Sample records for large-scale functional genomics

  1. Tomato functional genomics database (TFGD): a comprehensive collection and analysis package for tomato functional genomics

    USDA-ARS?s Scientific Manuscript database

    Tomato Functional Genomics Database (TFGD; http://ted.bti.cornell.edu) provides a comprehensive systems biology resource to store, mine, analyze, visualize and integrate large-scale tomato functional genomics datasets. The database is expanded from the previously described Tomato Expression Database...

  2. Techniques for Large-Scale Bacterial Genome Manipulation and Characterization of the Mutants with Respect to In Silico Metabolic Reconstructions.

    PubMed

    diCenzo, George C; Finan, Turlough M

    2018-01-01

    The rate at which all genes within a bacterial genome can be identified far exceeds the ability to characterize these genes. To assist in associating genes with cellular functions, a large-scale bacterial genome deletion approach can be employed to rapidly screen tens to thousands of genes for desired phenotypes. Here, we provide a detailed protocol for the generation of deletions of large segments of bacterial genomes that relies on the activity of a site-specific recombinase. In this procedure, two recombinase recognition target sequences are introduced into known positions of a bacterial genome through single cross-over plasmid integration. Subsequent expression of the site-specific recombinase mediates recombination between the two target sequences, resulting in the excision of the intervening region and its loss from the genome. We further illustrate how this deletion system can be readily adapted to function as a large-scale in vivo cloning procedure, in which the region excised from the genome is captured as a replicative plasmid. We next provide a procedure for the metabolic analysis of bacterial large-scale genome deletion mutants using the Biolog Phenotype MicroArray™ system. Finally, a pipeline is described, and a sample Matlab script is provided, for the integration of the obtained data with a draft metabolic reconstruction for the refinement of the reactions and gene-protein-reaction relationships in a metabolic reconstruction.

  3. ScreenBEAM: a novel meta-analysis algorithm for functional genomics screens via Bayesian hierarchical modeling | Office of Cancer Genomics

    Cancer.gov

    Functional genomics (FG) screens, using RNAi or CRISPR technology, have become a standard tool for systematic, genome-wide loss-of-function studies for therapeutic target discovery. As in many large-scale assays, however, off-target effects, variable reagents' potency and experimental noise must be accounted for appropriately control for false positives.

  4. Resources for Functional Genomics Studies in Drosophila melanogaster

    PubMed Central

    Mohr, Stephanie E.; Hu, Yanhui; Kim, Kevin; Housden, Benjamin E.; Perrimon, Norbert

    2014-01-01

    Drosophila melanogaster has become a system of choice for functional genomic studies. Many resources, including online databases and software tools, are now available to support design or identification of relevant fly stocks and reagents or analysis and mining of existing functional genomic, transcriptomic, proteomic, etc. datasets. These include large community collections of fly stocks and plasmid clones, “meta” information sites like FlyBase and FlyMine, and an increasing number of more specialized reagents, databases, and online tools. Here, we introduce key resources useful to plan large-scale functional genomics studies in Drosophila and to analyze, integrate, and mine the results of those studies in ways that facilitate identification of highest-confidence results and generation of new hypotheses. We also discuss ways in which existing resources can be used and might be improved and suggest a few areas of future development that would further support large- and small-scale studies in Drosophila and facilitate use of Drosophila information by the research community more generally. PMID:24653003

  5. Re-annotation, improved large-scale assembly and establishment of a catalogue of noncoding loci for the genome of the model brown alga Ectocarpus.

    PubMed

    Cormier, Alexandre; Avia, Komlan; Sterck, Lieven; Derrien, Thomas; Wucher, Valentin; Andres, Gwendoline; Monsoor, Misharl; Godfroy, Olivier; Lipinska, Agnieszka; Perrineau, Marie-Mathilde; Van De Peer, Yves; Hitte, Christophe; Corre, Erwan; Coelho, Susana M; Cock, J Mark

    2017-04-01

    The genome of the filamentous brown alga Ectocarpus was the first to be completely sequenced from within the brown algal group and has served as a key reference genome both for this lineage and for the stramenopiles. We present a complete structural and functional reannotation of the Ectocarpus genome. The large-scale assembly of the Ectocarpus genome was significantly improved and genome-wide gene re-annotation using extensive RNA-seq data improved the structure of 11 108 existing protein-coding genes and added 2030 new loci. A genome-wide analysis of splicing isoforms identified an average of 1.6 transcripts per locus. A large number of previously undescribed noncoding genes were identified and annotated, including 717 loci that produce long noncoding RNAs. Conservation of lncRNAs between Ectocarpus and another brown alga, the kelp Saccharina japonica, suggests that at least a proportion of these loci serve a function. Finally, a large collection of single nucleotide polymorphism-based markers was developed for genetic analyses. These resources are available through an updated and improved genome database. This study significantly improves the utility of the Ectocarpus genome as a high-quality reference for the study of many important aspects of brown algal biology and as a reference for genomic analyses across the stramenopiles. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  6. A genome scale metabolic network for rice and accompanying analysis of tryptophan, auxin and serotonin biosynthesis regulation under biotic stress

    USDA-ARS?s Scientific Manuscript database

    Functional annotations of large plant genome projects mostly provide information on gene function and gene families based on the presence of protein domains and gene homology, but not necessarily in association with gene expression or metabolic and regulatory networks. These additional annotations a...

  7. mySyntenyPortal: an application package to construct websites for synteny block analysis.

    PubMed

    Lee, Jongin; Lee, Daehwan; Sim, Mikang; Kwon, Daehong; Kim, Juyeon; Ko, Younhee; Kim, Jaebum

    2018-06-05

    Advances in sequencing technologies have facilitated large-scale comparative genomics based on whole genome sequencing. Constructing and investigating conserved genomic regions among multiple species (called synteny blocks) are essential in the comparative genomics. However, they require significant amounts of computational resources and time in addition to bioinformatics skills. Many web interfaces have been developed to make such tasks easier. However, these web interfaces cannot be customized for users who want to use their own set of genome sequences or definition of synteny blocks. To resolve this limitation, we present mySyntenyPortal, a stand-alone application package to construct websites for synteny block analyses by using users' own genome data. mySyntenyPortal provides both command line and web-based interfaces to build and manage websites for large-scale comparative genomic analyses. The websites can be also easily published and accessed by other users. To demonstrate the usability of mySyntenyPortal, we present an example study for building websites to compare genomes of three mammalian species (human, mouse, and cow) and show how they can be easily utilized to identify potential genes affected by genome rearrangements. mySyntenyPortal will contribute for extended comparative genomic analyses based on large-scale whole genome sequences by providing unique functionality to support the easy creation of interactive websites for synteny block analyses from user's own genome data.

  8. Large-scale gene function analysis with the PANTHER classification system.

    PubMed

    Mi, Huaiyu; Muruganujan, Anushya; Casagrande, John T; Thomas, Paul D

    2013-08-01

    The PANTHER (protein annotation through evolutionary relationship) classification system (http://www.pantherdb.org/) is a comprehensive system that combines gene function, ontology, pathways and statistical analysis tools that enable biologists to analyze large-scale, genome-wide data from sequencing, proteomics or gene expression experiments. The system is built with 82 complete genomes organized into gene families and subfamilies, and their evolutionary relationships are captured in phylogenetic trees, multiple sequence alignments and statistical models (hidden Markov models or HMMs). Genes are classified according to their function in several different ways: families and subfamilies are annotated with ontology terms (Gene Ontology (GO) and PANTHER protein class), and sequences are assigned to PANTHER pathways. The PANTHER website includes a suite of tools that enable users to browse and query gene functions, and to analyze large-scale experimental data with a number of statistical tests. It is widely used by bench scientists, bioinformaticians, computer scientists and systems biologists. In the 2013 release of PANTHER (v.8.0), in addition to an update of the data content, we redesigned the website interface to improve both user experience and the system's analytical capability. This protocol provides a detailed description of how to analyze genome-wide experimental data with the PANTHER classification system.

  9. Large-Scale Gene Relocations following an Ancient Genome Triplication Associated with the Diversification of Core Eudicots.

    PubMed

    Wang, Yupeng; Ficklin, Stephen P; Wang, Xiyin; Feltus, F Alex; Paterson, Andrew H

    2016-01-01

    Different modes of gene duplication including whole-genome duplication (WGD), and tandem, proximal and dispersed duplications are widespread in angiosperm genomes. Small-scale, stochastic gene relocations and transposed gene duplications are widely accepted to be the primary mechanisms for the creation of dispersed duplicates. However, here we show that most surviving ancient dispersed duplicates in core eudicots originated from large-scale gene relocations within a narrow window of time following a genome triplication (γ) event that occurred in the stem lineage of core eudicots. We name these surviving ancient dispersed duplicates as relocated γ duplicates. In Arabidopsis thaliana, relocated γ, WGD and single-gene duplicates have distinct features with regard to gene functions, essentiality, and protein interactions. Relative to γ duplicates, relocated γ duplicates have higher non-synonymous substitution rates, but comparable levels of expression and regulation divergence. Thus, relocated γ duplicates should be distinguished from WGD and single-gene duplicates for evolutionary investigations. Our results suggest large-scale gene relocations following the γ event were associated with the diversification of core eudicots.

  10. Large-Scale Gene Relocations following an Ancient Genome Triplication Associated with the Diversification of Core Eudicots

    PubMed Central

    Wang, Yupeng; Ficklin, Stephen P.; Wang, Xiyin; Feltus, F. Alex; Paterson, Andrew H.

    2016-01-01

    Different modes of gene duplication including whole-genome duplication (WGD), and tandem, proximal and dispersed duplications are widespread in angiosperm genomes. Small-scale, stochastic gene relocations and transposed gene duplications are widely accepted to be the primary mechanisms for the creation of dispersed duplicates. However, here we show that most surviving ancient dispersed duplicates in core eudicots originated from large-scale gene relocations within a narrow window of time following a genome triplication (γ) event that occurred in the stem lineage of core eudicots. We name these surviving ancient dispersed duplicates as relocated γ duplicates. In Arabidopsis thaliana, relocated γ, WGD and single-gene duplicates have distinct features with regard to gene functions, essentiality, and protein interactions. Relative to γ duplicates, relocated γ duplicates have higher non-synonymous substitution rates, but comparable levels of expression and regulation divergence. Thus, relocated γ duplicates should be distinguished from WGD and single-gene duplicates for evolutionary investigations. Our results suggest large-scale gene relocations following the γ event were associated with the diversification of core eudicots. PMID:27195960

  11. Interrogation of Mammalian Protein Complex Structure, Function, and Membership Using Genome-Scale Fitness Screens.

    PubMed

    Pan, Joshua; Meyers, Robin M; Michel, Brittany C; Mashtalir, Nazar; Sizemore, Ann E; Wells, Jonathan N; Cassel, Seth H; Vazquez, Francisca; Weir, Barbara A; Hahn, William C; Marsh, Joseph A; Tsherniak, Aviad; Kadoch, Cigall

    2018-05-23

    Protein complexes are assemblies of subunits that have co-evolved to execute one or many coordinated functions in the cellular environment. Functional annotation of mammalian protein complexes is critical to understanding biological processes, as well as disease mechanisms. Here, we used genetic co-essentiality derived from genome-scale RNAi- and CRISPR-Cas9-based fitness screens performed across hundreds of human cancer cell lines to assign measures of functional similarity. From these measures, we systematically built and characterized functional similarity networks that recapitulate known structural and functional features of well-studied protein complexes and resolve novel functional modules within complexes lacking structural resolution, such as the mammalian SWI/SNF complex. Finally, by integrating functional networks with large protein-protein interaction networks, we discovered novel protein complexes involving recently evolved genes of unknown function. Taken together, these findings demonstrate the utility of genetic perturbation screens alone, and in combination with large-scale biophysical data, to enhance our understanding of mammalian protein complexes in normal and disease states. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Versatile Gene-Specific Sequence Tags for Arabidopsis Functional Genomics: Transcript Profiling and Reverse Genetics Applications

    PubMed Central

    Hilson, Pierre; Allemeersch, Joke; Altmann, Thomas; Aubourg, Sébastien; Avon, Alexandra; Beynon, Jim; Bhalerao, Rishikesh P.; Bitton, Frédérique; Caboche, Michel; Cannoot, Bernard; Chardakov, Vasil; Cognet-Holliger, Cécile; Colot, Vincent; Crowe, Mark; Darimont, Caroline; Durinck, Steffen; Eickhoff, Holger; de Longevialle, Andéol Falcon; Farmer, Edward E.; Grant, Murray; Kuiper, Martin T.R.; Lehrach, Hans; Léon, Céline; Leyva, Antonio; Lundeberg, Joakim; Lurin, Claire; Moreau, Yves; Nietfeld, Wilfried; Paz-Ares, Javier; Reymond, Philippe; Rouzé, Pierre; Sandberg, Goran; Segura, Maria Dolores; Serizet, Carine; Tabrett, Alexandra; Taconnat, Ludivine; Thareau, Vincent; Van Hummelen, Paul; Vercruysse, Steven; Vuylsteke, Marnik; Weingartner, Magdalena; Weisbeek, Peter J.; Wirta, Valtteri; Wittink, Floyd R.A.; Zabeau, Marc; Small, Ian

    2004-01-01

    Microarray transcript profiling and RNA interference are two new technologies crucial for large-scale gene function studies in multicellular eukaryotes. Both rely on sequence-specific hybridization between complementary nucleic acid strands, inciting us to create a collection of gene-specific sequence tags (GSTs) representing at least 21,500 Arabidopsis genes and which are compatible with both approaches. The GSTs were carefully selected to ensure that each of them shared no significant similarity with any other region in the Arabidopsis genome. They were synthesized by PCR amplification from genomic DNA. Spotted microarrays fabricated from the GSTs show good dynamic range, specificity, and sensitivity in transcript profiling experiments. The GSTs have also been transferred to bacterial plasmid vectors via recombinational cloning protocols. These cloned GSTs constitute the ideal starting point for a variety of functional approaches, including reverse genetics. We have subcloned GSTs on a large scale into vectors designed for gene silencing in plant cells. We show that in planta expression of GST hairpin RNA results in the expected phenotypes in silenced Arabidopsis lines. These versatile GST resources provide novel and powerful tools for functional genomics. PMID:15489341

  13. A De-Novo Genome Analysis Pipeline (DeNoGAP) for large-scale comparative prokaryotic genomics studies.

    PubMed

    Thakur, Shalabh; Guttman, David S

    2016-06-30

    Comparative analysis of whole genome sequence data from closely related prokaryotic species or strains is becoming an increasingly important and accessible approach for addressing both fundamental and applied biological questions. While there are number of excellent tools developed for performing this task, most scale poorly when faced with hundreds of genome sequences, and many require extensive manual curation. We have developed a de-novo genome analysis pipeline (DeNoGAP) for the automated, iterative and high-throughput analysis of data from comparative genomics projects involving hundreds of whole genome sequences. The pipeline is designed to perform reference-assisted and de novo gene prediction, homolog protein family assignment, ortholog prediction, functional annotation, and pan-genome analysis using a range of proven tools and databases. While most existing methods scale quadratically with the number of genomes since they rely on pairwise comparisons among predicted protein sequences, DeNoGAP scales linearly since the homology assignment is based on iteratively refined hidden Markov models. This iterative clustering strategy enables DeNoGAP to handle a very large number of genomes using minimal computational resources. Moreover, the modular structure of the pipeline permits easy updates as new analysis programs become available. DeNoGAP integrates bioinformatics tools and databases for comparative analysis of a large number of genomes. The pipeline offers tools and algorithms for annotation and analysis of completed and draft genome sequences. The pipeline is developed using Perl, BioPerl and SQLite on Ubuntu Linux version 12.04 LTS. Currently, the software package accompanies script for automated installation of necessary external programs on Ubuntu Linux; however, the pipeline should be also compatible with other Linux and Unix systems after necessary external programs are installed. DeNoGAP is freely available at https://sourceforge.net/projects/denogap/ .

  14. UFO: a web server for ultra-fast functional profiling of whole genome protein sequences.

    PubMed

    Meinicke, Peter

    2009-09-02

    Functional profiling is a key technique to characterize and compare the functional potential of entire genomes. The estimation of profiles according to an assignment of sequences to functional categories is a computationally expensive task because it requires the comparison of all protein sequences from a genome with a usually large database of annotated sequences or sequence families. Based on machine learning techniques for Pfam domain detection, the UFO web server for ultra-fast functional profiling allows researchers to process large protein sequence collections instantaneously. Besides the frequencies of Pfam and GO categories, the user also obtains the sequence specific assignments to Pfam domain families. In addition, a comparison with existing genomes provides dissimilarity scores with respect to 821 reference proteomes. Considering the underlying UFO domain detection, the results on 206 test genomes indicate a high sensitivity of the approach. In comparison with current state-of-the-art HMMs, the runtime measurements show a considerable speed up in the range of four orders of magnitude. For an average size prokaryotic genome, the computation of a functional profile together with its comparison typically requires about 10 seconds of processing time. For the first time the UFO web server makes it possible to get a quick overview on the functional inventory of newly sequenced organisms. The genome scale comparison with a large number of precomputed profiles allows a first guess about functionally related organisms. The service is freely available and does not require user registration or specification of a valid email address.

  15. FGWAS: Functional genome wide association analysis.

    PubMed

    Huang, Chao; Thompson, Paul; Wang, Yalin; Yu, Yang; Zhang, Jingwen; Kong, Dehan; Colen, Rivka R; Knickmeyer, Rebecca C; Zhu, Hongtu

    2017-10-01

    Functional phenotypes (e.g., subcortical surface representation), which commonly arise in imaging genetic studies, have been used to detect putative genes for complexly inherited neuropsychiatric and neurodegenerative disorders. However, existing statistical methods largely ignore the functional features (e.g., functional smoothness and correlation). The aim of this paper is to develop a functional genome-wide association analysis (FGWAS) framework to efficiently carry out whole-genome analyses of functional phenotypes. FGWAS consists of three components: a multivariate varying coefficient model, a global sure independence screening procedure, and a test procedure. Compared with the standard multivariate regression model, the multivariate varying coefficient model explicitly models the functional features of functional phenotypes through the integration of smooth coefficient functions and functional principal component analysis. Statistically, compared with existing methods for genome-wide association studies (GWAS), FGWAS can substantially boost the detection power for discovering important genetic variants influencing brain structure and function. Simulation studies show that FGWAS outperforms existing GWAS methods for searching sparse signals in an extremely large search space, while controlling for the family-wise error rate. We have successfully applied FGWAS to large-scale analysis of data from the Alzheimer's Disease Neuroimaging Initiative for 708 subjects, 30,000 vertices on the left and right hippocampal surfaces, and 501,584 SNPs. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Bioinformatics and genomic analysis of transposable elements in eukaryotic genomes.

    PubMed

    Janicki, Mateusz; Rooke, Rebecca; Yang, Guojun

    2011-08-01

    A major portion of most eukaryotic genomes are transposable elements (TEs). During evolution, TEs have introduced profound changes to genome size, structure, and function. As integral parts of genomes, the dynamic presence of TEs will continue to be a major force in reshaping genomes. Early computational analyses of TEs in genome sequences focused on filtering out "junk" sequences to facilitate gene annotation. When the high abundance and diversity of TEs in eukaryotic genomes were recognized, these early efforts transformed into the systematic genome-wide categorization and classification of TEs. The availability of genomic sequence data reversed the classical genetic approaches to discovering new TE families and superfamilies. Curated TE databases and their accurate annotation of genome sequences in turn facilitated the studies on TEs in a number of frontiers including: (1) TE-mediated changes of genome size and structure, (2) the influence of TEs on genome and gene functions, (3) TE regulation by host, (4) the evolution of TEs and their population dynamics, and (5) genomic scale studies of TE activity. Bioinformatics and genomic approaches have become an integral part of large-scale studies on TEs to extract information with pure in silico analyses or to assist wet lab experimental studies. The current revolution in genome sequencing technology facilitates further progress in the existing frontiers of research and emergence of new initiatives. The rapid generation of large-sequence datasets at record low costs on a routine basis is challenging the computing industry on storage capacity and manipulation speed and the bioinformatics community for improvement in algorithms and their implementations.

  17. Non-equivalent contributions of maternal and paternal genomes to early plant embryogenesis.

    PubMed

    Del Toro-De León, Gerardo; García-Aguilar, Marcelina; Gillmor, C Stewart

    2014-10-30

    Zygotic genome activation in metazoans typically occurs several hours to a day after fertilization, and thus maternal RNAs and proteins drive early animal embryo development. In plants, despite several molecular studies of post-fertilization transcriptional activation, the timing of zygotic genome activation remains a matter of debate. For example, two recent reports that used different hybrid ecotype combinations for RNA sequence profiling of early Arabidopsis embryo transcriptomes came to divergent conclusions. One identified paternal contributions that varied by gene, but with overall maternal dominance, while the other found that the maternal and paternal genomes are transcriptionally equivalent. Here we assess paternal gene activation functionally in an isogenic background, by performing a large-scale genetic analysis of 49 EMBRYO DEFECTIVE genes and testing the ability of wild-type paternal alleles to complement phenotypes conditioned by mutant maternal alleles. Our results demonstrate that wild-type paternal alleles for nine of these genes are completely functional 2 days after pollination, with the remaining 40 genes showing partial activity beginning at 2, 3 or 5 days after pollination. Using our functional assay, we also demonstrate that different hybrid combinations exhibit significant variation in paternal allele activation, reconciling the apparently contradictory results of previous transcriptional studies. The variation in timing of gene function that we observe confirms that paternal genome activation does not occur in one early discrete step, provides large-scale functional evidence that maternal and paternal genomes make non-equivalent contributions to early plant embryogenesis, and uncovers an unexpectedly profound effect of hybrid genetic backgrounds on paternal gene activity.

  18. How life changes itself: the Read-Write (RW) genome.

    PubMed

    Shapiro, James A

    2013-09-01

    The genome has traditionally been treated as a Read-Only Memory (ROM) subject to change by copying errors and accidents. In this review, I propose that we need to change that perspective and understand the genome as an intricately formatted Read-Write (RW) data storage system constantly subject to cellular modifications and inscriptions. Cells operate under changing conditions and are continually modifying themselves by genome inscriptions. These inscriptions occur over three distinct time-scales (cell reproduction, multicellular development and evolutionary change) and involve a variety of different processes at each time scale (forming nucleoprotein complexes, epigenetic formatting and changes in DNA sequence structure). Research dating back to the 1930s has shown that genetic change is the result of cell-mediated processes, not simply accidents or damage to the DNA. This cell-active view of genome change applies to all scales of DNA sequence variation, from point mutations to large-scale genome rearrangements and whole genome duplications (WGDs). This conceptual change to active cell inscriptions controlling RW genome functions has profound implications for all areas of the life sciences. © 2013 Elsevier B.V. All rights reserved.

  19. iCN718, an Updated and Improved Genome-Scale Metabolic Network Reconstruction of Acinetobacter baumannii AYE.

    PubMed

    Norsigian, Charles J; Kavvas, Erol; Seif, Yara; Palsson, Bernhard O; Monk, Jonathan M

    2018-01-01

    Acinetobacter baumannii has become an urgent clinical threat due to the recent emergence of multi-drug resistant strains. There is thus a significant need to discover new therapeutic targets in this organism. One means for doing so is through the use of high-quality genome-scale reconstructions. Well-curated and accurate genome-scale models (GEMs) of A. baumannii would be useful for improving treatment options. We present an updated and improved genome-scale reconstruction of A. baumannii AYE, named iCN718, that improves and standardizes previous A. baumannii AYE reconstructions. iCN718 has 80% accuracy for predicting gene essentiality data and additionally can predict large-scale phenotypic data with as much as 89% accuracy, a new capability for an A. baumannii reconstruction. We further demonstrate that iCN718 can be used to analyze conserved metabolic functions in the A. baumannii core genome and to build strain-specific GEMs of 74 other A. baumannii strains from genome sequence alone. iCN718 will serve as a resource to integrate and synthesize new experimental data being generated for this urgent threat pathogen.

  20. Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes

    PubMed Central

    Cannon, Steven B.; Sterck, Lieven; Rombauts, Stephane; Sato, Shusei; Cheung, Foo; Gouzy, Jérôme; Wang, Xiaohong; Mudge, Joann; Vasdewani, Jayprakash; Schiex, Thomas; Spannagl, Manuel; Monaghan, Erin; Nicholson, Christine; Humphray, Sean J.; Schoof, Heiko; Mayer, Klaus F. X.; Rogers, Jane; Quétier, Francis; Oldroyd, Giles E.; Debellé, Frédéric; Cook, Douglas R.; Retzel, Ernest F.; Roe, Bruce A.; Town, Christopher D.; Tabata, Satoshi; Van de Peer, Yves; Young, Nevin D.

    2006-01-01

    Genome sequencing of the model legumes, Medicago truncatula and Lotus japonicus, provides an opportunity for large-scale sequence-based comparison of two genomes in the same plant family. Here we report synteny comparisons between these species, including details about chromosome relationships, large-scale synteny blocks, microsynteny within blocks, and genome regions lacking clear correspondence. The Lotus and Medicago genomes share a minimum of 10 large-scale synteny blocks, each with substantial collinearity and frequently extending the length of whole chromosome arms. The proportion of genes syntenic and collinear within each synteny block is relatively homogeneous. Medicago–Lotus comparisons also indicate similar and largely homogeneous gene densities, although gene-containing regions in Mt occupy 20–30% more space than Lj counterparts, primarily because of larger numbers of Mt retrotransposons. Because the interpretation of genome comparisons is complicated by large-scale genome duplications, we describe synteny, synonymous substitutions and phylogenetic analyses to identify and date a probable whole-genome duplication event. There is no direct evidence for any recent large-scale genome duplication in either Medicago or Lotus but instead a duplication predating speciation. Phylogenetic comparisons place this duplication within the Rosid I clade, clearly after the split between legumes and Salicaceae (poplar). PMID:17003129

  1. Identification of Variant-Specific Functions of PIK3CA by Rapid Phenotyping of Rare Mutations | Office of Cancer Genomics

    Cancer.gov

    Large-scale sequencing efforts are uncovering the complexity of cancer genomes, which are composed of causal "driver" mutations that promote tumor progression along with many more pathologically neutral "passenger" events. The majority of mutations, both in known cancer drivers and uncharacterized genes, are generally of low occurrence, highlighting the need to functionally annotate the long tail of infrequent mutations present in heterogeneous cancers.

  2. Neurogenomics and the role of a large mutational target on rapid behavioral change.

    PubMed

    Stanley, Craig E; Kulathinal, Rob J

    2016-11-08

    Behavior, while complex and dynamic, is among the most diverse, derived, and rapidly evolving traits in animals. The highly labile nature of heritable behavioral change is observed in such evolutionary phenomena as the emergence of converged behaviors in domesticated animals, the rapid evolution of preferences, and the routine development of ethological isolation between diverging populations and species. In fact, it is believed that nervous system development and its potential to evolve a seemingly infinite array of behavioral innovations played a major role in the successful diversification of metazoans, including our own human lineage. However, unlike other rapidly evolving functional systems such as sperm-egg interactions and immune defense, the genetic basis of rapid behavioral change remains elusive. Here we propose that the rapid divergence and widespread novelty of innate and adaptive behavior is primarily a function of its genomic architecture. Specifically, we hypothesize that the broad diversity of behavioral phenotypes present at micro- and macroevolutionary scales is promoted by a disproportionately large mutational target of neurogenic genes. We present evidence that these large neuro-behavioral targets are significant and ubiquitous in animal genomes and suggest that behavior's novelty and rapid emergence are driven by a number of factors including more selection on a larger pool of variants, a greater role of phenotypic plasticity, and/or unique molecular features present in large genes. We briefly discuss the origins of these large neurogenic genes, as they relate to the remarkable diversity of metazoan behaviors, and highlight key consequences on both behavioral traits and neurogenic disease across, respectively, evolutionary and ontogenetic time scales. Current approaches to studying the genetic mechanisms underlying rapid phenotypic change primarily focus on identifying signatures of Darwinian selection in protein-coding regions. In contrast, the large mutational target hypothesis places genomic architecture and a larger allelic pool at the forefront of rapid evolutionary change, particularly in genetic systems that are polygenic and regulatory in nature. Genomic data from brain and neural tissues in mammals as well as a preliminary survey of neurogenic genes from comparative genomic data support this hypothesis while rejecting both positive and relaxed selection on proteins or higher mutation rates. In mammals and invertebrates, neurogenic genes harbor larger protein-coding regions and possess a richer regulatory repertoire of miRNA targets and transcription factor binding sites. Overall, neurogenic genes cover a disproportionately large genomic fraction, providing a sizeable substrate for evolutionary, genetic, and molecular mechanisms to act upon. Readily available comparative and functional genomic data provide unexplored opportunities to test whether a distinct neurogenomic architecture can promote rapid behavioral change via several mechanisms unique to large genes, and which components of this large footprint are uniquely metazoan. The large mutational target hypothesis highlights the eminent roles of mutation and functional genomic architecture in generating rapid developmental and evolutionary change. It has broad implications on our understanding of the genetics of complex adaptive traits such as behavior by focusing on the importance of mutational input, from SNPs to alternative transcripts to transposable elements, on driving evolutionary rates of functional systems. Such functional divergence has important implications in promoting behavioral isolation across short- and long-term timescales. Due to genome-scaled polygenic adaptation, the large target effect also contributes to our inability to identify adapted behavioral candidate genes. The presence of large neurogenic genes, particularly in the mammalian brain and other neural tissues, further offers emerging insight into the etiology of neurodevelopmental and neurodegenerative diseases. The well-known correlation between neurological spectrum disorders in children and paternal age may simply be a direct result of aging fathers accumulating mutations across these large neurodevelopmental genes. The large mutational target hypothesis can also explain the rapid evolution of other functional systems covering a large genomic fraction such as male fertility and its preferential association with hybrid male sterility among closely related taxa. Overall, a focus on mutational potential may increase our power in understanding the genetic basis of complex phenotypes such as behavior while filling a general gap in understanding their evolution.

