpolated using higher-order polynomials which are used to derive empirical directional constraints for magnetic field extrapolation procedures based on photospheric magnetograms.

  2. Primordial Magnetic Field Effects on the CMB and Large-Scale Structure

    DOE PAGESBeta

    Yamazaki, Dai G.; Ichiki, Kiyotomo; Kajino, Toshitaka; Mathews, Grant J.

    2010-01-01

    Mmore » agnetic fields are everywhere in nature, and they play an important role in every astronomical environment which involves the formation of plasma and currents. It is natural therefore to suppose that magnetic fields could be present in the turbulent high-temperature environment of the big bang. Such a primordial magnetic field (PMF) would be expected to manifest itself in the cosmic microwave background (CMB) temperature and polarization anisotropies, and also in the formation of large-scale structure. In this paper, we summarize the theoretical framework which we have developed to calculate the PMF power spectrum to high precision. Using this formulation, we summarize calculations of the effects of a PMF which take accurate quantitative account of the time evolution of the cutoff scale. We review the constructed numerical program, which is without approximation, and an improvement over the approach used in a number of previous works for studying the effect of the PMF on the cosmological perturbations. We demonstrate how the PMF is an important cosmological physical process on small scales. We also summarize the current constraints on the PMF amplitude B λ and the power spectral index n B which have been deduced from the available CMB observational data by using our computational framework.« less

  3. RADIAL TRANSPORT OF LARGE-SCALE MAGNETIC FIELDS IN ACCRETION DISKS. II. RELAXATION TO STEADY STATES

    SciTech Connect

    Takeuchi, Taku; Okuzumi, Satoshi

    2014-12-20

    We study the time evolution of a large-scale magnetic flux threading an accretion disk. The induction equation of the mean poloidal field is solved under the standard viscous disk model. Magnetic flux evolution is controlled by two timescales: one is the timescale of the inward advection of the magnetic flux, τ{sub adv}. This is induced by the dragging of the flux by the accreting gas. The other is the outward diffusion timescale of the magnetic flux τ{sub dif}. We consider diffusion due to the Ohmic resistivity. These timescales can be significantly different from the disk viscous timescale τ{sub disk}. The behaviors of the magnetic flux evolution are quite different depending on the magnitude relationship of the timescales τ{sub adv}, τ{sub dif}, and τ{sub disk}. The most interesting phenomena occur when τ{sub adv} << τ{sub dif}, τ{sub disk}. In such a case, the magnetic flux distribution approaches a quasi-steady profile much faster than the viscous evolution of the gas disk, and the magnetic flux has also been tightly bundled to the inner part of the disk. In the inner part, although the poloidal magnetic field becomes much stronger than the interstellar magnetic field, the field strength is limited to the maximum value that is analytically given by our previous work. We also find a condition for the initial large magnetic flux, which is a fossil of the magnetic field dragging during the early phase of star formation that survives for a duration in which significant gas disk evolution proceeds.

  4. Single-field consistency relations of large scale structure part II: resummation and redshift space

    SciTech Connect

    Creminelli, Paolo; Gleyzes, Jérôme; Vernizzi, Filippo; Simonović, Marko E-mail: jerome.gleyzes@cea.fr E-mail: filippo.vernizzi@cea.fr

    2014-02-01

    We generalize the recently derived single-field consistency relations of Large Scale Structure in two directions. First, we treat the effect of the long modes (with momentum q) on the short ones (with momentum k) non-perturbatively, by writing resummed consistency relations which do not require k/q⋅δ{sub q} << 1. These relations do not make any assumptions on the short-scales physics and are extended to include (an arbitrary number of) multiple long modes, internal lines with soft momenta and soft loops. We do several checks of these relations in perturbation theory and we verify that the effect of soft modes always cancels out in equal-time correlators. Second, we write the relations directly in redshift space, without assuming the single-stream approximation: not only the long mode affects the short scales as a homogeneous gravitational field, but it also displaces them by its velocity along the line-of-sight. Redshift space consistency relations still vanish when short modes are taken at equal time: an observation of a signal in the squeezed limit would point towards multifield inflation or a violation of the equivalence principle.

  5. The Lagrangian-space Effective Field Theory of large scale structures

    NASA Astrophysics Data System (ADS)

    Porto, Rafael A.; Senatore, Leonardo; Zaldarriaga, Matias

    2014-05-01

    We introduce a Lagrangian-space Effective Field Theory (LEFT) formalism for the study of cosmological large scale structures. Unlike the previous Eulerian-space construction, it is naturally formulated as an effective field theory of extended objects in Lagrangian space. In LEFT the resulting finite size effects are described using a multipole expansion parameterized by a set of time dependent coefficients and organized in powers of the ratio of the wavenumber of interest k over the non-linear scale kNL. The multipoles encode the effects of the short distance modes on the long-wavelength universe and absorb UV divergences when present. There are no IR divergences in LEFT. Some of the parameters that control the perturbative approach are not assumed to be small and can be automatically resummed. We present an illustrative one-loop calculation for a power law universe. We describe the dynamics both at the level of the equations of motion and through an action formalism.

  6. The Lagrangian-space Effective Field Theory of large scale structures

    SciTech Connect

    Porto, Rafael A.; Zaldarriaga, Matias; Senatore, Leonardo E-mail: senatore@stanford.edu

    2014-05-01

    We introduce a Lagrangian-space Effective Field Theory (LEFT) formalism for the study of cosmological large scale structures. Unlike the previous Eulerian-space construction, it is naturally formulated as an effective field theory of extended objects in Lagrangian space. In LEFT the resulting finite size effects are described using a multipole expansion parameterized by a set of time dependent coefficients and organized in powers of the ratio of the wavenumber of interest k over the non-linear scale k{sub NL}. The multipoles encode the effects of the short distance modes on the long-wavelength universe and absorb UV divergences when present. There are no IR divergences in LEFT. Some of the parameters that control the perturbative approach are not assumed to be small and can be automatically resummed. We present an illustrative one-loop calculation for a power law universe. We describe the dynamics both at the level of the equations of motion and through an action formalism.

  7. Large-scale full-field metrology using projected fringes: some challenges and solutions

    NASA Astrophysics Data System (ADS)

    Huntley, Jonathan M.; Ogundana, Tokunbo; Burguete, Richard L.; Coggrave, C. Russell

    2007-06-01

    The application of optical techniques to the measurement of shape and deformation of structures in the aerospace industry poses unique challenges resulting from the large length scales involved, which are typically in the 1-10 m range. For example, the relative immobility of large samples requires a network of sensors to be linked into a common global coordinate system; traceable calibration requires the development of new types of calibration artefact; and traditional interferometric techniques for displacement field mapping are frequently too sensitive to observe the physical effect of interest. We describe a system designed to address some of these problems based on the projected fringe technique combined with temporal phase unwrapping. Multiple cameras and projectors are linked into a common coordinate system using calibration concepts borrowed from the photogrammetry field. Traceable calibration is achieved through the use of reference spheres separated by a bar of known length. Traditional two-dimensional image processing techniques for recognizing circles (Hough transforms) have been extended to the automatic detection of spheres within the measured 3-D point clouds. Bundle adjustment software has been developed to refine the camera and projector calibration parameters as well as the rigid body translation and rotation coordinates defining the poses of the calibration artefact. An overview of all these aspects of the developed techniques is given in the paper. Typical results from a compression test on a large scale aluminium structure, performed on-site at Airbus UK using the developed system, are also presented.

  8. Spatial distribution of large-scale solar magnetic fields and their relation to the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Levine, R. H.

    1979-01-01

    The spatial organization of the observed photospheric magnetic field as well as its relation to the polarity of the IMF have been studied using high resolution magnetograms from the Kitt Peak National Observatory. Systematic patterns in the large scale field are due to contributions from both concentrated flux and more diffuse flux. The polarity of the photospheric field, determined on various spatial scales, correlates with the polarity of the IMF. Analyses based on several spatial scales in the photosphere suggest that new flux in the interplanetary medium is often due to relatively small photospheric features which appear in the photosphere up to one month before they are manifest at the earth.

  9. LUMINOUS RED GALAXY HALO DENSITY FIELD RECONSTRUCTION AND APPLICATION TO LARGE-SCALE STRUCTURE MEASUREMENTS

    SciTech Connect

    Reid, Beth A.; Spergel, David N.; Bode, Paul E-mail: dns@astro.princeton.edu

    2009-09-01

    The nontrivial relationship between observations of galaxy positions in redshift space and the underlying matter field complicates our ability to determine the linear theory power spectrum and extract cosmological information from galaxy surveys. The Sloan Digital Sky Survey (SDSS) luminous red galaxy (LRG) catalog has the potential to place powerful constraints on cosmological parameters. LRGs are bright, highly biased tracers of large-scale structure. However, because they are highly biased, the nonlinear contribution of satellite galaxies to the galaxy power spectrum is large and fingers-of-God (FOGs) are significant. The combination of these effects leads to a {approx}10% correction in the underlying power spectrum at k = 0.1 h Mpc{sup -1} and {approx}40% correction at k = 0.2 h Mpc{sup -1} in the LRG P(k) analysis of Tegmark et al., thereby compromising the cosmological constraints when this potentially large correction is left as a free parameter. We propose an alternative approach to recovering the matter field from galaxy observations. Our approach is to use halos rather than galaxies to trace the underlying mass distribution. We identify FOGs and replace each FOG with a single halo object. This removes the nonlinear contribution of satellite galaxies, the one-halo term. We test our method on a large set of high-fidelity mock SDSS LRG catalogs and find that the power spectrum of the reconstructed halo density field deviates from the underlying matter power spectrum at the {<=}1% level for k {<=} 0.1 h Mpc{sup -1} and {<=}4% at k = 0.2 h Mpc{sup -1}. The reconstructed halo density field also removes the bias in the measurement of the redshift space distortion parameter {beta} induced by the FOG smearing of the linear redshift space distortions.

  10. Seeking large-scale magnetic fields in a pure-disk dwarf galaxy NGC 2976

    NASA Astrophysics Data System (ADS)

    Drzazga, R. T.; Chyży, K. T.; Heald, G. H.; Elstner, D.; Gallagher, J. S.

    2016-05-01

    Aims: It is still unknown how magnetic field-generation mechanisms could operate in low-mass dwarf galaxies. Here, we present a detailed study of a nearby pure-disk dwarf galaxy NGC 2976. Unlike previously observed dwarf objects, this galaxy possesses a clearly defined disk. We also discuss whether NGC 2976 could serve as a potential source of the intergalactic magnetic field. Methods: For the purpose of our studies, we performed deep multi-frequency polarimetric observations of NGC 2976 with the VLA and Effelsberg radio telescopes. Additionally, we supplement them with re-imaged data from the WSRT-SINGS survey for which a rotation measure (RM) synthesis was performed. A new weighting scheme for the RM synthesis algorithm, consisting of including information about the quality of data in individual frequency channels, was proposed and investigated. Application of this new weighting to the simulated data, as well as to the observed data, results in an improvement of the signal-to-noise ratio in the Faraday depth space. Results: The magnetic field morphology discovered in NGC 2976 consists of a southern polarized ridge. This structure does not seem to be due to just a pure large-scale dynamo process (possibly cosmic-ray driven) at work in this object, as indicated by the RM data and dynamo number calculations. Instead, the field of NGC 2976 is modified by past gravitational interactions and possibly also by ram pressure inside the M 81 galaxy group environment. The estimates of total (7 μG) and ordered (3 μG) magnetic field strengths, as well as degree of field order (0.46), which is similar to those observed in spirals, suggest that tidally generated magnetized gas flows can further enhance dynamo action in the object. NGC 2976 is apparently a good candidate for the efficient magnetization of its neighbourhood. It is able to provide an ordered (perhaps also regular) magnetic field into the intergalactic space up to a distance of about 5 kpc. Conclusions: Tidal

  11. The one-loop matter bispectrum in the Effective Field Theory of Large Scale Structures

    SciTech Connect

    Angulo, Raul E.; Foreman, Simon; Schmittfull, Marcel; Senatore, Leonardo

    2015-10-14

    With this study, given the importance of future large scale structure surveys for delivering new cosmological information, it is crucial to reliably predict their observables. The Effective Field Theory of Large Scale Structures (EFTofLSS) provides a manifestly convergent perturbative scheme to compute the clustering of dark matter in the weakly nonlinear regime in an expansion in k/kNL, where k is the wavenumber of interest and kNL is the wavenumber associated to the nonlinear scale. It has been recently shown that the EFTofLSS matches to 1% level the dark matter power spectrum at redshift zero up to k ≃ 0.3 h Mpc–1 and k ≃ 0.6 h Mpc–1 at one and two loops respectively, using only one counterterm that is fit to data. Similar results have been obtained for the momentum power spectrum at one loop. This is a remarkable improvement with respect to former analytical techniques. Here we study the prediction for the equal-time dark matter bispectrum at one loop. We find that at this order it is sufficient to consider the same counterterm that was measured in the power spectrum. Without any remaining free parameter, and in a cosmology for which kNL is smaller than in the previously considered cases (σ8=0.9), we find that the prediction from the EFTofLSS agrees very well with N-body simulations up to k ≃ 0.25 h Mpc–1, given the accuracy of the measurements, which is of order a few percent at the highest k's of interest. While the fit is very good on average up to k ≃ 0.25 h Mpc–1, the fit performs slightly worse on equilateral configurations, in agreement with expectations that for a given maximum k, equilateral triangles are the most nonlinear.

  12. Powering up with indirect reciprocity in a large-scale field experiment.

    PubMed

    Yoeli, Erez; Hoffman, Moshe; Rand, David G; Nowak, Martin A

    2013-06-18

    A defining aspect of human cooperation is the use of sophisticated indirect reciprocity. We observe others, talk about others, and act accordingly. We help those who help others, and we cooperate expecting that others will cooperate in return. Indirect reciprocity is based on reputation, which spreads by communication. A crucial aspect of indirect reciprocity is observability: reputation effects can support cooperation as long as peoples' actions can be observed by others. In evolutionary models of indirect reciprocity, natural selection favors cooperation when observability is sufficiently high. Complimenting this theoretical work are experiments where observability promotes cooperation among small groups playing games in the laboratory. Until now, however, there has been little evidence of observability's power to promote large-scale cooperation in real world settings. Here we provide such evidence using a field study involving 2413 subjects. We collaborated with a utility company to study participation in a program designed to prevent blackouts. We show that observability triples participation in this public goods game. The effect is over four times larger than offering a $25 monetary incentive, the company's previous policy. Furthermore, as predicted by indirect reciprocity, we provide evidence that reputational concerns are driving our observability effect. In sum, we show how indirect reciprocity can be harnessed to increase cooperation in a relevant, real-world public goods game.

  13. Powering up with indirect reciprocity in a large-scale field experiment.

    PubMed

    Yoeli, Erez; Hoffman, Moshe; Rand, David G; Nowak, Martin A

    2013-06-18

    A defining aspect of human cooperation is the use of sophisticated indirect reciprocity. We observe others, talk about others, and act accordingly. We help those who help others, and we cooperate expecting that others will cooperate in return. Indirect reciprocity is based on reputation, which spreads by communication. A crucial aspect of indirect reciprocity is observability: reputation effects can support cooperation as long as peoples' actions can be observed by others. In evolutionary models of indirect reciprocity, natural selection favors cooperation when observability is sufficiently high. Complimenting this theoretical work are experiments where observability promotes cooperation among small groups playing games in the laboratory. Until now, however, there has been little evidence of observability's power to promote large-scale cooperation in real world settings. Here we provide such evidence using a field study involving 2413 subjects. We collaborated with a utility company to study participation in a program designed to prevent blackouts. We show that observability triples participation in this public goods game. The effect is over four times larger than offering a $25 monetary incentive, the company's previous policy. Furthermore, as predicted by indirect reciprocity, we provide evidence that reputational concerns are driving our observability effect. In sum, we show how indirect reciprocity can be harnessed to increase cooperation in a relevant, real-world public goods game. PMID:23754399

  14. Powering up with indirect reciprocity in a large-scale field experiment

    PubMed Central

    Yoeli, Erez; Hoffman, Moshe; Rand, David G.; Nowak, Martin A.

    2013-01-01

    A defining aspect of human cooperation is the use of sophisticated indirect reciprocity. We observe others, talk about others, and act accordingly. We help those who help others, and we cooperate expecting that others will cooperate in return. Indirect reciprocity is based on reputation, which spreads by communication. A crucial aspect of indirect reciprocity is observability: reputation effects can support cooperation as long as peoples’ actions can be observed by others. In evolutionary models of indirect reciprocity, natural selection favors cooperation when observability is sufficiently high. Complimenting this theoretical work are experiments where observability promotes cooperation among small groups playing games in the laboratory. Until now, however, there has been little evidence of observability’s power to promote large-scale cooperation in real world settings. Here we provide such evidence using a field study involving 2413 subjects. We collaborated with a utility company to study participation in a program designed to prevent blackouts. We show that observability triples participation in this public goods game. The effect is over four times larger than offering a $25 monetary incentive, the company’s previous policy. Furthermore, as predicted by indirect reciprocity, we provide evidence that reputational concerns are driving our observability effect. In sum, we show how indirect reciprocity can be harnessed to increase cooperation in a relevant, real-world public goods game. PMID:23754399

  15. Large-scale sensor systems based on graphene electrolyte-gated field-effect transistors.

    PubMed

    Mackin, Charles; Palacios, Tomás

    2016-04-25

    This work reports a novel graphene electrolyte-gated field-effect transistor (EGFET) array architecture along with a compact, self-contained, and inexpensive measurement system that allows DC characterization of hundreds of graphene EGFETs as a function of VDS and VGS within a matter of minutes. We develop a reliable graphene EGFET fabrication process capable of producing 100% yield for a sample size of 256 devices. Large sample size statistical analysis of graphene EGFET electrical performance is performed for the first time. This work develops a compact piecewise DC model for graphene EGFETs that is shown capable of fitting 87% of IDSvs. VGS curves with a mean percent error of 7% or less. The model is used to extract variations in device parameters such as mobility, contact resistance, minimum carrier concentration, and Dirac point. Correlations in variations are presented. Lastly, this work presents a framework for application-specific optimization of large-scale sensor designs based on graphene EGFETs. PMID:26788552

  16. The bispectrum in the Effective Field Theory of Large Scale Structure

    NASA Astrophysics Data System (ADS)

    Baldauf, Tobias; Mercolli, Lorenzo; Mirbabayi, Mehrdad; Pajer, Enrico

    2015-05-01

    We study the bispectrum in the Effective Field Theory of Large Scale Structure, consistently accounting for the effects of short-scale dynamics. We begin by proving that, as long as the theory is perturbative, it can be formulated to arbitrary order using only operators that are local in time. We then derive all the new operators required to cancel the UV-divergences and obtain a physically meaningful prediction for the one-loop bispectrum. In addition to new, subleading stochastic noises and the viscosity term needed for the one-loop power spectrum, we find three new effective operators. The three new parameters can be constrained by comparing with N-body simulations. The best fit is precisely what is suggested by the structure of UV-divergences, hence justifying a formula for the EFTofLSS bispectrum whose only fitting parameter is already fixed by the power spectrum. This result predicts the bispectrum of N-body simulations up to kmax≈0.22 h Mpc-1 at 0z=, an improvement by nearly a factor of two as compared to one-loop standard perturbation theory.

  17. VERTICAL STRUCTURE OF STATIONARY ACCRETION DISKS WITH A LARGE-SCALE MAGNETIC FIELD

    SciTech Connect

    Bisnovatyi-Kogan, G. S.; Lovelace, R. V. E. E-mail: RVL1@cornell.edu

    2012-05-10

    In earlier works we pointed out that the disk's surface layers are non-turbulent and thus highly conducting (or non-diffusive) because the hydrodynamic and/or magnetorotational instabilities are suppressed high in the disk where the magnetic and radiation pressures are larger than the plasma thermal pressure. Here, we calculate the vertical profiles of the stationary accretion flows (with radial and azimuthal components), and the profiles of the large-scale, magnetic field taking into account the turbulent viscosity and diffusivity and the fact that the turbulence vanishes at the surface of the disk. Also, here we require that the radial accretion speed be zero at the disk's surface and we assume that the ratio of the turbulent viscosity to the turbulent magnetic diffusivity is of order unity. Thus, at the disk's surface there are three boundary conditions. As a result, for a fixed dimensionless viscosity {alpha}-value, we find that there is a definite relation between the ratio R of the accretion power going into magnetic disk winds to the viscous power dissipation and the midplane plasma-{beta}, which is the ratio of the plasma to magnetic pressure in the disk. For a specific disk model with R of order unity we find that the critical value required for a stationary solution is {beta}{sub c} Almost-Equal-To 2.4r/({alpha}h), where h is the disk's half thickness. For weaker magnetic fields, {beta} > {beta}{sub c}, we argue that the poloidal field will advect outward while for {beta} < {beta}{sub c} it will advect inward. Alternatively, if the disk wind is negligible (R<<1), there are stationary solutions with {beta} >> {beta}{sub c}.

  18. Field-flow fractionation of nucleic acids and proteins under large-scale gradient magnetic fields

    NASA Astrophysics Data System (ADS)

    Iwasaka, M.

    2007-05-01

    For the purpose of developing techniques for separating biological macromolecules, the present study reports a magnetic chromatography system employing high performance liquid chromatography and superconducting magnets of 14 and 5T. We observed chromatograms of catalase and albumin, which were eluded from columns that were exposed to magnetic fields of up to 14T with a maximum gradient of 90T/m. Without the magnetic fields, the chromatograms of the macromolecules showed a clear peak, while the chromatograms changed to have separated peaks for the same molecules after exposure to gradient magnetic fields. When the chromatocolumn was placed so the magnetic forces were opposite to the direction of flow, the albumin molecules separated into two groups. In addition, the chromatograms of catalase exposed to the magnetic fields indicated that the retention times of the two kinds of magnetically separated catalase were relatively changed if the column-field configuration was changed. Probably, the balance of paramagnetism in the heme and diamagnetism in the protein controlled the transport velocity under the influence of the gradient magnetic fields. In addition, the transport velocity of DNA molecules in the flow with a high gradient magnetic field was observed using a time-resolved spectrophotometric system.

  19. Simplified field-in-field technique for a large-scale implementation in breast radiation treatment

    SciTech Connect

    Fournier-Bidoz, Nathalie; Kirova, Youlia M.; Campana, Francois; Dendale, Remi; Fourquet, Alain

    2012-07-01

    We wanted to evaluate a simplified 'field-in-field' technique (SFF) that was implemented in our department of Radiation Oncology for breast treatment. This study evaluated 15 consecutive patients treated with a simplified field in field technique after breast-conserving surgery for early-stage breast cancer. Radiotherapy consisted of whole-breast irradiation to the total dose of 50 Gy in 25 fractions, and a boost of 16 Gy in 8 fractions to the tumor bed. We compared dosimetric outcomes of SFF to state-of-the-art electronic surface compensation (ESC) with dynamic leaves. An analysis of early skin toxicity of a population of 15 patients was performed. The median volume receiving at least 95% of the prescribed dose was 763 mL (range, 347-1472) for SFF vs. 779 mL (range, 349-1494) for ESC. The median residual 107% isodose was 0.1 mL (range, 0-63) for SFF and 1.9 mL (range, 0-57) for ESC. Monitor units were on average 25% higher in ESC plans compared with SFF. No patient treated with SFF had acute side effects superior to grade 1-NCI scale. SFF created homogenous 3D dose distributions equivalent to electronic surface compensation with dynamic leaves. It allowed the integration of a forward planned concomitant tumor bed boost as an additional multileaf collimator subfield of the tangential fields. Compared with electronic surface compensation with dynamic leaves, shorter treatment times allowed better radiation protection to the patient. Low-grade acute toxicity evaluated weekly during treatment and 2 months after treatment completion justified the pursuit of this technique for all breast patients in our department.

  20. Four large-scale field-aligned current systmes in the dayside high-latitude region

    NASA Technical Reports Server (NTRS)

    Ohtani, S.; Potemra, T. A.; Newell, P.T.; Zanetti, L. J.; Iijima, T.; Watanabe, M.; Blomberg, L. G.; Elphinstone, R. D.; Murphree, J. S.; Yamauchi, M.

    1995-01-01

    A system of four current sheets of large-scale field-aligned currents (FACs) was discovered in the data set of simultaneous Viking and Defense Meteorological Satellire Program-F7 (DMSP-F7) crossing of the dayside high-latitude region. This paper reports four examples of this system that were observed in the prenoon sector. The flow polarities of FACs are upward, downward, upward, and downward, from equatorward to poleward. The lowest-latitude upward current is flowing mostly in the central plasma sheet (CPS) precipitation region, often overlapping with the boundary plasma sheet (BPS) at its poleward edge, andis interpreted as a region 2 current. The pair of downward and upward FACs in the middle of te structure are collocated with structured electron precipitation. The precipitation of high-energy (greater than 1 keV) electrons is more intense in the lower-latitude downward current sheet. The highest-latitude downward flowing current sheet is located in a weak, low-energy particle precipitation region, suggesting that this current is flowing on open field lines. Simulaneous observations in the postnoon local time sector reveal the standard three-sheet structure of FACs, sometimes described as region 2, region 1, and mantle (referred to the midday region O) currents. A high correlation was found between the occurrence of the four FAC sheet structure and negative interplanetary magnetic field (IMF) B(sub Y). We discuss the FAC structurein terms of three types of convection cells: the merging, viscous, andlobe cells. During strongly negative IMF B(sub Y), two convection reversals exist in the prenoon sector; one is inside the viscous cell, and the other is between the viscous cell and the lobe cell. This structure of convection flow is supported by the Viking electric field and auroral UV image data. Based on the convection pattern, the four FAC sheet structure is interpreted as the latitude overlap of midday and morning FAC systems. We suggest that the for

  1. High Energy Particles, Shock Waves and Magnetic Fields in the Large Scale Structure of the Universe

    NASA Astrophysics Data System (ADS)

    Miniati, Francesco

    2000-11-01

    We have investigated acceleration of high energy cosmic rays in association with process of large scale structure formation. For the first time we have carried out numerical simulations of cosmological structure formation including explicitly the injection, acceleration and energy losses of high energy ions and electrons. Secondary electrons produced in hadronic collisions of cosmic ray ions and thermal background nuclei were also included in the calculation. Furthermore, we follow the passive evolution of the magnetic field (i.e. no magnetic force is included), generated at cosmic shocks through the Biermann battery mechanism. We first study the properties of cosmic shocks where particle acceleration takes place and find that most of the kinetic energy is processed by relatively weak shocks with Mach number of order 3-5. One of the main results of this thesis is that cosmic ray ions produced at these shocks store up a significant fraction of the total energy density and pressure inside today's clusters of galaxies. Furthermore, the radio synchrotron emission from secondary electrons in our simulation reproduces many observed features of radio halos. This result may suggest the important possibility that radio halos are a consequence of high non-thermal activity taking place inside clusters of galaxies. The non-thermal HXR excess of radiation observed in Coma cluster and Abell 2199 can be partially produced by inverse Compton emission of both primary and secondary electrons accelerated in simulated clusters with corresponding temperature, as they scatter the cosmic microwave background photons. The same mechanism, however, now involving the low energy electrons of the same distributions, generates an EUV luminosity that is far below the observed values.

  2. Increasing accuracy and throughput in large-scale microsatellite fingerprinting of cacao field germplasm collections

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microsatellite-based DNA fingerprinting has been increasingly applied in crop genebank management. However, efficiency and cost-saving remain a major challenge for large scale genotyping, even when middle or high throughput genotyping facility is available. In this study we report on increasing the...

  3. On the statistics of biased tracers in the Effective Field Theory of Large Scale Structures

    SciTech Connect

    Angulo, Raul; Fasiello, Matteo; Senatore, Leonardo; Vlah, Zvonimir

    2015-09-09

    With the completion of the Planck mission, in order to continue to gather cosmological information it has become crucial to understand the Large Scale Structures (LSS) of the universe to percent accuracy. The Effective Field Theory of LSS (EFTofLSS) is a novel theoretical framework that aims to develop an analytic understanding of LSS at long distances, where inhomogeneities are small. We further develop the description of biased tracers in the EFTofLSS to account for the effect of baryonic physics and primordial non-Gaussianities, finding that new bias coefficients are required. Then, restricting to dark matter with Gaussian initial conditions, we describe the prediction of the EFTofLSS for the one-loop halo-halo and halo-matter two-point functions, and for the tree-level halo-halo-halo, matter-halo-halo and matter-matter-halo three-point functions. Several new bias coefficients are needed in the EFTofLSS, even though their contribution at a given order can be degenerate and the same parameters contribute to multiple observables. We develop a method to reduce the number of biases to an irreducible basis, and find that, at the order at which we work, seven bias parameters are enough to describe this extremely rich set of statistics. We then compare with the output of an N-body simulation where the normalization parameter of the linear power spectrum is set to σ8 = 0.9. For the lowest mass bin, we find percent level agreement up to k ≃ 0.3 h Mpc–1 for the one-loop two-point functions, and up to k ≃ 0.15 h Mpc–1 for the tree-level three-point functions, with the k-reach decreasing with higher mass bins. In conclusion, this is consistent with the theoretical estimates, and suggests that the cosmological information in LSS amenable to analytical control is much more than previously believed.

  4. On the statistics of biased tracers in the Effective Field Theory of Large Scale Structures

    DOE PAGESBeta

    Angulo, Raul; Fasiello, Matteo; Senatore, Leonardo; Vlah, Zvonimir

    2015-09-09

    With the completion of the Planck mission, in order to continue to gather cosmological information it has become crucial to understand the Large Scale Structures (LSS) of the universe to percent accuracy. The Effective Field Theory of LSS (EFTofLSS) is a novel theoretical framework that aims to develop an analytic understanding of LSS at long distances, where inhomogeneities are small. We further develop the description of biased tracers in the EFTofLSS to account for the effect of baryonic physics and primordial non-Gaussianities, finding that new bias coefficients are required. Then, restricting to dark matter with Gaussian initial conditions, we describemore » the prediction of the EFTofLSS for the one-loop halo-halo and halo-matter two-point functions, and for the tree-level halo-halo-halo, matter-halo-halo and matter-matter-halo three-point functions. Several new bias coefficients are needed in the EFTofLSS, even though their contribution at a given order can be degenerate and the same parameters contribute to multiple observables. We develop a method to reduce the number of biases to an irreducible basis, and find that, at the order at which we work, seven bias parameters are enough to describe this extremely rich set of statistics. We then compare with the output of an N-body simulation where the normalization parameter of the linear power spectrum is set to σ8 = 0.9. For the lowest mass bin, we find percent level agreement up to k ≃ 0.3 h Mpc–1 for the one-loop two-point functions, and up to k ≃ 0.15 h Mpc–1 for the tree-level three-point functions, with the k-reach decreasing with higher mass bins. In conclusion, this is consistent with the theoretical estimates, and suggests that the cosmological information in LSS amenable to analytical control is much more than previously believed.« less

  5. Large scale dynamic systems

    NASA Technical Reports Server (NTRS)

    Doolin, B. F.

    1975-01-01

    Classes of large scale dynamic systems were discussed in the context of modern control theory. Specific examples discussed were in the technical fields of aeronautics, water resources and electric power.

  6. The persistence of large-scale blowouts in largely vegetated coastal dune fields

    NASA Astrophysics Data System (ADS)

    Delgado-Fernandez, Irene; Smyth, Thomas; Jackson, Derek; Davidson-Arnott, Robin; Smith, Alexander

    2016-04-01

    Coastal dunes move through natural phases of stability and instability during their evolution, displaying various temporal and spatial patterns across the dune field. Recent observations, however, have shown exceptionally rapid rates of stability through increased vegetative growth. This progressive vegetation colonisation and consequent loss of bare sand on coastal dune systems has been noted worldwide. Percentage reductions in bare sand of as much as 80% within just a few decades can been seen in examples from South Africa, Canada and Brazil as well as coastal dune sites across NW Europe. Despite these dramatic trends towards dune stabilisation, it is not uncommon to find particular examples of large-scale active blowouts and parabolic dunes within largely vegetated coastal dunes. While turbulence and airflow dynamics within features such as blowouts and other dune forms has been studied in detail within recent years, there is a lack of knowledge about what maintains dune mobility at these specific points in otherwise largely stabilized dune fields. This work explores the particular example of the 'Devil's Hole' blowout, Sefton Dunes, NW England. Approximately 300 m long by 100 m wide, its basin is below the water-table which leads to frequent flooding. Sefton Dunes in general have seen a dramatic loss of bare sand since the 1940s. However, and coinciding with this period of dune stabilisation, the 'Devil's Hole' has not only remained active but also grown in size at a rate of 4.5 m year-1 along its main axis. An exploration of factors controlling the maintenance of open bare sand areas at this particular location is examined using a variety of techniques including Computational Fluid Dynamics (CFD) airflow modelling and in situ empirical measurements of (short-term experiments) of wind turbulence and sand transport. Field measurements of wind parameters and transport processes were collected over a 2 week period during October 2015. Twenty three 3D ultrasonic

  7. Evidence for a large-scale helical magnetic field in the quasar 3C 454.3

    NASA Astrophysics Data System (ADS)

    Zamaninasab, M.; Savolainen, T.; Clausen-Brown, E.; Hovatta, T.; Lister, M. L.; Krichbaum, T. P.; Kovalev, Y. Y.; Pushkarev, A. B.

    2013-12-01

    Most current theoretical models link the launching of relativistic jets from active galactic nuclei to the presence of twisted magnetic fields close to the supermassive black hole. While these models predict a large-scale, ordered, helical magnetic field near the central engine, it is not clear if, and to what extent, this order is preserved further downstream in the jet. Here, we present compelling evidence that suggests that the radio emission from the jet of the quasar 3C 454.3 exhibits multiple signatures of a large-scale, ordered helical magnetic field component at a distance of hundreds of parsecs from the launching point. Our results provide observational support for magnetic jet launching models and indicate that the ordered helical field component may remain stable over a large distance down the jet.

  8. The magnetic shear-current effect: generation of large-scale magnetic fields by the small-scale dynamo

    NASA Astrophysics Data System (ADS)

    Squire, J.; Bhattacharjee, A.

    2016-04-01

    > A novel large-scale dynamo mechanism, the magnetic shear-current effect, is discussed and explored. The effect relies on the interaction of magnetic fluctuations with a mean shear flow, meaning the saturated state of the small-scale dynamo can drive a large-scale dynamo - in some sense the inverse of dynamo quenching. The dynamo is non-helical, with the mean field coefficient zero, and is caused by the interaction between an off-diagonal component of the turbulent resistivity and the stretching of the large-scale field by shear flow. Following up on previous numerical and analytic work, this paper presents further details of the numerical evidence for the effect, as well as an heuristic description of how magnetic fluctuations can interact with shear flow to produce the required electromotive force. The pressure response of the fluid is fundamental to this mechanism, which helps explain why the magnetic effect is stronger than its kinematic cousin, and the basic idea is related to the well-known lack of turbulent resistivity quenching by magnetic fluctuations. As well as being interesting for its applications to general high Reynolds number astrophysical turbulence, where strong small-scale magnetic fluctuations are expected to be prevalent, the magnetic shear-current effect is a likely candidate for large-scale dynamo in the unstratified regions of ionized accretion disks. Evidence for this is discussed, as well as future research directions and the challenges involved with understanding details of the effect in astrophysically relevant regimes.

  9. Single-field consistency relations of large scale structure part III: test of the equivalence principle

    SciTech Connect

    Creminelli, Paolo; Gleyzes, Jérôme; Vernizzi, Filippo; Hui, Lam; Simonović, Marko E-mail: jerome.gleyzes@cea.fr E-mail: msimonov@sissa.it

    2014-06-01

    The recently derived consistency relations for Large Scale Structure do not hold if the Equivalence Principle (EP) is violated. We show it explicitly in a toy model with two fluids, one of which is coupled to a fifth force. We explore the constraints that galaxy surveys can set on EP violation looking at the squeezed limit of the 3-point function involving two populations of objects. We find that one can explore EP violations of order 10{sup −3}÷10{sup −4} on cosmological scales. Chameleon models are already very constrained by the requirement of screening within the Solar System and only a very tiny region of the parameter space can be explored with this method. We show that no violation of the consistency relations is expected in Galileon models.

  10. TRMM Latent Heating Retrieval and Comparisons with Field Campaigns and Large-Scale Analyses

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Takayabu, Yukuri; Lang, S.; Shige, S.; Olson, W.; Hou, A.; Jiang, X.; Zhang, C.; Lau, W.; Krishnamurti, T.; Waliser, D.; Grecu, M.; Ciesielski, P. E.; Johnson, R. H.; Houze, R.; Kakar, R.; Nakamura, K.; Braun, S.; Hagos, S.; Oki, R.; Bhardwaj, A.

    2012-01-01

    Rainfall production is a fundamental process within the Earth's hydrological cycle because it represents both a principal forcing term in surface water budgets, and its energetics corollary, latent heating (LH), is one of the principal sources of atmospheric diabatic heating. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water. The vertical distribution of LH has a strong influence on the atmosphere, controlling large-scale tropical circulations, exciting and modulating tropical waves, maintaining the intensities of tropical cyclones, and even providing the energetics of midlatitude cyclones and other mobile midlatitude weather systems. Moreover, the processes associated with LH result in significant non-linear changes in atmospheric radiation through the creation, dissipation and modulation of clouds and precipitation. Yanai et al. (1973) utilized the meteorological data collected from a sounding network to present a pioneering work on thermodynamic budgets, which are referred to as the apparent heat source (Q1) and apparent moisture sink (Q2). Yanai's paper motivated the development of satellite-based LH algorithms and provided a theoretical background for imposing large-scale advective forcing into cloud-resolving models (CRMs). These CRM-simulated LH and Q1 data have been used to generate the look-up tables used in LH algorithms. This paper examines the retrieval, validation, and application of LH estimates based on rain rate quantities acquired from the Tropical Rainfall Measuring Mission satellite (TRMM). TRMM was launched in November 1997 as a joint enterprise between the American and Japanese space agencies -- with overriding goals of providing accurate four-dimensional estimates of rainfall and LH over the global Tropics and subtropics equatorward of 35o. Other literature has acknowledged the achievement of the first goal of obtaining an accurate rainfall climatology. This paper describes the

  11. Key Issues and Strategies for Recruitment and Implementation in Large-Scale Randomized Controlled Trial Studies in Afterschool Settings. Afterschool Research Brief. Issue No. 2

    ERIC Educational Resources Information Center

    Jones, Debra Hughes; Vaden-Kiernan, Michael; Rudo, Zena; Fitzgerald, Robert; Hartry, Ardice; Chambers, Bette; Smith, Dewi; Muller, Patricia; Moss, Marcey A.

    2008-01-01

    Under the larger scope of the National Partnership for Quality Afterschool Learning, SEDL funded three awardees to carry out large-scale randomized controlled trials (RCT) assessing the efficacy of promising literacy curricula in afterschool settings on student academic achievement. SEDL provided analytic and technical support to the RCT studies…

  12. Rapid Evolution of Parasite Resistance in a Warmer Environment: Insights from a Large Scale Field Experiment

    PubMed Central

    Mateos-Gonzalez, Fernando; Sundström, L. Fredrik; Schmid, Marian; Björklund, Mats

    2015-01-01

    Global climate change is expected to have major effects on host-parasite dynamics, with potentially enormous consequences for entire ecosystems. To develop an accurate prognostic framework, theoretical models must be supported by empirical research. We investigated potential changes in host-parasite dynamics between a fish parasite, the eyefluke Diplostomum baeri, and an intermediate host, the European perch Perca fluviatilis, in a large-scale semi-enclosed area in the Baltic Sea, the Biotest Lake, which since 1980 receives heated water from a nuclear power plant. Two sample screenings, in two consecutive years, showed that fish from the warmer Biotest Lake were now less parasitized than fish from the Baltic Sea. These results are contrasting previous screenings performed six years after the temperature change, which showed the inverse situation. An experimental infection, by which perch from both populations were exposed to D. baeri from the Baltic Sea, revealed that perch from the Baltic Sea were successfully infected, while Biotest fish were not. These findings suggest that the elevated temperature may have resulted, among other outcomes, in an extremely rapid evolutionary change through which fish from the experimental Biotest Lake have gained resistance to the parasite. Our results confirm the need to account for both rapid evolutionary adaptation and biotic interactions in predictive models, and highlight the importance of empirical research in order to validate future projections. PMID:26035300

  13. Rapid evolution of parasite resistance in a warmer environment: insights from a large scale field experiment.

    PubMed

    Mateos-Gonzalez, Fernando; Sundström, L Fredrik; Schmid, Marian; Björklund, Mats

    2015-01-01

    Global climate change is expected to have major effects on host-parasite dynamics, with potentially enormous consequences for entire ecosystems. To develop an accurate prognostic framework, theoretical models must be supported by empirical research. We investigated potential changes in host-parasite dynamics between a fish parasite, the eyefluke Diplostomum baeri, and an intermediate host, the European perch Perca fluviatilis, in a large-scale semi-enclosed area in the Baltic Sea, the Biotest Lake, which since 1980 receives heated water from a nuclear power plant. Two sample screenings, in two consecutive years, showed that fish from the warmer Biotest Lake were now less parasitized than fish from the Baltic Sea. These results are contrasting previous screenings performed six years after the temperature change, which showed the inverse situation. An experimental infection, by which perch from both populations were exposed to D. baeri from the Baltic Sea, revealed that perch from the Baltic Sea were successfully infected, while Biotest fish were not. These findings suggest that the elevated temperature may have resulted, among other outcomes, in an extremely rapid evolutionary change through which fish from the experimental Biotest Lake have gained resistance to the parasite. Our results confirm the need to account for both rapid evolutionary adaptation and biotic interactions in predictive models, and highlight the importance of empirical research in order to validate future projections. PMID:26035300

  14. EXPLAINING THE COEXISTENCE OF LARGE-SCALE AND SMALL-SCALE MAGNETIC FIELDS IN FULLY CONVECTIVE STARS

    SciTech Connect

    Yadav, Rakesh K.; Poppenhaeger, Katja; Wolk, Scott J.; Christensen, Ulrich R.; Gastine, Thomas; Morin, Julien; Reiners, Ansgar

    2015-11-10

    Despite the lack of a shear-rich tachocline region, low-mass fully convective (FC) stars are capable of generating strong magnetic fields, indicating that a dynamo mechanism fundamentally different from the solar dynamo is at work in these objects. We present a self-consistent three-dimensional model of magnetic field generation in low-mass FC stars. The model utilizes the anelastic magnetohydrodynamic equations to simulate compressible convection in a rotating sphere. A distributed dynamo working in the model spontaneously produces a dipole-dominated surface magnetic field of the observed strength. The interaction of this field with the turbulent convection in outer layers shreds it, producing small-scale fields that carry most of the magnetic flux. The Zeeman–Doppler-Imaging technique applied to synthetic spectropolarimetric data based on our model recovers most of the large-scale field. Our model simultaneously reproduces the morphology and magnitude of the large-scale field as well as the magnitude of the small-scale field observed on low-mass FC stars.

  15. The large-scale ionospheric electric field - Its variation with magnetic activity and relation to terrestrial kilometric radiation

    NASA Technical Reports Server (NTRS)

    Holzworth, R. H.; Cullers, D. K.; Hudson, M. K.; Berthelier, J.-J.; Fahleson, U. V.; Falthammar, C.-G.; Jalonen, L.; Tanskanen, P.; Kelley, M. C.; Kellogg, P. J.

    1977-01-01

    Four days of simultaneous auroral zone electric field measurements on balloons flown from six sites spanning 180 deg of magnetic longitude have been analyzed. The average electric field behavior during this magnetically quiet epoch is consistent with earlier single-point measurements, although the average auroral zone electric field was more affected by corotation effects than it was during more disturbed times. When these data, which primarily reflect the large-scale (several hundred kilometer) ionospheric electric field, are mapped to the equator, a steady dawn to dusk component is apparent only on the average, while instantaneously the field is quite variable. The ionospheric electric field during isolated substorms is shown to have differing signatures east and west of 2200 LT. A worldwide positive correlation is shown to exist between the auroral zone electric field strength and the intensity of terrestrial kilometric radiation.

  16. Monthly mean large-scale analyses of upper-tropospheric humidity and wind field divergence derived from three geostationary satellites

    NASA Technical Reports Server (NTRS)

    Schmetz, Johannes; Menzel, W. Paul; Velden, Christopher; Wu, Xiangqian; Vandeberg, Leo; Nieman, Steve; Hayden, Christopher; Holmlund, Kenneth; Geijo, Carlos

    1995-01-01

    This paper describes the results from a collaborative study between the European Space Operations Center, the European Organization for the Exploitation of Meteorological Satellites, the National Oceanic and Atmospheric Administration, and the Cooperative Institute for Meteorological Satellite Studies investigating the relationship between satellite-derived monthly mean fields of wind and humidity in the upper troposphere for March 1994. Three geostationary meteorological satellites GOES-7, Meteosat-3, and Meteosat-5 are used to cover an area from roughly 160 deg W to 50 deg E. The wind fields are derived from tracking features in successive images of upper-tropospheric water vapor (WV) as depicted in the 6.5-micron absorption band. The upper-tropospheric relative humidity (UTH) is inferred from measured water vapor radiances with a physical retrieval scheme based on radiative forward calculations. Quantitative information on large-scale circulation patterns in the upper-troposphere is possible with the dense spatial coverage of the WV wind vectors. The monthly mean wind field is used to estimate the large-scale divergence; values range between about-5 x 10(exp -6) and 5 x 10(exp 6)/s when averaged over a scale length of about 1000-2000 km. The spatial patterns of the UTH field and the divergence of the wind field closely resemble one another, suggesting that UTH patterns are principally determined by the large-scale circulation. Since the upper-tropospheric humidity absorbs upwelling radiation from lower-tropospheric levels and therefore contributes significantly to the atmospheric greenhouse effect, this work implies that studies on the climate relevance of water vapor should include three-dimensional modeling of the atmospheric dynamics. The fields of UTH and WV winds are useful parameters for a climate-monitoring system based on satellite data. The results from this 1-month analysis suggest the desirability of further GOES and Meteosat studies to characterize

  17. The use of a computer in the organization of a large-scale co-operative controlled clinical trial of the treatment of pulmonary tuberculosis*

    PubMed Central

    Tall, Ruth; Devine, C. Margaret

    1970-01-01

    The organization of controlled clinical trials requires well-defined clerical procedures which, with large-scale studies, are so monotonous that it is difficult to attract and keep staff of a sufficiently high calibre. In a large-scale trial of pulmonary tuberculosis, a computer is being used to undertake much of the routine clerical work, including (1) the preparation of an appointments diary, which also specifies the exact requirements for the trial, and (2) the storage of all the data on magnetic tape so that periodic checks can be made for missing data and interim and final analyses can be produced rapidly. These arrangements reduce the time spent by clerical and statistical staff to a minimum. Although a strict evaluation of the effect of introducing the computer has not yet been made, this approach does appear to be sufficiently promising to warrant further investigations of a similar type. PMID:4921092

  18. Generation of low-frequency electric and magnetic fields during large- scale chemical and nuclear explosions

    SciTech Connect

    Adushkin, V.V.; Dubinya, V.A.; Karaseva, V.A.; Soloviev, S.P.; Surkov, V.V.

    1995-06-01

    We discuss the main parameters of the electric field in the surface layer of the atmosphere and the results of the investigations of the natural electric field variations. Experimental investigations of the electromagnetic field for explosions in air are presented. Electromagnetic signals generated by underground nuclear and chemical explosions are discussed and explosions for 1976--1991 are listed. Long term anomalies of the earth`s electromagnetic field in the vicinity of underground explosions were also investigated. Study of the phenomenon of the irreversible shock magnetization showed that in the zone nearest to the explosion the quasistatic magnetic field decreases in inverse proportion to the distance.

  19. Effects and detectability of quasi-single field inflation in the large-scale structure and cosmic microwave background

    SciTech Connect

    Sefusatti, Emiliano; Fergusson, James R.; Chen, Xingang; Shellard, E.P.S. E-mail: jf334@damtp.cam.ac.uk E-mail: E.P.S.Shellard@damtp.cam.ac.uk

    2012-08-01

    Quasi-single field inflation predicts a peculiar momentum dependence in the squeezed limit of the primordial bispectrum which smoothly interpolates between the local and equilateral models. This dependence is directly related to the mass of the isocurvatons in the theory which is determined by the supersymmetry. Therefore, in the event of detection of a non-zero primordial bispectrum, additional constraints on the parameter controlling the momentum-dependence in the squeezed limit becomes an important question. We explore the effects of these non-Gaussian initial conditions on large-scale structure and the cosmic microwave background, with particular attention to the galaxy power spectrum at large scales and scale-dependence corrections to galaxy bias. We determine the simultaneous constraints on the two parameters describing the QSF bispectrum that we can expect from upcoming large-scale structure and cosmic microwave background observations. We find that for relatively large values of the non-Gaussian amplitude parameters, but still well within current uncertainties, galaxy power spectrum measurements will be able to distinguish the QSF scenario from the predictions of the local model. A CMB likelihood analysis, as well as Fisher matrix analysis, shows that there is also a range of parameter values for which Planck data may be able distinguish between QSF models and the related local and equilateral shapes. Given the different observational weightings of the CMB and LSS results, degeneracies can be significantly reduced in a joint analysis.

  20. Sectors and Large-Scale Magnetic Field Strength Fluctuations in the Heliosheath Near 110 AU: Voyager 1,2009

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Ness, N. F.

    2010-01-01

    This paper describes observations of daily averages of the magnetic field strength B and the magnetic polarity measured by Voyager 1 (V1) in the heliosheath during 2009 between 108.5 and 112.1 AU and at heliographic latitude 34. . 4. A negative magnetic polarity sector was observed during 2009 DOY 43.255. A positive polarity sector was observed during 2009 DOY 256.365. We offer the hypothesis that the existence of the two sectors is the result of the displacement of the wavy heliospheric current sheet to the position of V1 as a result of northward flow in the heliosheath. The large size of the sectors is caused by the slow radial motion of the flow observed by V1 in the heliosheath. The distribution of B during 2009 was lognormal, in contrast to the Gaussian distributions observed by V1 in the heliosheath prior to 2009. The large-scale fluctuations of B, described by the distribution of increments of daily averages of B, have a Tsallis distribution with q = 1.6. The large-scale fluctuations of B observed by V1 during 2009 have a multifractal spectrum with the same parameters that V1 observed during 2005 close to the termination shock at 94 AU. These results suggest that the large-scale magnetic fluctuations of B are in a metastable equilibrium state in the heliosheath between 94 AU and 112.1 AU.

  1. SECTORS AND LARGE-SCALE MAGNETIC FIELD STRENGTH FLUCTUATIONS IN THE HELIOSHEATH NEAR 110 AU: VOYAGER 1, 2009

    SciTech Connect

    Burlaga, L. F.; Ness, N. F. E-mail: nfnudel@yahoo.co

    2010-12-10

    This paper describes observations of daily averages of the magnetic field strength B and the magnetic polarity measured by Voyager 1 (V1) in the heliosheath during 2009 between 108.5 and 112.1 AU and at heliographic latitude 34.{sup 0}4. A negative magnetic polarity sector was observed during 2009 DOY 43-255. A positive polarity sector was observed during 2009 DOY 256-365. We offer the hypothesis that the existence of the two sectors is the result of the displacement of the wavy heliospheric current sheet to the position of V1 as a result of northward flow in the heliosheath. The large size of the sectors is caused by the slow radial motion of the flow observed by V1 in the heliosheath. The distribution of B during 2009 was lognormal, in contrast to the Gaussian distributions observed by V1 in the heliosheath prior to 2009. The large-scale fluctuations of B, described by the distribution of increments of daily averages of B, have a Tsallis distribution with q = 1.6. The large-scale fluctuations of B observed by V1 during 2009 have a multifractal spectrum with the same parameters that V1 observed during 2005 close to the termination shock at 94 AU. These results suggest that the large-scale magnetic fluctuations of B are in a metastable equilibrium state in the heliosheath between 94 AU and 112.1 AU.

  2. A large scale coherent magnetic field: interactions with free streaming particles and limits from the CMB

    SciTech Connect

    Adamek, Julian; Durrer, Ruth; Fenu, Elisa; Vonlanthen, Marc E-mail: ruth.durrer@unige.ch E-mail: marc.vonlanthen@unige.ch

    2011-06-01

    We study a homogeneous and nearly-isotropic Universe permeated by a homogeneous magnetic field. Together with an isotropic fluid, the homogeneous magnetic field, which is the primary source of anisotropy, leads to a plane-symmetric Bianchi I model of the Universe. However, when free-streaming relativistic particles are present, they generate an anisotropic pressure which counteracts the one from the magnetic field such that the Universe becomes isotropized. We show that due to this effect, the CMB temperature anisotropy from a homogeneous magnetic field is significantly suppressed if the neutrino masses are smaller than 0.3 eV.

  3. A polarity reversal in the large-scale magnetic field of the rapidly rotating sun HD 190771

    NASA Astrophysics Data System (ADS)

    Petit, P.; Dintrans, B.; Morgenthaler, A.; Van Grootel, V.; Morin, J.; Lanoux, J.; Aurière, M.; Konstantinova-Antova, R.

    2009-12-01

    Aims. We investigate the long-term evolution of the large-scale photospheric magnetic field geometry of the solar-type star HD 190771. With fundamental parameters very close to those of the Sun except for a shorter rotation period of 8.8 d, HD 190771 provides us with a first insight into the specific impact of the rotation rate in the dynamo generation of magnetic fields in 1 M_⊙ stars. Methods: We use circularly polarized, high-resolution spectra obtained with the NARVAL spectropolarimeter (Observatoire du Pic du Midi, France) and compute cross-correlation line profiles with high signal-to-noise ratio to detect polarized Zeeman signatures. From three phase-resolved data sets collected during the summers of 2007, 2008, and 2009, we model the large-scale photospheric magnetic field of the star by means of Zeeman-Doppler imaging and follow its temporal evolution. Results: The comparison of the magnetic maps shows that a polarity reversal of the axisymmetric component of the large-scale magnetic field occurred between 2007 and 2008, this evolution being observed in both the poloidal and toroidal magnetic components. Between 2008 and 2009, another type of global evolution occured, characterized by a sharp decrease of the fraction of magnetic energy stored in the toroidal component. These changes were not accompanied by significant evolution in the total photospheric magnetic energy. Using our spectra to perform radial velocity measurements, we also detect a very low-mass stellar companion to HD 190771. Table 1 is only available in electronic form at http://www.aanda.org

  4. Near-Earth Magnetic Field Effects of Large-Scale Magnetospheric Currents

    NASA Astrophysics Data System (ADS)

    Lühr, Hermann; Xiong, Chao; Olsen, Nils; Le, Guan

    2016-07-01

    Magnetospheric currents play an important role in the electrodynamics of near-Earth space. This has been the topic of many space science studies. Here we focus on the magnetic fields they cause close to Earth. Their contribution to the geomagnetic field is the second largest after the core field. Significant progress in interpreting the magnetic fields from the different sources has been achieved thanks to magnetic satellite missions like Ørsted, CHAMP and now Swarm. Of particular interest for this article is a proper representation of the magnetospheric ring current effect. Uncertainties in modelling its effect still produce the largest residuals between observations and present-day geomagnetic field models. A lot of progress has been achieved so far, but there are still open issues like the characteristics of the partial ring current. Other currents discussed are those flowing in the magnetospheric tail. Also their magnetic contribution at LEO orbits is non-negligible. Treating them as an independent source is a more recent development, which has cured some of the problems in geomagnetic field modelling. Unfortunately there is no index available for characterising the tail current intensity. Here we propose an approach that may help to properly quantify the magnetic contribution from the tail current for geomagnetic field modelling. Some open questions that require further investigation are mentioned at the end.

  5. Near-Earth Magnetic Field Effects of Large-Scale Magnetospheric Currents

    NASA Technical Reports Server (NTRS)

    Luehr, Hermann; Xiong, Chao; Olsen, Nils; Le, Guan

    2016-01-01

    Magnetospheric currents play an important role in the electrodynamics of near- Earth space. This has been the topic of many space science studies. Here we focus on the magnetic fields they cause close to Earth. Their contribution to the geomagnetic field is the second largest after the core field. Significant progress in interpreting the magnetic fields from the different sources has been achieved thanks to magnetic satellite missions like Ørsted, CHAMP and now Swarm. Of particular interest for this article is a proper representation of the magnetospheric ring current effect. Uncertainties in modelling its effect still produce the largest residuals between observations and present-day geomagnetic field models. A lot of progress has been achieved so far, but there are still open issues like the characteristics of the partial ring current. Other currents discussed are those flowing in the magnetospheric tail. Also their magnetic contribution at LEO orbits is non-negligible. Treating them as an independent source is a more recent development, which has cured some of the problems in geomagnetic field modelling. Unfortunately there is no index available for characterizing the tail current intensity. Here we propose an approach that may help to properly quantify the magnetic contribution from the tail current for geomagnetic field modelling. Some open questions that require further investigation are mentioned at the end.

  6. Large-Scale Dynamics of Mean-Field Games Driven by Local Nash Equilibria

    NASA Astrophysics Data System (ADS)

    Degond, Pierre; Liu, Jian-Guo; Ringhofer, Christian

    2014-02-01

    We introduce a new mean field kinetic model for systems of rational agents interacting in a game-theoretical framework. This model is inspired from non-cooperative anonymous games with a continuum of players and Mean-Field Games. The large time behavior of the system is given by a macroscopic closure with a Nash equilibrium serving as the local thermodynamic equilibrium. An application of the presented theory to a social model (herding behavior) is discussed.

  7. Electron Acceleration at a Coronal Shock Propagating through a Large-scale Streamer-like Magnetic Field

    NASA Astrophysics Data System (ADS)

    Kong, Xiangliang; Chen, Yao; Guo, Fan; Feng, Shiwei; Du, Guohui; Li, Gang

    2016-04-01

    Using a test-particle simulation, we investigate the effect of large-scale coronal magnetic fields on electron acceleration at an outward-propagating coronal shock with a circular front. The coronal field is approximated by an analytical solution with a streamer-like magnetic field featuring a partially open magnetic field and a current sheet at the equator atop the closed region. We show that the large-scale shock-field configuration, especially the relative curvature of the shock and the magnetic field line across which the shock is sweeping, plays an important role in the efficiency of electron acceleration. At low shock altitudes, when the shock curvature is larger than that of the magnetic field lines, the electrons are mainly accelerated at the shock flanks; at higher altitudes, when the shock curvature is smaller, the electrons are mainly accelerated at the shock nose around the top of closed field lines. The above process reveals the shift of the efficient electron acceleration region along the shock front during its propagation. We also find that, in general, the electron acceleration at the shock flank is not as efficient as that at the top of the closed field because a collapsing magnetic trap can be formed at the top. In addition, we find that the energy spectra of electrons are power-law-like, first hardening then softening with the spectral index varying in a range of ‑3 to ‑6. Physical interpretations of the results and implications for the study of solar radio bursts are discussed.

  8. Electron Acceleration at a Coronal Shock Propagating through a Large-scale Streamer-like Magnetic Field

    NASA Astrophysics Data System (ADS)

    Kong, Xiangliang; Chen, Yao; Guo, Fan; Feng, Shiwei; Du, Guohui; Li, Gang

    2016-04-01

    Using a test-particle simulation, we investigate the effect of large-scale coronal magnetic fields on electron acceleration at an outward-propagating coronal shock with a circular front. The coronal field is approximated by an analytical solution with a streamer-like magnetic field featuring a partially open magnetic field and a current sheet at the equator atop the closed region. We show that the large-scale shock-field configuration, especially the relative curvature of the shock and the magnetic field line across which the shock is sweeping, plays an important role in the efficiency of electron acceleration. At low shock altitudes, when the shock curvature is larger than that of the magnetic field lines, the electrons are mainly accelerated at the shock flanks; at higher altitudes, when the shock curvature is smaller, the electrons are mainly accelerated at the shock nose around the top of closed field lines. The above process reveals the shift of the efficient electron acceleration region along the shock front during its propagation. We also find that, in general, the electron acceleration at the shock flank is not as efficient as that at the top of the closed field because a collapsing magnetic trap can be formed at the top. In addition, we find that the energy spectra of electrons are power-law-like, first hardening then softening with the spectral index varying in a range of -3 to -6. Physical interpretations of the results and implications for the study of solar radio bursts are discussed.

  9. East-west inclination of large-scale photospheric magnetic fields

    NASA Technical Reports Server (NTRS)

    Shrauner, J. A; Scherrer, P. H.

    1994-01-01

    Sixteen years of Wilcox Solar Observatory (WSO) magnetogram data have been studied to determine the solar cycle variation and latitude dependence of the east-west inclination of photospheric magnetic field lines. East-west inclination is here defined as the angle between a field line and its local radial vector, as projected onto the plane of the latitude and line of sight. Inclination is determined by a least-squares fit of observed magnetic fields to a simple projection model, and is found to depend on polarity and to change with the solar cycle. Leading and following polarities are tipped towards each by about 9 deg and have an overall net tilt in the direction of rotation (to the west) of 0.6 deg. New cycles are seen to begin at high latitudes and to grow through the lower latitudes over approximately 5 years, providing evidence for an extended cycle length of 16-18 years.

  10. Motions of charged particles in the Magnetosphere under the influence of a time-varying large scale convection electric field

    NASA Technical Reports Server (NTRS)

    Smith, P. H.; Bewtra, N. K.; Hoffman, R. A.

    1979-01-01

    The motions of charged particles under the influence of the geomagnetic and electric fields were quite complex in the region of the inner magnetosphere. The Volland-Stern type large scale convection electric field was used successfully to predict both the plasmapause location and particle enhancements determined from Explorer 45 measurements. A time dependence in this electric field was introduced based on the variation in Kp for actual magnetic storm conditions. The particle trajectories were computed as they change in this time-varying electric field. Several storm fronts of particles of different magnetic moments were allowed to be injected into the inner magnetosphere from L = 10 in the equatorial plane. The motions of these fronts are presented in a movie format.

  11. Large-scale electric fields resulting from magnetic reconnection in the corona

    NASA Technical Reports Server (NTRS)

    Kopp, R. A.; Poletto, G.

    1986-01-01

    The method of Forbes and Priest (2-D model) is applied to the large two-ribbon flare of July 29, 1973, for which both detailed H observations and magnetic data are available. For this flare the ribbons were long, nearly straight, and parallel to each other, and the 2-D model for the coronal field geometry may be adequate. The temporal profile E(t) is calculated and indicates that reconnection sets in at the beginning of the decay phase. From this time the electric field grows rapidly to a maximum value of about 2 V/cm within just a few minutes. Thereafter it decreases monotonically with time.

  12. PROBING THE LARGE-SCALE TOPOLOGY OF THE HELIOSPHERIC MAGNETIC FIELD USING JOVIAN ELECTRONS

    SciTech Connect

    Owens, M. J.; Horbury, T. S.; Arge, C. N.

    2010-05-10

    Jupiter's magnetosphere acts as a point source of near-relativistic electrons within the heliosphere. In this study, three solar cycles of Jovian electron data in near-Earth space are examined. Jovian electron intensity is found to peak for an ideal Parker spiral connection, but with considerable spread about this point. Assuming the peak in Jovian electron counts indicates the best magnetic connection to Jupiter, we find a clear trend for fast and slow solar wind to be over- and under-wound with respect to the ideal Parker spiral, respectively. This is shown to be well explained in terms of solar wind stream interactions. Thus, modulation of Jovian electrons by corotating interaction regions (CIRs) may primarily be the result of changing magnetic connection, rather than CIRs acting as barriers to cross-field diffusion. By using Jovian electrons to remote sensing magnetic connectivity with Jupiter's magnetosphere, we suggest that they provide a means to validate solar wind models between 1 and 5 AU, even when suitable in situ solar wind observations are not available. Furthermore, using Jovian electron observations as probes of heliospheric magnetic topology could provide insight into heliospheric magnetic field braiding and turbulence, as well as any systematic under-winding of the heliospheric magnetic field relative to the Parker spiral from footpoint motion of the magnetic field.

  13. Large-scale three-dimensional phase field simulation of γ '-rafting and creep deformation

    NASA Astrophysics Data System (ADS)

    Zhou, Ning; Shen, Chen; Mills, Michael; Wang, Yunzhi

    2010-01-01

    Three-dimensional phase field simulations of coupled γ/γ ‧ microstructural evolution and plastic deformation in single crystal Ni-Al are carried out at micrometer scales. Coherent γ/γ ‧ microstructures and plastic deformation in γ-channels are described using a single, consistent methodology based on Khachaturyan's phase field microelasticity approach to coherent precipitates and dislocations. In particular, a new set of phase fields is introduced to characterize local density of dislocations from individual active slip systems. To increase the length scale of the phase field simulations, the Kim-Kim-Suzuki (KKS) treatment of γ/γ ‧ interfaces was adopted. The rafting kinetics, precipitate-matrix inversion process and the corresponding creep deformation are characterized with respect to parameters such as applied stress and lattice misfit. The simulation results on γ ‧-rafting kinetics and morphological evolution of the γ/γ ‧ microstructures are compared with available experiment. The model can be used to carry out parametric studies of the effects of material and processing parameters such as alloy composition, external stress and working temperature on γ ‧-rafting kinetics, morphological evolution and the corresponding creep deformation.

  14. Quantitative patterns of large-scale field-aligned currents in the auroral ionosphere

    SciTech Connect

    Foster, J.C.; Fuller-Rowell, T.; Evans, D.S.

    1989-03-01

    Quantitative patterns of the distribution of field-aligned current (FAC) density have been derived from gradients of the average patterns of the Hall and Pedersen currents at high latitudes under the assumption that the total current is divergence-free. The horizontal currents were calculated from empirical convection electric field models, derived from Millstone Hill radar observations, and the ionospheric Hall and Pedersen conductances, based on satellite observations of the precipitating particle energy flux and spectrum and including an average (equinox) solar contribution. These independent empirical models, and the resultant patterns of the field-aligned currents, are keyed to an auroral precipitation index which quantifies the intensity and spatial extent of high-latitude particle precipitation and which is determined from a single satellite crossing of the auroral precipitation pattern. The patterns detail the spatial distribution of the currents as a function of increasing disturbance level. The magnitudes of the total single-hemisphere currents into or out of the ionosphere are closely balanced at each activity level and increase exponentially between 0.1 and 6 MA with increasing values of the precipitation index. The interplanetary magnetic field (IMF) sector dependence of the FAC patterns is investigated for disturbed conditions. A large portion of the FAC pattern is closed by local Pedersen currents (current into the ionosphere is balanced by an equal current out of the ionosphere at that local time). This locally balanced portion of the FAC system is enhanced in the prenoon (postnoon) sector for IMF B/sub v/>+1 nT (B/sub y/<-1 nT). In addition, there are net currents into the ionosphere postnoon and out of the ionosphere in the premidnight sector.

  15. An analytical dynamo solution for large-scale magnetic fields of galaxies

    NASA Astrophysics Data System (ADS)

    Chamandy, Luke

    2016-11-01

    We present an effectively global analytical asymptotic galactic dynamo solution for the regular magnetic field of an axisymmetric thin disc in the saturated state. This solution is constructed by combining two well-known types of local galactic dynamo solution, parametrized by the disc radius. Namely, the critical (zero growth) solution obtained by treating the dynamo equation as a perturbed diffusion equation is normalized using a non-linear solution that makes use of the `no-z' approximation and the dynamical α-quenching non-linearity. This overall solution is found to be reasonably accurate when compared with detailed numerical solutions. It is thus potentially useful as a tool for predicting observational signatures of magnetic fields of galaxies. In particular, such solutions could be painted on to galaxies in cosmological simulations to enable the construction of synthetic polarized synchrotron and Faraday rotation measure data sets. Further, we explore the properties of our numerical solutions, and their dependence on certain parameter values. We illustrate and assess the degree to which numerical solutions based on various levels of approximation, common in the dynamo literature, agree with one another.

  16. Effective field theory of large scale structure at two loops: The apparent scale dependence of the speed of sound

    NASA Astrophysics Data System (ADS)

    Baldauf, Tobias; Mercolli, Lorenzo; Zaldarriaga, Matias

    2015-12-01

    We study the effective field theory (EFT) of large-scale structure for cosmic density and momentum fields. We show that the finite part of the two-loop calculation and its counterterms introduces an apparent scale dependence for the leading-order parameter cs2 of the EFT starting at k =0.1 h Mpc-1 . These terms limit the range over which one can trust the one-loop EFT calculation at the 1% level to k <0.1 h Mpc-1 at redshift z =0 . We construct a well-motivated one-parameter ansatz to fix the relative size of the one- and two-loop counterterms using their high-k sensitivity. Although this one-parameter model is a very restrictive choice for the counterterms, it explains the apparent scale dependence of cs2 seen in simulations. It is also able to capture the scale dependence of the density power spectrum up to k ≈0.3 h Mpc-1 at the 1% level at redshift z =0 . Considering a simple scheme for the resummation of large-scale motions, we find that the two-loop calculation reduces the need for this IR resummation at k <0.2 h Mpc-1 . Finally, we extend our calculation to momentum statistics and show that the same one-parameter model can also describe density-momentum and momentum-momentum statistics.

  17. Imaginary time propagation code for large-scale two-dimensional eigenvalue problems in magnetic fields

    NASA Astrophysics Data System (ADS)

    Luukko, P. J. J.; Räsänen, E.

    2013-03-01

    We present a code for solving the single-particle, time-independent Schrödinger equation in two dimensions. Our program utilizes the imaginary time propagation (ITP) algorithm, and it includes the most recent developments in the ITP method: the arbitrary order operator factorization and the exact inclusion of a (possibly very strong) magnetic field. Our program is able to solve thousands of eigenstates of a two-dimensional quantum system in reasonable time with commonly available hardware. The main motivation behind our work is to allow the study of highly excited states and energy spectra of two-dimensional quantum dots and billiard systems with a single versatile code, e.g., in quantum chaos research. In our implementation we emphasize a modern and easily extensible design, simple and user-friendly interfaces, and an open-source development philosophy. Catalogue identifier: AENR_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AENR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 11310 No. of bytes in distributed program, including test data, etc.: 97720 Distribution format: tar.gz Programming language: C++ and Python. Computer: Tested on x86 and x86-64 architectures. Operating system: Tested under Linux with the g++ compiler. Any POSIX-compliant OS with a C++ compiler and the required external routines should suffice. Has the code been vectorised or parallelized?: Yes, with OpenMP. RAM: 1 MB or more, depending on system size. Classification: 7.3. External routines: FFTW3 (http://www.fftw.org), CBLAS (http://netlib.org/blas), LAPACK (http://www.netlib.org/lapack), HDF5 (http://www.hdfgroup.org/HDF5), OpenMP (http://openmp.org), TCLAP (http://tclap.sourceforge.net), Python (http://python.org), Google Test (http://code.google.com/p/googletest/) Nature of problem: Numerical calculation

  18. A scalable parallel algorithm for large-scale reactive force-field molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Nomura, Ken-ichi; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2008-01-01

    A scalable parallel algorithm has been designed to perform multimillion-atom molecular dynamics (MD) simulations, in which first principles-based reactive force fields (ReaxFF) describe chemical reactions. Environment-dependent bond orders associated with atomic pairs and their derivatives are reused extensively with the aid of linked-list cells to minimize the computation associated with atomic n-tuple interactions ( n⩽4 explicitly and ⩽6 due to chain-rule differentiation). These n-tuple computations are made modular, so that they can be reconfigured effectively with a multiple time-step integrator to further reduce the computation time. Atomic charges are updated dynamically with an electronegativity equalization method, by iteratively minimizing the electrostatic energy with the charge-neutrality constraint. The ReaxFF-MD simulation algorithm has been implemented on parallel computers based on a spatial decomposition scheme combined with distributed n-tuple data structures. The measured parallel efficiency of the parallel ReaxFF-MD algorithm is 0.998 on 131,072 IBM BlueGene/L processors for a 1.01 billion-atom RDX system.

  19. A large-scale field assessment of carbon stocks in human-modified tropical forests.

    PubMed

    Berenguer, Erika; Ferreira, Joice; Gardner, Toby Alan; Aragão, Luiz Eduardo Oliveira Cruz; De Camargo, Plínio Barbosa; Cerri, Carlos Eduardo; Durigan, Mariana; Cosme De Oliveira Junior, Raimundo; Vieira, Ima Célia Guimarães; Barlow, Jos

    2014-12-01

    Tropical rainforests store enormous amounts of carbon, the protection of which represents a vital component of efforts to mitigate global climate change. Currently, tropical forest conservation, science, policies, and climate mitigation actions focus predominantly on reducing carbon emissions from deforestation alone. However, every year vast areas of the humid tropics are disturbed by selective logging, understory fires, and habitat fragmentation. There is an urgent need to understand the effect of such disturbances on carbon stocks, and how stocks in disturbed forests compare to those found in undisturbed primary forests as well as in regenerating secondary forests. Here, we present the results of the largest field study to date on the impacts of human disturbances on above and belowground carbon stocks in tropical forests. Live vegetation, the largest carbon pool, was extremely sensitive to disturbance: forests that experienced both selective logging and understory fires stored, on average, 40% less aboveground carbon than undisturbed forests and were structurally similar to secondary forests. Edge effects also played an important role in explaining variability in aboveground carbon stocks of disturbed forests. Results indicate a potential rapid recovery of the dead wood and litter carbon pools, while soil stocks (0-30 cm) appeared to be resistant to the effects of logging and fire. Carbon loss and subsequent emissions due to human disturbances remain largely unaccounted for in greenhouse gas inventories, but by comparing our estimates of depleted carbon stocks in disturbed forests with Brazilian government assessments of the total forest area annually disturbed in the Amazon, we show that these emissions could represent up to 40% of the carbon loss from deforestation in the region. We conclude that conservation programs aiming to ensure the long-term permanence of forest carbon stocks, such as REDD+, will remain limited in their success unless they effectively

  20. A large-scale field assessment of carbon stocks in human-modified tropical forests.

    PubMed

    Berenguer, Erika; Ferreira, Joice; Gardner, Toby Alan; Aragão, Luiz Eduardo Oliveira Cruz; De Camargo, Plínio Barbosa; Cerri, Carlos Eduardo; Durigan, Mariana; Cosme De Oliveira Junior, Raimundo; Vieira, Ima Célia Guimarães; Barlow, Jos

    2014-12-01

    Tropical rainforests store enormous amounts of carbon, the protection of which represents a vital component of efforts to mitigate global climate change. Currently, tropical forest conservation, science, policies, and climate mitigation actions focus predominantly on reducing carbon emissions from deforestation alone. However, every year vast areas of the humid tropics are disturbed by selective logging, understory fires, and habitat fragmentation. There is an urgent need to understand the effect of such disturbances on carbon stocks, and how stocks in disturbed forests compare to those found in undisturbed primary forests as well as in regenerating secondary forests. Here, we present the results of the largest field study to date on the impacts of human disturbances on above and belowground carbon stocks in tropical forests. Live vegetation, the largest carbon pool, was extremely sensitive to disturbance: forests that experienced both selective logging and understory fires stored, on average, 40% less aboveground carbon than undisturbed forests and were structurally similar to secondary forests. Edge effects also played an important role in explaining variability in aboveground carbon stocks of disturbed forests. Results indicate a potential rapid recovery of the dead wood and litter carbon pools, while soil stocks (0-30 cm) appeared to be resistant to the effects of logging and fire. Carbon loss and subsequent emissions due to human disturbances remain largely unaccounted for in greenhouse gas inventories, but by comparing our estimates of depleted carbon stocks in disturbed forests with Brazilian government assessments of the total forest area annually disturbed in the Amazon, we show that these emissions could represent up to 40% of the carbon loss from deforestation in the region. We conclude that conservation programs aiming to ensure the long-term permanence of forest carbon stocks, such as REDD+, will remain limited in their success unless they effectively

  1. A three-dimensional diffusion/convection model of the large scale magnetic field in the Venus ionosphere

    SciTech Connect

    Luhmann, J.G. )

    1988-06-01

    An appreciation of how large-scale magnetic fields can be maintained in the subsolar Venus ionosphere by the solar wind interaction was previously obtained with one-dimensional diffusion/convection numerical models. Here, the solution of the diffusion/convection or dynamo equation for the ionospheric field is generalized to three dimensions under the assumption that the field and flow at the upper boundary (in the magnetic barrier) is known from a previous gas dynamic model, and that the ionospheric plasma velocity is known. The latter is given by the combination of the antisunward convection inferred from measurements, and the downward drift calculated from the observed vertical thermal pressure gradient. The results suggest that the low-altitude magnetosheath field draping may be distorted by the interaction with the ionosphere in such a manner that there is an apparent focusing of the field toward the subsolar point. Although the model resolution is too course to resolve the magnetic belt, an ionospheric field is produced that is strongest and parallel to the overlying field in the subsolar region, as is observed.

  2. Earthward directed CMEs seen in large-scale coronal magnetic field changes, SOHO LASCO coronagraph and solar wind

    NASA Astrophysics Data System (ADS)

    Li, Yan; Luhmann, Janet G.; Mulligan, T.; Hoeksema, J. Todd; Arge, C. Nick; Plunkett, S. P.; Cyr, O. C. St.

    2001-11-01

    One picture of coronal mass ejection (CME) initiation relates these events to the expansion into space of previously closed coronal magnetic fields, often part of the helmet streamer belt. The work described here makes use of the potential field source surface model based on updated synoptic photospheric field maps to study the large-scale coronal field changes. We isolate those field lines that change from closed to open configurations (newly opening field lines) by comparing potential field source surface models from adjacent magnetograph observations, wherein the same starting foot points on the photosphere are used. If there are some newly opening field lines between the times of two maps, we assume there was a possibility for CME occurrence(s) between these times. In particular, if there are newly opening field lines near the solar disk center, an earthward directed CME may have been generated. Monitoring the coronal magnetic field behavior can in principle reinforce (or not) days in advance predictions of magnetic storms based on Solar and Heliospheric Observatory (SOHO) Large-Angle Spectrometric Coronagraph (LASCO) halo CMEs. Moreover, the coronal field over the visible hemisphere contains information about the possible geoeffectiveness of a particular CME because it shows the approximate orientation and location of the active arcades. By comparing halo CMEs with the newly opening field lines, the solar wind measurements from Wind and ACE spacecraft and the Dst index, we show that, like soft X-ray sigmoids, disappearing filaments, and Extreme ultraviolet Imaging Telescope (EIT) waves on the disk of the Sun, magnetograph observation-based coronal field models may provide additional information on the likelihood of CME effects at the Earth.

  3. Radial transport of large-scale magnetic fields in accretion disks. I. Steady solutions and an upper limit on the vertical field strength

    SciTech Connect

    Okuzumi, Satoshi; Takeuchi, Taku; Muto, Takayuki

    2014-04-20

    Large-scale magnetic fields are key ingredients of magnetically driven disk accretion. We study how large-scale poloidal fields evolve in accretion disks, with the primary aim of quantifying the viability of magnetic accretion mechanisms in protoplanetary disks. We employ a kinematic mean-field model for poloidal field transport and focus on steady states where inward advection of a field balances with outward diffusion due to effective resistivities. We analytically derive the steady-state radial distribution of poloidal fields in highly conducting accretion disks. The analytic solution reveals an upper limit on the strength of large-scale vertical fields attainable in steady states. Any excess poloidal field will diffuse away within a finite time, and we demonstrate this with time-dependent numerical calculations of the mean-field equations. We apply this upper limit to large-scale vertical fields threading protoplanetary disks. We find that the maximum attainable strength is about 0.1 G at 1 AU, and about 1 mG at 10 AU from the central star. When combined with recent magnetic accretion models, the maximum field strength translates into the maximum steady-state accretion rate of ∼10{sup –7} M {sub ☉} yr{sup –1}, in agreement with observations. We also find that the maximum field strength is ∼1 kG at the surface of the central star provided that the disk extends down to the stellar surface. This implies that any excess stellar poloidal field of strength ≳ kG can be transported to the surrounding disk. This might in part resolve the magnetic flux problem in star formation.

  4. Sensitivity analyses for clustered data: an illustration from a large-scale clustered randomized controlled trial in education.

    PubMed

    Abe, Yasuyo; Gee, Kevin A

    2014-12-01

    In this paper, we demonstrate the importance of conducting well-thought-out sensitivity analyses for handling clustered data (data in which individuals are grouped into higher order units, such as students in schools) that arise from cluster randomized controlled trials (RCTs). This is particularly relevant given the rise in rigorous impact evaluations that use cluster randomized designs across various fields including education, public health and social welfare. Using data from a recently completed cluster RCT of a school-based teacher professional development program, we demonstrate our use of four commonly applied methods for analyzing clustered data. These methods include: (1) hierarchical linear modeling (HLM); (2) feasible generalized least squares (FGLS); (3) generalized estimating equations (GEE); and (4) ordinary least squares (OLS) regression with cluster-robust (Huber-White) standard errors. We compare our findings across each method, showing how inconsistent results - in terms of both effect sizes and statistical significance - emerged across each method and our analytic approach to resolving such inconsistencies.

  5. Motions of charged particles in the magnetosphere under the influence of a time-varying large scale convection electric field

    NASA Technical Reports Server (NTRS)

    Smith, P. H.; Hoffman, R. A.; Bewtra, N. K.

    1979-01-01

    The motions of charged particles under the influence of the geomagnetic and electric fields are quite complex in the region of the inner magnetosphere. The Volland-Stern type large-scale convection electric field with gamma = 2 has been used successfully to predict both the plasmapause location and particle enhancements determined from Explorer 45 (S3-A) measurements. Recently introduced into the trajectory calculations of Ejiri et al. (1978) is a time dependence in this electric field based on the variation in Kp for actual magnetic storm conditions. The particle trajectories are computed as they change in this time-varying electric field. Several storm fronts of particles of different magnetic moments are allowed to be injected into the inner magnetosphere from L = 10 in the equatorial plane. The motions of these fronts are presented in a movie format. The local time of injection, the particle magnetic moments and the subsequent temporal history of the magnetospheric electric field play important roles in determining whether the injected particles are trapped within the ring current region or whether they are convected to regions outside the inner magnetosphere.

  6. Use of electronic healthcare records in large-scale simple randomized trials at the point of care for the documentation of value-based medicine.

    PubMed

    van Staa, T-P; Klungel, O; Smeeth, L

    2014-06-01

    A solid foundation of evidence of the effects of an intervention is a prerequisite of evidence-based medicine. The best source of such evidence is considered to be randomized trials, which are able to avoid confounding. However, they may not always estimate effectiveness in clinical practice. Databases that collate anonymized electronic health records (EHRs) from different clinical centres have been widely used for many years in observational studies. Randomized point-of-care trials have been initiated recently to recruit and follow patients using the data from EHR databases. In this review, we describe how EHR databases can be used for conducting large-scale simple trials and discuss the advantages and disadvantages of their use.

  7. Hydraulic characterization of aquifers by thermal response testing: Validation by large-scale tank and field experiments

    NASA Astrophysics Data System (ADS)

    Wagner, Valentin; Bayer, Peter; Bisch, Gerhard; Kübert, Markus; Blum, Philipp

    2014-01-01

    Thermal response tests (TRTs) are a common field method in shallow geothermics to estimate thermal properties of the ground. During the test, a constantly heated fluid is circulated in closed tubes within a vertical borehole heat exchanger (BHE). The observed temperature development of the fluid is characteristic for the thermal properties of the ground and the BHE. We show that, when the BHE is installed in an aquifer with significant horizontal groundwater flow, this test can also be used for hydrogeological characterization of the penetrated subsurface. An evaluation method based on the moving line source equation and considering the natural occurring variability of the thermal transport parameters is presented. It is validated by application to a well-controlled, large-scale tank experiment with 9 m length, 6 m width, and 4.5 m depth, and by data interpretation from a field-scale test. The tank experiment imitates an advection-influenced TRT in a well-known layered aquifer. The field experiment was recorded with a 100 m deep BHE, installed in a gravel aquifer in southwest Germany. The evaluations of both experiments result in similar hydraulic conductivity ranges as determined by standard hydraulic investigation methods such as pumping tests and sieve analyses. Thus, advection-influenced TRTs could also potentially be used to determine integral hydraulic conductivity of the subsurface.

  8. On the dynamics of the large-scale magnetic fields of the sun and the sunspot cycle

    NASA Astrophysics Data System (ADS)

    Mouradian, Z.; Soru-Escaut, I.

    1991-11-01

    The purpose of the present article is to analyze the solar activity cycle from the point of view of large-scale magnetic fields (LSMFs), i.e., the 'polarity background' (unipolar magnetic regions) and the 'polar islands' (bipolar magnetic regions) with or without active regions. Using synoptic charts of the magnetic field (Stanford, McIntosh) and daily KPNO and Mount Wilson observations, a scenario has been developed that is based on the dynamics of the LSMFs. The activity cycle appears to be asymmetrical, with the north polar background predominating at the minimum and the south polar background at the maximum. The polarity islands in the background cover a large area and as they develop, they 'push' the magnetic field background toward the poles and thereby establish an equator-to-pole circulation at the solar surface. This circulation is also affected by the differential rotation of the sun. A fractal dimension analysis shows that the polarity islands become 'turbulent' as sunspot activity.

  9. Evaluating Experience-Based Geologic Field Instruction: Lessons Learned from A Large-Scale Eye-Tracking Experiment

    NASA Astrophysics Data System (ADS)

    Tarduno, J. A.; Walders, K.; Bono, R. K.; Pelz, J.; Jacobs, R.

    2015-12-01

    A course centered on experience-based learning in field geology has been offered ten times at the University of Rochester. The centerpiece of the course is a 10-day field excursion to California featuring a broad cross-section of the geology of the state, from the San Andreas Fault to Death Valley. Here we describe results from a large-scale eye-tracking experiment aimed at understanding how experts and novices acquire visual geologic information. One ultimate goal of the project is to determine whether expert gaze patterns can be quantified to improve the instruction of beginning geology students. Another goal is to determine if aspects of the field experience can be transferred to the classroom/laboratory. Accordingly, ultra-high resolution segmented panoramic images have been collected at key sites visited during the field excursion. We have found that strict controls are needed in the field to obtain meaningful data; this often involves behavior atypical of geologists (e.g. limiting the field of view prior to data collection and placing time limits on scene viewing). Nevertheless some general conclusions can be made from a select data set. After an initial quick search, experts tend to exhibit scanning behavior that appears to support hypothesis testing. Novice fixations appear to define a scattered search pattern and/or one distracted by geologic noise in a scene. Noise sources include modern erosion features and vegetation. One way to quantify noise is through the use of saliency maps. With the caveat that our expert data set is small, our preliminary analysis suggests that experts tend to exhibit top-down behavior (indicating hypothesis driven responses) whereas novices show bottom-up gaze patterns, influenced by more salient features in a scene. We will present examples and discuss how these observations might be used to improve instruction.

  10. Mathematics Learned by Young Children in An Intervention Based on Learning Trajectories: A Large-Scale Cluster Randomized Trial

    ERIC Educational Resources Information Center

    Clements, Douglas H.; Sarama, Julie; Spitler, Mary Elaine; Lange, Alissa A.; Wolfe, Christopher B.

    2011-01-01

    This study employed a cluster randomized trial design to evaluate the effectiveness of a research-based intervention for improving the mathematics education of very young children. This intervention includes the "Building Blocks" mathematics curriculum, which is structured in research-based learning trajectories, and congruous professional…

  11. Intervention for First Graders with Limited Number Knowledge: Large-Scale Replication of a Randomized Controlled Trial

    ERIC Educational Resources Information Center

    Gersten, Russell; Rolfhus, Eric; Clarke, Ben; Decker, Lauren E.; Wilkins, Chuck; Dimino, Joseph

    2015-01-01

    Replication studies are extremely rare in education. This randomized controlled trial (RCT) is a scale-up replication of Fuchs et al., which in a sample of 139 found a statistically significant positive impact for Number Rockets, a small-group intervention for at-risk first graders that focused on building understanding of number operations. The…

  12. A computationally efficient scheme for the inversion of large scale potential field data: Application to synthetic and real data

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Meng, Xiaohong; Li, Fang

    2015-12-01

    Three dimensional (3D) inversion of potential field data from large scale surveys attempts to recover density or magnetic susceptibility distribution in the subspace for geological interpretation. It is computationally challenging and is not feasible on desktop computers. We propose an integrated scheme to address this problem. We adopt adaptive sampling to compress the dataset, and the cross curve of the data compression ratio and correlation coefficient between the initial and sampled data is used to choose the damping factor for adaptive sampling. Then, the conventional inversion algorithm in model space is transformed to data space, using the identity relationship between different matrices, which greatly reduces the memory requirement. Finally, parallel computation is employed to accelerate calculation of the kernel function. We use the conjugate gradient method to minimize the objective function and a damping factor is introduced to stabilize the iterative process. A wide variety of constraint options are also considered, such as depth weighing, sparseness, and boundary limits. We design a synthetic magnetic model with three prismatic susceptibility causative bodies to demonstrate the effectiveness of the proposed scheme. Tests on synthetic data show that the proposed scheme provides significant reduction in memory and time consumption, and the inversion result is reliable. These advantages hold true for practical field magnetic data from the Hawsons mining area in Australia, verifying the effectiveness of the proposed scheme.

  13. Large-Scale Graphene on Hexagonal-BN Hall Elements: Prediction of Sensor Performance without Magnetic Field.

    PubMed

    Joo, Min-Kyu; Kim, Joonggyu; Park, Ji-Hoon; Nguyen, Van Luan; Kim, Ki Kang; Lee, Young Hee; Suh, Dongseok

    2016-09-27

    A graphene Hall element (GHE) is an optimal system for a magnetic sensor because of its perfect two-dimensional (2-D) structure, high carrier mobility, and widely tunable carrier concentration. Even though several proof-of-concept devices have been proposed, manufacturing them by mechanical exfoliation of 2-D material or electron-beam lithography is of limited feasibility. Here, we demonstrate a high quality GHE array having a graphene on hexagonal-BN (h-BN) heterostructure, fabricated by photolithography and large-area 2-D materials grown by chemical vapor deposition techniques. A superior performance of GHE was achieved with the help of a bottom h-BN layer, and showed a maximum current-normalized sensitivity of 1986 V/AT, a minimum magnetic resolution of 0.5 mG/Hz(0.5) at f = 300 Hz, and an effective dynamic range larger than 74 dB. Furthermore, on the basis of a thorough understanding of the shift of charge neutrality point depending on various parameters, an analytical model that predicts the magnetic sensor operation of a GHE from its transconductance data without magnetic field is proposed, simplifying the evaluation of each GHE design. These results demonstrate the feasibility of this highly performing graphene device using large-scale manufacturing-friendly fabrication methods.

  14. Large-Scale Graphene on Hexagonal-BN Hall Elements: Prediction of Sensor Performance without Magnetic Field.

    PubMed

    Joo, Min-Kyu; Kim, Joonggyu; Park, Ji-Hoon; Nguyen, Van Luan; Kim, Ki Kang; Lee, Young Hee; Suh, Dongseok

    2016-09-27

    A graphene Hall element (GHE) is an optimal system for a magnetic sensor because of its perfect two-dimensional (2-D) structure, high carrier mobility, and widely tunable carrier concentration. Even though several proof-of-concept devices have been proposed, manufacturing them by mechanical exfoliation of 2-D material or electron-beam lithography is of limited feasibility. Here, we demonstrate a high quality GHE array having a graphene on hexagonal-BN (h-BN) heterostructure, fabricated by photolithography and large-area 2-D materials grown by chemical vapor deposition techniques. A superior performance of GHE was achieved with the help of a bottom h-BN layer, and showed a maximum current-normalized sensitivity of 1986 V/AT, a minimum magnetic resolution of 0.5 mG/Hz(0.5) at f = 300 Hz, and an effective dynamic range larger than 74 dB. Furthermore, on the basis of a thorough understanding of the shift of charge neutrality point depending on various parameters, an analytical model that predicts the magnetic sensor operation of a GHE from its transconductance data without magnetic field is proposed, simplifying the evaluation of each GHE design. These results demonstrate the feasibility of this highly performing graphene device using large-scale manufacturing-friendly fabrication methods. PMID:27580305

  15. Large-Scale Variational Two-Electron Reduced-Density-Matrix-Driven Complete Active Space Self-Consistent Field Methods.

    PubMed

    Fosso-Tande, Jacob; Nguyen, Truong-Son; Gidofalvi, Gergely; DePrince, A Eugene

    2016-05-10

    A large-scale implementation of the complete active space self-consistent field (CASSCF) method is presented. The active space is described using the variational two-electron reduced-density-matrix (v2RDM) approach, and the algorithm is applicable to much larger active spaces than can be treated using configuration-interaction-driven methods. Density fitting or Cholesky decomposition approximations to the electron repulsion integral tensor allow for the simultaneous optimization of large numbers of external orbitals. We have tested the implementation by evaluating singlet-triplet energy gaps in the linear polyacene series and two dinitrene biradical compounds. For the acene series, we report computations that involve active spaces consisting of as many as 50 electrons in 50 orbitals and the simultaneous optimization of 1892 orbitals. For the dinitrene compounds, we find that the singlet-triplet gaps obtained from v2RDM-driven CASSCF with partial three-electron N-representability conditions agree with those obtained from configuration-interaction-driven approaches to within one-third of 1 kcal mol(-1). When enforcing only the two-electron N-representability conditions, v2RDM-driven CASSCF yields less accurate singlet-triplet energy gaps in these systems, but the quality of the results is still far superior to those obtained from standard single-reference approaches. PMID:27065086

  16. Non-Gaussian covariance of the matter power spectrum in the effective field theory of large scale structure

    NASA Astrophysics Data System (ADS)

    Bertolini, Daniele; Schutz, Katelin; Solon, Mikhail P.; Walsh, Jonathan R.; Zurek, Kathryn M.

    2016-06-01

    We compute the non-Gaussian contribution to the covariance of the matter power spectrum at one-loop order in standard perturbation theory (SPT), using the framework of the effective field theory (EFT) of large scale structure (LSS). The complete one-loop contributions are evaluated for the first time, including the leading EFT corrections that involve seven independent operators, of which four appear in the power spectrum and bispectrum. We compare the non-Gaussian part of the one-loop covariance computed with both SPT and EFT of LSS to two separate simulations. In one simulation, we find that the one-loop prediction from SPT reproduces the simulation well to ki+kj˜0.25 h /Mpc , while in the other simulation we find a substantial improvement of EFT of LSS (with one free parameter) over SPT, more than doubling the range of k where the theory accurately reproduces the simulation. The disagreement between these two simulations points to unaccounted for systematics, highlighting the need for improved numerical and analytic understanding of the covariance.

  17. Large-Scale Prospective T Cell Function Assays in Shipped, Unfrozen Blood Samples: Experiences from the Multicenter TRIGR Trial

    PubMed Central

    Cheung, Roy K.; Becker, Dorothy J.; Girgis, Rose; Palmer, Jerry P.; Cuthbertson, David; Krischer, Jeffrey P.

    2014-01-01

    Broad consensus assigns T lymphocytes fundamental roles in inflammatory, infectious, and autoimmune diseases. However, clinical investigations have lacked fully characterized and validated procedures, equivalent to those of widely practiced biochemical tests with established clinical roles, for measuring core T cell functions. The Trial to Reduce Insulin-dependent diabetes mellitus in the Genetically at Risk (TRIGR) type 1 diabetes prevention trial used consecutive measurements of T cell proliferative responses in prospectively collected fresh heparinized blood samples shipped by courier within North America. In this article, we report on the quality control implications of this simple and pragmatic shipping practice and the interpretation of positive- and negative-control analytes in our assay. We used polyclonal and postvaccination responses in 4,919 samples to analyze the development of T cell immunocompetence. We have found that the vast majority of the samples were viable up to 3 days from the blood draw, yet meaningful responses were found in a proportion of those with longer travel times. Furthermore, the shipping time of uncooled samples significantly decreased both the viabilities of the samples and the unstimulated cell counts in the viable samples. Also, subject age was significantly associated with the number of unstimulated cells and T cell proliferation to positive activators. Finally, we observed a pattern of statistically significant increases in T cell responses to tetanus toxin around the timing of infant vaccinations. This assay platform and shipping protocol satisfy the criteria for robust and reproducible long-term measurements of human T cell function, comparable to those of established blood biochemical tests. We present a stable technology for prospective disease-relevant T cell analysis in immunological diseases, vaccination medicine, and measurement of herd immunity. PMID:24334687

  18. Postmarket Drug Surveillance Without Trial Costs: Discovery of Adverse Drug Reactions Through Large-Scale Analysis of Web Search Queries

    PubMed Central

    Gabrilovich, Evgeniy

    2013-01-01

    Background Postmarket drug safety surveillance largely depends on spontaneous reports by patients and health care providers; hence, less common adverse drug reactions—especially those caused by long-term exposure, multidrug treatments, or those specific to special populations—often elude discovery. Objective Here we propose a low cost, fully automated method for continuous monitoring of adverse drug reactions in single drugs and in combinations thereof, and demonstrate the discovery of heretofore-unknown ones. Methods We used aggregated search data of large populations of Internet users to extract information related to drugs and adverse reactions to them, and correlated these data over time. We further extended our method to identify adverse reactions to combinations of drugs. Results We validated our method by showing high correlations of our findings with known adverse drug reactions (ADRs). However, although acute early-onset drug reactions are more likely to be reported to regulatory agencies, we show that less acute later-onset ones are better captured in Web search queries. Conclusions Our method is advantageous in identifying previously unknown adverse drug reactions. These ADRs should be considered as candidates for further scrutiny by medical regulatory authorities, for example, through phase 4 trials. PMID:23778053

  19. Large-scale field study on thin-layer capping of marine PCDD/F-contaminated sediments in Grenlandfjords, Norway: physicochemical effects.

    PubMed

    Cornelissen, Gerard; Amstaetter, Katja; Hauge, Audun; Schaanning, Morten; Beylich, Bjørnar; Gunnarsson, Jonas S; Breedveld, Gijs D; Oen, Amy M P; Eek, Espen

    2012-11-01

    A large-scale field experiment on in situ thin-layer capping was carried out in the polychlorinated dibenzodioxin and dibenzofuran (PCDD/F) contaminated Grenlandsfjords, Norway. The main focus of the trial was to test the effectiveness of active caps (targeted thickness of 2.5 cm) consisting of powdered activated carbon (AC) mixed into locally dredged clean clay. Nonactive caps (targed thickness of 5 cm) consisting of clay without AC as well as crushed limestone were also tested. Fields with areas of 10,000 to 40,000 m(2) were established at 30 to 100 m water depth. Auxiliary shaken laboratory batch experiments showed that 2% of the applied powdered AC substantially reduced PCDD/F porewater concentrations, by >90% for tetra-, penta- and hexa-clorinated congeners to 60-70% for octachlorinated ones. In-situ AC profiles revealed that the AC was mixed into the sediment to 3 to 5 cm depth in 20 months. Only around 25% of the AC was found inside the pilot fields. Sediment-to-water PCDD/F fluxes measured by in situ diffusion chambers were significantly lower at the capped fields than at reference fields in the same fjord, reductions being largest for the limestone (50-90%) followed by clay (50-70%), and the AC + clay (60%). Also reductions in overlying aqueous PCDD/F concentrations measured by passive samplers were significant in most cases (20-40% reduction), probably because of the large size of the trial fields. The AC was less effective in the field than in the laboratory, probably due to prolonged sediment-to-AC mass transfer times for PCDD/Fs and field factors such as integrity of the cap, new deposition of contaminated sediment particles, and bioturbation. The present field data indicate that slightly thicker layers of limestone and dredged clay can show as good physicochemical effectiveness as thin caps of AC mixed with clay, at least for PCDD/Fs during the first two years after cap placement. PMID:23046183

  20. Lars Onsager Prize Talk: 1+1d conformal field theories as natural languages for asymptotically large-scale quantum computing

    NASA Astrophysics Data System (ADS)

    Friedan, Daniel

    2010-03-01

    An abstract argument is offered that the ideal physical systems for asymptotically large-scale quantum computers are near-critical quantum circuits, critical in the bulk, whose bulk universality classes are described by 1+1d conformal field theories. One in particular -- the Monster conformal field theory -- is especially ideal, because all of its bulk couplings are irrelevant.

  1. Characterizing stroke lesions using digital templates and lesion quantification tools in a web-based imaging informatics system for a large-scale stroke rehabilitation clinical trial

    NASA Astrophysics Data System (ADS)

    Wang, Ximing; Edwardson, Matthew; Dromerick, Alexander; Winstein, Carolee; Wang, Jing; Liu, Brent

    2015-03-01

    Previously, we presented an Interdisciplinary Comprehensive Arm Rehabilitation Evaluation (ICARE) imaging informatics system that supports a large-scale phase III stroke rehabilitation trial. The ePR system is capable of displaying anonymized patient imaging studies and reports, and the system is accessible to multiple clinical trial sites and users across the United States via the web. However, the prior multicenter stroke rehabilitation trials lack any significant neuroimaging analysis infrastructure. In stroke related clinical trials, identification of the stroke lesion characteristics can be meaningful as recent research shows that lesion characteristics are related to stroke scale and functional recovery after stroke. To facilitate the stroke clinical trials, we hope to gain insight into specific lesion characteristics, such as vascular territory, for patients enrolled into large stroke rehabilitation trials. To enhance the system's capability for data analysis and data reporting, we have integrated new features with the system: a digital brain template display, a lesion quantification tool and a digital case report form. The digital brain templates are compiled from published vascular territory templates at each of 5 angles of incidence. These templates were updated to include territories in the brainstem using a vascular territory atlas and the Medical Image Processing, Analysis and Visualization (MIPAV) tool. The digital templates are displayed for side-by-side comparisons and transparent template overlay onto patients' images in the image viewer. The lesion quantification tool quantifies planimetric lesion area from user-defined contour. The digital case report form stores user input into a database, then displays contents in the interface to allow for reviewing, editing, and new inputs. In sum, the newly integrated system features provide the user with readily-accessible web-based tools to identify the vascular territory involved, estimate lesion area

  2. Large-scale, near-Earth, magnetic fields from external sources and the corresponding induced internal field

    NASA Technical Reports Server (NTRS)

    Langel, R. A.; Estes, R. H.

    1983-01-01

    Data from MAGSAT analyzed as a function of the Dst index to determine the first degree/order spherical harmonic description of the near-Earth external field and its corresponding induced field. The analysis was done separately for data from dawn and dusk. The MAGSAT data was compared with POGO data. A local time variation of the external field persists even during very quiet magnetic conditions; both a diurnal and 8-hour period are present. A crude estimate of Sq current in the 45 deg geomagnetic latitude range is obtained for 1966 to 1970. The current strength, located in the ionosphere and induced in the Earth, is typical of earlier determinations from surface data, although its maximum is displaced in local time from previous results.

  3. Simultaneous excitation of large-scale geomagnetic field fluctuations and plasma density irregularities by powerful radio waves

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Kuo, S. P.

    1985-01-01

    The physical mechanism of thermal filamentation instability of radio waves whose frequencies can be as low as in the VLF band and as high as in the SHF band are investigated. This instability can excite large-scale magnetic and plasma density fluctuations simultaneously in the ionosphere and magnetosphere. Relevant experiments are reviewed in terms of this instability and other mechanisms.

  4. Rotation Measures of Extragalactic Sources behind the Southern Galactic Plane: New Insights into the Large-Scale Magnetic Field of the Inner Milky Way

    NASA Astrophysics Data System (ADS)

    Brown, J. C.; Haverkorn, M.; Gaensler, B. M.; Taylor, A. R.; Bizunok, N. S.; McClure-Griffiths, N. M.; Dickey, J. M.; Green, A. J.

    2007-07-01

    We present new Faraday rotation measures (RMs) for 148 extragalactic radio sources behind the southern Galactic plane (253deg<=l<=356deg, |b|<=1.5deg), and use these data in combination with published data to probe the large-scale structure of the Milky Way's magnetic field. We show that the magnitudes of these RMs oscillate with longitude in a manner that correlates with the locations of the Galactic spiral arms. The observed pattern in RMs requires the presence of at least one large-scale magnetic reversal in the fourth Galactic quadrant, located between the Sagittarius-Carina and Scutum-Crux spiral arms. To quantitatively compare our measurements to other recent studies, we consider all available extragalactic and pulsar RMs in the region we have surveyed, and jointly fit these data to simple models in which the large-scale field follows the spiral arms. In the best-fitting model, the magnetic field in the fourth Galactic quadrant is directed clockwise in the Sagittarius-Carina spiral arm (as viewed from the north Galactic pole), but is oriented counterclockwise in the Scutum-Crux arm. This contrasts with recent analyses of pulsar RMs alone, in which the fourth-quadrant field was presumed to be directed counterclockwise in the Sagittarius-Carina arm. Also in contrast to recent pulsar RM studies, our joint modeling of pulsar and extragalactic RMs demonstrates that large numbers of large-scale magnetic field reversals are not required to account for observations.

  5. LyMAS: Predicting Large-scale Lyα Forest Statistics from the Dark Matter Density Field

    NASA Astrophysics Data System (ADS)

    Peirani, Sébastien; Weinberg, David H.; Colombi, Stéphane; Blaizot, Jérémy; Dubois, Yohan; Pichon, Christophe

    2014-03-01

    We describe Lyα Mass Association Scheme (LyMAS), a method of predicting clustering statistics in the Lyα forest on large scales from moderate-resolution simulations of the dark matter (DM) distribution, with calibration from high-resolution hydrodynamic simulations of smaller volumes. We use the "Horizon-MareNostrum" simulation, a 50 h -1 Mpc comoving volume evolved with the adaptive mesh hydrodynamic code RAMSES, to compute the conditional probability distribution P(Fs |δ s ) of the transmitted flux Fs , smoothed (one-dimensionally, 1D) over the spectral resolution scale, on the DM density contrast δ s , smoothed (three-dimensionally, 3D) over a similar scale. In this study we adopt the spectral resolution of the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) at z = 2.5, and we find optimal results for a DM smoothing length σ = 0.3 h -1 Mpc (comoving). In its simplest form, LyMAS draws randomly from the hydro-calibrated P(Fs |δ s ) to convert DM skewers into Lyα forest pseudo-spectra, which are then used to compute cross-sightline flux statistics. In extended form, LyMAS exactly reproduces both the 1D power spectrum and one-point flux distribution of the hydro simulation spectra. Applied to the MareNostrum DM field, LyMAS accurately predicts the two-point conditional flux distribution and flux correlation function of the full hydro simulation for transverse sightline separations as small as 1 h -1 Mpc, including redshift-space distortion effects. It is substantially more accurate than a deterministic density-flux mapping ("Fluctuating Gunn-Peterson Approximation"), often used for large-volume simulations of the forest. With the MareNostrum calibration, we apply LyMAS to 10243 N-body simulations of a 300 h -1 Mpc and 1.0 h -1 Gpc cube to produce large, publicly available catalogs of mock BOSS spectra that probe a large comoving volume. LyMAS will be a powerful tool for interpreting 3D Lyα forest data, thereby transforming measurements from BOSS and

  6. LyMAS: Predicting large-scale Lyα forest statistics from the dark matter density field

    SciTech Connect

    Peirani, Sébastien; Colombi, Stéphane; Dubois, Yohan; Pichon, Christophe; Weinberg, David H.; Blaizot, Jérémy

    2014-03-20

    We describe Lyα Mass Association Scheme (LyMAS), a method of predicting clustering statistics in the Lyα forest on large scales from moderate-resolution simulations of the dark matter (DM) distribution, with calibration from high-resolution hydrodynamic simulations of smaller volumes. We use the 'Horizon-MareNostrum' simulation, a 50 h {sup –1} Mpc comoving volume evolved with the adaptive mesh hydrodynamic code RAMSES, to compute the conditional probability distribution P(F{sub s} |δ {sub s}) of the transmitted flux F{sub s} , smoothed (one-dimensionally, 1D) over the spectral resolution scale, on the DM density contrast δ {sub s}, smoothed (three-dimensionally, 3D) over a similar scale. In this study we adopt the spectral resolution of the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) at z = 2.5, and we find optimal results for a DM smoothing length σ = 0.3 h {sup –1} Mpc (comoving). In its simplest form, LyMAS draws randomly from the hydro-calibrated P(F{sub s} |δ {sub s}) to convert DM skewers into Lyα forest pseudo-spectra, which are then used to compute cross-sightline flux statistics. In extended form, LyMAS exactly reproduces both the 1D power spectrum and one-point flux distribution of the hydro simulation spectra. Applied to the MareNostrum DM field, LyMAS accurately predicts the two-point conditional flux distribution and flux correlation function of the full hydro simulation for transverse sightline separations as small as 1 h {sup –1} Mpc, including redshift-space distortion effects. It is substantially more accurate than a deterministic density-flux mapping ({sup F}luctuating Gunn-Peterson Approximation{sup )}, often used for large-volume simulations of the forest. With the MareNostrum calibration, we apply LyMAS to 1024{sup 3} N-body simulations of a 300 h {sup –1} Mpc and 1.0 h {sup –1} Gpc cube to produce large, publicly available catalogs of mock BOSS spectra that probe a large comoving volume. LyMAS will be a powerful

  7. Evolution of Large-scale Solar Magnetic Fields in a Flux-Transport Model Including a Multi-cell Meridional Flow

    NASA Astrophysics Data System (ADS)

    McDonald, E.; Dikpati, M.

    2003-12-01

    Advances in helioseismology over the past decade have enabled us to detect subsurface meridional flows in the Sun. Some recent helioseismological analysis (Giles 1999, Haber et al. 2002) has indicated a submerged, reverse flow cell occurring at high latitudes of the Sun's northern hemisphere between 1998 and 2001. Meridional circulation plays an important role in the operation of a class of large-scale solar dynamo, the so-called "flux-transport" dynamo. In such dynamo models, the poleward drift of the large-scale solar magnetic fields and the polar reversal process are explained by the advective-diffusive transport of magnetic flux by a meridional circulation with a poleward surface flow component. Any temporal and spatial variations in the meridional flow pattern are expected to greatly influence the evolution of large-scale magnetic fields in a flux-transport dynamo. The aim of this paper is to explore the implications of a steady, multi-cell flow on the advection of weak, large-scale, magnetic flux. We present a simple, two-cell flux transport model operating in an r-theta cross-section of the northern hemisphere. Azimuthal symmetry is assumed. Performing numerical flux-transport simulations with a reverse flow cell at various latitudes, we demonstrate the effect of this cell on the evolutionary pattern of the large-scale diffuse fields. We also show how a flux concentration may occur at the latitude where the radial flows of the two cells are sinking downward. This work is supported by NASA grants W-19752, W-10107, and W-10175. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

  8. Study of some characteristics of large-scale solar magnetic fields during the global field polarity reversal according to observations at the telescope-magnetograph Kislovodsk Observatory

    NASA Astrophysics Data System (ADS)

    Tlatov, A. G.; Dormidontov, D. V.; Kirpichev, R. V.; Pashchenko, M. P.; Shramko, A. D.; Peshcherov, V. S.; Grigoryev, V. M.; Demidov, M. L.; Svidskii, P. M.

    2015-12-01

    The data obtained at the Routine Prediction Solar Telescope (RPST), which was designed and manufactured mainly at ISTP SB RAS and was installed at Kislovodsk MAS MAO RAN. The telescope is used to register weak large-scale fields throughout the solar disk with an angular resolution about 30 arcsec. The means square error of measurements is ~0.44 G in this case. The MAS MAO RPST observations have been compared with the magnetic fields and other solar activity parameters measured at different ground and space observatories. It was shown that the characteristics of the magnetic fields of active regions and largescale magnetic fields are interrelated. The evolution of the polar magnetic field was considered, and it was shown that the polarity in cycle 24 was reversed in June-July 2013 in the Northern Hemisphere and in December 2014-January 2015 in the Southern Hemisphere. At the same time, it has been noted that the magnetic field strength in the Northern Hemisphere at latitudes higher than 50° varied around zero in 2014, which indicates that the global field sign was reversed for a long time in the Northern Hemisphere.

  9. Splitting failure in side walls of a large-scale underground cavern group: a numerical modelling and a field study.

    PubMed

    Wang, Zhishen; Li, Yong; Zhu, Weishen; Xue, Yiguo; Yu, Song

    2016-01-01

    Vertical splitting cracks often appear in side walls of large-scale underground caverns during excavations owing to the brittle characteristics of surrounding rock mass, especially under the conditions of high in situ stress and great overburden depth. This phenomenon greatly affects the integral safety and stability of the underground caverns. In this paper, a transverse isotropic constitutive model and a splitting failure criterion are simultaneously proposed and secondly programmed in FLAC3D to numerically simulate the integral stability of the underground caverns during excavations in Dagangshan hydropower station in Sichuan province, China. Meanwhile, an in situ monitoring study on the displacement of the key points of the underground caverns has also been carried out, and the monitoring results are compared with the numerical results. From the comparative analysis, it can be concluded that the depths of splitting relaxation area obtained by numerical simulation are almost consistent with the actual in situ monitoring values, as well as the trend of the displacement curves, which shows that the transverse isotropic constitutive model combining with the splitting failure criterion is appropriate for investigating the splitting failure in side walls of large-scale underground caverns and it will be a helpful guidance of predicting the depths of splitting relaxation area in surrounding rock mass.

  10. Splitting failure in side walls of a large-scale underground cavern group: a numerical modelling and a field study.

    PubMed

    Wang, Zhishen; Li, Yong; Zhu, Weishen; Xue, Yiguo; Yu, Song

    2016-01-01

    Vertical splitting cracks often appear in side walls of large-scale underground caverns during excavations owing to the brittle characteristics of surrounding rock mass, especially under the conditions of high in situ stress and great overburden depth. This phenomenon greatly affects the integral safety and stability of the underground caverns. In this paper, a transverse isotropic constitutive model and a splitting failure criterion are simultaneously proposed and secondly programmed in FLAC3D to numerically simulate the integral stability of the underground caverns during excavations in Dagangshan hydropower station in Sichuan province, China. Meanwhile, an in situ monitoring study on the displacement of the key points of the underground caverns has also been carried out, and the monitoring results are compared with the numerical results. From the comparative analysis, it can be concluded that the depths of splitting relaxation area obtained by numerical simulation are almost consistent with the actual in situ monitoring values, as well as the trend of the displacement curves, which shows that the transverse isotropic constitutive model combining with the splitting failure criterion is appropriate for investigating the splitting failure in side walls of large-scale underground caverns and it will be a helpful guidance of predicting the depths of splitting relaxation area in surrounding rock mass. PMID:27652101

  11. Validation of a simple model to predict the performance of methane oxidation systems, using field data from a large scale biocover test field.