  3. TCGA4U: A Web-Based Genomic Analysis Platform To Explore And Mine TCGA Genomic Data For Translational Research.

    PubMed

    Huang, Zhenzhen; Duan, Huilong; Li, Haomin

    2015-01-01

    Large-scale human cancer genomics projects, such as TCGA, generated large genomics data for further study. Exploring and mining these data to obtain meaningful analysis results can help researchers find potential genomics alterations that intervene the development and metastasis of tumors. We developed a web-based gene analysis platform, named TCGA4U, which used statistics methods and models to help translational investigators explore, mine and visualize human cancer genomic characteristic information from the TCGA datasets. Furthermore, through Gene Ontology (GO) annotation and clinical data integration, the genomic data were transformed into biological process, molecular function, cellular component and survival curves to help researchers identify potential driver genes. Clinical researchers without expertise in data analysis will benefit from such a user-friendly genomic analysis platform.

  4. Molecular inversion probe assay.

    PubMed

    Absalan, Farnaz; Ronaghi, Mostafa

    2007-01-01

    We have described molecular inversion probe technologies for large-scale genetic analyses. This technique provides a comprehensive and powerful tool for the analysis of genetic variation and enables affordable, large-scale studies that will help uncover the genetic basis of complex disease and explain the individual variation in response to therapeutics. Major applications of the molecular inversion probes (MIP) technologies include targeted genotyping from focused regions to whole-genome studies, and allele quantification of genomic rearrangements. The MIP technology (used in the HapMap project) provides an efficient, scalable, and affordable way to score polymorphisms in case/control populations for genetic studies. The MIP technology provides the highest commercially available multiplexing levels and assay conversion rates for targeted genotyping. This enables more informative, genome-wide studies with either the functional (direct detection) approach or the indirect detection approach.

  5. Comparative sequence analysis of Sordaria macrospora and Neurospora crassa as a means to improve genome annotation.

    PubMed

    Nowrousian, Minou; Würtz, Christian; Pöggeler, Stefanie; Kück, Ulrich

    2004-03-01

    One of the most challenging parts of large scale sequencing projects is the identification of functional elements encoded in a genome. Recently, studies of genomes of up to six different Saccharomyces species have demonstrated that a comparative analysis of genome sequences from closely related species is a powerful approach to identify open reading frames and other functional regions within genomes [Science 301 (2003) 71, Nature 423 (2003) 241]. Here, we present a comparison of selected sequences from Sordaria macrospora to their corresponding Neurospora crassa orthologous regions. Our analysis indicates that due to the high degree of sequence similarity and conservation of overall genomic organization, S. macrospora sequence information can be used to simplify the annotation of the N. crassa genome.

  6. Using Markov chains of nucleotide sequences as a possible precursor to predict functional roles of human genome: a case study on inactive chromatin regions.

    PubMed

    Lee, K-E; Lee, E-J; Park, H-S

    2016-08-30

    Recent advances in computational epigenetics have provided new opportunities to evaluate n-gram probabilistic language models. In this paper, we describe a systematic genome-wide approach for predicting functional roles in inactive chromatin regions by using a sequence-based Markovian chromatin map of the human genome. We demonstrate that Markov chains of sequences can be used as a precursor to predict functional roles in heterochromatin regions and provide an example comparing two publicly available chromatin annotations of large-scale epigenomics projects: ENCODE project consortium and Roadmap Epigenomics consortium.

  7. Combining functional genomics and chemical biology to identify targets of bioactive compounds.

    PubMed

    Ho, Cheuk Hei; Piotrowski, Jeff; Dixon, Scott J; Baryshnikova, Anastasia; Costanzo, Michael; Boone, Charles

    2011-02-01

    Genome sequencing projects have revealed thousands of suspected genes, challenging researchers to develop efficient large-scale functional analysis methodologies. Determining the function of a gene product generally requires a means to alter its function. Genetically tractable model organisms have been widely exploited for the isolation and characterization of activating and inactivating mutations in genes encoding proteins of interest. Chemical genetics represents a complementary approach involving the use of small molecules capable of either inactivating or activating their targets. Saccharomyces cerevisiae has been an important test bed for the development and application of chemical genomic assays aimed at identifying targets and modes of action of known and uncharacterized compounds. Here we review yeast chemical genomic assays strategies for drug target identification. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Development of 5123 Intron-Length Polymorphic Markers for Large-Scale Genotyping Applications in Foxtail Millet

    PubMed Central

    Muthamilarasan, Mehanathan; Venkata Suresh, B.; Pandey, Garima; Kumari, Kajal; Parida, Swarup Kumar; Prasad, Manoj

    2014-01-01

    Generating genomic resources in terms of molecular markers is imperative in molecular breeding for crop improvement. Though development and application of microsatellite markers in large-scale was reported in the model crop foxtail millet, no such large-scale study was conducted for intron-length polymorphic (ILP) markers. Considering this, we developed 5123 ILP markers, of which 4049 were physically mapped onto 9 chromosomes of foxtail millet. BLAST analysis of 5123 expressed sequence tags (ESTs) suggested the function for ∼71.5% ESTs and grouped them into 5 different functional categories. About 440 selected primer pairs representing the foxtail millet genome and the different functional groups showed high-level of cross-genera amplification at an average of ∼85% in eight millets and five non-millet species. The efficacy of the ILP markers for distinguishing the foxtail millet is demonstrated by observed heterozygosity (0.20) and Nei's average gene diversity (0.22). In silico comparative mapping of physically mapped ILP markers demonstrated substantial percentage of sequence-based orthology and syntenic relationship between foxtail millet chromosomes and sorghum (∼50%), maize (∼46%), rice (∼21%) and Brachypodium (∼21%) chromosomes. Hence, for the first time, we developed large-scale ILP markers in foxtail millet and demonstrated their utility in germplasm characterization, transferability, phylogenetics and comparative mapping studies in millets and bioenergy grass species. PMID:24086082

  9. Development of a database system for mapping insertional mutations onto the mouse genome with large-scale experimental data

    PubMed Central

    2009-01-01

    Background Insertional mutagenesis is an effective method for functional genomic studies in various organisms. It can rapidly generate easily tractable mutations. A large-scale insertional mutagenesis with the piggyBac (PB) transposon is currently performed in mice at the Institute of Developmental Biology and Molecular Medicine (IDM), Fudan University in Shanghai, China. This project is carried out via collaborations among multiple groups overseeing interconnected experimental steps and generates a large volume of experimental data continuously. Therefore, the project calls for an efficient database system for recording, management, statistical analysis, and information exchange. Results This paper presents a database application called MP-PBmice (insertional mutation mapping system of PB Mutagenesis Information Center), which is developed to serve the on-going large-scale PB insertional mutagenesis project. A lightweight enterprise-level development framework Struts-Spring-Hibernate is used here to ensure constructive and flexible support to the application. The MP-PBmice database system has three major features: strict access-control, efficient workflow control, and good expandability. It supports the collaboration among different groups that enter data and exchange information on daily basis, and is capable of providing real time progress reports for the whole project. MP-PBmice can be easily adapted for other large-scale insertional mutation mapping projects and the source code of this software is freely available at http://www.idmshanghai.cn/PBmice. Conclusion MP-PBmice is a web-based application for large-scale insertional mutation mapping onto the mouse genome, implemented with the widely used framework Struts-Spring-Hibernate. This system is already in use by the on-going genome-wide PB insertional mutation mapping project at IDM, Fudan University. PMID:19958505

  10. Identification and Functional Prediction of Large Intergenic Noncoding RNAs (lincRNAs) in Rainbow Trout (Oncorhynchus mykiss)

    USDA-ARS?s Scientific Manuscript database

    Long noncoding RNAs (lncRNAs) have been recognized in recent years as key regulators of diverse cellular processes. Genome-wide large-scale projects have uncovered thousands of lncRNAs in many model organisms. Large intergenic noncoding RNAs (lincRNAs) are lncRNAs that are transcribed from intergeni...

  11. Outlier analysis of functional genomic profiles enriches for oncology targets and enables precision medicine.

    PubMed

    Zhu, Zhou; Ihle, Nathan T; Rejto, Paul A; Zarrinkar, Patrick P

    2016-06-13

    Genome-scale functional genomic screens across large cell line panels provide a rich resource for discovering tumor vulnerabilities that can lead to the next generation of targeted therapies. Their data analysis typically has focused on identifying genes whose knockdown enhances response in various pre-defined genetic contexts, which are limited by biological complexities as well as the incompleteness of our knowledge. We thus introduce a complementary data mining strategy to identify genes with exceptional sensitivity in subsets, or outlier groups, of cell lines, allowing an unbiased analysis without any a priori assumption about the underlying biology of dependency. Genes with outlier features are strongly and specifically enriched with those known to be associated with cancer and relevant biological processes, despite no a priori knowledge being used to drive the analysis. Identification of exceptional responders (outliers) may not lead only to new candidates for therapeutic intervention, but also tumor indications and response biomarkers for companion precision medicine strategies. Several tumor suppressors have an outlier sensitivity pattern, supporting and generalizing the notion that tumor suppressors can play context-dependent oncogenic roles. The novel application of outlier analysis described here demonstrates a systematic and data-driven analytical strategy to decipher large-scale functional genomic data for oncology target and precision medicine discoveries.

  12. Using the Saccharomyces Genome Database (SGD) for analysis of genomic information

    PubMed Central

    Skrzypek, Marek S.; Hirschman, Jodi

    2011-01-01

    Analysis of genomic data requires access to software tools that place the sequence-derived information in the context of biology. The Saccharomyces Genome Database (SGD) integrates functional information about budding yeast genes and their products with a set of analysis tools that facilitate exploring their biological details. This unit describes how the various types of functional data available at SGD can be searched, retrieved, and analyzed. Starting with the guided tour of the SGD Home page and Locus Summary page, this unit highlights how to retrieve data using YeastMine, how to visualize genomic information with GBrowse, how to explore gene expression patterns with SPELL, and how to use Gene Ontology tools to characterize large-scale datasets. PMID:21901739

  13. Functional genomic Landscape of Human Breast Cancer drivers, vulnerabilities, and resistance

    PubMed Central

    Marcotte, Richard; Sayad, Azin; Brown, Kevin R.; Sanchez-Garcia, Felix; Reimand, Jüri; Haider, Maliha; Virtanen, Carl; Bradner, James E.; Bader, Gary D.; Mills, Gordon B.; Pe’er, Dana; Moffat, Jason; Neel, Benjamin G.

    2016-01-01

    Summary Large-scale genomic studies have identified multiple somatic aberrations in breast cancer, including copy number alterations, and point mutations. Still, identifying causal variants and emergent vulnerabilities that arise as a consequence of genetic alterations remain major challenges. We performed whole genome shRNA “dropout screens” on 77 breast cancer cell lines. Using a hierarchical linear regression algorithm to score our screen results and integrate them with accompanying detailed genetic and proteomic information, we identify vulnerabilities in breast cancer, including candidate “drivers,” and reveal general functional genomic properties of cancer cells. Comparisons of gene essentiality with drug sensitivity data suggest potential resistance mechanisms, effects of existing anti-cancer drugs, and opportunities for combination therapy. Finally, we demonstrate the utility of this large dataset by identifying BRD4 as a potential target in luminal breast cancer, and PIK3CA mutations as a resistance determinant for BET-inhibitors. PMID:26771497

  14. Dating and functional characterization of duplicated genes in the apple (Malus domestica Borkh.) by analyzing EST data.

    PubMed

    Sanzol, Javier

    2010-05-14

    Gene duplication is central to genome evolution. In plants, genes can be duplicated through small-scale events and large-scale duplications often involving polyploidy. The apple belongs to the subtribe Pyrinae (Rosaceae), a diverse lineage that originated via allopolyploidization. Both small-scale duplications and polyploidy may have been important mechanisms shaping the genome of this species. This study evaluates the gene duplication and polyploidy history of the apple by characterizing duplicated genes in this species using EST data. Overall, 68% of the apple genes were clustered into families with a mean copy-number of 4.6. Analysis of the age distribution of gene duplications supported a continuous mode of small-scale duplications, plus two episodes of large-scale duplicates of vastly different ages. The youngest was consistent with the polyploid origin of the Pyrinae 37-48 MYBP, whereas the older may be related to gamma-triplication; an ancient hexapolyploidization previously characterized in the four sequenced eurosid genomes and basal to the eurosid-asterid divergence. Duplicated genes were studied for functional diversification with an emphasis on young paralogs; those originated during or after the formation of the Pyrinae lineage. Unequal assignment of single-copy genes and gene families to Gene Ontology categories suggested functional bias in the pattern of gene retention of paralogs. Young paralogs related to signal transduction, metabolism, and energy pathways have been preferentially retained. Non-random retention of duplicated genes seems to have mediated the expansion of gene families, some of which may have substantially increased their members after the origin of the Pyrinae. The joint analysis of over-duplicated functional categories and phylogenies, allowed evaluation of the role of both polyploidy and small-scale duplications during this process. Finally, gene expression analysis indicated that 82% of duplicated genes, including 80% of young paralogs, showed uncorrelated expression profiles, suggesting extensive subfunctionalization and a role of gene duplication in the acquisition of novel patterns of gene expression. This study reports a genome-wide analysis of the mode of gene duplication in the apple, and provides evidence for its role in genome functional diversification by characterising three major processes: selective retention of paralogs, amplification of gene families, and changes in gene expression.

  15. What is bioinformatics? A proposed definition and overview of the field.

    PubMed

    Luscombe, N M; Greenbaum, D; Gerstein, M

    2001-01-01

    The recent flood of data from genome sequences and functional genomics has given rise to new field, bioinformatics, which combines elements of biology and computer science. Here we propose a definition for this new field and review some of the research that is being pursued, particularly in relation to transcriptional regulatory systems. Our definition is as follows: Bioinformatics is conceptualizing biology in terms of macromolecules (in the sense of physical-chemistry) and then applying "informatics" techniques (derived from disciplines such as applied maths, computer science, and statistics) to understand and organize the information associated with these molecules, on a large-scale. Analyses in bioinformatics predominantly focus on three types of large datasets available in molecular biology: macromolecular structures, genome sequences, and the results of functional genomics experiments (e.g. expression data). Additional information includes the text of scientific papers and "relationship data" from metabolic pathways, taxonomy trees, and protein-protein interaction networks. Bioinformatics employs a wide range of computational techniques including sequence and structural alignment, database design and data mining, macromolecular geometry, phylogenetic tree construction, prediction of protein structure and function, gene finding, and expression data clustering. The emphasis is on approaches integrating a variety of computational methods and heterogeneous data sources. Finally, bioinformatics is a practical discipline. We survey some representative applications, such as finding homologues, designing drugs, and performing large-scale censuses. Additional information pertinent to the review is available over the web at http://bioinfo.mbb.yale.edu/what-is-it.

  16. Accurate evaluation and analysis of functional genomics data and methods

    PubMed Central

    Greene, Casey S.; Troyanskaya, Olga G.

    2016-01-01

    The development of technology capable of inexpensively performing large-scale measurements of biological systems has generated a wealth of data. Integrative analysis of these data holds the promise of uncovering gene function, regulation, and, in the longer run, understanding complex disease. However, their analysis has proved very challenging, as it is difficult to quickly and effectively assess the relevance and accuracy of these data for individual biological questions. Here, we identify biases that present challenges for the assessment of functional genomics data and methods. We then discuss evaluation methods that, taken together, begin to address these issues. We also argue that the funding of systematic data-driven experiments and of high-quality curation efforts will further improve evaluation metrics so that they more-accurately assess functional genomics data and methods. Such metrics will allow researchers in the field of functional genomics to continue to answer important biological questions in a data-driven manner. PMID:22268703

  17. Construction of a large collection of small genome variations in French dairy and beef breeds using whole-genome sequences.

    PubMed

    Boussaha, Mekki; Michot, Pauline; Letaief, Rabia; Hozé, Chris; Fritz, Sébastien; Grohs, Cécile; Esquerré, Diane; Duchesne, Amandine; Philippe, Romain; Blanquet, Véronique; Phocas, Florence; Floriot, Sandrine; Rocha, Dominique; Klopp, Christophe; Capitan, Aurélien; Boichard, Didier

    2016-11-15

    In recent years, several bovine genome sequencing projects were carried out with the aim of developing genomic tools to improve dairy and beef production efficiency and sustainability. In this study, we describe the first French cattle genome variation dataset obtained by sequencing 274 whole genomes representing several major dairy and beef breeds. This dataset contains over 28 million single nucleotide polymorphisms (SNPs) and small insertions and deletions. Comparisons between sequencing results and SNP array genotypes revealed a very high genotype concordance rate, which indicates the good quality of our data. To our knowledge, this is the first large-scale catalog of small genomic variations in French dairy and beef cattle. This resource will contribute to the study of gene functions and population structure and also help to improve traits through genotype-guided selection.

  18. Developing eThread pipeline using SAGA-pilot abstraction for large-scale structural bioinformatics.

    PubMed

    Ragothaman, Anjani; Boddu, Sairam Chowdary; Kim, Nayong; Feinstein, Wei; Brylinski, Michal; Jha, Shantenu; Kim, Joohyun

    2014-01-01

    While most of computational annotation approaches are sequence-based, threading methods are becoming increasingly attractive because of predicted structural information that could uncover the underlying function. However, threading tools are generally compute-intensive and the number of protein sequences from even small genomes such as prokaryotes is large typically containing many thousands, prohibiting their application as a genome-wide structural systems biology tool. To leverage its utility, we have developed a pipeline for eThread--a meta-threading protein structure modeling tool, that can use computational resources efficiently and effectively. We employ a pilot-based approach that supports seamless data and task-level parallelism and manages large variation in workload and computational requirements. Our scalable pipeline is deployed on Amazon EC2 and can efficiently select resources based upon task requirements. We present runtime analysis to characterize computational complexity of eThread and EC2 infrastructure. Based on results, we suggest a pathway to an optimized solution with respect to metrics such as time-to-solution or cost-to-solution. Our eThread pipeline can scale to support a large number of sequences and is expected to be a viable solution for genome-scale structural bioinformatics and structure-based annotation, particularly, amenable for small genomes such as prokaryotes. The developed pipeline is easily extensible to other types of distributed cyberinfrastructure.

  19. Developing eThread Pipeline Using SAGA-Pilot Abstraction for Large-Scale Structural Bioinformatics

    PubMed Central

    Ragothaman, Anjani; Feinstein, Wei; Jha, Shantenu; Kim, Joohyun

    2014-01-01

    While most of computational annotation approaches are sequence-based, threading methods are becoming increasingly attractive because of predicted structural information that could uncover the underlying function. However, threading tools are generally compute-intensive and the number of protein sequences from even small genomes such as prokaryotes is large typically containing many thousands, prohibiting their application as a genome-wide structural systems biology tool. To leverage its utility, we have developed a pipeline for eThread—a meta-threading protein structure modeling tool, that can use computational resources efficiently and effectively. We employ a pilot-based approach that supports seamless data and task-level parallelism and manages large variation in workload and computational requirements. Our scalable pipeline is deployed on Amazon EC2 and can efficiently select resources based upon task requirements. We present runtime analysis to characterize computational complexity of eThread and EC2 infrastructure. Based on results, we suggest a pathway to an optimized solution with respect to metrics such as time-to-solution or cost-to-solution. Our eThread pipeline can scale to support a large number of sequences and is expected to be a viable solution for genome-scale structural bioinformatics and structure-based annotation, particularly, amenable for small genomes such as prokaryotes. The developed pipeline is easily extensible to other types of distributed cyberinfrastructure. PMID:24995285

  20. Disproportionate Contributions of Select Genomic Compartments and Cell Types to Genetic Risk for Coronary Artery Disease

    PubMed Central

    Won, Hong-Hee; Natarajan, Pradeep; Dobbyn, Amanda; Jordan, Daniel M.; Roussos, Panos; Lage, Kasper; Raychaudhuri, Soumya

    2015-01-01

    Large genome-wide association studies (GWAS) have identified many genetic loci associated with risk for myocardial infarction (MI) and coronary artery disease (CAD). Concurrently, efforts such as the National Institutes of Health (NIH) Roadmap Epigenomics Project and the Encyclopedia of DNA Elements (ENCODE) Consortium have provided unprecedented data on functional elements of the human genome. In the present study, we systematically investigate the biological link between genetic variants associated with this complex disease and their impacts on gene function. First, we examined the heritability of MI/CAD according to genomic compartments. We observed that single nucleotide polymorphisms (SNPs) residing within nearby regulatory regions show significant polygenicity and contribute between 59–71% of the heritability for MI/CAD. Second, we showed that the polygenicity and heritability explained by these SNPs are enriched in histone modification marks in specific cell types. Third, we found that a statistically higher number of 45 MI/CAD-associated SNPs that have been identified from large-scale GWAS studies reside within certain functional elements of the genome, particularly in active enhancer and promoter regions. Finally, we observed significant heterogeneity of this signal across cell types, with strong signals observed within adipose nuclei, as well as brain and spleen cell types. These results suggest that the genetic etiology of MI/CAD is largely explained by tissue-specific regulatory perturbation within the human genome. PMID:26509271

  1. GPU Accelerated Browser for Neuroimaging Genomics.

    PubMed

    Zigon, Bob; Li, Huang; Yao, Xiaohui; Fang, Shiaofen; Hasan, Mohammad Al; Yan, Jingwen; Moore, Jason H; Saykin, Andrew J; Shen, Li

    2018-04-25

    Neuroimaging genomics is an emerging field that provides exciting opportunities to understand the genetic basis of brain structure and function. The unprecedented scale and complexity of the imaging and genomics data, however, have presented critical computational bottlenecks. In this work we present our initial efforts towards building an interactive visual exploratory system for mining big data in neuroimaging genomics. A GPU accelerated browsing tool for neuroimaging genomics is created that implements the ANOVA algorithm for single nucleotide polymorphism (SNP) based analysis and the VEGAS algorithm for gene-based analysis, and executes them at interactive rates. The ANOVA algorithm is 110 times faster than the 4-core OpenMP version, while the VEGAS algorithm is 375 times faster than its 4-core OpenMP counter part. This approach lays a solid foundation for researchers to address the challenges of mining large-scale imaging genomics datasets via interactive visual exploration.

  2. A High-Resolution InDel (Insertion–Deletion) Markers-Anchored Consensus Genetic Map Identifies Major QTLs Governing Pod Number and Seed Yield in Chickpea

    PubMed Central

    Srivastava, Rishi; Singh, Mohar; Bajaj, Deepak; Parida, Swarup K.

    2016-01-01

    Development and large-scale genotyping of user-friendly informative genome/gene-derived InDel markers in natural and mapping populations is vital for accelerating genomics-assisted breeding applications of chickpea with minimal resource expenses. The present investigation employed a high-throughput whole genome next-generation resequencing strategy in low and high pod number parental accessions and homozygous individuals constituting the bulks from each of two inter-specific mapping populations [(Pusa 1103 × ILWC 46) and (Pusa 256 × ILWC 46)] to develop non-erroneous InDel markers at a genome-wide scale. Comparing these high-quality genomic sequences, 82,360 InDel markers with reference to kabuli genome and 13,891 InDel markers exhibiting differentiation between low and high pod number parental accessions and bulks of aforementioned mapping populations were developed. These informative markers were structurally and functionally annotated in diverse coding and non-coding sequence components of genome/genes of kabuli chickpea. The functional significance of regulatory and coding (frameshift and large-effect mutations) InDel markers for establishing marker-trait linkages through association/genetic mapping was apparent. The markers detected a greater amplification (97%) and intra-specific polymorphic potential (58–87%) among a diverse panel of cultivated desi, kabuli, and wild accessions even by using a simpler cost-efficient agarose gel-based assay implicating their utility in large-scale genetic analysis especially in domesticated chickpea with narrow genetic base. Two high-density inter-specific genetic linkage maps generated using aforesaid mapping populations were integrated to construct a consensus 1479 InDel markers-anchored high-resolution (inter-marker distance: 0.66 cM) genetic map for efficient molecular mapping of major QTLs governing pod number and seed yield per plant in chickpea. Utilizing these high-density genetic maps as anchors, three major genomic regions harboring each of pod number and seed yield robust QTLs (15–28% phenotypic variation explained) were identified on chromosomes 2, 4, and 6. The integration of genetic and physical maps at these QTLs mapped on chromosomes scaled-down the long major QTL intervals into high-resolution short pod number and seed yield robust QTL physical intervals (0.89–2.94 Mb) which were essentially got validated in multiple genetic backgrounds of two chickpea mapping populations. The genome-wide InDel markers including natural allelic variants and genomic loci/genes delineated at major six especially in one colocalized novel congruent robust pod number and seed yield robust QTLs mapped on a high-density consensus genetic map were found most promising in chickpea. These functionally relevant molecular tags can drive marker-assisted genetic enhancement to develop high-yielding cultivars with increased seed/pod number and yield in chickpea. PMID:27695461

  3. Coordinated phenotype switching with large-scale chromosome flip-flop inversion observed in bacteria.

    PubMed

    Cui, Longzhu; Neoh, Hui-min; Iwamoto, Akira; Hiramatsu, Keiichi

    2012-06-19

    Genome inversions are ubiquitous in organisms ranging from prokaryotes to eukaryotes. Typical examples can be identified by comparing the genomes of two or more closely related organisms, where genome inversion footprints are clearly visible. Although the evolutionary implications of this phenomenon are huge, little is known about the function and biological meaning of this process. Here, we report our findings on a bacterium that generates a reversible, large-scale inversion of its chromosome (about half of its total genome) at high frequencies of up to once every four generations. This inversion switches on or off bacterial phenotypes, including colony morphology, antibiotic susceptibility, hemolytic activity, and expression of dozens of genes. Quantitative measurements and mathematical analyses indicate that this reversible switching is stochastic but self-organized so as to maintain two forms of stable cell populations (i.e., small colony variant, normal colony variant) as a bet-hedging strategy. Thus, this heritable and reversible genome fluctuation seems to govern the bacterial life cycle; it has a profound impact on the course and outcomes of bacterial infections.

  4. The Systems Biology Markup Language (SBML) Level 3 Package: Flux Balance Constraints.

    PubMed

    Olivier, Brett G; Bergmann, Frank T

    2015-09-04

    Constraint-based modeling is a well established modelling methodology used to analyze and study biological networks on both a medium and genome scale. Due to their large size, genome scale models are typically analysed using constraint-based optimization techniques. One widely used method is Flux Balance Analysis (FBA) which, for example, requires a modelling description to include: the definition of a stoichiometric matrix, an objective function and bounds on the values that fluxes can obtain at steady state. The Flux Balance Constraints (FBC) Package extends SBML Level 3 and provides a standardized format for the encoding, exchange and annotation of constraint-based models. It includes support for modelling concepts such as objective functions, flux bounds and model component annotation that facilitates reaction balancing. The FBC package establishes a base level for the unambiguous exchange of genome-scale, constraint-based models, that can be built upon by the community to meet future needs (e. g. by extending it to cover dynamic FBC models).

  5. The Systems Biology Markup Language (SBML) Level 3 Package: Flux Balance Constraints.

    PubMed

    Olivier, Brett G; Bergmann, Frank T

    2015-06-01

    Constraint-based modeling is a well established modelling methodology used to analyze and study biological networks on both a medium and genome scale. Due to their large size, genome scale models are typically analysed using constraint-based optimization techniques. One widely used method is Flux Balance Analysis (FBA) which, for example, requires a modelling description to include: the definition of a stoichiometric matrix, an objective function and bounds on the values that fluxes can obtain at steady state. The Flux Balance Constraints (FBC) Package extends SBML Level 3 and provides a standardized format for the encoding, exchange and annotation of constraint-based models. It includes support for modelling concepts such as objective functions, flux bounds and model component annotation that facilitates reaction balancing. The FBC package establishes a base level for the unambiguous exchange of genome-scale, constraint-based models, that can be built upon by the community to meet future needs (e. g. by extending it to cover dynamic FBC models).