    PubMed

    Geck, Christoph; Scharff, Heijo; Pfeiffer, Eva-Maria; Gebert, Julia

    2016-10-01

    On a large scale test field (1060m(2)) methane emissions were monitored over a period of 30months. During this period, the test field was loaded at rates between 14 and 46gCH4m(-2)d(-1). The total area was subdivided into 60 monitoring grid fields at 17.7m(2) each, which were individually surveyed for methane emissions and methane oxidation efficiency. The latter was calculated both from the direct methane mass balance and from the shift of the carbon dioxide - methane ratio between the base of the methane oxidation layer and the emitted gas. The base flux to each grid field was back-calculated from the data on methane oxidation efficiency and emission. Resolution to grid field scale allowed the analysis of the spatial heterogeneity of all considered fluxes. Higher emissions were measured in the upslope area of the test field. This was attributed to the capillary barrier integrated into the test field resulting in a higher diffusivity and gas permeability in the upslope area. Predictions of the methane oxidation potential were estimated with the simple model Methane Oxidation Tool (MOT) using soil temperature, air filled porosity and water tension as input parameters. It was found that the test field could oxidize 84% of the injected methane. The MOT predictions seemed to be realistic albeit the higher range of the predicted oxidations potentials could not be challenged because the load to the field was too low. Spatial and temporal emission patterns were found indicating heterogeneity of fluxes and efficiencies in the test field. No constant share of direct emissions was found as proposed by the MOT albeit the mean share of emissions throughout the monitoring period was in the range of the expected emissions. PMID:27426022

  12. Validation of a simple model to predict the performance of methane oxidation systems, using field data from a large scale biocover test field.

    PubMed

    Geck, Christoph; Scharff, Heijo; Pfeiffer, Eva-Maria; Gebert, Julia

    2016-10-01

    On a large scale test field (1060m(2)) methane emissions were monitored over a period of 30months. During this period, the test field was loaded at rates between 14 and 46gCH4m(-2)d(-1). The total area was subdivided into 60 monitoring grid fields at 17.7m(2) each, which were individually surveyed for methane emissions and methane oxidation efficiency. The latter was calculated both from the direct methane mass balance and from the shift of the carbon dioxide - methane ratio between the base of the methane oxidation layer and the emitted gas. The base flux to each grid field was back-calculated from the data on methane oxidation efficiency and emission. Resolution to grid field scale allowed the analysis of the spatial heterogeneity of all considered fluxes. Higher emissions were measured in the upslope area of the test field. This was attributed to the capillary barrier integrated into the test field resulting in a higher diffusivity and gas permeability in the upslope area. Predictions of the methane oxidation potential were estimated with the simple model Methane Oxidation Tool (MOT) using soil temperature, air filled porosity and water tension as input parameters. It was found that the test field could oxidize 84% of the injected methane. The MOT predictions seemed to be realistic albeit the higher range of the predicted oxidations potentials could not be challenged because the load to the field was too low. Spatial and temporal emission patterns were found indicating heterogeneity of fluxes and efficiencies in the test field. No constant share of direct emissions was found as proposed by the MOT albeit the mean share of emissions throughout the monitoring period was in the range of the expected emissions.

  13. The Styx field trial

    PubMed Central

    Gemmell, M. A.

    1968-01-01

    An assessment was made of the effectiveness of the generally accepted methods recommended for controlling hydatid disease during the course of a field-trial, initiated in 1943 in an isolated region of New Zealand. The results obtained during the first 21 years are described. Basically, the trial was an attempt to compare the effectiveness of a general public health educational programme and an anthelmintic programme using arecoline hydrobromide for treatment of dogs with that of a specific educational programme using this compound as a diagnostic agent. Arecoline hydrobromide was found to be too uncertain in its action to be of practical value as an anthelmintic. The development of diagnostic techniques, described in this paper, made it possible to use the compound for diagnostic purposes and thus for educational purposes, since each dog could be examined for tapeworms in the presence of the owner. Using changes in the annual prevalence rate in sheep of the cysts of E. granulosus and those of T. hydatigena as the principal indicators, the conclusion has been reached that the specific diagnostic approach achieved more success than the general educational and treatment programme. The principal reason for this appears to be that the former approach induced a greater awareness in owners of the need for strict management to prevent dogs gaining access to infective raw offal than that stimulated in the community when the dogs were dosed but not examined. ImagesFIG. 2FIG. 4FIG. 5 PMID:5303843

  14. A field study of large-scale oscillation ripples in a very coarse-grained, high-energy marine environment

    USGS Publications Warehouse

    Hirschaut, D.W.; Dingler, J.R.

    1982-01-01

    Monastery Beach, Carmel, California is a pocket beach that sits within 200 m of the head of Carmel Submarine Canyon. Coarse to very coarse sand covers both the beach and adjacent shelf; in the latter area incoming waves have shaped the sand into large oscillation ripples. The accessibility of this area and a variable wave climate produce a unique opportunity to study large-scale coarse-grained ripples in a high-energy environment. These ripples, which only occur in very coarse sand, form under the intense, wave-generated currents that exist during storm conditions. Once formed, these ripples do not significantly change under lower energy waves. On three separate occasions scuba divers measured ripples and collected sand samples from ripple crests near fixed reference stakes along three transects. Ripple wavelength and grain size decreased with an increase in water depth. Sediment sorting was best closest to the surf zone and poorest at the rim of Carmel Canyon. Cobbles and gravel observed in ripple troughs represent lag deposits. Carmel Canyon refracts waves approaching Monastery Beach such that wave energy is focused towards the northern and southern portions of the beach, leaving the central part of the beach lower in energy. This energy distribution causes spatial variations in the ripples and grain sizes with the shortest wavelengths and smallest grain sizes being in the central part of the shelf.

  15. Computerised cognitive behaviour therapy (cCBT) as treatment for depression in primary care (REEACT trial): large scale pragmatic randomised controlled trial

    PubMed Central

    Littlewood, Elizabeth; Hewitt, Catherine; Brierley, Gwen; Tharmanathan, Puvan; Araya, Ricardo; Barkham, Michael; Bower, Peter; Cooper, Cindy; Gask, Linda; Kessler, David; Lester, Helen; Lovell, Karina; Parry, Glenys; Richards, David A; Andersen, Phil; Brabyn, Sally; Knowles, Sarah; Shepherd, Charles; Tallon, Debbie; White, David

    2015-01-01

    Study question How effective is supported computerised cognitive behaviour therapy (cCBT) as an adjunct to usual primary care for adults with depression? Methods This was a pragmatic, multicentre, three arm, parallel randomised controlled trial with simple randomisation. Treatment allocation was not blinded. Participants were adults with symptoms of depression (score ≥10 on nine item patient health questionnaire, PHQ-9) who were randomised to receive a commercially produced cCBT programme (“Beating the Blues”) or a free to use cCBT programme (MoodGYM) in addition to usual GP care. Participants were supported and encouraged to complete the programme via weekly telephone calls. Control participants were offered usual GP care, with no constraints on the range of treatments that could be accessed. The primary outcome was severity of depression assessed with the PHQ-9 at four months. Secondary outcomes included health related quality of life (measured by SF-36) and psychological wellbeing (measured by CORE-OM) at four, 12, and 24 months and depression at 12 and 24 months. Study answer and limitations Participants offered commercial or free to use cCBT experienced no additional improvement in depression compared with usual GP care at four months (odds ratio 1.19 (95% confidence interval 0.75 to 1.88) for Beating the Blues v usual GP care; 0.98 (0.62 to 1.56) for MoodGYM v usual GP care). There was no evidence of an overall difference between either programme compared with usual GP care (0.99 (0.57 to 1.70) and 0.68 (0.42 to 1.10), respectively) at any time point. Commercially provided cCBT conferred no additional benefit over free to use cCBT or usual GP care at any follow-up point. Uptake and use of cCBT was low, despite regular telephone support. Nearly a quarter of participants (24%) had dropped out by four months. The study did not have enough power to detect small differences so these cannot be ruled out. Findings cannot be generalised to cCBT offered with a

  16. The Tiotropium Safety and Performance in Respimat® Trial (TIOSPIR®), a large scale, randomized, controlled, parallel-group trial-design and rationale

    PubMed Central

    2013-01-01

    Background Tiotropium bromide is an effective therapy for COPD patients. Comparing across programs tiotropium Respimat® Soft Mist™ inhaler was at least as efficacious as tiotropium HandiHaler®, however, concerns have been raised about tiotropium’s safety when given via Respimat®. Methods The TIOSPIR® trial (NCT01126437) compares the safety and efficacy of tiotropium Respimat® 5 μg once daily (marketed) and 2.5 μg once daily (investigational) with tiotropium HandiHaler® 18 μ once daily (marketed). The hypotheses to be tested are 1). that tiotropium Respimat® 5 μg once daily and Respimat® 2.5 μg once daily are non-inferior to HandiHaler® in terms of all-cause mortality, and 2). that tiotropium Respimat® 5 μg once daily is superior to HandiHaler® in terms of time to first exacerbation. A spirometry substudy evaluates the bronchodilator efficacy. The trial is a randomized, double-blind, double dummy, event-driven, parallel group study. Participants can use any background treatment for COPD except inhaled anticholinergic agents. The study encompasses a wide range of COPD patients, e.g. patients with stable cardiac diseases including arrhythmia can be included. Clinical sites are international and include both primary care as well as specialists. Results To date, over 17,000 participants have been randomized from over 1200 sites in 50 countries with an anticipated treatment duration of 2–3 years. Conclusion TIOSPIR® will provide precise estimates of the relative safety and efficacy of the Respimat® and HandiHaler® formulations of tiotropium, assess potential dose-dependence of important outcomes and provide information on the clinical epidemiology of COPD in a large international patient cohort. PMID:23547660

  17. Formal mathematical solutions of the force-free equations, spontaneous discontinuities, and dissipation in large-scale magnetic fields

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1990-01-01

    Direct integration of the force-free field equation del x B = alpha B, in the simple case of the local deformation of a laminar field, produces field configurations containing tangential discontinuities (current sheets). Whereas continuous solutions allow only restricted field topologies, the discontinuities provide the necessary release from those restrictions in more general topologies. Magnetic fields in nature are strongly deformed by convection, so as to contain significant internal discontinuities. The bipolar magnetic fields containing the active X-ray corona of the sun are a case in point. It appears that the dissipation caused by the discontinuities may be the primary heat source producing the X-ray corona.

  18. Large-scale magnetic field generation by asymmetric laser-pulse interactions with a plasma in low-intensity regime

    NASA Astrophysics Data System (ADS)

    Gopal, K.; Gupta, D. N.; Kim, Y. K.; Hur, M. S.; Suk, H.

    2016-03-01

    We propose a way to enhance the strength of self-generated magnetic field from laser-plasma interactions by incorporating the combined role of pulse asymmetricity and plasma inhomogeneity. The pulse asymmetry combined with the plasma inhomogeneity contributes for strong nonlinear current within the pulse body; consequently, a stronger magnetic field can be produced. The nature of self-generated magnetic field is "Quasistatic" that means the self-generated magnetic field varies on the time scale of the period of laser radiation. Our results show that the magnetic-field generated by a temporally asymmetric laser pulse is many-folds higher than the magnetic-field generated by a symmetric laser pulse in plasmas. The present study predicts the generation of magnetic field of the order of 15 T for the laser intensity of ˜ 10 14 cm-2. Our study might be applicable to improve the accelerated bunch quality in laser wakefield acceleration mechanism.

  19. Early signatures of large-scale field line opening. Multi-wavelength analysis of features connected with a "halo" CME event

    NASA Astrophysics Data System (ADS)

    Pohjolainen, S.; Vilmer, N.; Khan, J. I.; Hillaris, A. E.

    2005-04-01

    A fast "halo"-type coronal mass ejection (CME) associated with a two-ribbon flare, GOES class M 1.3, was observed on February 8, 2000. Soft X-ray and EUV images revealed several loop ejections and one wave-like moving front that started from a remote location, away from the flare core region. A radio type-II burst was observed near the trajectory of the moving soft X-ray front, although association with the CME itself cannot be ruled out. Large-scale dimmings were observed in EUV and soft X-rays, both in the form of disappearing transequatorial loops. We can pinpoint the time and the location of the first large-scale field-line opening by tracing the electron propagation paths above the active region and along the transequatorial loop system, in which large-scale mass depletion later took place. The immediate start of a type-IV burst (interpreted as an upward moving structure) which was located over a soft X-ray dimming region, confirms that the CME had lifted off. We compare these signatures with those of another halo CME event observed on May 2, 1998, and discuss the possible connections with the "magnetic breakout" model.

  20. Large-scale three-dimensional phase-field simulations for phase coarsening at ultrahigh volume fraction on high-performance architectures

    NASA Astrophysics Data System (ADS)

    Yan, Hui; Wang, K. G.; Jones, Jim E.

    2016-06-01

    A parallel algorithm for large-scale three-dimensional phase-field simulations of phase coarsening is developed and implemented on high-performance architectures. From the large-scale simulations, a new kinetics in phase coarsening in the region of ultrahigh volume fraction is found. The parallel implementation is capable of harnessing the greater computer power available from high-performance architectures. The parallelized code enables increase in three-dimensional simulation system size up to a 5123 grid cube. Through the parallelized code, practical runtime can be achieved for three-dimensional large-scale simulations, and the statistical significance of the results from these high resolution parallel simulations are greatly improved over those obtainable from serial simulations. A detailed performance analysis on speed-up and scalability is presented, showing good scalability which improves with increasing problem size. In addition, a model for prediction of runtime is developed, which shows a good agreement with actual run time from numerical tests.

  1. The magnetic shear-current effect: Generation of large-scale magnetic fields by the small-scale dynamo

    DOE PAGESBeta

    Squire, J.; Bhattacharjee, A.

    2016-03-14

    A novel large-scale dynamo mechanism, the magnetic shear-current effect, is discussed and explored. Here, the effect relies on the interaction of magnetic fluctuations with a mean shear flow, meaning the saturated state of the small-scale dynamo can drive a large-scale dynamo – in some sense the inverse of dynamo quenching. The dynamo is non-helical, with the mean fieldmore » $${\\it\\alpha}$$coefficient zero, and is caused by the interaction between an off-diagonal component of the turbulent resistivity and the stretching of the large-scale field by shear flow. Following up on previous numerical and analytic work, this paper presents further details of the numerical evidence for the effect, as well as an heuristic description of how magnetic fluctuations can interact with shear flow to produce the required electromotive force. The pressure response of the fluid is fundamental to this mechanism, which helps explain why the magnetic effect is stronger than its kinematic cousin, and the basic idea is related to the well-known lack of turbulent resistivity quenching by magnetic fluctuations. As well as being interesting for its applications to general high Reynolds number astrophysical turbulence, where strong small-scale magnetic fluctuations are expected to be prevalent, the magnetic shear-current effect is a likely candidate for large-scale dynamo in the unstratified regions of ionized accretion disks. Evidence for this is discussed, as well as future research directions and the challenges involved with understanding details of the effect in astrophysically relevant regimes.« less

  2. A three-dimensional diffusion/convection model of the large scale magnetic field in the Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Luhmann, J. G.

    1988-01-01

    A three-dimensinal diffusion/convection model of the dayside Venus ionosphere magnetic field was developed on the basis of previously published one-dimensional diffusion/convection models, and assuming that the field and flow at the upper boundary (in the magnetic barrier) as well as the ionospheric plasma velocity are known. The results indicate that the low-altitude magnetosheath field draping may be distorted by the interaction with the ionosphere in such a manner that there is an apparent 'focusing' of the field toward the subsolar point, caused by the shear in the horizontal velocity between the magnetosheath and ionospheric flows. A comparison of published magnetic-field observations with the present results indicates that the simple nesting of external and internal velocity fields may be a good approximation to global plasma flows near Venus under normal conditions.

  3. NONLINEAR FORCE-FREE FIELD EXTRAPOLATION OF A CORONAL MAGNETIC FLUX ROPE SUPPORTING A LARGE-SCALE SOLAR FILAMENT FROM A PHOTOSPHERIC VECTOR MAGNETOGRAM

    SciTech Connect

    Jiang, Chaowei; Wu, S. T.; Hu, Qiang; Feng, Xueshang E-mail: wus@uah.edu E-mail: fengx@spaceweather.ac.cn

    2014-05-10

    Solar filaments are commonly thought to be supported in magnetic dips, in particular, in those of magnetic flux ropes (FRs). In this Letter, based on the observed photospheric vector magnetogram, we implement a nonlinear force-free field (NLFFF) extrapolation of a coronal magnetic FR that supports a large-scale intermediate filament between an active region and a weak polarity region. This result is a first, in the sense that current NLFFF extrapolations including the presence of FRs are limited to relatively small-scale filaments that are close to sunspots and along main polarity inversion lines (PILs) with strong transverse field and magnetic shear, and the existence of an FR is usually predictable. In contrast, the present filament lies along the weak-field region (photospheric field strength ≲ 100 G), where the PIL is very fragmented due to small parasitic polarities on both sides of the PIL and the transverse field has a low signal-to-noise ratio. Thus, extrapolating a large-scale FR in such a case represents a far more difficult challenge. We demonstrate that our CESE-MHD-NLFFF code is sufficient for the challenge. The numerically reproduced magnetic dips of the extrapolated FR match observations of the filament and its barbs very well, which strongly supports the FR-dip model for filaments. The filament is stably sustained because the FR is weakly twisted and strongly confined by the overlying closed arcades.

  4. Radio polarization and sub-millimeter observations of the Sombrero galaxy (NGC 4594). Large-scale magnetic field configuration and dust emission

    NASA Astrophysics Data System (ADS)

    Krause, M.; Wielebinski, R.; Dumke, M.

    2006-03-01

    We observed the nearby early-type spiral galaxy NGC 4594 (M 104, Sombrero galaxy) with the Very Large Array at 4.86 GHz, with the Effelsberg 100-m telescope at 8.35 GHz as well as with the Heinrich Hertz Telescope at 345 GHz in radio continuum. The 4.86 and 8.35 GHz data contain polarization information and hence information about the magnetic fields: we detected a large-scale magnetic field which is to our knowledge the first detection of a large-scale magnetic field in an Sa galaxy in the radio range. The magnetic field orientation in M 104 is predominantly parallel to the disk but has also vertical components at larger z-distances from the disk. This field configuration is typical for normal edge-on spiral galaxies. The 345 GHz data pertain to the cold dust content of the galaxy. Despite the optical appearance of the object with the huge dust lane, its dust content is smaller than that of more late-type spirals.

  5. Electric Field and Plasma Density Observations of Large Scale (100's of km) Waves Below the Equatorial F-peak as Seeds of Spread-F

    NASA Astrophysics Data System (ADS)

    Pfaff, R. F.; Freudenreich, H.; Klenzing, J.; Liebrecht, C.

    2012-12-01

    Electric field and plasma density observations gathered on the C/NOFS satellite are presented in cases where the ionosphere F-peak has been elevated above the satellite perigee of 400 km in the evening. During these passes, data from the electric field and plasma density probes on the satellite frequently show evidence for 400-500km-scale bottomside "undulations" that appear in the density and electric field data. In one case, these large scale waves are associated with a strong shear in the zonal E x B flow, as evidenced by variations in the meridional (outward) electric fields observed above and below the F-peak. These undulations are devoid of smaller scale structures in the early evening, yet appear at later local times along the same orbit associated with fully-developed spread-F with smaller scale structures. This suggests that they may be precursor waves for spread-F, driven by a collisional shear instability, following ideas advanced previously by researchers using data from the Jicamarca radar. We present statistics of numerous examples of these large scale waves detected by instruments on the C/NOFS satellite.

  6. Revisiting the Middle Molecule Hypothesis of Uremic Toxicity: A Systematic Review of Beta 2 Microglobulin Population Kinetics and Large Scale Modeling of Hemodialysis Trials In Silico

    PubMed Central

    Roumelioti, Maria Eleni; Nolin, Thomas; Unruh, Mark L.; Argyropoulos, Christos

    2016-01-01

    Background Beta-2 Microglobulin (β2M) is a prototypical “middle molecule” uremic toxin that has been associated with a higher risk of death in hemodialysis patients. A quantitative description of the relative importance of factors determining β2M concentrations among patients with impaired kidney function is currently lacking. Methods Herein we undertook a systematic review of existing studies reporting patient level data concerning generation, elimination and distribution of β2M in order to develop a population model of β2M kinetics. We used this model and previously determined relationships between predialysis β2M concentration and survival, to simulate the population distribution of predialysis β2M and the associated relative risk (RR) of death in patients receiving conventional thrice-weekly hemodialysis with low flux (LF) and high flux (HF) dialyzers, short (SD) and long daily (LD) HF hemodialysis sessions and on-line hemodiafiltration at different levels of residual renal function (RRF). Results We identified 9 studies of 106 individuals and 156 evaluations of or more compartmental kinetic parameters of β2M. These studies used a variety of experimental methods to determine β2M kinetics ranging from isotopic dilution to profiling of intra/inter dialytic concentration changes. Most of the patients (74/106) were on dialysis with minimal RRF, thus facilitating the estimation of non-renal elimination kinetics of β2M. In large scale (N = 10000) simulations of individuals drawn from the population of β2M kinetic parameters, we found that, higher dialytic removal materially affects β2M exposures only when RRF (renal clearance of β2M) was below 2 ml/min. In patients initiating conventional HF hemodialysis, total loss of RRF was predicted to be associated with a RR of death of more than 20%. Hemodiafiltration and daily dialysis may decrease the high risk of death of anuric patients by 10% relative to conventional, thrice weekly HF dialysis. Only daily

  7. Effects of the Scatter in Sunspot Group Tilt Angles on the Large-scale Magnetic Field at the Solar Surface

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Cameron, R. H.; Schüssler, M.

    2014-08-01

    The tilt angles of sunspot groups represent the poloidal field source in Babcock-Leighton-type models of the solar dynamo and are crucial for the build-up and reversals of the polar fields in surface flux transport (SFT) simulations. The evolution of the polar field is a consequence of Hale's polarity rules, together with the tilt angle distribution which has a systematic component (Joy's law) and a random component (tilt-angle scatter). We determine the scatter using the observed tilt angle data and study the effects of this scatter on the evolution of the solar surface field using SFT simulations with flux input based upon the recorded sunspot groups. The tilt angle scatter is described in our simulations by a random component according to the observed distributions for different ranges of sunspot group size (total umbral area). By performing simulations with a number of different realizations of the scatter we study the effect of the tilt angle scatter on the global magnetic field, especially on the evolution of the axial dipole moment. The average axial dipole moment at the end of cycle 17 (a medium-amplitude cycle) from our simulations was 2.73 G. The tilt angle scatter leads to an uncertainty of 0.78 G (standard deviation). We also considered cycle 14 (a weak cycle) and cycle 19 (a strong cycle) and show that the standard deviation of the axial dipole moment is similar for all three cycles. The uncertainty mainly results from the big sunspot groups which emerge near the equator. In the framework of Babcock-Leighton dynamo models, the tilt angle scatter therefore constitutes a significant random factor in the cycle-to-cycle amplitude variability, which strongly limits the predictability of solar activity.

  8. Effects of the scatter in sunspot group tilt angles on the large-scale magnetic field at the solar surface

    SciTech Connect

    Jiang, J.; Cameron, R. H.; Schüssler, M.

    2014-08-10

    The tilt angles of sunspot groups represent the poloidal field source in Babcock-Leighton-type models of the solar dynamo and are crucial for the build-up and reversals of the polar fields in surface flux transport (SFT) simulations. The evolution of the polar field is a consequence of Hale's polarity rules, together with the tilt angle distribution which has a systematic component (Joy's law) and a random component (tilt-angle scatter). We determine the scatter using the observed tilt angle data and study the effects of this scatter on the evolution of the solar surface field using SFT simulations with flux input based upon the recorded sunspot groups. The tilt angle scatter is described in our simulations by a random component according to the observed distributions for different ranges of sunspot group size (total umbral area). By performing simulations with a number of different realizations of the scatter we study the effect of the tilt angle scatter on the global magnetic field, especially on the evolution of the axial dipole moment. The average axial dipole moment at the end of cycle 17 (a medium-amplitude cycle) from our simulations was 2.73 G. The tilt angle scatter leads to an uncertainty of 0.78 G (standard deviation). We also considered cycle 14 (a weak cycle) and cycle 19 (a strong cycle) and show that the standard deviation of the axial dipole moment is similar for all three cycles. The uncertainty mainly results from the big sunspot groups which emerge near the equator. In the framework of Babcock-Leighton dynamo models, the tilt angle scatter therefore constitutes a significant random factor in the cycle-to-cycle amplitude variability, which strongly limits the predictability of solar activity.

  9. Large-scale magnetic field perturbation arising from the 18 May 1980 eruption from Mount St. Helens, Washington

    USGS Publications Warehouse

    Mueller, R.J.; Johnston, M.J.S.

    1989-01-01

    A traveling magnetic field disturbance generated by the 18 may 1980 eruption of Mount St. Helens at 1532 UT was detected on an 800-km linear array of recording magnetometers installed along the San Andreas fault system in California, from San Francisco to the Salton Sea. Arrival times of the disturbance field, from the most northern of these 24 magnetometers (996 km south of the volcano) to the most southern (1493 km S23?? E), are consistent with the generation of a traveling ionospheric disturbance stimulated by the blast pressure wave in the atmosphere. The first arrivals at the north and the south ends of the array occurred at 26 and 48 min, respectively, after the initial eruption. Apparent average wave velocity through the array is 309 ?? 14 m s-1 but may have approached 600 m s-1 close to the volcano. The horizontal phase and the group velocity of ??? 300 m s-1 at periods of 70-80 min, and the attenuation with distance, strongly suggest that the magnetic field perturbations at distances of 1000-1500 km are caused by gravity mode acoustic-gravity waves propagating at F-region heights in the ionosphere. ?? 1989.

  10. STEADY GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC INFLOW/OUTFLOW SOLUTION ALONG LARGE-SCALE MAGNETIC FIELDS THAT THREAD A ROTATING BLACK HOLE

    SciTech Connect

    Pu, Hung-Yi; Nakamura, Masanori; Hirotani, Kouichi; Asada, Keiichi; Wu, Kinwah

    2015-03-01

    General relativistic magnetohydrodynamic (GRMHD) flows along magnetic fields threading a black hole can be divided into inflow and outflow parts, according to the result of the competition between the black hole gravity and magneto-centrifugal forces along the field line. Here we present the first self-consistent, semi-analytical solution for a cold, Poynting flux–dominated (PFD) GRMHD flow, which passes all four critical (inner and outer, Alfvén, and fast magnetosonic) points along a parabolic streamline. By assuming that the dominating (electromagnetic) component of the energy flux per flux tube is conserved at the surface where the inflow and outflow are separated, the outflow part of the solution can be constrained by the inflow part. The semi-analytical method can provide fiducial and complementary solutions for GRMHD simulations around the rotating black hole, given that the black hole spin, global streamline, and magnetizaion (i.e., a mass loading at the inflow/outflow separation) are prescribed. For reference, we demonstrate a self-consistent result with the work by McKinney in a quantitative level.

  11. Medium and large-scale variations of dynamo-induced electric fields from AE ion drift measurements

    NASA Technical Reports Server (NTRS)

    Coley, W. R.; Mcclure, J. P.

    1986-01-01

    Current models of the low latitude electric field are largely based on data from incoherent scatter radars. These observations are extended through the addition of the rather extensive high quality electric field measurements from the Ion Drift Meter (IDM) aboard the Atmosphere Explorer (AE) spacecraft. Some preliminary results obtained from the Unified Abstract files of satellite AE-E are presented. This satellite was active from the end of 1975 through June 1981 in various elliptical and circular orbits having an inclination near 20 deg. The resulting data can be examined for the variation of ion drift with latitude, longitude, season, solar cycle, altitude, and magnetic activity. The results presented deal primarily with latitudinal variations of the drift features. Diagrams of data are given and briefly interpreted. The preliminary results presented here indicate that IDM data from the AE and the more recent Dynamics Explorer B spacecraft should continue to disclose some interesting and previously unobserved dynamical features of the low latitude F region.

  12. Gap junctions mediate large-scale Turing structures in a mean-field cortex driven by subcortical noise

    NASA Astrophysics Data System (ADS)

    Steyn-Ross, Moira L.; Steyn-Ross, D. A.; Wilson, M. T.; Sleigh, J. W.

    2007-07-01

    One of the grand puzzles in neuroscience is establishing the link between cognition and the disparate patterns of spontaneous and task-induced brain activity that can be measured clinically using a wide range of detection modalities such as scalp electrodes and imaging tomography. High-level brain function is not a single-neuron property, yet emerges as a cooperative phenomenon of multiply-interacting populations of neurons. Therefore a fruitful modeling approach is to picture the cerebral cortex as a continuum characterized by parameters that have been averaged over a small volume of cortical tissue. Such mean-field cortical models have been used to investigate gross patterns of brain behavior such as anesthesia, the cycles of natural sleep, memory and erasure in slow-wave sleep, and epilepsy. There is persuasive and accumulating evidence that direct gap-junction connections between inhibitory neurons promote synchronous oscillatory behavior both locally and across distances of some centimeters, but, to date, continuum models have ignored gap-junction connectivity. In this paper we employ simple mean-field arguments to derive an expression for D2 , the diffusive coupling strength arising from gap-junction connections between inhibitory neurons. Using recent neurophysiological measurements reported by Fukuda [J. Neurosci. 26, 3434 (2006)], we estimate an upper limit of D2≈0.6cm2 . We apply a linear stability analysis to a standard mean-field cortical model, augmented with gap-junction diffusion, and find this value for the diffusive coupling strength to be close to the critical value required to destabilize the homogeneous steady state. Computer simulations demonstrate that larger values of D2 cause the noise-driven model cortex to spontaneously crystalize into random mazelike Turing structures: centimeter-scale spatial patterns in which regions of high-firing activity are intermixed with regions of low-firing activity. These structures are consistent with the

  13. Small-scale field experiments accurately scale up to predict density dependence in reef fish populations at large scales.

    PubMed

    Steele, Mark A; Forrester, Graham E

    2005-09-20

    Field experiments provide rigorous tests of ecological hypotheses but are usually limited to small spatial scales. It is thus unclear whether these findings extrapolate to larger scales relevant to conservation and management. We show that the results of experiments detecting density-dependent mortality of reef fish on small habitat patches scale up to have similar effects on much larger entire reefs that are the size of small marine reserves and approach the scale at which some reef fisheries operate. We suggest that accurate scaling is due to the type of species interaction causing local density dependence and the fact that localized events can be aggregated to describe larger-scale interactions with minimal distortion. Careful extrapolation from small-scale experiments identifying species interactions and their effects should improve our ability to predict the outcomes of alternative management strategies for coral reef fishes and their habitats.

  14. A large-scale measurement of electromagnetic fields near GSM base stations in Guangxi, China for risk communication.

    PubMed

    Wu, Tongning; Shao, Qing; Yang, Lei; Qi, Dianyuan; Lin, Jun; Lin, Xiaojun; Yu, Zongying

    2013-06-01

    Radiofrequency (RF) electromagnetic field (EMF) exposure from wireless telecommunication base station antennae can lead to debates, conflicts or litigations among the adjacent residents if inappropriately managed. This paper presents a measurement campaign for the GSM band EMF exposure in the vicinity of 827 base station sites (totally 6207 measurement points) in Guangxi, China. Measurement specifications are designed for risk communication with the residents who previously complained of over-exposure. The EMF power densities with the global positioning system coordinate at each measured point were recorded. Compliance with the International Commission on Non-Ionizing Radiation Protection guidelines and Chinese environmental EMF safety standards was studied. The results show that the GSM band EMF level near the base stations is very low. The measurement results and the EMF risk communication procedures positively influence public perception of the RF EMF exposure from the base stations and promote the exchange of EMF exposure-related knowledge.

  15. Study of mean- and turbulent-velocity fields in a large-scale turbine-vane passage

    NASA Technical Reports Server (NTRS)

    Bailey, D. A.

    1979-01-01

    Laser-Doppler velocimetry, and to a lesser extent hot-wire anemometry, were employed to measure three components of the mean velocity and the six turbulent stresses at four planes within the turbine inlet-guide-vane passage. One variation in the turbulent inlet boundary layer thickness and one variation in the blade aspect ratio (span/axial chord) were studied. A longitudinal vortex (passage vortex) was clearly identified in the exit plane of the passage for the three test cases. The maximum turbulence intensities within the longitudinal vortex were found to be on the order of 2 to 4 percent, with large regions appearing nonturbulent. Because a turbulent wall boundary layer was the source of vorticity that produced the passage vortex, these low turbulence levels were not anticipated. For the three test cases studied, the lateral velocity field extended significantly beyond the region of the longitudinal velocity defect. Changing the inlet boundary layer thickness produced a difference in the location, the strength, and the extent of the passage vortex. Changing the aspect ratio of the blade passage had a measurable but less significant effect. The experiment was performed in a 210 mm pitch, 272 mm axial chord model in low speed wind tunnel at an inlet Mach number of 0.07.

  16. Assessment and mitigation of errors associated with a large-scale field investigation of methane emissions from the Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Caulton, D.; Golston, L.; Li, Q.; Bou-Zeid, E.; Pan, D.; Lane, H.; Lu, J.; Fitts, J. P.; Zondlo, M. A.

    2015-12-01

    Recent work suggests the distribution of methane emissions from fracking operations is a skewed distributed with a small percentage of emitters contributing a large proportion of the total emissions. In order to provide a statistically robust distributions of emitters and determine the presence of super-emitters, errors in current techniques need to be constrained and mitigated. The Marcellus shale, the most productive natural gas shale field in the United States, has received less intense focus for well-level emissions and is here investigated to provide the distribution of methane emissions. In July of 2015 approximately 250 unique well pads were sampled using the Princeton Atmospheric Chemistry Mobile Acquisition Node (PAC-MAN). This mobile lab includes a Garmin GPS unit, Vaisala weather station (WTX520), LICOR 7700 CH4 open path sensor and LICOR 7500 CO2/H2O open path sensor. Sampling sites were preselected based on wind direction, sampling distance and elevation grade. All sites were sampled during low boundary layer conditions (600-1000 and 1800-2200 local time). The majority of sites were sampled 1-3 times while selected test sites were sampled multiple times or resampled several times during the day. For selected sites a sampling tower was constructed consisting of a Metek uSonic-3 Class A sonic anemometer, and an additional LICOR 7700 and 7500. Data were recorded for at least one hour at these sites. A robust study and inter-comparison of different methodologies will be presented. The Gaussian plume model will be used to calculate fluxes for all sites and compare results from test sites with multiple passes. Tower data is used to provide constraints on the Gaussian plume model. Additionally, Large Eddy Simulation (LES) modeling will be used to calculate emissions from the tower sites. Alternative techniques will also be discussed. Results from these techniques will be compared to identify best practices and provide robust error estimates.

  17. The effect of the geomagnetic field on cosmic ray energy estimates and large scale anisotropy searches on data from the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; del Peral, L.; del Río, M.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Horvath, P.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mićanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Moura, C. A.; Mueller, S.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parsons, R. D.; Pastor, S.; Paul, T.; Pech, M.; Pękala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Robledo, C.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Śacute; Smiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tamashiro, A.; Tapia, A.; Tartare, M.; Taşąu, O.; Tavera Ruiz, C. G.; Tcaciuc, R.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tiwari, D. K.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Varela, E.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Warner, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Winnick, M. G.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zimbres Silva, M.; Ziolkowski, M.

    2011-11-01

    We present a comprehensive study of the influence of the geomagnetic field on the energy estimation of extensive air showers with a zenith angle smaller than 60°, detected at the Pierre Auger Observatory. The geomagnetic field induces an azimuthal modulation of the estimated energy of cosmic rays up to the ~ 2% level at large zenith angles. We present a method to account for this modulation of the reconstructed energy. We analyse the effect of the modulation on large scale anisotropy searches in the arrival direction distributions of cosmic rays. At a given energy, the geomagnetic effect is shown to induce a pseudo-dipolar pattern at the percent level in the declination distribution that needs to be accounted for.

  18. Investigation of a laser Doppler velocimeter system to measure the flow field around a large scale V/STOL aircraft in ground effect

    NASA Technical Reports Server (NTRS)

    Zalay, A. D.; Brashears, M. R.; Jordan, A. J.; Shrider, K. R.; Vought, C. D.

    1979-01-01

    The flow field measured around a hovering 70 percent scale vertical takeoff and landing (V/STOL) aircraft model is described. The velocity measurements were conducted with a ground based laser Doppler velocimeter. The remote sensing instrumentation and experimental tests of the velocity surveys are discussed. The distribution of vertical velocity in the fan jet and fountain; the radial velocity in the wall jet and the horizontal velocity along the aircraft underside are presented for different engine rpms and aircraft height above ground. Results show that it is feasible to use a mobile laser Doppler velocimeter to measure the flow field generated by a large scale V/STOL aircraft operating in ground effect.

  19. Investigation of a laser Doppler velocimeter system to measure the flow field of a large scale V/STOL aircraft in ground effect

    NASA Technical Reports Server (NTRS)

    Zalay, A. D.; Brashears, M. R.; Jordan, A. J.; Shrider, K. R.; Vought, C. D.

    1979-01-01

    An experimental research program for measuring the flow field around a 70 percent scale V/STOL aircraft model in ground effect is described. The velocity measurements were conducted with a ground-based laser Doppler velocimeter at an outdoor test pad. The remote sensing instrumentation, experimental tests, and results of the velocity surveys are discussed. The distribution of vertical velocity in the fan jet and fountain, the radial velocity in the wall jet and the horizontal velocity along the aircraft underside are presented for different engine rpms and aircraft heights above ground. The study shows that it is feasible to use a mobile laser Doppler velocimeter to measure the flow field generated by a large scale V/STOL aircraft operating in ground effect.

  20. A Bootstrap Technique for Testing the Relationship Between Local-Scale Radar Observations of Cloud Occurrence and Large-Scale Atmospheric Fields

    SciTech Connect

    Marchand, Roger T.; Beagley, Nathaniel; Thompson, Sandra E.; Ackerman, Thomas P.; Schultz, David M.

    2006-11-01

    In this paper an atmospheric classification scheme based on fields that are resolved by global climate models (and numerical weather prediction models) is investigated as a mechanism to map the large-scale (synoptic-scale) atmospheric state to distributions of local-scale cloud properties. Using a bootstrap resampling technique, the temporal stability and distinctness of vertical profiles of cloud occurrence (obtained from a vertically pointing millimeter wavelength cloud-radar) are analyzed as a function of the atmospheric state. A stable class-based map from the large-scale to local-scale cloud properties could be of great utility in the analysis of GCM-predicted cloud properties, by providing a physical context from which to understand any differences between the model output and observations, as well as to separate differences (in total distribution) that are caused by having different weather regimes (or synoptic scale activity) rather than problems in the representation of clouds for a particular regime. Furthermore, if sufficiently robust mappings can be established, it could form the basis of a statistical GCM cloud parameterization.

  1. The effect of the geomagnetic field on cosmic ray energy estimates and large scale anisotropy searches on data from the Pierre Auger Observatory

    SciTech Connect

    Abreu, P.; Aglietta, M.; Ahn, E.J.; Albuquerque, I.F.M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Ambrosio, M.; /Naples U. /INFN, Naples /Nijmegen U., IMAPP

    2011-11-01

    We present a comprehensive study of the influence of the geomagnetic field on the energy estimation of extensive air showers with a zenith angle smaller than 60{sup o}, detected at the Pierre Auger Observatory. The geomagnetic field induces an azimuthal modulation of the estimated energy of cosmic rays up to the {approx} 2% level at large zenith angles. We present a method to account for this modulation of the reconstructed energy. We analyse the effect of the modulation on large scale anisotropy searches in the arrival direction distributions of cosmic rays. At a given energy, the geomagnetic effect is shown to induce a pseudo-dipolar pattern at the percent level in the declination distribution that needs to be accounted for. In this work, we have identified and quantified a systematic uncertainty affecting the energy determination of cosmic rays detected by the surface detector array of the Pierre Auger Observatory. This systematic uncertainty, induced by the influence of the geomagnetic field on the shower development, has a strength which depends on both the zenith and the azimuthal angles. Consequently, we have shown that it induces distortions of the estimated cosmic ray event rate at a given energy at the percent level in both the azimuthal and the declination distributions, the latter of which mimics an almost dipolar pattern. We have also shown that the induced distortions are already at the level of the statistical uncertainties for a number of events N {approx_equal} 32 000 (we note that the full Auger surface detector array collects about 6500 events per year with energies above 3 EeV). Accounting for these effects is thus essential with regard to the correct interpretation of large scale anisotropy measurements taking explicitly profit from the declination distribution.

  2. Actual Condition of Paddy Field Levee Maintenance by Various Farm Households including Large-scale Farming in the Developed Land Renting Area

    NASA Astrophysics Data System (ADS)

    Sakata, Yasuyo

    The survey of interview, resource acquisition, photographic operation, and questionnaire were carried out in the “n” Community in the “y” District in Hakusan City in Ishikawa Prefecture to investigate the actual condition of paddy field levee maintenance in the area where land-renting market was proceeding, large-scale farming was dominant, and the problems of geographically scattered farm-land existed. In the study zone, 1) an agricultural production legal person rent-cultivated some of the paddy fields and maintained the levees, 2) another agricultural production legal person rent-cultivated some of the soy bean fields for crop changeover and land owners maintained the levees. The results indicated that sufficient maintenance was executed on the levees of the paddy fields cultivated by the agricultural production legal person, the soy bean fields for crop changeover, and the paddy fields cultivated by the land owners. Each reason is considered to be the managerial strategy, the economic incentive, the mutual monitoring and cross-regulatory mechanism, etc.

  3. QUANTIFYING THE SIGNIFICANCE OF THE MAGNETIC FIELD FROM LARGE-SCALE CLOUD TO COLLAPSING CORE: SELF-SIMILARITY, MASS-TO-FLUX RATIO, AND STAR FORMATION EFFICIENCY

    SciTech Connect

    Koch, Patrick M.; Ho, Paul T. P.; Tang, Ya-Wen

    2012-03-01

    Dust polarization observational results are analyzed for the high-mass star formation region W51 from the largest parent cloud ({approx}2 pc, James Clerk Maxwell Telescope) to the large-scale envelope ({approx}0.5 pc, BIMA array) down to the collapsing core e2 ({approx}60 mpc, Submillimeter Array). Magnetic field and dust emission gradient orientations reveal a correlation which becomes increasingly more tight with higher resolution. The previously developed polarization-intensity-gradient method is applied in order to quantify the magnetic field significance. This technique provides a way to estimate the local magnetic field force compared to gravity without the need of any mass or field strength measurements, solely making use of measured angles which reflect the geometrical imprint of the various forces. All three data sets clearly show regions with distinct features in the field-to-gravity force ratio. Azimuthally averaged radial profiles of this force ratio reveal a transition from a field dominance at larger distances to a gravity dominance closer to the emission peaks. Normalizing these profiles to a characteristic core scale points toward self-similarity. Furthermore, the polarization-intensity-gradient method is linked to the mass-to-flux ratio, providing a new approach to estimate the latter one without mass and field strength inputs. A transition from a magnetically supercritical to a subcritical state as a function of distance from the emission peak is found for the e2 core. Finally, based on the measured radius-dependent field-to-gravity force ratio we derive a modified star formation efficiency with a diluted gravity force. Compared to a standard (free-fall) efficiency, the observed field is capable of reducing the efficiency down to 10% or less.

  4. Large scale 3D geometry of deformation structures in the Aar massif and overlying Helvetic nappes (Central Alps, Switzerland) - A combined remote sensing and field work approach

    NASA Astrophysics Data System (ADS)

    Baumberger, R.; Wehrens, Ph.; Herwegh, M.

    2012-04-01

    Allowing deep insight into the formation history of a rock complex, shear zones, faults and joint systems represent important sources of geological information. The granitic rocks of the Haslital valley (Switzerland) show very good outcrop conditions to study these mechanical anisotropies. Furthermore, they permit a quantitative characterisation of the above-mentioned deformation structures on the large-scale, in terms of their 3D orientation, 3D spatial distribution, kinematics and evolution in 3D. A key problem while developing valid geological 3D models is the three-dimensional spatial distribution of geological structures, particularly with increasing distance from the surface. That is especially true in regions, where only little or even no "hard" underground data (e.g. bore holes, tunnel mappings and seismics) is available. In the study area, many subsurface data are available (e.g. cross sections, tunnel and pipeline mappings, bore holes etc.). Therefore, two methods dealing with the problems mentioned are developed: (1) A data acquisition, processing and visualisation method, (2) A methodology to improve the reliability of 3D models regarding the spatial trend of geological structures with increasing depth: 1) Using aerial photographs and a high-resolution digital elevation model, a GIS-based remote-sensing structural map of large-scale structural elements (shear zones, faults) of the study area was elaborated. Based on that lineament map, (i) a shear zone map was derived and (ii) a geostatistical analysis was applied to identify sub regions applicable for serving as field areas to test the methodology presented above. During fieldwork, the shear zone map was evaluated by verifying the occurrence and spatial distribution of the structures designated by remote sensing. Additionally, the geometry of the structures (e.g. 3D orientation, width, kinematics) was characterised and parameterised accordingly. These tasks were partially done using a GPS based Slate

  5. Large scale tracking algorithms.

    SciTech Connect

    Hansen, Ross L.; Love, Joshua Alan; Melgaard, David Kennett; Karelitz, David B.; Pitts, Todd Alan; Zollweg, Joshua David; Anderson, Dylan Z.; Nandy, Prabal; Whitlow, Gary L.; Bender, Daniel A.; Byrne, Raymond Harry

    2015-01-01

    Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.

  6. THE RECENT REJUVENATION OF THE SUN’S LARGE-SCALE MAGNETIC FIELD: A CLUE FOR UNDERSTANDING PAST AND FUTURE SUNSPOT CYCLES

    SciTech Connect

    Sheeley, N. R. Jr.; Wang, Y.-M.

    2015-08-20

    The quiet nature of sunspot cycle 24 was disrupted during the second half of 2014 when the Sun’s large-scale field underwent a sudden rejuvenation: the solar mean field reached its highest value since 1991, the interplanetary field strength doubled, and galactic cosmic rays showed their strongest 27-day modulation since neutron-monitor observations began in 1957; in the outer corona, the large increase of field strength was reflected by unprecedentedly large numbers of coronal loops collapsing inward along the heliospheric current sheet. Here, we show that this rejuvenation was not caused by a significant increase in the level of solar activity as measured by the smoothed sunspot number and CME rate, but instead was caused by the systematic emergence of flux in active regions whose longitudinal distribution greatly increased the Sun’s dipole moment. A similar post-maximum increase in the dipole moment occurred during each of the previous three sunspot cycles, and marked the start of the declining phase of each cycle. We note that the north–south component of this peak dipole moment provides an early indicator of the amplitude of the next cycle, and conclude that the amplitude of cycle 25 may be comparable to that of cycle 24, and well above the amplitudes obtained during the Maunder Minimum.

  7. A facile route for the fabrication of large-scale gate-all-around nanofluidic field-effect transistors with low leakage current.

    PubMed

    Shin, Sangwoo; Kim, Beom Seok; Song, Jiwoon; Lee, Hwanseong; Cho, Hyung Hee

    2012-07-21

    Active modulation of ions and molecules via field-effect gating in nanofluidic channels is a crucial technology for various promising applications such as DNA sequencing, drug delivery, desalination, and energy conversion. Developing a rapid and facile fabrication method for ionic field-effect transistors (FET) over a large area may offer exciting opportunities for both fundamental research and innovative applications. Here, we report a rapid, cost-effective route for the fabrication of large-scale nanofluidic field-effect transistors using a simple, lithography-free two-step fabrication process that consists of sputtering and barrier-type anodization. A robust alumina gate dielectric layer, which is formed by anodizing sputtered aluminium, can be rapidly fabricated in the order of minutes. When anodizing aluminium, we employ a hemispherical counter electrode in order to give a uniform electric field that encompasses the whole sputtered aluminium layer which has high surface roughness. In consequence, a well-defined thin layer of alumina with perfect step coverage is formed on a highly rough aluminium surface. A gate-all-around nanofluidic FET with a leak-free gate dielectric exhibits outstanding gating performance despite a large channel size. The thin and robust anodized alumina gate dielectric plays a crucial role in achieving such excellent capacitive coupling. The combination of a gate-all-around structure with a leak-free gate dielectric over a large area could yield breakthroughs in areas ranging from biotechnology to energy and environmental applications.

  8. The Styx Field Trial

    PubMed Central

    Gemmell, M. A.

    1978-01-01

    A 13-year assessment has been made of the effectiveness of a monthly drug treatment programme for the control of tapeworms in dogs in order to prevent hydatidosis (Echinococcus granulosus) and cysticercosis (Taenia hydatigena and T. ovis) in sheep. The age-specific prevalence of T. hydatigena in lambs was used as the principal indicator. The trial was carried out in the Styx Valley of the Maniototo Plain in the South Island of New Zealand. Over an 8-year period dogs were treated monthly with bunamidine hydrochloride at about 25 mg/kg with little effect on the prevalence of T. hydatigena in lambs. The addition of niclosamide at 50 mg/kg for 1 year also had little effect. Eggs appeared to survive from one season to the next. Those shed prior to the lamb-rearing season gave rise to endemic-type patterns; whereas patent infections occurring during this period rapidly gave rise to an epidemic-type pattern or a ”cysticercosis storm”. In this 9-year period there were 16 ”cysticercosis storms” and all susceptible lambs were infected. These storms did not necessarily give rise to a similar prevalence on neighbouring farms, but may have contributed to the overall infective pattern. A similar situation occurred in the first year that nitroscanate at 100 mg/kg was introduced. During this 10-year period, arecoline surveillance of the dog population was undertaken in the remainder of the county and many dogs were found to harbour tapeworms. Both resident and introduced dogs may have contributed to the infective patterns in the Styx Valley. Treatment with nitroscanate was continued monthly in the Styx Valley and niclosamide was used in the remainder of the County for a further 3 years. There was a marked reduction in the age-specific prevalence and lambs on many farms were free from T. hydatigena at slaughter. However, one ”breakdown” occurred and this was almost certainly autochthonous. Comparisons with an earlier period when arecoline surveillance was used in the

  9. Large-scale regions of antimatter

    SciTech Connect

    Grobov, A. V. Rubin, S. G.

    2015-07-15

    Amodified mechanism of the formation of large-scale antimatter regions is proposed. Antimatter appears owing to fluctuations of a complex scalar field that carries a baryon charge in the inflation era.

  10. Dengue vaccine trial guidelines and role of large-scale, post proof-of-concept demonstration projects in bringing a dengue vaccine to use in dengue endemic areas

    PubMed Central

    Singhasivanon, Pratap; Fernandez, Eduardo; Abeysinghe, Nihal; Amador, Juan Jose; Margolis, Harold S; Edelman, Robert

    2010-01-01

    In this review, we consider the issues impacting conduct and design of dengue vaccine trials with reference to the recently published world Health Organization “Guidelines for Conduct of Clinical Trials of Dengue vaccines in endemic Areas.” We discuss logistic, scientific and ethical challenges concerning evaluation and introduction of dengue vaccines; these range from randomized trials that establish “proof of concept” of vaccine efficacy, to post-“proof of concept” trials, particularly demonstration projects likely to be required for licensure or for the introduction of an already licensed vaccine into public use. We clarify and define the meaning of “proof of concept” in the clinical trial context and the meaning of terms “phase 2b”, “phase 3b” and “demonstration project”, which are commonly used but have not been defined well in the clinical literature. PMID:20935506

  11. Large-Scale Magnetic Field Fluctuations and Development of the 1999-2000 Global Merged Interaction Region: 1-60 AU

    NASA Astrophysics Data System (ADS)

    Burlaga, L. F.; Wang, C.; Richardson, J. D.; Ness, N. F.

    2003-03-01

    We use a multifluid, spherically symmetric, MHD model with neutral atoms and pickup protons, with 1999 solar wind data at 1 AU as input, to calculate the magnetic field strength (B) profiles that would be observed at various points between 1 and 60 AU with a resolution of 1 day over an interval of ~1 yr. These temporal profiles show radial evolution of the multiscale fluctuations in B near solar maximum. From the daily points in these profiles, one finds the following statistical results for the radial evolution of daily averages of B: (1) the distribution functions of B are approximately lognormal at all distances from 1 to 60 AU; (2) the standard deviation of B divided by the mean value of B, , for the magnetic field profile at a given distance is approximately a constant, independent of distance between 10 and 60 AU; and (3) the power spectrum of B/ evolves such that (a) at small scales the power spectral density decreases with increasing distance from the Sun, (b) at large scales the power spectral density increases with distance, and (c) there is a range of frequencies in which the power spectrum is a power law, the power law extending to ever lower frequencies with increasing distance. All three of these results have been observed by the Voyager 1 and 2 spacecraft over the last 25 yr, between 1 and ~60 AU. The radial evolution of the multiscale changes in B/ is described by analyzing the normalized changes in B at different scales, dBn. The multiscale structure of the probability distributions of dBn changes qualitatively with increasing distance from the Sun. The standard deviation surface, SDn(n, R), shows (1) a ridge at 5 AU (which is a function of scale n), corresponding to the development of shocks and interaction regions at large and intermediate scales; (2) a second ridge at a scale of 64 days (which is a function of R), corresponding to the formation, growth, and initial decay of a large-scale, global merged interaction region; and (3) a

  12. A large-scale field study examining effects of exposure to clothianidin seed-treated canola on honey bee colony health, development, and overwintering success

    PubMed Central

    Scott-Dupree, Cynthia D.; Sultan, Maryam; McFarlane, Andrew D.; Brewer, Larry

    2014-01-01

    In summer 2012, we initiated a large-scale field experiment in southern Ontario, Canada, to determine whether exposure to clothianidin seed-treated canola (oil seed rape) has any adverse impacts on honey bees. Colonies were placed in clothianidin seed-treated or control canola fields during bloom, and thereafter were moved to an apiary with no surrounding crops grown from seeds treated with neonicotinoids. Colony weight gain, honey production, pest incidence, bee mortality, number of adults, and amount of sealed brood were assessed in each colony throughout summer and autumn. Samples of honey, beeswax, pollen, and nectar were regularly collected, and samples were analyzed for clothianidin residues. Several of these endpoints were also measured in spring 2013. Overall, colonies were vigorous during and after the exposure period, and we found no effects of exposure to clothianidin seed-treated canola on any endpoint measures. Bees foraged heavily on the test fields during peak bloom and residue analysis indicated that honey bees were exposed to low levels (0.5–2 ppb) of clothianidin in pollen. Low levels of clothianidin were detected in a few pollen samples collected toward the end of the bloom from control hives, illustrating the difficulty of conducting a perfectly controlled field study with free-ranging honey bees in agricultural landscapes. Overwintering success did not differ significantly between treatment and control hives, and was similar to overwintering colony loss rates reported for the winter of 2012–2013 for beekeepers in Ontario and Canada. Our results suggest that exposure to canola grown from seed treated with clothianidin poses low risk to honey bees. PMID:25374790

  13. Large-scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees (Apis mellifera, Hymenoptera: Apidae).

    PubMed

    Hunter, Wayne; Ellis, James; Vanengelsdorp, Dennis; Hayes, Jerry; Westervelt, Dave; Glick, Eitan; Williams, Michael; Sela, Ilan; Maori, Eyal; Pettis, Jeffery; Cox-Foster, Diana; Paldi, Nitzan

    2010-01-01

    The importance of honey bees to the world economy far surpasses their contribution in terms of honey production; they are responsible for up to 30% of the world's food production through pollination of crops. Since fall 2006, honey bees in the U.S. have faced a serious population decline, due in part to a phenomenon called Colony Collapse Disorder (CCD), which is a disease syndrome that is likely caused by several factors. Data from an initial study in which investigators compared pathogens in honey bees affected by CCD suggested a putative role for Israeli Acute Paralysis Virus, IAPV. This is a single stranded RNA virus with no DNA stage placed taxonomically within the family Dicistroviridae. Although subsequent studies have failed to find IAPV in all CCD diagnosed colonies, IAPV has been shown to cause honey bee mortality. RNA interference technology (RNAi) has been used successfully to silence endogenous insect (including honey bee) genes both by injection and feeding. Moreover, RNAi was shown to prevent bees from succumbing to infection from IAPV under laboratory conditions. In the current study IAPV specific homologous dsRNA was used in the field, under natural beekeeping conditions in order to prevent mortality and improve the overall health of bees infected with IAPV. This controlled study included a total of 160 honey bee hives in two discrete climates, seasons and geographical locations (Florida and Pennsylvania). To our knowledge, this is the first successful large-scale real world use of RNAi for disease control.

  14. Large-Scale Field Application of RNAi Technology Reducing Israeli Acute Paralysis Virus Disease in Honey Bees (Apis mellifera, Hymenoptera: Apidae)

    PubMed Central

    Hunter, Wayne; Ellis, James; vanEngelsdorp, Dennis; Hayes, Jerry; Westervelt, Dave; Glick, Eitan; Williams, Michael; Sela, Ilan; Maori, Eyal; Pettis, Jeffery; Cox-Foster, Diana; Paldi, Nitzan

    2010-01-01

    The importance of honey bees to the world economy far surpasses their contribution in terms of honey production; they are responsible for up to 30% of the world's food production through pollination of crops. Since fall 2006, honey bees in the U.S. have faced a serious population decline, due in part to a phenomenon called Colony Collapse Disorder (CCD), which is a disease syndrome that is likely caused by several factors. Data from an initial study in which investigators compared pathogens in honey bees affected by CCD suggested a putative role for Israeli Acute Paralysis Virus, IAPV. This is a single stranded RNA virus with no DNA stage placed taxonomically within the family Dicistroviridae. Although subsequent studies have failed to find IAPV in all CCD diagnosed colonies, IAPV has been shown to cause honey bee mortality. RNA interference technology (RNAi) has been used successfully to silence endogenous insect (including honey bee) genes both by injection and feeding. Moreover, RNAi was shown to prevent bees from succumbing to infection from IAPV under laboratory conditions. In the current study IAPV specific homologous dsRNA was used in the field, under natural beekeeping conditions in order to prevent mortality and improve the overall health of bees infected with IAPV. This controlled study included a total of 160 honey bee hives in two discrete climates, seasons and geographical locations (Florida and Pennsylvania). To our knowledge, this is the first successful large-scale real world use of RNAi for disease control. PMID:21203478

  15. Influence of quenching gas injection on the temperature field in pulse-modulated induction thermal plasma for large scale nanopowder synthesis

    NASA Astrophysics Data System (ADS)

    Tanaka, Yasunori; Guo, Weixuan; Kodama, Naoto; Kita, Kentaro; Uesugi, Yoshihiko; Ishijima, Tatsuo; Watanabe, Shu; Nakamura, Keitaro

    2015-09-01

    We have so far developed a unique and original method for a large-scale nanopowder synthesis method using pulse-modulated induction thermal plasmas with time-controlled feedstock feeding (PMITP-TCFF). The PMITP is sustained by the coil current modulated into a rectangular waveform. Such the current modulation produces an extremely high-temperature thermal plasma in on-time, and in off-time relatively low-temperature thermal plasma. In PMITP-TCFF method, feedstock powder is intermittently injected to the PMITP synchronously during only on-time for its efficient and complete evaporation. That evaporated materials are rapidly cooled down to promote nucleation of nanoparticles during off-time. This report deals with a numerical approach on influence of quenching gas injection on the temperature field in the PMITP. The thermofluid model for the PMITP was developed on the assumption of local thermodynamic equilibrium (LTE). This model accounted for the pulse-modulation of the coil current and the quenching gas injection. It was found that the quenching gas injection works to increase the PMITP temperature inside the plasma torch during on-time, and then to decrease it effectively in the reaction chamber. This work is partly supported by JSPS KAKENHI Grant No. 26249034.

  16. Large-scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees (Apis mellifera, Hymenoptera: Apidae).

    PubMed

    Hunter, Wayne; Ellis, James; Vanengelsdorp, Dennis; Hayes, Jerry; Westervelt, Dave; Glick, Eitan; Williams, Michael; Sela, Ilan; Maori, Eyal; Pettis, Jeffery; Cox-Foster, Diana; Paldi, Nitzan

    2010-01-01

    The importance of honey bees to the world economy far surpasses their contribution in terms of honey production; they are responsible for up to 30% of the world's food production through pollination of crops. Since fall 2006, honey bees in the U.S. have faced a serious population decline, due in part to a phenomenon called Colony Collapse Disorder (CCD), which is a disease syndrome that is likely caused by several factors. Data from an initial study in which investigators compared pathogens in honey bees affected by CCD suggested a putative role for Israeli Acute Paralysis Virus, IAPV. This is a single stranded RNA virus with no DNA stage placed taxonomically within the family Dicistroviridae. Although subsequent studies have failed to find IAPV in all CCD diagnosed colonies, IAPV has been shown to cause honey bee mortality. RNA interference technology (RNAi) has been used successfully to silence endogenous insect (including honey bee) genes both by injection and feeding. Moreover, RNAi was shown to prevent bees from succumbing to infection from IAPV under laboratory conditions. In the current study IAPV specific homologous dsRNA was used in the field, under natural beekeeping conditions in order to prevent mortality and improve the overall health of bees infected with IAPV. This controlled study included a total of 160 honey bee hives in two discrete climates, seasons and geographical locations (Florida and Pennsylvania). To our knowledge, this is the first successful large-scale real world use of RNAi for disease control. PMID:21203478

  17. Stress fields recorded on large-scale strike-slip fault systems: Effects on the tectonic evolution of crustal slivers during oblique subduction

    NASA Astrophysics Data System (ADS)

    Veloso, Eugenio E.; Gomila, Rodrigo; Cembrano, José; González, Rodrigo; Jensen, Erik; Arancibia, Gloria

    2015-11-01

    In continental margins, large-scale, strike-slip fault-systems resulted from oblique subduction commonly exhibit a complex pattern of faulting where major faults define the inland boundary of tectonic slivers that can be detached from the margin. In turn, subsidiary faults bound and define internal tectonic blocks within the sliver which are expected to rotate, translate and/or internally disrupt in order to accommodate the internal deformation. The geometrical and spatial arrangement of faults and tectonic blocks thus determines the evolution of the sliver given a particular stress field regime. The Paposo segment of the Atacama Fault System in northern Chile displays a series of brittle faults whose orientations are hierarchically arranged: low-order faults splay off higher-order faults forming Riedel-type and strike-slip duplexes geometries at several scales. The master (1st- and highest-order) Paposo Fault defines the inland boundary of a tectonic sliver whereas subsidiary faults bound and disrupt internal tectonic blocks. By using newly collected brittle fault-slip data we estimated the orientations and regimes of the stress fields that acted upon the entire sliver, the different fault-orders and the tectonic blocks. Results indicate that an overall transtensional - with NW-compressional and NE-tensional principal axes - strike-slip regime affected the sliver and triggered the development of left-lateral strike-slip structures. An incomplete split of the stress field imposed by the subduction process resulted in the generation of a nested pattern of R-type faults as well as in a combined strike-slip/normal faulting disruption of the tectonic blocks within the sliver.

  18. Is a large scale community programme as effective as a community rehabilitation programme delivered in the setting of a clinical trial?

    PubMed Central

    2013-01-01

    Background The rationale for commissioning community pulmonary rehabilitation programmes is based on evidence from randomised clinical trials. However, there are a number of reasons why similar programmes might be less effective outside the environment of a clinical trial. These include a less highly selected patient group and less control over the fidelity of intervention delivery. The main objective of this study was therefore to test the hypothesis that the real-world programme would have similar outcomes to an intervention delivered in the context of a clinical trial. Methods As part of the evaluation of an innovative community-based pulmonary rehabilitation programme (“BreathingSpace”), clinical and quality of life measures were collected before and after delivery of a rehabilitation programme. Baseline characteristics of participants and the change in symptoms and quality of life after the BreathingSpace programme were compared to measures collected in the community-based arm of a separate randomised trial of pulmonary rehabilitation. Results Despite differences between the BreathingSpace participants and research participants in clinical status at baseline, patient reported symptoms and quality of life measures were similar. Improvements in both symptoms and quality of life were of the same order of magnitude despite the different contexts, setting and scale of the two intervention programmes. Whilst 73% (326/448) of those considered suitable for community rehabilitation in the trial and 80% (393/491) assessed as suitable for the BreathingSpace programme agreed to participate, less than half of participants completed rehabilitation, whether in a research or “real world” setting ( 47% and 45% respectively). Conclusion The before-after changes in outcomes seen in a “real world” community rehabilitation programme are similar in magnitude to those seen in the intervention arm of a clinical trial. However suboptimal uptake and high dropout rates from

  19. Large-scale manufacturing of GMP-compliant anti-EGFR targeted nanocarriers: production of doxorubicin-loaded anti-EGFR-immunoliposomes for a first-in-man clinical trial.

    PubMed

    Wicki, Andreas; Ritschard, Reto; Loesch, Uli; Deuster, Stefanie; Rochlitz, Christoph; Mamot, Christoph

    2015-04-30

    We describe the large-scale, GMP-compliant production process of doxorubicin-loaded and anti-EGFR-coated immunoliposomes (anti-EGFR-ILs-dox) used in a first-in-man, dose escalation clinical trial. 10 batches of this nanoparticle have been produced in clean room facilities. Stability data from the pre-GMP and the GMP batch indicate that the anti-EGFR-ILs-dox nanoparticle was stable for at least 18 months after release. Release criteria included visual inspection, sterility testing, as well as measurements of pH (pH 5.0-7.0), doxorubicin HCl concentration (0.45-0.55 mg/ml), endotoxin concentration (<1.21 IU/ml), leakage (<10%), particle size (Z-average of Caelyx ± 20 nm), and particle uptake (uptake absolute: >0.50 ng doxorubicin/μg protein; uptake relatively to PLD: >5 fold). All batches fulfilled the defined release criteria, indicating a high reproducibility as well as batch-to-batch uniformity of the main physico-chemical features of the nanoparticles in the setting of the large-scale GMP process. In the clinical trial, 29 patients were treated with this nanoparticle between 2007 and 2010. Pharmacokinetic data of anti-EGFR-ILs-dox collected during the clinical study revealed stability of the nanocarrier in vivo. Thus, reliable and GMP-compliant production of anti-EGFR-targeted nanoparticles for clinical application is feasible.

  20. Psychosocial Predictors of Non-Adherence and Treatment Failure in a Large Scale Multi-National Trial of Antiretroviral Therapy for HIV: Data from the ACTG A5175/PEARLS Trial

    PubMed Central

    Safren, Steven A.; Biello, Katie B.; Smeaton, Laura; Mimiaga, Matthew J.; Walawander, Ann; Lama, Javier R.; Rana, Aadia; Nyirenda, Mulinda; Kayoyo, Virginia M.; Samaneka, Wadzanai; Joglekar, Anjali; Celentano, David; Martinez, Ana; Remmert, Jocelyn E.; Nair, Aspara; Lalloo, Umesh G.; Kumarasamy, Nagalingeswaran; Hakim, James; Campbell, Thomas B.

    2014-01-01

    Background PEARLS, a large scale trial of antiretroviral therapy (ART) for HIV (n = 1,571, 9 countries, 4 continents), found that a once-daily protease inhibitor (PI) based regimen (ATV+DDI+FTC), but not a once-daily non-nucleoside reverse transcriptase inhibitor/nucleoside reverse transcriptase inhibitor (NNRTI/NRTI) regimen (EFV+FTC/TDF), had inferior efficacy compared to a standard of care twice-daily NNRTI/NRTI regimen (EFV+3TC/ZDV). The present study examined non-adherence in PEARLS. Methods Outcomes: non-adherence assessed by pill count and by self-report, and time to treatment failure. Longitudinal predictors: regimen, quality of life (general health perceptions  =  QOL-health, mental health  =  QOL-mental health), social support, substance use, binge drinking, and sexual behaviors. “Life-Steps” adherence counseling was provided. Results In both pill-count and self-report multivariable models, both once-a-day regimens had lower levels of non-adherence than the twice-a-day standard of care regimen; although these associations attenuated with time in the self-report model. In both multivariable models, hard-drug use was associated with non-adherence, living in Africa and better QOL-health were associated with less non-adherence. According to pill-count, unprotected sex was associated with non-adherence. According to self-report, soft-drug use was associated with non-adherence and living in Asia was associated with less non-adherence. Both pill-count (HR = 1.55, 95% CI: 1.15, 2.09, p<.01) and self-report (HR = 1.13, 95% CI: 1.08, 1.13, p<.01) non-adherence were significant predictors of treatment failure over 72 weeks. In multivariable models (including pill-count or self-report nonadherence), worse QOL-health, age group (younger), and region were also significant predictors of treatment failure. Conclusion In the context of a large, multi-national, multi-continent, clinical trial there were variations in adherence over time, with more

  1. Passive remote sensing of large-scale methane emissions from Oil Fields in California's San Joaquin Valley and validation by airborne in-situ measurements - Results from COMEX

    NASA Astrophysics Data System (ADS)

    Gerilowski, Konstantin; Krautwurst, Sven; Thompson, David R.; Thorpe, Andrew K.; Kolyer, Richard W.; Jonsson, Haflidi; Krings, Thomas; Frankenberg, Christian; Horstjann, Markus; Leifer, Ira; Eastwood, Michael; Green, Robert O.; Vigil, Sam; Fladeland, Matthew; Schüttemeyer, Dirk; Burrows, John P.; Bovensmann, Heinrich

    2016-04-01

    The CO2 and MEthane EXperiment (COMEX) was a NASA and ESA funded campaign in support of the HyspIRI and CarbonSat mission definition activities. As a part of this effort, seven flights were performed between June 3 and September 4, 2014 with the Methane Airborne MAPper (MAMAP) remote sensing instrument (operated by the University of Bremen in cooperation with the German Research Centre for Geosciences - GFZ) over the Kern River, Kern Front, and Poso Creek Oil Fields located in California's San Joaquin Valley. MAMAP was installed for the flights aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft, together with: a Picarro fast in-situ greenhouse gas (GHG) analyzer operated by the NASA Ames Research Center, ARC; a 5-hole turbulence probe; and an atmospheric measurement package operated by CIRPAS measuring aerosols, temperature, dew-point, and other atmospheric parameters. Three of the flights were accompanied by the Next Generation Airborne Visual InfraRed Imaging Spectrometer (AVIRIS-NG), operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology, installed aboard a second Twin Otter aircraft. Large-scale, high-concentration CH4 plumes were detected by the MAMAP instrument over the fields and tracked over several kilometers. The spatial distribution of the MAMAP observed plumes was compared to high spatial resolution CH4 anomaly maps derived by AVIRIS-NG imaging spectroscopy data. Remote sensing data collected by MAMAP was used to infer CH4 emission rates and their distributions over the three fields. Aggregated emission estimates for the three fields were compared to aggregated emissions inferred by subsequent airborne in-situ validation measurements collected by the Picarro instrument. Comparison of remote sensing and in-situ flux estimates will be presented, demonstrating the ability of airborne remote sensing data to provide accurate emission estimates for concentrations above the

  2. 50 CFR 27.91 - Field trials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Field trials. 27.91 Section 27.91 Wildlife... NATIONAL WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Other Disturbing Violations § 27.91 Field trials. The conducting or operation of field trials for dogs on national wildlife refuges is prohibited except as may...

  3. 50 CFR 27.91 - Field trials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Field trials. 27.91 Section 27.91 Wildlife... NATIONAL WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Other Disturbing Violations § 27.91 Field trials. The conducting or operation of field trials for dogs on national wildlife refuges is prohibited except as may...

  4. Seismic texture and amplitude analysis of large scale fluid escape pipes using time lapses seismic surveys: examples from the Loyal Field (Scotland, UK)

    NASA Astrophysics Data System (ADS)

    Maestrelli, Daniele; Jihad, Ali; Iacopini, David; Bond, Clare

    2016-04-01

    ) affected by large scale fracture (semblance image) and seem consistent with a suspended mud/sand mixture non-fluidized fluid flow. Near-Middle-Far offsets amplitude analysis confirms that most of the amplitude anomalies within the pipes conduit and terminus are only partly related to gas. An interpretation of the possible texture observed is proposed with a discussion of the noise and artefact induced by resolution and migration problems. Possible hypothetical formation mechanisms for those Pipes are discussed.

  5. Stress fields during the evolution of large-scale strike-slip systems and tectonic slivers, Atacama Fault Zone, northern Chile

    NASA Astrophysics Data System (ADS)

    Veloso, E. E.; Gomila, R.

    2009-12-01

    Tectonic evolution of crustal slivers generated during oblique subduction involves a series of translations and rotations. Slivers are defined by large-scale strike-slip faults, whereas internal blocks are by the faulting pattern related to the fault system. Translations and rotations are then likely to accommodate the internal deformation caused by external forces. The Atacama Fault System (AFS), a crustal-scale strike-slip fault in northern Chile, can be divided into three concave, oceanward segments, that show sinestral (Mesozoic) and normal (Cenozoic) displacements. Clockwise rotations of ca. 50° have been suggested for the AFS, mostly for the northernmost segment. The Paposo segment defines a sliver of 160 km long and 25 km wide. In the northern part, it exhibits intense internal faulting, duplexes, single- and multiple-core faults. To determine the stress field responsible for the development and evolution of the sliver, we measured 162 brittle fault planes on which we determined the sense and direction of maximum shear. Fault planes show a main NW-SE trend and subvertical dip-angles (Fig. 1). Brittle kinematic indicators indicate subhorizontal (sinestral) and subvertical (normal) movements. Fault-slip data was processed with the multiple inverse method. Input parameters were k=5 (grouping), e=9 (enhance) and d=1 (dispersion). Calculations show that σ1 axes are distributed on a NW-SE trending great-circle whereas σ3 axes are clustered near the horizontal in NE and SW orientations. Stress ratios average 0.55±0.20. In the horizontal, σ1 axes cover an arc of about 30° and σ3 axes cover about 60° (Fig. 1), suggesting a strike-slip stress field. On the contrary, the subvertical cluster of σ1 axes suggests a normal stress field. These analyses indicate that the Paposo Sliver developed during a period of NW-SE compression and NE-SW tension. The wide distribution of the tensile axes may denote rotation of the internal blocks to accommodate the deformation or

  6. Large-scale motions in the universe

    SciTech Connect

    Rubin, V.C.; Coyne, G.V.

    1988-01-01

    The present conference on the large-scale motions of the universe discusses topics on the problems of two-dimensional and three-dimensional structures, large-scale velocity fields, the motion of the local group, small-scale microwave fluctuations, ab initio and phenomenological theories, and properties of galaxies at high and low Z. Attention is given to the Pisces-Perseus supercluster, large-scale structure and motion traced by galaxy clusters, distances to galaxies in the field, the origin of the local flow of galaxies, the peculiar velocity field predicted by the distribution of IRAS galaxies, the effects of reionization on microwave background anisotropies, the theoretical implications of cosmological dipoles, and n-body simulations of universe dominated by cold dark matter.

  7. Final Report: Process Models of the Equilibrium Size & State of Organic/Inorganic Aerosols for the Development of Large Scale Atmospheric Models & the Analysis of Field Data

    SciTech Connect

    Wexler, Anthony Stein; Clegg, Simon Leslie

    2013-10-26

    Our work addressed the following elements of the Call for Proposals: (i) “to improve the theoretical representation of aerosol processes studied in ASP laboratory or field studies”, (ii) “to enhance the incorporation of aerosol process information into modules suitable for large-scale or global atmospheric models”, and (iii) “provide systematic experimental validation of process model predictions ... using data from targeted laboratory and field experiments”. Achievements to the end of 2012 are described in four previous reports, and include: new models of densities and surface tensions of pure (single solute) and mixed aqueous solutions of typical aerosol composition under all atmospheric conditions (0 to 100% RH and T > 150 K); inclusion of these models into the widely used Extended Aerosol Inorganics model (E-AIM, http://www.aim.env.uea.ac.uk/aim/aim.php); the addition of vapor pressure calculators for organic compounds to the E-AIM website; the ability of include user-defined organic compounds and/or lumped surrogates in gas/aerosol partitioning calculations; the development of new equations to represent the properties of soluble aerosols over the entire concentration range (using methods based upon adsorption isotherms, and derived using statistical mechanics), including systems at close to zero RH. These results are described in publications 1-6 at the end of this report, and on the “News” page of the E-AIM website (http://www.aim.env.uea.ac.uk/aim/info/news.html). During 2012 and 2013 we have collaborated in a combined observation and lab-based study of the water uptake of the organic component of atmospheric aerosols (PI Gannet Hallar, of the Desert Research Institute). The aerosol samples were analyzed using several complementary techniques (GC/MS, FT-ICR MS, and ion chromatography) to produce a very complete organic “speciation” including both polar and non-polar compounds. Hygroscopic growth factors of the samples were measured, and

  8. Large Scale Magnetostrictive Valve Actuator

    NASA Technical Reports Server (NTRS)

    Richard, James A.; Holleman, Elizabeth; Eddleman, David

    2008-01-01

    Marshall Space Flight Center's Valves, Actuators and Ducts Design and Development Branch developed a large scale magnetostrictive valve actuator. The potential advantages of this technology are faster, more efficient valve actuators that consume less power and provide precise position control and deliver higher flow rates than conventional solenoid valves. Magnetostrictive materials change dimensions when a magnetic field is applied; this property is referred to as magnetostriction. Magnetostriction is caused by the alignment of the magnetic domains in the material s crystalline structure and the applied magnetic field lines. Typically, the material changes shape by elongating in the axial direction and constricting in the radial direction, resulting in no net change in volume. All hardware and testing is complete. This paper will discuss: the potential applications of the technology; overview of the as built actuator design; discuss problems that were uncovered during the development testing; review test data and evaluate weaknesses of the design; and discuss areas for improvement for future work. This actuator holds promises of a low power, high load, proportionally controlled actuator for valves requiring 440 to 1500 newtons load.

  9. Far-Field Tsunami Impact in the North Atlantic Basin from Large Scale Flank Collapses of the Cumbre Vieja Volcano, La Palma

    NASA Astrophysics Data System (ADS)

    Tehranirad, Babak; Harris, Jeffrey C.; Grilli, Annette R.; Grilli, Stephan T.; Abadie, Stéphane; Kirby, James T.; Shi, Fengyan

    2015-12-01

    In their pioneering work, Ward and Day suggested that a large scale flank collapse of the Cumbre Vieja Volcano (CVV) on La Palma (Canary Islands) could trigger a mega-tsunami throughout the North Atlantic Ocean basin, causing major coastal impact in the far-field. While more recent studies indicate that near-field waves from such a collapse would be more moderate than originally predicted by Ward and Day [Løvholt et al. (J Geophy Res 113:C09026, 2008); Abadie et al. (J Geophy Res 117:C05030, 2012)], these would still be formidable and devastate the Canary Island, while causing major impact in the far-field at many locations along the western European, African, and the US east coasts. Abadie et al. (J Geophy Res 117:C05030, 2012) simulated tsunami generation and near-field tsunami impact from a few CVV subaerial slide scenarios, with volumes ranging from 20 to 450 km^3; the latter representing the most extreme scenario proposed by Ward and Day. They modeled tsunami generation, i.e., the tsunami source, using THETIS, a 3D Navier-Stokes (NS) multi-fluid VOF model, in which slide material was considered as a nearly inviscid heavy fluid. Near-field tsunami impact was then simulated for each source using FUNWAVE-TVD, a dispersive and fully nonlinear long wave Boussinesq model [ Shi et al. (Ocean Modell 43-44:36-51, 2012); Kirby et al. (Ocean Modeling, 62:39-55, 2013)]. Here, using FUNWAVE-TVD for a series of nested grids of increasingly fine resolution, we model and analyze far-field tsunami impact from two of Abadie et al.'s extreme CVV flank collapse scenarios: (i) that deemed the most "credible worst case scenario" based on a slope stability analysis, with a 80 km^3 volume; and (ii) the most extreme scenario, similar to Ward and Day's, with a 450 km^3 volume. Simulations are performed using a one-way coupling scheme in between two given levels of nested grids. Based on the simulation results, the overall tsunami impact is first assessed in terms of maximum surface

  10. Fidelity of Implementation in a Large-Scale, Randomized, Field Trial: Identifying the Critical Components of Values Affirmation

    ERIC Educational Resources Information Center

    Bradley, Dominique; Crawford, Evan; Dahill-Brown, Sara E.

    2015-01-01

    Several studies suggest that values-affirmation can serve as a simple, yet powerful, tool for dramatically reducing achievement gaps. Because subtle variations in implementation procedures may explain some of the variation in these findings, it is crucial for researchers to measure the fidelity with which interventions are implemented. The authors…

  11. Controls on the large-scale spatial variations of dune field properties in the barchanoid portion of White Sands dune field, New Mexico

    NASA Astrophysics Data System (ADS)

    Pelletier, Jon D.

    2015-03-01

    Previous studies have shown that sediment fluxes and dune sizes are a maximum near the upwind margin of the White Sands dune field and decrease, to first order, with increasing distance downwind. These patterns have alternatively been attributed to a shear-stress overshoot associated with a roughness transition localized at the upwind margin and to the influence of long-wavelength topography on the hydrology and hence erodibility of dune field sediments. I point out an issue that compromises the shear-stress overshoot model and further test the hypothesis that long-wavelength topographic variations, acting in concert with feedbacks among aerodynamic, granulometric, and geomorphic variables, control dune field properties at White Sands. Building upon the existing literature, I document that the mean and variability of grain sizes, sand dryness, aerodynamic roughness lengths, bed shear stresses, sediment fluxes, and ripple and dune heights all achieve local maxima at the crests of the two most prominent scarps in the dune field, one coincident with the upwind margin and the other located 6-7 km downwind. Computational fluid dynamics (CFD) modeling predicts that bed shear stresses, erosion rates, and the supply of relatively coarse, poorly sorted sediments are localized at the two scarps due to flow line convergence, hydrology, and the spatially distributed adjustment of the boundary layer to variations in dune size. As a result, the crests of the scarps have larger ripples due to the granulometric control of ripple size. Larger grain sizes and/or larger ripples lead to larger dunes and hence larger values of bed shear stress in a positive feedback.

  12. Constraints on the power spectrum of the primordial density field from large-scale data - Microwave background and predictions of inflation

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.

    1992-01-01

    It is shown here that, by using galaxy catalog correlation data as input, measurements of microwave background radiation (MBR) anisotropies should soon be able to test two of the inflationary scenario's most basic predictions: (1) that the primordial density fluctuations produced were scale-invariant and (2) that the universe is flat. They should also be able to detect anisotropies of large-scale structure formed by gravitational evolution of density fluctuations present at the last scattering epoch. Computations of MBR anisotropies corresponding to the minimum of the large-scale variance of the MBR anisotropy are presented which favor an open universe with P(k) significantly different from the Harrison-Zeldovich spectrum predicted by most inflationary models.

  13. Large-scale aseismic creep in the areas of the strong earthquakes revealed from the GRACE data on the time variations of the Earth's gravity field

    NASA Astrophysics Data System (ADS)

    Mikhailov, V. O.; Diament, M.; Lyubushin, A. A.; Timoshkina, E. P.; Khairetdinov, S. A.

    2016-09-01

    ruptured fault plane zone. The data demonstrating the increasing depth of the aftershocks since March 2007 and the approximately simultaneous change in the direction and average velocity of the horizontal surface displacements at the sites of the regional GPS network indicate that this earthquake induced postseismic displacements in a huge area extending to depths below 100 km. The total displacement since the beginning of the growth of the gravity anomaly up to July 2012 is estimated at 3.0 m in the upper part of the plate's contact and 1.5 m in the lower part up to a depth of 100 km. With allowance for the size of the region captured by the deformations, the released total energy is equivalent to the earthquake with the magnitude M w = 8.5. In our opinion, the growth of the gravity anomaly in these regions indicates a large-scale aseismic creep over the areas much more extensive than the source zone of the earthquake. These processes have not been previously revealed by the ground-based techniques. Hence, the time series of the GRACE gravity models are an important source of the new data about the locations and evolution of the locked segments of the subduction zones and their seismic potential.

  14. End-on soft x ray imaging of Field-Reversed Configurations (FRCs) on the Field-Reversal-C (FRX-C)/Large Scale Modification (LSM) experiment

    NASA Astrophysics Data System (ADS)

    Taggart, D. P.; Gribble, R. J.; Bailey, A. D., III; Sugimoto, S.

    Recently, a prototype soft x ray pinhole camera was fielded on FRX-C/LSM at Los Alamos and TRX at Spectra Technology. The soft x ray FRC images obtained using this camera stand out in high contrast to their surroundings. It was particularly useful for studying the FRC during and shortly after formation when, at certain operating conditions, flute-like structures at the edge and internal structures of the FRC were observed which other diagnostics could not resolve. Building on this early experience, a new soft x ray pinhole camera was installed on FRX-C/LSM, which permits more rapid data acquisition and briefer exposures. It will be used to continue studying FRC formation and to look for internal structure later in time which could be a signature of instability. The initial operation of this camera is summarized.

  15. Large Scale Shape Optimization for Accelerator Cavities

    SciTech Connect

    Akcelik, Volkan; Lee, Lie-Quan; Li, Zenghai; Ng, Cho; Xiao, Li-Ling; Ko, Kwok; /SLAC

    2011-12-06

    We present a shape optimization method for designing accelerator cavities with large scale computations. The objective is to find the best accelerator cavity shape with the desired spectral response, such as with the specified frequencies of resonant modes, field profiles, and external Q values. The forward problem is the large scale Maxwell equation in the frequency domain. The design parameters are the CAD parameters defining the cavity shape. We develop scalable algorithms with a discrete adjoint approach and use the quasi-Newton method to solve the nonlinear optimization problem. Two realistic accelerator cavity design examples are presented.

  16. Large-scale sequencing trials begin

    SciTech Connect

    Roberts, L.

    1990-12-07

    As genome sequencing gets under way, investigators are grappling not just with new techniques but also with questions about what is acceptable accuracy and when data should be released. Four groups are embarking on projects that could make or break the human genome project. They are setting out to sequence the longest stretches of DNA ever tackled-several million bases each-and to do it faster and cheaper than anyone has before. If these groups can't pull it off, then prospects for knocking off the entire human genome, all 3 billion bases, in 15 years and for $3 billion will look increasingly unlikely. Harvard's Walter Gilbert, is first tackling the genome of Mycoplasma capricolum. At Stanford, David Botstein and Ron Davis are sequencing Saccharomyces cerevisiae. In a collaborative effort, Robert Waterson at Washington University and John Sulston at the Medical Research Council lab in Cambridge, England, have already started on the nematode Caenorhabditis elegans. And in the only longstanding project of the bunch, University of Wisconsin geneticist Fred Blattner is already several hundred kilobases into the Escherichia coli genome.

  17. Large-scale nanophotonic phased array.

    PubMed

    Sun, Jie; Timurdogan, Erman; Yaacobi, Ami; Hosseini, Ehsan Shah; Watts, Michael R

    2013-01-10

    Electromagnetic phased arrays at radio frequencies are well known and have enabled applications ranging from communications to radar, broadcasting and astronomy. The ability to generate arbitrary radiation patterns with large-scale phased arrays has long been pursued. Although it is extremely expensive and cumbersome to deploy large-scale radiofrequency phased arrays, optical phased arrays have a unique advantage in that the much shorter optical wavelength holds promise for large-scale integration. However, the short optical wavelength also imposes stringent requirements on fabrication. As a consequence, although optical phased arrays have been studied with various platforms and recently with chip-scale nanophotonics, all of the demonstrations so far are restricted to one-dimensional or small-scale two-dimensional arrays. Here we report the demonstration of a large-scale two-dimensional nanophotonic phased array (NPA), in which 64 × 64 (4,096) optical nanoantennas are densely integrated on a silicon chip within a footprint of 576 μm × 576 μm with all of the nanoantennas precisely balanced in power and aligned in phase to generate a designed, sophisticated radiation pattern in the far field. We also show that active phase tunability can be realized in the proposed NPA by demonstrating dynamic beam steering and shaping with an 8 × 8 array. This work demonstrates that a robust design, together with state-of-the-art complementary metal-oxide-semiconductor technology, allows large-scale NPAs to be implemented on compact and inexpensive nanophotonic chips. In turn, this enables arbitrary radiation pattern generation using NPAs and therefore extends the functionalities of phased arrays beyond conventional beam focusing and steering, opening up possibilities for large-scale deployment in applications such as communication, laser detection and ranging, three-dimensional holography and biomedical sciences, to name just a few.

  18. Very Large Scale Integration (VLSI).

    ERIC Educational Resources Information Center

    Yeaman, Andrew R. J.

    Very Large Scale Integration (VLSI), the state-of-the-art production techniques for computer chips, promises such powerful, inexpensive computing that, in the future, people will be able to communicate with computer devices in natural language or even speech. However, before full-scale VLSI implementation can occur, certain salient factors must be…

  19. Galaxy clustering on large scales.

    PubMed

    Efstathiou, G

    1993-06-01

    I describe some recent observations of large-scale structure in the galaxy distribution. The best constraints come from two-dimensional galaxy surveys and studies of angular correlation functions. Results from galaxy redshift surveys are much less precise but are consistent with the angular correlations, provided the distortions in mapping between real-space and redshift-space are relatively weak. The galaxy two-point correlation function, rich-cluster two-point correlation function, and galaxy-cluster cross-correlation function are all well described on large scales ( greater, similar 20h-1 Mpc, where the Hubble constant, H0 = 100h km.s-1.Mpc; 1 pc = 3.09 x 10(16) m) by the power spectrum of an initially scale-invariant, adiabatic, cold-dark-matter Universe with Gamma = Omegah approximately 0.2. I discuss how this fits in with the Cosmic Background Explorer (COBE) satellite detection of large-scale anisotropies in the microwave background radiation and other measures of large-scale structure in the Universe.

  20. 50 CFR 27.91 - Field trials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Field trials. 27.91 Section 27.91 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE... conducting or operation of field trials for dogs on national wildlife refuges is prohibited except as may...

  1. Mechanized applicator for large-scale field deployment of paraffin-wax dispensers of pheromone for mating disruption in tree fruit.

    PubMed

    Stelinski, L L; Miller, J R; Ledebuhr, R; Gut, L J

    2006-10-01

    A tractor-mounted mechanized applicator was developed for large-scale deployment of paraffin-wax dispensers of pheromone for mating disruption of oriental fruit moth, Grapholita molesta (Busck). The wax formulation was mostly water and emulsified paraffin wax containing 5% (by weight) pheromone [93:6:1 blend of (Z)-8-dodecen-1-yl-acetate:(E)-8-dodecen-1-yl-acetate: (Z)-8-dodecen-1-ol]. Ten milliliters of wax was applied per tree as approximately 160 deposits (0.04 ml of wax per drop). An average of 23 min was required to treat 1 ha of crop. Disruption efficacy of mechanically applied wax was measured relative to an untreated control in replicated 0.4-ha blocks within a recently abandoned apple orchard. From 6 May to 27 June, 100% disruption of tethered virgin females and 97% inhibition of pheromone traps was achieved for 52 d with two applications of wax. However, during mid- to late summer (July-August), this level of efficacy was maintained for only approximately 1 wk after each of two applications. Higher temperatures later in the season may have accounted for abbreviated efficacy of the applied small drops. Mechanically applied paraffin-wax technology may increase adoption of mating disruption given that a higher level of efficacy was achieved despite deploying less active ingredient per hectare relative to that used with reservoir dispensers. The savings in labor by not requiring hand application of reservoir dispensers could be directed toward cost of machinery. However, the short duration of efficacy obtained with the current wax formulation and mechanical applicator is judged uneconomical given the eight or more applications that would have been required for high-performance disruption over the full season. Larger drops with lower surface area-to-volume ratios are expected to prolong pheromone release for extended efficacy and desirable overall economics.

  2. 7 CFR 1755.3 - Field trials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... service degradation or hazards to life or property. (g) Field trials shall be conducted in accordance with...) Trunk carriers; (iii) Subscriber carrier; (iv) Point-to-point radio (Microwave); (v) Coaxial...

  3. 7 CFR 1755.3 - Field trials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... service degradation or hazards to life or property. (g) Field trials shall be conducted in accordance with...) Trunk carriers; (iii) Subscriber carrier; (iv) Point-to-point radio (Microwave); (v) Coaxial...

  4. 7 CFR 1755.3 - Field trials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... service degradation or hazards to life or property. (g) Field trials shall be conducted in accordance with...) Trunk carriers; (iii) Subscriber carrier; (iv) Point-to-point radio (Microwave); (v) Coaxial...

  5. Practical Issues when Planning for Field Trials

    NASA Astrophysics Data System (ADS)

    Andersson, Susanne; Andersson, Anna-Lena

    This chapter is written from a test site leader perspective and describes the role of planning and timing of field trials when testing technical solutions, which could enable people with dementia to live a more independent life. The chapter is based on experiences from setting up the first and second field trials in the three test sites of the COGKNOW project. The intention is to point out some key issues that are important in preparation and planning of a field trial. The chapter addresses issues in the preparatory, the actual and the post-test phase of the field trial in order to help achieve a high level of success both from a general perspective and with a special focus on people with dementia.

  6. Implementing Randomized Controlled Trial Studies in Afterschool Settings: The State of the Field. Afterschool Research Brief. Issue No. 1

    ERIC Educational Resources Information Center

    Vaden-Kiernan, Michael; Jones, Debra Hughes; Rudo, Zena

    2008-01-01

    SEDL is providing analytic and technical support to three large-scale randomized controlled trials assessing the efficacy of promising literacy curriculum in afterschool settings on student academic achievement. In the field of educational research, competition among research organizations and researchers can often impede collaborative efforts in…

  7. Large-scale instabilities of helical flows

    NASA Astrophysics Data System (ADS)

    Cameron, Alexandre; Alexakis, Alexandros; Brachet, Marc-Étienne

    2016-10-01

    Large-scale hydrodynamic instabilities of periodic helical flows of a given wave number K are investigated using three-dimensional Floquet numerical computations. In the Floquet formalism the unstable field is expanded in modes of different spacial periodicity. This allows us (i) to clearly distinguish large from small scale instabilities and (ii) to study modes of wave number q of arbitrarily large-scale separation q ≪K . Different flows are examined including flows that exhibit small-scale turbulence. The growth rate σ of the most unstable mode is measured as a function of the scale separation q /K ≪1 and the Reynolds number Re. It is shown that the growth rate follows the scaling σ ∝q if an AKA effect [Frisch et al., Physica D: Nonlinear Phenomena 28, 382 (1987), 10.1016/0167-2789(87)90026-1] is present or a negative eddy viscosity scaling σ ∝q2 in its absence. This holds both for the Re≪1 regime where previously derived asymptotic results are verified but also for Re=O (1 ) that is beyond their range of validity. Furthermore, for values of Re above a critical value ReSc beyond which small-scale instabilities are present, the growth rate becomes independent of q and the energy of the perturbation at large scales decreases with scale separation. The nonlinear behavior of these large-scale instabilities is also examined in the nonlinear regime where the largest scales of the system are found to be the most dominant energetically. These results are interpreted by low-order models.

  8. Large-scale magnetic field in the accretion discs of young stars: the influence of magnetic diffusion, buoyancy and Hall effect

    NASA Astrophysics Data System (ADS)

    Khaibrakhmanov, S. A.; Dudorov, A. E.; Parfenov, S. Yu.; Sobolev, A. M.

    2016-09-01

    We investigate the fossil magnetic field in the accretion and protoplanetary discs using the Shakura and Sunyaev approach. The distinguishing feature of this study is the accurate solution of the ionization balance equations and the induction equation with Ohmic diffusion, magnetic ambipolar diffusion, buoyancy and the Hall effect. We consider the ionization by cosmic rays, X-rays and radionuclides, radiative recombinations, recombinations onto dust grains, and also thermal ionization. The buoyancy appears as the additional mechanism of magnetic flux escape in the steady-state solution of the induction equation. Calculations show that Ohmic diffusion and magnetic ambipolar diffusion constraint the generation of the magnetic field inside the `dead' zones. The magnetic field in these regions is quasi-vertical. The buoyancy constraints the toroidal magnetic field strength close to the disc inner edge. As a result, the toroidal and vertical magnetic fields become comparable. The Hall effect is important in the regions close to the borders of the `dead' zones because electrons are magnetized there. The magnetic field in these regions is quasi-radial. We calculate the magnetic field strength and geometry for the discs with accretion rates (10^{-8}-10^{-6}) {M}_{⊙} {yr}^{-1}. The fossil magnetic field geometry does not change significantly during the disc evolution while the accretion rate decreases. We construct the synthetic maps of dust emission polarized due to the dust grain alignment by the magnetic field. In the polarization maps, the `dead' zones appear as the regions with the reduced values of polarization degree in comparison to those in the adjacent regions.

  9. Canadian MSAT field trial program user requirements

    NASA Technical Reports Server (NTRS)

    Pedersen, Allister

    1990-01-01

    A wide range of mobile satellite service offerings will be available in late 1993 with the launch of Canada's first satellite devoted almost exclusively to mobile and transportable services. During the last seven years, the Dept. of Communications has been meeting with potential MSAT users in government and the private sector as part of a $20M Communications Trials Program. User trials will be conducted using leased capacity as well as capacity on Canada's MSAT satellite. User requirements are discussed which were identified under the Communications Trials Program. Land, marine, aeronautical, and fixed applications are described from the perspective of the end users. Emphasis is placed on field trials being accomplished using leased capacity such as the marine data trial being implemented by Ultimateast Data Communications, trials using transportable briefcase terminals and additional field trials being considered for implementation with the TMI Mobile Data Service. The pre-MSAT trials that will be conducted using leased capacity are only a limited sample of the overall end user requirements that have been identified to date. Additional end user applications are discussed, along with a summary of user benefits.

  10. Large-scale compensation of errors in pairwise-additive empirical force fields: comparison of AMBER intermolecular terms with rigorous DFT-SAPT calculations.

    PubMed

    Zgarbová, Marie; Otyepka, Michal; Sponer, Jirí; Hobza, Pavel; Jurecka, Petr

    2010-09-21

    The intermolecular interaction energy components for several molecular complexes were calculated using force fields available in the AMBER suite of programs and compared with Density Functional Theory-Symmetry Adapted Perturbation Theory (DFT-SAPT) values. The extent to which such comparison is meaningful is discussed. The comparability is shown to depend strongly on the intermolecular distance, which means that comparisons made at one distance only are of limited value. At large distances the coulombic and van der Waals 1/r(6) empirical terms correspond fairly well with the DFT-SAPT electrostatics and dispersion terms, respectively. At the onset of electronic overlap the empirical values deviate from the reference values considerably. However, the errors in the force fields tend to cancel out in a systematic manner at equilibrium distances. Thus, the overall performance of the force fields displays errors an order of magnitude smaller than those of the individual interaction energy components. The repulsive 1/r(12) component of the van der Waals expression seems to be responsible for a significant part of the deviation of the force field results from the reference values. We suggest that further improvement of the force fields for intermolecular interactions would require replacement of the nonphysical 1/r(12) term by an exponential function. Dispersion anisotropy and its effects are discussed. Our analysis is intended to show that although comparing the empirical and non-empirical interaction energy components is in general problematic, it might bring insights useful for the construction of new force fields. Our results are relevant to often performed force-field-based interaction energy decompositions.

  11. Method and infrastructure for cycle-reproducible simulation on large scale digital circuits on a coordinated set of field-programmable gate arrays (FPGAs)

    DOEpatents

    Asaad, Sameh W; Bellofatto, Ralph E; Brezzo, Bernard; Haymes, Charles L; Kapur, Mohit; Parker, Benjamin D; Roewer, Thomas; Tierno, Jose A

    2014-01-28

    A plurality of target field programmable gate arrays are interconnected in accordance with a connection topology and map portions of a target system. A control module is coupled to the plurality of target field programmable gate arrays. A balanced clock distribution network is configured to distribute a reference clock signal, and a balanced reset distribution network is coupled to the control module and configured to distribute a reset signal to the plurality of target field programmable gate arrays. The control module and the balanced reset distribution network are cooperatively configured to initiate and control a simulation of the target system with the plurality of target field programmable gate arrays. A plurality of local clock control state machines reside in the target field programmable gate arrays. The local clock state machines are configured to generate a set of synchronized free-running and stoppable clocks to maintain cycle-accurate and cycle-reproducible execution of the simulation of the target system. A method is also provided.

  12. The large-scale structure of the interplanetary magnetic field between 1 and 0.3 AU during the primary mission of Helios 1

    NASA Technical Reports Server (NTRS)

    Mariani, F.; Ness, N. F.; Burlaga, L. F.; Bavassano, B.; Villante, U.

    1978-01-01

    The macroscale and mesoscale structure of the interplanetary magnetic field during the primary mission of Helios 1 is discussed. The radial field component behaves essentially in agreement with Parker's theory. The transverse component shows a larger variability than the radial component; its radial variation is in good agreement with Parker's theory for high speeds, but some deviation is found for low speeds. The radial variation of the field variance is also studied. Its dependence upon the heliocentric distance r is expressed by the law 1/r cubed, which is necessary but not sufficient for Alfven waves. The available data do not allow a unique interpretation of the 1/r cubed dependence. No big differences are observed between low (less than or equal to 500 km/s) and high (greater than or equal to 600 km/s) solar wind velocity regimes.

  13. 7 CFR 1755.3 - Field trials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TELECOMMUNICATIONS POLICIES ON SPECIFICATIONS, ACCEPTABLE MATERIALS, AND STANDARD CONTRACT FORMS § 1755.3 Field..., the borrower possesses: (1) Adequate financial resources so that no delay in the project will result... Telecommunications Equipment Field Trial (available from the Director, Administrative Services Division,...

  14. Measuring ignitability for in situ burning of oil spills weathered under Arctic conditions: from laboratory studies to large-scale field experiments.

    PubMed

    Fritt-Rasmussen, Janne; Brandvik, Per Johan

    2011-08-01

    This paper compares the ignitability of Troll B crude oil weathered under simulated Arctic conditions (0%, 50% and 90% ice cover). The experiments were performed in different scales at SINTEF's laboratories in Trondheim, field research station on Svalbard and in broken ice (70-90% ice cover) in the Barents Sea. Samples from the weathering experiments were tested for ignitability using the same laboratory burning cell. The measured ignitability from the experiments in these different scales showed a good agreement for samples with similar weathering. The ice conditions clearly affected the weathering process, and 70% ice or more reduces the weathering and allows a longer time window for in situ burning. The results from the Barents Sea revealed that weathering and ignitability can vary within an oil slick. This field use of the burning cell demonstrated that it can be used as an operational tool to monitor the ignitability of oil spills.

  15. Large-scale brightenings associated with flares

    NASA Technical Reports Server (NTRS)

    Mandrini, Cristina H.; Machado, Marcos E.

    1992-01-01

    It is shown that large-scale brightenings (LSBs) associated with solar flares, similar to the 'giant arches' discovered by Svestka et al. (1982) in images obtained by the SSM HXIS hours after the onset of two-ribbon flares, can also occur in association with confined flares in complex active regions. For these events, a clear link between the LSB and the underlying flare is clearly evident from the active-region magnetic field topology. The implications of these findings are discussed within the framework of the interacting loops of flares and the giant arch phenomenology.

  16. Predicting student enrollment and persistence in college STEM fields using an expanded P-E fit framework: a large-scale multilevel study.

    PubMed

    Le, Huy; Robbins, Steven B; Westrick, Paul

    2014-09-01

    Using an expanded person-environment fit (P-E fit) model, we conducted 2 studies to test the combined effects of 2 individual difference factors, ability-demand fit and interest-vocation fit, in predicting college student choice of and persistence in the science, technology, engineering, and mathematics (STEM) fields. Analysis results based on data from 207,093 students entering 51 postsecondary institutions supported the hypothesized roles that academic ability and interest fit play in determining STEM field choice and persistence. Ability was found to moderate the effects of interest fit on the behavioral outcomes, thus expanding the P-E fit framework. We also found that gender moderates the effects of these individual difference predictors, such that the effects are weaker for females than for males in predicting STEM choice. For STEM persistence, the opposite effect was found: The relationship between ability and persistence is stronger for females than it is for males. As such, this research contributes to the resurging attention in the roles that individual difference factors play in organizational and educational research and the importance of integrating ability and interest constructs to fully understand college and career choice and persistence behaviors.

  17. Predicting student enrollment and persistence in college STEM fields using an expanded P-E fit framework: a large-scale multilevel study.

    PubMed

    Le, Huy; Robbins, Steven B; Westrick, Paul

    2014-09-01

    Using an expanded person-environment fit (P-E fit) model, we conducted 2 studies to test the combined effects of 2 individual difference factors, ability-demand fit and interest-vocation fit, in predicting college student choice of and persistence in the science, technology, engineering, and mathematics (STEM) fields. Analysis results based on data from 207,093 students entering 51 postsecondary institutions supported the hypothesized roles that academic ability and interest fit play in determining STEM field choice and persistence. Ability was found to moderate the effects of interest fit on the behavioral outcomes, thus expanding the P-E fit framework. We also found that gender moderates the effects of these individual difference predictors, such that the effects are weaker for females than for males in predicting STEM choice. For STEM persistence, the opposite effect was found: The relationship between ability and persistence is stronger for females than it is for males. As such, this research contributes to the resurging attention in the roles that individual difference factors play in organizational and educational research and the importance of integrating ability and interest constructs to fully understand college and career choice and persistence behaviors. PMID:24611525

  18. Large scale cluster computing workshop

    SciTech Connect

    Dane Skow; Alan Silverman

    2002-12-23

    Recent revolutions in computer hardware and software technologies have paved the way for the large-scale deployment of clusters of commodity computers to address problems heretofore the domain of tightly coupled SMP processors. Near term projects within High Energy Physics and other computing communities will deploy clusters of scale 1000s of processors and be used by 100s to 1000s of independent users. This will expand the reach in both dimensions by an order of magnitude from the current successful production facilities. The goals of this workshop were: (1) to determine what tools exist which can scale up to the cluster sizes foreseen for the next generation of HENP experiments (several thousand nodes) and by implication to identify areas where some investment of money or effort is likely to be needed. (2) To compare and record experimences gained with such tools. (3) To produce a practical guide to all stages of planning, installing, building and operating a large computing cluster in HENP. (4) To identify and connect groups with similar interest within HENP and the larger clustering community.

  19. On the stability of self-consistent large amplitude waves in a cold plasma. I - Transverse circularly polarized waves in the absence of a large scale magnetic field

    NASA Technical Reports Server (NTRS)

    Lee, M. A.; Lerche, I.

    1978-01-01

    It is demonstrated that a self-consistent circularly polarized wave in an otherwise field-free homogeneous cold plasma is unstable to small amplitude perturbations. For either an electron-positron plasma or an electron-proton plasma the instability rate is at least about the order of the effective plasma frequency when the bulk flow speed is zero. For finite bulk flow speeds of the plasma, it is shown that the electron-positron plasma is unstable, again with a growth rate of the order of the effective plasma frequency; it is also shown that the electron-proton plasma is unstable (at least at small wave numbers, k) with a growth rate proportional to k. The calculated instability rates are conservative, for other modes not investigated here may be more unstable. The results of these calculations bear directly on the understanding of plasma systems thought to be driven by large amplitude waves.

  20. Large scale motions of Neptune's bow shock: Evidence for control of the shock position by the rotation phase of Neptune's magnetic field

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Smith, Charles W.; Kurth, William S.; Gurnett, Donald A.; Moses, Stewart L.

    1991-01-01

    The Voyager 2 spacecraft observed high levels of Langmuir waves before the inbound crossing of Neptune's bow shock, thereby signifying magnetic connection of the bow shock. The Langmuir waves occurred in multiple bursts throughout two distinct periods separated by an 85 minute absence of wave activity. The times of onsets, peaks, and disappearances of the waves were used together with the magnetic field directions and spacecraft position, to perform a 'remote-sensing' analysis of the shape and location of Neptune's bow shock prior to the inbound bow shock crossing. The bow shock is assumed to have a parabolidal shape with a nose location and flaring parameter determined independently for each wave event. The remote-sensing analysis give a shock position consistent with the time of the inbound shock crossing. The flaring parameter of the shock remains approximately constant throughout each period of wave activity but differs by a factor of 10 between the two periods. The absence of waves between two periods of wave activity coincides with a large rotation of the magnetic field and a large increase in the solar wind ram pressure' both these effects lead to magnetic disconnection of the spacecraft from shock. The planetwards motion of the shock's nose from 38.5 R(sub N) to 34.5 R(sub N) during the second time period occurred while the solar wind ram pressure remained constant to within 15 percent. This second period of planetwards motion of the shock is therefore strong evidence for Neptune's bow shock moving in response to the rotation of Neptune's oblique, tilted magnetic dipole. Normalizing the ram pressure, the remotely-sensed shock moves sunwards during the first wave period and planetwards in the second wave period. The maximum standoff distance occurs while the dipole axis is close to being perpendicular to the Sun-Neptune direction. The remote-sensing analysis provides strong evidence that the location of Neptune's bow shock is controlled by Neptune's rotation

  1. Large Scale Nanolaminate Deformable Mirror

    SciTech Connect

    Papavasiliou, A; Olivier, S; Barbee, T; Miles, R; Chang, K

    2005-11-30

    This work concerns the development of a technology that uses Nanolaminate foils to form light-weight, deformable mirrors that are scalable over a wide range of mirror sizes. While MEMS-based deformable mirrors and spatial light modulators have considerably reduced the cost and increased the capabilities of adaptive optic systems, there has not been a way to utilize the advantages of lithography and batch-fabrication to produce large-scale deformable mirrors. This technology is made scalable by using fabrication techniques and lithography that are not limited to the sizes of conventional MEMS devices. Like many MEMS devices, these mirrors use parallel plate electrostatic actuators. This technology replicates that functionality by suspending a horizontal piece of nanolaminate foil over an electrode by electroplated nickel posts. This actuator is attached, with another post, to another nanolaminate foil that acts as the mirror surface. Most MEMS devices are produced with integrated circuit lithography techniques that are capable of very small line widths, but are not scalable to large sizes. This technology is very tolerant of lithography errors and can use coarser, printed circuit board lithography techniques that can be scaled to very large sizes. These mirrors use small, lithographically defined actuators and thin nanolaminate foils allowing them to produce deformations over a large area while minimizing weight. This paper will describe a staged program to develop this technology. First-principles models were developed to determine design parameters. Three stages of fabrication will be described starting with a 3 x 3 device using conventional metal foils and epoxy to a 10-across all-metal device with nanolaminate mirror surfaces.

  2. Large-Scale Information Systems

    SciTech Connect

    D. M. Nicol; H. R. Ammerlahn; M. E. Goldsby; M. M. Johnson; D. E. Rhodes; A. S. Yoshimura

    2000-12-01

    Large enterprises are ever more dependent on their Large-Scale Information Systems (LSLS), computer systems that are distinguished architecturally by distributed components--data sources, networks, computing engines, simulations, human-in-the-loop control and remote access stations. These systems provide such capabilities as workflow, data fusion and distributed database access. The Nuclear Weapons Complex (NWC) contains many examples of LSIS components, a fact that motivates this research. However, most LSIS in use grew up from collections of separate subsystems that were not designed to be components of an integrated system. For this reason, they are often difficult to analyze and control. The problem is made more difficult by the size of a typical system, its diversity of information sources, and the institutional complexities associated with its geographic distribution across the enterprise. Moreover, there is no integrated approach for analyzing or managing such systems. Indeed, integrated development of LSIS is an active area of academic research. This work developed such an approach by simulating the various components of the LSIS and allowing the simulated components to interact with real LSIS subsystems. This research demonstrated two benefits. First, applying it to a particular LSIS provided a thorough understanding of the interfaces between the system's components. Second, it demonstrated how more rapid and detailed answers could be obtained to questions significant to the enterprise by interacting with the relevant LSIS subsystems through simulated components designed with those questions in mind. In a final, added phase of the project, investigations were made on extending this research to wireless communication networks in support of telemetry applications.

  3. 7 CFR 1755.3 - Field trials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., the borrower possesses: (1) Adequate financial resources so that no delay in the project will result from lack of funds. (2) The financial stability to overcome difficulties which may result from an... meets its financial obligations with respect to the field trial. (3) Qualified personnel to enable it...

  4. The challenge of large-scale structure

    NASA Astrophysics Data System (ADS)

    Gregory, S. A.

    1996-03-01

    The tasks that I have assumed for myself in this presentation include three separate parts. The first, appropriate to the particular setting of this meeting, is to review the basic work of the founding of this field; the appropriateness comes from the fact that W. G. Tifft made immense contributions that are not often realized by the astronomical community. The second task is to outline the general tone of the observational evidence for large scale structures. (Here, in particular, I cannot claim to be complete. I beg forgiveness from any workers who are left out by my oversight for lack of space and time.) The third task is to point out some of the major aspects of the field that may represent the clues by which some brilliant sleuth will ultimately figure out how galaxies formed.

  5. The XMM Large Scale Structure Survey

    NASA Astrophysics Data System (ADS)

    Pierre, Marguerite

    2005-10-01

    We propose to complete, by an additional 5 deg2, the XMM-LSS Survey region overlying the Spitzer/SWIRE field. This field already has CFHTLS and Integral coverage, and will encompass about 10 deg2. The resulting multi-wavelength medium-depth survey, which complements XMM and Chandra deep surveys, will provide a unique view of large-scale structure over a wide range of redshift, and will show active galaxies in the full range of environments. The complete coverage by optical and IR surveys provides high-quality photometric redshifts, so that cosmological results can quickly be extracted. In the spirit of a Legacy survey, we will make the raw X-ray data immediately public. Multi-band catalogues and images will also be made available on short time scales.

  6. Displacement of large-scale open solar magnetic fields from the zone of active longitudes and the heliospheric storm of November 3-10, 2004: 2. "Explosion" of singularity and dynamics of sunspot formation and energy release

    NASA Astrophysics Data System (ADS)

    Ivanov, K. G.

    2010-12-01

    A more detailed scenario of one stage (August-November 2004) of the quasibiennial MHD process "Origination ... and dissipation of the four-sector structure of the solar magnetic field" during the decline phase of cycle 23 has been constructed. It has been indicated that the following working hypothesis on the propagation of an MHD disturbance westward (in the direction of solar rotation) and eastward (toward the zone of active longitudes) with the displacement of the large-scale open solar magnetic field (LOSMF) from this zone can be constructed based on LOSMF model representations and data on sunspot formation, flares, active filaments, and coronal ejections as well as on the estimated contribution of sporadic energy release to the flare luminosity and kinetic energy of ejections: (1) The "explosion" of the LOSMF singularity and the formation in the explosion zone of an anemone active region (AR), which produced the satellite sunspot formation that continued west and east of the "anemone," represented a powerful and energy-intensive source of MHD processes at this stage. (2) This resulted in the origination of two "governing" large-scale MHD processes, which regulated various usual manifestations of solar activity: the fast LOSMF along the neutral line in the solar atmosphere, strongly affecting the zone of active longitudes, and the slow LOSMF in the outer layers of the convection zone. The fronts of these processes were identified by powerful (about 1031 erg) coronal ejections. (3) The collision of a wave reflected from the zone of active longitudes with the eastern front of the hydromagnetic impulse of the convection zone resulted in an increase in LOSMF magnetic fluxes, origination of an active sector boundary in the zone of active longitudes, shear-convergent motions, and generation and destabilization of the flare-productive AR 10696 responsible for the heliospheric storm of November 3-10, 2004.