  6. Human Genomic Loci Important in Common Infectious Diseases: Role of High-Throughput Sequencing and Genome-Wide Association Studies

    PubMed Central

    Sserwadda, Ivan; Amujal, Marion; Namatovu, Norah

    2018-01-01

    HIV/AIDS, tuberculosis (TB), and malaria are 3 major global public health threats that undermine development in many resource-poor settings. Recently, the notion that positive selection during epidemics or longer periods of exposure to common infectious diseases may have had a major effect in modifying the constitution of the human genome is being interrogated at a large scale in many populations around the world. This positive selection from infectious diseases increases power to detect associations in genome-wide association studies (GWASs). High-throughput sequencing (HTS) has transformed both the management of infectious diseases and continues to enable large-scale functional characterization of host resistance/susceptibility alleles and loci; a paradigm shift from single candidate gene studies. Application of genome sequencing technologies and genomics has enabled us to interrogate the host-pathogen interface for improving human health. Human populations are constantly locked in evolutionary arms races with pathogens; therefore, identification of common infectious disease-associated genomic variants/markers is important in therapeutic, vaccine development, and screening susceptible individuals in a population. This review describes a range of host-pathogen genomic loci that have been associated with disease susceptibility and resistant patterns in the era of HTS. We further highlight potential opportunities for these genetic markers. PMID:29755620

  7. A large-scale evaluation of computational protein function prediction

    PubMed Central

    Radivojac, Predrag; Clark, Wyatt T; Ronnen Oron, Tal; Schnoes, Alexandra M; Wittkop, Tobias; Sokolov, Artem; Graim, Kiley; Funk, Christopher; Verspoor, Karin; Ben-Hur, Asa; Pandey, Gaurav; Yunes, Jeffrey M; Talwalkar, Ameet S; Repo, Susanna; Souza, Michael L; Piovesan, Damiano; Casadio, Rita; Wang, Zheng; Cheng, Jianlin; Fang, Hai; Gough, Julian; Koskinen, Patrik; Törönen, Petri; Nokso-Koivisto, Jussi; Holm, Liisa; Cozzetto, Domenico; Buchan, Daniel W A; Bryson, Kevin; Jones, David T; Limaye, Bhakti; Inamdar, Harshal; Datta, Avik; Manjari, Sunitha K; Joshi, Rajendra; Chitale, Meghana; Kihara, Daisuke; Lisewski, Andreas M; Erdin, Serkan; Venner, Eric; Lichtarge, Olivier; Rentzsch, Robert; Yang, Haixuan; Romero, Alfonso E; Bhat, Prajwal; Paccanaro, Alberto; Hamp, Tobias; Kassner, Rebecca; Seemayer, Stefan; Vicedo, Esmeralda; Schaefer, Christian; Achten, Dominik; Auer, Florian; Böhm, Ariane; Braun, Tatjana; Hecht, Maximilian; Heron, Mark; Hönigschmid, Peter; Hopf, Thomas; Kaufmann, Stefanie; Kiening, Michael; Krompass, Denis; Landerer, Cedric; Mahlich, Yannick; Roos, Manfred; Björne, Jari; Salakoski, Tapio; Wong, Andrew; Shatkay, Hagit; Gatzmann, Fanny; Sommer, Ingolf; Wass, Mark N; Sternberg, Michael J E; Škunca, Nives; Supek, Fran; Bošnjak, Matko; Panov, Panče; Džeroski, Sašo; Šmuc, Tomislav; Kourmpetis, Yiannis A I; van Dijk, Aalt D J; ter Braak, Cajo J F; Zhou, Yuanpeng; Gong, Qingtian; Dong, Xinran; Tian, Weidong; Falda, Marco; Fontana, Paolo; Lavezzo, Enrico; Di Camillo, Barbara; Toppo, Stefano; Lan, Liang; Djuric, Nemanja; Guo, Yuhong; Vucetic, Slobodan; Bairoch, Amos; Linial, Michal; Babbitt, Patricia C; Brenner, Steven E; Orengo, Christine; Rost, Burkhard; Mooney, Sean D; Friedberg, Iddo

    2013-01-01

    Automated annotation of protein function is challenging. As the number of sequenced genomes rapidly grows, the overwhelming majority of protein products can only be annotated computationally. If computational predictions are to be relied upon, it is crucial that the accuracy of these methods be high. Here we report the results from the first large-scale community-based Critical Assessment of protein Function Annotation (CAFA) experiment. Fifty-four methods representing the state-of-the-art for protein function prediction were evaluated on a target set of 866 proteins from eleven organisms. Two findings stand out: (i) today’s best protein function prediction algorithms significantly outperformed widely-used first-generation methods, with large gains on all types of targets; and (ii) although the top methods perform well enough to guide experiments, there is significant need for improvement of currently available tools. PMID:23353650

  8. The opportunities and challenges of large-scale molecular approaches to songbird neurobiology

    PubMed Central

    Mello, C.V.; Clayton, D.F.

    2014-01-01

    High-through put methods for analyzing genome structure and function are having a large impact in song-bird neurobiology. Methods include genome sequencing and annotation, comparative genomics, DNA microarrays and transcriptomics, and the development of a brain atlas of gene expression. Key emerging findings include the identification of complex transcriptional programs active during singing, the robust brain expression of non-coding RNAs, evidence of profound variations in gene expression across brain regions, and the identification of molecular specializations within song production and learning circuits. Current challenges include the statistical analysis of large datasets, effective genome curations, the efficient localization of gene expression changes to specific neuronal circuits and cells, and the dissection of behavioral and environmental factors that influence brain gene expression. The field requires efficient methods for comparisons with organisms like chicken, which offer important anatomical, functional and behavioral contrasts. As sequencing costs plummet, opportunities emerge for comparative approaches that may help reveal evolutionary transitions contributing to vocal learning, social behavior and other properties that make songbirds such compelling research subjects. PMID:25280907

  9. Hi-C-constrained physical models of human chromosomes recover functionally-related properties of genome organization

    NASA Astrophysics Data System (ADS)

    di Stefano, Marco; Paulsen, Jonas; Lien, Tonje G.; Hovig, Eivind; Micheletti, Cristian

    2016-10-01

    Combining genome-wide structural models with phenomenological data is at the forefront of efforts to understand the organizational principles regulating the human genome. Here, we use chromosome-chromosome contact data as knowledge-based constraints for large-scale three-dimensional models of the human diploid genome. The resulting models remain minimally entangled and acquire several functional features that are observed in vivo and that were never used as input for the model. We find, for instance, that gene-rich, active regions are drawn towards the nuclear center, while gene poor and lamina associated domains are pushed to the periphery. These and other properties persist upon adding local contact constraints, suggesting their compatibility with non-local constraints for the genome organization. The results show that suitable combinations of data analysis and physical modelling can expose the unexpectedly rich functionally-related properties implicit in chromosome-chromosome contact data. Specific directions are suggested for further developments based on combining experimental data analysis and genomic structural modelling.

  10. Hi-C-constrained physical models of human chromosomes recover functionally-related properties of genome organization.

    PubMed

    Di Stefano, Marco; Paulsen, Jonas; Lien, Tonje G; Hovig, Eivind; Micheletti, Cristian

    2016-10-27

    Combining genome-wide structural models with phenomenological data is at the forefront of efforts to understand the organizational principles regulating the human genome. Here, we use chromosome-chromosome contact data as knowledge-based constraints for large-scale three-dimensional models of the human diploid genome. The resulting models remain minimally entangled and acquire several functional features that are observed in vivo and that were never used as input for the model. We find, for instance, that gene-rich, active regions are drawn towards the nuclear center, while gene poor and lamina associated domains are pushed to the periphery. These and other properties persist upon adding local contact constraints, suggesting their compatibility with non-local constraints for the genome organization. The results show that suitable combinations of data analysis and physical modelling can expose the unexpectedly rich functionally-related properties implicit in chromosome-chromosome contact data. Specific directions are suggested for further developments based on combining experimental data analysis and genomic structural modelling.

  11. NCBI prokaryotic genome annotation pipeline.

    PubMed

    Tatusova, Tatiana; DiCuccio, Michael; Badretdin, Azat; Chetvernin, Vyacheslav; Nawrocki, Eric P; Zaslavsky, Leonid; Lomsadze, Alexandre; Pruitt, Kim D; Borodovsky, Mark; Ostell, James

    2016-08-19

    Recent technological advances have opened unprecedented opportunities for large-scale sequencing and analysis of populations of pathogenic species in disease outbreaks, as well as for large-scale diversity studies aimed at expanding our knowledge across the whole domain of prokaryotes. To meet the challenge of timely interpretation of structure, function and meaning of this vast genetic information, a comprehensive approach to automatic genome annotation is critically needed. In collaboration with Georgia Tech, NCBI has developed a new approach to genome annotation that combines alignment based methods with methods of predicting protein-coding and RNA genes and other functional elements directly from sequence. A new gene finding tool, GeneMarkS+, uses the combined evidence of protein and RNA placement by homology as an initial map of annotation to generate and modify ab initio gene predictions across the whole genome. Thus, the new NCBI's Prokaryotic Genome Annotation Pipeline (PGAP) relies more on sequence similarity when confident comparative data are available, while it relies more on statistical predictions in the absence of external evidence. The pipeline provides a framework for generation and analysis of annotation on the full breadth of prokaryotic taxonomy. For additional information on PGAP see https://www.ncbi.nlm.nih.gov/genome/annotation_prok/ and the NCBI Handbook, https://www.ncbi.nlm.nih.gov/books/NBK174280/. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  12. Genome-wide inference of regulatory networks in Streptomyces coelicolor.

    PubMed

    Castro-Melchor, Marlene; Charaniya, Salim; Karypis, George; Takano, Eriko; Hu, Wei-Shou

    2010-10-18

    The onset of antibiotics production in Streptomyces species is co-ordinated with differentiation events. An understanding of the genetic circuits that regulate these coupled biological phenomena is essential to discover and engineer the pharmacologically important natural products made by these species. The availability of genomic tools and access to a large warehouse of transcriptome data for the model organism, Streptomyces coelicolor, provides incentive to decipher the intricacies of the regulatory cascades and develop biologically meaningful hypotheses. In this study, more than 500 samples of genome-wide temporal transcriptome data, comprising wild-type and more than 25 regulatory gene mutants of Streptomyces coelicolor probed across multiple stress and medium conditions, were investigated. Information based on transcript and functional similarity was used to update a previously-predicted whole-genome operon map and further applied to predict transcriptional networks constituting modules enriched in diverse functions such as secondary metabolism, and sigma factor. The predicted network displays a scale-free architecture with a small-world property observed in many biological networks. The networks were further investigated to identify functionally-relevant modules that exhibit functional coherence and a consensus motif in the promoter elements indicative of DNA-binding elements. Despite the enormous experimental as well as computational challenges, a systems approach for integrating diverse genome-scale datasets to elucidate complex regulatory networks is beginning to emerge. We present an integrated analysis of transcriptome data and genomic features to refine a whole-genome operon map and to construct regulatory networks at the cistron level in Streptomyces coelicolor. The functionally-relevant modules identified in this study pose as potential targets for further studies and verification.

  13. Simultaneous non-contiguous deletions using large synthetic DNA and site-specific recombinases

    PubMed Central

    Krishnakumar, Radha; Grose, Carissa; Haft, Daniel H.; Zaveri, Jayshree; Alperovich, Nina; Gibson, Daniel G.; Merryman, Chuck; Glass, John I.

    2014-01-01

    Toward achieving rapid and large scale genome modification directly in a target organism, we have developed a new genome engineering strategy that uses a combination of bioinformatics aided design, large synthetic DNA and site-specific recombinases. Using Cre recombinase we swapped a target 126-kb segment of the Escherichia coli genome with a 72-kb synthetic DNA cassette, thereby effectively eliminating over 54 kb of genomic DNA from three non-contiguous regions in a single recombination event. We observed complete replacement of the native sequence with the modified synthetic sequence through the action of the Cre recombinase and no competition from homologous recombination. Because of the versatility and high-efficiency of the Cre-lox system, this method can be used in any organism where this system is functional as well as adapted to use with other highly precise genome engineering systems. Compared to present-day iterative approaches in genome engineering, we anticipate this method will greatly speed up the creation of reduced, modularized and optimized genomes through the integration of deletion analyses data, transcriptomics, synthetic biology and site-specific recombination. PMID:24914053

  14. Functional Genomic Landscape of Human Breast Cancer Drivers, Vulnerabilities, and Resistance.

    PubMed

    Marcotte, Richard; Sayad, Azin; Brown, Kevin R; Sanchez-Garcia, Felix; Reimand, Jüri; Haider, Maliha; Virtanen, Carl; Bradner, James E; Bader, Gary D; Mills, Gordon B; Pe'er, Dana; Moffat, Jason; Neel, Benjamin G

    2016-01-14

    Large-scale genomic studies have identified multiple somatic aberrations in breast cancer, including copy number alterations and point mutations. Still, identifying causal variants and emergent vulnerabilities that arise as a consequence of genetic alterations remain major challenges. We performed whole-genome small hairpin RNA (shRNA) "dropout screens" on 77 breast cancer cell lines. Using a hierarchical linear regression algorithm to score our screen results and integrate them with accompanying detailed genetic and proteomic information, we identify vulnerabilities in breast cancer, including candidate "drivers," and reveal general functional genomic properties of cancer cells. Comparisons of gene essentiality with drug sensitivity data suggest potential resistance mechanisms, effects of existing anti-cancer drugs, and opportunities for combination therapy. Finally, we demonstrate the utility of this large dataset by identifying BRD4 as a potential target in luminal breast cancer and PIK3CA mutations as a resistance determinant for BET-inhibitors. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. CyanoGEBA: A Better Understanding of Cynobacterial Diversity through Large-Scale Genomics (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shih, Patrick

    2012-03-22

    Patrick Shih, representing both the University of California, Berkeley and JGI, gives a talk titled "CyanoGEBA: A Better Understanding of Cynobacterial Diversity through Large-scale Genomics" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  16. CyanoGEBA: A Better Understanding of Cynobacterial Diversity through Large-Scale Genomics (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Shih, Patrick

    2018-01-10

    Patrick Shih, representing both the University of California, Berkeley and JGI, gives a talk titled "CyanoGEBA: A Better Understanding of Cynobacterial Diversity through Large-scale Genomics" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  17. Gene Duplicability of Core Genes Is Highly Consistent across All Angiosperms[OPEN

    PubMed Central

    Li, Zhen; Van de Peer, Yves; De Smet, Riet

    2016-01-01

    Gene duplication is an important mechanism for adding to genomic novelty. Hence, which genes undergo duplication and are preserved following duplication is an important question. It has been observed that gene duplicability, or the ability of genes to be retained following duplication, is a nonrandom process, with certain genes being more amenable to survive duplication events than others. Primarily, gene essentiality and the type of duplication (small-scale versus large-scale) have been shown in different species to influence the (long-term) survival of novel genes. However, an overarching view of “gene duplicability” is lacking, mainly due to the fact that previous studies usually focused on individual species and did not account for the influence of genomic context and the time of duplication. Here, we present a large-scale study in which we investigated duplicate retention for 9178 gene families shared between 37 flowering plant species, referred to as angiosperm core gene families. For most gene families, we observe a strikingly consistent pattern of gene duplicability across species, with gene families being either primarily single-copy or multicopy in all species. An intermediate class contains gene families that are often retained in duplicate for periods extending to tens of millions of years after whole-genome duplication, but ultimately appear to be largely restored to singleton status, suggesting that these genes may be dosage balance sensitive. The distinction between single-copy and multicopy gene families is reflected in their functional annotation, with single-copy genes being mainly involved in the maintenance of genome stability and organelle function and multicopy genes in signaling, transport, and metabolism. The intermediate class was overrepresented in regulatory genes, further suggesting that these represent putative dosage-balance-sensitive genes. PMID:26744215

  18. Gene Duplicability of Core Genes Is Highly Consistent across All Angiosperms.

    PubMed

    Li, Zhen; Defoort, Jonas; Tasdighian, Setareh; Maere, Steven; Van de Peer, Yves; De Smet, Riet

    2016-02-01

    Gene duplication is an important mechanism for adding to genomic novelty. Hence, which genes undergo duplication and are preserved following duplication is an important question. It has been observed that gene duplicability, or the ability of genes to be retained following duplication, is a nonrandom process, with certain genes being more amenable to survive duplication events than others. Primarily, gene essentiality and the type of duplication (small-scale versus large-scale) have been shown in different species to influence the (long-term) survival of novel genes. However, an overarching view of "gene duplicability" is lacking, mainly due to the fact that previous studies usually focused on individual species and did not account for the influence of genomic context and the time of duplication. Here, we present a large-scale study in which we investigated duplicate retention for 9178 gene families shared between 37 flowering plant species, referred to as angiosperm core gene families. For most gene families, we observe a strikingly consistent pattern of gene duplicability across species, with gene families being either primarily single-copy or multicopy in all species. An intermediate class contains gene families that are often retained in duplicate for periods extending to tens of millions of years after whole-genome duplication, but ultimately appear to be largely restored to singleton status, suggesting that these genes may be dosage balance sensitive. The distinction between single-copy and multicopy gene families is reflected in their functional annotation, with single-copy genes being mainly involved in the maintenance of genome stability and organelle function and multicopy genes in signaling, transport, and metabolism. The intermediate class was overrepresented in regulatory genes, further suggesting that these represent putative dosage-balance-sensitive genes. © 2016 American Society of Plant Biologists. All rights reserved.

  19. TheCellMap.org: A Web-Accessible Database for Visualizing and Mining the Global Yeast Genetic Interaction Network

    PubMed Central

    Usaj, Matej; Tan, Yizhao; Wang, Wen; VanderSluis, Benjamin; Zou, Albert; Myers, Chad L.; Costanzo, Michael; Andrews, Brenda; Boone, Charles

    2017-01-01

    Providing access to quantitative genomic data is key to ensure large-scale data validation and promote new discoveries. TheCellMap.org serves as a central repository for storing and analyzing quantitative genetic interaction data produced by genome-scale Synthetic Genetic Array (SGA) experiments with the budding yeast Saccharomyces cerevisiae. In particular, TheCellMap.org allows users to easily access, visualize, explore, and functionally annotate genetic interactions, or to extract and reorganize subnetworks, using data-driven network layouts in an intuitive and interactive manner. PMID:28325812

  20. TheCellMap.org: A Web-Accessible Database for Visualizing and Mining the Global Yeast Genetic Interaction Network.

    PubMed

    Usaj, Matej; Tan, Yizhao; Wang, Wen; VanderSluis, Benjamin; Zou, Albert; Myers, Chad L; Costanzo, Michael; Andrews, Brenda; Boone, Charles

    2017-05-05

    Providing access to quantitative genomic data is key to ensure large-scale data validation and promote new discoveries. TheCellMap.org serves as a central repository for storing and analyzing quantitative genetic interaction data produced by genome-scale Synthetic Genetic Array (SGA) experiments with the budding yeast Saccharomyces cerevisiae In particular, TheCellMap.org allows users to easily access, visualize, explore, and functionally annotate genetic interactions, or to extract and reorganize subnetworks, using data-driven network layouts in an intuitive and interactive manner. Copyright © 2017 Usaj et al.

  1. Functional Genome Mining for Metabolites Encoded by Large Gene Clusters through Heterologous Expression of a Whole-Genome Bacterial Artificial Chromosome Library in Streptomyces spp.

    PubMed Central

    Xu, Min; Wang, Yemin; Zhao, Zhilong; Gao, Guixi; Huang, Sheng-Xiong; Kang, Qianjin; He, Xinyi; Lin, Shuangjun; Pang, Xiuhua; Deng, Zixin

    2016-01-01

    ABSTRACT Genome sequencing projects in the last decade revealed numerous cryptic biosynthetic pathways for unknown secondary metabolites in microbes, revitalizing drug discovery from microbial metabolites by approaches called genome mining. In this work, we developed a heterologous expression and functional screening approach for genome mining from genomic bacterial artificial chromosome (BAC) libraries in Streptomyces spp. We demonstrate mining from a strain of Streptomyces rochei, which is known to produce streptothricins and borrelidin, by expressing its BAC library in the surrogate host Streptomyces lividans SBT5, and screening for antimicrobial activity. In addition to the successful capture of the streptothricin and borrelidin biosynthetic gene clusters, we discovered two novel linear lipopeptides and their corresponding biosynthetic gene cluster, as well as a novel cryptic gene cluster for an unknown antibiotic from S. rochei. This high-throughput functional genome mining approach can be easily applied to other streptomycetes, and it is very suitable for the large-scale screening of genomic BAC libraries for bioactive natural products and the corresponding biosynthetic pathways. IMPORTANCE Microbial genomes encode numerous cryptic biosynthetic gene clusters for unknown small metabolites with potential biological activities. Several genome mining approaches have been developed to activate and bring these cryptic metabolites to biological tests for future drug discovery. Previous sequence-guided procedures relied on bioinformatic analysis to predict potentially interesting biosynthetic gene clusters. In this study, we describe an efficient approach based on heterologous expression and functional screening of a whole-genome library for the mining of bioactive metabolites from Streptomyces. The usefulness of this function-driven approach was demonstrated by the capture of four large biosynthetic gene clusters for metabolites of various chemical types, including streptothricins, borrelidin, two novel lipopeptides, and one unknown antibiotic from Streptomyces rochei Sal35. The transfer, expression, and screening of the library were all performed in a high-throughput way, so that this approach is scalable and adaptable to industrial automation for next-generation antibiotic discovery. PMID:27451447

  2. Genomes, free radicals and plant cell invasion: recent developments in plant pathogenic fungi.

    PubMed

    Egan, Martin J; Talbot, Nicholas J

    2008-08-01

    This review describes current advances in our understanding of fungal-plant interactions. The widespread application of whole genome sequencing to a diverse range of fungal species has allowed new insight into the evolution of fungal pathogenesis and the definition of the gene inventories associated with important plant pathogens. This has also led to functional genomic approaches to carry out large-scale gene functional analysis. There has also been significant progress in understanding appressorium-mediated plant infection by fungi and its underlying genetic basis. The nature of biotrophic proliferation of fungal pathogens in host tissue has recently revealed new potential mechanisms for cell-to-cell movement by invading pathogens.

  3. PIK3CA mutant tumors depend on oxoglutarate dehydrogenase | Office of Cancer Genomics

    Cancer.gov

    Oncogenic PIK3CA mutations are found in a significant fraction of human cancers, but therapeutic inhibition of PI3K has only shown limited success in clinical trials. To understand how mutant PIK3CA contributes to cancer cell proliferation, we used genome scale loss-of-function screening in a large number of genomically annotated cancer cell lines. As expected, we found that PIK3CA mutant cancer cells require PIK3CA but also require the expression of the TCA cycle enzyme 2-oxoglutarate dehydrogenase (OGDH).

  4. Next-Generation Sequencing: The Translational Medicine Approach from “Bench to Bedside to Population”

    PubMed Central

    Beigh, Mohammad Muzafar

    2016-01-01

    Humans have predicted the relationship between heredity and diseases for a long time. Only in the beginning of the last century, scientists begin to discover the connotations between different genes and disease phenotypes. Recent trends in next-generation sequencing (NGS) technologies have brought a great momentum in biomedical research that in turn has remarkably augmented our basic understanding of human biology and its associated diseases. State-of-the-art next generation biotechnologies have started making huge strides in our current understanding of mechanisms of various chronic illnesses like cancers, metabolic disorders, neurodegenerative anomalies, etc. We are experiencing a renaissance in biomedical research primarily driven by next generation biotechnologies like genomics, transcriptomics, proteomics, metabolomics, lipidomics etc. Although genomic discoveries are at the forefront of next generation omics technologies, however, their implementation into clinical arena had been painstakingly slow mainly because of high reaction costs and unavailability of requisite computational tools for large-scale data analysis. However rapid innovations and steadily lowering cost of sequence-based chemistries along with the development of advanced bioinformatics tools have lately prompted launching and implementation of large-scale massively parallel genome sequencing programs in different fields ranging from medical genetics, infectious biology, agriculture sciences etc. Recent advances in large-scale omics-technologies is bringing healthcare research beyond the traditional “bench to bedside” approach to more of a continuum that will include improvements, in public healthcare and will be primarily based on predictive, preventive, personalized, and participatory medicine approach (P4). Recent large-scale research projects in genetic and infectious disease biology have indicated that massively parallel whole-genome/whole-exome sequencing, transcriptome analysis, and other functional genomic tools can reveal large number of unique functional elements and/or markers that otherwise would be undetected by traditional sequencing methodologies. Therefore, latest trends in the biomedical research is giving birth to the new branch in medicine commonly referred to as personalized and/or precision medicine. Developments in the post-genomic era are believed to completely restructure the present clinical pattern of disease prevention and treatment as well as methods of diagnosis and prognosis. The next important step in the direction of the precision/personalized medicine approach should be its early adoption in clinics for future medical interventions. Consequently, in coming year’s next generation biotechnologies will reorient medical practice more towards disease prediction and prevention approaches rather than curing them at later stages of their development and progression, even at wider population level(s) for general public healthcare system. PMID:28930123

  5. pico-PLAZA, a genome database of microbial photosynthetic eukaryotes.

    PubMed

    Vandepoele, Klaas; Van Bel, Michiel; Richard, Guilhem; Van Landeghem, Sofie; Verhelst, Bram; Moreau, Hervé; Van de Peer, Yves; Grimsley, Nigel; Piganeau, Gwenael

    2013-08-01

    With the advent of next generation genome sequencing, the number of sequenced algal genomes and transcriptomes is rapidly growing. Although a few genome portals exist to browse individual genome sequences, exploring complete genome information from multiple species for the analysis of user-defined sequences or gene lists remains a major challenge. pico-PLAZA is a web-based resource (http://bioinformatics.psb.ugent.be/pico-plaza/) for algal genomics that combines different data types with intuitive tools to explore genomic diversity, perform integrative evolutionary sequence analysis and study gene functions. Apart from homologous gene families, multiple sequence alignments, phylogenetic trees, Gene Ontology, InterPro and text-mining functional annotations, different interactive viewers are available to study genome organization using gene collinearity and synteny information. Different search functions, documentation pages, export functions and an extensive glossary are available to guide non-expert scientists. To illustrate the versatility of the platform, different case studies are presented demonstrating how pico-PLAZA can be used to functionally characterize large-scale EST/RNA-Seq data sets and to perform environmental genomics. Functional enrichments analysis of 16 Phaeodactylum tricornutum transcriptome libraries offers a molecular view on diatom adaptation to different environments of ecological relevance. Furthermore, we show how complementary genomic data sources can easily be combined to identify marker genes to study the diversity and distribution of algal species, for example in metagenomes, or to quantify intraspecific diversity from environmental strains. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  6. The Divided Bacterial Genome: Structure, Function, and Evolution.

    PubMed

    diCenzo, George C; Finan, Turlough M

    2017-09-01

    Approximately 10% of bacterial genomes are split between two or more large DNA fragments, a genome architecture referred to as a multipartite genome. This multipartite organization is found in many important organisms, including plant symbionts, such as the nitrogen-fixing rhizobia, and plant, animal, and human pathogens, including the genera Brucella , Vibrio , and Burkholderia . The availability of many complete bacterial genome sequences means that we can now examine on a broad scale the characteristics of the different types of DNA molecules in a genome. Recent work has begun to shed light on the unique properties of each class of replicon, the unique functional role of chromosomal and nonchromosomal DNA molecules, and how the exploitation of novel niches may have driven the evolution of the multipartite genome. The aims of this review are to (i) outline the literature regarding bacterial genomes that are divided into multiple fragments, (ii) provide a meta-analysis of completed bacterial genomes from 1,708 species as a way of reviewing the abundant information present in these genome sequences, and (iii) provide an encompassing model to explain the evolution and function of the multipartite genome structure. This review covers, among other topics, salient genome terminology; mechanisms of multipartite genome formation; the phylogenetic distribution of multipartite genomes; how each part of a genome differs with respect to genomic signatures, genetic variability, and gene functional annotation; how each DNA molecule may interact; as well as the costs and benefits of this genome structure. Copyright © 2017 American Society for Microbiology.

  7. Structural and functional analysis of the finished genome of the recently isolated toxic Anabaena sp. WA102.

    PubMed

    Brown, Nathan M; Mueller, Ryan S; Shepardson, Jonathan W; Landry, Zachary C; Morré, Jeffrey T; Maier, Claudia S; Hardy, F Joan; Dreher, Theo W

    2016-06-13

    Very few closed genomes of the cyanobacteria that commonly produce toxic blooms in lakes and reservoirs are available, limiting our understanding of the properties of these organisms. A new anatoxin-a-producing member of the Nostocaceae, Anabaena sp. WA102, was isolated from a freshwater lake in Washington State, USA, in 2013 and maintained in non-axenic culture. The Anabaena sp. WA102 5.7 Mbp genome assembly has been closed with long-read, single-molecule sequencing and separately a draft genome assembly has been produced with short-read sequencing technology. The closed and draft genome assemblies are compared, showing a correlation between long repeats in the genome and the many gaps in the short-read assembly. Anabaena sp. WA102 encodes anatoxin-a biosynthetic genes, as does its close relative Anabaena sp. AL93 (also introduced in this study). These strains are distinguished by differences in the genes for light-harvesting phycobilins, with Anabaena sp. AL93 possessing a phycoerythrocyanin operon. Biologically relevant structural variants in the Anabaena sp. WA102 genome were detected only by long-read sequencing: a tandem triplication of the anaBCD promoter region in the anatoxin-a synthase gene cluster (not triplicated in Anabaena sp. AL93) and a 5-kbp deletion variant present in two-thirds of the population. The genome has a large number of mobile elements (160). Strikingly, there was no synteny with the genome of its nearest fully assembled relative, Anabaena sp. 90. Structural and functional genome analyses indicate that Anabaena sp. WA102 has a flexible genome. Genome closure, which can be readily achieved with long-read sequencing, reveals large scale (e.g., gene order) and local structural features that should be considered in understanding genome evolution and function.

  8. CORALINA: a universal method for the generation of gRNA libraries for CRISPR-based screening.

    PubMed

    Köferle, Anna; Worf, Karolina; Breunig, Christopher; Baumann, Valentin; Herrero, Javier; Wiesbeck, Maximilian; Hutter, Lukas H; Götz, Magdalena; Fuchs, Christiane; Beck, Stephan; Stricker, Stefan H

    2016-11-14

    The bacterial CRISPR system is fast becoming the most popular genetic and epigenetic engineering tool due to its universal applicability and adaptability. The desire to deploy CRISPR-based methods in a large variety of species and contexts has created an urgent need for the development of easy, time- and cost-effective methods enabling large-scale screening approaches. Here we describe CORALINA (comprehensive gRNA library generation through controlled nuclease activity), a method for the generation of comprehensive gRNA libraries for CRISPR-based screens. CORALINA gRNA libraries can be derived from any source of DNA without the need of complex oligonucleotide synthesis. We show the utility of CORALINA for human and mouse genomic DNA, its reproducibility in covering the most relevant genomic features including regulatory, coding and non-coding sequences and confirm the functionality of CORALINA generated gRNAs. The simplicity and cost-effectiveness make CORALINA suitable for any experimental system. The unprecedented sequence complexities obtainable with CORALINA libraries are a necessary pre-requisite for less biased large scale genomic and epigenomic screens.

  9. Genome-environment association study suggests local adaptation to climate at the regional scale in Fagus sylvatica.

    PubMed

    Pluess, Andrea R; Frank, Aline; Heiri, Caroline; Lalagüe, Hadrien; Vendramin, Giovanni G; Oddou-Muratorio, Sylvie

    2016-04-01

    The evolutionary potential of long-lived species, such as forest trees, is fundamental for their local persistence under climate change (CC). Genome-environment association (GEA) analyses reveal if species in heterogeneous environments at the regional scale are under differential selection resulting in populations with potential preadaptation to CC within this area. In 79 natural Fagus sylvatica populations, neutral genetic patterns were characterized using 12 simple sequence repeat (SSR) markers, and genomic variation (144 single nucleotide polymorphisms (SNPs) out of 52 candidate genes) was related to 87 environmental predictors in the latent factor mixed model, logistic regressions and isolation by distance/environmental (IBD/IBE) tests. SSR diversity revealed relatedness at up to 150 m intertree distance but an absence of large-scale spatial genetic structure and IBE. In the GEA analyses, 16 SNPs in 10 genes responded to one or several environmental predictors and IBE, corrected for IBD, was confirmed. The GEA often reflected the proposed gene functions, including indications for adaptation to water availability and temperature. Genomic divergence and the lack of large-scale neutral genetic patterns suggest that gene flow allows the spread of advantageous alleles in adaptive genes. Thereby, adaptation processes are likely to take place in species occurring in heterogeneous environments, which might reduce their regional extinction risk under CC. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  10. The Comprehensive Microbial Resource.

    PubMed

    Peterson, J D; Umayam, L A; Dickinson, T; Hickey, E K; White, O

    2001-01-01

    One challenge presented by large-scale genome sequencing efforts is effective display of uniform information to the scientific community. The Comprehensive Microbial Resource (CMR) contains robust annotation of all complete microbial genomes and allows for a wide variety of data retrievals. The bacterial information has been placed on the Web at http://www.tigr.org/CMR for retrieval using standard web browsing technology. Retrievals can be based on protein properties such as molecular weight or hydrophobicity, GC-content, functional role assignments and taxonomy. The CMR also has special web-based tools to allow data mining using pre-run homology searches, whole genome dot-plots, batch downloading and traversal across genomes using a variety of datatypes.

  11. Agrobacterium-mediated virus-induced gene silencing assay in cotton.

    PubMed

    Gao, Xiquan; Britt, Robert C; Shan, Libo; He, Ping

    2011-08-20

    Cotton (Gossypium hirsutum) is one of the most important crops worldwide. Considerable efforts have been made on molecular breeding of new varieties. The large-scale gene functional analysis in cotton has been lagged behind most of the modern plant species, likely due to its large size of genome, gene duplication and polyploidy, long growth cycle and recalcitrance to genetic transformation(1). To facilitate high throughput functional genetic/genomic study in cotton, we attempt to develop rapid and efficient transient assays to assess cotton gene functions. Virus-Induced Gene Silencing (VIGS) is a powerful technique that was developed based on the host Post-Transcriptional Gene Silencing (PTGS) to repress viral proliferation(2,3). Agrobacterium-mediated VIGS has been successfully applied in a wide range of dicots species such as Solanaceae, Arabidopsis and legume species, and monocots species including barley, wheat and maize, for various functional genomic studies(3,4). As this rapid and efficient approach avoids plant transformation and overcomes functional redundancy, it is particularly attractive and suitable for functional genomic study in crop species like cotton not amenable for transformation. In this study, we report the detailed protocol of Agrobacterium-mediated VIGS system in cotton. Among the several viral VIGS vectors, the tobacco rattle virus (TRV) invades a wide range of hosts and is able to spread vigorously throughout the entire plant yet produce mild symptoms on the hosts5. To monitor the silencing efficiency, GrCLA1, a homolog gene of Arabidopsis Cloroplastos alterados 1 gene (AtCLA1) in cotton, has been cloned and inserted into the VIGS binary vector pYL156. CLA1 gene is involved in chloroplast development(6), and previous studies have shown that loss-of-function of AtCLA1 resulted in an albino phenotype on true leaves(7), providing an excellent visual marker for silencing efficiency. At approximately two weeks post Agrobacterium infiltration, the albino phenotype started to appear on the true leaves, with 100% silencing efficiency in all replicated experiments. The silencing of endogenous gene expression was also confirmed by RT-PCR analysis. Significantly, silencing could potently occur in all the cultivars we tested, including various commercially grown varieties in Texas. This rapid and efficient Agrobacterium-mediated VIGS assay provides a very powerful tool for rapid large-scale analysis of gene functions at genome-wide level in cotton.

  12. Agrobacterium-Mediated Virus-Induced Gene Silencing Assay In Cotton

    PubMed Central

    Gao, Xiquan; Britt Jr., Robert C.; Shan, Libo; He, Ping

    2011-01-01

    Cotton (Gossypium hirsutum) is one of the most important crops worldwide. Considerable efforts have been made on molecular breeding of new varieties. The large-scale gene functional analysis in cotton has been lagged behind most of the modern plant species, likely due to its large size of genome, gene duplication and polyploidy, long growth cycle and recalcitrance to genetic transformation1. To facilitate high throughput functional genetic/genomic study in cotton, we attempt to develop rapid and efficient transient assays to assess cotton gene functions. Virus-Induced Gene Silencing (VIGS) is a powerful technique that was developed based on the host Post-Transcriptional Gene Silencing (PTGS) to repress viral proliferation2,3. Agrobacterium-mediated VIGS has been successfully applied in a wide range of dicots species such as Solanaceae, Arabidopsis and legume species, and monocots species including barley, wheat and maize, for various functional genomic studies3,4. As this rapid and efficient approach avoids plant transformation and overcomes functional redundancy, it is particularly attractive and suitable for functional genomic study in crop species like cotton not amenable for transformation. In this study, we report the detailed protocol of Agrobacterium-mediated VIGS system in cotton. Among the several viral VIGS vectors, the tobacco rattle virus (TRV) invades a wide range of hosts and is able to spread vigorously throughout the entire plant yet produce mild symptoms on the hosts5. To monitor the silencing efficiency, GrCLA1, a homolog gene of Arabidopsis Cloroplastos alterados 1 gene (AtCLA1) in cotton, has been cloned and inserted into the VIGS binary vector pYL156. CLA1 gene is involved in chloroplast development6, and previous studies have shown that loss-of-function of AtCLA1 resulted in an albino phenotype on true leaves7, providing an excellent visual marker for silencing efficiency. At approximately two weeks post Agrobacterium infiltration, the albino phenotype started to appear on the true leaves, with 100% silencing efficiency in all replicated experiments. The silencing of endogenous gene expression was also confirmed by RT-PCR analysis. Significantly, silencing could potently occur in all the cultivars we tested, including various commercially grown varieties in Texas. This rapid and efficient Agrobacterium-mediated VIGS assay provides a very powerful tool for rapid large-scale analysis of gene functions at genome-wide level in cotton. PMID:21876527

  13. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project.

    PubMed

    Gerstein, Mark B; Lu, Zhi John; Van Nostrand, Eric L; Cheng, Chao; Arshinoff, Bradley I; Liu, Tao; Yip, Kevin Y; Robilotto, Rebecca; Rechtsteiner, Andreas; Ikegami, Kohta; Alves, Pedro; Chateigner, Aurelien; Perry, Marc; Morris, Mitzi; Auerbach, Raymond K; Feng, Xin; Leng, Jing; Vielle, Anne; Niu, Wei; Rhrissorrakrai, Kahn; Agarwal, Ashish; Alexander, Roger P; Barber, Galt; Brdlik, Cathleen M; Brennan, Jennifer; Brouillet, Jeremy Jean; Carr, Adrian; Cheung, Ming-Sin; Clawson, Hiram; Contrino, Sergio; Dannenberg, Luke O; Dernburg, Abby F; Desai, Arshad; Dick, Lindsay; Dosé, Andréa C; Du, Jiang; Egelhofer, Thea; Ercan, Sevinc; Euskirchen, Ghia; Ewing, Brent; Feingold, Elise A; Gassmann, Reto; Good, Peter J; Green, Phil; Gullier, Francois; Gutwein, Michelle; Guyer, Mark S; Habegger, Lukas; Han, Ting; Henikoff, Jorja G; Henz, Stefan R; Hinrichs, Angie; Holster, Heather; Hyman, Tony; Iniguez, A Leo; Janette, Judith; Jensen, Morten; Kato, Masaomi; Kent, W James; Kephart, Ellen; Khivansara, Vishal; Khurana, Ekta; Kim, John K; Kolasinska-Zwierz, Paulina; Lai, Eric C; Latorre, Isabel; Leahey, Amber; Lewis, Suzanna; Lloyd, Paul; Lochovsky, Lucas; Lowdon, Rebecca F; Lubling, Yaniv; Lyne, Rachel; MacCoss, Michael; Mackowiak, Sebastian D; Mangone, Marco; McKay, Sheldon; Mecenas, Desirea; Merrihew, Gennifer; Miller, David M; Muroyama, Andrew; Murray, John I; Ooi, Siew-Loon; Pham, Hoang; Phippen, Taryn; Preston, Elicia A; Rajewsky, Nikolaus; Rätsch, Gunnar; Rosenbaum, Heidi; Rozowsky, Joel; Rutherford, Kim; Ruzanov, Peter; Sarov, Mihail; Sasidharan, Rajkumar; Sboner, Andrea; Scheid, Paul; Segal, Eran; Shin, Hyunjin; Shou, Chong; Slack, Frank J; Slightam, Cindie; Smith, Richard; Spencer, William C; Stinson, E O; Taing, Scott; Takasaki, Teruaki; Vafeados, Dionne; Voronina, Ksenia; Wang, Guilin; Washington, Nicole L; Whittle, Christina M; Wu, Beijing; Yan, Koon-Kiu; Zeller, Georg; Zha, Zheng; Zhong, Mei; Zhou, Xingliang; Ahringer, Julie; Strome, Susan; Gunsalus, Kristin C; Micklem, Gos; Liu, X Shirley; Reinke, Valerie; Kim, Stuart K; Hillier, LaDeana W; Henikoff, Steven; Piano, Fabio; Snyder, Michael; Stein, Lincoln; Lieb, Jason D; Waterston, Robert H

    2010-12-24

    We systematically generated large-scale data sets to improve genome annotation for the nematode Caenorhabditis elegans, a key model organism. These data sets include transcriptome profiling across a developmental time course, genome-wide identification of transcription factor-binding sites, and maps of chromatin organization. From this, we created more complete and accurate gene models, including alternative splice forms and candidate noncoding RNAs. We constructed hierarchical networks of transcription factor-binding and microRNA interactions and discovered chromosomal locations bound by an unusually large number of transcription factors. Different patterns of chromatin composition and histone modification were revealed between chromosome arms and centers, with similarly prominent differences between autosomes and the X chromosome. Integrating data types, we built statistical models relating chromatin, transcription factor binding, and gene expression. Overall, our analyses ascribed putative functions to most of the conserved genome.

  14. 2013 Progress Report -- DOE Joint Genome Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-11-01

    In October 2012, we introduced a 10-Year Strategic Vision [http://bit.ly/JGI-Vision] for the Institute. A central focus of this Strategic Vision is to bridge the gap between sequenced genomes and an understanding of biological functions at the organism and ecosystem level. This involves the continued massive-scale generation of sequence data, complemented by orthogonal new capabilities to functionally annotate these large sequence data sets. Our Strategic Vision lays out a path to guide our decisions and ensure that the evolving set of experimental and computational capabilities available to DOE JGI users will continue to enable groundbreaking science.

  15. Lightweight genome viewer: portable software for browsing genomics data in its chromosomal context

    PubMed Central

    Faith, Jeremiah J; Olson, Andrew J; Gardner, Timothy S; Sachidanandam, Ravi

    2007-01-01

    Background Lightweight genome viewer (lwgv) is a web-based tool for visualization of sequence annotations in their chromosomal context. It performs most of the functions of larger genome browsers, while relying on standard flat-file formats and bypassing the database needs of most visualization tools. Visualization as an aide to discovery requires display of novel data in conjunction with static annotations in their chromosomal context. With database-based systems, displaying dynamic results requires temporary tables that need to be tracked for removal. Results lwgv simplifies the visualization of user-generated results on a local computer. The dynamic results of these analyses are written to transient files, which can import static content from a more permanent file. lwgv is currently used in many different applications, from whole genome browsers to single-gene RNAi design visualization, demonstrating its applicability in a large variety of contexts and scales. Conclusion lwgv provides a lightweight alternative to large genome browsers for visualizing biological annotations and dynamic analyses in their chromosomal context. It is particularly suited for applications ranging from short sequences to medium-sized genomes when the creation and maintenance of a large software and database infrastructure is not necessary or desired. PMID:17877794

  16. Lightweight genome viewer: portable software for browsing genomics data in its chromosomal context.

    PubMed

    Faith, Jeremiah J; Olson, Andrew J; Gardner, Timothy S; Sachidanandam, Ravi

    2007-09-18

    Lightweight genome viewer (lwgv) is a web-based tool for visualization of sequence annotations in their chromosomal context. It performs most of the functions of larger genome browsers, while relying on standard flat-file formats and bypassing the database needs of most visualization tools. Visualization as an aide to discovery requires display of novel data in conjunction with static annotations in their chromosomal context. With database-based systems, displaying dynamic results requires temporary tables that need to be tracked for removal. lwgv simplifies the visualization of user-generated results on a local computer. The dynamic results of these analyses are written to transient files, which can import static content from a more permanent file. lwgv is currently used in many different applications, from whole genome browsers to single-gene RNAi design visualization, demonstrating its applicability in a large variety of contexts and scales. lwgv provides a lightweight alternative to large genome browsers for visualizing biological annotations and dynamic analyses in their chromosomal context. It is particularly suited for applications ranging from short sequences to medium-sized genomes when the creation and maintenance of a large software and database infrastructure is not necessary or desired.

  17. Patterns of Metabolite Changes Identified from Large-Scale Gene Perturbations in Arabidopsis Using a Genome-Scale Metabolic Network1[OPEN

    PubMed Central

    Kim, Taehyong; Dreher, Kate; Nilo-Poyanco, Ricardo; Lee, Insuk; Fiehn, Oliver; Lange, Bernd Markus; Nikolau, Basil J.; Sumner, Lloyd; Welti, Ruth; Wurtele, Eve S.; Rhee, Seung Y.

    2015-01-01

    Metabolomics enables quantitative evaluation of metabolic changes caused by genetic or environmental perturbations. However, little is known about how perturbing a single gene changes the metabolic system as a whole and which network and functional properties are involved in this response. To answer this question, we investigated the metabolite profiles from 136 mutants with single gene perturbations of functionally diverse Arabidopsis (Arabidopsis thaliana) genes. Fewer than 10 metabolites were changed significantly relative to the wild type in most of the mutants, indicating that the metabolic network was robust to perturbations of single metabolic genes. These changed metabolites were closer to each other in a genome-scale metabolic network than expected by chance, supporting the notion that the genetic perturbations changed the network more locally than globally. Surprisingly, the changed metabolites were close to the perturbed reactions in only 30% of the mutants of the well-characterized genes. To determine the factors that contributed to the distance between the observed metabolic changes and the perturbation site in the network, we examined nine network and functional properties of the perturbed genes. Only the isozyme number affected the distance between the perturbed reactions and changed metabolites. This study revealed patterns of metabolic changes from large-scale gene perturbations and relationships between characteristics of the perturbed genes and metabolic changes. PMID:25670818

  18. Cloud computing for genomic data analysis and collaboration.

    PubMed

    Langmead, Ben; Nellore, Abhinav

    2018-04-01

    Next-generation sequencing has made major strides in the past decade. Studies based on large sequencing data sets are growing in number, and public archives for raw sequencing data have been doubling in size every 18 months. Leveraging these data requires researchers to use large-scale computational resources. Cloud computing, a model whereby users rent computers and storage from large data centres, is a solution that is gaining traction in genomics research. Here, we describe how cloud computing is used in genomics for research and large-scale collaborations, and argue that its elasticity, reproducibility and privacy features make it ideally suited for the large-scale reanalysis of publicly available archived data, including privacy-protected data.

  19. New Markers for Predicting Fertility of the Male Gametes in the Post Genomic Age.

    PubMed

    Dipresa, Savina; De Toni, Luca; Foresta, Carlo; Garolla, Andrea

    2018-04-18

    A number of test have been proposed to assess male fertility potential, ranging from routine testing by light microscopic method for evaluating semen samples, to screening test for DNA integrity aimed to look at sperm chromatin abnormalities. Spermatozoa are an extremely differentiated cell, they have critical functions for embryo development and heredity, in addiction to delivering a haploid paternal genome to the oocyte. Towards this goal certain requirements must always be met. The ability of spermatozoa to perform its reproductive function taking place in the spermatogenesis, a highly specialized process depending on multiple factors with effect on male fertility. In the past 30 years, large-scale analyses of transcriptomic and genome expression in mammals have generated a large amount of informations on numberless biomolecules involved in spermatogenesis and male germ cell reproductive function. Sperm proteome represents the protein content that spermatozoa needs to survive and work correctly and modifications of sperm proteome play a role in determining functional changes leading to a decrease of reproductive competence into affected spermatozoa. The post-genomic approach consists of different methodologies for concurrently testicular transcriptome studies, protein compositional analysis and metabolomics findings of the spermatozoa in humans. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. RegPrecise 3.0--a resource for genome-scale exploration of transcriptional regulation in bacteria.

    PubMed

    Novichkov, Pavel S; Kazakov, Alexey E; Ravcheev, Dmitry A; Leyn, Semen A; Kovaleva, Galina Y; Sutormin, Roman A; Kazanov, Marat D; Riehl, William; Arkin, Adam P; Dubchak, Inna; Rodionov, Dmitry A

    2013-11-01

    Genome-scale prediction of gene regulation and reconstruction of transcriptional regulatory networks in prokaryotes is one of the critical tasks of modern genomics. Bacteria from different taxonomic groups, whose lifestyles and natural environments are substantially different, possess highly diverged transcriptional regulatory networks. The comparative genomics approaches are useful for in silico reconstruction of bacterial regulons and networks operated by both transcription factors (TFs) and RNA regulatory elements (riboswitches). RegPrecise (http://regprecise.lbl.gov) is a web resource for collection, visualization and analysis of transcriptional regulons reconstructed by comparative genomics. We significantly expanded a reference collection of manually curated regulons we introduced earlier. RegPrecise 3.0 provides access to inferred regulatory interactions organized by phylogenetic, structural and functional properties. Taxonomy-specific collections include 781 TF regulogs inferred in more than 160 genomes representing 14 taxonomic groups of Bacteria. TF-specific collections include regulogs for a selected subset of 40 TFs reconstructed across more than 30 taxonomic lineages. Novel collections of regulons operated by RNA regulatory elements (riboswitches) include near 400 regulogs inferred in 24 bacterial lineages. RegPrecise 3.0 provides four classifications of the reference regulons implemented as controlled vocabularies: 55 TF protein families; 43 RNA motif families; ~150 biological processes or metabolic pathways; and ~200 effectors or environmental signals. Genome-wide visualization of regulatory networks and metabolic pathways covered by the reference regulons are available for all studied genomes. A separate section of RegPrecise 3.0 contains draft regulatory networks in 640 genomes obtained by an conservative propagation of the reference regulons to closely related genomes. RegPrecise 3.0 gives access to the transcriptional regulons reconstructed in bacterial genomes. Analytical capabilities include exploration of: regulon content, structure and function; TF binding site motifs; conservation and variations in genome-wide regulatory networks across all taxonomic groups of Bacteria. RegPrecise 3.0 was selected as a core resource on transcriptional regulation of the Department of Energy Systems Biology Knowledgebase, an emerging software and data environment designed to enable researchers to collaboratively generate, test and share new hypotheses about gene and protein functions, perform large-scale analyses, and model interactions in microbes, plants, and their communities.

  1. Insights from Human/Mouse genome comparisons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pennacchio, Len A.

    2003-03-30

    Large-scale public genomic sequencing efforts have provided a wealth of vertebrate sequence data poised to provide insights into mammalian biology. These include deep genomic sequence coverage of human, mouse, rat, zebrafish, and two pufferfish (Fugu rubripes and Tetraodon nigroviridis) (Aparicio et al. 2002; Lander et al. 2001; Venter et al. 2001; Waterston et al. 2002). In addition, a high-priority has been placed on determining the genomic sequence of chimpanzee, dog, cow, frog, and chicken (Boguski 2002). While only recently available, whole genome sequence data have provided the unique opportunity to globally compare complete genome contents. Furthermore, the shared evolutionary ancestrymore » of vertebrate species has allowed the development of comparative genomic approaches to identify ancient conserved sequences with functionality. Accordingly, this review focuses on the initial comparison of available mammalian genomes and describes various insights derived from such analysis.« less

  2. Genomics of adaptation to host-plants in herbivorous insects.

    PubMed

    Simon, Jean-Christophe; d'Alençon, Emmanuelle; Guy, Endrick; Jacquin-Joly, Emmanuelle; Jaquiéry, Julie; Nouhaud, Pierre; Peccoud, Jean; Sugio, Akiko; Streiff, Réjane

    2015-11-01

    Herbivorous insects represent the most species-rich lineages of metazoans. The high rate of diversification in herbivorous insects is thought to result from their specialization to distinct host-plants, which creates conditions favorable for the build-up of reproductive isolation and speciation. These conditions rely on constraints against the optimal use of a wide range of plant species, as each must constitute a viable food resource, oviposition site and mating site for an insect. Utilization of plants involves many essential traits of herbivorous insects, as they locate and select their hosts, overcome their defenses and acquire nutrients while avoiding intoxication. Although advances in understanding insect-plant molecular interactions have been limited by the complexity of insect traits involved in host use and the lack of genomic resources and functional tools, recent studies at the molecular level, combined with large-scale genomics studies at population and species levels, are revealing the genetic underpinning of plant specialization and adaptive divergence in non-model insect herbivores. Here, we review the recent advances in the genomics of plant adaptation in hemipterans and lepidopterans, two major insect orders, each of which includes a large number of crop pests. We focus on how genomics and post-genomics have improved our understanding of the mechanisms involved in insect-plant interactions by reviewing recent molecular discoveries in sensing, feeding, digesting and detoxifying strategies. We also present the outcomes of large-scale genomics approaches aimed at identifying loci potentially involved in plant adaptation in these insects. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Efficient population-scale variant analysis and prioritization with VAPr.

    PubMed

    Birmingham, Amanda; Mark, Adam M; Mazzaferro, Carlo; Xu, Guorong; Fisch, Kathleen M

    2018-04-06

    With the growing availability of population-scale whole-exome and whole-genome sequencing, demand for reproducible, scalable variant analysis has spread within genomic research communities. To address this need, we introduce the Python package VAPr (Variant Analysis and Prioritization). VAPr leverages existing annotation tools ANNOVAR and MyVariant.info with MongoDB-based flexible storage and filtering functionality. It offers biologists and bioinformatics generalists easy-to-use and scalable analysis and prioritization of genomic variants from large cohort studies. VAPr is developed in Python and is available for free use and extension under the MIT License. An install package is available on PyPi at https://pypi.python.org/pypi/VAPr, while source code and extensive documentation are on GitHub at https://github.com/ucsd-ccbb/VAPr. kfisch@ucsd.edu.

  4. Genome projects and the functional-genomic era.

    PubMed

    Sauer, Sascha; Konthur, Zoltán; Lehrach, Hans

    2005-12-01

    The problems we face today in public health as a result of the -- fortunately -- increasing age of people and the requirements of developing countries create an urgent need for new and innovative approaches in medicine and in agronomics. Genomic and functional genomic approaches have a great potential to at least partially solve these problems in the future. Important progress has been made by procedures to decode genomic information of humans, but also of other key organisms. The basic comprehension of genomic information (and its transfer) should now give us the possibility to pursue the next important step in life science eventually leading to a basic understanding of biological information flow; the elucidation of the function of all genes and correlative products encoded in the genome, as well as the discovery of their interactions in a molecular context and the response to environmental factors. As a result of the sequencing projects, we are now able to ask important questions about sequence variation and can start to comprehensively study the function of expressed genes on different levels such as RNA, protein or the cell in a systematic context including underlying networks. In this article we review and comment on current trends in large-scale systematic biological research. A particular emphasis is put on technology developments that can provide means to accomplish the tasks of future lines of functional genomics.

  5. Convergence between biological, behavioural and genetic determinants of obesity.

    PubMed

    Ghosh, Sujoy; Bouchard, Claude

    2017-12-01

    Multiple biological, behavioural and genetic determinants or correlates of obesity have been identified to date. Genome-wide association studies (GWAS) have contributed to the identification of more than 100 obesity-associated genetic variants, but their roles in causal processes leading to obesity remain largely unknown. Most variants are likely to have tissue-specific regulatory roles through joint contributions to biological pathways and networks, through changes in gene expression that influence quantitative traits, or through the regulation of the epigenome. The recent availability of large-scale functional genomics resources provides an opportunity to re-examine obesity GWAS data to begin elucidating the function of genetic variants. Interrogation of knockout mouse phenotype resources provides a further avenue to test for evidence of convergence between genetic variation and biological or behavioural determinants of obesity.

  6. GAP Final Technical Report 12-14-04

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrew J. Bordner, PhD, Senior Research Scientist

    2004-12-14

    The Genomics Annotation Platform (GAP) was designed to develop new tools for high throughput functional annotation and characterization of protein sequences and structures resulting from genomics and structural proteomics, benchmarking and application of those tools. Furthermore, this platform integrated the genomic scale sequence and structural analysis and prediction tools with the advanced structure prediction and bioinformatics environment of ICM. The development of GAP was primarily oriented towards the annotation of new biomolecular structures using both structural and sequence data. Even though the amount of protein X-ray crystal data is growing exponentially, the volume of sequence data is growing even moremore » rapidly. This trend was exploited by leveraging the wealth of sequence data to provide functional annotation for protein structures. The additional information provided by GAP is expected to assist the majority of the commercial users of ICM, who are involved in drug discovery, in identifying promising drug targets as well in devising strategies for the rational design of therapeutics directed at the protein of interest. The GAP also provided valuable tools for biochemistry education, and structural genomics centers. In addition, GAP incorporates many novel prediction and analysis methods not available in other molecular modeling packages. This development led to signing the first Molsoft agreement in the structural genomics annotation area with the University of oxford Structural Genomics Center. This commercial agreement validated the Molsoft efforts under the GAP project and provided the basis for further development of the large scale functional annotation platform.« less

  7. Plant functional genomics

    NASA Astrophysics Data System (ADS)

    Holtorf, Hauke; Guitton, Marie-Christine; Reski, Ralf

    2002-04-01

    Functional genome analysis of plants has entered the high-throughput stage. The complete genome information from key species such as Arabidopsis thaliana and rice is now available and will further boost the application of a range of new technologies to functional plant gene analysis. To broadly assign functions to unknown genes, different fast and multiparallel approaches are currently used and developed. These new technologies are based on known methods but are adapted and improved to accommodate for comprehensive, large-scale gene analysis, i.e. such techniques are novel in the sense that their design allows researchers to analyse many genes at the same time and at an unprecedented pace. Such methods allow analysis of the different constituents of the cell that help to deduce gene function, namely the transcripts, proteins and metabolites. Similarly the phenotypic variations of entire mutant collections can now be analysed in a much faster and more efficient way than before. The different methodologies have developed to form their own fields within the functional genomics technological platform and are termed transcriptomics, proteomics, metabolomics and phenomics. Gene function, however, cannot solely be inferred by using only one such approach. Rather, it is only by bringing together all the information collected by different functional genomic tools that one will be able to unequivocally assign functions to unknown plant genes. This review focuses on current technical developments and their impact on the field of plant functional genomics. The lower plant Physcomitrella is introduced as a new model system for gene function analysis, owing to its high rate of homologous recombination.

  8. Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers

    PubMed Central

    Zoledziewska, Magdalena; Mulas, Antonella; Pistis, Giorgio; Steri, Maristella; Danjou, Fabrice; Kwong, Alan; Ortega del Vecchyo, Vicente Diego; Chiang, Charleston W. K.; Bragg-Gresham, Jennifer; Pitzalis, Maristella; Nagaraja, Ramaiah; Tarrier, Brendan; Brennan, Christine; Uzzau, Sergio; Fuchsberger, Christian; Atzeni, Rossano; Reinier, Frederic; Berutti, Riccardo; Huang, Jie; Timpson, Nicholas J; Toniolo, Daniela; Gasparini, Paolo; Malerba, Giovanni; Dedoussis, George; Zeggini, Eleftheria; Soranzo, Nicole; Jones, Chris; Lyons, Robert; Angius, Andrea; Kang, Hyun M.; Novembre, John; Sanna, Serena; Schlessinger, David; Cucca, Francesco; Abecasis, Gonçalo R

    2015-01-01

    We report ~17.6M genetic variants from whole-genome sequencing of 2,120 Sardinians; 22% are absent from prior sequencing-based compilations and enriched for predicted functional consequence. Furthermore, ~76K variants common in our sample (frequency >5%) are rare elsewhere (<0.5% in the 1000 Genomes Project). We assessed the impact of these variants on circulating lipid levels and five inflammatory biomarkers. Fourteen signals, including two major new loci, were observed for lipid levels, and 19, including two novel loci, for inflammatory markers. New associations would be missed in analyses based on 1000 Genomes data, underlining the advantages of large-scale sequencing in this founder population. PMID:26366554

  9. The Comprehensive Microbial Resource

    PubMed Central

    Peterson, Jeremy D.; Umayam, Lowell A.; Dickinson, Tanja; Hickey, Erin K.; White, Owen

    2001-01-01

    One challenge presented by large-scale genome sequencing efforts is effective display of uniform information to the scientific community. The Comprehensive Microbial Resource (CMR) contains robust annotation of all complete microbial genomes and allows for a wide variety of data retrievals. The bacterial information has been placed on the Web at http://www.tigr.org/CMR for retrieval using standard web browsing technology. Retrievals can be based on protein properties such as molecular weight or hydrophobicity, GC-content, functional role assignments and taxonomy. The CMR also has special web-based tools to allow data mining using pre-run homology searches, whole genome dot-plots, batch downloading and traversal across genomes using a variety of datatypes. PMID:11125067

  10. The genomic organization of a human creatine transporter (CRTR) gene located in Xq28

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandoval, N.; Bauer, D.; Brenner, V.

    1996-07-15

    During the course of a large-scale sequencing project in Xq28, a human creatine transporter (CRTR) gene was discovered. The gene is located approximately 36 kb centromeric to ALD. The gene contains 13 exons and spans about 8.5 kb of genomic DNA. Since the creatine transporter has a prominent function in muscular physiology, it is a candidate gene for Barth syndrome and infantile cardiomyopathy mapped to Xq28. 19 refs., 1 fig., 1 tab.