  7. Needs, opportunities, and options for large scale systems research

    SciTech Connect

    Thompson, G.L.

    1984-10-01

    The Office of Energy Research was recently asked to perform a study of Large Scale Systems in order to facilitate the development of a true large systems theory. It was decided to ask experts in the fields of electrical engineering, chemical engineering and manufacturing/operations research for their ideas concerning large scale systems research. The author was asked to distribute a questionnaire among these experts to find out their opinions concerning recent accomplishments and future research directions in large scale systems research. He was also requested to convene a conference which included three experts in each area as panel members to discuss the general area of large scale systems research. The conference was held on March 26--27, 1984 in Pittsburgh with nine panel members, and 15 other attendees. The present report is a summary of the ideas presented and the recommendations proposed by the attendees.

  8. Automating large-scale reactor systems

    SciTech Connect

    Kisner, R.A.

    1985-01-01

    This paper conveys a philosophy for developing automated large-scale control systems that behave in an integrated, intelligent, flexible manner. Methods for operating large-scale systems under varying degrees of equipment degradation are discussed, and a design approach that separates the effort into phases is suggested. 5 refs., 1 fig.

  9. Simulations of Large Scale Structures in Cosmology

    NASA Astrophysics Data System (ADS)

    Liao, Shihong

    Large-scale structures are powerful probes for cosmology. Due to the long range and non-linear nature of gravity, the formation of cosmological structures is a very complicated problem. The only known viable solution is cosmological N-body simulations. In this thesis, we use cosmological N-body simulations to study structure formation, particularly dark matter haloes' angular momenta and dark matter velocity field. The origin and evolution of angular momenta is an important ingredient for the formation and evolution of haloes and galaxies. We study the time evolution of the empirical angular momentum - mass relation for haloes to offer a more complete picture about its origin, dependences on cosmological models and nonlinear evolutions. We also show that haloes follow a simple universal specific angular momentum profile, which is useful in modelling haloes' angular momenta. The dark matter velocity field will become a powerful cosmological probe in the coming decades. However, theoretical predictions of the velocity field rely on N-body simulations and thus may be affected by numerical artefacts (e.g. finite box size, softening length and initial conditions). We study how such numerical effects affect the predicted pairwise velocities, and we propose a theoretical framework to understand and correct them. Our results will be useful for accurately comparing N-body simulations to observational data of pairwise velocities.

  10. Large-scale motions in a plane wall jet

    NASA Astrophysics Data System (ADS)

    Gnanamanickam, Ebenezer; Jonathan, Latim; Shibani, Bhatt

    2015-11-01

    The dynamic significance of large-scale motions in turbulent boundary layers have been the focus of several recent studies, primarily focussing on canonical flows - zero pressure gradient boundary layers, flows within pipes and channels. This work presents an investigation into the large-scale motions in a boundary layer that is used as the prototypical flow field for flows with large-scale mixing and reactions, the plane wall jet. An experimental investigation is carried out in a plane wall jet facility designed to operate at friction Reynolds numbers Reτ > 1000 , which allows for the development of a significant logarithmic region. The streamwise turbulent intensity across the boundary layer is decomposed into small-scale (less than one integral length-scale δ) and large-scale components. The small-scale energy has a peak in the near-wall region associated with the near-wall turbulent cycle as in canonical boundary layers. However, eddies of large-scales are the dominating eddies having significantly higher energy, than the small-scales across almost the entire boundary layer even at the low to moderate Reynolds numbers under consideration. The large-scales also appear to amplitude and frequency modulate the smaller scales across the entire boundary layer.

  11. Field trials results of guided wave tomography

    SciTech Connect

    Volker, Arno Zon, Tim van; Leden, Edwin van der

    2015-03-31

    Corrosion is one of the industries major issues regarding the integrity of assets. Guided wave travel time tomography is a method capable of providing an absolute wall thickness map. This method is currently making the transition from the laboratory to the field. For this purpose a dedicated data acquisition system and special purpose EMAT sensor rings have been developed. The system can be deployed for permanent monitoring and inspections. Field trials have been conducted on various pipes with different diameters, containing either liquid or gas. The main focus has been on pipe supports. The results demonstrate the successful operation of the technology in the field. Expected corrosion damage was clearly visible on the produced results enabling asset owner to make calculated decisions on the pipelines safety, maintenance and operations.

  12. Field trials results of guided wave tomography

    NASA Astrophysics Data System (ADS)

    Volker, Arno; van Zon, Tim; van der Leden, Edwin

    2015-03-01

    Corrosion is one of the industries major issues regarding the integrity of assets. Guided wave travel time tomography is a method capable of providing an absolute wall thickness map. This method is currently making the transition from the laboratory to the field. For this purpose a dedicated data acquisition system and special purpose EMAT sensor rings have been developed. The system can be deployed for permanent monitoring and inspections. Field trials have been conducted on various pipes with different diameters, containing either liquid or gas. The main focus has been on pipe supports. The results demonstrate the successful operation of the technology in the field. Expected corrosion damage was clearly visible on the produced results enabling asset owner to make calculated decisions on the pipelines safety, maintenance and operations.

  13. Lyα Emitter Galaxies at z∼ 2.8 in the Extended Chandra Deep Field South. I. Tracing the Large-scale Structure via Lyα Imaging

    NASA Astrophysics Data System (ADS)

    Zheng, Zhen-Ya; Malhotra, Sangeeta; Rhoads, James E.; Finkelstein, Steven L.; Wang, Jun-Xian; Jiang, Chun-Yan; Cai, Zheng

    2016-10-01

    We present a narrowband survey with three adjacent filters for z = 2.8–2.9 Lyman alpha (Lyα) emitter (LAE) galaxies in the Extended Chandra Deep Field South (ECDFS), along with spectroscopic follow-up. With a complete sample of 96 LAE candidates in the narrowband NB466, we confirm the large-scale structure at z ∼ 2.8 suggested by previous spectroscopic surveys. Compared to the blank field detected with the other two narrowband filters NB470 and NB475, the LAE-density excess in NB466 (900 arcmin2) is ∼ 6.0 ± 0.8 times the standard deviation expected at z ∼ 2.8, assuming a linear bias of 2. The overdense large-scale structure in NB466 can be decomposed into four protoclusters, whose overdensities (each within an equivalent comoving volume 153 Mpc3) relative to the blank field (NB470+NB475) are in the range of 4.6–6.6. These four protoclusters are expected to evolve into a Coma-like cluster (M ≥ 1015 M ⊙) at z ∼ 0. We also investigate the various properties of LAEs at z = 2.8–2.9 and their dependence on the environment. The average star formation rates derived from the Lyα, rest-frame UV, and X-ray bands are ∼4, 10, and <16 M ⊙ yr‑1, respectively, implying a Lyα escape fraction of 25% ≲ {f}{{ESC}}{Lyα } ≲ 40% and a UV continuum escape fraction of {f}{{ESC}}{{UV,cont}} ≳ 62% for LAEs at z ∼ 2.8. The Lyα photon density calculated from the integrated Lyα luminosity function in the overdense field (NB466) is ∼50% higher than that in the blank field (NB470+NB475), and more bright LAEs are found in the overdense field. The three brightest LAEs, including a quasar at z = 2.81, are all detected in the X-ray band and in NB466. These three LAE-active galactic nuclei contribute an extra 20%–30% Lyα photon density compared to other LAE galaxies. Furthermore, we find that LAEs in overdense regions have larger equivalent width values, bluer U ‑ B and V ‑ R (∼2–3σ) colors compared with those in lower density regions, indicating

  14. Is the universe homogeneous on large scale?

    NASA Astrophysics Data System (ADS)

    Zhu, Xingfen; Chu, Yaoquan

    Wether the distribution of matter in the universe is homogeneous or fractal on large scale is vastly debated in observational cosmology recently. Pietronero and his co-workers have strongly advocated that the fractal behaviour in the galaxy distribution extends to the largest scale observed (≍1000h-1Mpc) with the fractal dimension D ≍ 2. Most cosmologists who hold the standard model, however, insist that the universe be homogeneous on large scale. The answer of whether the universe is homogeneous or not on large scale should wait for the new results of next generation galaxy redshift surveys.

  15. Do Large-Scale Topological Features Correlate with Flare Properties?

    NASA Astrophysics Data System (ADS)

    DeRosa, Marc L.; Barnes, Graham

    2016-05-01

    In this study, we aim to identify whether the presence or absence of particular topological features in the large-scale coronal magnetic field are correlated with whether a flare is confined or eruptive. To this end, we first determine the locations of null points, spine lines, and separatrix surfaces within the potential fields associated with the locations of several strong flares from the current and previous sunspot cycles. We then validate the topological skeletons against large-scale features in observations, such as the locations of streamers and pseudostreamers in coronagraph images. Finally, we characterize the topological environment in the vicinity of the flaring active regions and identify the trends involving their large-scale topologies and the properties of the associated flares.

  16. Student Participation in Rover Field Trials

    NASA Astrophysics Data System (ADS)

    Bowman, C. D.; Arvidson, R. E.; Nelson, S. V.; Sherman, D. M.; Squyres, S. W.

    2001-12-01

    The LAPIS program was developed in 1999 as part of the Athena Science Payload education and public outreach, funded by the JPL Mars Program Office. For the past three years, the Athena Science Team has been preparing for 2003 Mars Exploration Rover Mission operations using the JPL prototype Field Integrated Design and Operations (FIDO) rover in extended rover field trials. Students and teachers participating in LAPIS work with them each year to develop a complementary mission plan and implement an actual portion of the annual tests using FIDO and its instruments. LAPIS is designed to mirror an end-to-end mission: Small, geographically distributed groups of students form an integrated mission team, working together with Athena Science Team members and FIDO engineers to plan, implement, and archive a two-day test mission, controlling FIDO remotely over the Internet using the Web Interface for Telescience (WITS) and communicating with each other by email, the web, and teleconferences. The overarching goal of LAPIS is to get students excited about science and related fields. The program provides students with the opportunity to apply knowledge learned in school, such as geometry and geology, to a "real world" situation and to explore careers in science and engineering through continuous one-on-one interactions with teachers, Athena Science Team mentors, and FIDO engineers. A secondary goal is to help students develop improved communication skills and appreciation of teamwork, enhanced problem-solving skills, and increased self-confidence. The LAPIS program will provide a model for outreach associated with future FIDO field trials and the 2003 Mars mission operations. The base of participation will be broadened beyond the original four sites by taking advantage of the wide geographic distribution of Athena team member locations. This will provide greater numbers of students with the opportunity to actively engage in rover testing and to explore the possibilities of

  17. Large scale digital atlases in neuroscience

    NASA Astrophysics Data System (ADS)

    Hawrylycz, M.; Feng, D.; Lau, C.; Kuan, C.; Miller, J.; Dang, C.; Ng, L.

    2014-03-01

    Imaging in neuroscience has revolutionized our current understanding of brain structure, architecture and increasingly its function. Many characteristics of morphology, cell type, and neuronal circuitry have been elucidated through methods of neuroimaging. Combining this data in a meaningful, standardized, and accessible manner is the scope and goal of the digital brain atlas. Digital brain atlases are used today in neuroscience to characterize the spatial organization of neuronal structures, for planning and guidance during neurosurgery, and as a reference for interpreting other data modalities such as gene expression and connectivity data. The field of digital atlases is extensive and in addition to atlases of the human includes high quality brain atlases of the mouse, rat, rhesus macaque, and other model organisms. Using techniques based on histology, structural and functional magnetic resonance imaging as well as gene expression data, modern digital atlases use probabilistic and multimodal techniques, as well as sophisticated visualization software to form an integrated product. Toward this goal, brain atlases form a common coordinate framework for summarizing, accessing, and organizing this knowledge and will undoubtedly remain a key technology in neuroscience in the future. Since the development of its flagship project of a genome wide image-based atlas of the mouse brain, the Allen Institute for Brain Science has used imaging as a primary data modality for many of its large scale atlas projects. We present an overview of Allen Institute digital atlases in neuroscience, with a focus on the challenges and opportunities for image processing and computation.

  18. Large scale mechanical metamaterials as seismic shields

    NASA Astrophysics Data System (ADS)

    Miniaci, Marco; Krushynska, Anastasiia; Bosia, Federico; Pugno, Nicola M.

    2016-08-01

    Earthquakes represent one of the most catastrophic natural events affecting mankind. At present, a universally accepted risk mitigation strategy for seismic events remains to be proposed. Most approaches are based on vibration isolation of structures rather than on the remote shielding of incoming waves. In this work, we propose a novel approach to the problem and discuss the feasibility of a passive isolation strategy for seismic waves based on large-scale mechanical metamaterials, including for the first time numerical analysis of both surface and guided waves, soil dissipation effects, and adopting a full 3D simulations. The study focuses on realistic structures that can be effective in frequency ranges of interest for seismic waves, and optimal design criteria are provided, exploring different metamaterial configurations, combining phononic crystals and locally resonant structures and different ranges of mechanical properties. Dispersion analysis and full-scale 3D transient wave transmission simulations are carried out on finite size systems to assess the seismic wave amplitude attenuation in realistic conditions. Results reveal that both surface and bulk seismic waves can be considerably attenuated, making this strategy viable for the protection of civil structures against seismic risk. The proposed remote shielding approach could open up new perspectives in the field of seismology and in related areas of low-frequency vibration damping or blast protection.

  19. Clearing and Labeling Techniques for Large-Scale Biological Tissues

    PubMed Central

    Seo, Jinyoung; Choe, Minjin; Kim, Sung-Yon

    2016-01-01

    Clearing and labeling techniques for large-scale biological tissues enable simultaneous extraction of molecular and structural information with minimal disassembly of the sample, facilitating the integration of molecular, cellular and systems biology across different scales. Recent years have witnessed an explosive increase in the number of such methods and their applications, reflecting heightened interest in organ-wide clearing and labeling across many fields of biology and medicine. In this review, we provide an overview and comparison of existing clearing and labeling techniques and discuss challenges and opportunities in the investigations of large-scale biological systems. PMID:27239813

  20. A relativistic signature in large-scale structure

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Bertacca, Daniele; Bruni, Marco; Koyama, Kazuya; Maartens, Roy; Matarrese, Sabino; Sasaki, Misao; Verde, Licia; Wands, David

    2016-09-01

    In General Relativity, the constraint equation relating metric and density perturbations is inherently nonlinear, leading to an effective non-Gaussianity in the dark matter density field on large scales-even if the primordial metric perturbation is Gaussian. Intrinsic non-Gaussianity in the large-scale dark matter overdensity in GR is real and physical. However, the variance smoothed on a local physical scale is not correlated with the large-scale curvature perturbation, so that there is no relativistic signature in the galaxy bias when using the simplest model of bias. It is an open question whether the observable mass proxies such as luminosity or weak lensing correspond directly to the physical mass in the simple halo bias model. If not, there may be observables that encode this relativistic signature.

  1. Field trials of line transect methods applied to estimation of desert tortoise abundance

    USGS Publications Warehouse

    Anderson, David R.; Burnham, Kenneth P.; Lubow, Bruce C.; Thomas, L. E. N.; Corn, Paul Stephen; Medica, Philip A.; Marlow, R.W.

    2001-01-01

    We examine the degree to which field observers can meet the assumptions underlying line transect sampling to monitor populations of desert tortoises (Gopherus agassizii). We present the results of 2 field trials using artificial tortoise models in 3 size classes. The trials were conducted on 2 occasions on an area south of Las Vegas, Nevada, where the density of the test population was known. In the first trials, conducted largely by experienced biologists who had been involved in tortoise surveys for many years, the density of adult tortoise models was well estimated (-3.9% bias), while the bias was higher (-20%) for subadult tortoise models. The bias for combined data was -12.0%. The bias was largely attributed to the failure to detect all tortoise models on or near the transect centerline. The second trials were conducted with a group of largely inexperienced student volunteers and used somewhat different searching methods, and the results were similar to the first trials. Estimated combined density of subadult and adult tortoise models had a negative bias (-7.3%), again attributable to failure to detect some models on or near the centerline. Experience in desert tortoise biology, either comparing the first and second trials or in the second trial with 2 experienced biologists versus 16 novices, did not have an apparent effect on the quality of the data or the accuracy of the estimates. Observer training, specific to line transect sampling, and field testing are important components of a reliable survey. Line transect sampling represents a viable method for large-scale monitoring of populations of desert tortoise; however, field protocol must be improved to assure the key assumptions are met.

  2. Airborne passive remote sensing of large-scale methane emissions from oil fields in California's San Joaquin Valley and validation by airborne in-situ measurements - Initial results from COMEX

    NASA Astrophysics Data System (ADS)

    Gerilowski, Konstantin; Krautwurst, Sven; Kolyer, Richard W.; Thompson, David R.; Jonsson, Haflidi; Krings, Thomas; Horstjann, Markus; Leifer, Ira; Eastwood, Michael; Green, Robert O.; Vigil, Sam; Schüttemeyer, Dirk; Fladeland, Matthew; Burrows, John P.; Bovensmann, Heinrich

    2015-04-01

    On several flights performed over the Kern River, Kern Front, and Poso Creek Oil Fields in California between June 3 and September 4, 2014, in the framework of the CO2 and MEthane Experiment (COMEX) - a NASA and ESA funded campaign in support of the HyspIRI and CarbonSat mission definition activities - the Methane Airborne MAPper (MAMAP) remote sensing instrument (operated by the University of Bremen in cooperation with the German Research Centre for Geosciences - GFZ) detected large-scale, high-concentration, methane plumes. MAMAP was installed for the flights aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft, together with a Picarro fast in-situ greenhouse gas (GHG) analyzer (operated by the NASA Ames Research Center, ARC), a 5-hole turbulence probe and an atmospheric measurement package (operated by CIRPAS), measuring aerosols, temperature, dew-point, and other atmospheric parameters. Some of the flights were accompanied by the next generation of the Airborne Visible InfraRed Imaging Spectrometer (AVIRIS-NG), operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology, installed aboard a second Twin Otter aircraft (operated by Twin Otter International). Data collected with the in-situ GHG analyzer were used for validation of the MAMAP and AVIRIS-NG remotely sensed data. The in-situ measurements were acquired in vertical cross sections of the discovered plumes at fixed distances downwind of the sources. Emission rates are estimated from both the remote and in-situ data using wind information from the turbulence probe together with ground-based wind data from the nearby airport. Remote sensing and in-situ data as well as initial flux estimates for selected flights will be presented.

  3. Survey on large scale system control methods

    NASA Technical Reports Server (NTRS)

    Mercadal, Mathieu

    1987-01-01

    The problem inherent to large scale systems such as power network, communication network and economic or ecological systems were studied. The increase in size and flexibility of future spacecraft has put those dynamical systems into the category of large scale systems, and tools specific to the class of large systems are being sought to design control systems that can guarantee more stability and better performance. Among several survey papers, reference was found to a thorough investigation on decentralized control methods. Especially helpful was the classification made of the different existing approaches to deal with large scale systems. A very similar classification is used, even though the papers surveyed are somehow different from the ones reviewed in other papers. Special attention is brought to the applicability of the existing methods to controlling large mechanical systems like large space structures. Some recent developments are added to this survey.

  4. How Large Scales Flows May Influence Solar Activity

    NASA Technical Reports Server (NTRS)

    Hathaway, D. H.

    2004-01-01

    Large scale flows within the solar convection zone are the primary drivers of the Sun's magnetic activity cycle and play important roles in shaping the Sun's magnetic field. Differential rotation amplifies the magnetic field through its shearing action and converts poloidal field into toroidal field. Poleward meridional flow near the surface carries magnetic flux that reverses the magnetic poles at about the time of solar maximum. The deeper, equatorward meridional flow can carry magnetic flux back toward the lower latitudes where it erupts through the surface to form tilted active regions that convert toroidal fields into oppositely directed poloidal fields. These axisymmetric flows are themselves driven by large scale convective motions. The effects of the Sun's rotation on convection produce velocity correlations that can maintain both the differential rotation and the meridional circulation. These convective motions can also influence solar activity directly by shaping the magnetic field pattern. While considerable theoretical advances have been made toward understanding these large scale flows, outstanding problems in matching theory to observations still remain.

  5. Large-scale Alfvén vortices

    SciTech Connect

    Onishchenko, O. G.; Horton, W.; Scullion, E.; Fedun, V.

    2015-12-15

    The new type of large-scale vortex structures of dispersionless Alfvén waves in collisionless plasma is investigated. It is shown that Alfvén waves can propagate in the form of Alfvén vortices of finite characteristic radius and characterised by magnetic flux ropes carrying orbital angular momentum. The structure of the toroidal and radial velocity, fluid and magnetic field vorticity, the longitudinal electric current in the plane orthogonal to the external magnetic field are discussed.

  6. Large-scale Alfvén vortices

    NASA Astrophysics Data System (ADS)

    Onishchenko, O. G.; Pokhotelov, O. A.; Horton, W.; Scullion, E.; Fedun, V.

    2015-12-01

    The new type of large-scale vortex structures of dispersionless Alfvén waves in collisionless plasma is investigated. It is shown that Alfvén waves can propagate in the form of Alfvén vortices of finite characteristic radius and characterised by magnetic flux ropes carrying orbital angular momentum. The structure of the toroidal and radial velocity, fluid and magnetic field vorticity, the longitudinal electric current in the plane orthogonal to the external magnetic field are discussed.

  7. Sensitivity analysis for large-scale problems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Whitworth, Sandra L.

    1987-01-01

    The development of efficient techniques for calculating sensitivity derivatives is studied. The objective is to present a computational procedure for calculating sensitivity derivatives as part of performing structural reanalysis for large-scale problems. The scope is limited to framed type structures. Both linear static analysis and free-vibration eigenvalue problems are considered.

  8. ARPACK: Solving large scale eigenvalue problems

    NASA Astrophysics Data System (ADS)

    Lehoucq, Rich; Maschhoff, Kristi; Sorensen, Danny; Yang, Chao

    2013-11-01

    ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems. The package is designed to compute a few eigenvalues and corresponding eigenvectors of a general n by n matrix A. It is most appropriate for large sparse or structured matrices A where structured means that a matrix-vector product w

  9. A Large Scale Computer Terminal Output Controller.

    ERIC Educational Resources Information Center

    Tucker, Paul Thomas

    This paper describes the design and implementation of a large scale computer terminal output controller which supervises the transfer of information from a Control Data 6400 Computer to a PLATO IV data network. It discusses the cost considerations leading to the selection of educational television channels rather than telephone lines for…

  10. Management of large-scale technology

    NASA Technical Reports Server (NTRS)

    Levine, A.

    1985-01-01

    Two major themes are addressed in this assessment of the management of large-scale NASA programs: (1) how a high technology agency was a decade marked by a rapid expansion of funds and manpower in the first half and almost as rapid contraction in the second; and (2) how NASA combined central planning and control with decentralized project execution.

  11. Evaluating Large-Scale Interactive Radio Programmes

    ERIC Educational Resources Information Center

    Potter, Charles; Naidoo, Gordon

    2009-01-01

    This article focuses on the challenges involved in conducting evaluations of interactive radio programmes in South Africa with large numbers of schools, teachers, and learners. It focuses on the role such large-scale evaluation has played during the South African radio learning programme's development stage, as well as during its subsequent…

  12. Effects of small-scale chemical reactions between supercritical CO2 and arkosic sandstone on large-scale permeability fields: An experimental study with implications for geologic carbon sequestration

    NASA Astrophysics Data System (ADS)

    Luhmann, A. J.; Ding, K.; Saar, M. O.; Seyfried, W. E.

    2011-12-01

    During geologic carbon sequestration, small, pore-scale changes in mineralogy due to dissolution and precipitation reactions can modify bulk porosity. Porosity/permeability relationships are then typically used to infer large-scale permeability field changes. However, these relationships have limited use because they do not account for changes in pore geometry. Therefore, in connection with a DOE sponsored program, involving CO2 sequestration with geothermal energy usage, we constructed a novel hydrothermal flow system that allows simultaneous determination of changes in fluid chemistry and associated changes in permeability at elevated temperatures and high CO2 pressure. Initial experiments were conducted with an arkosic sandstone core of the Eau Claire Formation from southeastern Minnesota. The core was disaggregated and then wet sieved to yield a grain size distribution of 90-120 μm that was used to fill the Teflon sleeve held within the stainless steel pressure vessel. Initial water chemistry consisted of CO2 dissolved in deionized water. Outlet pressure was set to 11 MPa, and confinement pressure was 20 MPa. Flow rates produced inlet pressures between these two extremes, allowing CO2 solubility up to 1.1 mol/kg water. Rates of fluid flow ranged from 0.04 to 1.5 mL/min at a temperature of 21°C over the course of 33 days. Based on these data, the in-situ permeability of ~1E-14 to 9E-14 m2 for the arkosic sandstone was calculated. The reaction cell temperature was then increased to 50°C, and eventually 100°C. Each temperature step was associated with a sharp decrease in permeability, such that at 100°C the permeability had decreased by approximately three orders of magnitude from the starting condition. Fluid samples indicate release of dissolved Na, Ca, Mg, K, Al, SiO2, and Cl from minerals in the core, suggesting dissolution of primary mineral components. Charge balance constraints indicate a pH of approximately 4.2 at the highest temperature run condition

  13. Large-scale drift and Rossby wave turbulence

    NASA Astrophysics Data System (ADS)

    Harper, K. L.; Nazarenko, S. V.

    2016-08-01

    We study drift/Rossby wave turbulence described by the large-scale limit of the Charney–Hasegawa–Mima equation. We define the zonal and meridional regions as Z:= \\{{k} :| {k}y| \\gt \\sqrt{3}{k}x\\} and M:= \\{{k} :| {k}y| \\lt \\sqrt{3}{k}x\\} respectively, where {k}=({k}x,{k}y) is in a plane perpendicular to the magnetic field such that k x is along the isopycnals and k y is along the plasma density gradient. We prove that the only types of resonant triads allowed are M≤ftrightarrow M+Z and Z≤ftrightarrow Z+Z. Therefore, if the spectrum of weak large-scale drift/Rossby turbulence is initially in Z it will remain in Z indefinitely. We present a generalised Fjørtoft’s argument to find transfer directions for the quadratic invariants in the two-dimensional {k}-space. Using direct numerical simulations, we test and confirm our theoretical predictions for weak large-scale drift/Rossby turbulence, and establish qualitative differences with cases when turbulence is strong. We demonstrate that the qualitative features of the large-scale limit survive when the typical turbulent scale is only moderately greater than the Larmor/Rossby radius.

  14. Large-scale drift and Rossby wave turbulence

    NASA Astrophysics Data System (ADS)

    Harper, K. L.; Nazarenko, S. V.

    2016-08-01

    We study drift/Rossby wave turbulence described by the large-scale limit of the Charney-Hasegawa-Mima equation. We define the zonal and meridional regions as Z:= \\{{k} :| {k}y| \\gt \\sqrt{3}{k}x\\} and M:= \\{{k} :| {k}y| \\lt \\sqrt{3}{k}x\\} respectively, where {k}=({k}x,{k}y) is in a plane perpendicular to the magnetic field such that k x is along the isopycnals and k y is along the plasma density gradient. We prove that the only types of resonant triads allowed are M≤ftrightarrow M+Z and Z≤ftrightarrow Z+Z. Therefore, if the spectrum of weak large-scale drift/Rossby turbulence is initially in Z it will remain in Z indefinitely. We present a generalised Fjørtoft’s argument to find transfer directions for the quadratic invariants in the two-dimensional {k}-space. Using direct numerical simulations, we test and confirm our theoretical predictions for weak large-scale drift/Rossby turbulence, and establish qualitative differences with cases when turbulence is strong. We demonstrate that the qualitative features of the large-scale limit survive when the typical turbulent scale is only moderately greater than the Larmor/Rossby radius.

  15. US National Large-scale City Orthoimage Standard Initiative

    USGS Publications Warehouse

    Zhou, G.; Song, C.; Benjamin, S.; Schickler, W.

    2003-01-01

    The early procedures and algorithms for National digital orthophoto generation in National Digital Orthophoto Program (NDOP) were based on earlier USGS mapping operations, such as field control, aerotriangulation (derived in the early 1920's), the quarter-quadrangle-centered (3.75 minutes of longitude and latitude in geographic extent), 1:40,000 aerial photographs, and 2.5 D digital elevation models. However, large-scale city orthophotos using early procedures have disclosed many shortcomings, e.g., ghost image, occlusion, shadow. Thus, to provide the technical base (algorithms, procedure) and experience needed for city large-scale digital orthophoto creation is essential for the near future national large-scale digital orthophoto deployment and the revision of the Standards for National Large-scale City Digital Orthophoto in National Digital Orthophoto Program (NDOP). This paper will report our initial research results as follows: (1) High-precision 3D city DSM generation through LIDAR data processing, (2) Spatial objects/features extraction through surface material information and high-accuracy 3D DSM data, (3) 3D city model development, (4) Algorithm development for generation of DTM-based orthophoto, and DBM-based orthophoto, (5) True orthophoto generation by merging DBM-based orthophoto and DTM-based orthophoto, and (6) Automatic mosaic by optimizing and combining imagery from many perspectives.

  16. Pooled-Peptide Epitope Mapping Strategies Are Efficient and Highly Sensitive: An Evaluation of Methods for Identifying Human T Cell Epitope Specificities in Large-Scale HIV Vaccine Efficacy Trials

    PubMed Central

    Fiore-Gartland, Andrew; Manso, Bryce A.; Friedrich, David P.; Gabriel, Erin E.; Finak, Greg; Moodie, Zoe; Hertz, Tomer; De Rosa, Stephen C.; Frahm, Nicole; Gilbert, Peter B.; McElrath, M. Juliana

    2016-01-01

    The interferon gamma, enzyme-linked immunospot (IFN-γ ELISpot) assay is widely used to identify viral antigen-specific T cells is frequently employed to quantify T cell responses in HIV vaccine studies. It can be used to define T cell epitope specificities using panels of peptide antigens, but with sample and cost constraints there is a critical need to improve the efficiency of epitope mapping for large and variable pathogens. We evaluated two epitope mapping strategies, based on group testing, for their ability to identify vaccine-induced T-cells from participants in the Step HIV-1 vaccine efficacy trial, and compared the findings to an approach of assaying each peptide individually. The group testing strategies reduced the number of assays required by >7-fold without significantly altering the accuracy of T-cell breadth estimates. Assays of small pools containing 7–30 peptides were highly sensitive and effective at detecting single positive peptides as well as summating responses to multiple peptides. Also, assays with a single 15-mer peptide, containing an identified epitope, did not always elicit a response providing validation that 15-mer peptides are not optimal antigens for detecting CD8+ T cells. Our findings further validate pooling-based epitope mapping strategies, which are critical for characterizing vaccine-induced T-cell responses and more broadly for informing iterative vaccine design. We also show ways to improve their application with computational peptide:MHC binding predictors that can accurately identify the optimal epitope within a 15-mer peptide and within a pool of 15-mer peptides. PMID:26863315

  17. Pooled-Peptide Epitope Mapping Strategies Are Efficient and Highly Sensitive: An Evaluation of Methods for Identifying Human T Cell Epitope Specificities in Large-Scale HIV Vaccine Efficacy Trials.

    PubMed

    Fiore-Gartland, Andrew; Manso, Bryce A; Friedrich, David P; Gabriel, Erin E; Finak, Greg; Moodie, Zoe; Hertz, Tomer; De Rosa, Stephen C; Frahm, Nicole; Gilbert, Peter B; McElrath, M Juliana

    2016-01-01

    The interferon gamma, enzyme-linked immunospot (IFN-γ ELISpot) assay is widely used to identify viral antigen-specific T cells is frequently employed to quantify T cell responses in HIV vaccine studies. It can be used to define T cell epitope specificities using panels of peptide antigens, but with sample and cost constraints there is a critical need to improve the efficiency of epitope mapping for large and variable pathogens. We evaluated two epitope mapping strategies, based on group testing, for their ability to identify vaccine-induced T-cells from participants in the Step HIV-1 vaccine efficacy trial, and compared the findings to an approach of assaying each peptide individually. The group testing strategies reduced the number of assays required by >7-fold without significantly altering the accuracy of T-cell breadth estimates. Assays of small pools containing 7-30 peptides were highly sensitive and effective at detecting single positive peptides as well as summating responses to multiple peptides. Also, assays with a single 15-mer peptide, containing an identified epitope, did not always elicit a response providing validation that 15-mer peptides are not optimal antigens for detecting CD8+ T cells. Our findings further validate pooling-based epitope mapping strategies, which are critical for characterizing vaccine-induced T-cell responses and more broadly for informing iterative vaccine design. We also show ways to improve their application with computational peptide:MHC binding predictors that can accurately identify the optimal epitope within a 15-mer peptide and within a pool of 15-mer peptides. PMID:26863315

  18. A two-dose regimen of a vaccine against Escherichia coli O157:H7 type III secreted proteins reduced environmental transmission of the agent in a large-scale commercial beef feedlot clinical trial.

    PubMed

    Smith, David R; Moxley, Rodney A; Peterson, Robert E; Klopfenstein, Terry J; Erickson, Galen E; Clowser, Sharon L

    2008-10-01

    A clinical vaccine trial of commercially fed cattle tested the effect of a two-dose regimen of a vaccine product against type III secreted proteins of enterohemorrhagic Escherichia coli O157:H7 on the probability of detecting the organism on environmental sampling devices. Within commercial feedlots, pens of vaccinated and unvaccinated cattle were matched by reprocessing schedule and time of sampling. Vaccine was administered to all cattle within treated pens at arrival processing and again at re-implant processing. Pens of cattle were sampled 1 week after the second dose of vaccine and every 3 weeks for four test periods. Pair-matched pens of cattle were sampled concurrently. Test samples were seven ropes per pen hung overnight from the feed-bunk neck-rail (ROPES). Recovery of E. coli O157:H7 from at least one rope classified pens ROPES-positive. E. coli O157:H7 isolates were identified by standard biochemical methods and multiplex polymerase chain reaction. The probability for pens of cattle to test ROPES-positive was modeled using multilevel logistic regression with variance adjustment for clustering by matched pens and repeated measures. We studied 140 pens of cattle representing 20,556 cattle in 19 feedlots February through October 2004. Vaccinated pens of cattle were less likely to test ROPES-positive (OR = 0.59, p = 0.004). Because ROPES testing identifies organisms in the mouth of cattle, and the outcome is both associated with presence of the organism in the pen environment and correlated with the prevalence of fecal shedding, we conclude the two-dose vaccine regimen reduces the probability for environmental transmission of E. coli O157:H7 within commercial cattle feeding systems.

  19. Large-scale Advanced Propfan (LAP) program

    NASA Technical Reports Server (NTRS)

    Sagerser, D. A.; Ludemann, S. G.

    1985-01-01

    The propfan is an advanced propeller concept which maintains the high efficiencies traditionally associated with conventional propellers at the higher aircraft cruise speeds associated with jet transports. The large-scale advanced propfan (LAP) program extends the research done on 2 ft diameter propfan models to a 9 ft diameter article. The program includes design, fabrication, and testing of both an eight bladed, 9 ft diameter propfan, designated SR-7L, and a 2 ft diameter aeroelastically scaled model, SR-7A. The LAP program is complemented by the propfan test assessment (PTA) program, which takes the large-scale propfan and mates it with a gas generator and gearbox to form a propfan propulsion system and then flight tests this system on the wing of a Gulfstream 2 testbed aircraft.

  20. Fractals and cosmological large-scale structure

    NASA Technical Reports Server (NTRS)

    Luo, Xiaochun; Schramm, David N.

    1992-01-01

    Observations of galaxy-galaxy and cluster-cluster correlations as well as other large-scale structure can be fit with a 'limited' fractal with dimension D of about 1.2. This is not a 'pure' fractal out to the horizon: the distribution shifts from power law to random behavior at some large scale. If the observed patterns and structures are formed through an aggregation growth process, the fractal dimension D can serve as an interesting constraint on the properties of the stochastic motion responsible for limiting the fractal structure. In particular, it is found that the observed fractal should have grown from two-dimensional sheetlike objects such as pancakes, domain walls, or string wakes. This result is generic and does not depend on the details of the growth process.

  1. Condition Monitoring of Large-Scale Facilities

    NASA Technical Reports Server (NTRS)

    Hall, David L.

    1999-01-01

    This document provides a summary of the research conducted for the NASA Ames Research Center under grant NAG2-1182 (Condition-Based Monitoring of Large-Scale Facilities). The information includes copies of view graphs presented at NASA Ames in the final Workshop (held during December of 1998), as well as a copy of a technical report provided to the COTR (Dr. Anne Patterson-Hine) subsequent to the workshop. The material describes the experimental design, collection of data, and analysis results associated with monitoring the health of large-scale facilities. In addition to this material, a copy of the Pennsylvania State University Applied Research Laboratory data fusion visual programming tool kit was also provided to NASA Ames researchers.

  2. Large-scale fibre-array multiplexing

    SciTech Connect

    Cheremiskin, I V; Chekhlova, T K

    2001-05-31

    The possibility of creating a fibre multiplexer/demultiplexer with large-scale multiplexing without any basic restrictions on the number of channels and the spectral spacing between them is shown. The operating capacity of a fibre multiplexer based on a four-fibre array ensuring a spectral spacing of 0.7 pm ({approx} 10 GHz) between channels is demonstrated. (laser applications and other topics in quantum electronics)

  3. Large Scale Deformation of the Western U.S. Cordillera

    NASA Technical Reports Server (NTRS)

    Bennett, Richard A.

    2002-01-01

    The overall objective of the work that was conducted was to understand the present-day large-scale deformations of the crust throughout the western United States and in so doing to improve our ability to assess the potential for seismic hazards in this region. To address this problem, we used a large collection of Global Positioning System (GPS) networks which spans the region to precisely quantify present-day large-scale crustal deformations in a single uniform reference frame. Our results can roughly be divided into an analysis of the GPS observations to infer the deformation field across and within the entire plate boundary zone and an investigation of the implications of this deformation field regarding plate boundary dynamics.

  4. Large Scale Deformation of the Western US Cordillera

    NASA Technical Reports Server (NTRS)

    Bennett, Richard A.

    2001-01-01

    Destructive earthquakes occur throughout the western US Cordillera (WUSC), not just within the San Andreas fault zone. But because we do not understand the present-day large-scale deformations of the crust throughout the WUSC, our ability to assess the potential for seismic hazards in this region remains severely limited. To address this problem, we are using a large collection of Global Positioning System (GPS) networks which spans the WUSC to precisely quantify present-day large-scale crustal deformations in a single uniform reference frame. Our work can roughly be divided into an analysis of the GPS observations to infer the deformation field across and within the entire plate boundary zone and an investigation of the implications of this deformation field regarding plate boundary dynamics.

  5. Large-scale neuromorphic computing systems

    NASA Astrophysics Data System (ADS)

    Furber, Steve

    2016-10-01

    Neuromorphic computing covers a diverse range of approaches to information processing all of which demonstrate some degree of neurobiological inspiration that differentiates them from mainstream conventional computing systems. The philosophy behind neuromorphic computing has its origins in the seminal work carried out by Carver Mead at Caltech in the late 1980s. This early work influenced others to carry developments forward, and advances in VLSI technology supported steady growth in the scale and capability of neuromorphic devices. Recently, a number of large-scale neuromorphic projects have emerged, taking the approach to unprecedented scales and capabilities. These large-scale projects are associated with major new funding initiatives for brain-related research, creating a sense that the time and circumstances are right for progress in our understanding of information processing in the brain. In this review we present a brief history of neuromorphic engineering then focus on some of the principal current large-scale projects, their main features, how their approaches are complementary and distinct, their advantages and drawbacks, and highlight the sorts of capabilities that each can deliver to neural modellers.

  6. Large-scale neuromorphic computing systems.

    PubMed

    Furber, Steve

    2016-10-01

    Neuromorphic computing covers a diverse range of approaches to information processing all of which demonstrate some degree of neurobiological inspiration that differentiates them from mainstream conventional computing systems. The philosophy behind neuromorphic computing has its origins in the seminal work carried out by Carver Mead at Caltech in the late 1980s. This early work influenced others to carry developments forward, and advances in VLSI technology supported steady growth in the scale and capability of neuromorphic devices. Recently, a number of large-scale neuromorphic projects have emerged, taking the approach to unprecedented scales and capabilities. These large-scale projects are associated with major new funding initiatives for brain-related research, creating a sense that the time and circumstances are right for progress in our understanding of information processing in the brain. In this review we present a brief history of neuromorphic engineering then focus on some of the principal current large-scale projects, their main features, how their approaches are complementary and distinct, their advantages and drawbacks, and highlight the sorts of capabilities that each can deliver to neural modellers. PMID:27529195

  7. Large-Scale Visual Data Analysis

    NASA Astrophysics Data System (ADS)

    Johnson, Chris

    2014-04-01

    Modern high performance computers have speeds measured in petaflops and handle data set sizes measured in terabytes and petabytes. Although these machines offer enormous potential for solving very large-scale realistic computational problems, their effectiveness will hinge upon the ability of human experts to interact with their simulation results and extract useful information. One of the greatest scientific challenges of the 21st century is to effectively understand and make use of the vast amount of information being produced. Visual data analysis will be among our most most important tools in helping to understand such large-scale information. Our research at the Scientific Computing and Imaging (SCI) Institute at the University of Utah has focused on innovative, scalable techniques for large-scale 3D visual data analysis. In this talk, I will present state- of-the-art visualization techniques, including scalable visualization algorithms and software, cluster-based visualization methods and innovate visualization techniques applied to problems in computational science, engineering, and medicine. I will conclude with an outline for a future high performance visualization research challenges and opportunities.

  8. Large scale processes in the solar nebula.

    NASA Astrophysics Data System (ADS)

    Boss, A. P.

    Most proposed chondrule formation mechanisms involve processes occurring inside the solar nebula, so the large scale (roughly 1 to 10 AU) structure of the nebula is of general interest for any chrondrule-forming mechanism. Chondrules and Ca, Al-rich inclusions (CAIs) might also have been formed as a direct result of the large scale structure of the nebula, such as passage of material through high temperature regions. While recent nebula models do predict the existence of relatively hot regions, the maximum temperatures in the inner planet region may not be high enough to account for chondrule or CAI thermal processing, unless the disk mass is considerably greater than the minimum mass necessary to restore the planets to solar composition. Furthermore, it does not seem to be possible to achieve both rapid heating and rapid cooling of grain assemblages in such a large scale furnace. However, if the accretion flow onto the nebula surface is clumpy, as suggested by observations of variability in young stars, then clump-disk impacts might be energetic enough to launch shock waves which could propagate through the nebula to the midplane, thermally processing any grain aggregates they encounter, and leaving behind a trail of chondrules.

  9. Population generation for large-scale simulation

    NASA Astrophysics Data System (ADS)

    Hannon, Andrew C.; King, Gary; Morrison, Clayton; Galstyan, Aram; Cohen, Paul

    2005-05-01

    Computer simulation is used to research phenomena ranging from the structure of the space-time continuum to population genetics and future combat.1-3 Multi-agent simulations in particular are now commonplace in many fields.4, 5 By modeling populations whose complex behavior emerges from individual interactions, these simulations help to answer questions about effects where closed form solutions are difficult to solve or impossible to derive.6 To be useful, simulations must accurately model the relevant aspects of the underlying domain. In multi-agent simulation, this means that the modeling must include both the agents and their relationships. Typically, each agent can be modeled as a set of attributes drawn from various distributions (e.g., height, morale, intelligence and so forth). Though these can interact - for example, agent height is related to agent weight - they are usually independent. Modeling relations between agents, on the other hand, adds a new layer of complexity, and tools from graph theory and social network analysis are finding increasing application.7, 8 Recognizing the role and proper use of these techniques, however, remains the subject of ongoing research. We recently encountered these complexities while building large scale social simulations.9-11 One of these, the Hats Simulator, is designed to be a lightweight proxy for intelligence analysis problems. Hats models a "society in a box" consisting of many simple agents, called hats. Hats gets its name from the classic spaghetti western, in which the heroes and villains are known by the color of the hats they wear. The Hats society also has its heroes and villains, but the challenge is to identify which color hat they should be wearing based on how they behave. There are three types of hats: benign hats, known terrorists, and covert terrorists. Covert terrorists look just like benign hats but act like terrorists. Population structure can make covert hat identification significantly more

  10. Large-scale dynamo action precedes turbulence in shearing box simulations of the magnetorotational instability

    NASA Astrophysics Data System (ADS)

    Bhat, Pallavi; Ebrahimi, Fatima; Blackman, Eric G.

    2016-10-01

    We study the dynamo generation (exponential growth) of large-scale (planar averaged) fields in unstratified shearing box simulations of the magnetorotational instability (MRI). In contrast to previous studies restricted to horizontal (x-y) averaging, we also demonstrate the presence of large-scale fields when vertical (y-z) averaging is employed instead. By computing space-time planar averaged fields and power spectra, we find large-scale dynamo action in the early MRI growth phase - a previously unidentified feature. Non-axisymmetric linear MRI modes with low horizontal wavenumbers and vertical wavenumbers near that of expected maximal growth, amplify the large-scale fields exponentially before turbulence and high wavenumber fluctuations arise. Thus the large-scale dynamo requires only linear fluctuations but not non-linear turbulence (as defined by mode-mode coupling). Vertical averaging also allows for monitoring the evolution of the large-scale vertical field and we find that a feedback from horizontal low wavenumber MRI modes provides a clue as to why the large-scale vertical field sustains against turbulent diffusion in the non-linear saturation regime. We compute the terms in the mean field equations to identify the individual contributions to large-scale field growth for both types of averaging. The large-scale fields obtained from vertical averaging are found to compare well with global simulations and quasi-linear analytical analysis from a previous study by Ebrahimi & Blackman. We discuss the potential implications of these new results for understanding the large-scale MRI dynamo saturation and turbulence.

  11. Dispersal Mutualism Incorporated into Large-Scale, Infrequent Disturbances.

    PubMed

    Parker, V Thomas

    2015-01-01

    Because of their influence on succession and other community interactions, large-scale, infrequent natural disturbances also should play a major role in mutualistic interactions. Using field data and experiments, I test whether mutualisms have been incorporated into large-scale wildfire by whether the outcomes of a mutualism depend on disturbance. In this study a seed dispersal mutualism is shown to depend on infrequent, large-scale disturbances. A dominant shrubland plant (Arctostaphylos species) produces seeds that make up a persistent soil seed bank and requires fire to germinate. In post-fire stands, I show that seedlings emerging from rodent caches dominate sites experiencing higher fire intensity. Field experiments show that rodents (Perimyscus californicus, P. boylii) do cache Arctostaphylos fruit and bury most seed caches to a sufficient depth to survive a killing heat pulse that a fire might drive into the soil. While the rodent dispersal and caching behavior itself has not changed compared to other habitats, the environmental transformation caused by wildfire converts the caching burial of seed from a dispersal process to a plant fire adaptive trait, and provides the context for stimulating subsequent life history evolution in the plant host.

  12. Dispersal Mutualism Incorporated into Large-Scale, Infrequent Disturbances

    PubMed Central

    Parker, V. Thomas

    2015-01-01

    Because of their influence on succession and other community interactions, large-scale, infrequent natural disturbances also should play a major role in mutualistic interactions. Using field data and experiments, I test whether mutualisms have been incorporated into large-scale wildfire by whether the outcomes of a mutualism depend on disturbance. In this study a seed dispersal mutualism is shown to depend on infrequent, large-scale disturbances. A dominant shrubland plant (Arctostaphylos species) produces seeds that make up a persistent soil seed bank and requires fire to germinate. In post-fire stands, I show that seedlings emerging from rodent caches dominate sites experiencing higher fire intensity. Field experiments show that rodents (Perimyscus californicus, P. boylii) do cache Arctostaphylos fruit and bury most seed caches to a sufficient depth to survive a killing heat pulse that a fire might drive into the soil. While the rodent dispersal and caching behavior itself has not changed compared to other habitats, the environmental transformation caused by wildfire converts the caching burial of seed from a dispersal process to a plant fire adaptive trait, and provides the context for stimulating subsequent life history evolution in the plant host. PMID:26151560

  13. Dispersal Mutualism Incorporated into Large-Scale, Infrequent Disturbances.

    PubMed

    Parker, V Thomas

    2015-01-01

    Because of their influence on succession and other community interactions, large-scale, infrequent natural disturbances also should play a major role in mutualistic interactions. Using field data and experiments, I test whether mutualisms have been incorporated into large-scale wildfire by whether the outcomes of a mutualism depend on disturbance. In this study a seed dispersal mutualism is shown to depend on infrequent, large-scale disturbances. A dominant shrubland plant (Arctostaphylos species) produces seeds that make up a persistent soil seed bank and requires fire to germinate. In post-fire stands, I show that seedlings emerging from rodent caches dominate sites experiencing higher fire intensity. Field experiments show that rodents (Perimyscus californicus, P. boylii) do cache Arctostaphylos fruit and bury most seed caches to a sufficient depth to survive a killing heat pulse that a fire might drive into the soil. While the rodent dispersal and caching behavior itself has not changed compared to other habitats, the environmental transformation caused by wildfire converts the caching burial of seed from a dispersal process to a plant fire adaptive trait, and provides the context for stimulating subsequent life history evolution in the plant host. PMID:26151560

  14. Electron drift in a large scale solid xenon

    DOE PAGESBeta

    Yoo, J.; Jaskierny, W. F.

    2015-08-21

    A study of charge drift in a large scale optically transparent solid xenon is reported. A pulsed high power xenon light source is used to liberate electrons from a photocathode. The drift speeds of the electrons are measured using a 8.7 cm long electrode in both the liquid and solid phase of xenon. In the liquid phase (163 K), the drift speed is 0.193 ± 0.003 cm/μs while the drift speed in the solid phase (157 K) is 0.397 ± 0.006 cm/μs at 900 V/cm over 8.0 cm of uniform electric fields. Furthermore, it is demonstrated that a factor twomore » faster electron drift speed in solid phase xenon compared to that in liquid in a large scale solid xenon.« less

  15. Electron drift in a large scale solid xenon

    SciTech Connect

    Yoo, J.; Jaskierny, W. F.

    2015-08-21

    A study of charge drift in a large scale optically transparent solid xenon is reported. A pulsed high power xenon light source is used to liberate electrons from a photocathode. The drift speeds of the electrons are measured using a 8.7 cm long electrode in both the liquid and solid phase of xenon. In the liquid phase (163 K), the drift speed is 0.193 ± 0.003 cm/μs while the drift speed in the solid phase (157 K) is 0.397 ± 0.006 cm/μs at 900 V/cm over 8.0 cm of uniform electric fields. Furthermore, it is demonstrated that a factor two faster electron drift speed in solid phase xenon compared to that in liquid in a large scale solid xenon.

  16. Considerations of large scale impact and the early Earth

    NASA Technical Reports Server (NTRS)

    Grieve, R. A. F.; Parmentier, E. M.

    1985-01-01

    Bodies which have preserved portions of their earliest crust indicate that large scale impact cratering was an important process in early surface and upper crustal evolution. Large impact basins form the basic topographic, tectonic, and stratigraphic framework of the Moon and impact was responsible for the characteristics of the second order gravity field and upper crustal seismic properties. The Earth's crustal evolution during the first 800 my of its history is conjectural. The lack of a very early crust may indicate that thermal and mechanical instabilities resulting from intense mantle convection and/or bombardment inhibited crustal preservation. Whatever the case, the potential effects of large scale impact have to be considered in models of early Earth evolution. Preliminary models of the evolution of a large terrestrial impact basin was derived and discussed in detail.

  17. Large scale phononic metamaterials for seismic isolation

    SciTech Connect

    Aravantinos-Zafiris, N.; Sigalas, M. M.

    2015-08-14

    In this work, we numerically examine structures that could be characterized as large scale phononic metamaterials. These novel structures could have band gaps in the frequency spectrum of seismic waves when their dimensions are chosen appropriately, thus raising the belief that they could be serious candidates for seismic isolation structures. Different and easy to fabricate structures were examined made from construction materials such as concrete and steel. The well-known finite difference time domain method is used in our calculations in order to calculate the band structures of the proposed metamaterials.

  18. Large-scale dynamics and global warming

    SciTech Connect

    Held, I.M. )

    1993-02-01

    Predictions of future climate change raise a variety of issues in large-scale atmospheric and oceanic dynamics. Several of these are reviewed in this essay, including the sensitivity of the circulation of the Atlantic Ocean to increasing freshwater input at high latitudes; the possibility of greenhouse cooling in the southern oceans; the sensitivity of monsoonal circulations to differential warming of the two hemispheres; the response of midlatitude storms to changing temperature gradients and increasing water vapor in the atmosphere; and the possible importance of positive feedback between the mean winds and eddy-induced heating in the polar stratosphere.

  19. Neutrinos and large-scale structure

    SciTech Connect

    Eisenstein, Daniel J.

    2015-07-15

    I review the use of cosmological large-scale structure to measure properties of neutrinos and other relic populations of light relativistic particles. With experiments to measure the anisotropies of the cosmic microwave anisotropies and the clustering of matter at low redshift, we now have securely measured a relativistic background with density appropriate to the cosmic neutrino background. Our limits on the mass of the neutrino continue to shrink. Experiments coming in the next decade will greatly improve the available precision on searches for the energy density of novel relativistic backgrounds and the mass of neutrinos.

  20. Experimental Simulations of Large-Scale Collisions

    NASA Technical Reports Server (NTRS)

    Housen, Kevin R.

    2002-01-01

    This report summarizes research on the effects of target porosity on the mechanics of impact cratering. Impact experiments conducted on a centrifuge provide direct simulations of large-scale cratering on porous asteroids. The experiments show that large craters in porous materials form mostly by compaction, with essentially no deposition of material into the ejecta blanket that is a signature of cratering in less-porous materials. The ratio of ejecta mass to crater mass is shown to decrease with increasing crater size or target porosity. These results are consistent with the observation that large closely-packed craters on asteroid Mathilde appear to have formed without degradation to earlier craters.

  1. Large-Scale PV Integration Study

    SciTech Connect

    Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

    2011-07-29

    This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energy’s electric grid system in southern Nevada. It analyzes the ability of NV Energy’s generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

  2. Multivariate Clustering of Large-Scale Scientific Simulation Data

    SciTech Connect

    Eliassi-Rad, T; Critchlow, T

    2003-06-13

    Simulations of complex scientific phenomena involve the execution of massively parallel computer programs. These simulation programs generate large-scale data sets over the spatio-temporal space. Modeling such massive data sets is an essential step in helping scientists discover new information from their computer simulations. In this paper, we present a simple but effective multivariate clustering algorithm for large-scale scientific simulation data sets. Our algorithm utilizes the cosine similarity measure to cluster the field variables in a data set. Field variables include all variables except the spatial (x, y, z) and temporal (time) variables. The exclusion of the spatial dimensions is important since ''similar'' characteristics could be located (spatially) far from each other. To scale our multivariate clustering algorithm for large-scale data sets, we take advantage of the geometrical properties of the cosine similarity measure. This allows us to reduce the modeling time from O(n{sup 2}) to O(n x g(f(u))), where n is the number of data points, f(u) is a function of the user-defined clustering threshold, and g(f(u)) is the number of data points satisfying f(u). We show that on average g(f(u)) is much less than n. Finally, even though spatial variables do not play a role in building clusters, it is desirable to associate each cluster with its correct spatial region. To achieve this, we present a linking algorithm for connecting each cluster to the appropriate nodes of the data set's topology tree (where the spatial information of the data set is stored). Our experimental evaluations on two large-scale simulation data sets illustrate the value of our multivariate clustering and linking algorithms.

  3. Multivariate Clustering of Large-Scale Simulation Data

    SciTech Connect

    Eliassi-Rad, T; Critchlow, T

    2003-03-04

    Simulations of complex scientific phenomena involve the execution of massively parallel computer programs. These simulation programs generate large-scale data sets over the spatiotemporal space. Modeling such massive data sets is an essential step in helping scientists discover new information from their computer simulations. In this paper, we present a simple but effective multivariate clustering algorithm for large-scale scientific simulation data sets. Our algorithm utilizes the cosine similarity measure to cluster the field variables in a data set. Field variables include all variables except the spatial (x, y, z) and temporal (time) variables. The exclusion of the spatial space is important since 'similar' characteristics could be located (spatially) far from each other. To scale our multivariate clustering algorithm for large-scale data sets, we take advantage of the geometrical properties of the cosine similarity measure. This allows us to reduce the modeling time from O(n{sup 2}) to O(n x g(f(u))), where n is the number of data points, f(u) is a function of the user-defined clustering threshold, and g(f(u)) is the number of data points satisfying the threshold f(u). We show that on average g(f(u)) is much less than n. Finally, even though spatial variables do not play a role in building a cluster, it is desirable to associate each cluster with its correct spatial space. To achieve this, we present a linking algorithm for connecting each cluster to the appropriate nodes of the data set's topology tree (where the spatial information of the data set is stored). Our experimental evaluations on two large-scale simulation data sets illustrate the value of our multivariate clustering and linking algorithms.

  4. Local gravity and large-scale structure

    NASA Technical Reports Server (NTRS)

    Juszkiewicz, Roman; Vittorio, Nicola; Wyse, Rosemary F. G.

    1990-01-01

    The magnitude and direction of the observed dipole anisotropy of the galaxy distribution can in principle constrain the amount of large-scale power present in the spectrum of primordial density fluctuations. This paper confronts the data, provided by a recent redshift survey of galaxies detected by the IRAS satellite, with the predictions of two cosmological models with very different levels of large-scale power: the biased Cold Dark Matter dominated model (CDM) and a baryon-dominated model (BDM) with isocurvature initial conditions. Model predictions are investigated for the Local Group peculiar velocity, v(R), induced by mass inhomogeneities distributed out to a given radius, R, for R less than about 10,000 km/s. Several convergence measures for v(R) are developed, which can become powerful cosmological tests when deep enough samples become available. For the present data sets, the CDM and BDM predictions are indistinguishable at the 2 sigma level and both are consistent with observations. A promising discriminant between cosmological models is the misalignment angle between v(R) and the apex of the dipole anisotropy of the microwave background.

  5. Radially dependent large-scale dynamos in global cylindrical shear flows and the local cartesian limit

    NASA Astrophysics Data System (ADS)

    Ebrahimi, F.; Blackman, E. G.

    2016-06-01

    For cylindrical differentially rotating plasmas, we study large-scale magnetic field generation from finite amplitude non-axisymmetric perturbations by comparing numerical simulations with quasi-linear analytic theory. When initiated with a vertical magnetic field of either zero or finite net flux, our global cylindrical simulations exhibit the magnetorotational instability (MRI) and large-scale dynamo growth of radially alternating mean fields, averaged over height and azimuth. This dynamo growth is explained by our analytic calculations of a non-axisymmetric fluctuation-induced electromotive force that is sustained by azimuthal shear of the fluctuating fields. The standard `Ω effect' (shear of the mean field by differential rotation) is unimportant. For the MRI case, we express the large-scale dynamo field as a function of differential rotation. The resulting radially alternating large-scale fields may have implications for angular momentum transport in discs and corona. To connect with previous work on large-scale dynamos with local linear shear and identify the minimum conditions needed for large-scale field growth, we also solve our equations in local Cartesian coordinates. We find that large-scale dynamo growth in a linear shear flow without rotation can be sustained by shear plus non-axisymmetric fluctuations - even if not helical, a seemingly previously unidentified distinction. The linear shear flow dynamo emerges as a more restricted version of our more general new global cylindrical calculations.

  6. Large-scale genotoxicity assessments in the marine environment.

    PubMed

    Hose, J E

    1994-12-01

    There are a number of techniques for detecting genotoxicity in the marine environment, and many are applicable to large-scale field assessments. Certain tests can be used to evaluate responses in target organisms in situ while others utilize surrogate organisms exposed to field samples in short-term laboratory bioassays. Genotoxicity endpoints appear distinct from traditional toxicity endpoints, but some have chemical or ecotoxicologic correlates. One versatile end point, the frequency of anaphase aberrations, has been used in several large marine assessments to evaluate genotoxicity in the New York Bight, in sediment from San Francisco Bay, and following the Exxon Valdez oil spill.

  7. Large-scale genotoxicity assessments in the marine environment.

    PubMed

    Hose, J E

    1994-12-01

    There are a number of techniques for detecting genotoxicity in the marine environment, and many are applicable to large-scale field assessments. Certain tests can be used to evaluate responses in target organisms in situ while others utilize surrogate organisms exposed to field samples in short-term laboratory bioassays. Genotoxicity endpoints appear distinct from traditional toxicity endpoints, but some have chemical or ecotoxicologic correlates. One versatile end point, the frequency of anaphase aberrations, has been used in several large marine assessments to evaluate genotoxicity in the New York Bight, in sediment from San Francisco Bay, and following the Exxon Valdez oil spill. PMID:7713029

  8. How Large Scale Flows in the Solar Convection Zone may Influence Solar Activity

    NASA Technical Reports Server (NTRS)

    Hathaway, D. H.

    2004-01-01

    Large scale flows within the solar convection zone are the primary drivers of the Sun s magnetic activity cycle. Differential rotation can amplify the magnetic field and convert poloidal fields into toroidal fields. Poleward meridional flow near the surface can carry magnetic flux that reverses the magnetic poles and can convert toroidal fields into poloidal fields. The deeper, equatorward meridional flow can carry magnetic flux toward the equator where it can reconnect with oppositely directed fields in the other hemisphere. These axisymmetric flows are themselves driven by large scale convective motions. The effects of the Sun s rotation on convection produce velocity correlations that can maintain the differential rotation and meridional circulation. These convective motions can influence solar activity themselves by shaping the large-scale magnetic field pattern. While considerable theoretical advances have been made toward understanding these large scale flows, outstanding problems in matching theory to observations still remain.

  9. Halo detection via large-scale Bayesian inference

    NASA Astrophysics Data System (ADS)

    Merson, Alexander I.; Jasche, Jens; Abdalla, Filipe B.; Lahav, Ofer; Wandelt, Benjamin; Jones, D. Heath; Colless, Matthew

    2016-08-01

    We present a proof-of-concept of a novel and fully Bayesian methodology designed to detect haloes of different masses in cosmological observations subject to noise and systematic uncertainties. Our methodology combines the previously published Bayesian large-scale structure inference algorithm, HAmiltonian Density Estimation and Sampling algorithm (HADES), and a Bayesian chain rule (the Blackwell-Rao estimator), which we use to connect the inferred density field to the properties of dark matter haloes. To demonstrate the capability of our approach, we construct a realistic galaxy mock catalogue emulating the wide-area 6-degree Field Galaxy Survey, which has a median redshift of approximately 0.05. Application of HADES to the catalogue provides us with accurately inferred three-dimensional density fields and corresponding quantification of uncertainties inherent to any cosmological observation. We then use a cosmological simulation to relate the amplitude of the density field to the probability of detecting a halo with mass above a specified threshold. With this information, we can sum over the HADES density field realisations to construct maps of detection probabilities and demonstrate the validity of this approach within our mock scenario. We find that the probability of successful detection of haloes in the mock catalogue increases as a function of the signal to noise of the local galaxy observations. Our proposed methodology can easily be extended to account for more complex scientific questions and is a promising novel tool to analyse the cosmic large-scale structure in observations.

  10. Engineering management of large scale systems

    NASA Technical Reports Server (NTRS)

    Sanders, Serita; Gill, Tepper L.; Paul, Arthur S.

    1989-01-01

    The organization of high technology and engineering problem solving, has given rise to an emerging concept. Reasoning principles for integrating traditional engineering problem solving with system theory, management sciences, behavioral decision theory, and planning and design approaches can be incorporated into a methodological approach to solving problems with a long range perspective. Long range planning has a great potential to improve productivity by using a systematic and organized approach. Thus, efficiency and cost effectiveness are the driving forces in promoting the organization of engineering problems. Aspects of systems engineering that provide an understanding of management of large scale systems are broadly covered here. Due to the focus and application of research, other significant factors (e.g., human behavior, decision making, etc.) are not emphasized but are considered.

  11. Large scale study of tooth enamel

    SciTech Connect

    Bodart, F.; Deconninck, G.; Martin, M.Th.

    1981-04-01

    Human tooth enamel contains traces of foreign elements. The presence of these elements is related to the history and the environment of the human body and can be considered as the signature of perturbations which occur during the growth of a tooth. A map of the distribution of these traces on a large scale sample of the population will constitute a reference for further investigations of environmental effects. One hundred eighty samples of teeth were first analysed using PIXE, backscattering and nuclear reaction techniques. The results were analysed using statistical methods. Correlations between O, F, Na, P, Ca, Mn, Fe, Cu, Zn, Pb and Sr were observed and cluster analysis was in progress. The techniques described in the present work have been developed in order to establish a method for the exploration of very large samples of the Belgian population.

  12. Batteries for Large Scale Energy Storage

    SciTech Connect

    Soloveichik, Grigorii L.

    2011-07-15

    In recent years, with the deployment of renewable energy sources, advances in electrified transportation, and development in smart grids, the markets for large-scale stationary energy storage have grown rapidly. Electrochemical energy storage methods are strong candidate solutions due to their high energy density, flexibility, and scalability. This review provides an overview of mature and emerging technologies for secondary and redox flow batteries. New developments in the chemistry of secondary and flow batteries as well as regenerative fuel cells are also considered. Advantages and disadvantages of current and prospective electrochemical energy storage options are discussed. The most promising technologies in the short term are high-temperature sodium batteries with β”-alumina electrolyte, lithium-ion batteries, and flow batteries. Regenerative fuel cells and lithium metal batteries with high energy density require further research to become practical.

  13. Large-scale databases of proper names.

    PubMed

    Conley, P; Burgess, C; Hage, D

    1999-05-01

    Few tools for research in proper names have been available--specifically, there is no large-scale corpus of proper names. Two corpora of proper names were constructed, one based on U.S. phone book listings, the other derived from a database of Usenet text. Name frequencies from both corpora were compared with human subjects' reaction times (RTs) to the proper names in a naming task. Regression analysis showed that the Usenet frequencies contributed to predictions of human RT, whereas phone book frequencies did not. In addition, semantic neighborhood density measures derived from the HAL corpus were compared with the subjects' RTs and found to be a better predictor of RT than was frequency in either corpus. These new corpora are freely available on line for download. Potentials for these corpora range from using the names as stimuli in experiments to using the corpus data in software applications. PMID:10495803

  14. Large Scale Quantum Simulations of Nuclear Pasta

    NASA Astrophysics Data System (ADS)

    Fattoyev, Farrukh J.; Horowitz, Charles J.; Schuetrumpf, Bastian

    2016-03-01

    Complex and exotic nuclear geometries collectively referred to as ``nuclear pasta'' are expected to naturally exist in the crust of neutron stars and in supernovae matter. Using a set of self-consistent microscopic nuclear energy density functionals we present the first results of large scale quantum simulations of pasta phases at baryon densities 0 . 03 < ρ < 0 . 10 fm-3, proton fractions 0 . 05

  15. Large-scale simulations of reionization

    SciTech Connect

    Kohler, Katharina; Gnedin, Nickolay Y.; Hamilton, Andrew J.S.; /JILA, Boulder

    2005-11-01

    We use cosmological simulations to explore the large-scale effects of reionization. Since reionization is a process that involves a large dynamic range--from galaxies to rare bright quasars--we need to be able to cover a significant volume of the universe in our simulation without losing the important small scale effects from galaxies. Here we have taken an approach that uses clumping factors derived from small scale simulations to approximate the radiative transfer on the sub-cell scales. Using this technique, we can cover a simulation size up to 1280h{sup -1} Mpc with 10h{sup -1} Mpc cells. This allows us to construct synthetic spectra of quasars similar to observed spectra of SDSS quasars at high redshifts and compare them to the observational data. These spectra can then be analyzed for HII region sizes, the presence of the Gunn-Peterson trough, and the Lyman-{alpha} forest.

  16. Large scale water lens for solar concentration.

    PubMed

    Mondol, A S; Vogel, B; Bastian, G

    2015-06-01

    Properties of large scale water lenses for solar concentration were investigated. These lenses were built from readily available materials, normal tap water and hyper-elastic linear low density polyethylene foil. Exposed to sunlight, the focal lengths and light intensities in the focal spot were measured and calculated. Their optical properties were modeled with a raytracing software based on the lens shape. We have achieved a good match of experimental and theoretical data by considering wavelength dependent concentration factor, absorption and focal length. The change in light concentration as a function of water volume was examined via the resulting load on the foil and the corresponding change of shape. The latter was extracted from images and modeled by a finite element simulation. PMID:26072893

  17. Large scale structures in transitional pipe flow

    NASA Astrophysics Data System (ADS)

    Hellström, Leo; Ganapathisubramani, Bharathram; Smits, Alexander

    2015-11-01

    We present a dual-plane snapshot POD analysis of transitional pipe flow at a Reynolds number of 3440, based on the pipe diameter. The time-resolved high-speed PIV data were simultaneously acquired in two planes, a cross-stream plane (2D-3C) and a streamwise plane (2D-2C) on the pipe centerline. The two light sheets were orthogonally polarized, allowing particles situated in each plane to be viewed independently. In the snapshot POD analysis, the modal energy is based on the cross-stream plane, while the POD modes are calculated using the dual-plane data. We present results on the emergence and decay of the energetic large scale motions during transition to turbulence, and compare these motions to those observed in fully developed turbulent flow. Supported under ONR Grant N00014-13-1-0174 and ERC Grant No. 277472.

  18. Challenges in large scale distributed computing: bioinformatics.

    SciTech Connect

    Disz, T.; Kubal, M.; Olson, R.; Overbeek, R.; Stevens, R.; Mathematics and Computer Science; Univ. of Chicago; The Fellowship for the Interpretation of Genomes

    2005-01-01

    The amount of genomic data available for study is increasing at a rate similar to that of Moore's law. This deluge of data is challenging bioinformaticians to develop newer, faster and better algorithms for analysis and examination of this data. The growing availability of large scale computing grids coupled with high-performance networking is challenging computer scientists to develop better, faster methods of exploiting parallelism in these biological computations and deploying them across computing grids. In this paper, we describe two computations that are required to be run frequently and which require large amounts of computing resource to complete in a reasonable time. The data for these computations are very large and the sequential computational time can exceed thousands of hours. We show the importance and relevance of these computations, the nature of the data and parallelism and we show how we are meeting the challenge of efficiently distributing and managing these computations in the SEED project.

  19. Grid sensitivity capability for large scale structures

    NASA Technical Reports Server (NTRS)

    Nagendra, Gopal K.; Wallerstein, David V.

    1989-01-01

    The considerations and the resultant approach used to implement design sensitivity capability for grids into a large scale, general purpose finite element system (MSC/NASTRAN) are presented. The design variables are grid perturbations with a rather general linking capability. Moreover, shape and sizing variables may be linked together. The design is general enough to facilitate geometric modeling techniques for generating design variable linking schemes in an easy and straightforward manner. Test cases have been run and validated by comparison with the overall finite difference method. The linking of a design sensitivity capability for shape variables in MSC/NASTRAN with an optimizer would give designers a powerful, automated tool to carry out practical optimization design of real life, complicated structures.

  20. Large-Scale Astrophysical Visualization on Smartphones

    NASA Astrophysics Data System (ADS)

    Becciani, U.; Massimino, P.; Costa, A.; Gheller, C.; Grillo, A.; Krokos, M.; Petta, C.

    2011-07-01

    Nowadays digital sky surveys and long-duration, high-resolution numerical simulations using high performance computing and grid systems produce multidimensional astrophysical datasets in the order of several Petabytes. Sharing visualizations of such datasets within communities and collaborating research groups is of paramount importance for disseminating results and advancing astrophysical research. Moreover educational and public outreach programs can benefit greatly from novel ways of presenting these datasets by promoting understanding of complex astrophysical processes, e.g., formation of stars and galaxies. We have previously developed VisIVO Server, a grid-enabled platform for high-performance large-scale astrophysical visualization. This article reviews the latest developments on VisIVO Web, a custom designed web portal wrapped around VisIVO Server, then introduces VisIVO Smartphone, a gateway connecting VisIVO Web and data repositories for mobile astrophysical visualization. We discuss current work and summarize future developments.

  1. Large scale water lens for solar concentration.

    PubMed

    Mondol, A S; Vogel, B; Bastian, G

    2015-06-01

    Properties of large scale water lenses for solar concentration were investigated. These lenses were built from readily available materials, normal tap water and hyper-elastic linear low density polyethylene foil. Exposed to sunlight, the focal lengths and light intensities in the focal spot were measured and calculated. Their optical properties were modeled with a raytracing software based on the lens shape. We have achieved a good match of experimental and theoretical data by considering wavelength dependent concentration factor, absorption and focal length. The change in light concentration as a function of water volume was examined via the resulting load on the foil and the corresponding change of shape. The latter was extracted from images and modeled by a finite element simulation.

  2. Large-scale sequential quadratic programming algorithms

    SciTech Connect

    Eldersveld, S.K.

    1992-09-01

    The problem addressed is the general nonlinear programming problem: finding a local minimizer for a nonlinear function subject to a mixture of nonlinear equality and inequality constraints. The methods studied are in the class of sequential quadratic programming (SQP) algorithms, which have previously proved successful for problems of moderate size. Our goal is to devise an SQP algorithm that is applicable to large-scale optimization problems, using sparse data structures and storing less curvature information but maintaining the property of superlinear convergence. The main features are: 1. The use of a quasi-Newton approximation to the reduced Hessian of the Lagrangian function. Only an estimate of the reduced Hessian matrix is required by our algorithm. The impact of not having available the full Hessian approximation is studied and alternative estimates are constructed. 2. The use of a transformation matrix Q. This allows the QP gradient to be computed easily when only the reduced Hessian approximation is maintained. 3. The use of a reduced-gradient form of the basis for the null space of the working set. This choice of basis is more practical than an orthogonal null-space basis for large-scale problems. The continuity condition for this choice is proven. 4. The use of incomplete solutions of quadratic programming subproblems. Certain iterates generated by an active-set method for the QP subproblem are used in place of the QP minimizer to define the search direction for the nonlinear problem. An implementation of the new algorithm has been obtained by modifying the code MINOS. Results and comparisons with MINOS and NPSOL are given for the new algorithm on a set of 92 test problems.

  3. Introducing Large-Scale Innovation in Schools

    NASA Astrophysics Data System (ADS)

    Sotiriou, Sofoklis; Riviou, Katherina; Cherouvis, Stephanos; Chelioti, Eleni; Bogner, Franz X.

    2016-08-01

    Education reform initiatives tend to promise higher effectiveness in classrooms especially when emphasis is given to e-learning and digital resources. Practical changes in classroom realities or school organization, however, are lacking. A major European initiative entitled Open Discovery Space (ODS) examined the challenge of modernizing school education via a large-scale implementation of an open-scale methodology in using technology-supported innovation. The present paper describes this innovation scheme which involved schools and teachers all over Europe, embedded technology-enhanced learning into wider school environments and provided training to teachers. Our implementation scheme consisted of three phases: (1) stimulating interest, (2) incorporating the innovation into school settings and (3) accelerating the implementation of the innovation. The scheme's impact was monitored for a school year using five indicators: leadership and vision building, ICT in the curriculum, development of ICT culture, professional development support, and school resources and infrastructure. Based on about 400 schools, our study produced four results: (1) The growth in digital maturity was substantial, even for previously high scoring schools. This was even more important for indicators such as vision and leadership" and "professional development." (2) The evolution of networking is presented graphically, showing the gradual growth of connections achieved. (3) These communities became core nodes, involving numerous teachers in sharing educational content and experiences: One out of three registered users (36 %) has shared his/her educational resources in at least one community. (4) Satisfaction scores ranged from 76 % (offer of useful support through teacher academies) to 87 % (good environment to exchange best practices). Initiatives such as ODS add substantial value to schools on a large scale.

  4. Supporting large-scale computational science

    SciTech Connect

    Musick, R

    1998-10-01

    A study has been carried out to determine the feasibility of using commercial database management systems (DBMSs) to support large-scale computational science. Conventional wisdom in the past has been that DBMSs are too slow for such data. Several events over the past few years have muddied the clarity of this mindset: 1. 2. 3. 4. Several commercial DBMS systems have demonstrated storage and ad-hoc quer access to Terabyte data sets. Several large-scale science teams, such as EOSDIS [NAS91], high energy physics [MM97] and human genome [Kin93] have adopted (or make frequent use of) commercial DBMS systems as the central part of their data management scheme. Several major DBMS vendors have introduced their first object-relational products (ORDBMSs), which have the potential to support large, array-oriented data. In some cases, performance is a moot issue. This is true in particular if the performance of legacy applications is not reduced while new, albeit slow, capabilities are added to the system. The basic assessment is still that DBMSs do not scale to large computational data. However, many of the reasons have changed, and there is an expiration date attached to that prognosis. This document expands on this conclusion, identifies the advantages and disadvantages of various commercial approaches, and describes the studies carried out in exploring this area. The document is meant to be brief, technical and informative, rather than a motivational pitch. The conclusions within are very likely to become outdated within the next 5-7 years, as market forces will have a significant impact on the state of the art in scientific data management over the next decade.

  5. Supporting large-scale computational science

    SciTech Connect

    Musick, R., LLNL

    1998-02-19

    Business needs have driven the development of commercial database systems since their inception. As a result, there has been a strong focus on supporting many users, minimizing the potential corruption or loss of data, and maximizing performance metrics like transactions per second, or TPC-C and TPC-D results. It turns out that these optimizations have little to do with the needs of the scientific community, and in particular have little impact on improving the management and use of large-scale high-dimensional data. At the same time, there is an unanswered need in the scientific community for many of the benefits offered by a robust DBMS. For example, tying an ad-hoc query language such as SQL together with a visualization toolkit would be a powerful enhancement to current capabilities. Unfortunately, there has been little emphasis or discussion in the VLDB community on this mismatch over the last decade. The goal of the paper is to identify the specific issues that need to be resolved before large-scale scientific applications can make use of DBMS products. This topic is addressed in the context of an evaluation of commercial DBMS technology applied to the exploration of data generated by the Department of Energy`s Accelerated Strategic Computing Initiative (ASCI). The paper describes the data being generated for ASCI as well as current capabilities for interacting with and exploring this data. The attraction of applying standard DBMS technology to this domain is discussed, as well as the technical and business issues that currently make this an infeasible solution.

  6. IP over optical multicasting for large-scale video delivery

    NASA Astrophysics Data System (ADS)

    Jin, Yaohui; Hu, Weisheng; Sun, Weiqiang; Guo, Wei

    2007-11-01

    In the IPTV systems, multicasting will play a crucial role in the delivery of high-quality video services, which can significantly improve bandwidth efficiency. However, the scalability and the signal quality of current IPTV can barely compete with the existing broadcast digital TV systems since it is difficult to implement large-scale multicasting with end-to-end guaranteed quality of service (QoS) in packet-switched IP network. China 3TNet project aimed to build a high performance broadband trial network to support large-scale concurrent streaming media and interactive multimedia services. The innovative idea of 3TNet is that an automatic switched optical networks (ASON) with the capability of dynamic point-to-multipoint (P2MP) connections replaces the conventional IP multicasting network in the transport core, while the edge remains an IP multicasting network. In this paper, we will introduce the network architecture and discuss challenges in such IP over Optical multicasting for video delivery.

  7. Large-Scale periodic solar velocities: An observational study

    NASA Technical Reports Server (NTRS)

    Dittmer, P. H.

    1977-01-01

    Observations of large-scale solar velocities were made using the mean field telescope and Babcock magnetograph of the Stanford Solar Observatory. Observations were made in the magnetically insensitive ion line at 5124 A, with light from the center (limb) of the disk right (left) circularly polarized, so that the magnetograph measures the difference in wavelength between center and limb. Computer calculations are made of the wavelength difference produced by global pulsations for spherical harmonics up to second order and of the signal produced by displacing the solar image relative to polarizing optics or diffraction grating.

  8. Radiative shocks on large scale lasers. Preliminary results

    NASA Astrophysics Data System (ADS)

    Leygnac, S.; Bouquet, S.; Stehle, C.; Barroso, P.; Batani, D.; Benuzzi, A.; Cathala, B.; Chièze, J.-P.; Fleury, X.; Grandjouan, N.; Grenier, J.; Hall, T.; Henry, E.; Koenig, M.; Lafon, J. P. J.; Malka, V.; Marchet, B.; Merdji, H.; Michaut, C.; Poles, L.; Thais, F.

    2001-05-01

    Radiative shocks, those structure is strongly influenced by the radiation field, are present in various astrophysical objects (circumstellar envelopes of variable stars, supernovae ...). Their modeling is very difficult and thus will take benefit from experimental informations. This approach is now possible using large scale lasers. Preliminary experiments have been performed with the nanosecond LULI laser at Ecole Polytechnique (France) in 2000. A radiative shock has been obtained in a low pressure xenon cell. The preparation of such experiments and their interpretation is performed using analytical calculations and numerical simulations.

  9. Large-Scale Statistics for Cu Electromigration

    NASA Astrophysics Data System (ADS)

    Hauschildt, M.; Gall, M.; Hernandez, R.

    2009-06-01

    Even after the successful introduction of Cu-based metallization, the electromigration failure risk has remained one of the important reliability concerns for advanced process technologies. The observation of strong bimodality for the electron up-flow direction in dual-inlaid Cu interconnects has added complexity, but is now widely accepted. The failure voids can occur both within the via ("early" mode) or within the trench ("late" mode). More recently, bimodality has been reported also in down-flow electromigration, leading to very short lifetimes due to small, slit-shaped voids under vias. For a more thorough investigation of these early failure phenomena, specific test structures were designed based on the Wheatstone Bridge technique. The use of these structures enabled an increase of the tested sample size close to 675000, allowing a direct analysis of electromigration failure mechanisms at the single-digit ppm regime. Results indicate that down-flow electromigration exhibits bimodality at very small percentage levels, not readily identifiable with standard testing methods. The activation energy for the down-flow early failure mechanism was determined to be 0.83±0.02 eV. Within the small error bounds of this large-scale statistical experiment, this value is deemed to be significantly lower than the usually reported activation energy of 0.90 eV for electromigration-induced diffusion along Cu/SiCN interfaces. Due to the advantages of the Wheatstone Bridge technique, we were also able to expand the experimental temperature range down to 150° C, coming quite close to typical operating conditions up to 125° C. As a result of the lowered activation energy, we conclude that the down-flow early failure mode may control the chip lifetime at operating conditions. The slit-like character of the early failure void morphology also raises concerns about the validity of the Blech-effect for this mechanism. A very small amount of Cu depletion may cause failure even before a

  10. Lost Hills Field Trial - incorporating new technology for resevoir management

    NASA Technical Reports Server (NTRS)

    Fielding, E. J.; Brink, J. L.; Patzek, T. W.; Silin, D. B.

    2002-01-01

    This paper will discuss how Chevron U.S.A. Production Company is implementing a field trial that will use Supervisory Control and Data Acquisition (SCADA)on injection wells, in conjunction with satellite images to measure ground elevation changes, to perform real-time resevoir management in the Lost Hills Field.

  11. Simulating the large-scale structure of HI intensity maps

    NASA Astrophysics Data System (ADS)

    Seehars, Sebastian; Paranjape, Aseem; Witzemann, Amadeus; Refregier, Alexandre; Amara, Adam; Akeret, Joel

    2016-03-01

    Intensity mapping of neutral hydrogen (HI) is a promising observational probe of cosmology and large-scale structure. We present wide field simulations of HI intensity maps based on N-body simulations of a 2.6 Gpc / h box with 20483 particles (particle mass 1.6 × 1011 Msolar / h). Using a conditional mass function to populate the simulated dark matter density field with halos below the mass resolution of the simulation (108 Msolar / h < Mhalo < 1013 Msolar / h), we assign HI to those halos according to a phenomenological halo to HI mass relation. The simulations span a redshift range of 0.35 lesssim z lesssim 0.9 in redshift bins of width Δ z ≈ 0.05 and cover a quarter of the sky at an angular resolution of about 7'. We use the simulated intensity maps to study the impact of non-linear effects and redshift space distortions on the angular clustering of HI. Focusing on the autocorrelations of the maps, we apply and compare several estimators for the angular power spectrum and its covariance. We verify that these estimators agree with analytic predictions on large scales and study the validity of approximations based on Gaussian random fields, particularly in the context of the covariance. We discuss how our results and the simulated maps can be useful for planning and interpreting future HI intensity mapping surveys.

  12. Food appropriation through large scale land acquisitions

    NASA Astrophysics Data System (ADS)

    Rulli, Maria Cristina; D'Odorico, Paolo

    2014-05-01

    The increasing demand for agricultural products and the uncertainty of international food markets has recently drawn the attention of governments and agribusiness firms toward investments in productive agricultural land, mostly in the developing world. The targeted countries are typically located in regions that have remained only marginally utilized because of lack of modern technology. It is expected that in the long run large scale land acquisitions (LSLAs) for commercial farming will bring the technology required to close the existing crops yield gaps. While the extent of the acquired land and the associated appropriation of freshwater resources have been investigated in detail, the amount of food this land can produce and the number of people it could feed still need to be quantified. Here we use a unique dataset of land deals to provide a global quantitative assessment of the rates of crop and food appropriation potentially associated with LSLAs. We show how up to 300-550 million people could be fed by crops grown in the acquired land, should these investments in agriculture improve crop production and close the yield gap. In contrast, about 190-370 million people could be supported by this land without closing of the yield gap. These numbers raise some concern because the food produced in the acquired land is typically exported to other regions, while the target countries exhibit high levels of malnourishment. Conversely, if used for domestic consumption, the crops harvested in the acquired land could ensure food security to the local populations.

  13. Large-scale carbon fiber tests

    NASA Technical Reports Server (NTRS)

    Pride, R. A.

    1980-01-01

    A realistic release of carbon fibers was established by burning a minimum of 45 kg of carbon fiber composite aircraft structural components in each of five large scale, outdoor aviation jet fuel fire tests. This release was quantified by several independent assessments with various instruments developed specifically for these tests. The most likely values for the mass of single carbon fibers released ranged from 0.2 percent of the initial mass of carbon fiber for the source tests (zero wind velocity) to a maximum of 0.6 percent of the initial carbon fiber mass for dissemination tests (5 to 6 m/s wind velocity). Mean fiber lengths for fibers greater than 1 mm in length ranged from 2.5 to 3.5 mm. Mean diameters ranged from 3.6 to 5.3 micrometers which was indicative of significant oxidation. Footprints of downwind dissemination of the fire released fibers were measured to 19.1 km from the fire.

  14. Large-scale clustering of cosmic voids

    NASA Astrophysics Data System (ADS)

    Chan, Kwan Chuen; Hamaus, Nico; Desjacques, Vincent

    2014-11-01

    We study the clustering of voids using N -body simulations and simple theoretical models. The excursion-set formalism describes fairly well the abundance of voids identified with the watershed algorithm, although the void formation threshold required is quite different from the spherical collapse value. The void cross bias bc is measured and its large-scale value is found to be consistent with the peak background split results. A simple fitting formula for bc is found. We model the void auto-power spectrum taking into account the void biasing and exclusion effect. A good fit to the simulation data is obtained for voids with radii ≳30 Mpc h-1 , especially when the void biasing model is extended to 1-loop order. However, the best-fit bias parameters do not agree well with the peak-background results. Being able to fit the void auto-power spectrum is particularly important not only because it is the direct observable in galaxy surveys, but also our method enables us to treat the bias parameters as nuisance parameters, which are sensitive to the techniques used to identify voids.

  15. Curvature constraints from large scale structure

    NASA Astrophysics Data System (ADS)

    Di Dio, Enea; Montanari, Francesco; Raccanelli, Alvise; Durrer, Ruth; Kamionkowski, Marc; Lesgourgues, Julien

    2016-06-01

    We modified the CLASS code in order to include relativistic galaxy number counts in spatially curved geometries; we present the formalism and study the effect of relativistic corrections on spatial curvature. The new version of the code is now publicly available. Using a Fisher matrix analysis, we investigate how measurements of the spatial curvature parameter ΩK with future galaxy surveys are affected by relativistic effects, which influence observations of the large scale galaxy distribution. These effects include contributions from cosmic magnification, Doppler terms and terms involving the gravitational potential. As an application, we consider angle and redshift dependent power spectra, which are especially well suited for model independent cosmological constraints. We compute our results for a representative deep, wide and spectroscopic survey, and our results show the impact of relativistic corrections on spatial curvature parameter estimation. We show that constraints on the curvature parameter may be strongly biased if, in particular, cosmic magnification is not included in the analysis. Other relativistic effects turn out to be subdominant in the studied configuration. We analyze how the shift in the estimated best-fit value for the curvature and other cosmological parameters depends on the magnification bias parameter, and find that significant biases are to be expected if this term is not properly considered in the analysis.

  16. Backscatter in Large-Scale Flows

    NASA Astrophysics Data System (ADS)

    Nadiga, Balu

    2009-11-01

    Downgradient mixing of potential-voriticity and its variants are commonly employed to model the effects of unresolved geostrophic turbulence on resolved scales. This is motivated by the (inviscid and unforced) particle-wise conservation of potential-vorticity and the mean forward or down-scale cascade of potential enstrophy in geostrophic turubulence. By examining the statistical distribution of the transfer of potential enstrophy from mean or filtered motions to eddy or sub-filter motions, we find that the mean forward cascade results from the forward-scatter being only slightly greater than the backscatter. Downgradient mixing ideas, do not recognize such equitable mean-eddy or large scale-small scale interactions and consequently model only the mean effect of forward cascade; the importance of capturing the effects of backscatter---the forcing of resolved scales by unresolved scales---are only beginning to be recognized. While recent attempts to model the effects of backscatter on resolved scales have taken a stochastic approach, our analysis suggests that these effects are amenable to being modeled deterministically.

  17. Large scale molecular simulations of nanotoxicity.

    PubMed

    Jimenez-Cruz, Camilo A; Kang, Seung-gu; Zhou, Ruhong

    2014-01-01

    The widespread use of nanomaterials in biomedical applications has been accompanied by an increasing interest in understanding their interactions with tissues, cells, and biomolecules, and in particular, on how they might affect the integrity of cell membranes and proteins. In this mini-review, we present a summary of some of the recent studies on this important subject, especially from the point of view of large scale molecular simulations. The carbon-based nanomaterials and noble metal nanoparticles are the main focus, with additional discussions on quantum dots and other nanoparticles as well. The driving forces for adsorption of fullerenes, carbon nanotubes, and graphene nanosheets onto proteins or cell membranes are found to be mainly hydrophobic interactions and the so-called π-π stacking (between aromatic rings), while for the noble metal nanoparticles the long-range electrostatic interactions play a bigger role. More interestingly, there are also growing evidences showing that nanotoxicity can have implications in de novo design of nanomedicine. For example, the endohedral metallofullerenol Gd@C₈₂(OH)₂₂ is shown to inhibit tumor growth and metastasis by inhibiting enzyme MMP-9, and graphene is illustrated to disrupt bacteria cell membranes by insertion/cutting as well as destructive extraction of lipid molecules. These recent findings have provided a better understanding of nanotoxicity at the molecular level and also suggested therapeutic potential by using the cytotoxicity of nanoparticles against cancer or bacteria cells.

  18. Large-scale wind turbine structures

    NASA Technical Reports Server (NTRS)

    Spera, David A.

    1988-01-01

    The purpose of this presentation is to show how structural technology was applied in the design of modern wind turbines, which were recently brought to an advanced stage of development as sources of renewable power. Wind turbine structures present many difficult problems because they are relatively slender and flexible; subject to vibration and aeroelastic instabilities; acted upon by loads which are often nondeterministic; operated continuously with little maintenance in all weather; and dominated by life-cycle cost considerations. Progress in horizontal-axis wind turbines (HAWT) development was paced by progress in the understanding of structural loads, modeling of structural dynamic response, and designing of innovative structural response. During the past 15 years a series of large HAWTs was developed. This has culminated in the recent completion of the world's largest operating wind turbine, the 3.2 MW Mod-5B power plane installed on the island of Oahu, Hawaii. Some of the applications of structures technology to wind turbine will be illustrated by referring to the Mod-5B design. First, a video overview will be presented to provide familiarization with the Mod-5B project and the important components of the wind turbine system. Next, the structural requirements for large-scale wind turbines will be discussed, emphasizing the difficult fatigue-life requirements. Finally, the procedures used to design the structure will be presented, including the use of the fracture mechanics approach for determining allowable fatigue stresses.

  19. Large-scale wind turbine structures

    NASA Astrophysics Data System (ADS)

    Spera, David A.

    1988-05-01

    The purpose of this presentation is to show how structural technology was applied in the design of modern wind turbines, which were recently brought to an advanced stage of development as sources of renewable power. Wind turbine structures present many difficult problems because they are relatively slender and flexible; subject to vibration and aeroelastic instabilities; acted upon by loads which are often nondeterministic; operated continuously with little maintenance in all weather; and dominated by life-cycle cost considerations. Progress in horizontal-axis wind turbines (HAWT) development was paced by progress in the understanding of structural loads, modeling of structural dynamic response, and designing of innovative structural response. During the past 15 years a series of large HAWTs was developed. This has culminated in the recent completion of the world's largest operating wind turbine, the 3.2 MW Mod-5B power plane installed on the island of Oahu, Hawaii. Some of the applications of structures technology to wind turbine will be illustrated by referring to the Mod-5B design. First, a video overview will be presented to provide familiarization with the Mod-5B project and the important components of the wind turbine system. Next, the structural requirements for large-scale wind turbines will be discussed, emphasizing the difficult fatigue-life requirements. Finally, the procedures used to design the structure will be presented, including the use of the fracture mechanics approach for determining allowable fatigue stresses.

  20. An informal paper on large-scale dynamic systems

    NASA Technical Reports Server (NTRS)

    Ho, Y. C.

    1975-01-01

    Large scale systems are defined as systems requiring more than one decision maker to control the system. Decentralized control and decomposition are discussed for large scale dynamic systems. Information and many-person decision problems are analyzed.

  1. Girdling defoliation of cotton; 2014 field trial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton mechanical harvest requires field pre-treatment to remove leaves and moisture. Typical harvest preparation involves ground or aerial application of a combination of active ingredients. Some of these chemicals may come under regulatory pressure in future. Alternatives have been explored, su...

  2. Statistics of Caustics in Large-Scale Structure Formation

    NASA Astrophysics Data System (ADS)

    Feldbrugge, Job L.; Hidding, Johan; van de Weygaert, Rien

    2016-10-01

    The cosmic web is a complex spatial pattern of walls, filaments, cluster nodes and underdense void regions. It emerged through gravitational amplification from the Gaussian primordial density field. Here we infer analytical expressions for the spatial statistics of caustics in the evolving large-scale mass distribution. In our analysis, following the quasi-linear Zel'dovich formalism and confined to the 1D and 2D situation, we compute number density and correlation properties of caustics in cosmic density fields that evolve from Gaussian primordial conditions. The analysis can be straightforwardly extended to the 3D situation. We moreover, are currently extending the approach to the non-linear regime of structure formation by including higher order Lagrangian approximations and Lagrangian effective field theory.

  3. Nonzero Density-Velocity Consistency Relations for Large Scale Structures.

    PubMed

    Rizzo, Luca Alberto; Mota, David F; Valageas, Patrick

    2016-08-19

    We present exact kinematic consistency relations for cosmological structures that do not vanish at equal times and can thus be measured in surveys. These rely on cross correlations between the density and velocity, or momentum, fields. Indeed, the uniform transport of small-scale structures by long-wavelength modes, which cannot be detected at equal times by looking at density correlations only, gives rise to a shift in the amplitude of the velocity field that could be measured. These consistency relations only rely on the weak equivalence principle and Gaussian initial conditions. They remain valid in the nonlinear regime and for biased galaxy fields. They can be used to constrain nonstandard cosmological scenarios or the large-scale galaxy bias. PMID:27588842

  4. Nonzero Density-Velocity Consistency Relations for Large Scale Structures

    NASA Astrophysics Data System (ADS)

    Rizzo, Luca Alberto; Mota, David F.; Valageas, Patrick

    2016-08-01

    We present exact kinematic consistency relations for cosmological structures that do not vanish at equal times and can thus be measured in surveys. These rely on cross correlations between the density and velocity, or momentum, fields. Indeed, the uniform transport of small-scale structures by long-wavelength modes, which cannot be detected at equal times by looking at density correlations only, gives rise to a shift in the amplitude of the velocity field that could be measured. These consistency relations only rely on the weak equivalence principle and Gaussian initial conditions. They remain valid in the nonlinear regime and for biased galaxy fields. They can be used to constrain nonstandard cosmological scenarios or the large-scale galaxy bias.

  5. Sensitivity technologies for large scale simulation.

    SciTech Connect

    Collis, Samuel Scott; Bartlett, Roscoe Ainsworth; Smith, Thomas Michael; Heinkenschloss, Matthias; Wilcox, Lucas C.; Hill, Judith C.; Ghattas, Omar; Berggren, Martin Olof; Akcelik, Volkan; Ober, Curtis Curry; van Bloemen Waanders, Bart Gustaaf; Keiter, Eric Richard

    2005-01-01

    Sensitivity analysis is critically important to numerous analysis algorithms, including large scale optimization, uncertainty quantification,reduced order modeling, and error estimation. Our research focused on developing tools, algorithms and standard interfaces to facilitate the implementation of sensitivity type analysis into existing code and equally important, the work was focused on ways to increase the visibility of sensitivity analysis. We attempt to accomplish the first objective through the development of hybrid automatic differentiation tools, standard linear algebra interfaces for numerical algorithms, time domain decomposition algorithms and two level Newton methods. We attempt to accomplish the second goal by presenting the results of several case studies in which direct sensitivities and adjoint methods have been effectively applied, in addition to an investigation of h-p adaptivity using adjoint based a posteriori error estimation. A mathematical overview is provided of direct sensitivities and adjoint methods for both steady state and transient simulations. Two case studies are presented to demonstrate the utility of these methods. A direct sensitivity method is implemented to solve a source inversion problem for steady state internal flows subject to convection diffusion. Real time performance is achieved using novel decomposition into offline and online calculations. Adjoint methods are used to reconstruct initial conditions of a contamination event in an external flow. We demonstrate an adjoint based transient solution. In addition, we investigated time domain decomposition algorithms in an attempt to improve the efficiency of transient simulations. Because derivative calculations are at the root of sensitivity calculations, we have developed hybrid automatic differentiation methods and implemented this approach for shape optimization for gas dynamics using the Euler equations. The hybrid automatic differentiation method was applied to a first

  6. Multi-optical mine detection: results from a field trial

    NASA Astrophysics Data System (ADS)

    Letalick, Dietmar; Tolt, Gustav; Sjökvist, Stefan K.; Nyberg, Sten; Grönwall, Christina; Andersson, Pierre; Linderhed, Anna; Forssell, Göran; Larsson, Håkan; Uppsäll, Magnus

    2006-05-01

    As a part of the Swedish mine detection project MOMS, an initial field trial was conducted at the Swedish EOD and Demining Centre (SWEDEC). The purpose was to collect data on surface-laid mines, UXO, submunitions, IED's, and background with a variety of optical sensors, for further use in the project. Three terrain types were covered: forest, gravel road, and an area which had recovered after total removal of all vegetation some years before. The sensors used in the field trial included UV, VIS, and NIR sensors as well as thermal, multi-spectral, and hyper-spectral sensors, 3-D laser radar and polarization sensors. Some of the sensors were mounted on an aerial work platform, while others were placed on tripods on the ground. This paper describes the field trial and the presents some initial results obtained from the subsequent analysis.

  7. International space station. Large scale integration approach

    NASA Astrophysics Data System (ADS)

    Cohen, Brad

    The International Space Station is the most complex large scale integration program in development today. The approach developed for specification, subsystem development, and verification lay a firm basis on which future programs of this nature can be based. International Space Station is composed of many critical items, hardware and software, built by numerous International Partners, NASA Institutions, and U.S. Contractors and is launched over a period of five years. Each launch creates a unique configuration that must be safe, survivable, operable, and support ongoing assembly (assemblable) to arrive at the assembly complete configuration in 2003. The approaches to integrating each of the modules into a viable spacecraft and continue the assembly is a challenge in itself. Added to this challenge are the severe schedule constraints and lack of an "Iron Bird", which prevents assembly and checkout of each on-orbit configuration prior to launch. This paper will focus on the following areas: 1) Specification development process explaining how the requirements and specifications were derived using a modular concept driven by launch vehicle capability. Each module is composed of components of subsystems versus completed subsystems. 2) Approach to stage (each stage consists of the launched module added to the current on-orbit spacecraft) specifications. Specifically, how each launched module and stage ensures support of the current and future elements of the assembly. 3) Verification approach, due to the schedule constraints, is primarily analysis supported by testing. Specifically, how are the interfaces ensured to mate and function on-orbit when they cannot be mated before launch. 4) Lessons learned. Where can we improve this complex system design and integration task?

  8. Large Scale Flame Spread Environmental Characterization Testing

    NASA Technical Reports Server (NTRS)

    Clayman, Lauren K.; Olson, Sandra L.; Gokoghi, Suleyman A.; Brooker, John E.; Ferkul, Paul V.; Kacher, Henry F.

    2013-01-01

    Under the Advanced Exploration Systems (AES) Spacecraft Fire Safety Demonstration Project (SFSDP), as a risk mitigation activity in support of the development of a large-scale fire demonstration experiment in microgravity, flame-spread tests were conducted in normal gravity on thin, cellulose-based fuels in a sealed chamber. The primary objective of the tests was to measure pressure rise in a chamber as sample material, burning direction (upward/downward), total heat release, heat release rate, and heat loss mechanisms were varied between tests. A Design of Experiments (DOE) method was imposed to produce an array of tests from a fixed set of constraints and a coupled response model was developed. Supplementary tests were run without experimental design to additionally vary select parameters such as initial chamber pressure. The starting chamber pressure for each test was set below atmospheric to prevent chamber overpressure. Bottom ignition, or upward propagating burns, produced rapid acceleratory turbulent flame spread. Pressure rise in the chamber increases as the amount of fuel burned increases mainly because of the larger amount of heat generation and, to a much smaller extent, due to the increase in gaseous number of moles. Top ignition, or downward propagating burns, produced a steady flame spread with a very small flat flame across the burning edge. Steady-state pressure is achieved during downward flame spread as the pressure rises and plateaus. This indicates that the heat generation by the flame matches the heat loss to surroundings during the longer, slower downward burns. One heat loss mechanism included mounting a heat exchanger directly above the burning sample in the path of the plume to act as a heat sink and more efficiently dissipate the heat due to the combustion event. This proved an effective means for chamber overpressure mitigation for those tests producing the most total heat release and thusly was determined to be a feasible mitigation

  9. Large-scale convective instability in an electroconducting medium with small-scale helicity

    SciTech Connect

    Kopp, M. I.; Tur, A. V.; Yanovsky, V. V.

    2015-04-15

    A large-scale instability occurring in a stratified conducting medium with small-scale helicity of the velocity field and magnetic fields is detected using an asymptotic many-scale method. Such a helicity is sustained by small external sources for small Reynolds numbers. Two regimes of instability with zero and nonzero frequencies are detected. The criteria for the occurrence of large-scale instability in such a medium are formulated.

  10. Measuring Cosmic Expansion and Large Scale Structure with Destiny

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Lauer, Tod R.

    2007-01-01

    Destiny is a simple, direct, low cost mission to determine the properties of dark energy by obtaining a cosmologically deep supernova (SN) type Ia Hubble diagram and by measuring the large-scale mass power spectrum over time. Its science instrument is a 1.65m space telescope, featuring a near-infrared survey camera/spectrometer with a large field of view. During its first two years, Destiny will detect, observe, and characterize 23000 SN Ia events over the redshift interval 0.4field imager to conduct a weak lensing survey covering >lo00 square degrees to measure the large-scale mass power spectrum. The combination of surveys is much more powerful than either technique on its own, and will have over an order of magnitude greater sensitivity than will be provided by ongoing ground-based projects.

  11. Very large-scale motions in a turbulent pipe flow

    NASA Astrophysics Data System (ADS)

    Lee, Jae Hwa; Jang, Seong Jae; Sung, Hyung Jin

    2011-11-01

    Direct numerical simulation of a turbulent pipe flow with ReD=35000 was performed to investigate the spatially coherent structures associated with very large-scale motions. The corresponding friction Reynolds number, based on pipe radius R, is R+=934, and the computational domain length is 30 R. The computed mean flow statistics agree well with previous DNS data at ReD=44000 and 24000. Inspection of the instantaneous fields and two-point correlation of the streamwise velocity fluctuations showed that the very long meandering motions exceeding 25R exist in logarithmic and wake regions, and the streamwise length scale is almost linearly increased up to y/R ~0.3, while the structures in the turbulent boundary layer only reach up to the edge of the log-layer. Time-resolved instantaneous fields revealed that the hairpin packet-like structures grow with continuous stretching along the streamwise direction and create the very large-scale structures with meandering in the spanwise direction, consistent with the previous conceptual model of Kim & Adrian (1999). This work was supported by the Creative Research Initiatives of NRF/MEST of Korea (No. 2011-0000423).

  12. Synchronization of coupled large-scale Boolean networks

    SciTech Connect

    Li, Fangfei

    2014-03-15

    This paper investigates the complete synchronization and partial synchronization of two large-scale Boolean networks. First, the aggregation algorithm towards large-scale Boolean network is reviewed. Second, the aggregation algorithm is applied to study the complete synchronization and partial synchronization of large-scale Boolean networks. Finally, an illustrative example is presented to show the efficiency of the proposed results.

  13. Statistical analysis of large-scale neuronal recording data

    PubMed Central

    Reed, Jamie L.; Kaas, Jon H.

    2010-01-01

    Relating stimulus properties to the response properties of individual neurons and neuronal networks is a major goal of sensory research. Many investigators implant electrode arrays in multiple brain areas and record from chronically implanted electrodes over time to answer a variety of questions. Technical challenges related to analyzing large-scale neuronal recording data are not trivial. Several analysis methods traditionally used by neurophysiologists do not account for dependencies in the data that are inherent in multi-electrode recordings. In addition, when neurophysiological data are not best modeled by the normal distribution and when the variables of interest may not be linearly related, extensions of the linear modeling techniques are recommended. A variety of methods exist to analyze correlated data, even when data are not normally distributed and the relationships are nonlinear. Here we review expansions of the Generalized Linear Model designed to address these data properties. Such methods are used in other research fields, and the application to large-scale neuronal recording data will enable investigators to determine the variable properties that convincingly contribute to the variances in the observed neuronal measures. Standard measures of neuron properties such as response magnitudes can be analyzed using these methods, and measures of neuronal network activity such as spike timing correlations can be analyzed as well. We have done just that in recordings from 100-electrode arrays implanted in the primary somatosensory cortex of owl monkeys. Here we illustrate how one example method, Generalized Estimating Equations analysis, is a useful method to apply to large-scale neuronal recordings. PMID:20472395

  14. Empirical trials of plant field guides.

    PubMed

    Hawthorne, W D; Cable, S; Marshall, C A M

    2014-06-01

    We designed 3 image-based field guides to tropical forest plant species in Ghana, Grenada, and Cameroon and tested them with 1095 local residents and 20 botanists in the United Kingdom. We compared users' identification accuracy with different image formats, including drawings, specimen photos, living plant photos, and paintings. We compared users' accuracy with the guides to their accuracy with only their prior knowledge of the flora. We asked respondents to score each format for usability, beauty, and how much they would pay for it. Prior knowledge of plant names was generally low (<22%). With a few exceptions, identification accuracy did not differ significantly among image formats. In Cameroon, users identifying sterile Cola species achieved 46-56% accuracy across formats; identification was most accurate with living plant photos. Botanists in the United Kingdom accurately identified 82-93% of the same Cameroonian species; identification was most accurate with specimens. In Grenada, users accurately identified 74-82% of plants; drawings yielded significantly less accurate identifications than paintings and photos of living plants. In Ghana, users accurately identified 85% of plants. Digital color photos of living plants ranked high for beauty, usability, and what users would pay. Black and white drawings ranked low. Our results show the potential and limitations of the use of field guides and nonspecialists to identify plants, for example, in conservation applications. We recommend authors of plant field guides use the cheapest or easiest illustration format because image type had limited bearing on accuracy; match the type of illustration to the most likely use of the guide for slight improvements in accuracy; avoid black and white formats unless the audience is experienced at interpreting illustrations or keeping costs low is imperative; discourage false-positive identifications, which were common; and encourage users to ask an expert or use a herbarium for

  15. Empirical trials of plant field guides.

    PubMed

    Hawthorne, W D; Cable, S; Marshall, C A M

    2014-06-01

    We designed 3 image-based field guides to tropical forest plant species in Ghana, Grenada, and Cameroon and tested them with 1095 local residents and 20 botanists in the United Kingdom. We compared users' identification accuracy with different image formats, including drawings, specimen photos, living plant photos, and paintings. We compared users' accuracy with the guides to their accuracy with only their prior knowledge of the flora. We asked respondents to score each format for usability, beauty, and how much they would pay for it. Prior knowledge of plant names was generally low (<22%). With a few exceptions, identification accuracy did not differ significantly among image formats. In Cameroon, users identifying sterile Cola species achieved 46-56% accuracy across formats; identification was most accurate with living plant photos. Botanists in the United Kingdom accurately identified 82-93% of the same Cameroonian species; identification was most accurate with specimens. In Grenada, users accurately identified 74-82% of plants; drawings yielded significantly less accurate identifications than paintings and photos of living plants. In Ghana, users accurately identified 85% of plants. Digital color photos of living plants ranked high for beauty, usability, and what users would pay. Black and white drawings ranked low. Our results show the potential and limitations of the use of field guides and nonspecialists to identify plants, for example, in conservation applications. We recommend authors of plant field guides use the cheapest or easiest illustration format because image type had limited bearing on accuracy; match the type of illustration to the most likely use of the guide for slight improvements in accuracy; avoid black and white formats unless the audience is experienced at interpreting illustrations or keeping costs low is imperative; discourage false-positive identifications, which were common; and encourage users to ask an expert or use a herbarium for

  16. Dengue surveillance in preparation for field vaccine trials.

    PubMed

    Letson, G William

    2009-10-01

    Preparations for dengue vaccine trials as well as vaccine introduction strategies require laboratory-based surveillance on an international and coordinated level. The Pediatric Dengue Vaccine Initiative (PDVI) has developed an international consortium of field sites in Latin America and Asia. These sites conduct community- based and enhanced passive laboratory-based surveillance of dengue fever. Through this consortium, PDVI is facilitating harmonized laboratory-based surveillance processes, so that disease incidence can be compared between different regions and countries. This process prepares sites for the rigorous case detection, diagnosis, recording and analysis to meet good clinical practice standards necessary for clinical dengue vaccine trials. In addition to several years of laboratory-based dengue surveillance data, dengue vaccine trial site criteria include low population migration of an endemic disease area, documentation of other local flavivirus epidemiology, good medical infrastructure, political stability, and country and target population commitment to vaccine trials and need for vaccine. Prevention of dengue fever is the most suitable primary end point for a proof-of-concept dengue vaccine trial. However, such trials may provide insufficient information for stratified analysis of outcomes according to varied risk factors and virus serotype. Consequently large community-based demonstration trials may be necessary.

  17. First generation leishmaniasis vaccines: a review of field efficacy trials.

    PubMed

    Noazin, Sassan; Modabber, Farrokh; Khamesipour, Ali; Smith, Peter G; Moulton, Lawrence H; Nasseri, Kiumarss; Sharifi, Iraj; Khalil, Eltahir A G; Bernal, Ivan Dario Velez; Antunes, Carlos M F; Kieny, Marie Paule; Tanner, Marcel

    2008-12-01

    First generation candidate vaccines against leishmaniasis, prepared using inactivated whole parasites as their main ingredient, were considered as promising because of their relative ease of production and low cost. These vaccines have been the subject of many investigations over several decades and are the only leishmaniasis vaccine candidates which have undergone phase 3 clinical trial evaluation. Although the studies demonstrated the safety of the vaccines and several studies showed reasonable immunogenicity and some indication of protection, an efficacious prophylactic vaccine is yet to be identified. Despite this overall failure, these trials contributed significantly to increasing knowledge on human leishmaniasis immunology. To provide a collective view, this review discusses the methods and findings of field efficacy trials of first generation leishmaniasis vaccine clinical trials conducted in the Old and New Worlds.

  18. Large-Scale Spacecraft Fire Safety Tests

    NASA Technical Reports Server (NTRS)

    Urban, David; Ruff, Gary A.; Ferkul, Paul V.; Olson, Sandra; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; Toth, Balazs; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; Jomaas, Grunde

    2014-01-01

    An international collaborative program is underway to address open issues in spacecraft fire safety. Because of limited access to long-term low-gravity conditions and the small volume generally allotted for these experiments, there have been relatively few experiments that directly study spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample sizes and environment conditions typical of those expected in a spacecraft fire. The major constraint has been the size of the sample, with prior experiments limited to samples of the order of 10 cm in length and width or smaller. This lack of experimental data forces spacecraft designers to base their designs and safety precautions on 1-g understanding of flame spread, fire detection, and suppression. However, low-gravity combustion research has demonstrated substantial differences in flame behavior in low-gravity. This, combined with the differences caused by the confined spacecraft environment, necessitates practical scale spacecraft fire safety research to mitigate risks for future space missions. To address this issue, a large-scale spacecraft fire experiment is under development by NASA and an international team of investigators. This poster presents the objectives, status, and concept of this collaborative international project (Saffire). The project plan is to conduct fire safety experiments on three sequential flights of an unmanned ISS re-supply spacecraft (the Orbital Cygnus vehicle) after they have completed their delivery of cargo to the ISS and have begun their return journeys to earth. On two flights (Saffire-1 and Saffire-3), the experiment will consist of a flame spread test involving a meter-scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. On one of the flights (Saffire-2), 9 smaller (5 x 30 cm) samples will be tested to evaluate NASAs material flammability screening tests

  19. Shock waves in the large scale structure of the universe

    NASA Astrophysics Data System (ADS)

    Ryu, Dongsu

    Cosmological shock waves result from the supersonic flow motions induced by hierarchical formation of nonlinear structures in the universe. Like most astrophysical shocks, they are collisionless shocks which form in the tenuous intergalactic plasma via collective electromagnetic interactions between particles and electromagnetic fields. The gravitational energy released during the structure formation is transferred by these shocks to the intergalactic gas in several different forms. In addition to the gas entropy, cosmic rays are produced via diffusive shock acceleration, magnetic fields are generated via the Biermann battery mechanism and Weibel instability as well as the Bell-Lucek mechanism, and vorticity is generated at curved shocks. Here we review the properties, roles, and consequences of the shock waves in the context of the large scale structure of the universe.