  11. The OncoPPi network of cancer-focused protein-protein interactions to inform biological insights and therapeutic strategies* | Office of Cancer Genomics

    Cancer.gov

    As genomics advances reveal the cancer gene landscape, a daunting task is to understand how these genes contribute to dysregulated oncogenic pathways. Integration of cancer genes into networks offers opportunities to reveal protein–protein interactions (PPIs) with functional and therapeutic significance. Here, we report the generation of a cancer-focused PPI network, termed OncoPPi, and identification of >260 cancer-associated PPIs not in other large-scale interactomes.

  12. Large-scale chromosome folding versus genomic DNA sequences: A discrete double Fourier transform technique.

    PubMed

    Chechetkin, V R; Lobzin, V V

    2017-08-07

    Using state-of-the-art techniques combining imaging methods and high-throughput genomic mapping tools leaded to the significant progress in detailing chromosome architecture of various organisms. However, a gap still remains between the rapidly growing structural data on the chromosome folding and the large-scale genome organization. Could a part of information on the chromosome folding be obtained directly from underlying genomic DNA sequences abundantly stored in the databanks? To answer this question, we developed an original discrete double Fourier transform (DDFT). DDFT serves for the detection of large-scale genome regularities associated with domains/units at the different levels of hierarchical chromosome folding. The method is versatile and can be applied to both genomic DNA sequences and corresponding physico-chemical parameters such as base-pairing free energy. The latter characteristic is closely related to the replication and transcription and can also be used for the assessment of temperature or supercoiling effects on the chromosome folding. We tested the method on the genome of E. coli K-12 and found good correspondence with the annotated domains/units established experimentally. As a brief illustration of further abilities of DDFT, the study of large-scale genome organization for bacteriophage PHIX174 and bacterium Caulobacter crescentus was also added. The combined experimental, modeling, and bioinformatic DDFT analysis should yield more complete knowledge on the chromosome architecture and genome organization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Family-specific scaling laws in bacterial genomes.

    PubMed

    De Lazzari, Eleonora; Grilli, Jacopo; Maslov, Sergei; Cosentino Lagomarsino, Marco

    2017-07-27

    Among several quantitative invariants found in evolutionary genomics, one of the most striking is the scaling of the overall abundance of proteins, or protein domains, sharing a specific functional annotation across genomes of given size. The size of these functional categories change, on average, as power-laws in the total number of protein-coding genes. Here, we show that such regularities are not restricted to the overall behavior of high-level functional categories, but also exist systematically at the level of single evolutionary families of protein domains. Specifically, the number of proteins within each family follows family-specific scaling laws with genome size. Functionally similar sets of families tend to follow similar scaling laws, but this is not always the case. To understand this systematically, we provide a comprehensive classification of families based on their scaling properties. Additionally, we develop a quantitative score for the heterogeneity of the scaling of families belonging to a given category or predefined group. Under the common reasonable assumption that selection is driven solely or mainly by biological function, these findings point to fine-tuned and interdependent functional roles of specific protein domains, beyond our current functional annotations. This analysis provides a deeper view on the links between evolutionary expansion of protein families and the functional constraints shaping the gene repertoire of bacterial genomes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Prediction and characterization of enzymatic activities guided by sequence similarity and genome neighborhood networks

    DOE PAGES

    Zhao, Suwen; Sakai, Ayano; Zhang, Xinshuai; ...

    2014-06-30

    Metabolic pathways in eubacteria and archaea often are encoded by operons and/or gene clusters (genome neighborhoods) that provide important clues for assignment of both enzyme functions and metabolic pathways. We describe a bioinformatic approach (genome neighborhood network; GNN) that enables large scale prediction of the in vitro enzymatic activities and in vivo physiological functions (metabolic pathways) of uncharacterized enzymes in protein families. We demonstrate the utility of the GNN approach by predicting in vitro activities and in vivo functions in the proline racemase superfamily (PRS; InterPro IPR008794). The predictions were verified by measuring in vitro activities for 51 proteins inmore » 12 families in the PRS that represent ~85% of the sequences; in vitro activities of pathway enzymes, carbon/nitrogen source phenotypes, and/or transcriptomic studies confirmed the predicted pathways. The synergistic use of sequence similarity networks3 and GNNs will facilitate the discovery of the components of novel, uncharacterized metabolic pathways in sequenced genomes.« less

  15. Fast selection of miRNA candidates based on large-scale pre-computed MFE sets of randomized sequences.

    PubMed

    Warris, Sven; Boymans, Sander; Muiser, Iwe; Noback, Michiel; Krijnen, Wim; Nap, Jan-Peter

    2014-01-13

    Small RNAs are important regulators of genome function, yet their prediction in genomes is still a major computational challenge. Statistical analyses of pre-miRNA sequences indicated that their 2D structure tends to have a minimal free energy (MFE) significantly lower than MFE values of equivalently randomized sequences with the same nucleotide composition, in contrast to other classes of non-coding RNA. The computation of many MFEs is, however, too intensive to allow for genome-wide screenings. Using a local grid infrastructure, MFE distributions of random sequences were pre-calculated on a large scale. These distributions follow a normal distribution and can be used to determine the MFE distribution for any given sequence composition by interpolation. It allows on-the-fly calculation of the normal distribution for any candidate sequence composition. The speedup achieved makes genome-wide screening with this characteristic of a pre-miRNA sequence practical. Although this particular property alone will not be able to distinguish miRNAs from other sequences sufficiently discriminative, the MFE-based P-value should be added to the parameters of choice to be included in the selection of potential miRNA candidates for experimental verification.

  16. Large-scale label-free quantitative proteomics of the pea aphid-Buchnera symbiosis.

    PubMed

    Poliakov, Anton; Russell, Calum W; Ponnala, Lalit; Hoops, Harold J; Sun, Qi; Douglas, Angela E; van Wijk, Klaas J

    2011-06-01

    Many insects are nutritionally dependent on symbiotic microorganisms that have tiny genomes and are housed in specialized host cells called bacteriocytes. The obligate symbiosis between the pea aphid Acyrthosiphon pisum and the γ-proteobacterium Buchnera aphidicola (only 584 predicted proteins) is particularly amenable for molecular analysis because the genomes of both partners have been sequenced. To better define the symbiotic relationship between this aphid and Buchnera, we used large-scale, high accuracy tandem mass spectrometry (nanoLC-LTQ-Orbtrap) to identify aphid and Buchnera proteins in the whole aphid body, purified bacteriocytes, isolated Buchnera cells and the residual bacteriocyte fraction. More than 1900 aphid and 400 Buchnera proteins were identified. All enzymes in amino acid metabolism annotated in the Buchnera genome were detected, reflecting the high (68%) coverage of the proteome and supporting the core function of Buchnera in the aphid symbiosis. Transporters mediating the transport of predicted metabolites were present in the bacteriocyte. Label-free spectral counting combined with hierarchical clustering, allowed to define the quantitative distribution of a subset of these proteins across both symbiotic partners, yielding no evidence for the selective transfer of protein among the partners in either direction. This is the first quantitative proteome analysis of bacteriocyte symbiosis, providing a wealth of information about molecular function of both the host cell and bacterial symbiont.

  17. PATIKA: an integrated visual environment for collaborative construction and analysis of cellular pathways.

    PubMed

    Demir, E; Babur, O; Dogrusoz, U; Gursoy, A; Nisanci, G; Cetin-Atalay, R; Ozturk, M

    2002-07-01

    Availability of the sequences of entire genomes shifts the scientific curiosity towards the identification of function of the genomes in large scale as in genome studies. In the near future, data produced about cellular processes at molecular level will accumulate with an accelerating rate as a result of proteomics studies. In this regard, it is essential to develop tools for storing, integrating, accessing, and analyzing this data effectively. We define an ontology for a comprehensive representation of cellular events. The ontology presented here enables integration of fragmented or incomplete pathway information and supports manipulation and incorporation of the stored data, as well as multiple levels of abstraction. Based on this ontology, we present the architecture of an integrated environment named Patika (Pathway Analysis Tool for Integration and Knowledge Acquisition). Patika is composed of a server-side, scalable, object-oriented database and client-side editors to provide an integrated, multi-user environment for visualizing and manipulating network of cellular events. This tool features automated pathway layout, functional computation support, advanced querying and a user-friendly graphical interface. We expect that Patika will be a valuable tool for rapid knowledge acquisition, microarray generated large-scale data interpretation, disease gene identification, and drug development. A prototype of Patika is available upon request from the authors.

  18. redGEM: Systematic reduction and analysis of genome-scale metabolic reconstructions for development of consistent core metabolic models

    PubMed Central

    Ataman, Meric

    2017-01-01

    Genome-scale metabolic reconstructions have proven to be valuable resources in enhancing our understanding of metabolic networks as they encapsulate all known metabolic capabilities of the organisms from genes to proteins to their functions. However the complexity of these large metabolic networks often hinders their utility in various practical applications. Although reduced models are commonly used for modeling and in integrating experimental data, they are often inconsistent across different studies and laboratories due to different criteria and detail, which can compromise transferability of the findings and also integration of experimental data from different groups. In this study, we have developed a systematic semi-automatic approach to reduce genome-scale models into core models in a consistent and logical manner focusing on the central metabolism or subsystems of interest. The method minimizes the loss of information using an approach that combines graph-based search and optimization methods. The resulting core models are shown to be able to capture key properties of the genome-scale models and preserve consistency in terms of biomass and by-product yields, flux and concentration variability and gene essentiality. The development of these “consistently-reduced” models will help to clarify and facilitate integration of different experimental data to draw new understanding that can be directly extendable to genome-scale models. PMID:28727725

  19. Using relational databases for improved sequence similarity searching and large-scale genomic analyses.

    PubMed

    Mackey, Aaron J; Pearson, William R

    2004-10-01

    Relational databases are designed to integrate diverse types of information and manage large sets of search results, greatly simplifying genome-scale analyses. Relational databases are essential for management and analysis of large-scale sequence analyses, and can also be used to improve the statistical significance of similarity searches by focusing on subsets of sequence libraries most likely to contain homologs. This unit describes using relational databases to improve the efficiency of sequence similarity searching and to demonstrate various large-scale genomic analyses of homology-related data. This unit describes the installation and use of a simple protein sequence database, seqdb_demo, which is used as a basis for the other protocols. These include basic use of the database to generate a novel sequence library subset, how to extend and use seqdb_demo for the storage of sequence similarity search results and making use of various kinds of stored search results to address aspects of comparative genomic analysis.

  20. Robustness encoded across essential and accessory replicons of the ecologically versatile bacterium Sinorhizobium meliloti

    PubMed Central

    Walker, Graham C.; Finan, Turlough M.; Mengoni, Alessio; Griffitts, Joel S.

    2018-01-01

    Bacterial genome evolution is characterized by gains, losses, and rearrangements of functional genetic segments. The extent to which large-scale genomic alterations influence genotype-phenotype relationships has not been investigated in a high-throughput manner. In the symbiotic soil bacterium Sinorhizobium meliloti, the genome is composed of a chromosome and two large extrachromosomal replicons (pSymA and pSymB, which together constitute 45% of the genome). Massively parallel transposon insertion sequencing (Tn-seq) was employed to evaluate the contributions of chromosomal genes to growth fitness in both the presence and absence of these extrachromosomal replicons. Ten percent of chromosomal genes from diverse functional categories are shown to genetically interact with pSymA and pSymB. These results demonstrate the pervasive robustness provided by the extrachromosomal replicons, which is further supported by constraint-based metabolic modeling. A comprehensive picture of core S. meliloti metabolism was generated through a Tn-seq-guided in silico metabolic network reconstruction, producing a core network encompassing 726 genes. This integrated approach facilitated functional assignments for previously uncharacterized genes, while also revealing that Tn-seq alone missed over a quarter of wild-type metabolism. This work highlights the many functional dependencies and epistatic relationships that may arise between bacterial replicons and across a genome, while also demonstrating how Tn-seq and metabolic modeling can be used together to yield insights not obtainable by either method alone. PMID:29672509

  1. The ENCODE project: implications for psychiatric genetics.

    PubMed

    Kavanagh, D H; Dwyer, S; O'Donovan, M C; Owen, M J

    2013-05-01

    The ENCyclopedia Of DNA Elements (ENCODE) project is a public research consortium that aims to identify all functional elements of the human genome sequence. The project comprised 1640 data sets, from 147 different cell type and the findings were released in a coordinated set of 34 publications across several journals. The ENCODE publications report that 80.4% of the human genome displays some functionality. These data have important implications for interpreting results from large-scale genetics studies. We reviewed some of the key findings from the ENCODE publications and discuss how they can influence or inform further investigations into the genetic factors contributing to neuropsychiatric disorders.

  2. BactoGeNIE: A large-scale comparative genome visualization for big displays

    DOE PAGES

    Aurisano, Jillian; Reda, Khairi; Johnson, Andrew; ...

    2015-08-13

    The volume of complete bacterial genome sequence data available to comparative genomics researchers is rapidly increasing. However, visualizations in comparative genomics--which aim to enable analysis tasks across collections of genomes--suffer from visual scalability issues. While large, multi-tiled and high-resolution displays have the potential to address scalability issues, new approaches are needed to take advantage of such environments, in order to enable the effective visual analysis of large genomics datasets. In this paper, we present Bacterial Gene Neighborhood Investigation Environment, or BactoGeNIE, a novel and visually scalable design for comparative gene neighborhood analysis on large display environments. We evaluate BactoGeNIE throughmore » a case study on close to 700 draft Escherichia coli genomes, and present lessons learned from our design process. In conclusion, BactoGeNIE accommodates comparative tasks over substantially larger collections of neighborhoods than existing tools and explicitly addresses visual scalability. Given current trends in data generation, scalable designs of this type may inform visualization design for large-scale comparative research problems in genomics.« less

  3. BactoGeNIE: a large-scale comparative genome visualization for big displays

    PubMed Central

    2015-01-01

    Background The volume of complete bacterial genome sequence data available to comparative genomics researchers is rapidly increasing. However, visualizations in comparative genomics--which aim to enable analysis tasks across collections of genomes--suffer from visual scalability issues. While large, multi-tiled and high-resolution displays have the potential to address scalability issues, new approaches are needed to take advantage of such environments, in order to enable the effective visual analysis of large genomics datasets. Results In this paper, we present Bacterial Gene Neighborhood Investigation Environment, or BactoGeNIE, a novel and visually scalable design for comparative gene neighborhood analysis on large display environments. We evaluate BactoGeNIE through a case study on close to 700 draft Escherichia coli genomes, and present lessons learned from our design process. Conclusions BactoGeNIE accommodates comparative tasks over substantially larger collections of neighborhoods than existing tools and explicitly addresses visual scalability. Given current trends in data generation, scalable designs of this type may inform visualization design for large-scale comparative research problems in genomics. PMID:26329021

  4. BactoGeNIE: A large-scale comparative genome visualization for big displays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aurisano, Jillian; Reda, Khairi; Johnson, Andrew

    The volume of complete bacterial genome sequence data available to comparative genomics researchers is rapidly increasing. However, visualizations in comparative genomics--which aim to enable analysis tasks across collections of genomes--suffer from visual scalability issues. While large, multi-tiled and high-resolution displays have the potential to address scalability issues, new approaches are needed to take advantage of such environments, in order to enable the effective visual analysis of large genomics datasets. In this paper, we present Bacterial Gene Neighborhood Investigation Environment, or BactoGeNIE, a novel and visually scalable design for comparative gene neighborhood analysis on large display environments. We evaluate BactoGeNIE throughmore » a case study on close to 700 draft Escherichia coli genomes, and present lessons learned from our design process. In conclusion, BactoGeNIE accommodates comparative tasks over substantially larger collections of neighborhoods than existing tools and explicitly addresses visual scalability. Given current trends in data generation, scalable designs of this type may inform visualization design for large-scale comparative research problems in genomics.« less

  5. Efficient analysis of large-scale genome-wide data with two R packages: bigstatsr and bigsnpr.

    PubMed

    Privé, Florian; Aschard, Hugues; Ziyatdinov, Andrey; Blum, Michael G B

    2017-03-30

    Genome-wide datasets produced for association studies have dramatically increased in size over the past few years, with modern datasets commonly including millions of variants measured in dozens of thousands of individuals. This increase in data size is a major challenge severely slowing down genomic analyses, leading to some software becoming obsolete and researchers having limited access to diverse analysis tools. Here we present two R packages, bigstatsr and bigsnpr, allowing for the analysis of large scale genomic data to be performed within R. To address large data size, the packages use memory-mapping for accessing data matrices stored on disk instead of in RAM. To perform data pre-processing and data analysis, the packages integrate most of the tools that are commonly used, either through transparent system calls to existing software, or through updated or improved implementation of existing methods. In particular, the packages implement fast and accurate computations of principal component analysis and association studies, functions to remove SNPs in linkage disequilibrium and algorithms to learn polygenic risk scores on millions of SNPs. We illustrate applications of the two R packages by analyzing a case-control genomic dataset for celiac disease, performing an association study and computing Polygenic Risk Scores. Finally, we demonstrate the scalability of the R packages by analyzing a simulated genome-wide dataset including 500,000 individuals and 1 million markers on a single desktop computer. https://privefl.github.io/bigstatsr/ & https://privefl.github.io/bigsnpr/. florian.prive@univ-grenoble-alpes.fr & michael.blum@univ-grenoble-alpes.fr. Supplementary materials are available at Bioinformatics online.

  6. Smoking Gun or Circumstantial Evidence? Comparison of Statistical Learning Methods using Functional Annotations for Prioritizing Risk Variants.

    PubMed

    Gagliano, Sarah A; Ravji, Reena; Barnes, Michael R; Weale, Michael E; Knight, Jo

    2015-08-24

    Although technology has triumphed in facilitating routine genome sequencing, new challenges have been created for the data-analyst. Genome-scale surveys of human variation generate volumes of data that far exceed capabilities for laboratory characterization. By incorporating functional annotations as predictors, statistical learning has been widely investigated for prioritizing genetic variants likely to be associated with complex disease. We compared three published prioritization procedures, which use different statistical learning algorithms and different predictors with regard to the quantity, type and coding. We also explored different combinations of algorithm and annotation set. As an application, we tested which methodology performed best for prioritizing variants using data from a large schizophrenia meta-analysis by the Psychiatric Genomics Consortium. Results suggest that all methods have considerable (and similar) predictive accuracies (AUCs 0.64-0.71) in test set data, but there is more variability in the application to the schizophrenia GWAS. In conclusion, a variety of algorithms and annotations seem to have a similar potential to effectively enrich true risk variants in genome-scale datasets, however none offer more than incremental improvement in prediction. We discuss how methods might be evolved for risk variant prediction to address the impending bottleneck of the new generation of genome re-sequencing studies.

  7. Functional phylogenomics analysis of bacteria and archaea using consistent genome annotation with UniFam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chai, Juanjuan; Kora, Guruprasad; Ahn, Tae-Hyuk

    2014-10-09

    To supply some background, phylogenetic studies have provided detailed knowledge on the evolutionary mechanisms of genes and species in Bacteria and Archaea. However, the evolution of cellular functions, represented by metabolic pathways and biological processes, has not been systematically characterized. Many clades in the prokaryotic tree of life have now been covered by sequenced genomes in GenBank. This enables a large-scale functional phylogenomics study of many computationally inferred cellular functions across all sequenced prokaryotes. Our results show a total of 14,727 GenBank prokaryotic genomes were re-annotated using a new protein family database, UniFam, to obtain consistent functional annotations for accuratemore » comparison. The functional profile of a genome was represented by the biological process Gene Ontology (GO) terms in its annotation. The GO term enrichment analysis differentiated the functional profiles between selected archaeal taxa. 706 prokaryotic metabolic pathways were inferred from these genomes using Pathway Tools and MetaCyc. The consistency between the distribution of metabolic pathways in the genomes and the phylogenetic tree of the genomes was measured using parsimony scores and retention indices. The ancestral functional profiles at the internal nodes of the phylogenetic tree were reconstructed to track the gains and losses of metabolic pathways in evolutionary history. In conclusion, our functional phylogenomics analysis shows divergent functional profiles of taxa and clades. Such function-phylogeny correlation stems from a set of clade-specific cellular functions with low parsimony scores. On the other hand, many cellular functions are sparsely dispersed across many clades with high parsimony scores. These different types of cellular functions have distinct evolutionary patterns reconstructed from the prokaryotic tree.« less

  8. An object model and database for functional genomics.

    PubMed

    Jones, Andrew; Hunt, Ela; Wastling, Jonathan M; Pizarro, Angel; Stoeckert, Christian J

    2004-07-10

    Large-scale functional genomics analysis is now feasible and presents significant challenges in data analysis, storage and querying. Data standards are required to enable the development of public data repositories and to improve data sharing. There is an established data format for microarrays (microarray gene expression markup language, MAGE-ML) and a draft standard for proteomics (PEDRo). We believe that all types of functional genomics experiments should be annotated in a consistent manner, and we hope to open up new ways of comparing multiple datasets used in functional genomics. We have created a functional genomics experiment object model (FGE-OM), developed from the microarray model, MAGE-OM and two models for proteomics, PEDRo and our own model (Gla-PSI-Glasgow Proposal for the Proteomics Standards Initiative). FGE-OM comprises three namespaces representing (i) the parts of the model common to all functional genomics experiments; (ii) microarray-specific components; and (iii) proteomics-specific components. We believe that FGE-OM should initiate discussion about the contents and structure of the next version of MAGE and the future of proteomics standards. A prototype database called RNA And Protein Abundance Database (RAPAD), based on FGE-OM, has been implemented and populated with data from microbial pathogenesis. FGE-OM and the RAPAD schema are available from http://www.gusdb.org/fge.html, along with a set of more detailed diagrams. RAPAD can be accessed by registration at the site.

  9. RATT: Rapid Annotation Transfer Tool

    PubMed Central

    Otto, Thomas D.; Dillon, Gary P.; Degrave, Wim S.; Berriman, Matthew

    2011-01-01

    Second-generation sequencing technologies have made large-scale sequencing projects commonplace. However, making use of these datasets often requires gene function to be ascribed genome wide. Although tool development has kept pace with the changes in sequence production, for tasks such as mapping, de novo assembly or visualization, genome annotation remains a challenge. We have developed a method to rapidly provide accurate annotation for new genomes using previously annotated genomes as a reference. The method, implemented in a tool called RATT (Rapid Annotation Transfer Tool), transfers annotations from a high-quality reference to a new genome on the basis of conserved synteny. We demonstrate that a Mycobacterium tuberculosis genome or a single 2.5 Mb chromosome from a malaria parasite can be annotated in less than five minutes with only modest computational resources. RATT is available at http://ratt.sourceforge.net. PMID:21306991

  10. Using Association Mapping in Teosinte (Zea Mays ssp Parviglumis) to Investigate the Function of Selection-Candidate Genes

    USDA-ARS?s Scientific Manuscript database

    Large-scale screens of the maize genome identified 48 genes that show the putative signature of artificial selection during maize domestication or improvement. These selection-candidate genes may act as quantitative trait loci (QTL) that control the phenotypic differences between maize and its proge...

  11. GenomeVista

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poliakov, Alexander; Couronne, Olivier

    2002-11-04

    Aligning large vertebrate genomes that are structurally complex poses a variety of problems not encountered on smaller scales. Such genomes are rich in repetitive elements and contain multiple segmental duplications, which increases the difficulty of identifying true orthologous SNA segments in alignments. The sizes of the sequences make many alignment algorithms designed for comparing single proteins extremely inefficient when processing large genomic intervals. We integrated both local and global alignment tools and developed a suite of programs for automatically aligning large vertebrate genomes and identifying conserved non-coding regions in the alignments. Our method uses the BLAT local alignment program tomore » find anchors on the base genome to identify regions of possible homology for a query sequence. These regions are postprocessed to find the best candidates which are then globally aligned using the AVID global alignment program. In the last step conserved non-coding segments are identified using VISTA. Our methods are fast and the resulting alignments exhibit a high degree of sensitivity, covering more than 90% of known coding exons in the human genome. The GenomeVISTA software is a suite of Perl programs that is built on a MySQL database platform. The scheduler gets control data from the database, builds a queve of jobs, and dispatches them to a PC cluster for execution. The main program, running on each node of the cluster, processes individual sequences. A Perl library acts as an interface between the database and the above programs. The use of a separate library allows the programs to function independently of the database schema. The library also improves on the standard Perl MySQL database interfere package by providing auto-reconnect functionality and improved error handling.« less

  12. Characterizing the cancer genome in lung adenocarcinoma

    PubMed Central

    Weir, Barbara A.; Woo, Michele S.; Getz, Gad; Perner, Sven; Ding, Li; Beroukhim, Rameen; Lin, William M.; Province, Michael A.; Kraja, Aldi; Johnson, Laura A.; Shah, Kinjal; Sato, Mitsuo; Thomas, Roman K.; Barletta, Justine A.; Borecki, Ingrid B.; Broderick, Stephen; Chang, Andrew C.; Chiang, Derek Y.; Chirieac, Lucian R.; Cho, Jeonghee; Fujii, Yoshitaka; Gazdar, Adi F.; Giordano, Thomas; Greulich, Heidi; Hanna, Megan; Johnson, Bruce E.; Kris, Mark G.; Lash, Alex; Lin, Ling; Lindeman, Neal; Mardis, Elaine R.; McPherson, John D.; Minna, John D.; Morgan, Margaret B.; Nadel, Mark; Orringer, Mark B.; Osborne, John R.; Ozenberger, Brad; Ramos, Alex H.; Robinson, James; Roth, Jack A.; Rusch, Valerie; Sasaki, Hidefumi; Shepherd, Frances; Sougnez, Carrie; Spitz, Margaret R.; Tsao, Ming-Sound; Twomey, David; Verhaak, Roel G. W.; Weinstock, George M.; Wheeler, David A.; Winckler, Wendy; Yoshizawa, Akihiko; Yu, Soyoung; Zakowski, Maureen F.; Zhang, Qunyuan; Beer, David G.; Wistuba, Ignacio I.; Watson, Mark A.; Garraway, Levi A.; Ladanyi, Marc; Travis, William D.; Pao, William; Rubin, Mark A.; Gabriel, Stacey B.; Gibbs, Richard A.; Varmus, Harold E.; Wilson, Richard K.; Lander, Eric S.; Meyerson, Matthew

    2008-01-01

    Somatic alterations in cellular DNA underlie almost all human cancers1. The prospect of targeted therapies2 and the development of high-resolution, genome-wide approaches3–8 are now spurring systematic efforts to characterize cancer genomes. Here we report a large-scale project to characterize copy-number alterations in primary lung adenocarcinomas. By analysis of a large collection of tumors (n = 371) using dense single nucleotide polymorphism arrays, we identify a total of 57 significantly recurrent events. We find that 26 of 39 autosomal chromosome arms show consistent large-scale copy-number gain or loss, of which only a handful have been linked to a specific gene. We also identify 31 recurrent focal events, including 24 amplifications and 7 homozygous deletions. Only six of these focal events are currently associated with known mutations in lung carcinomas. The most common event, amplification of chromosome 14q13.3, is found in ~12% of samples. On the basis of genomic and functional analyses, we identify NKX2-1 (NK2 homeobox 1, also called TITF1), which lies in the minimal 14q13.3 amplification interval and encodes a lineage-specific transcription factor, as a novel candidate proto-oncogene involved in a significant fraction of lung adenocarcinomas. More generally, our results indicate that many of the genes that are involved in lung adenocarcinoma remain to be discovered. PMID:17982442

  13. A negative genetic interaction map in isogenic cancer cell lines reveals cancer cell vulnerabilities

    PubMed Central

    Vizeacoumar, Franco J; Arnold, Roland; Vizeacoumar, Frederick S; Chandrashekhar, Megha; Buzina, Alla; Young, Jordan T F; Kwan, Julian H M; Sayad, Azin; Mero, Patricia; Lawo, Steffen; Tanaka, Hiromasa; Brown, Kevin R; Baryshnikova, Anastasia; Mak, Anthony B; Fedyshyn, Yaroslav; Wang, Yadong; Brito, Glauber C; Kasimer, Dahlia; Makhnevych, Taras; Ketela, Troy; Datti, Alessandro; Babu, Mohan; Emili, Andrew; Pelletier, Laurence; Wrana, Jeff; Wainberg, Zev; Kim, Philip M; Rottapel, Robert; O'Brien, Catherine A; Andrews, Brenda; Boone, Charles; Moffat, Jason

    2013-01-01

    Improved efforts are necessary to define the functional product of cancer mutations currently being revealed through large-scale sequencing efforts. Using genome-scale pooled shRNA screening technology, we mapped negative genetic interactions across a set of isogenic cancer cell lines and confirmed hundreds of these interactions in orthogonal co-culture competition assays to generate a high-confidence genetic interaction network of differentially essential or differential essentiality (DiE) genes. The network uncovered examples of conserved genetic interactions, densely connected functional modules derived from comparative genomics with model systems data, functions for uncharacterized genes in the human genome and targetable vulnerabilities. Finally, we demonstrate a general applicability of DiE gene signatures in determining genetic dependencies of other non-isogenic cancer cell lines. For example, the PTEN−/− DiE genes reveal a signature that can preferentially classify PTEN-dependent genotypes across a series of non-isogenic cell lines derived from the breast, pancreas and ovarian cancers. Our reference network suggests that many cancer vulnerabilities remain to be discovered through systematic derivation of a network of differentially essential genes in an isogenic cancer cell model. PMID:24104479

  14. LS-SNP: large-scale annotation of coding non-synonymous SNPs based on multiple information sources.

    PubMed

    Karchin, Rachel; Diekhans, Mark; Kelly, Libusha; Thomas, Daryl J; Pieper, Ursula; Eswar, Narayanan; Haussler, David; Sali, Andrej

    2005-06-15

    The NCBI dbSNP database lists over 9 million single nucleotide polymorphisms (SNPs) in the human genome, but currently contains limited annotation information. SNPs that result in amino acid residue changes (nsSNPs) are of critical importance in variation between individuals, including disease and drug sensitivity. We have developed LS-SNP, a genomic scale software pipeline to annotate nsSNPs. LS-SNP comprehensively maps nsSNPs onto protein sequences, functional pathways and comparative protein structure models, and predicts positions where nsSNPs destabilize proteins, interfere with the formation of domain-domain interfaces, have an effect on protein-ligand binding or severely impact human health. It currently annotates 28,043 validated SNPs that produce amino acid residue substitutions in human proteins from the SwissProt/TrEMBL database. Annotations can be viewed via a web interface either in the context of a genomic region or by selecting sets of SNPs, genes, proteins or pathways. These results are useful for identifying candidate functional SNPs within a gene, haplotype or pathway and in probing molecular mechanisms responsible for functional impacts of nsSNPs. http://www.salilab.org/LS-SNP CONTACT: rachelk@salilab.org http://salilab.org/LS-SNP/supp-info.pdf.

  15. Prokaryotic Gene Clusters: A Rich Toolbox for Synthetic Biology

    PubMed Central

    Fischbach, Michael; Voigt, Christopher A.

    2014-01-01

    Bacteria construct elaborate nanostructures, obtain nutrients and energy from diverse sources, synthesize complex molecules, and implement signal processing to react to their environment. These complex phenotypes require the coordinated action of multiple genes, which are often encoded in a contiguous region of the genome, referred to as a gene cluster. Gene clusters sometimes contain all of the genes necessary and sufficient for a particular function. As an evolutionary mechanism, gene clusters facilitate the horizontal transfer of the complete function between species. Here, we review recent work on a number of clusters whose functions are relevant to biotechnology. Engineering these clusters has been hindered by their regulatory complexity, the need to balance the expression of many genes, and a lack of tools to design and manipulate DNA at this scale. Advances in synthetic biology will enable the large-scale bottom-up engineering of the clusters to optimize their functions, wake up cryptic clusters, or to transfer them between organisms. Understanding and manipulating gene clusters will move towards an era of genome engineering, where multiple functions can be “mixed-and-matched” to create a designer organism. PMID:21154668

  16. Construction of a minimal genome as a chassis for synthetic biology.

    PubMed

    Sung, Bong Hyun; Choe, Donghui; Kim, Sun Chang; Cho, Byung-Kwan

    2016-11-30

    Microbial diversity and complexity pose challenges in understanding the voluminous genetic information produced from whole-genome sequences, bioinformatics and high-throughput '-omics' research. These challenges can be overcome by a core blueprint of a genome drawn with a minimal gene set, which is essential for life. Systems biology and large-scale gene inactivation studies have estimated the number of essential genes to be ∼300-500 in many microbial genomes. On the basis of the essential gene set information, minimal-genome strains have been generated using sophisticated genome engineering techniques, such as genome reduction and chemical genome synthesis. Current size-reduced genomes are not perfect minimal genomes, but chemically synthesized genomes have just been constructed. Some minimal genomes provide various desirable functions for bioindustry, such as improved genome stability, increased transformation efficacy and improved production of biomaterials. The minimal genome as a chassis genome for synthetic biology can be used to construct custom-designed genomes for various practical and industrial applications. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  17. Genome resequencing in Populus: Revealing large-scale genome variation and implications on specialized-trait genomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muchero, Wellington; Labbe, Jessy L; Priya, Ranjan

    2014-01-01

    To date, Populus ranks among a few plant species with a complete genome sequence and other highly developed genomic resources. With the first genome sequence among all tree species, Populus has been adopted as a suitable model organism for genomic studies in trees. However, far from being just a model species, Populus is a key renewable economic resource that plays a significant role in providing raw materials for the biofuel and pulp and paper industries. Therefore, aside from leading frontiers of basic tree molecular biology and ecological research, Populus leads frontiers in addressing global economic challenges related to fuel andmore » fiber production. The latter fact suggests that research aimed at improving quality and quantity of Populus as a raw material will likely drive the pursuit of more targeted and deeper research in order to unlock the economic potential tied in molecular biology processes that drive this tree species. Advances in genome sequence-driven technologies, such as resequencing individual genotypes, which in turn facilitates large scale SNP discovery and identification of large scale polymorphisms are key determinants of future success in these initiatives. In this treatise we discuss implications of genome sequence-enable technologies on Populus genomic and genetic studies of complex and specialized-traits.« less

  18. Academic-industrial partnerships in drug discovery in the age of genomics.

    PubMed

    Harris, Tim; Papadopoulos, Stelios; Goldstein, David B

    2015-06-01

    Many US FDA-approved drugs have been developed through productive interactions between the biotechnology industry and academia. Technological breakthroughs in genomics, in particular large-scale sequencing of human genomes, is creating new opportunities to understand the biology of disease and to identify high-value targets relevant to a broad range of disorders. However, the scale of the work required to appropriately analyze large genomic and clinical data sets is challenging industry to develop a broader view of what areas of work constitute precompetitive research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Home - The Cancer Genome Atlas - Cancer Genome - TCGA

    Cancer.gov

    The Cancer Genome Atlas (TCGA) is a comprehensive and coordinated effort to accelerate our understanding of the molecular basis of cancer through the application of genome analysis technologies, including large-scale genome sequencing.

  20. Linking genes to ecosystem trace gas fluxes in a large-scale model system

    NASA Astrophysics Data System (ADS)

    Meredith, L. K.; Cueva, A.; Volkmann, T. H. M.; Sengupta, A.; Troch, P. A.

    2017-12-01

    Soil microorganisms mediate biogeochemical cycles through biosphere-atmosphere gas exchange with significant impact on atmospheric trace gas composition. Improving process-based understanding of these microbial populations and linking their genomic potential to the ecosystem-scale is a challenge, particularly in soil systems, which are heterogeneous in biodiversity, chemistry, and structure. In oligotrophic systems, such as the Landscape Evolution Observatory (LEO) at Biosphere 2, atmospheric trace gas scavenging may supply critical metabolic needs to microbial communities, thereby promoting tight linkages between microbial genomics and trace gas utilization. This large-scale model system of three initially homogenous and highly instrumented hillslopes facilitates high temporal resolution characterization of subsurface trace gas fluxes at hundreds of sampling points, making LEO an ideal location to study microbe-mediated trace gas fluxes from the gene to ecosystem scales. Specifically, we focus on the metabolism of ubiquitous atmospheric reduced trace gases hydrogen (H2), carbon monoxide (CO), and methane (CH4), which may have wide-reaching impacts on microbial community establishment, survival, and function. Additionally, microbial activity on LEO may facilitate weathering of the basalt matrix, which can be studied with trace gas measurements of carbonyl sulfide (COS/OCS) and carbon dioxide (O-isotopes in CO2), and presents an additional opportunity for gene to ecosystem study. This work will present initial measurements of this suite of trace gases to characterize soil microbial metabolic activity, as well as links between spatial and temporal variability of microbe-mediated trace gas fluxes in LEO and their relation to genomic-based characterization of microbial community structure (phylogenetic amplicons) and genetic potential (metagenomics). Results from the LEO model system will help build understanding of the importance of atmospheric inputs to microorganisms pioneering fresh mineral matrix. Additionally, the measurement and modeling techniques that will be developed at LEO will be relevant for other investigators linking microbial genomics to ecosystem function in more well-developed soils with greater complexity.

  1. Sequencing and annotation of mitochondrial genomes from individual parasitic helminths.

    PubMed

    Jex, Aaron R; Littlewood, D Timothy; Gasser, Robin B

    2015-01-01

    Mitochondrial (mt) genomics has significant implications in a range of fundamental areas of parasitology, including evolution, systematics, and population genetics as well as explorations of mt biochemistry, physiology, and function. Mt genomes also provide a rich source of markers to aid molecular epidemiological and ecological studies of key parasites. However, there is still a paucity of information on mt genomes for many metazoan organisms, particularly parasitic helminths, which has often related to challenges linked to sequencing from tiny amounts of material. The advent of next-generation sequencing (NGS) technologies has paved the way for low cost, high-throughput mt genomic research, but there have been obstacles, particularly in relation to post-sequencing assembly and analyses of large datasets. In this chapter, we describe protocols for the efficient amplification and sequencing of mt genomes from small portions of individual helminths, and highlight the utility of NGS platforms to expedite mt genomics. In addition, we recommend approaches for manual or semi-automated bioinformatic annotation and analyses to overcome the bioinformatic "bottleneck" to research in this area. Taken together, these approaches have demonstrated applicability to a range of parasites and provide prospects for using complete mt genomic sequence datasets for large-scale molecular systematic and epidemiological studies. In addition, these methods have broader utility and might be readily adapted to a range of other medium-sized molecular regions (i.e., 10-100 kb), including large genomic operons, and other organellar (e.g., plastid) and viral genomes.

  2. Interrogation of Mammalian Protein Complex Structure, Function, and Membership Using Genome-Scale Fitness Screens. | Office of Cancer Genomics

    Cancer.gov

    Protein complexes are assemblies of subunits that have co-evolved to execute one or many coordinated functions in the cellular environment. Functional annotation of mammalian protein complexes is critical to understanding biological processes, as well as disease mechanisms. Here, we used genetic co-essentiality derived from genome-scale RNAi- and CRISPR-Cas9-based fitness screens performed across hundreds of human cancer cell lines to assign measures of functional similarity.

  3. DESCARTES' RULE OF SIGNS AND THE IDENTIFIABILITY OF POPULATION DEMOGRAPHIC MODELS FROM GENOMIC VARIATION DATA.

    PubMed

    Bhaskar, Anand; Song, Yun S

    2014-01-01

    The sample frequency spectrum (SFS) is a widely-used summary statistic of genomic variation in a sample of homologous DNA sequences. It provides a highly efficient dimensional reduction of large-scale population genomic data and its mathematical dependence on the underlying population demography is well understood, thus enabling the development of efficient inference algorithms. However, it has been recently shown that very different population demographies can actually generate the same SFS for arbitrarily large sample sizes. Although in principle this nonidentifiability issue poses a thorny challenge to statistical inference, the population size functions involved in the counterexamples are arguably not so biologically realistic. Here, we revisit this problem and examine the identifiability of demographic models under the restriction that the population sizes are piecewise-defined where each piece belongs to some family of biologically-motivated functions. Under this assumption, we prove that the expected SFS of a sample uniquely determines the underlying demographic model, provided that the sample is sufficiently large. We obtain a general bound on the sample size sufficient for identifiability; the bound depends on the number of pieces in the demographic model and also on the type of population size function in each piece. In the cases of piecewise-constant, piecewise-exponential and piecewise-generalized-exponential models, which are often assumed in population genomic inferences, we provide explicit formulas for the bounds as simple functions of the number of pieces. Lastly, we obtain analogous results for the "folded" SFS, which is often used when there is ambiguity as to which allelic type is ancestral. Our results are proved using a generalization of Descartes' rule of signs for polynomials to the Laplace transform of piecewise continuous functions.

  4. DESCARTES’ RULE OF SIGNS AND THE IDENTIFIABILITY OF POPULATION DEMOGRAPHIC MODELS FROM GENOMIC VARIATION DATA1

    PubMed Central

    Bhaskar, Anand; Song, Yun S.

    2016-01-01

    The sample frequency spectrum (SFS) is a widely-used summary statistic of genomic variation in a sample of homologous DNA sequences. It provides a highly efficient dimensional reduction of large-scale population genomic data and its mathematical dependence on the underlying population demography is well understood, thus enabling the development of efficient inference algorithms. However, it has been recently shown that very different population demographies can actually generate the same SFS for arbitrarily large sample sizes. Although in principle this nonidentifiability issue poses a thorny challenge to statistical inference, the population size functions involved in the counterexamples are arguably not so biologically realistic. Here, we revisit this problem and examine the identifiability of demographic models under the restriction that the population sizes are piecewise-defined where each piece belongs to some family of biologically-motivated functions. Under this assumption, we prove that the expected SFS of a sample uniquely determines the underlying demographic model, provided that the sample is sufficiently large. We obtain a general bound on the sample size sufficient for identifiability; the bound depends on the number of pieces in the demographic model and also on the type of population size function in each piece. In the cases of piecewise-constant, piecewise-exponential and piecewise-generalized-exponential models, which are often assumed in population genomic inferences, we provide explicit formulas for the bounds as simple functions of the number of pieces. Lastly, we obtain analogous results for the “folded” SFS, which is often used when there is ambiguity as to which allelic type is ancestral. Our results are proved using a generalization of Descartes’ rule of signs for polynomials to the Laplace transform of piecewise continuous functions. PMID:28018011

  5. The value of cows in reference populations for genomic selection of new functional traits.

    PubMed

    Buch, L H; Kargo, M; Berg, P; Lassen, J; Sørensen, A C

    2012-06-01

    Today, almost all reference populations consist of progeny tested bulls. However, older progeny tested bulls do not have reliable estimated breeding values (EBV) for new traits. Thus, to be able to select for these new traits, it is necessary to build a reference population. We used a deterministic prediction model to test the hypothesis that the value of cows in reference populations depends on the availability of phenotypic records. To test the hypothesis, we investigated different strategies of building a reference population for a new functional trait over a 10-year period. The trait was either recorded on a large scale (30 000 cows per year) or on a small scale (2000 cows per year). For large-scale recording, we compared four scenarios where the reference population consisted of 30 sires; 30 sires and 170 test bulls; 30 sires and 2000 cows; or 30 sires, 2000 cows and 170 test bulls in the first year with measurements of the new functional trait. In addition to varying the make-up of the reference population, we also varied the heritability of the trait (h2 = 0.05 v. 0.15). The results showed that a reference population of test bulls, cows and sires results in the highest accuracy of the direct genomic values (DGV) for a new functional trait, regardless of its heritability. For small-scale recording, we compared two scenarios where the reference population consisted of the 2000 cows with phenotypic records or the 30 sires of these cows in the first year with measurements of the new functional trait. The results showed that a reference population of cows results in the highest accuracy of the DGV whether the heritability is 0.05 or 0.15, because variation is lost when phenotypic data on cows are summarized in EBV of their sires. The main conclusions from this study are: (i) the fewer phenotypic records, the larger effect of including cows in the reference population; (ii) for small-scale recording, the accuracy of the DGV will continue to increase for several years, whereas the increases in the accuracy of the DGV quickly decrease with large-scale recording; (iii) it is possible to achieve accuracies of the DGV that enable selection for new functional traits recorded on a large scale within 3 years from commencement of recording; and (iv) a higher heritability benefits a reference population of cows more than a reference population of bulls.

  6. Extreme-Scale De Novo Genome Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Georganas, Evangelos; Hofmeyr, Steven; Egan, Rob

    De novo whole genome assembly reconstructs genomic sequence from short, overlapping, and potentially erroneous DNA segments and is one of the most important computations in modern genomics. This work presents HipMER, a high-quality end-to-end de novo assembler designed for extreme scale analysis, via efficient parallelization of the Meraculous code. Genome assembly software has many components, each of which stresses different components of a computer system. This chapter explains the computational challenges involved in each step of the HipMer pipeline, the key distributed data structures, and communication costs in detail. We present performance results of assembling the human genome and themore » large hexaploid wheat genome on large supercomputers up to tens of thousands of cores.« less

  7. Enabling systematic interrogation of protein-protein interactions in live cells with a versatile ultra-high-throughput biosensor platform | Office of Cancer Genomics

    Cancer.gov

    The vast datasets generated by next generation gene sequencing and expression profiling have transformed biological and translational research. However, technologies to produce large-scale functional genomics datasets, such as high-throughput detection of protein-protein interactions (PPIs), are still in early development. While a number of powerful technologies have been employed to detect PPIs, a singular PPI biosensor platform featured with both high sensitivity and robustness in a mammalian cell environment remains to be established.

  8. Functional regression method for whole genome eQTL epistasis analysis with sequencing data.

    PubMed

    Xu, Kelin; Jin, Li; Xiong, Momiao

    2017-05-18

    Epistasis plays an essential rule in understanding the regulation mechanisms and is an essential component of the genetic architecture of the gene expressions. However, interaction analysis of gene expressions remains fundamentally unexplored due to great computational challenges and data availability. Due to variation in splicing, transcription start sites, polyadenylation sites, post-transcriptional RNA editing across the entire gene, and transcription rates of the cells, RNA-seq measurements generate large expression variability and collectively create the observed position level read count curves. A single number for measuring gene expression which is widely used for microarray measured gene expression analysis is highly unlikely to sufficiently account for large expression variation across the gene. Simultaneously analyzing epistatic architecture using the RNA-seq and whole genome sequencing (WGS) data poses enormous challenges. We develop a nonlinear functional regression model (FRGM) with functional responses where the position-level read counts within a gene are taken as a function of genomic position, and functional predictors where genotype profiles are viewed as a function of genomic position, for epistasis analysis with RNA-seq data. Instead of testing the interaction of all possible pair-wises SNPs, the FRGM takes a gene as a basic unit for epistasis analysis, which tests for the interaction of all possible pairs of genes and use all the information that can be accessed to collectively test interaction between all possible pairs of SNPs within two genome regions. By large-scale simulations, we demonstrate that the proposed FRGM for epistasis analysis can achieve the correct type 1 error and has higher power to detect the interactions between genes than the existing methods. The proposed methods are applied to the RNA-seq and WGS data from the 1000 Genome Project. The numbers of pairs of significantly interacting genes after Bonferroni correction identified using FRGM, RPKM and DESeq were 16,2361, 260 and 51, respectively, from the 350 European samples. The proposed FRGM for epistasis analysis of RNA-seq can capture isoform and position-level information and will have a broad application. Both simulations and real data analysis highlight the potential for the FRGM to be a good choice of the epistatic analysis with sequencing data.

  9. An Efficient Method for High-Fidelity BAC/PAC Retrofitting with a Selectable Marker for Mammalian Cell Transfection

    PubMed Central

    Wang, Zunde; Engler, Peter; Longacre, Angelika; Storb, Ursula

    2001-01-01

    Large-scale genomic sequencing projects have provided DNA sequence information for many genes, but the biological functions for most of them will only be known through functional studies. Bacterial artificial chromosomes (BACs) and P1-derived artificial chromosomes (PACs) are large genomic clones stably maintained in bacteria and are very important in functional studies through transfection because of their large size and stability. Because most BAC or PAC vectors do not have a mammalian selection marker, transfecting mammalian cells with genes cloned in BACs or PACs requires the insertion into the BAC/PAC of a mammalian selectable marker. However, currently available procedures are not satisfactory in efficiency and fidelity. We describe a very simple and efficient procedure that allows one to retrofit dozens of BACs in a day with no detectable deletions or unwanted recombination. We use a BAC/PAC retrofitting vector that, on transformation into competent BAC or PAC strains, will catalyze the specific insertion of itself into BAC/PAC vectors through in vivo cre/loxP site-specific recombination. PMID:11156622

  10. Cloud-based interactive analytics for terabytes of genomic variants data.

    PubMed

    Pan, Cuiping; McInnes, Gregory; Deflaux, Nicole; Snyder, Michael; Bingham, Jonathan; Datta, Somalee; Tsao, Philip S

    2017-12-01

    Large scale genomic sequencing is now widely used to decipher questions in diverse realms such as biological function, human diseases, evolution, ecosystems, and agriculture. With the quantity and diversity these data harbor, a robust and scalable data handling and analysis solution is desired. We present interactive analytics using a cloud-based columnar database built on Dremel to perform information compression, comprehensive quality controls, and biological information retrieval in large volumes of genomic data. We demonstrate such Big Data computing paradigms can provide orders of magnitude faster turnaround for common genomic analyses, transforming long-running batch jobs submitted via a Linux shell into questions that can be asked from a web browser in seconds. Using this method, we assessed a study population of 475 deeply sequenced human genomes for genomic call rate, genotype and allele frequency distribution, variant density across the genome, and pharmacogenomic information. Our analysis framework is implemented in Google Cloud Platform and BigQuery. Codes are available at https://github.com/StanfordBioinformatics/mvp_aaa_codelabs. cuiping@stanford.edu or ptsao@stanford.edu. Supplementary data are available at Bioinformatics online. Published by Oxford University Press 2017. This work is written by US Government employees and are in the public domain in the US.

  11. Cloud-based interactive analytics for terabytes of genomic variants data

    PubMed Central

    Pan, Cuiping; McInnes, Gregory; Deflaux, Nicole; Snyder, Michael; Bingham, Jonathan; Datta, Somalee; Tsao, Philip S

    2017-01-01

    Abstract Motivation Large scale genomic sequencing is now widely used to decipher questions in diverse realms such as biological function, human diseases, evolution, ecosystems, and agriculture. With the quantity and diversity these data harbor, a robust and scalable data handling and analysis solution is desired. Results We present interactive analytics using a cloud-based columnar database built on Dremel to perform information compression, comprehensive quality controls, and biological information retrieval in large volumes of genomic data. We demonstrate such Big Data computing paradigms can provide orders of magnitude faster turnaround for common genomic analyses, transforming long-running batch jobs submitted via a Linux shell into questions that can be asked from a web browser in seconds. Using this method, we assessed a study population of 475 deeply sequenced human genomes for genomic call rate, genotype and allele frequency distribution, variant density across the genome, and pharmacogenomic information. Availability and implementation Our analysis framework is implemented in Google Cloud Platform and BigQuery. Codes are available at https://github.com/StanfordBioinformatics/mvp_aaa_codelabs. Contact cuiping@stanford.edu or ptsao@stanford.edu Supplementary information Supplementary data are available at Bioinformatics online. PMID:28961771

  12. Adapting CRISPR/Cas9 for functional genomics screens.

    PubMed

    Malina, Abba; Katigbak, Alexandra; Cencic, Regina; Maïga, Rayelle Itoua; Robert, Francis; Miura, Hisashi; Pelletier, Jerry

    2014-01-01

    The use of CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein) for targeted genome editing has been widely adopted and is considered a "game changing" technology. The ease and rapidity by which this approach can be used to modify endogenous loci in a wide spectrum of cell types and organisms makes it a powerful tool for customizable genetic modifications as well as for large-scale functional genomics. The development of retrovirus-based expression platforms to simultaneously deliver the Cas9 nuclease and single guide (sg) RNAs provides unique opportunities by which to ensure stable and reproducible expression of the editing tools and a broad cell targeting spectrum, while remaining compatible with in vivo genetic screens. Here, we describe methods and highlight considerations for designing and generating sgRNA libraries in all-in-one retroviral vectors for such applications.

  13. Combining classifiers to predict gene function in Arabidopsis thaliana using large-scale gene expression measurements.

    PubMed

    Lan, Hui; Carson, Rachel; Provart, Nicholas J; Bonner, Anthony J

    2007-09-21

    Arabidopsis thaliana is the model species of current plant genomic research with a genome size of 125 Mb and approximately 28,000 genes. The function of half of these genes is currently unknown. The purpose of this study is to infer gene function in Arabidopsis using machine-learning algorithms applied to large-scale gene expression data sets, with the goal of identifying genes that are potentially involved in plant response to abiotic stress. Using in house and publicly available data, we assembled a large set of gene expression measurements for A. thaliana. Using those genes of known function, we first evaluated and compared the ability of basic machine-learning algorithms to predict which genes respond to stress. Predictive accuracy was measured using ROC50 and precision curves derived through cross validation. To improve accuracy, we developed a method for combining these classifiers using a weighted-voting scheme. The combined classifier was then trained on genes of known function and applied to genes of unknown function, identifying genes that potentially respond to stress. Visual evidence corroborating the predictions was obtained using electronic Northern analysis. Three of the predicted genes were chosen for biological validation. Gene knockout experiments confirmed that all three are involved in a variety of stress responses. The biological analysis of one of these genes (At1g16850) is presented here, where it is shown to be necessary for the normal response to temperature and NaCl. Supervised learning methods applied to large-scale gene expression measurements can be used to predict gene function. However, the ability of basic learning methods to predict stress response varies widely and depends heavily on how much dimensionality reduction is used. Our method of combining classifiers can improve the accuracy of such predictions - in this case, predictions of genes involved in stress response in plants - and it effectively chooses the appropriate amount of dimensionality reduction automatically. The method provides a useful means of identifying genes in A. thaliana that potentially respond to stress, and we expect it would be useful in other organisms and for other gene functions.

  14. Natural Allelic Diversity, Genetic Structure and Linkage Disequilibrium Pattern in Wild Chickpea

    PubMed Central

    Kujur, Alice; Das, Shouvik; Badoni, Saurabh; Kumar, Vinod; Singh, Mohar; Bansal, Kailash C.; Tyagi, Akhilesh K.; Parida, Swarup K.

    2014-01-01

    Characterization of natural allelic diversity and understanding the genetic structure and linkage disequilibrium (LD) pattern in wild germplasm accessions by large-scale genotyping of informative microsatellite and single nucleotide polymorphism (SNP) markers is requisite to facilitate chickpea genetic improvement. Large-scale validation and high-throughput genotyping of genome-wide physically mapped 478 genic and genomic microsatellite markers and 380 transcription factor gene-derived SNP markers using gel-based assay, fluorescent dye-labelled automated fragment analyser and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass array have been performed. Outcome revealed their high genotyping success rate (97.5%) and existence of a high level of natural allelic diversity among 94 wild and cultivated Cicer accessions. High intra- and inter-specific polymorphic potential and wider molecular diversity (11–94%) along with a broader genetic base (13–78%) specifically in the functional genic regions of wild accessions was assayed by mapped markers. It suggested their utility in monitoring introgression and transferring target trait-specific genomic (gene) regions from wild to cultivated gene pool for the genetic enhancement. Distinct species/gene pool-wise differentiation, admixed domestication pattern, and differential genome-wide recombination and LD estimates/decay observed in a six structured population of wild and cultivated accessions using mapped markers further signifies their usefulness in chickpea genetics, genomics and breeding. PMID:25222488

  15. Explore, Visualize, and Analyze Functional Cancer Proteomic Data Using the Cancer Proteome Atlas. | Office of Cancer Genomics

    Cancer.gov

    Reverse-phase protein arrays (RPPA) represent a powerful functional proteomic approach to elucidate cancer-related molecular mechanisms and to develop novel cancer therapies. To facilitate community-based investigation of the large-scale protein expression data generated by this platform, we have developed a user-friendly, open-access bioinformatic resource, The Cancer Proteome Atlas (TCPA, http://tcpaportal.org), which contains two separate web applications.

  16. Rainbow: a tool for large-scale whole-genome sequencing data analysis using cloud computing.

    PubMed

    Zhao, Shanrong; Prenger, Kurt; Smith, Lance; Messina, Thomas; Fan, Hongtao; Jaeger, Edward; Stephens, Susan

    2013-06-27

    Technical improvements have decreased sequencing costs and, as a result, the size and number of genomic datasets have increased rapidly. Because of the lower cost, large amounts of sequence data are now being produced by small to midsize research groups. Crossbow is a software tool that can detect single nucleotide polymorphisms (SNPs) in whole-genome sequencing (WGS) data from a single subject; however, Crossbow has a number of limitations when applied to multiple subjects from large-scale WGS projects. The data storage and CPU resources that are required for large-scale whole genome sequencing data analyses are too large for many core facilities and individual laboratories to provide. To help meet these challenges, we have developed Rainbow, a cloud-based software package that can assist in the automation of large-scale WGS data analyses. Here, we evaluated the performance of Rainbow by analyzing 44 different whole-genome-sequenced subjects. Rainbow has the capacity to process genomic data from more than 500 subjects in two weeks using cloud computing provided by the Amazon Web Service. The time includes the import and export of the data using Amazon Import/Export service. The average cost of processing a single sample in the cloud was less than 120 US dollars. Compared with Crossbow, the main improvements incorporated into Rainbow include the ability: (1) to handle BAM as well as FASTQ input files; (2) to split large sequence files for better load balance downstream; (3) to log the running metrics in data processing and monitoring multiple Amazon Elastic Compute Cloud (EC2) instances; and (4) to merge SOAPsnp outputs for multiple individuals into a single file to facilitate downstream genome-wide association studies. Rainbow is a scalable, cost-effective, and open-source tool for large-scale WGS data analysis. For human WGS data sequenced by either the Illumina HiSeq 2000 or HiSeq 2500 platforms, Rainbow can be used straight out of the box. Rainbow is available for third-party implementation and use, and can be downloaded from http://s3.amazonaws.com/jnj_rainbow/index.html.

  17. Rainbow: a tool for large-scale whole-genome sequencing data analysis using cloud computing

    PubMed Central

    2013-01-01

    Background Technical improvements have decreased sequencing costs and, as a result, the size and number of genomic datasets have increased rapidly. Because of the lower cost, large amounts of sequence data are now being produced by small to midsize research groups. Crossbow is a software tool that can detect single nucleotide polymorphisms (SNPs) in whole-genome sequencing (WGS) data from a single subject; however, Crossbow has a number of limitations when applied to multiple subjects from large-scale WGS projects. The data storage and CPU resources that are required for large-scale whole genome sequencing data analyses are too large for many core facilities and individual laboratories to provide. To help meet these challenges, we have developed Rainbow, a cloud-based software package that can assist in the automation of large-scale WGS data analyses. Results Here, we evaluated the performance of Rainbow by analyzing 44 different whole-genome-sequenced subjects. Rainbow has the capacity to process genomic data from more than 500 subjects in two weeks using cloud computing provided by the Amazon Web Service. The time includes the import and export of the data using Amazon Import/Export service. The average cost of processing a single sample in the cloud was less than 120 US dollars. Compared with Crossbow, the main improvements incorporated into Rainbow include the ability: (1) to handle BAM as well as FASTQ input files; (2) to split large sequence files for better load balance downstream; (3) to log the running metrics in data processing and monitoring multiple Amazon Elastic Compute Cloud (EC2) instances; and (4) to merge SOAPsnp outputs for multiple individuals into a single file to facilitate downstream genome-wide association studies. Conclusions Rainbow is a scalable, cost-effective, and open-source tool for large-scale WGS data analysis. For human WGS data sequenced by either the Illumina HiSeq 2000 or HiSeq 2500 platforms, Rainbow can be used straight out of the box. Rainbow is available for third-party implementation and use, and can be downloaded from http://s3.amazonaws.com/jnj_rainbow/index.html. PMID:23802613

  18. Joint scaling laws in functional and evolutionary categories in prokaryotic genomes

    PubMed Central

    Grilli, J.; Bassetti, B.; Maslov, S.; Cosentino Lagomarsino, M.