  20. Shock Waves in the Large Scale Structure of the Universe

    NASA Astrophysics Data System (ADS)

    Ryu, Dongsu

    2008-04-01

    Cosmological shock waves result from the supersonic flow motions induced by hierarchical formation of nonlinear structures in the universe. Like most astrophysical shocks, they are collisionless shocks which form in the tenuous intergalactic plasma via collective electromagnetic interactions between particles and electromagnetic fields. The gravitational energy released during the structure formation is transferred by these shocks to the intergalactic gas in several different forms: in addition to the gas entropy, cosmic rays are produced via diffusive shock acceleration, magnetic fields are generated via the Biermann battery mechanism and Weibel instability, and vorticity is generated at curved shocks. Here I review the properties, roles, and consequences of the shock waves in the context of the large scale structure of the universe.

  1. A large-scale crop protection bioassay data set.

    PubMed

    Gaulton, Anna; Kale, Namrata; van Westen, Gerard J P; Bellis, Louisa J; Bento, A Patrícia; Davies, Mark; Hersey, Anne; Papadatos, George; Forster, Mark; Wege, Philip; Overington, John P

    2015-01-01

    ChEMBL is a large-scale drug discovery database containing bioactivity information primarily extracted from scientific literature. Due to the medicinal chemistry focus of the journals from which data are extracted, the data are currently of most direct value in the field of human health research. However, many of the scientific use-cases for the current data set are equally applicable in other fields, such as crop protection research: for example, identification of chemical scaffolds active against a particular target or endpoint, the de-convolution of the potential targets of a phenotypic assay, or the potential targets/pathways for safety liabilities. In order to broaden the applicability of the ChEMBL database and allow more widespread use in crop protection research, an extensive data set of bioactivity data of insecticidal, fungicidal and herbicidal compounds and assays was collated and added to the database.

  2. A large-scale crop protection bioassay data set.

    PubMed

    Gaulton, Anna; Kale, Namrata; van Westen, Gerard J P; Bellis, Louisa J; Bento, A Patrícia; Davies, Mark; Hersey, Anne; Papadatos, George; Forster, Mark; Wege, Philip; Overington, John P

    2015-01-01

    ChEMBL is a large-scale drug discovery database containing bioactivity information primarily extracted from scientific literature. Due to the medicinal chemistry focus of the journals from which data are extracted, the data are currently of most direct value in the field of human health research. However, many of the scientific use-cases for the current data set are equally applicable in other fields, such as crop protection research: for example, identification of chemical scaffolds active against a particular target or endpoint, the de-convolution of the potential targets of a phenotypic assay, or the potential targets/pathways for safety liabilities. In order to broaden the applicability of the ChEMBL database and allow more widespread use in crop protection research, an extensive data set of bioactivity data of insecticidal, fungicidal and herbicidal compounds and assays was collated and added to the database. PMID:26175909

  3. Large Scale Deformation of the Western U.S. Cordillera

    NASA Technical Reports Server (NTRS)

    Bennett, Richard A.

    2002-01-01

    Over the past couple of years, with support from NASA, we used a large collection of data from GPS, VLBI, SLR, and DORIS networks which span the Western U.S. Cordillera (WUSC) to precisely quantify present-day large-scale crustal deformations in a single uniform reference frame. Our work was roughly divided into an analysis of these space geodetic observations to infer the deformation field across and within the entire plate boundary zone, and an investigation of the implications of this deformation field regarding plate boundary dynamics. Following the determination of the first generation WUSC velocity solution, we placed high priority on the dissemination of the velocity estimates. With in-kind support from the Smithsonian Astrophysical Observatory, we constructed a web-site which allows anyone to access the data, and to determine their own velocity reference frame.

  4. Large Scale Deformation of the Western U.S. Cordillera

    NASA Technical Reports Server (NTRS)

    Bennett, Richard A.

    2002-01-01

    Over the past couple of years, with support from NASA, we used a large collection of data from GPS, VLBI, SLR, and DORIS networks which span the Westem U.S. Cordillera (WUSC) to precisely quantify present-day large-scale crustal deformations in a single uniform reference frame. Our work was roughly divided into an analysis of these space geodetic observations to infer the deformation field across and within the entire plate boundary zone, and an investigation of the implications of this deformation field regarding plate boundary dynamics. Following the determination of the first generation WUSC velocity solution, we placed high priority on the dissemination of the velocity estimates. With in-kind support from the Smithsonian Astrophysical Observatory, we constructed a web-site which allows anyone to access the data, and to determine their own velocity reference frame.

  5. Thermophoretically induced large-scale deformations around microscopic heat centers

    NASA Astrophysics Data System (ADS)

    Puljiz, Mate; Orlishausen, Michael; Köhler, Werner; Menzel, Andreas M.

    2016-05-01

    Selectively heating a microscopic colloidal particle embedded in a soft elastic matrix is a situation of high practical relevance. For instance, during hyperthermic cancer treatment, cell tissue surrounding heated magnetic colloidal particles is destroyed. Experiments on soft elastic polymeric matrices suggest a very long-ranged, non-decaying radial component of the thermophoretically induced displacement fields around the microscopic heat centers. We theoretically confirm this conjecture using a macroscopic hydrodynamic two-fluid description. Both thermophoretic and elastic effects are included in this theory. Indeed, we find that the elasticity of the environment can cause the experimentally observed large-scale radial displacements in the embedding matrix. Additional experiments confirm the central role of elasticity. Finally, a linearly decaying radial component of the displacement field in the experiments is attributed to the finite size of the experimental sample. Similar results are obtained from our theoretical analysis under modified boundary conditions.

  6. Systematic renormalization of the effective theory of Large Scale Structure

    NASA Astrophysics Data System (ADS)

    Akbar Abolhasani, Ali; Mirbabayi, Mehrdad; Pajer, Enrico

    2016-05-01

    A perturbative description of Large Scale Structure is a cornerstone of our understanding of the observed distribution of matter in the universe. Renormalization is an essential and defining step to make this description physical and predictive. Here we introduce a systematic renormalization procedure, which neatly associates counterterms to the UV-sensitive diagrams order by order, as it is commonly done in quantum field theory. As a concrete example, we renormalize the one-loop power spectrum and bispectrum of both density and velocity. In addition, we present a series of results that are valid to all orders in perturbation theory. First, we show that while systematic renormalization requires temporally non-local counterterms, in practice one can use an equivalent basis made of local operators. We give an explicit prescription to generate all counterterms allowed by the symmetries. Second, we present a formal proof of the well-known general argument that the contribution of short distance perturbations to large scale density contrast δ and momentum density π(k) scale as k2 and k, respectively. Third, we demonstrate that the common practice of introducing counterterms only in the Euler equation when one is interested in correlators of δ is indeed valid to all orders.

  7. High Speed Networking and Large-scale Simulation in Geodynamics

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia; Gary, Patrick; Seablom, Michael; Truszkowski, Walt; Odubiyi, Jide; Jiang, Weiyuan; Liu, Dong

    2004-01-01

    Large-scale numerical simulation has been one of the most important approaches for understanding global geodynamical processes. In this approach, peta-scale floating point operations (pflops) are often required to carry out a single physically-meaningful numerical experiment. For example, to model convective flow in the Earth's core and generation of the geomagnetic field (geodynamo), simulation for one magnetic free-decay time (approximately 15000 years) with a modest resolution of 150 in three spatial dimensions would require approximately 0.2 pflops. If such a numerical model is used to predict geomagnetic secular variation over decades and longer, with e.g. an ensemble Kalman filter assimilation approach, approximately 30 (and perhaps more) independent simulations of similar scales would be needed for one data assimilation analysis. Obviously, such a simulation would require an enormous computing resource that exceeds the capacity of a single facility currently available at our disposal. One solution is to utilize a very fast network (e.g. 10Gb optical networks) and available middleware (e.g. Globus Toolkit) to allocate available but often heterogeneous resources for such large-scale computing efforts. At NASA GSFC, we are experimenting with such an approach by networking several clusters for geomagnetic data assimilation research. We shall present our initial testing results in the meeting.

  8. [Privacy and public benefit in using large scale health databases].

    PubMed

    Yamamoto, Ryuichi

    2014-01-01

    In Japan, large scale heath databases were constructed in a few years, such as National Claim insurance and health checkup database (NDB) and Japanese Sentinel project. But there are some legal issues for making adequate balance between privacy and public benefit by using such databases. NDB is carried based on the act for elderly person's health care but in this act, nothing is mentioned for using this database for general public benefit. Therefore researchers who use this database are forced to pay much concern about anonymization and information security that may disturb the research work itself. Japanese Sentinel project is a national project to detecting drug adverse reaction using large scale distributed clinical databases of large hospitals. Although patients give the future consent for general such purpose for public good, it is still under discussion using insufficiently anonymized data. Generally speaking, researchers of study for public benefit will not infringe patient's privacy, but vague and complex requirements of legislation about personal data protection may disturb the researches. Medical science does not progress without using clinical information, therefore the adequate legislation that is simple and clear for both researchers and patients is strongly required. In Japan, the specific act for balancing privacy and public benefit is now under discussion. The author recommended the researchers including the field of pharmacology should pay attention to, participate in the discussion of, and make suggestion to such act or regulations.

  9. Biochar: from laboratory mechanisms through the greenhouse to field trials

    NASA Astrophysics Data System (ADS)

    Masiello, C. A.; Gao, X.; Dugan, B.; Silberg, J. J.; Zygourakis, K.; Alvarez, P. J. J.

    2014-12-01

    The biochar community is excellent at pointing to individual cases where biochar amendment has changed soil properties, with some studies showing significant improvements in crop yields, reduction in nutrient export, and remediation of pollutants. However, many studies exist which do not show improvements, and in some cases, studies clearly show detrimental outcomes. The next, crucial step in biochar science and engineering research will be to develop a process-based understanding of how biochar acts to improve soil properties. In particular, we need a better mechanistic understanding of how biochar sorbs and desorbs contaminants, how it interacts with soil water, and how it interacts with the soil microbial community. These mechanistic studies need to encompass processes that range from the nanometer to the kilometer scale. At the nanometer scale, we need a predictive model of how biochar will sorb and desorb hydrocarbons, nutrients, and toxic metals. At the micrometer scale we need models that explain biochar's effects on soil water, especially the plant-available fraction of soil water. The micrometer scale is also where mechanistic information is neeed about microbial processes. At the macroscale we need physical models to describe the landscape mobility of biochar, because biochar that washes away from fields can no longer provide crop benefits. To be most informative, biochar research should occur along a lab-greenhouse-field trial trajectory. Laboratory experiments should aim determine what mechanisms may act to control biochar-soil processes, and then greenhouse experiments can be used to test the significance of lab-derived mechanisms in short, highly replicated, controlled experiments. Once evidence of effect is determined from greenhouse experiments, field trials are merited. Field trials are the gold standard needed prior to full deployment, but results from field trials cannot be extrapolated to other field sites without the mechanistic backup provided

  10. A Multisite Cluster Randomized Field Trial of Open Court Reading

    ERIC Educational Resources Information Center

    Borman, Geoffrey D.; Dowling, N. Maritza; Schneck, Carrie

    2008-01-01

    In this article, the authors report achievement outcomes of a multisite cluster randomized field trial of Open Court Reading 2005 (OCR), a K-6 literacy curriculum published by SRA/McGraw-Hill. The participants are 49 first-grade through fifth-grade classrooms from predominantly minority and poor contexts across the nation. Blocking by grade level…

  11. Large-scale assembly of colloidal particles

    NASA Astrophysics Data System (ADS)

    Yang, Hongta

    This study reports a simple, roll-to-roll compatible coating technology for producing three-dimensional highly ordered colloidal crystal-polymer composites, colloidal crystals, and macroporous polymer membranes. A vertically beveled doctor blade is utilized to shear align silica microsphere-monomer suspensions to form large-area composites in a single step. The polymer matrix and the silica microspheres can be selectively removed to create colloidal crystals and self-standing macroporous polymer membranes. The thickness of the shear-aligned crystal is correlated with the viscosity of the colloidal suspension and the coating speed, and the correlations can be qualitatively explained by adapting the mechanisms developed for conventional doctor blade coating. Five important research topics related to the application of large-scale three-dimensional highly ordered macroporous films by doctor blade coating are covered in this study. The first topic describes the invention in large area and low cost color reflective displays. This invention is inspired by the heat pipe technology. The self-standing macroporous polymer films exhibit brilliant colors which originate from the Bragg diffractive of visible light form the three-dimensional highly ordered air cavities. The colors can be easily changed by tuning the size of the air cavities to cover the whole visible spectrum. When the air cavities are filled with a solvent which has the same refractive index as that of the polymer, the macroporous polymer films become completely transparent due to the index matching. When the solvent trapped in the cavities is evaporated by in-situ heating, the sample color changes back to brilliant color. This process is highly reversible and reproducible for thousands of cycles. The second topic reports the achievement of rapid and reversible vapor detection by using 3-D macroporous photonic crystals. Capillary condensation of a condensable vapor in the interconnected macropores leads to the

  12. Multi-point observations of large scale perturbations on the open-closed field line boundary during a geomagnetic storm, as observed by the Van Allen Probes and geostationary satellites

    NASA Astrophysics Data System (ADS)

    Grande, Manuel; MacDonald, Elizabeth; Dixon, Patrick

    We discuss a series of lobe entry events observed by the twin Van Allen Probe spacecraft between 0200 and 0515 UTC during the November 14th 2012 geomagnetic storm. During the events Dst was below -100nT with the IMF being strongly southward (Bz = -15nT) and eastward (By = 20 nT). The events occurred in the southern hemisphere flank between 0400 and 0635 local time and at altitudes between 5.6 and 6.2 RE , and were characterized by significantly diminished electron and ion fluxes and a corresponding strong, highly stretched magnetic field. Both spacecraft crossed into the lobe five times with durations from 3-10 minutes. Four of the events were seen by both Van Allen Probes nearly simultaneously despite separations of up to 45 minutes of local time. In all cases the more tailward satellite sees the boundary crossing first. The lobe was also encountered at the same time by the LANL geosynchronous satellites, both at dawn in the northern hemisphere and dusk in the southern hemisphere. These multi-spacecraft observations are used to constrain the spatial and temporal extent of the open/closed field line boundary and to compare this topology to that predicted by a range of magnetic field models. Significant accelerated field aligned oxygen signatures were measured by the HOPE low energy plasma instrument aboard the probes. Using the multi-point measurements we will examine the source of this acceleration and its role in inner magnetosphere ion dynamics.

  13. Multi-point observations of large scale perturbations on the open/closed field line boundary during a geomagnetic storm, as observed by the Van Allen Probes and geostationary satellites

    NASA Astrophysics Data System (ADS)

    Dixon, Paddy; Grande, Manuel; MacDonald, Elizabeth; Skoug, Ruth; Reeves, Geoff; Thomsen, Michelle; Funsten, Herbert; Zou, Shasha; Glocer, Alex; Jia, Xianzhe

    2014-05-01

    We discuss a series of lobe entry events observed by the twin Van Allen Probe spacecraft between 0200 and 0515 UTC during the November 14th 2012 geomagnetic storm. During the events Dst was below -100nT with the IMF being strongly southward (Bz = -15nT) and eastward (By = 20 nT). The events occurred in the southern hemisphere flank between 0400 and 0635 local time and at altitudes between 5.6 and 6.2 RE , and were characterized by significantly diminished electron and ion fluxes and a corresponding strong, highly stretched magnetic field. Both spacecraft crossed into the lobe five times with durations from 3-10 minutes. Four of the events were seen by both Van Allen Probes nearly simultaneously despite separations of up to 45 minutes of local time. In all cases the more tailward satellite sees the boundary crossing first. The lobe was also encountered at the same time by the LANL geosynchronous satellites, both at dawn in the northern hemisphere and dusk in the southern hemisphere. These multi-spacecraft observations are used to constrain the spatial and temporal extent of the open/closed field line boundary and to compare this topology to that predicted by a range of magnetic field models. Significant accelerated field aligned oxygen signatures were measured by the HOPE low energy plasma instrument aboard the probes. Using the multi-point measurements we will examine the source of this acceleration and its role in inner magnetosphere ion dynamics.

  14. Multitree Algorithms for Large-Scale Astrostatistics

    NASA Astrophysics Data System (ADS)

    March, William B.; Ozakin, Arkadas; Lee, Dongryeol; Riegel, Ryan; Gray, Alexander G.

    2012-03-01

    this number every week, resulting in billions of objects. At such scales, even linear-time analysis operations present challenges, particularly since statistical analyses are inherently interactive processes, requiring that computations complete within some reasonable human attention span. The quadratic (or worse) runtimes of straightforward implementations become quickly unbearable. Examples of applications. These analysis subroutines occur ubiquitously in astrostatistical work. We list just a few examples. The need to cross-match objects across different catalogs has led to various algorithms, which at some point perform an AllNN computation. 2-point and higher-order spatial correlations for the basis of spatial statistics, and are utilized in astronomy to compare the spatial structures of two datasets, such as an observed sample and a theoretical sample, for example, forming the basis for two-sample hypothesis testing. Friends-of-friends clustering is often used to identify halos in data from astrophysical simulations. Minimum spanning tree properties have also been proposed as statistics of large-scale structure. Comparison of the distributions of different kinds of objects requires accurate density estimation, for which KDE is the overall statistical method of choice. The prediction of redshifts from optical data requires accurate regression, for which kernel regression is a powerful method. The identification of objects of various types in astronomy, such as stars versus galaxies, requires accurate classification, for which KDA is a powerful method. Overview. In this chapter, we will briefly sketch the main ideas behind recent fast algorithms which achieve, for example, linear runtimes for pairwise-distance problems, or similarly dramatic reductions in computational growth. In some cases, the runtime orders for these algorithms are mathematically provable statements, while in others we have only conjectures backed by experimental observations for the time being

  15. Characterization of the time-dependent strain field at seismogenic depths using first-motion focal mechanisms: Observations of large-scale decadal variations in stress along the San Andrea fault system

    USGS Publications Warehouse

    Sipkin, S.A.; Silver, P.G.

    2003-01-01

    We present a method for summing moment tensors derived from first-motion focal mechanisms to study temporal dependence in features of the subsurface regional strain field. Time-dependent processes are inferred by comparing mechanisms summed over differing time periods. We apply this methodology to seismogenic zones in central and southern California using focal mechanisms produced by the Northern and Southern California Seismograph Networks for events during 1980-1999. We find a consistent pattern in both the style of deformation (strike-slip versus compressional) and seismicity rate across the entire region. If these temporal variations are causally related, it suggests a temporal change in the regional-scale stress field. One change consistent with the observations is a rotation in the regional maximum horizontal compressive stress direction, followed by a reversal to the original direction. Depending upon the dominant style of deformation locally, this change in orientation of the regional stress will tend to either enhance or hinder deformation. The mode of enhanced deformation can range from increased microseismicity and creep to major earthquakes. We hypothesize that these temporal changes in the regional stress field are the result of subtle changes in apparent relative plate motion between the Pacific and North American plates, perhaps due to long-range postseismic stress diffusion. Others have hypothesized that small changes in plate motion over thousands of years, and/or over decades, are responsible for changes in the style of deformation in southern California. We propose that such changes, over the course of just a few years, also affect the style of deformation.

  16. Large-scale climatic control on European precipitation

    NASA Astrophysics Data System (ADS)

    Lavers, David; Prudhomme, Christel; Hannah, David

    2010-05-01

    Precipitation variability has a significant impact on society. Sectors such as agriculture and water resources management are reliant on predictable and reliable precipitation supply with extreme variability having potentially adverse socio-economic impacts. Therefore, understanding the climate drivers of precipitation is of human relevance. This research examines the strength, location and seasonality of links between precipitation and large-scale Mean Sea Level Pressure (MSLP) fields across Europe. In particular, we aim to evaluate whether European precipitation is correlated with the same atmospheric circulation patterns or if there is a strong spatial and/or seasonal variation in the strength and location of centres of correlations. The work exploits time series of gridded ERA-40 MSLP on a 2.5˚×2.5˚ grid (0˚N-90˚N and 90˚W-90˚E) and gridded European precipitation from the Ensemble project on a 0.5°×0.5° grid (36.25˚N-74.25˚N and 10.25˚W-24.75˚E). Monthly Spearman rank correlation analysis was performed between MSLP and precipitation. During winter, a significant MSLP-precipitation correlation dipole pattern exists across Europe. Strong negative (positive) correlation located near the Icelandic Low and positive (negative) correlation near the Azores High pressure centres are found in northern (southern) Europe. These correlation dipoles resemble the structure of the North Atlantic Oscillation (NAO). The reversal in the correlation dipole patterns occurs at the latitude of central France, with regions to the north (British Isles, northern France, Scandinavia) having a positive relationship with the NAO, and regions to the south (Italy, Portugal, southern France, Spain) exhibiting a negative relationship with the NAO. In the lee of mountain ranges of eastern Britain and central Sweden, correlation with North Atlantic MSLP is reduced, reflecting a reduced influence of westerly flow on precipitation generation as the mountains act as a barrier to moist

  17. Applications of large-scale density functional theory in biology.

    PubMed

    Cole, Daniel J; Hine, Nicholas D M

    2016-10-01

    Density functional theory (DFT) has become a routine tool for the computation of electronic structure in the physics, materials and chemistry fields. Yet the application of traditional DFT to problems in the biological sciences is hindered, to a large extent, by the unfavourable scaling of the computational effort with system size. Here, we review some of the major software and functionality advances that enable insightful electronic structure calculations to be performed on systems comprising many thousands of atoms. We describe some of the early applications of large-scale DFT to the computation of the electronic properties and structure of biomolecules, as well as to paradigmatic problems in enzymology, metalloproteins, photosynthesis and computer-aided drug design. With this review, we hope to demonstrate that first principles modelling of biological structure-function relationships are approaching a reality. PMID:27494095

  18. Performance evaluation of large-scale photovoltaic systems

    SciTech Connect

    Fuentes, M.K.; Fernandez, J.P.

    1984-05-01

    Over the past several years, the US Department of Energy has fielded a number of large-scale photovoltaic (PV) systems as initial experiments for assessing the performance of various PV designs. The array power and power conditioning subsystem (PCS) data have been analyzed from the following six sites: Sky Harbor Airport, Dallas-Fort Worth Airport, Newman Power Station, Lovington Shopping Center, Beverly High School, and the Oklahoma Center for Science and Arts. For all these systems, the peak power was determined to be within 67% of the rated peak. The differences between the actual peak power and rated peak power has been attributed to a number of factors, includ-module failures and array degradation. The peak PCS efficiencies range from 88% to 93%.

  19. U-shaped Vortex Structures in Large Scale Cloud Cavitation

    NASA Astrophysics Data System (ADS)

    Cao, Yantao; Peng, Xiaoxing; Xu, Lianghao; Hong, Fangwen

    2015-12-01

    The control of cloud cavitation, especially large scale cloud cavitation(LSCC), is always a hot issue in the field of cavitation research. However, there has been little knowledge on the evolution of cloud cavitation since it is associated with turbulence and vortex flow. In this article, the structure of cloud cavitation shed by sheet cavitation around different hydrofoils and a wedge were observed in detail with high speed camera (HSC). It was found that the U-shaped vortex structures always existed in the development process of LSCC. The results indicated that LSCC evolution was related to this kind of vortex structures, and it may be a universal character for LSCC. Then vortex strength of U-shaped vortex structures in a cycle was analyzed with numerical results.

  20. Large-scale structure non-Gaussianities with modal methods

    NASA Astrophysics Data System (ADS)

    Schmittfull, Marcel

    2016-10-01

    Relying on a separable modal expansion of the bispectrum, the implementation of a fast estimator for the full bispectrum of a 3d particle distribution is presented. The computational cost of accurate bispectrum estimation is negligible relative to simulation evolution, so the bispectrum can be used as a standard diagnostic whenever the power spectrum is evaluated. As an application, the time evolution of gravitational and primordial dark matter bispectra was measured in a large suite of N-body simulations. The bispectrum shape changes characteristically when the cosmic web becomes dominated by filaments and halos, therefore providing a quantitative probe of 3d structure formation. Our measured bispectra are determined by ~ 50 coefficients, which can be used as fitting formulae in the nonlinear regime and for non-Gaussian initial conditions. We also compare the measured bispectra with predictions from the Effective Field Theory of Large Scale Structures (EFTofLSS).

  1. Applications of large-scale density functional theory in biology.

    PubMed

    Cole, Daniel J; Hine, Nicholas D M

    2016-10-01

    Density functional theory (DFT) has become a routine tool for the computation of electronic structure in the physics, materials and chemistry fields. Yet the application of traditional DFT to problems in the biological sciences is hindered, to a large extent, by the unfavourable scaling of the computational effort with system size. Here, we review some of the major software and functionality advances that enable insightful electronic structure calculations to be performed on systems comprising many thousands of atoms. We describe some of the early applications of large-scale DFT to the computation of the electronic properties and structure of biomolecules, as well as to paradigmatic problems in enzymology, metalloproteins, photosynthesis and computer-aided drug design. With this review, we hope to demonstrate that first principles modelling of biological structure-function relationships are approaching a reality.

  2. Large Scale Bacterial Colony Screening of Diversified FRET Biosensors

    PubMed Central

    Litzlbauer, Julia; Schifferer, Martina; Ng, David; Fabritius, Arne; Thestrup, Thomas; Griesbeck, Oliver

    2015-01-01

    Biosensors based on Förster Resonance Energy Transfer (FRET) between fluorescent protein mutants have started to revolutionize physiology and biochemistry. However, many types of FRET biosensors show relatively small FRET changes, making measurements with these probes challenging when used under sub-optimal experimental conditions. Thus, a major effort in the field currently lies in designing new optimization strategies for these types of sensors. Here we describe procedures for optimizing FRET changes by large scale screening of mutant biosensor libraries in bacterial colonies. We describe optimization of biosensor expression, permeabilization of bacteria, software tools for analysis, and screening conditions. The procedures reported here may help in improving FRET changes in multiple suitable classes of biosensors. PMID:26061878

  3. Applications of large-scale density functional theory in biology

    NASA Astrophysics Data System (ADS)

    Cole, Daniel J.; Hine, Nicholas D. M.

    2016-10-01

    Density functional theory (DFT) has become a routine tool for the computation of electronic structure in the physics, materials and chemistry fields. Yet the application of traditional DFT to problems in the biological sciences is hindered, to a large extent, by the unfavourable scaling of the computational effort with system size. Here, we review some of the major software and functionality advances that enable insightful electronic structure calculations to be performed on systems comprising many thousands of atoms. We describe some of the early applications of large-scale DFT to the computation of the electronic properties and structure of biomolecules, as well as to paradigmatic problems in enzymology, metalloproteins, photosynthesis and computer-aided drug design. With this review, we hope to demonstrate that first principles modelling of biological structure-function relationships are approaching a reality.

  4. Real or virtual large-scale structure?

    PubMed Central

    Evrard, August E.

    1999-01-01

    Modeling the development of structure in the universe on galactic and larger scales is the challenge that drives the field of computational cosmology. Here, photorealism is used as a simple, yet expert, means of assessing the degree to which virtual worlds succeed in replicating our own. PMID:10200243

  5. Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield.

    PubMed

    Hijri, Mohamed

    2016-04-01

    An increasing human population requires more food production in nutrient-efficient systems in order to simultaneously meet global food needs while reducing the environmental footprint of agriculture. Arbuscular mycorrhizal fungi (AMF) have the potential to enhance crop yield, but their efficiency has yet to be demonstrated in large-scale crop production systems. This study reports an analysis of a dataset consisting of 231 field trials in which the same AMF inoculant (Rhizophagus irregularis DAOM 197198) was applied to potato over a 4-year period in North America and Europe under authentic field conditions. The inoculation was performed using a liquid suspension of AMF spores that was sprayed onto potato seed pieces, yielding a calculated 71 spores per seed piece. Statistical analysis showed a highly significant increase in marketable potato yield (ANOVA, P < 0.0001) for inoculated fields (42.2 tons/ha) compared with non-inoculated controls (38.3 tons/ha), irrespective of trial year. The average yield increase was 3.9 tons/ha, representing 9.5 % of total crop yield. Inoculation was profitable with a 0.67-tons/ha increase in yield, a threshold reached in almost 79 % of all trials. This finding clearly demonstrates the benefits of mycorrhizal-based inoculation on crop yield, using potato as a case study. Further improvements of these beneficial inoculants will help compensate for crop production deficits, both now and in the future.

  6. Development of an integrated in-situ remediation technology. Topical report for task No. 12 and 13 entitled: Large scale field test of the Lasagna{trademark} process, September 26, 1994--May 25, 1996

    SciTech Connect

    Athmer, C.J.; Ho, Sa V.; Hughes, B.M.

    1997-04-01

    Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. This technology is an integrated in-situ treatment in which established geotechnical methods are used to instant degradation zones directly in the contaminated soil and electroosmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. This topical report summarizes the results of the field experiment conducted at the Paducah Gaseous Diffusion Plant in Paducah, KY. The test site covered 15 feet wide by 10 feet across and 15 feet deep with steel panels as electrodes and wickdrains containing granular activated carbon as treatment zone& The electrodes and treatment zones were installed utilizing innovative adaptation of existing emplacement technologies. The unit was operated for four months, flushing TCE by electroosmosis from the soil into the treatment zones where it was trapped by the activated carbon. The scale up from laboratory units to this field scale was very successful with respect to electrical parameters as weft as electroosmotic flow. Soil samples taken throughout the site before and after the test showed over 98% TCE removal, with most samples showing greater than 99% removal.

  7. The dual role of shear in large-scale dynamos

    NASA Astrophysics Data System (ADS)

    Brandenburg, A.

    2008-09-01

    The role of shear in alleviating catastrophic quenching by shedding small-scale magnetic helicity through fluxes along contours of constant shear is discussed. The level of quenching of the dynamo effect depends on the quenched value of the turbulent magnetic diffusivity. Earlier estimates that might have suffered from the force-free degeneracy of Beltrami fields are now confirmed for shear flows where this degeneracy is lifted. For a dynamo that is saturated near equipartition field strength those estimates result in a 5-fold decrease of the magnetic diffusivity as the magnetic Reynolds number based on the wavenumber of the energy-carrying eddies is increased from 2 to 600. Finally, the role of shear in driving turbulence and large-scale fields by the magneto-rotational instability is emphasized. New simulations are presented and the 3\\pi/4 phase shift between poloidal and toroidal fields is confirmed. It is suggested that this phase shift might be a useful diagnostic tool in identifying mean-field dynamo action in simulations and to distinguish this from other scenarios invoking magnetic buoyancy as a means to explain migration away from the midplane.

  8. Probes of large-scale structure in the universe

    NASA Technical Reports Server (NTRS)

    Suto, Yasushi; Gorski, Krzysztof; Juszkiewicz, Roman; Silk, Joseph

    1988-01-01

    A general formalism is developed which shows that the gravitational instability theory for the origin of the large-scale structure of the universe is now capable of critically confronting observational results on cosmic background radiation angular anisotropies, large-scale bulk motions, and large-scale clumpiness in the galaxy counts. The results indicate that presently advocated cosmological models will have considerable difficulty in simultaneously explaining the observational results.

  9. Survey Design for Large-Scale, Unstructured Resistivity Surveys

    NASA Astrophysics Data System (ADS)

    Labrecque, D. J.; Casale, D.

    2009-12-01

    In this paper, we discuss the issues in designing data collection strategies for large-scale, poorly structured resistivity surveys. Existing or proposed applications for these types of surveys include carbon sequestration, enhanced oil recovery monitoring, monitoring of leachate from working or abandoned mines, and mineral surveys. Electrode locations are generally chosen by land access, utilities, roads, existing wells etc. Classical arrays such as the Wenner array or dipole-dipole arrays are not applicable if the electrodes cannot be placed in quasi-regular lines or grids. A new, far more generalized strategy is needed for building data collection schemes. Following the approach of earlier two-dimensional (2-D) survey designs, the proposed method begins by defining a base array. In (2-D) design, this base array is often a standard dipole-dipole array. For unstructured three-dimensional (3-D) design, determining this base array is a multi-step process. The first step is to determine a set of base dipoles with similar characteristics. For example, the base dipoles may consist of electrode pairs trending within 30 degrees of north and with a length between 100 and 250 m in length. These dipoles are then combined into a trial set of arrays. This trial set of arrays is reduced by applying a series of filters based on criteria such as separation between the dipoles. Using the base array set, additional arrays are added and tested to determine the overall improvement in resolution and to determine an optimal set of arrays. Examples of the design process are shown for a proposed carbon sequestration monitoring system.

  10. Large-scale quasi-geostrophic magnetohydrodynamics

    SciTech Connect

    Balk, Alexander M.

    2014-12-01

    We consider the ideal magnetohydrodynamics (MHD) of a shallow fluid layer on a rapidly rotating planet or star. The presence of a background toroidal magnetic field is assumed, and the 'shallow water' beta-plane approximation is used. We derive a single equation for the slow large length scale dynamics. The range of validity of this equation fits the MHD of the lighter fluid at the top of Earth's outer core. The form of this equation is similar to the quasi-geostrophic (Q-G) equation (for usual ocean or atmosphere), but the parameters are essentially different. Our equation also implies the inverse cascade; but contrary to the usual Q-G situation, the energy cascades to smaller length scales, while the enstrophy cascades to the larger scales. We find the Kolmogorov-type spectrum for the inverse cascade. The spectrum indicates the energy accumulation in larger scales. In addition to the energy and enstrophy, the obtained equation possesses an extra (adiabatic-type) invariant. Its presence implies energy accumulation in the 30° sector around zonal direction. With some special energy input, the extra invariant can lead to the accumulation of energy in zonal magnetic field; this happens if the input of the extra invariant is small, while the energy input is considerable.

  11. Superconducting materials for large scale applications

    SciTech Connect

    Scanlan, Ronald M.; Malozemoff, Alexis P.; Larbalestier, David C.

    2004-05-06

    Significant improvements in the properties ofsuperconducting materials have occurred recently. These improvements arebeing incorporated into the latest generation of wires, cables, and tapesthat are being used in a broad range of prototype devices. These devicesinclude new, high field accelerator and NMR magnets, magnets for fusionpower experiments, motors, generators, and power transmission lines.These prototype magnets are joining a wide array of existing applicationsthat utilize the unique capabilities of superconducting magnets:accelerators such as the Large Hadron Collider, fusion experiments suchas ITER, 930 MHz NMR, and 4 Tesla MRI. In addition, promising newmaterials such as MgB2 have been discovered and are being studied inorder to assess their potential for new applications. In this paper, wewill review the key developments that are leading to these newapplications for superconducting materials. In some cases, the key factoris improved understanding or development of materials with significantlyimproved properties. An example of the former is the development of Nb3Snfor use in high field magnets for accelerators. In other cases, thedevelopment is being driven by the application. The aggressive effort todevelop HTS tapes is being driven primarily by the need for materialsthat can operate at temperatures of 50 K and higher. The implications ofthese two drivers for further developments will be discussed. Finally, wewill discuss the areas where further improvements are needed in order fornew applications to be realized.

  12. Telemedicine and Cooperative Remote Healthcare Services: COPD Field Trial.

    PubMed

    Gerdes, Martin; Smaradottir, Berglind; Reichert, Frank; Fensli, Rune

    2015-01-01

    The introduction of sustainable telemedicine solutions throughout Europe requires the development of secure, flexible and expandable systems and the evaluation of their operation in real-world settings such as field trials. This paper describes a system for a remote monitoring and care support field trial with Chronic Obstructive Pulmonary Disease (COPD) patients. By following a user-centred-development and Privacy by Design approach, the needs of all involved user groups could be addressed, while fulfilling, at the same time, national requirements with emphasis in security and privacy protection. The solution covers specific applications and services for COPD patients and their remote care takers, but allows the generalization of its applicability to other patient groups.

  13. Large scale propagation intermittency in the atmosphere

    NASA Astrophysics Data System (ADS)

    Mehrabi, Ali

    2000-11-01

    Long-term (several minutes to hours) amplitude variations observed in outdoor sound propagation experiments at Disneyland, California, in February 1998 are explained in terms of a time varying index of refraction. The experimentally propagated acoustic signals were received and recorded at several locations ranging from 300 meters to 2,800 meters. Meteorological data was taken as a function of altitude simultaneously with the received signal levels. There were many barriers along the path of acoustic propagation that affected the received signal levels, especially at short ranges. In a downward refraction situation, there could be a random change of amplitude in the predicted signals. A computer model based on the Fast Field Program (FFP) was used to compute the signal loss at the different receiving locations and to verify that the variations in the received signal levels can be predicted numerically. The calculations agree with experimental data with the same trend variations in average amplitude.

  14. Energy transfers in large-scale and small-scale dynamos

    NASA Astrophysics Data System (ADS)

    Samtaney, Ravi; Kumar, Rohit; Verma, Mahendra

    2015-11-01

    We present the energy transfers, mainly energy fluxes and shell-to-shell energy transfers in small-scale dynamo (SSD) and large-scale dynamo (LSD) using numerical simulations of MHD turbulence for Pm = 20 (SSD) and for Pm = 0.2 on 10243 grid. For SSD, we demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers move towards lower wavenumbers as dynamo evolves, which is the reason for the growth of the magnetic fields at the large scales. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. For LSD, we show that the magnetic energy growth takes place via energy transfers from large-scale velocity field to large-scale magnetic field. We observe forward U2U and B2B energy flux, similar to SSD.

  15. Design and Management of Field Trials of Transgenic Cereals

    NASA Astrophysics Data System (ADS)

    Bedő, Zoltán; Rakszegi, Mariann; Láng, László

    The development of gene transformation systems has allowed the introgression of alien genes into plant genomes, thus providing a mechanism for broadening the genetic resources available to plant breeders. The design and the management of field trials vary according to the purpose for which transgenic cereals are developed. Breeders study the phenotypic and genotypic stability of transgenic plants, monitor the increase in homozygosity of transgenic genotypes under field conditions, and develop backcross generations to transfer the introduced genes into secondary transgenic cereal genotypes. For practical purposes, they may also multiply seed of the transgenic lines to produce sufficient amounts of grain for the detailed analysis of trait(s) of interest, to determine the field performance of transgenic lines, and to compare them with the non-transformed parental genotypes. Prior to variety registration, the Distinctness, Uniformity and Stability (DUS) tests and Value for Cultivation and Use (VCU) experiments are carried out in field trials. Field testing includes specific requirements for transgenic cereals to assess potential environmental risks. The capacity of the pollen to survive, establish and disseminate in the field test environment, the potential for gene transfer, the effects of products expressed by the introduced sequences and phenotypic and genotypic instability that might cause deleterious effects must all be specifically monitored, as required by EU Directives 2003/701/EC (1) on the release of genetically modified higher plants in the environment.

  16. Nanomaterials processing toward large-scale flexible/stretchable electronics

    NASA Astrophysics Data System (ADS)

    Takahashi, Toshitake

    In recent years, there has been tremendous progress in large-scale mechanically flexible electronics, where electrical components are fabricated on non-crystalline substrates such as plastics and glass. These devices are currently serving as the basis for various applications such as flat-panel displays, smart cards, and wearable electronics. In this thesis, a promising approach using chemically synthesized nanomaterials is explored to overcome various obstacles current technology faces in this field. Here, we use chemically synthesized semiconducting nanowires (NWs) including group IV (Si, Ge), III-V (InAs) and II-IV (CdS, CdSe) NWs, and semiconductor-enriched SWNTs (99 % purity), and developed reliable, controllable, and more importantly uniform assembly methods on 4-inch wafer-scale flexible substrates in the form of either parallel NW arrays or SWNT random networks, which act as the active components in thin film transistors (TFTs). Thusly obtained TFTs composed of nanomaterials show respectable electrical and optical properties such as 1) cut-off frequency, ft ~ 1 GHz and maximum frequency of oscillation, fmax ~ 1.8 GHz from InAs parallel NW array TFTs with channel length of ~ 1.5 μm, 2) photodetectors covering visible wavelengths (500-700 nm) using compositionally graded CdSxSe1-x (0 < x < 1) parallel NW arrays, and 3) carrier mobility of ~ 20 cm2/Vs, which is an order of magnitude larger than conventional TFT materials such as a-Si and organic semiconductors, without sacrificing current on/off ratio (Ion/Ioff ~ 104) from SWNT network TFTs. The capability to uniformly assemble nanomaterials over large-scale flexible substrates enables us to use them for more sophisticated applications. Artificial electronic skin (e-skin) is demonstrated by laminating pressure sensitive rubber on top of nanomaterial-based active matrix backplanes. Furthermore, an x-ray imaging device is also achieved by combining organic photodiodes with this backplane technology.

  17. Large scale, urban decontamination; developments, historical examples and lessons learned

    SciTech Connect

    Demmer, R.L.

    2007-07-01

    Recent terrorist threats and actions have lead to a renewed interest in the technical field of large scale, urban environment decontamination. One of the driving forces for this interest is the prospect for the cleanup and removal of radioactive dispersal device (RDD or 'dirty bomb') residues. In response, the United States Government has spent many millions of dollars investigating RDD contamination and novel decontamination methodologies. The efficiency of RDD cleanup response will be improved with these new developments and a better understanding of the 'old reliable' methodologies. While an RDD is primarily an economic and psychological weapon, the need to cleanup and return valuable or culturally significant resources to the public is nonetheless valid. Several private companies, universities and National Laboratories are currently developing novel RDD cleanup technologies. Because of its longstanding association with radioactive facilities, the U. S. Department of Energy National Laboratories are at the forefront in developing and testing new RDD decontamination methods. However, such cleanup technologies are likely to be fairly task specific; while many different contamination mechanisms, substrate and environmental conditions will make actual application more complicated. Some major efforts have also been made to model potential contamination, to evaluate both old and new decontamination techniques and to assess their readiness for use. There are a number of significant lessons that can be gained from a look at previous large scale cleanup projects. Too often we are quick to apply a costly 'package and dispose' method when sound technological cleaning approaches are available. Understanding historical perspectives, advanced planning and constant technology improvement are essential to successful decontamination. (authors)

  18. Stochastic pattern transitions in large scale swarms

    NASA Astrophysics Data System (ADS)

    Schwartz, Ira; Lindley, Brandon; Mier-Y-Teran, Luis

    2013-03-01

    We study the effects of time dependent noise and discrete, randomly distributed time delays on the dynamics of a large coupled system of self-propelling particles. Bifurcation analysis on a mean field approximation of the system reveals that the system possesses patterns with certain universal characteristics that depend on distinguished moments of the time delay distribution. We show both theoretically and numerically that although bifurcations of simple patterns, such as translations, change stability only as a function of the first moment of the time delay distribution, more complex bifurcating patterns depend on all of the moments of the delay distribution. In addition, we show that for sufficiently large values of the coupling strength and/or the mean time delay, there is a noise intensity threshold, dependent on the delay distribution width, that forces a transition of the swarm from a misaligned state into an aligned state. We show that this alignment transition exhibits hysteresis when the noise intensity is taken to be time dependent. Research supported by the Office of Naval Research

  19. Superconductivity for Large Scale Wind Turbines

    SciTech Connect

    R. Fair; W. Stautner; M. Douglass; R. Rajput-Ghoshal; M. Moscinski; P. Riley; D. Wagner; J. Kim; S. Hou; F. Lopez; K. Haran; J. Bray; T. Laskaris; J. Rochford; R. Duckworth

    2012-10-12

    A conceptual design has been completed for a 10MW superconducting direct drive wind turbine generator employing low temperature superconductors for the field winding. Key technology building blocks from the GE Wind and GE Healthcare businesses have been transferred across to the design of this concept machine. Wherever possible, conventional technology and production techniques have been used in order to support the case for commercialization of such a machine. Appendices A and B provide further details of the layout of the machine and the complete specification table for the concept design. Phase 1 of the program has allowed us to understand the trade-offs between the various sub-systems of such a generator and its integration with a wind turbine. A Failure Modes and Effects Analysis (FMEA) and a Technology Readiness Level (TRL) analysis have been completed resulting in the identification of high risk components within the design. The design has been analyzed from a commercial and economic point of view and Cost of Energy (COE) calculations have been carried out with the potential to reduce COE by up to 18% when compared with a permanent magnet direct drive 5MW baseline machine, resulting in a potential COE of 0.075 $/kWh. Finally, a top-level commercialization plan has been proposed to enable this technology to be transitioned to full volume production. The main body of this report will present the design processes employed and the main findings and conclusions.

  20. Infrasonic observations of large scale HE events

    SciTech Connect

    Whitaker, R.W.; Mutschlecner, J.P.; Davidson, M.B.; Noel, S.D.

    1990-01-01

    The Los Alamos Infrasound Program has been operating since about mid-1982, making routine measurements of low frequency atmospheric acoustic propagation. Generally, we work between 0.1 Hz to 10 Hz; however, much of our work is concerned with the narrower range of 0.5 to 5.0 Hz. Two permanent stations, St. George, UT, and Los Alamos, NM, have been operational since 1983, collecting data 24 hours a day. This discussion will concentrate on measurements of large, high explosive (HE) events at ranges of 250 km to 5330 km. Because the equipment is well suited for mobile deployments, it can easily establish temporary observing sites for special events. The measurements in this report are from our permanent sites, as well as from various temporary sites. In this short report will not give detailed data from all sites for all events, but rather will present a few observations that are typical of the full data set. The Defense Nuclear Agency sponsors these large explosive tests as part of their program to study airblast effects. A wide variety of experiments are fielded near the explosive by numerous Department of Defense (DOD) services and agencies. This measurement program is independent of this work; use is made of these tests as energetic known sources, which can be measured at large distances. Ammonium nitrate and fuel oil (ANFO) is the specific explosive used by DNA in these tests. 6 refs., 6 figs.

  1. Safeguards instruments for Large-Scale Reprocessing Plants

    SciTech Connect

    Hakkila, E.A.; Case, R.S.; Sonnier, C.

    1993-06-01

    Between 1987 and 1992 a multi-national forum known as LASCAR (Large Scale Reprocessing Plant Safeguards) met to assist the IAEA in development of effective and efficient safeguards for large-scale reprocessing plants. The US provided considerable input for safeguards approaches and instrumentation. This paper reviews and updates instrumentation of importance in measuring plutonium and uranium in these facilities.

  2. The Challenge of Large-Scale Literacy Improvement

    ERIC Educational Resources Information Center

    Levin, Ben

    2010-01-01

    This paper discusses the challenge of making large-scale improvements in literacy in schools across an entire education system. Despite growing interest and rhetoric, there are very few examples of sustained, large-scale change efforts around school-age literacy. The paper reviews 2 instances of such efforts, in England and Ontario. After…

  3. Large-Scale Pattern Discovery in Music

    NASA Astrophysics Data System (ADS)

    Bertin-Mahieux, Thierry

    This work focuses on extracting patterns in musical data from very large collections. The problem is split in two parts. First, we build such a large collection, the Million Song Dataset, to provide researchers access to commercial-size datasets. Second, we use this collection to study cover song recognition which involves finding harmonic patterns from audio features. Regarding the Million Song Dataset, we detail how we built the original collection from an online API, and how we encouraged other organizations to participate in the project. The result is the largest research dataset with heterogeneous sources of data available to music technology researchers. We demonstrate some of its potential and discuss the impact it already has on the field. On cover song recognition, we must revisit the existing literature since there are no publicly available results on a dataset of more than a few thousand entries. We present two solutions to tackle the problem, one using a hashing method, and one using a higher-level feature computed from the chromagram (dubbed the 2DFTM). We further investigate the 2DFTM since it has potential to be a relevant representation for any task involving audio harmonic content. Finally, we discuss the future of the dataset and the hope of seeing more work making use of the different sources of data that are linked in the Million Song Dataset. Regarding cover songs, we explain how this might be a first step towards defining a harmonic manifold of music, a space where harmonic similarities between songs would be more apparent.

  4. Large Scale Turbulent Structures in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Rao, Ram Mohan; Lundgren, Thomas S.

    1997-01-01

    Jet noise is a major concern in the design of commercial aircraft. Studies by various researchers suggest that aerodynamic noise is a major contributor to jet noise. Some of these studies indicate that most of the aerodynamic jet noise due to turbulent mixing occurs when there is a rapid variation in turbulent structure, i.e. rapidly growing or decaying vortices. The objective of this research was to simulate a compressible round jet to study the non-linear evolution of vortices and the resulting acoustic radiations. In particular, to understand the effect of turbulence structure on the noise. An ideal technique to study this problem is Direct Numerical Simulations (DNS), because it provides precise control on the initial and boundary conditions that lead to the turbulent structures studied. It also provides complete 3-dimensional time dependent data. Since the dynamics of a temporally evolving jet are not greatly different from those of a spatially evolving jet, a temporal jet problem was solved, using periodicity in the direction of the jet axis. This enables the application of Fourier spectral methods in the streamwise direction. Physically this means that turbulent structures in the jet are repeated in successive downstream cells instead of being gradually modified downstream into a jet plume. The DNS jet simulation helps us understand the various turbulent scales and mechanisms of turbulence generation in the evolution of a compressible round jet. These accurate flow solutions will be used in future research to estimate near-field acoustic radiation by computing the total outward flux across a surface and determine how it is related to the evolution of the turbulent solutions. Furthermore, these simulations allow us to investigate the sensitivity of acoustic radiations to inlet/boundary conditions, with possible appli(,a- tion to active noise suppression. In addition, the data generated can be used to compute, various turbulence quantities such as mean

  5. Large Scale Turbulent Structures in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Rao, Ram Mohan; Lundgren, Thomas S.

    1997-01-01

    Jet noise is a major concern in the design of commercial aircraft. Studies by various researchers suggest that aerodynamic noise is a major contributor to jet noise. Some of these studies indicate that most of the aerodynamic jet noise due to turbulent mixing occurs when there is a rapid variation in turbulent structure, i.e. rapidly growing or decaying vortices. The objective of this research was to simulate a compressible round jet to study the non-linear evolution of vortices and the resulting acoustic radiations. In particular, to understand the effect of turbulence structure on the noise. An ideal technique to study this problem is Direct Numerical Simulations(DNS), because it provides precise control on the initial and boundary conditions that lead to the turbulent structures studied. It also provides complete 3-dimensional time dependent data. Since the dynamics of a temporally evolving jet are not greatly different from those, of a spatially evolving jet, a temporal jet problem was solved, using periodicity ill the direction of the jet axis. This enables the application of Fourier spectral methods in the streamwise direction. Physically this means that turbulent structures in the jet are repeated in successive downstream cells instead of being gradually modified downstream into a jet plume. The DNS jet simulation helps us understand the various turbulent scales and mechanisms of turbulence generation in the evolution of a compressible round jet. These accurate flow solutions will be used in future research to estimate near-field acoustic radiation by computing the total outward flux across a surface and determine how it is related to the evolution of the turbulent solutions. Furthermore, these simulations allow us to investigate the sensitivity of acoustic radiations to inlet/boundary conditions, with possible application to active noise suppression. In addition, the data generated can be used to compute various turbulence quantities such as mean velocities

  6. Planar Doppler Velocimetry for Large-Scale Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    McKenzie, Robert L.

    1997-01-01

    Recently, Planar Doppler Velocimetry (PDV) has been shown by several laboratories to offer an attractive means for measuring three-dimensional velocity vectors everywhere in a light sheet placed in a flow. Unlike other optical means of measuring flow velocities, PDV is particularly attractive for use in large wind tunnels where distances to the sample region may be several meters, because it does not require the spatial resolution and tracking of individual scattering particles or the alignment of crossed beams at large distances. To date, demonstrations of PDV have been made either in low speed flows without quantitative comparison to other measurements, or in supersonic flows where the Doppler shift is large and its measurement is relatively insensitive to instrumental errors. Moreover, most reported applications have relied on the use of continuous-wave lasers, which limit the measurement to time-averaged velocity fields. This work summarizes the results of two previous studies of PDV in which the use of pulsed lasers to obtain instantaneous velocity vector fields is evaluated. The objective has been to quantitatively define and demonstrate PDV capabilities for applications in large-scale wind tunnels that are intended primarily for the production testing of subsonic aircraft. For such applications, the adequate resolution of low-speed flow fields requires accurate measurements of small Doppler shifts that are obtained at distances of several meters from the sample region. The use of pulsed lasers provides the unique capability to obtain not only time-averaged fields, but also their statistical fluctuation amplitudes and the spatial excursions of unsteady flow regions such as wakes and separations. To accomplish the objectives indicated, the PDV measurement process is first modeled and its performance evaluated computationally. The noise sources considered include those related to the optical and electronic properties of Charge-Coupled Device (CCD) arrays and to

  7. Large-Scale Hybrid Dynamic Simulation Employing Field Measurements

    SciTech Connect

    Huang, Zhenyu; Guttromson, Ross T.; Hauer, John F.

    2004-06-30

    Simulation and measurements are two primary ways for power engineers to gain understanding of system behaviors and thus accomplish tasks in system planning and operation. Many well-developed simulation tools are available in today's market. On the other hand, large amount of measured data can be obtained from traditional SCADA systems and currently fast growing phasor networks. However, simulation and measurement are still two separate worlds. There is a need to combine the advantages of simulation and measurements. In view of this, this paper proposes the concept of hybrid dynamic simulation which opens up traditional simulation by providing entries for measurements. A method is presented to implement hybrid simulation with PSLF/PSDS. Test studies show the validity of the proposed hybrid simulation method. Applications of such hybrid simulation include system event playback, model validation, and software validation.

  8. Causes of large-scale landslides in the Lesser Himalaya of central Nepal

    NASA Astrophysics Data System (ADS)

    Hasegawa, Shuichi; Dahal, Ranjan Kumar; Yamanaka, Minoru; Bhandary, Netra Prakash; Yatabe, Ryuichi; Inagaki, Hideki

    2009-05-01

    Geologically and tectonically active Himalayan Range is characterized by highly elevated mountains and deep river valleys. Because of steep mountain slopes, and dynamic geological conditions, large-scale landslides are very common in Lesser and Higher Himalayan zones of Nepal Himalaya. Slopes along the major highways of central Nepal namely Prithvi Highway, Narayangadh-Mugling Road and Tribhuvan Highway are considered in this study of large-scale landslides. Geologically, the highways in consideration pass through crushed and jointed Kathmandu Nappe affected by numerous faults and folds. The relict large-scale landslides have been contributing to debris flows and slides along the highways. Most of the slope failures are mainly bechanced in geological formations consisting phyllite, schist and gneiss. Laboratory test on the soil samples collected from the failure zones and field investigation suggested significant hydrothermal alteration in the area. The substantial hydrothermal alteration in the Lesser Himalaya during advancement of the Main Central Thrust (MCT) and thereby clay mineralization in sliding zones of large-scale landslide are the main causes of large-scale landslides in the highways of central Nepal. This research also suggests that large-scale landslides are the major cause of slope failure during monsoon in the Lesser Himalaya of Nepal. Similarly, hydrothermal alteration is also significant in failure zone of the large-scale landslides. For the sustainable road maintenance in Nepal, it is of utmost importance to study the nature of sliding zones of large-scale landslides along the highways and their role to cause debris flows and slides during monsoon period.

  9. Bio-inspired wooden actuators for large scale applications.

    PubMed

    Rüggeberg, Markus; Burgert, Ingo

    2015-01-01

    Implementing programmable actuation into materials and structures is a major topic in the field of smart materials. In particular the bilayer principle has been employed to develop actuators that respond to various kinds of stimuli. A multitude of small scale applications down to micrometer size have been developed, but up-scaling remains challenging due to either limitations in mechanical stiffness of the material or in the manufacturing processes. Here, we demonstrate the actuation of wooden bilayers in response to changes in relative humidity, making use of the high material stiffness and a good machinability to reach large scale actuation and application. Amplitude and response time of the actuation were measured and can be predicted and controlled by adapting the geometry and the constitution of the bilayers. Field tests in full weathering conditions revealed long-term stability of the actuation. The potential of the concept is shown by a first demonstrator. With the sensor and actuator intrinsically incorporated in the wooden bilayers, the daily change in relative humidity is exploited for an autonomous and solar powered movement of a tracker for solar modules. PMID:25835386

  10. Bio-Inspired Wooden Actuators for Large Scale Applications

    PubMed Central

    Rüggeberg, Markus; Burgert, Ingo

    2015-01-01

    Implementing programmable actuation into materials and structures is a major topic in the field of smart materials. In particular the bilayer principle has been employed to develop actuators that respond to various kinds of stimuli. A multitude of small scale applications down to micrometer size have been developed, but up-scaling remains challenging due to either limitations in mechanical stiffness of the material or in the manufacturing processes. Here, we demonstrate the actuation of wooden bilayers in response to changes in relative humidity, making use of the high material stiffness and a good machinability to reach large scale actuation and application. Amplitude and response time of the actuation were measured and can be predicted and controlled by adapting the geometry and the constitution of the bilayers. Field tests in full weathering conditions revealed long-term stability of the actuation. The potential of the concept is shown by a first demonstrator. With the sensor and actuator intrinsically incorporated in the wooden bilayers, the daily change in relative humidity is exploited for an autonomous and solar powered movement of a tracker for solar modules. PMID:25835386

  11. Large Scale Structure in the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Koekemoer, Anton; Mould, Jeremy; Cooke, Jeffrey; Wyithe, Stuart; Lidman, Christopher; Trenti, Michele; Abbott, Tim; Kunder, Andrea; Barone-Nugent, Robert; Tescari, Edoardo; Katsianis, Antonios

    2014-02-01

    We propose to capitalize on the high red sensitivity and large field of view of DECam to detect the brightest and rarest galaxies at z=6-7. Our 2012 results show the signature of large scale structure with wavenumber of order 0.1 inverse Mpc in line with expectations of primordial non-gaussianity. But the signal to noise in one deep field from two nights' data is insufficient for a robust conclusion. Ten nights' data will do the job. These data will also constrain the galaxy contribution to reionization by enabling a tighter constraint on the full galaxy luminosity function, including the faint end. The observations will be executed with a cadence and depth that will enable the detection of super-luminous supernovae at z=6-7. Super-luminous supernovae are a recently observed class of supernovae that are 10-100x more luminous than typical supernovae. This class includes pair- instability supernovae that are a rare, third type of supernova explosion in which only 3 events are known. The proposed observations will greatly extend the current reach of supernovae research, examining their occurrence rate and properties near the epoch of reionization.

  12. Distribution probability of large-scale landslides in central Nepal

    NASA Astrophysics Data System (ADS)

    Timilsina, Manita; Bhandary, Netra P.; Dahal, Ranjan Kumar; Yatabe, Ryuichi

    2014-12-01

    Large-scale landslides in the Himalaya are defined as huge, deep-seated landslide masses that occurred in the geological past. They are widely distributed in the Nepal Himalaya. The steep topography and high local relief provide high potential for such failures, whereas the dynamic geology and adverse climatic conditions play a key role in the occurrence and reactivation of such landslides. The major geoscientific problems related with such large-scale landslides are 1) difficulties in their identification and delineation, 2) sources of small-scale failures, and 3) reactivation. Only a few scientific publications have been published concerning large-scale landslides in Nepal. In this context, the identification and quantification of large-scale landslides and their potential distribution are crucial. Therefore, this study explores the distribution of large-scale landslides in the Lesser Himalaya. It provides simple guidelines to identify large-scale landslides based on their typical characteristics and using a 3D schematic diagram. Based on the spatial distribution of landslides, geomorphological/geological parameters and logistic regression, an equation of large-scale landslide distribution is also derived. The equation is validated by applying it to another area. For the new area, the area under the receiver operating curve of the landslide distribution probability in the new area is 0.699, and a distribution probability value could explain > 65% of existing landslides. Therefore, the regression equation can be applied to areas of the Lesser Himalaya of central Nepal with similar geological and geomorphological conditions.

  13. Trial-by-Trial Adaptation of Movements during Mental Practice under Force Field

    PubMed Central

    Anwar, Muhammad Nabeel

    2013-01-01

    Human nervous system tries to minimize the effect of any external perturbing force by bringing modifications in the internal model. These modifications affect the subsequent motor commands generated by the nervous system. Adaptive compensation along with the appropriate modifications of internal model helps in reducing human movement errors. In the current study, we studied how motor imagery influences trial-to-trial learning in a robot-based adaptation task. Two groups of subjects performed reaching movements with or without motor imagery in a velocity-dependent force field. The results show that reaching movements performed with motor imagery have relatively a more focused generalization pattern and a higher learning rate in training direction. PMID:23737857

  14. Reconstructing Information in Large-Scale Structure via Logarithmic Mapping

    NASA Astrophysics Data System (ADS)

    Szapudi, Istvan

    We propose to develop a new method to extract information from large-scale structure data combining two-point statistics and non-linear transformations; before, this information was available only with substantially more complex higher-order statistical methods. Initially, most of the cosmological information in large-scale structure lies in two-point statistics. With non- linear evolution, some of that useful information leaks into higher-order statistics. The PI and group has shown in a series of theoretical investigations how that leakage occurs, and explained the Fisher information plateau at smaller scales. This plateau means that even as more modes are added to the measurement of the power spectrum, the total cumulative information (loosely speaking the inverse errorbar) is not increasing. Recently we have shown in Neyrinck et al. (2009, 2010) that a logarithmic (and a related Gaussianization or Box-Cox) transformation on the non-linear Dark Matter or galaxy field reconstructs a surprisingly large fraction of this missing Fisher information of the initial conditions. This was predicted by the earlier wave mechanical formulation of gravitational dynamics by Szapudi & Kaiser (2003). The present proposal is focused on working out the theoretical underpinning of the method to a point that it can be used in practice to analyze data. In particular, one needs to deal with the usual real-life issues of galaxy surveys, such as complex geometry, discrete sam- pling (Poisson or sub-Poisson noise), bias (linear, or non-linear, deterministic, or stochastic), redshift distortions, pro jection effects for 2D samples, and the effects of photometric redshift errors. We will develop methods for weak lensing and Sunyaev-Zeldovich power spectra as well, the latter specifically targetting Planck. In addition, we plan to investigate the question of residual higher- order information after the non-linear mapping, and possible applications for cosmology. Our aim will be to work out

  15. Ongoing dynamics in large-scale functional connectivity predict perception

    PubMed Central

    Sadaghiani, Sepideh; Poline, Jean-Baptiste; Kleinschmidt, Andreas; D’Esposito, Mark

    2015-01-01

    Most brain activity occurs in an ongoing manner not directly locked to external events or stimuli. Regional ongoing activity fluctuates in unison with some brain regions but not others, and the degree of long-range coupling is called functional connectivity, often measured with correlation. Strength and spatial distributions of functional connectivity dynamically change in an ongoing manner over seconds to minutes, even when the external environment is held constant. Direct evidence for any behavioral relevance of these continuous large-scale dynamics has been limited. Here, we investigated whether ongoing changes in baseline functional connectivity correlate with perception. In a continuous auditory detection task, participants perceived the target sound in roughly one-half of the trials. Very long (22–40 s) interstimulus intervals permitted investigation of baseline connectivity unaffected by preceding evoked responses. Using multivariate classification, we observed that functional connectivity before the target predicted whether it was heard or missed. Using graph theoretical measures, we characterized the difference in functional connectivity between states that lead to hits vs. misses. Before misses compared with hits and task-free rest, connectivity showed reduced modularity, a measure of integrity of modular network structure. This effect was strongest in the default mode and visual networks and caused by both reduced within-network connectivity and enhanced across-network connections before misses. The relation of behavior to prestimulus connectivity was dissociable from that of prestimulus activity amplitudes. In conclusion, moment to moment dynamic changes in baseline functional connectivity may shape subsequent behavioral performance. A highly modular network structure seems beneficial to perceptual efficiency. PMID:26106164

  16. Ongoing dynamics in large-scale functional connectivity predict perception.

    PubMed

    Sadaghiani, Sepideh; Poline, Jean-Baptiste; Kleinschmidt, Andreas; D'Esposito, Mark

    2015-07-01

    Most brain activity occurs in an ongoing manner not directly locked to external events or stimuli. Regional ongoing activity fluctuates in unison with some brain regions but not others, and the degree of long-range coupling is called functional connectivity, often measured with correlation. Strength and spatial distributions of functional connectivity dynamically change in an ongoing manner over seconds to minutes, even when the external environment is held constant. Direct evidence for any behavioral relevance of these continuous large-scale dynamics has been limited. Here, we investigated whether ongoing changes in baseline functional connectivity correlate with perception. In a continuous auditory detection task, participants perceived the target sound in roughly one-half of the trials. Very long (22-40 s) interstimulus intervals permitted investigation of baseline connectivity unaffected by preceding evoked responses. Using multivariate classification, we observed that functional connectivity before the target predicted whether it was heard or missed. Using graph theoretical measures, we characterized the difference in functional connectivity between states that lead to hits vs. misses. Before misses compared with hits and task-free rest, connectivity showed reduced modularity, a measure of integrity of modular network structure. This effect was strongest in the default mode and visual networks and caused by both reduced within-network connectivity and enhanced across-network connections before misses. The relation of behavior to prestimulus connectivity was dissociable from that of prestimulus activity amplitudes. In conclusion, moment to moment dynamic changes in baseline functional connectivity may shape subsequent behavioral performance. A highly modular network structure seems beneficial to perceptual efficiency. PMID:26106164

  17. Ongoing dynamics in large-scale functional connectivity predict perception.

    PubMed

    Sadaghiani, Sepideh; Poline, Jean-Baptiste; Kleinschmidt, Andreas; D'Esposito, Mark

    2015-07-01

    Most brain activity occurs in an ongoing manner not directly locked to external events or stimuli. Regional ongoing activity fluctuates in unison with some brain regions but not others, and the degree of long-range coupling is called functional connectivity, often measured with correlation. Strength and spatial distributions of functional connectivity dynamically change in an ongoing manner over seconds to minutes, even when the external environment is held constant. Direct evidence for any behavioral relevance of these continuous large-scale dynamics has been limited. Here, we investigated whether ongoing changes in baseline functional connectivity correlate with perception. In a continuous auditory detection task, participants perceived the target sound in roughly one-half of the trials. Very long (22-40 s) interstimulus intervals permitted investigation of baseline connectivity unaffected by preceding evoked responses. Using multivariate classification, we observed that functional connectivity before the target predicted whether it was heard or missed. Using graph theoretical measures, we characterized the difference in functional connectivity between states that lead to hits vs. misses. Before misses compared with hits and task-free rest, connectivity showed reduced modularity, a measure of integrity of modular network structure. This effect was strongest in the default mode and visual networks and caused by both reduced within-network connectivity and enhanced across-network connections before misses. The relation of behavior to prestimulus connectivity was dissociable from that of prestimulus activity amplitudes. In conclusion, moment to moment dynamic changes in baseline functional connectivity may shape subsequent behavioral performance. A highly modular network structure seems beneficial to perceptual efficiency.

  18. Kinematics and Dynamics in Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    dell'Antonio, Ian Pietro

    1995-01-01

    We study a sample of x-ray observed groups of galaxies to examine the relation between group velocity dispersions and x-ray luminosities. For the rich groups, Lx~ sigma ^{4.0+/-0.6}, but poorer systems follow a flatter relation. This L_{x }- sigma relation probably arises from a combination of extended gas and individual galaxy emission. We then concentrate on six poor clusters of galaxies with higher-quality x-ray data, and we measure the virial mass, gas mass, and x-ray temperature. From the x-ray surface brightness distribution, we construct models of the mass distribution. We use a modified V/ Vmax test to test whether the galaxies trace the potential marked by the gas. The galaxy distribution is consistent with the density distribution inferred from the x-rays. The mass in galaxies is {~}3h^{-1}% of the total mass of the systems. Galaxies contribute significantly to the baryonic mass total: M_ {gas}/Mgal ~1.4h^{-1/2},~ilar to the value for rich clusters. The baryon fraction in rich groups is {~}0.08 (for Ho=100), about half that in rich clusters. This result has significant implications for the origin of large-scale structure. In a study of structure on a larger scale, we use the Tully-Fisher (TF) relation to examine the kinematics of the Great Wall of Galaxies. First, we examine the relation between rotation profiles of galaxies and HI linewidths, and investigate the effects on the TF relation. The rotation curve profile shapes and magnitudes of galaxies are correlated, implying that a galaxy yields different distance estimates with a linewidth measured at a different fraction of peak emission. Indiscriminatingly combining data based on different measures of the "rotation velocity" into a single TF relation leads to systematic errors and biases in the velocity field. We evaluate these effects using optical rotation curves and HI linewidth data. The TF relation can be improved by adding shape parameters to characterize the HI profiles. We construct the I

  19. Large-scale volcanism associated with coronae on Venus

    NASA Technical Reports Server (NTRS)

    Roberts, K. Magee; Head, James W.

    1993-01-01

    The formation and evolution of coronae on Venus are thought to be the result of mantle upwellings against the crust and lithosphere and subsequent gravitational relaxation. A variety of other features on Venus have been linked to processes associated with mantle upwelling, including shield volcanoes on large regional rises such as Beta, Atla and Western Eistla Regiones and extensive flow fields such as Mylitta and Kaiwan Fluctus near the Lada Terra/Lavinia Planitia boundary. Of these features, coronae appear to possess the smallest amounts of associated volcanism, although volcanism associated with coronae has only been qualitatively examined. An initial survey of coronae based on recent Magellan data indicated that only 9 percent of all coronae are associated with substantial amounts of volcanism, including interior calderas or edifices greater than 50 km in diameter and extensive, exterior radial flow fields. Sixty-eight percent of all coronae were found to have lesser amounts of volcanism, including interior flooding and associated volcanic domes and small shields; the remaining coronae were considered deficient in associated volcanism. It is possible that coronae are related to mantle plumes or diapirs that are lower in volume or in partial melt than those associated with the large shields or flow fields. Regional tectonics or variations in local crustal and thermal structure may also be significant in determining the amount of volcanism produced from an upwelling. It is also possible that flow fields associated with some coronae are sheet-like in nature and may not be readily identified. If coronae are associated with volcanic flow fields, then they may be a significant contributor to plains formation on Venus, as they number over 300 and are widely distributed across the planet. As a continuation of our analysis of large-scale volcanism on Venus, we have reexamined the known population of coronae and assessed quantitatively the scale of volcanism associated

  20. Performance of hybrid methods for large-scale unconstrained optimization as applied to models of proteins.

    PubMed

    Das, B; Meirovitch, H; Navon, I M

    2003-07-30

    Energy minimization plays an important role in structure determination and analysis of proteins, peptides, and other organic molecules; therefore, development of efficient minimization algorithms is important. Recently, Morales and Nocedal developed hybrid methods for large-scale unconstrained optimization that interlace iterations of the limited-memory BFGS method (L-BFGS) and the Hessian-free Newton method (Computat Opt Appl 2002, 21, 143-154). We test the performance of this approach as compared to those of the L-BFGS algorithm of Liu and Nocedal and the truncated Newton (TN) with automatic preconditioner of Nash, as applied to the protein bovine pancreatic trypsin inhibitor (BPTI) and a loop of the protein ribonuclease A. These systems are described by the all-atom AMBER force field with a dielectric constant epsilon = 1 and a distance-dependent dielectric function epsilon = 2r, where r is the distance between two atoms. It is shown that for the optimal parameters the hybrid approach is typically two times more efficient in terms of CPU time and function/gradient calculations than the two other methods. The advantage of the hybrid approach increases as the electrostatic interactions become stronger, that is, in going from epsilon = 2r to epsilon = 1, which leads to a more rugged and probably more nonlinear potential energy surface. However, no general rule that defines the optimal parameters has been found and their determination requires a relatively large number of trial-and-error calculations for each problem.

  1. Preliminary field trials of acrolein in the Sudan*

    PubMed Central

    Ferguson, Frederick F.; Dawood, Ismail K.; Blondeau, René

    1965-01-01

    Field trials of acrolein for the simultaneous control of aquatic weeds and snails were conducted in the Sudan. Phytotoxicity studies at 25 and 50 ppm showed minor or no damage to furrow-irrigated crops, but flood irrigation of vegetable seedlings at 15 ppm was toxic. Effective downstream carriage of acrolein was demonstrated for a distance of 1.6 km at a concentration of 25 ppm. Planorbid snails (Bulinus and Biomphalaria) were almost completely eliminated (98-99% kills). All submersed aquatic weeds were destroyed. PMID:14310912

  2. Spontaneous Formation of Surface Magnetic Structure from Large-scale Dynamo in Strongly Stratified Convection

    NASA Astrophysics Data System (ADS)

    Masada, Youhei; Sano, Takayoshi

    2016-05-01

    We report the first successful simulation of spontaneous formation of surface magnetic structures from a large-scale dynamo by strongly stratified thermal convection in Cartesian geometry. The large-scale dynamo observed in our strongly stratified model has physical properties similar to those in earlier weakly stratified convective dynamo simulations, indicating that the α 2-type mechanism is responsible for the dynamo. In addition to the large-scale dynamo, we find that large-scale structures of the vertical magnetic field are spontaneously formed in the convection zone (CZ) surface only in cases with a strongly stratified atmosphere. The organization of the vertical magnetic field proceeds in the upper CZ within tens of convective turnover time and band-like bipolar structures recurrently appear in the dynamo-saturated stage. We consider several candidates to be possibly be the origin of the surface magnetic structure formation, and then suggest the existence of an as-yet-unknown mechanism for the self-organization of the large-scale magnetic structure, which should be inherent in the strongly stratified convective atmosphere.

  3. Polymer Physics of the Large-Scale Structure of Chromatin.

    PubMed

    Bianco, Simona; Chiariello, Andrea Maria; Annunziatella, Carlo; Esposito, Andrea; Nicodemi, Mario

    2016-01-01

    We summarize the picture emerging from recently proposed models of polymer physics describing the general features of chromatin large scale spatial architecture, as revealed by microscopy and Hi-C experiments. PMID:27659986

  4. Large-scale anisotropy of the cosmic microwave background radiation

    NASA Technical Reports Server (NTRS)

    Silk, J.; Wilson, M. L.

    1981-01-01

    Inhomogeneities in the large-scale distribution of matter inevitably lead to the generation of large-scale anisotropy in the cosmic background radiation. The dipole, quadrupole, and higher order fluctuations expected in an Einstein-de Sitter cosmological model have been computed. The dipole and quadrupole anisotropies are comparable to the measured values, and impose important constraints on the allowable spectrum of large-scale matter density fluctuations. A significant dipole anisotropy is generated by the matter distribution on scales greater than approximately 100 Mpc. The large-scale anisotropy is insensitive to the ionization history of the universe since decoupling, and cannot easily be reconciled with a galaxy formation theory that is based on primordial adiabatic density fluctuations.

  5. Polymer Physics of the Large-Scale Structure of Chromatin.

    PubMed

    Bianco, Simona; Chiariello, Andrea Maria; Annunziatella, Carlo; Esposito, Andrea; Nicodemi, Mario

    2016-01-01

    We summarize the picture emerging from recently proposed models of polymer physics describing the general features of chromatin large scale spatial architecture, as revealed by microscopy and Hi-C experiments.

  6. Large scale anomalies in the microwave background: causation and correlation.

    PubMed

    Aslanyan, Grigor; Easther, Richard

    2013-12-27

    Most treatments of large scale anomalies in the microwave sky are a posteriori, with unquantified look-elsewhere effects. We contrast these with physical models of specific inhomogeneities in the early Universe which can generate these apparent anomalies. Physical models predict correlations between candidate anomalies and the corresponding signals in polarization and large scale structure, reducing the impact of cosmic variance. We compute the apparent spatial curvature associated with large-scale inhomogeneities and show that it is typically small, allowing for a self-consistent analysis. As an illustrative example we show that a single large plane wave inhomogeneity can contribute to low-l mode alignment and odd-even asymmetry in the power spectra and the best-fit model accounts for a significant part of the claimed odd-even asymmetry. We argue that this approach can be generalized to provide a more quantitative assessment of potential large scale anomalies in the Universe.

  7. Ferroelectric opening switches for large-scale pulsed power drivers.

    SciTech Connect

    Brennecka, Geoffrey L.; Rudys, Joseph Matthew; Reed, Kim Warren; Pena, Gary Edward; Tuttle, Bruce Andrew; Glover, Steven Frank

    2009-11-01

    Fast electrical energy storage or Voltage-Driven Technology (VDT) has dominated fast, high-voltage pulsed power systems for the past six decades. Fast magnetic energy storage or Current-Driven Technology (CDT) is characterized by 10,000 X higher energy density than VDT and has a great number of other substantial advantages, but it has all but been neglected for all of these decades. The uniform explanation for neglect of CDT technology is invariably that the industry has never been able to make an effective opening switch, which is essential for the use of CDT. Most approaches to opening switches have involved plasma of one sort or another. On a large scale, gaseous plasmas have been used as a conductor to bridge the switch electrodes that provides an opening function when the current wave front propagates through to the output end of the plasma and fully magnetizes the plasma - this is called a Plasma Opening Switch (POS). Opening can be triggered in a POS using a magnetic field to push the plasma out of the A-K gap - this is called a Magnetically Controlled Plasma Opening Switch (MCPOS). On a small scale, depletion of electron plasmas in semiconductor devices is used to affect opening switch behavior, but these devices are relatively low voltage and low current compared to the hundreds of kilo-volts and tens of kilo-amperes of interest to pulsed power. This work is an investigation into an entirely new approach to opening switch technology that utilizes new materials in new ways. The new materials are Ferroelectrics and using them as an opening switch is a stark contrast to their traditional applications in optics and transducer applications. Emphasis is on use of high performance ferroelectrics with the objective of developing an opening switch that would be suitable for large scale pulsed power applications. Over the course of exploring this new ground, we have discovered new behaviors and properties of these materials that were here to fore unknown. Some of

  8. Characterizing unknown systematics in large scale structure surveys

    SciTech Connect

    Agarwal, Nishant; Ho, Shirley; Myers, Adam D.; Seo, Hee-Jong; Ross, Ashley J.; Bahcall, Neta; Brinkmann, Jonathan; Eisenstein, Daniel J.; Muna, Demitri; Palanque-Delabrouille, Nathalie; Yèche, Christophe; Petitjean, Patrick; Schneider, Donald P.; Streblyanska, Alina; Weaver, Benjamin A.

    2014-04-01

    Photometric large scale structure (LSS) surveys probe the largest volumes in the Universe, but are inevitably limited by systematic uncertainties. Imperfect photometric calibration leads to biases in our measurements of the density fields of LSS tracers such as galaxies and quasars, and as a result in cosmological parameter estimation. Earlier studies have proposed using cross-correlations between different redshift slices or cross-correlations between different surveys to reduce the effects of such systematics. In this paper we develop a method to characterize unknown systematics. We demonstrate that while we do not have sufficient information to correct for unknown systematics in the data, we can obtain an estimate of their magnitude. We define a parameter to estimate contamination from unknown systematics using cross-correlations between different redshift slices and propose discarding bins in the angular power spectrum that lie outside a certain contamination tolerance level. We show that this method improves estimates of the bias using simulated data and further apply it to photometric luminous red galaxies in the Sloan Digital Sky Survey as a case study.

  9. Approximate registration of point clouds with large scale differences

    NASA Astrophysics Data System (ADS)

    Novak, D.; Schindler, K.

    2013-10-01

    3D reconstruction of objects is a basic task in many fields, including surveying, engineering, entertainment and cultural heritage. The task is nowadays often accomplished with a laser scanner, which produces dense point clouds, but lacks accurate colour information, and lacks per-point accuracy measures. An obvious solution is to combine laser scanning with photogrammetric recording. In that context, the problem arises to register the two datasets, which feature large scale, translation and rotation differences. The absence of approximate registration parameters (3D translation, 3D rotation and scale) precludes the use of fine-registration methods such as ICP. Here, we present a method to register realistic photogrammetric and laser point clouds in a fully automated fashion. The proposed method decomposes the registration into a sequence of simpler steps: first, two rotation angles are determined by finding dominant surface normal directions, then the remaining parameters are found with RANSAC followed by ICP and scale refinement. These two steps are carried out at low resolution, before computing a precise final registration at higher resolution.

  10. Applications of large-scale computation to particle accelerators

    SciTech Connect

    Herrmannsfeldt, W.B.

    1991-05-01

    The rapid growth in the power of large-scale computers has had a revolutionary effect on the study of charged-particle accelerators that is similar to the impact of smaller computers on everyday life. Before an accelerator is built, it is now the absolute rule to simulate every component and subsystem by computer to establish modes of operation and tolerances. We will bypass the important and fruitful areas of control and operation, and consider only application to design and diagnostic interpretation. Applications of computers can be divided into separate categories including: component design, system design, stability studies, cost optimization, and operating condition simulation. For the purposes of this report, we will choose a few examples from the above categories to illustrate the methods used, and discuss the significance of the work to the project. We also briefly discuss the accelerator project itself. The examples that will be discussed are: The design of accelerator structures for electron-positron linear colliders and circular colliding beam systems, simulation of the wake fields from multibunch electron beams for linear colliders. Particle-in-cell simulation of space-charge dominated beams for an experimental linear induction accelerator for Heavy Ion Fusion.

  11. Deciphering landslide behavior using large-scale flume experiments

    USGS Publications Warehouse

    Reid, Mark E.; Iverson, Richard M.; Iverson, Neal R.; LaHusen, Richard G.; Brien, Dianne L.; Logan, Matthew

    2008-01-01

    Landslides can be triggered by a variety of hydrologic events and they can exhibit a wide range of movement dynamics. Effective prediction requires understanding these diverse behaviors. Precise evaluation in the field is difficult; as an alternative we performed a series of landslide initiation experiments in the large-scale, USGS debris-flow flume. We systematically investigated the effects of three different hydrologic triggering mechanisms, including groundwater exfiltration from bedrock, prolonged rainfall infiltration, and intense bursts of rain. We also examined the effects of initial soil porosity (loose or dense) relative to the soil’s critical-state porosity. Results show that all three hydrologic mechanisms can instigate landsliding, but water pathways, sensor response patterns, and times to failure differ. Initial soil porosity has a profound influence on landslide movement behavior. Experiments using loose soil show rapid soil contraction during failure, with elevated pore pressures liquefying the sediment and creating fast-moving debris flows. In contrast, dense soil dilated upon shearing, resulting in slow, gradual, and episodic motion. These results have fundamental implications for forecasting landslide behavior and developing effective warning systems.

  12. Large-scale studies of marked birds in North America

    USGS Publications Warehouse

    Tautin, J.; Metras, L.; Smith, G.

    1999-01-01

    The first large-scale, co-operative, studies of marked birds in North America were attempted in the 1950s. Operation Recovery, which linked numerous ringing stations along the east coast in a study of autumn migration of passerines, and the Preseason Duck Ringing Programme in prairie states and provinces, conclusively demonstrated the feasibility of large-scale projects. The subsequent development of powerful analytical models and computing capabilities expanded the quantitative potential for further large-scale projects. Monitoring Avian Productivity and Survivorship, and Adaptive Harvest Management are current examples of truly large-scale programmes. Their exemplary success and the availability of versatile analytical tools are driving changes in the North American bird ringing programme. Both the US and Canadian ringing offices are modifying operations to collect more and better data to facilitate large-scale studies and promote a more project-oriented ringing programme. New large-scale programmes such as the Cornell Nest Box Network are on the horizon.

  13. A study of MLFMA for large-scale scattering problems

    NASA Astrophysics Data System (ADS)

    Hastriter, Michael Larkin

    This research is centered in computational electromagnetics with a focus on solving large-scale problems accurately in a timely fashion using first principle physics. Error control of the translation operator in 3-D is shown. A parallel implementation of the multilevel fast multipole algorithm (MLFMA) was studied as far as parallel efficiency and scaling. The large-scale scattering program (LSSP), based on the ScaleME library, was used to solve ultra-large-scale problems including a 200lambda sphere with 20 million unknowns. As these large-scale problems were solved, techniques were developed to accurately estimate the memory requirements. Careful memory management is needed in order to solve these massive problems. The study of MLFMA in large-scale problems revealed significant errors that stemmed from inconsistencies in constants used by different parts of the algorithm. These were fixed to produce the most accurate data possible for large-scale surface scattering problems. Data was calculated on a missile-like target using both high frequency methods and MLFMA. This data was compared and analyzed to determine possible strategies to increase data acquisition speed and accuracy through multiple computation method hybridization.

  14. Intracluster light in the Virgo cluster: large scale distribution

    NASA Astrophysics Data System (ADS)

    Castro-Rodriguéz, N.; Arnaboldi, M.; Aguerri, J. A. L.; Gerhard, O.; Okamura, S.; Yasuda, N.; Freeman, K. C.

    2009-11-01

    Aims: The intracluster light (ICL) is a faint diffuse stellar component of clusters made of stars that are not bound to individual galaxies. We have carried out a large scale study of this component in the nearby Virgo cluster. Methods: The diffuse light is traced using planetary nebulae (PNe). The surveyed areas were observed with a narrow-band filter centered on the [OIII]λ 5007 Å emission line redshifted to the Virgo cluster distance (the on-band image), and a broad-band filter (the off-band image). For some fields, additional narrow band imaging data corresponding to the Hα emission were also obtained. The PNe are detected in the on-band image due to their strong emission in the [OIII]λ 5007 Å line, but disappear in the off-band image. The contribution of Ly-α emitters at z=3.14 are corrected statistically using blank field surveys, when the Hα image at the field position is not available. Results: We have surveyed a total area of 3.3 square degrees in the Virgo cluster with eleven fields located at different radial distances. Those fields located at smaller radii than 80 arcmin from the cluster center contain most of the detected diffuse light. In this central region of the cluster, the ICL has a surface brightness in the range μB = 28.8-30 mag arsec-2, it is not uniformly distributed, and represents about 7% of the total galaxy light in this area. At distances larger than 80 arcmin the ICL is confined to single fields and individual sub-structures, e.g. in the sub-clump B, the M 60/M 59 group. For several fields at 2 and 3 degrees from the Virgo cluster center we set only upper limits. Conclusions: These results indicate that the ICL is not homogeneously distributed in the Virgo core, and it is concentrated in the high density regions of the Virgo cluster, e.g. the cluster core and other sub-structures. Outside these regions, the ICL is confined within areas of ~100 kpc in size, where tidal effects may be at work. These observational results link the

  15. Radium removal in a large scale evaporitic system

    NASA Astrophysics Data System (ADS)

    Rosenberg, Yoav Oved; Metz, Volker; Ganor, Jiwchar

    2013-02-01

    The removal of radium during co-precipitation with barite (BaSO4) (i.e., the precipitation of a (Ra,Ba)SO4 solid solution) is an important process with many geochemical applications. During the last century the precipitation of (Ra,Ba)SO4 solid solution was extensively studied in laboratory experiments at different temperature and salinities. The outcome of such small scale experiments often serves in theoretical safety assessments simulation, but was hardly tested over large scale field systems. In this study the precipitation of Ra was investigated in a large scale field system and found to be controlled by the formation of a (Ra,Ba)SO4 solid solution. The results are comparable to laboratory based studies conducted with the same solution. The field system is comprised of six sequential evaporation ponds and has a total volume of ˜3.25 × 105 m3. In the ponds a reject brine of a desalination plant is evaporated. The non-evaporated brine has an ionic strength of 0.7 m, 226Ra concentration of ˜12 Bq kg-1, and it is oversaturated with respect to gypsum, celestite and barite. Upon its evaporation the ionic strength increases up to 12 m, and a total amount of ˜4 × 106 kg year-1 of sulphate minerals precipitates. Chemical analysis of solid samples collected from the ponds revealed that the precipitation of Ra is concurrent with Ba, indicating on the formation of a (Ra,Ba)SO4 solid solution. A detailed mass balance of the different solutes in the brine of the ponds allowed us to quantitatively study the effects of ionic strength and precipitation kinetics on the (Ra,Ba)SO4 solid solution composition. The results of the present field study were comparable to laboratory based experiments, suggesting that in the complex field system, as in the lab, the same factors affect the formation of the (Ra,Ba)SO4 solid solution. It is shown that as a result of both ionic strength and kinetic effects the solid solution composition is less Ra enriched; i.e., the concentration

  16. [Ecology of syngamosis in a large scale farming area].

    PubMed

    Bejsovec, J

    1976-11-01

    Within recent 20 years, Czechoslovak agriculture has undergone considerable changes due to the introduction of largescale farming. Our contribution presents the results of studies on chickens (Gallus gallus f. dom.) reared traditionally on runs in an area contaminated with the eggs of Syngamus trachea distributed with pheasant faeces. In addition to postmortem examination of 336 chicken tracheae, their faeces collected for one year from the runs were examined, but syngamosis was not found. Studies on small stocks of fowl in gardens close to the fields visited regularly by roosting, Syngamus-infected pheasants disclosed an occasional incidence of syngamosis in the chickens, none in guinea fowl, but frequent infection in young and adult turkeys. Another observation was made on a chicken stock reared inside a pheasantry. Although the incidence of infection of the pheasants with syngamosis was high throughout most of the year, an occasional infection only of the chickens was observed in three months. Postmortem examination of 254 tracheae of free-living birds disclosed that the incidence of syngamosis was highest in the pheasant. - Due to the introduction of large-scale farming, numerous biotopes formerly covered with trees and shrubs, were changed into arrable land. A considerable reduction occurred in the former high stand of partridges (Perdix perdix), while the pheasant (Phasianus colchicus) became widely distributed in agricultural areas. We studied the ecology of the pheasant in various biotopes by means of regular coprological examination without disturbance of the pheasants under consideration. Throughout most of the year the pheasant roosts on trees often growing in moist biotopes. In the morning and evening, the pheasant feeds regularly off the ground close to the roosting trees. From the spring onwards, throughout the summer any autumn, we observed at several sites a marked distribution of pheasants from the trees into the field where they roosted on the

  17. Conducting field trials for frost tolerance breeding in cereals.

    PubMed

    Cattivelli, Luigi

    2014-01-01

    Cereal species can be damaged by frost either during winter or at flowering stage. Frost tolerance per se is only a part of the mechanisms that allow the plants to survive during winter; winterhardiness also considers other biotic or physical stresses that challenge the plants during the winter season limiting their survival rate. While frost tolerance can also be tested in controlled environments, winterhardiness can be determined only with field evaluations. Post-heading frost damage occurs from radiation frost events in spring during the reproductive stages. A reliable evaluation of winterhardiness or of post-heading frost damage should be carried out with field trials replicated across years and locations to overcome the irregular occurrence of natural conditions which satisfactorily differentiate genotypes. The evaluation of post-heading frost damage requires a specific attention to plant phenology. The extent of frost damage is usually determined with a visual score at the end of the winter.

  18. Field trial of a Doppler sonar system for fisheries applications

    NASA Astrophysics Data System (ADS)

    Tollefsen, Cristina D. S.; Zedel, Len

    2003-10-01

    Various deployments of commercial Doppler current profiling systems have demonstrated that these instruments can detect fish and measure their swimming speeds. However, research into the possible application of Doppler sonar to fisheries problems is limited and has not taken advantage of coherent signal processing schemes. A field trial was undertaken in August 2002 to explore the capabilities of a coherent Doppler sonar when applied to detecting discrete targets. The passage of migrating salmon on the Fraser River in British Columbia provided an ideal test opportunity with fish of well-defined swimming behavior and allowed for comparisons with conventional fisheries acoustics techniques. The instrument tested was a 250-kHz sonar which provided for phase coding of transmit pulses and coherent sampling of successive acoustic returns. The field trial resulted in 11 consecutive days of Doppler sonar data acquired during the peak of the sockeye salmon (Oncorhynchus nerka) migration. A total of 7425 individual fish were identified and their swimming speed was measured with an accuracy of between 10 cms-1 and 20 cms-1, which depended on pulse length, pulse spacing, and target range. By comparison, water velocity measurements made with the same instrument can only achieve a theoretical accuracy of 60 cms-1.

  19. Large-scale multielectrode recording and stimulation of neural activity

    NASA Astrophysics Data System (ADS)

    Sher, A.; Chichilnisky, E. J.; Dabrowski, W.; Grillo, A. A.; Grivich, M.; Gunning, D.; Hottowy, P.; Kachiguine, S.; Litke, A. M.; Mathieson, K.; Petrusca, D.

    2007-09-01

    Large circuits of neurons are employed by the brain to encode and process information. How this encoding and processing is carried out is one of the central questions in neuroscience. Since individual neurons communicate with each other through electrical signals (action potentials), the recording of neural activity with arrays of extracellular electrodes is uniquely suited for the investigation of this question. Such recordings provide the combination of the best spatial (individual neurons) and temporal (individual action-potentials) resolutions compared to other large-scale imaging methods. Electrical stimulation of neural activity in turn has two very important applications: it enhances our understanding of neural circuits by allowing active interactions with them, and it is a basis for a large variety of neural prosthetic devices. Until recently, the state-of-the-art in neural activity recording systems consisted of several dozen electrodes with inter-electrode spacing ranging from tens to hundreds of microns. Using silicon microstrip detector expertise acquired in the field of high-energy physics, we created a unique neural activity readout and stimulation framework that consists of high-density electrode arrays, multi-channel custom-designed integrated circuits, a data acquisition system, and data-processing software. Using this framework we developed a number of neural readout and stimulation systems: (1) a 512-electrode system for recording the simultaneous activity of as many as hundreds of neurons, (2) a 61-electrode system for electrical stimulation and readout of neural activity in retinas and brain-tissue slices, and (3) a system with telemetry capabilities for recording neural activity in the intact brain of awake, naturally behaving animals. We will report on these systems, their various applications to the field of neurobiology, and novel scientific results obtained with some of them. We will also outline future directions.

  20. Spatiotemporal dynamics of large-scale brain activity

    NASA Astrophysics Data System (ADS)

    Neuman, Jeremy

    Understanding the dynamics of large-scale brain activity is a tough challenge. One reason for this is the presence of an incredible amount of complexity arising from having roughly 100 billion neurons connected via 100 trillion synapses. Because of the extremely high number of degrees of freedom in the nervous system, the question of how the brain manages to properly function and remain stable, yet also be adaptable, must be posed. Neuroscientists have identified many ways the nervous system makes this possible, of which synaptic plasticity is possibly the most notable one. On the other hand, it is vital to understand how the nervous system also loses stability, resulting in neuropathological diseases such as epilepsy, a disease which affects 1% of the population. In the following work, we seek to answer some of these questions from two different perspectives. The first uses mean-field theory applied to neuronal populations, where the variables of interest are the percentages of active excitatory and inhibitory neurons in a network, to consider how the nervous system responds to external stimuli, self-organizes and generates epileptiform activity. The second method uses statistical field theory, in the framework of single neurons on a lattice, to study the concept of criticality, an idea borrowed from physics which posits that in some regime the brain operates in a collectively stable or marginally stable manner. This will be examined in two different neuronal networks with self-organized criticality serving as the overarching theme for the union of both perspectives. One of the biggest problems in neuroscience is the question of to what extent certain details are significant to the functioning of the brain. These details give rise to various spatiotemporal properties that at the smallest of scales explain the interaction of single neurons and synapses and at the largest of scales describe, for example, behaviors and sensations. In what follows, we will shed some

  1. Quasars as a Tracer of Large-scale Structures in the Distant Universe

    NASA Astrophysics Data System (ADS)

    Song, Hyunmi; Park, Changbom; Lietzen, Heidi; Einasto, Maret

    2016-08-01

    We study the dependence of the number density and properties of quasars on the background galaxy density using the currently largest spectroscopic data sets of quasars and galaxies. We construct a galaxy number density field smoothed over the variable smoothing scale of between approximately 10 and 20 h -1 Mpc over the redshift range 0.46 < z < 0.59 using the Sloan Digital Sky Survey (SDSS) Data Release 12 (DR12) Constant MASS galaxies. The quasar sample is prepared from the SDSS-I/II DR7. We examine the correlation of incidence of quasars with the large-scale background density and the dependence of quasar properties such as bolometric luminosity, black hole mass, and Eddington ratio on the large-scale density. We find a monotonic correlation between the quasar number density and large-scale galaxy number density, which is fitted well with a power-law relation, {n}Q\\propto {ρ }G0.618. We detect weak dependences of quasar properties on the large-scale density such as a positive correlation between black hole mass and density, and a negative correlation between luminosity and density. We discuss the possibility of using quasars as a tracer of large-scale structures at high redshifts, which may be useful for studies of the growth of structures in the high-redshift universe.

  2. Human-Machine Cooperation in Large-Scale Multimedia Retrieval: A Survey

    ERIC Educational Resources Information Center

    Shirahama, Kimiaki; Grzegorzek, Marcin; Indurkhya, Bipin

    2015-01-01

    "Large-Scale Multimedia Retrieval" (LSMR) is the task to fast analyze a large amount of multimedia data like images or videos and accurately find the ones relevant to a certain semantic meaning. Although LSMR has been investigated for more than two decades in the fields of multimedia processing and computer vision, a more…

  3. Linking Large-Scale Reading Assessments: Measuring International Trends over 40 Years

    ERIC Educational Resources Information Center

    Strietholt, Rolf; Rosén, Monica

    2016-01-01

    Since the start of the new millennium, international comparative large-scale studies have become one of the most well-known areas in the field of education. However, the International Association for the Evaluation of Educational Achievement (IEA) has already been conducting international comparative studies for about half a century. The present…

  4. Understanding Participation in E-Learning in Organizations: A Large-Scale Empirical Study of Employees

    ERIC Educational Resources Information Center

    Garavan, Thomas N.; Carbery, Ronan; O'Malley, Grace; O'Donnell, David

    2010-01-01

    Much remains unknown in the increasingly important field of e-learning in organizations. Drawing on a large-scale survey of employees (N = 557) who had opportunities to participate in voluntary e-learning activities, the factors influencing participation in e-learning are explored in this empirical paper. It is hypothesized that key variables…

  5. Large scale metal-free synthesis of graphene on sapphire and transfer-free device fabrication.

    PubMed

    Song, Hyun Jae; Son, Minhyeok; Park, Chibeom; Lim, Hyunseob; Levendorf, Mark P; Tsen, Adam W; Park, Jiwoong; Choi, Hee Cheul

    2012-05-21

    Metal catalyst-free growth of large scale single layer graphene film on a sapphire substrate by a chemical vapor deposition (CVD) process at 950 °C is demonstrated. A top-gated graphene field effect transistor (FET) device is successfully fabricated without any transfer process. The detailed growth process is investigated by the atomic force microscopy (AFM) studies. PMID:22526246

  6. Presenting an Approach for Conducting Knowledge Architecture within Large-Scale Organizations.

    PubMed

    Varaee, Touraj; Habibi, Jafar; Mohaghar, Ali

    2015-01-01

    Knowledge architecture (KA) establishes the basic groundwork for the successful implementation of a short-term or long-term knowledge management (KM) program. An example of KA is the design of a prototype before a new vehicle is manufactured. Due to a transformation to large-scale organizations, the traditional architecture of organizations is undergoing fundamental changes. This paper explores the main strengths and weaknesses in the field of KA within large-scale organizations and provides a suitable methodology and supervising framework to overcome specific limitations. This objective was achieved by applying and updating the concepts from the Zachman information architectural framework and the information architectural methodology of enterprise architecture planning (EAP). The proposed solution may be beneficial for architects in knowledge-related areas to successfully accomplish KM within large-scale organizations. The research method is descriptive; its validity is confirmed by performing a case study and polling the opinions of KA experts. PMID:25993414

  7. Presenting an Approach for Conducting Knowledge Architecture within Large-Scale Organizations

    PubMed Central

    Varaee, Touraj; Habibi, Jafar; Mohaghar, Ali

    2015-01-01

    Knowledge architecture (KA) establishes the basic groundwork for the successful implementation of a short-term or long-term knowledge management (KM) program. An example of KA is the design of a prototype before a new vehicle is manufactured. Due to a transformation to large-scale organizations, the traditional architecture of organizations is undergoing fundamental changes. This paper explores the main strengths and weaknesses in the field of KA within large-scale organizations and provides a suitable methodology and supervising framework to overcome specific limitations. This objective was achieved by applying and updating the concepts from the Zachman information architectural framework and the information architectural methodology of enterprise architecture planning (EAP). The proposed solution may be beneficial for architects in knowledge-related areas to successfully accomplish KM within large-scale organizations. The research method is descriptive; its validity is confirmed by performing a case study and polling the opinions of KA experts. PMID:25993414

  8. Presenting an Approach for Conducting Knowledge Architecture within Large-Scale Organizations.

    PubMed

    Varaee, Touraj; Habibi, Jafar; Mohaghar, Ali

    2015-01-01

    Knowledge architecture (KA) establishes the basic groundwork for the successful implementation of a short-term or long-term knowledge management (KM) program. An example of KA is the design of a prototype before a new vehicle is manufactured. Due to a transformation to large-scale organizations, the traditional architecture of organizations is undergoing fundamental changes. This paper explores the main strengths and weaknesses in the field of KA within large-scale organizations and provides a suitable methodology and supervising framework to overcome specific limitations. This objective was achieved by applying and updating the concepts from the Zachman information architectural framework and the information architectural methodology of enterprise architecture planning (EAP). The proposed solution may be beneficial for architects in knowledge-related areas to successfully accomplish KM within large-scale organizations. The research method is descriptive; its validity is confirmed by performing a case study and polling the opinions of KA experts.

  9. Approaches to large scale unsaturated flow in heterogeneous, stratified, and fractured geologic media

    SciTech Connect

    Ababou, R.

    1991-08-01

    This report develops a broad review and assessment of quantitative modeling approaches and data requirements for large-scale subsurface flow in radioactive waste geologic repository. The data review includes discussions of controlled field experiments, existing contamination sites, and site-specific hydrogeologic conditions at Yucca Mountain. Local-scale constitutive models for the unsaturated hydrodynamic properties of geologic media are analyzed, with particular emphasis on the effect of structural characteristics of the medium. The report further reviews and analyzes large-scale hydrogeologic spatial variability from aquifer data, unsaturated soil data, and fracture network data gathered from the literature. Finally, various modeling strategies toward large-scale flow simulations are assessed, including direct high-resolution simulation, and coarse-scale simulation based on auxiliary hydrodynamic models such as single equivalent continuum and dual-porosity continuum. The roles of anisotropy, fracturing, and broad-band spatial variability are emphasized. 252 refs.

  10. Composting in cold climates: Results from two field trials

    SciTech Connect

    McMillen, S.J.; Kerr, J.M.; Davis, P.S.; Bruney, J.M.

    1996-12-31

    Two composting field trials have been successfully completed at Exxon Company USA`s Big Stick Madison Unit (BSMU) in Billings, North Dakota and Imperial Oil`s (Exxon`s Canadian affiliate) Willesden Green producing field in the Province of Alberta, Canada. Composting is a bioremediation method in which bulking agents such as manure, wood chips, and straw are added to oily soil/sludge to improve the soil texture, tilth, air permeability, water holding capacity, and organic matter content. The compost mixture is placed in windrows or static piles where heat is generated by microbial breakdown of hydrocarbons and organic matter. Because composting conserves heat generated by biodegradation, it is well suited for bioremediating wastes in cold climates. In addition, the temperature in the piles increases the rate of the biochemical processes responsible for oil degradation and can significantly reduce the time required to achieve a remediation target. Elevated temperatures were observed in both field trials, and in Canada the compost piles remained warm throughout the winter months thereby expanding the normal bioremediation season. Hydrocarbon loss data indicate that clean-up criteria for both sites was met within a few months. Extensive hydrocarbon characterization confirmed that the total petroleum hydrocarbon losses were due to biodegradation. At the BSMU site 71 cubic yards (54 m{sup 3}) of oily soil were composted in five windrows that were aerated by periodic tilling, and at Willesden Green 1700 cubic yards (1300 m{sup 3}) of oily soil were composted in three static, passively aerated piles.

  11. EINSTEIN'S SIGNATURE IN COSMOLOGICAL LARGE-SCALE STRUCTURE

    SciTech Connect

    Bruni, Marco; Hidalgo, Juan Carlos; Wands, David

    2014-10-10

    We show how the nonlinearity of general relativity generates a characteristic nonGaussian signal in cosmological large-scale structure that we calculate at all perturbative orders in a large-scale limit. Newtonian gravity and general relativity provide complementary theoretical frameworks for modeling large-scale structure in ΛCDM cosmology; a relativistic approach is essential to determine initial conditions, which can then be used in Newtonian simulations studying the nonlinear evolution of the matter density. Most inflationary models in the very early universe predict an almost Gaussian distribution for the primordial metric perturbation, ζ. However, we argue that it is the Ricci curvature of comoving-orthogonal spatial hypersurfaces, R, that drives structure formation at large scales. We show how the nonlinear relation between the spatial curvature, R, and the metric perturbation, ζ, translates into a specific nonGaussian contribution to the initial comoving matter density that we calculate for the simple case of an initially Gaussian ζ. Our analysis shows the nonlinear signature of Einstein's gravity in large-scale structure.

  12. Passive drainage and biofiltration of landfill gas: Australian field trial

    SciTech Connect

    Dever, S.A. . E-mail: stuart_dever@ghd.com.au; Swarbrick, G.E. . E-mail: g.swarbrick@unsw.edu.au; Stuetz, R.M. . E-mail: r.stuetz@unsw.edu.au

    2007-07-01

    In Australia a significant number of landfill waste disposal sites do not incorporate measures for the collection and treatment of landfill gas. This includes many old/former landfill sites, rural landfill sites, non-putrescible solid waste and inert waste landfill sites, where landfill gas generation is low and it is not commercially viable to extract and beneficially utilize the landfill gas. Previous research has demonstrated that biofiltration has the potential to degrade methane in landfill gas, however, the microbial processes can be affected by many local conditions and factors including moisture content, temperature, nutrient supply, including the availability of oxygen and methane, and the movement of gas (oxygen and methane) to/from the micro-organisms. A field scale trial is being undertaken at a landfill site in Sydney, Australia, to investigate passive drainage and biofiltration of landfill gas as a means of managing landfill gas emissions at low to moderate gas generation landfill sites. The design and construction of the trial is described and the experimental results will provide in-depth knowledge on the application of passive gas drainage and landfill gas biofiltration under Sydney (Australian) conditions, including the performance of recycled materials for the management of landfill gas emissions.

  13. What initial condition of inflation would suppress the large-scale CMB spectrum?

    DOE PAGESBeta

    Chen, Pisin; Lin, Yu -Hsiang

    2016-01-08

    There is an apparent power deficit relative to the Λ CDM prediction of the cosmic microwave background spectrum at large scales, which, though not yet statistically significant, persists from WMAP to Planck data. Proposals that invoke some form of initial condition for the inflation have been made to address this apparent power suppression, albeit with conflicting conclusions. By studying the curvature perturbations of a scalar field in the Friedmann-Lemaître-Robertson-Walker universe parameterized by the equation of state parameter w, we find that the large-scale spectrum at the end of inflation reflects the superhorizon spectrum of the initial state. The large-scale spectrummore » is suppressed if the universe begins with the adiabatic vacuum in a superinflation (w < –1) or positive-pressure (w > 0) era. In the latter case, there is however no causal mechanism to establish the initial adiabatic vacuum. On the other hand, as long as the universe begins with the adiabatic vacuum in an era with –1 < w < 0, even if there exists an intermediate positive-pressure era, the large-scale spectrum would be enhanced rather than suppressed. In conclusion, we further calculate the spectrum of a two-stage inflation model with a two-field potential and show that the result agrees with that obtained from the ad hoc single-field analysis.« less

  14. Field trials in Egypt with acrolein herbicide-molluscicide*

    PubMed Central

    Unrau, G. O.; Farooq, M.; Dawood, Ismail K.; Miguel, Luis C.; Dazo, B. C.

    1965-01-01

    Acrolein is a dual-purpose chemical effective against both submersed weeds and snails, and it may therefore be of significance in bilharziasis control. During trials in the Egypt-49-project area in 1962, it was effective in clearing heavy mats of the major submersed aquatic weed Potamogeton crispus from irrigation canals. The resurgence of snails to pretreatment levels was delayed by 8-12 months, and submersed weeds did not reappear until 8 months after treatment. In phytotoxicity tests on local crops, it was found that the concentration of acrolein required for destroying submersed weeds (20-25 ppm) had no adverse effect on the crops. The field tests showed that it is important to have complete control of the water during the period of application. PMID:14310913

  15. Toward Improved Support for Loosely Coupled Large Scale Simulation Workflows

    SciTech Connect

    Boehm, Swen; Elwasif, Wael R; Naughton, III, Thomas J; Vallee, Geoffroy R

    2014-01-01

    High-performance computing (HPC) workloads are increasingly leveraging loosely coupled large scale simula- tions. Unfortunately, most large-scale HPC platforms, including Cray/ALPS environments, are designed for the execution of long-running jobs based on coarse-grained launch capabilities (e.g., one MPI rank per core on all allocated compute nodes). This assumption limits capability-class workload campaigns that require large numbers of discrete or loosely coupled simulations, and where time-to-solution is an untenable pacing issue. This paper describes the challenges related to the support of fine-grained launch capabilities that are necessary for the execution of loosely coupled large scale simulations on Cray/ALPS platforms. More precisely, we present the details of an enhanced runtime system to support this use case, and report on initial results from early testing on systems at Oak Ridge National Laboratory.

  16. Acoustic Studies of the Large Scale Ocean Circulation

    NASA Technical Reports Server (NTRS)

    Menemenlis, Dimitris

    1999-01-01

    Detailed knowledge of ocean circulation and its transport properties is prerequisite to an understanding of the earth's climate and of important biological and chemical cycles. Results from two recent experiments, THETIS-2 in the Western Mediterranean and ATOC in the North Pacific, illustrate the use of ocean acoustic tomography for studies of the large scale circulation. The attraction of acoustic tomography is its ability to sample and average the large-scale oceanic thermal structure, synoptically, along several sections, and at regular intervals. In both studies, the acoustic data are compared to, and then combined with, general circulation models, meteorological analyses, satellite altimetry, and direct measurements from ships. Both studies provide complete regional descriptions of the time-evolving, three-dimensional, large scale circulation, albeit with large uncertainties. The studies raise serious issues about existing ocean observing capability and provide guidelines for future efforts.

  17. Coupling between convection and large-scale circulation

    NASA Astrophysics Data System (ADS)

    Becker, T.; Stevens, B. B.; Hohenegger, C.

    2014-12-01

    The ultimate drivers of convection - radiation, tropospheric humidity and surface fluxes - are altered both by the large-scale circulation and by convection itself. A quantity to which all drivers of convection contribute is moist static energy, or gross moist stability, respectively. Therefore, a variance analysis of the moist static energy budget in radiative-convective equilibrium helps understanding the interaction of precipitating convection and the large-scale environment. In addition, this method provides insights concerning the impact of convective aggregation on this coupling. As a starting point, the interaction is analyzed with a general circulation model, but a model intercomparison study using a hierarchy of models is planned. Effective coupling parameters will be derived from cloud resolving models and these will in turn be related to assumptions used to parameterize convection in large-scale models.

  18. Human pescadillo induces large-scale chromatin unfolding.

    PubMed

    Zhang, Hao; Fang, Yan; Huang, Cuifen; Yang, Xiao; Ye, Qinong

    2005-06-01

    The human pescadillo gene encodes a protein with a BRCT domain. Pescadillo plays an important role in DNA synthesis, cell proliferation and transformation. Since BRCT domains have been shown to induce chromatin large-scale unfolding, we tested the role of Pescadillo in regulation of large-scale chromatin unfolding. To this end, we isolated the coding region of Pescadillo from human mammary MCF10A cells. Compared with the reported sequence, the isolated Pescadillo contains in-frame deletion from amino acid 580 to 582. Targeting the Pescadillo to an amplified, lac operator-containing chromosome region in the mammalian genome results in large-scale chromatin decondensation. This unfolding activity maps to the BRCT domain of Pescadillo. These data provide a new clue to understanding the vital role of Pescadillo.

  19. Interloper bias in future large-scale structure surveys

    NASA Astrophysics Data System (ADS)

    Pullen, Anthony R.; Hirata, Christopher M.; Doré, Olivier; Raccanelli, Alvise

    2016-02-01

    Next-generation spectroscopic surveys will map the large-scale structure of the observable universe, using emission line galaxies as tracers. While each survey will map the sky with a specific emission line, interloping emission lines can masquerade as the survey's intended emission line at different redshifts. Interloping lines from galaxies that are not removed can contaminate the power spectrum measurement, mixing correlations from various redshifts and diluting the true signal. We assess the potential for power spectrum contamination, finding that an interloper fraction worse than 0.2% could bias power spectrum measurements for future surveys by more than 10% of statistical errors, while also biasing power spectrum inferences. We also construct a formalism for predicting cosmological parameter measurement bias, demonstrating that a 0.15%-0.3% interloper fraction could bias the growth rate by more than 10% of the error, which can affect constraints on gravity from upcoming surveys. We use the COSMOS Mock Catalog (CMC), with the emission lines rescaled to better reproduce recent data, to predict potential interloper fractions for the Prime Focus Spectrograph (PFS) and the Wide-Field InfraRed Survey Telescope (WFIRST). We find that secondary line identification, or confirming galaxy redshifts by finding correlated emission lines, can remove interlopers for PFS. For WFIRST, we use the CMC to predict that the 0.2% target can be reached for the WFIRST Hα survey, but sensitive optical and near-infrared photometry will be required. For the WFIRST [O III] survey, the predicted interloper fractions reach several percent and their effects will have to be estimated and removed statistically (e.g., with deep training samples). These results are optimistic as the CMC does not capture the full set of correlations of galaxy properties in the real Universe, and they do not include blending effects. Mitigating interloper contamination will be crucial to the next generation of

  20. CME Interaction with Large-Scale Coronal Structures

    NASA Technical Reports Server (NTRS)

    Gopalswarny, Nat

    2012-01-01

    This talk presents some key observations that highlight the importance of CME interaction with other large scale structures such as CMEs and coronal holes . Such interactions depend on the phase of the solar cycle: during maximum, CMEs are ejected more frequently, so CME-CME interaction becomes dominant. During the rise phase, the polar coronal holes are strong, so the interaction between polar coronal holes and CMEs is important, which also leads to a possible increase in the number of interplanetary CMEs observed as magnetic clouds. During the declining phase, there are more equatorial coronal holes, so CMEs originating near these coronal holes are easily deflected. CMEs can be deflected toward and away from the Sun-Earth line resulting in interesting geospace consequences. For example, the largest geomagnetic storm of solar cycle 23 was due to a CME that was deflected towards the Sun-earth line from E22. CME deflection away from the Sun-Earth line diminishes the chance of a CME producing a geomagnetic storm. CME interaction in the coronagraphic field of view was first identified using enhanced radio emission, which is an indication of acceleration of low energy (approx.10 keV) electrons in the interaction site. CME interaction, therefore, may also have implications for proton acceleration. For example, solar energetic particle events typically occur with a higher intensity, whenever multiple CMEs occur in quick succession from the same source region. CME deflection may also have implications to the arrival of energetic particles to earth because magnetic connectivity may be changed by the interaction. I illustrate the above points using examples from SOHO, STEREO, Wind, and ACE data .