    2012-01-01

    We propose and study a class-expansion/innovation/loss model of genome evolution taking into account biological roles of genes and their constituent domains. In our model, numbers of genes in different functional categories are coupled to each other. For example, an increase in the number of metabolic enzymes in a genome is usually accompanied by addition of new transcription factors regulating these enzymes. Such coupling can be thought of as a proportional ‘recipe’ for genome composition of the type ‘a spoonful of sugar for each egg yolk’. The model jointly reproduces two known empirical laws: the distribution of family sizes and the non-linear scaling of the number of genes in certain functional categories (e.g. transcription factors) with genome size. In addition, it allows us to derive a novel relation between the exponents characterizing these two scaling laws, establishing a direct quantitative connection between evolutionary and functional categories. It predicts that functional categories that grow faster-than-linearly with genome size to be characterized by flatter-than-average family size distributions. This relation is confirmed by our bioinformatics analysis of prokaryotic genomes. This proves that the joint quantitative trends of functional and evolutionary classes can be understood in terms of evolutionary growth with proportional recipes. PMID:21937509

  19. Fast selection of miRNA candidates based on large-scale pre-computed MFE sets of randomized sequences

    PubMed Central

    2014-01-01

    Background Small RNAs are important regulators of genome function, yet their prediction in genomes is still a major computational challenge. Statistical analyses of pre-miRNA sequences indicated that their 2D structure tends to have a minimal free energy (MFE) significantly lower than MFE values of equivalently randomized sequences with the same nucleotide composition, in contrast to other classes of non-coding RNA. The computation of many MFEs is, however, too intensive to allow for genome-wide screenings. Results Using a local grid infrastructure, MFE distributions of random sequences were pre-calculated on a large scale. These distributions follow a normal distribution and can be used to determine the MFE distribution for any given sequence composition by interpolation. It allows on-the-fly calculation of the normal distribution for any candidate sequence composition. Conclusion The speedup achieved makes genome-wide screening with this characteristic of a pre-miRNA sequence practical. Although this particular property alone will not be able to distinguish miRNAs from other sequences sufficiently discriminative, the MFE-based P-value should be added to the parameters of choice to be included in the selection of potential miRNA candidates for experimental verification. PMID:24418292

  20. Single-molecule sequencing and optical mapping yields an improved genome of woodland strawberry (Fragaria vesca) with chromosome-scale contiguity.

    PubMed

    Edger, Patrick P; VanBuren, Robert; Colle, Marivi; Poorten, Thomas J; Wai, Ching Man; Niederhuth, Chad E; Alger, Elizabeth I; Ou, Shujun; Acharya, Charlotte B; Wang, Jie; Callow, Pete; McKain, Michael R; Shi, Jinghua; Collier, Chad; Xiong, Zhiyong; Mower, Jeffrey P; Slovin, Janet P; Hytönen, Timo; Jiang, Ning; Childs, Kevin L; Knapp, Steven J

    2018-02-01

    Although draft genomes are available for most agronomically important plant species, the majority are incomplete, highly fragmented, and often riddled with assembly and scaffolding errors. These assembly issues hinder advances in tool development for functional genomics and systems biology. Here we utilized a robust, cost-effective approach to produce high-quality reference genomes. We report a near-complete genome of diploid woodland strawberry (Fragaria vesca) using single-molecule real-time sequencing from Pacific Biosciences (PacBio). This assembly has a contig N50 length of ∼7.9 million base pairs (Mb), representing a ∼300-fold improvement of the previous version. The vast majority (>99.8%) of the assembly was anchored to 7 pseudomolecules using 2 sets of optical maps from Bionano Genomics. We obtained ∼24.96 Mb of sequence not present in the previous version of the F. vesca genome and produced an improved annotation that includes 1496 new genes. Comparative syntenic analyses uncovered numerous, large-scale scaffolding errors present in each chromosome in the previously published version of the F. vesca genome. Our results highlight the need to improve existing short-read based reference genomes. Furthermore, we demonstrate how genome quality impacts commonly used analyses for addressing both fundamental and applied biological questions. © The Authors 2017. Published by Oxford University Press.

  1. Cis-regulatory Elements and Human Evolution

    PubMed Central

    Siepel, Adam

    2014-01-01

    Modification of gene regulation has long been considered an important force in human evolution, particularly through changes to cis-regulatory elements (CREs) that function in transcriptional regulation. For decades, however, the study of cis-regulatory evolution was severely limited by the available data. New data sets describing the locations of CREs and genetic variation within and between species have now made it possible to study CRE evolution much more directly on a genome-wide scale. Here, we review recent research on the evolution of CREs in humans based on large-scale genomic data sets. We consider inferences based on primate divergence, human polymorphism, and combinations of divergence and polymorphism. We then consider “new frontiers” in this field stemming from recent research on transcriptional regulation. PMID:25218861

  2. A New Model Army: Emerging fish models to study the genomics of vertebrate Evo-Devo

    PubMed Central

    Braasch, Ingo; Peterson, Samuel M.; Desvignes, Thomas; McCluskey, Braedan M.; Batzel, Peter; Postlethwait, John H.

    2014-01-01

    Many fields of biology – including vertebrate Evo-Devo research – are facing an explosion of genomic and transcriptomic sequence information and a multitude of fish species are now swimming in this ‘genomic tsunami’. Here, we first give an overview of recent developments in sequencing fish genomes and transcriptomes that identify properties of fish genomes requiring particular attention and propose strategies to overcome common challenges in fish genomics. We suggest that the generation of chromosome-level genome assemblies - for which we introduce the term ‘chromonome’ – should be a key component of genomic investigations in fish because they enable large-scale conserved synteny analyses that inform orthology detection, a process critical for connectivity of genomes. Orthology calls in vertebrates, especially in teleost fish, are complicated by divergent evolution of gene repertoires and functions following two rounds of genome duplication in the ancestor of vertebrates and a third round at the base of teleost fish. Second, using examples of spotted gar, basal teleosts, zebrafish-related cyprinids, cavefish, livebearers, icefish, and lobefin fish, we illustrate how next generation sequencing technologies liberate emerging fish systems from genomic ignorance and transform them into a new model army to answer longstanding questions on the genomic and developmental basis of their biodiversity. Finally, we discuss recent progress in the genetic toolbox for the major fish models for functional analysis, zebrafish and medaka, that can be transferred to many other fish species to study in vivo the functional effect of evolutionary genomic change as Evo-Devo research enters the postgenomic era. PMID:25111899

  3. HTS-DB: an online resource to publish and query data from functional genomics high-throughput siRNA screening projects.

    PubMed

    Saunders, Rebecca E; Instrell, Rachael; Rispoli, Rossella; Jiang, Ming; Howell, Michael

    2013-01-01

    High-throughput screening (HTS) uses technologies such as RNA interference to generate loss-of-function phenotypes on a genomic scale. As these technologies become more popular, many research institutes have established core facilities of expertise to deal with the challenges of large-scale HTS experiments. As the efforts of core facility screening projects come to fruition, focus has shifted towards managing the results of these experiments and making them available in a useful format that can be further mined for phenotypic discovery. The HTS-DB database provides a public view of data from screening projects undertaken by the HTS core facility at the CRUK London Research Institute. All projects and screens are described with comprehensive assay protocols, and datasets are provided with complete descriptions of analysis techniques. This format allows users to browse and search data from large-scale studies in an informative and intuitive way. It also provides a repository for additional measurements obtained from screens that were not the focus of the project, such as cell viability, and groups these data so that it can provide a gene-centric summary across several different cell lines and conditions. All datasets from our screens that can be made available can be viewed interactively and mined for further hit lists. We believe that in this format, the database provides researchers with rapid access to results of large-scale experiments that might facilitate their understanding of genes/compounds identified in their own research. DATABASE URL: http://hts.cancerresearchuk.org/db/public.

  4. GenomeDiagram: a python package for the visualization of large-scale genomic data.

    PubMed

    Pritchard, Leighton; White, Jennifer A; Birch, Paul R J; Toth, Ian K

    2006-03-01

    We present GenomeDiagram, a flexible, open-source Python module for the visualization of large-scale genomic, comparative genomic and other data with reference to a single chromosome or other biological sequence. GenomeDiagram may be used to generate publication-quality vector graphics, rastered images and in-line streamed graphics for webpages. The package integrates with datatypes from the BioPython project, and is available for Windows, Linux and Mac OS X systems. GenomeDiagram is freely available as source code (under GNU Public License) at http://bioinf.scri.ac.uk/lp/programs.html, and requires Python 2.3 or higher, and recent versions of the ReportLab and BioPython packages. A user manual, example code and images are available at http://bioinf.scri.ac.uk/lp/programs.html.

  5. Exploring the feasibility of using copy number variants as genetic markers through large-scale whole genome sequencing experiments

    USDA-ARS?s Scientific Manuscript database

    Copy number variants (CNV) are large scale duplications or deletions of genomic sequence that are caused by a diverse set of molecular phenomena that are distinct from single nucleotide polymorphism (SNP) formation. Due to their different mechanisms of formation, CNVs are often difficult to track us...

  6. Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks

    PubMed Central

    Kaltenbacher, Barbara; Hasenauer, Jan

    2017-01-01

    Mechanistic mathematical modeling of biochemical reaction networks using ordinary differential equation (ODE) models has improved our understanding of small- and medium-scale biological processes. While the same should in principle hold for large- and genome-scale processes, the computational methods for the analysis of ODE models which describe hundreds or thousands of biochemical species and reactions are missing so far. While individual simulations are feasible, the inference of the model parameters from experimental data is computationally too intensive. In this manuscript, we evaluate adjoint sensitivity analysis for parameter estimation in large scale biochemical reaction networks. We present the approach for time-discrete measurement and compare it to state-of-the-art methods used in systems and computational biology. Our comparison reveals a significantly improved computational efficiency and a superior scalability of adjoint sensitivity analysis. The computational complexity is effectively independent of the number of parameters, enabling the analysis of large- and genome-scale models. Our study of a comprehensive kinetic model of ErbB signaling shows that parameter estimation using adjoint sensitivity analysis requires a fraction of the computation time of established methods. The proposed method will facilitate mechanistic modeling of genome-scale cellular processes, as required in the age of omics. PMID:28114351

  7. Insertion Sequence-Caused Large Scale-Rearrangements in the Genome of Escherichia coli

    DTIC Science & Technology

    2016-07-18

    rearrangements in the genome of Escherichia coli Heewook Lee1,2, Thomas G. Doak3,4, Ellen Popodi3, Patricia L. Foster3 and Haixu Tang1,* 1School of...and excisions of IS elements and recombi- nation between homologous IS elements identified in a large collection of Escherichia coli mutation accu...scale rear- rangements arose in the Escherichia coli genome during a long-term evolution experiment in a recent study (8). Com- bining WGSS with

  8. TARGET Publication Guidelines | Office of Cancer Genomics

    Cancer.gov

    Like other NCI large-scale genomics initiatives, TARGET is a community resource project and data are made available rapidly after validation for use by other researchers. To act in accord with the Fort Lauderdale principles and support the continued prompt public release of large-scale genomic data prior to publication, researchers who plan to prepare manuscripts containing descriptions of TARGET pediatric cancer data that would be of comparable scope to an initial TARGET disease-specific comprehensive, global analysis publication, and journal editors who receive such manuscripts, are

  9. Comparative analysis of metazoan chromatin organization.

    PubMed

    Ho, Joshua W K; Jung, Youngsook L; Liu, Tao; Alver, Burak H; Lee, Soohyun; Ikegami, Kohta; Sohn, Kyung-Ah; Minoda, Aki; Tolstorukov, Michael Y; Appert, Alex; Parker, Stephen C J; Gu, Tingting; Kundaje, Anshul; Riddle, Nicole C; Bishop, Eric; Egelhofer, Thea A; Hu, Sheng'en Shawn; Alekseyenko, Artyom A; Rechtsteiner, Andreas; Asker, Dalal; Belsky, Jason A; Bowman, Sarah K; Chen, Q Brent; Chen, Ron A-J; Day, Daniel S; Dong, Yan; Dose, Andrea C; Duan, Xikun; Epstein, Charles B; Ercan, Sevinc; Feingold, Elise A; Ferrari, Francesco; Garrigues, Jacob M; Gehlenborg, Nils; Good, Peter J; Haseley, Psalm; He, Daniel; Herrmann, Moritz; Hoffman, Michael M; Jeffers, Tess E; Kharchenko, Peter V; Kolasinska-Zwierz, Paulina; Kotwaliwale, Chitra V; Kumar, Nischay; Langley, Sasha A; Larschan, Erica N; Latorre, Isabel; Libbrecht, Maxwell W; Lin, Xueqiu; Park, Richard; Pazin, Michael J; Pham, Hoang N; Plachetka, Annette; Qin, Bo; Schwartz, Yuri B; Shoresh, Noam; Stempor, Przemyslaw; Vielle, Anne; Wang, Chengyang; Whittle, Christina M; Xue, Huiling; Kingston, Robert E; Kim, Ju Han; Bernstein, Bradley E; Dernburg, Abby F; Pirrotta, Vincenzo; Kuroda, Mitzi I; Noble, William S; Tullius, Thomas D; Kellis, Manolis; MacAlpine, David M; Strome, Susan; Elgin, Sarah C R; Liu, Xiaole Shirley; Lieb, Jason D; Ahringer, Julie; Karpen, Gary H; Park, Peter J

    2014-08-28

    Genome function is dynamically regulated in part by chromatin, which consists of the histones, non-histone proteins and RNA molecules that package DNA. Studies in Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular mechanisms of genome function in humans, and have revealed conservation of chromatin components and mechanisms. Nevertheless, the three organisms have markedly different genome sizes, chromosome architecture and gene organization. On human and fly chromosomes, for example, pericentric heterochromatin flanks single centromeres, whereas worm chromosomes have dispersed heterochromatin-like regions enriched in the distal chromosomal 'arms', and centromeres distributed along their lengths. To systematically investigate chromatin organization and associated gene regulation across species, we generated and analysed a large collection of genome-wide chromatin data sets from cell lines and developmental stages in worm, fly and human. Here we present over 800 new data sets from our ENCODE and modENCODE consortia, bringing the total to over 1,400. Comparison of combinatorial patterns of histone modifications, nuclear lamina-associated domains, organization of large-scale topological domains, chromatin environment at promoters and enhancers, nucleosome positioning, and DNA replication patterns reveals many conserved features of chromatin organization among the three organisms. We also find notable differences in the composition and locations of repressive chromatin. These data sets and analyses provide a rich resource for comparative and species-specific investigations of chromatin composition, organization and function.

  10. RNA Interference for Functional Genomics and Improvement of Cotton (Gossypium sp.)

    PubMed Central

    Abdurakhmonov, Ibrokhim Y.; Ayubov, Mirzakamol S.; Ubaydullaeva, Khurshida A.; Buriev, Zabardast T.; Shermatov, Shukhrat E.; Ruziboev, Haydarali S.; Shapulatov, Umid M.; Saha, Sukumar; Ulloa, Mauricio; Yu, John Z.; Percy, Richard G.; Devor, Eric J.; Sharma, Govind C.; Sripathi, Venkateswara R.; Kumpatla, Siva P.; van der Krol, Alexander; Kater, Hake D.; Khamidov, Khakimdjan; Salikhov, Shavkat I.; Jenkins, Johnie N.; Abdukarimov, Abdusattor; Pepper, Alan E.

    2016-01-01

    RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium sp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function and biological roles of many key cotton genes involved in fiber development, fertility and somatic embryogenesis, resistance to important biotic and abiotic stresses, and oil and seed quality improvements as well as the key agronomic traits including yield and maturity. Here, we have comparatively reviewed seminal research efforts in previously used antisense approaches and currently applied breakthrough RNAi studies in cotton, analyzing developed RNAi methodologies, achievements, limitations, and future needs in functional characterizations of cotton genes. We also highlighted needed efforts in the development of RNAi-based cotton cultivars, and their safety and risk assessment, small and large-scale field trials, and commercialization. PMID:26941765

  11. Genome-wide association and large scale follow-up identifies 16 new loci influencing lung function

    PubMed Central

    Artigas, María Soler; Loth, Daan W; Wain, Louise V; Gharib, Sina A; Obeidat, Ma’en; Tang, Wenbo; Zhai, Guangju; Zhao, Jing Hua; Smith, Albert Vernon; Huffman, Jennifer E; Albrecht, Eva; Jackson, Catherine M; Evans, David M; Cadby, Gemma; Fornage, Myriam; Manichaikul, Ani; Lopez, Lorna M; Johnson, Toby; Aldrich, Melinda C; Aspelund, Thor; Barroso, Inês; Campbell, Harry; Cassano, Patricia A; Couper, David J; Eiriksdottir, Gudny; Franceschini, Nora; Garcia, Melissa; Gieger, Christian; Gislason, Gauti Kjartan; Grkovic, Ivica; Hammond, Christopher J; Hancock, Dana B; Harris, Tamara B; Ramasamy, Adaikalavan; Heckbert, Susan R; Heliövaara, Markku; Homuth, Georg; Hysi, Pirro G; James, Alan L; Jankovic, Stipan; Joubert, Bonnie R; Karrasch, Stefan; Klopp, Norman; Koch, Beate; Kritchevsky, Stephen B; Launer, Lenore J; Liu, Yongmei; Loehr, Laura R; Lohman, Kurt; Loos, Ruth JF; Lumley, Thomas; Al Balushi, Khalid A; Ang, Wei Q; Barr, R Graham; Beilby, John; Blakey, John D; Boban, Mladen; Boraska, Vesna; Brisman, Jonas; Britton, John R; Brusselle, Guy G; Cooper, Cyrus; Curjuric, Ivan; Dahgam, Santosh; Deary, Ian J; Ebrahim, Shah; Eijgelsheim, Mark; Francks, Clyde; Gaysina, Darya; Granell, Raquel; Gu, Xiangjun; Hankinson, John L; Hardy, Rebecca; Harris, Sarah E; Henderson, John; Henry, Amanda; Hingorani, Aroon D; Hofman, Albert; Holt, Patrick G; Hui, Jennie; Hunter, Michael L; Imboden, Medea; Jameson, Karen A; Kerr, Shona M; Kolcic, Ivana; Kronenberg, Florian; Liu, Jason Z; Marchini, Jonathan; McKeever, Tricia; Morris, Andrew D; Olin, Anna-Carin; Porteous, David J; Postma, Dirkje S; Rich, Stephen S; Ring, Susan M; Rivadeneira, Fernando; Rochat, Thierry; Sayer, Avan Aihie; Sayers, Ian; Sly, Peter D; Smith, George Davey; Sood, Akshay; Starr, John M; Uitterlinden, André G; Vonk, Judith M; Wannamethee, S Goya; Whincup, Peter H; Wijmenga, Cisca; Williams, O Dale; Wong, Andrew; Mangino, Massimo; Marciante, Kristin D; McArdle, Wendy L; Meibohm, Bernd; Morrison, Alanna C; North, Kari E; Omenaas, Ernst; Palmer, Lyle J; Pietiläinen, Kirsi H; Pin, Isabelle; Polašek, Ozren; Pouta, Anneli; Psaty, Bruce M; Hartikainen, Anna-Liisa; Rantanen, Taina; Ripatti, Samuli; Rotter, Jerome I; Rudan, Igor; Rudnicka, Alicja R; Schulz, Holger; Shin, So-Youn; Spector, Tim D; Surakka, Ida; Vitart, Veronique; Völzke, Henry; Wareham, Nicholas J; Warrington, Nicole M; Wichmann, H-Erich; Wild, Sarah H; Wilk, Jemma B; Wjst, Matthias; Wright, Alan F; Zgaga, Lina; Zemunik, Tatijana; Pennell, Craig E; Nyberg, Fredrik; Kuh, Diana; Holloway, John W; Boezen, H Marike; Lawlor, Debbie A; Morris, Richard W; Probst-Hensch, Nicole; Kaprio, Jaakko; Wilson, James F; Hayward, Caroline; Kähönen, Mika; Heinrich, Joachim; Musk, Arthur W; Jarvis, Deborah L; Gläser, Sven; Järvelin, Marjo-Riitta; Stricker, Bruno H Ch; Elliott, Paul; O’Connor, George T; Strachan, David P; London, Stephanie J; Hall, Ian P; Gudnason, Vilmundur; Tobin, Martin D

    2011-01-01

    Pulmonary function measures reflect respiratory health and predict mortality, and are used in the diagnosis of chronic obstructive pulmonary disease (COPD). We tested genome-wide association with the forced expiratory volume in 1 second (FEV1) and the ratio of FEV1 to forced vital capacity (FVC) in 48,201 individuals of European ancestry, with follow-up of top associations in up to an additional 46,411 individuals. We identified new regions showing association (combined P<5×10−8) with pulmonary function, in or near MFAP2, TGFB2, HDAC4, RARB, MECOM (EVI1), SPATA9, ARMC2, NCR3, ZKSCAN3, CDC123, C10orf11, LRP1, CCDC38, MMP15, CFDP1, and KCNE2. Identification of these 16 new loci may provide insight into the molecular mechanisms regulating pulmonary function and into molecular targets for future therapy to alleviate reduced lung function. PMID:21946350

  12. RNA Interference for Functional Genomics and Improvement of Cotton (Gossypium sp.).

    PubMed

    Abdurakhmonov, Ibrokhim Y; Ayubov, Mirzakamol S; Ubaydullaeva, Khurshida A; Buriev, Zabardast T; Shermatov, Shukhrat E; Ruziboev, Haydarali S; Shapulatov, Umid M; Saha, Sukumar; Ulloa, Mauricio; Yu, John Z; Percy, Richard G; Devor, Eric J; Sharma, Govind C; Sripathi, Venkateswara R; Kumpatla, Siva P; van der Krol, Alexander; Kater, Hake D; Khamidov, Khakimdjan; Salikhov, Shavkat I; Jenkins, Johnie N; Abdukarimov, Abdusattor; Pepper, Alan E

    2016-01-01

    RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium sp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function and biological roles of many key cotton genes involved in fiber development, fertility and somatic embryogenesis, resistance to important biotic and abiotic stresses, and oil and seed quality improvements as well as the key agronomic traits including yield and maturity. Here, we have comparatively reviewed seminal research efforts in previously used antisense approaches and currently applied breakthrough RNAi studies in cotton, analyzing developed RNAi methodologies, achievements, limitations, and future needs in functional characterizations of cotton genes. We also highlighted needed efforts in the development of RNAi-based cotton cultivars, and their safety and risk assessment, small and large-scale field trials, and commercialization.

  13. Landscape genomics in Atlantic salmon (Salmo salar): searching for gene-environment interactions driving local adaptation.

    PubMed

    Vincent, Bourret; Dionne, Mélanie; Kent, Matthew P; Lien, Sigbjørn; Bernatchez, Louis

    2013-12-01

    A growing number of studies are examining the factors driving historical and contemporary evolution in wild populations. By combining surveys of genomic variation with a comprehensive assessment of environmental parameters, such studies can increase our understanding of the genomic and geographical extent of local adaptation in wild populations. We used a large-scale landscape genomics approach to examine adaptive and neutral differentiation across 54 North American populations of Atlantic salmon representing seven previously defined genetically distinct regional groups. Over 5500 genome-wide single nucleotide polymorphisms were genotyped in 641 individuals and 28 bulk assays of 25 pooled individuals each. Genome scans, linkage map, and 49 environmental variables were combined to conduct an innovative landscape genomic analysis. Our results provide valuable insight into the links between environmental variation and both neutral and potentially adaptive genetic divergence. In particular, we identified markers potentially under divergent selection, as well as associated selective environmental factors and biological functions with the observed adaptive divergence. Multivariate landscape genetic analysis revealed strong associations of both genetic and environmental structures. We found an enrichment of growth-related functions among outlier markers. Climate (temperature-precipitation) and geological characteristics were significantly associated with both potentially adaptive and neutral genetic divergence and should be considered as candidate loci involved in adaptation at the regional scale in Atlantic salmon. Hence, this study significantly contributes to the improvement of tools used in modern conservation and management schemes of Atlantic salmon wild populations. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  14. Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots

    USDA-ARS?s Scientific Manuscript database

    Transcription initiation, essential to gene expression regulation, involves recruitment of basal transcription factors to the core promoter elements (CPEs). The distribution of currently known CPEs across plant genomes is largely unknown. This is the first large scale genome-wide report on the compu...

  15. Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses.

    PubMed

    Muthamilarasan, Mehanathan; Prasad, Manoj

    2015-01-01

    Recent advances in Setaria genomics appear promising for genetic improvement of cereals and biofuel crops towards providing multiple securities to the steadily increasing global population. The prominent attributes of foxtail millet (Setaria italica, cultivated) and green foxtail (S. viridis, wild) including small genome size, short life-cycle, in-breeding nature, genetic close-relatedness to several cereals, millets and bioenergy grasses, and potential abiotic stress tolerance have accentuated these two Setaria species as novel model system for studying C4 photosynthesis, stress biology and biofuel traits. Considering this, studies have been performed on structural and functional genomics of these plants to develop genetic and genomic resources, and to delineate the physiology and molecular biology of stress tolerance, for the improvement of millets, cereals and bioenergy grasses. The release of foxtail millet genome sequence has provided a new dimension to Setaria genomics, resulting in large-scale development of genetic and genomic tools, construction of informative databases, and genome-wide association and functional genomic studies. In this context, this review discusses the advancements made in Setaria genomics, which have generated a considerable knowledge that could be used for the improvement of millets, cereals and biofuel crops. Further, this review also shows the nutritional potential of foxtail millet in providing health benefits to global population and provides a preliminary information on introgressing the nutritional properties in graminaceous species through molecular breeding and transgene-based approaches.

  16. Age distribution of human gene families shows significant roles of both large- and small-scale duplications in vertebrate evolution.

    PubMed

    Gu, Xun; Wang, Yufeng; Gu, Jianying

    2002-06-01

    The classical (two-round) hypothesis of vertebrate genome duplication proposes two successive whole-genome duplication(s) (polyploidizations) predating the origin of fishes, a view now being seriously challenged. As the debate largely concerns the relative merits of the 'big-bang mode' theory (large-scale duplication) and the 'continuous mode' theory (constant creation by small-scale duplications), we tested whether a significant proportion of paralogous genes in the contemporary human genome was indeed generated in the early stage of vertebrate evolution. After an extensive search of major databases, we dated 1,739 gene duplication events from the phylogenetic analysis of 749 vertebrate gene families. We found a pattern characterized by two waves (I, II) and an ancient component. Wave I represents a recent gene family expansion by tandem or segmental duplications, whereas wave II, a rapid paralogous gene increase in the early stage of vertebrate evolution, supports the idea of genome duplication(s) (the big-bang mode). Further analysis indicated that large- and small-scale gene duplications both make a significant contribution during the early stage of vertebrate evolution to build the current hierarchy of the human proteome.

  17. Systematic Phenotyping of a Large-Scale Candida glabrata Deletion Collection Reveals Novel Antifungal Tolerance Genes

    PubMed Central

    Hiller, Ekkehard; Istel, Fabian; Tscherner, Michael; Brunke, Sascha; Ames, Lauren; Firon, Arnaud; Green, Brian; Cabral, Vitor; Marcet-Houben, Marina; Jacobsen, Ilse D.; Quintin, Jessica; Seider, Katja; Frohner, Ingrid; Glaser, Walter; Jungwirth, Helmut; Bachellier-Bassi, Sophie; Chauvel, Murielle; Zeidler, Ute; Ferrandon, Dominique; Gabaldón, Toni; Hube, Bernhard; d'Enfert, Christophe; Rupp, Steffen; Cormack, Brendan; Haynes, Ken; Kuchler, Karl

    2014-01-01

    The opportunistic fungal pathogen Candida glabrata is a frequent cause of candidiasis, causing infections ranging from superficial to life-threatening disseminated disease. The inherent tolerance of C. glabrata to azole drugs makes this pathogen a serious clinical threat. To identify novel genes implicated in antifungal drug tolerance, we have constructed a large-scale C. glabrata deletion library consisting of 619 unique, individually bar-coded mutant strains, each lacking one specific gene, all together representing almost 12% of the genome. Functional analysis of this library in a series of phenotypic and fitness assays identified numerous genes required for growth of C. glabrata under normal or specific stress conditions, as well as a number of novel genes involved in tolerance to clinically important antifungal drugs such as azoles and echinocandins. We identified 38 deletion strains displaying strongly increased susceptibility to caspofungin, 28 of which encoding proteins that have not previously been linked to echinocandin tolerance. Our results demonstrate the potential of the C. glabrata mutant collection as a valuable resource in functional genomics studies of this important fungal pathogen of humans, and to facilitate the identification of putative novel antifungal drug target and virulence genes. PMID:24945925

  18. CanvasDB: a local database infrastructure for analysis of targeted- and whole genome re-sequencing projects

    PubMed Central

    Ameur, Adam; Bunikis, Ignas; Enroth, Stefan; Gyllensten, Ulf

    2014-01-01

    CanvasDB is an infrastructure for management and analysis of genetic variants from massively parallel sequencing (MPS) projects. The system stores SNP and indel calls in a local database, designed to handle very large datasets, to allow for rapid analysis using simple commands in R. Functional annotations are included in the system, making it suitable for direct identification of disease-causing mutations in human exome- (WES) or whole-genome sequencing (WGS) projects. The system has a built-in filtering function implemented to simultaneously take into account variant calls from all individual samples. This enables advanced comparative analysis of variant distribution between groups of samples, including detection of candidate causative mutations within family structures and genome-wide association by sequencing. In most cases, these analyses are executed within just a matter of seconds, even when there are several hundreds of samples and millions of variants in the database. We demonstrate the scalability of canvasDB by importing the individual variant calls from all 1092 individuals present in the 1000 Genomes Project into the system, over 4.4 billion SNPs and indels in total. Our results show that canvasDB makes it possible to perform advanced analyses of large-scale WGS projects on a local server. Database URL: https://github.com/UppsalaGenomeCenter/CanvasDB PMID:25281234

  19. CanvasDB: a local database infrastructure for analysis of targeted- and whole genome re-sequencing projects.

    PubMed

    Ameur, Adam; Bunikis, Ignas; Enroth, Stefan; Gyllensten, Ulf

    2014-01-01

    CanvasDB is an infrastructure for management and analysis of genetic variants from massively parallel sequencing (MPS) projects. The system stores SNP and indel calls in a local database, designed to handle very large datasets, to allow for rapid analysis using simple commands in R. Functional annotations are included in the system, making it suitable for direct identification of disease-causing mutations in human exome- (WES) or whole-genome sequencing (WGS) projects. The system has a built-in filtering function implemented to simultaneously take into account variant calls from all individual samples. This enables advanced comparative analysis of variant distribution between groups of samples, including detection of candidate causative mutations within family structures and genome-wide association by sequencing. In most cases, these analyses are executed within just a matter of seconds, even when there are several hundreds of samples and millions of variants in the database. We demonstrate the scalability of canvasDB by importing the individual variant calls from all 1092 individuals present in the 1000 Genomes Project into the system, over 4.4 billion SNPs and indels in total. Our results show that canvasDB makes it possible to perform advanced analyses of large-scale WGS projects on a local server. Database URL: https://github.com/UppsalaGenomeCenter/CanvasDB. © The Author(s) 2014. Published by Oxford University Press.

  20. An integrated approach to reconstructing genome-scale transcriptional regulatory networks

    DOE PAGES

    Imam, Saheed; Noguera, Daniel R.; Donohue, Timothy J.; ...

    2015-02-27

    Transcriptional regulatory networks (TRNs) program cells to dynamically alter their gene expression in response to changing internal or environmental conditions. In this study, we develop a novel workflow for generating large-scale TRN models that integrates comparative genomics data, global gene expression analyses, and intrinsic properties of transcription factors (TFs). An assessment of this workflow using benchmark datasets for the well-studied γ-proteobacterium Escherichia coli showed that it outperforms expression-based inference approaches, having a significantly larger area under the precision-recall curve. Further analysis indicated that this integrated workflow captures different aspects of the E. coli TRN than expression-based approaches, potentially making themmore » highly complementary. We leveraged this new workflow and observations to build a large-scale TRN model for the α-Proteobacterium Rhodobacter sphaeroides that comprises 120 gene clusters, 1211 genes (including 93 TFs), 1858 predicted protein-DNA interactions and 76 DNA binding motifs. We found that ~67% of the predicted gene clusters in this TRN are enriched for functions ranging from photosynthesis or central carbon metabolism to environmental stress responses. We also found that members of many of the predicted gene clusters were consistent with prior knowledge in R. sphaeroides and/or other bacteria. Experimental validation of predictions from this R. sphaeroides TRN model showed that high precision and recall was also obtained for TFs involved in photosynthesis (PpsR), carbon metabolism (RSP_0489) and iron homeostasis (RSP_3341). In addition, this integrative approach enabled generation of TRNs with increased information content relative to R. sphaeroides TRN models built via other approaches. We also show how this approach can be used to simultaneously produce TRN models for each related organism used in the comparative genomics analysis. Our results highlight the advantages of integrating comparative genomics of closely related organisms with gene expression data to assemble large-scale TRN models with high-quality predictions.« less

  1. The Use of Weighted Graphs for Large-Scale Genome Analysis

    PubMed Central

    Zhou, Fang; Toivonen, Hannu; King, Ross D.

    2014-01-01

    There is an acute need for better tools to extract knowledge from the growing flood of sequence data. For example, thousands of complete genomes have been sequenced, and their metabolic networks inferred. Such data should enable a better understanding of evolution. However, most existing network analysis methods are based on pair-wise comparisons, and these do not scale to thousands of genomes. Here we propose the use of weighted graphs as a data structure to enable large-scale phylogenetic analysis of networks. We have developed three types of weighted graph for enzymes: taxonomic (these summarize phylogenetic importance), isoenzymatic (these summarize enzymatic variety/redundancy), and sequence-similarity (these summarize sequence conservation); and we applied these types of weighted graph to survey prokaryotic metabolism. To demonstrate the utility of this approach we have compared and contrasted the large-scale evolution of metabolism in Archaea and Eubacteria. Our results provide evidence for limits to the contingency of evolution. PMID:24619061

  2. [Genome editing of industrial microorganism].

    PubMed

    Zhu, Linjiang; Li, Qi

    2015-03-01

    Genome editing is defined as highly-effective and precise modification of cellular genome in a large scale. In recent years, such genome-editing methods have been rapidly developed in the field of industrial strain improvement. The quickly-updating methods thoroughly change the old mode of inefficient genetic modification, which is "one modification, one selection marker, and one target site". Highly-effective modification mode in genome editing have been developed including simultaneous modification of multiplex genes, highly-effective insertion, replacement, and deletion of target genes in the genome scale, cut-paste of a large DNA fragment. These new tools for microbial genome editing will certainly be applied widely, and increase the efficiency of industrial strain improvement, and promote the revolution of traditional fermentation industry and rapid development of novel industrial biotechnology like production of biofuel and biomaterial. The technological principle of these genome-editing methods and their applications were summarized in this review, which can benefit engineering and construction of industrial microorganism.

  3. Global Organization of a Positive-strand RNA Virus Genome

    PubMed Central

    Wu, Baodong; Grigull, Jörg; Ore, Moriam O.; Morin, Sylvie; White, K. Andrew

    2013-01-01

    The genomes of plus-strand RNA viruses contain many regulatory sequences and structures that direct different viral processes. The traditional view of these RNA elements are as local structures present in non-coding regions. However, this view is changing due to the discovery of regulatory elements in coding regions and functional long-range intra-genomic base pairing interactions. The ∼4.8 kb long RNA genome of the tombusvirus tomato bushy stunt virus (TBSV) contains these types of structural features, including six different functional long-distance interactions. We hypothesized that to achieve these multiple interactions this viral genome must utilize a large-scale organizational strategy and, accordingly, we sought to assess the global conformation of the entire TBSV genome. Atomic force micrographs of the genome indicated a mostly condensed structure composed of interconnected protrusions extending from a central hub. This configuration was consistent with the genomic secondary structure model generated using high-throughput selective 2′-hydroxyl acylation analysed by primer extension (i.e. SHAPE), which predicted different sized RNA domains originating from a central region. Known RNA elements were identified in both domain and inter-domain regions, and novel structural features were predicted and functionally confirmed. Interestingly, only two of the six long-range interactions known to form were present in the structural model. However, for those interactions that did not form, complementary partner sequences were positioned relatively close to each other in the structure, suggesting that the secondary structure level of viral genome structure could provide a basic scaffold for the formation of different long-range interactions. The higher-order structural model for the TBSV RNA genome provides a snapshot of the complex framework that allows multiple functional components to operate in concert within a confined context. PMID:23717202

  4. Analysis of Aspergillus nidulans metabolism at the genome-scale

    PubMed Central

    David, Helga; Özçelik, İlknur Ş; Hofmann, Gerald; Nielsen, Jens

    2008-01-01

    Background Aspergillus nidulans is a member of a diverse group of filamentous fungi, sharing many of the properties of its close relatives with significance in the fields of medicine, agriculture and industry. Furthermore, A. nidulans has been a classical model organism for studies of development biology and gene regulation, and thus it has become one of the best-characterized filamentous fungi. It was the first Aspergillus species to have its genome sequenced, and automated gene prediction tools predicted 9,451 open reading frames (ORFs) in the genome, of which less than 10% were assigned a function. Results In this work, we have manually assigned functions to 472 orphan genes in the metabolism of A. nidulans, by using a pathway-driven approach and by employing comparative genomics tools based on sequence similarity. The central metabolism of A. nidulans, as well as biosynthetic pathways of relevant secondary metabolites, was reconstructed based on detailed metabolic reconstructions available for A. niger and Saccharomyces cerevisiae, and information on the genetics, biochemistry and physiology of A. nidulans. Thereby, it was possible to identify metabolic functions without a gene associated, and to look for candidate ORFs in the genome of A. nidulans by comparing its sequence to sequences of well-characterized genes in other species encoding the function of interest. A classification system, based on defined criteria, was developed for evaluating and selecting the ORFs among the candidates, in an objective and systematic manner. The functional assignments served as a basis to develop a mathematical model, linking 666 genes (both previously and newly annotated) to metabolic roles. The model was used to simulate metabolic behavior and additionally to integrate, analyze and interpret large-scale gene expression data concerning a study on glucose repression, thereby providing a means of upgrading the information content of experimental data and getting further insight into this phenomenon in A. nidulans. Conclusion We demonstrate how pathway modeling of A. nidulans can be used as an approach to improve the functional annotation of the genome of this organism. Furthermore we show how the metabolic model establishes functional links between genes, enabling the upgrade of the information content of transcriptome data. PMID:18405346

  5. Large scale genomic reorganization of topological domains at the HoxD locus.

    PubMed

    Fabre, Pierre J; Leleu, Marion; Mormann, Benjamin H; Lopez-Delisle, Lucille; Noordermeer, Daan; Beccari, Leonardo; Duboule, Denis

    2017-08-07

    The transcriptional activation of HoxD genes during mammalian limb development involves dynamic interactions with two topologically associating domains (TADs) flanking the HoxD cluster. In particular, the activation of the most posterior HoxD genes in developing digits is controlled by regulatory elements located in the centromeric TAD (C-DOM) through long-range contacts. To assess the structure-function relationships underlying such interactions, we measured compaction levels and TAD discreteness using a combination of chromosome conformation capture (4C-seq) and DNA FISH. We assessed the robustness of the TAD architecture by using a series of genomic deletions and inversions that impact the integrity of this chromatin domain and that remodel long-range contacts. We report multi-partite associations between HoxD genes and up to three enhancers. We find that the loss of native chromatin topology leads to the remodeling of TAD structure following distinct parameters. Our results reveal that the recomposition of TAD architectures after large genomic re-arrangements is dependent on a boundary-selection mechanism in which CTCF mediates the gating of long-range contacts in combination with genomic distance and sequence specificity. Accordingly, the building of a recomposed TAD at this locus depends on distinct functional and constitutive parameters.

  6. Microarray Data Processing Techniques for Genome-Scale Network Inference from Large Public Repositories.

    PubMed

    Chockalingam, Sriram; Aluru, Maneesha; Aluru, Srinivas

    2016-09-19

    Pre-processing of microarray data is a well-studied problem. Furthermore, all popular platforms come with their own recommended best practices for differential analysis of genes. However, for genome-scale network inference using microarray data collected from large public repositories, these methods filter out a considerable number of genes. This is primarily due to the effects of aggregating a diverse array of experiments with different technical and biological scenarios. Here we introduce a pre-processing pipeline suitable for inferring genome-scale gene networks from large microarray datasets. We show that partitioning of the available microarray datasets according to biological relevance into tissue- and process-specific categories significantly extends the limits of downstream network construction. We demonstrate the effectiveness of our pre-processing pipeline by inferring genome-scale networks for the model plant Arabidopsis thaliana using two different construction methods and a collection of 11,760 Affymetrix ATH1 microarray chips. Our pre-processing pipeline and the datasets used in this paper are made available at http://alurulab.cc.gatech.edu/microarray-pp.

  7. Human genetics and genomics a decade after the release of the draft sequence of the human genome.

    PubMed

    Naidoo, Nasheen; Pawitan, Yudi; Soong, Richie; Cooper, David N; Ku, Chee-Seng

    2011-10-01

    Substantial progress has been made in human genetics and genomics research over the past ten years since the publication of the draft sequence of the human genome in 2001. Findings emanating directly from the Human Genome Project, together with those from follow-on studies, have had an enormous impact on our understanding of the architecture and function of the human genome. Major developments have been made in cataloguing genetic variation, the International HapMap Project, and with respect to advances in genotyping technologies. These developments are vital for the emergence of genome-wide association studies in the investigation of complex diseases and traits. In parallel, the advent of high-throughput sequencing technologies has ushered in the 'personal genome sequencing' era for both normal and cancer genomes, and made possible large-scale genome sequencing studies such as the 1000 Genomes Project and the International Cancer Genome Consortium. The high-throughput sequencing and sequence-capture technologies are also providing new opportunities to study Mendelian disorders through exome sequencing and whole-genome sequencing. This paper reviews these major developments in human genetics and genomics over the past decade.

  8. Human genetics and genomics a decade after the release of the draft sequence of the human genome

    PubMed Central

    2011-01-01

    Substantial progress has been made in human genetics and genomics research over the past ten years since the publication of the draft sequence of the human genome in 2001. Findings emanating directly from the Human Genome Project, together with those from follow-on studies, have had an enormous impact on our understanding of the architecture and function of the human genome. Major developments have been made in cataloguing genetic variation, the International HapMap Project, and with respect to advances in genotyping technologies. These developments are vital for the emergence of genome-wide association studies in the investigation of complex diseases and traits. In parallel, the advent of high-throughput sequencing technologies has ushered in the 'personal genome sequencing' era for both normal and cancer genomes, and made possible large-scale genome sequencing studies such as the 1000 Genomes Project and the International Cancer Genome Consortium. The high-throughput sequencing and sequence-capture technologies are also providing new opportunities to study Mendelian disorders through exome sequencing and whole-genome sequencing. This paper reviews these major developments in human genetics and genomics over the past decade. PMID:22155605

  9. Toward systems metabolic engineering of Aspergillus and Pichia species for the production of chemicals and biofuels.

    PubMed

    Caspeta, Luis; Nielsen, Jens

    2013-05-01

    Recently genome sequence data have become available for Aspergillus and Pichia species of industrial interest. This has stimulated the use of systems biology approaches for large-scale analysis of the molecular and metabolic responses of Aspergillus and Pichia under defined conditions, which has resulted in much new biological information. Case-specific contextualization of this information has been performed using comparative and functional genomic tools. Genomics data are also the basis for constructing genome-scale metabolic models, and these models have helped in the contextualization of knowledge on the fundamental biology of Aspergillus and Pichia species. Furthermore, with the availability of these models, the engineering of Aspergillus and Pichia is moving from traditional approaches, such as random mutagenesis, to a systems metabolic engineering approach. Here we review the recent trends in systems biology of Aspergillus and Pichia species, highlighting the relevance of these developments for systems metabolic engineering of these organisms for the production of hydrolytic enzymes, biofuels and chemicals from biomass. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. CRISPR-Cas9: from Genome Editing to Cancer Research

    PubMed Central

    Chen, Si; Sun, Heng; Miao, Kai; Deng, Chu-Xia

    2016-01-01

    Cancer development is a multistep process triggered by innate and acquired mutations, which cause the functional abnormality and determine the initiation and progression of tumorigenesis. Gene editing is a widely used engineering tool for generating mutations that enhance tumorigenesis. The recent developed clustered regularly interspaced short palindromic repeats-CRISPR-associated 9 (CRISPR-Cas9) system renews the genome editing approach into a more convenient and efficient way. By rapidly introducing genetic modifications in cell lines, organs and animals, CRISPR-Cas9 system extends the gene editing into whole genome screening, both in loss-of-function and gain-of-function manners. Meanwhile, the system accelerates the establishment of animal cancer models, promoting in vivo studies for cancer research. Furthermore, CRISPR-Cas9 system is modified into diverse innovative tools for observing the dynamic bioprocesses in cancer studies, such as image tracing for targeted DNA, regulation of transcription activation or repression. Here, we view recent technical advances in the application of CRISPR-Cas9 system in cancer genetics, large-scale cancer driver gene hunting, animal cancer modeling and functional studies. PMID:27994508

  11. A Large-Scale Comparative Metagenomic Study Reveals the Functional Interactions in Six Bloom-Forming Microcystis-Epibiont Communities

    PubMed Central

    Li, Qi; Lin, Feibi; Yang, Chen; Wang, Juanping; Lin, Yan; Shen, Mengyuan; Park, Min S.; Li, Tao; Zhao, Jindong

    2018-01-01

    Cyanobacterial blooms are worldwide issues of societal concern and scientific interest. Lake Taihu and Lake Dianchi, two of the largest lakes in China, have been suffering from annual Microcystis-based blooms over the past two decades. These two eutrophic lakes differ in both nutrient load and environmental parameters, where Microcystis microbiota consisting of different Microcystis morphospecies and associated bacteria (epibionts) have dominated. We conducted a comprehensive metagenomic study that analyzed species diversity, community structure, functional components, metabolic pathways and networks to investigate functional interactions among the members of six Microcystis-epibiont communities in these two lakes. Our integrated metagenomic pipeline consisted of efficient assembly, binning, annotation, and quality assurance methods that ensured high-quality genome reconstruction. This study provides a total of 68 reconstructed genomes including six complete Microcystis genomes and 28 high quality bacterial genomes of epibionts belonging to 14 distinct taxa. This metagenomic dataset constitutes the largest reference genome catalog available for genome-centric studies of the Microcystis microbiome. Epibiont community composition appears to be dynamic rather than fixed, and the functional profiles of communities were related to the environment of origin. This study demonstrates mutualistic interactions between Microcystis and epibionts at genetic and metabolic levels. Metabolic pathway reconstruction provided evidence for functional complementation in nitrogen and sulfur cycles, fatty acid catabolism, vitamin synthesis, and aromatic compound degradation among community members. Thus, bacterial social interactions within Microcystis-epibiont communities not only shape species composition, but also stabilize the communities functional profiles. These interactions appear to play an important role in environmental adaptation of Microcystis colonies. PMID:29731741

  12. Whole-Genome Duplication and the Functional Diversification of Teleost Fish Hemoglobins

    PubMed Central

    Opazo, Juan C.; Butts, G. Tyler; Nery, Mariana F.; Storz, Jay F.; Hoffmann, Federico G.

    2013-01-01

    Subsequent to the two rounds of whole-genome duplication that occurred in the common ancestor of vertebrates, a third genome duplication occurred in the stem lineage of teleost fishes. This teleost-specific genome duplication (TGD) is thought to have provided genetic raw materials for the physiological, morphological, and behavioral diversification of this highly speciose group. The extreme physiological versatility of teleost fish is manifest in their diversity of blood–gas transport traits, which reflects the myriad solutions that have evolved to maintain tissue O2 delivery in the face of changing metabolic demands and environmental O2 availability during different ontogenetic stages. During the course of development, regulatory changes in blood–O2 transport are mediated by the expression of multiple, functionally distinct hemoglobin (Hb) isoforms that meet the particular O2-transport challenges encountered by the developing embryo or fetus (in viviparous or oviparous species) and in free-swimming larvae and adults. The main objective of the present study was to assess the relative contributions of whole-genome duplication, large-scale segmental duplication, and small-scale gene duplication in producing the extraordinary functional diversity of teleost Hbs. To accomplish this, we integrated phylogenetic reconstructions with analyses of conserved synteny to characterize the genomic organization and evolutionary history of the globin gene clusters of teleosts. These results were then integrated with available experimental data on functional properties and developmental patterns of stage-specific gene expression. Our results indicate that multiple α- and β-globin genes were present in the common ancestor of gars (order Lepisoteiformes) and teleosts. The comparative genomic analysis revealed that teleosts possess a dual set of TGD-derived globin gene clusters, each of which has undergone lineage-specific changes in gene content via repeated duplication and deletion events. Phylogenetic reconstructions revealed that paralogous genes convergently evolved similar functional properties in different teleost lineages. Consistent with other recent studies of globin gene family evolution in vertebrates, our results revealed evidence for repeated evolutionary transitions in the developmental regulation of Hb synthesis. PMID:22949522

  13. Panoptes: web-based exploration of large scale genome variation data.

    PubMed

    Vauterin, Paul; Jeffery, Ben; Miles, Alistair; Amato, Roberto; Hart, Lee; Wright, Ian; Kwiatkowski, Dominic

    2017-10-15

    The size and complexity of modern large-scale genome variation studies demand novel approaches for exploring and sharing the data. In order to unlock the potential of these data for a broad audience of scientists with various areas of expertise, a unified exploration framework is required that is accessible, coherent and user-friendly. Panoptes is an open-source software framework for collaborative visual exploration of large-scale genome variation data and associated metadata in a web browser. It relies on technology choices that allow it to operate in near real-time on very large datasets. It can be used to browse rich, hybrid content in a coherent way, and offers interactive visual analytics approaches to assist the exploration. We illustrate its application using genome variation data of Anopheles gambiae, Plasmodium falciparum and Plasmodium vivax. Freely available at https://github.com/cggh/panoptes, under the GNU Affero General Public License. paul.vauterin@gmail.com. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  14. Systems biology of embryonic development: Prospects for a complete understanding of the Caenorhabditis elegans embryo.

    PubMed

    Murray, John Isaac

    2018-05-01

    The convergence of developmental biology and modern genomics tools brings the potential for a comprehensive understanding of developmental systems. This is especially true for the Caenorhabditis elegans embryo because its small size, invariant developmental lineage, and powerful genetic and genomic tools provide the prospect of a cellular resolution understanding of messenger RNA (mRNA) expression and regulation across the organism. We describe here how a systems biology framework might allow large-scale determination of the embryonic regulatory relationships encoded in the C. elegans genome. This framework consists of two broad steps: (a) defining the "parts list"-all genes expressed in all cells at each time during development and (b) iterative steps of computational modeling and refinement of these models by experimental perturbation. Substantial progress has been made towards defining the parts list through imaging methods such as large-scale green fluorescent protein (GFP) reporter analysis. Imaging results are now being augmented by high-resolution transcriptome methods such as single-cell RNA sequencing, and it is likely the complete expression patterns of all genes across the embryo will be known within the next few years. In contrast, the modeling and perturbation experiments performed so far have focused largely on individual cell types or genes, and improved methods will be needed to expand them to the full genome and organism. This emerging comprehensive map of embryonic expression and regulatory function will provide a powerful resource for developmental biologists, and would also allow scientists to ask questions not accessible without a comprehensive picture. This article is categorized under: Invertebrate Organogenesis > Worms Technologies > Analysis of the Transcriptome Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics. © 2018 Wiley Periodicals, Inc.

  15. TriAnnot: A Versatile and High Performance Pipeline for the Automated Annotation of Plant Genomes

    PubMed Central

    Leroy, Philippe; Guilhot, Nicolas; Sakai, Hiroaki; Bernard, Aurélien; Choulet, Frédéric; Theil, Sébastien; Reboux, Sébastien; Amano, Naoki; Flutre, Timothée; Pelegrin, Céline; Ohyanagi, Hajime; Seidel, Michael; Giacomoni, Franck; Reichstadt, Mathieu; Alaux, Michael; Gicquello, Emmanuelle; Legeai, Fabrice; Cerutti, Lorenzo; Numa, Hisataka; Tanaka, Tsuyoshi; Mayer, Klaus; Itoh, Takeshi; Quesneville, Hadi; Feuillet, Catherine

    2012-01-01

    In support of the international effort to obtain a reference sequence of the bread wheat genome and to provide plant communities dealing with large and complex genomes with a versatile, easy-to-use online automated tool for annotation, we have developed the TriAnnot pipeline. Its modular architecture allows for the annotation and masking of transposable elements, the structural, and functional annotation of protein-coding genes with an evidence-based quality indexing, and the identification of conserved non-coding sequences and molecular markers. The TriAnnot pipeline is parallelized on a 712 CPU computing cluster that can run a 1-Gb sequence annotation in less than 5 days. It is accessible through a web interface for small scale analyses or through a server for large scale annotations. The performance of TriAnnot was evaluated in terms of sensitivity, specificity, and general fitness using curated reference sequence sets from rice and wheat. In less than 8 h, TriAnnot was able to predict more than 83% of the 3,748 CDS from rice chromosome 1 with a fitness of 67.4%. On a set of 12 reference Mb-sized contigs from wheat chromosome 3B, TriAnnot predicted and annotated 93.3% of the genes among which 54% were perfectly identified in accordance with the reference annotation. It also allowed the curation of 12 genes based on new biological evidences, increasing the percentage of perfect gene prediction to 63%. TriAnnot systematically showed a higher fitness than other annotation pipelines that are not improved for wheat. As it is easily adaptable to the annotation of other plant genomes, TriAnnot should become a useful resource for the annotation of large and complex genomes in the future. PMID:22645565

  16. Genomic analysis of expressed sequence tags in American black bear Ursus americanus

    PubMed Central

    2010-01-01

    Background Species of the bear family (Ursidae) are important organisms for research in molecular evolution, comparative physiology and conservation biology, but relatively little genetic sequence information is available for this group. Here we report the development and analyses of the first large scale Expressed Sequence Tag (EST) resource for the American black bear (Ursus americanus). Results Comprehensive analyses of molecular functions, alternative splicing, and tissue-specific expression of 38,757 black bear EST sequences were conducted using the dog genome as a reference. We identified 18 genes, involved in functions such as lipid catabolism, cell cycle, and vesicle-mediated transport, that are showing rapid evolution in the bear lineage Three genes, Phospholamban (PLN), cysteine glycine-rich protein 3 (CSRP3) and Troponin I type 3 (TNNI3), are related to heart contraction, and defects in these genes in humans lead to heart disease. Two genes, biphenyl hydrolase-like (BPHL) and CSRP3, contain positively selected sites in bear. Global analysis of evolution rates of hibernation-related genes in bear showed that they are largely conserved and slowly evolving genes, rather than novel and fast-evolving genes. Conclusion We provide a genomic resource for an important mammalian organism and our study sheds new light on the possible functions and evolution of bear genes. PMID:20338065

  17. Genomic analysis of expressed sequence tags in American black bear Ursus americanus.

    PubMed

    Zhao, Sen; Shao, Chunxuan; Goropashnaya, Anna V; Stewart, Nathan C; Xu, Yichi; Tøien, Øivind; Barnes, Brian M; Fedorov, Vadim B; Yan, Jun

    2010-03-26

    Species of the bear family (Ursidae) are important organisms for research in molecular evolution, comparative physiology and conservation biology, but relatively little genetic sequence information is available for this group. Here we report the development and analyses of the first large scale Expressed Sequence Tag (EST) resource for the American black bear (Ursus americanus). Comprehensive analyses of molecular functions, alternative splicing, and tissue-specific expression of 38,757 black bear EST sequences were conducted using the dog genome as a reference. We identified 18 genes, involved in functions such as lipid catabolism, cell cycle, and vesicle-mediated transport, that are showing rapid evolution in the bear lineage Three genes, Phospholamban (PLN), cysteine glycine-rich protein 3 (CSRP3) and Troponin I type 3 (TNNI3), are related to heart contraction, and defects in these genes in humans lead to heart disease. Two genes, biphenyl hydrolase-like (BPHL) and CSRP3, contain positively selected sites in bear. Global analysis of evolution rates of hibernation-related genes in bear showed that they are largely conserved and slowly evolving genes, rather than novel and fast-evolving genes. We provide a genomic resource for an important mammalian organism and our study sheds new light on the possible functions and evolution of bear genes.

  18. About TCGA - TCGA

    Cancer.gov

    Find out about The Cancer Genome Atlas (TCGA) is a comprehensive and coordinated effort to accelerate our understanding of the molecular basis of cancer through the application of genome analysis technologies, including large-scale genome sequencing.

  19. InterProScan 5: genome-scale protein function classification

    PubMed Central

    Jones, Philip; Binns, David; Chang, Hsin-Yu; Fraser, Matthew; Li, Weizhong; McAnulla, Craig; McWilliam, Hamish; Maslen, John; Mitchell, Alex; Nuka, Gift; Pesseat, Sebastien; Quinn, Antony F.; Sangrador-Vegas, Amaia; Scheremetjew, Maxim; Yong, Siew-Yit; Lopez, Rodrigo; Hunter, Sarah

    2014-01-01

    Motivation: Robust large-scale sequence analysis is a major challenge in modern genomic science, where biologists are frequently trying to characterize many millions of sequences. Here, we describe a new Java-based architecture for the widely used protein function prediction software package InterProScan. Developments include improvements and additions to the outputs of the software and the complete reimplementation of the software framework, resulting in a flexible and stable system that is able to use both multiprocessor machines and/or conventional clusters to achieve scalable distributed data analysis. InterProScan is freely available for download from the EMBl-EBI FTP site and the open source code is hosted at Google Code. Availability and implementation: InterProScan is distributed via FTP at ftp://ftp.ebi.ac.uk/pub/software/unix/iprscan/5/ and the source code is available from http://code.google.com/p/interproscan/. Contact: http://www.ebi.ac.uk/support or interhelp@ebi.ac.uk or mitchell@ebi.ac.uk PMID:24451626

  20. Big Data Analytics for Genomic Medicine

    PubMed Central

    He, Karen Y.; Ge, Dongliang; He, Max M.

    2017-01-01

    Genomic medicine attempts to build individualized strategies for diagnostic or therapeutic decision-making by utilizing patients’ genomic information. Big Data analytics uncovers hidden patterns, unknown correlations, and other insights through examining large-scale various data sets. While integration and manipulation of diverse genomic data and comprehensive electronic health records (EHRs) on a Big Data infrastructure exhibit challenges, they also provide a feasible opportunity to develop an efficient and effective approach to identify clinically actionable genetic variants for individualized diagnosis and therapy. In this paper, we review the challenges of manipulating large-scale next-generation sequencing (NGS) data and diverse clinical data derived from the EHRs for genomic medicine. We introduce possible solutions for different challenges in manipulating, managing, and analyzing genomic and clinical data to implement genomic medicine. Additionally, we also present a practical Big Data toolset for identifying clinically actionable genetic variants using high-throughput NGS data and EHRs. PMID:28212287

  1. Big Data Analytics for Genomic Medicine.

    PubMed

    He, Karen Y; Ge, Dongliang; He, Max M

    2017-02-15

    Genomic medicine attempts to build individualized strategies for diagnostic or therapeutic decision-making by utilizing patients' genomic information. Big Data analytics uncovers hidden patterns, unknown correlations, and other insights through examining large-scale various data sets. While integration and manipulation of diverse genomic data and comprehensive electronic health records (EHRs) on a Big Data infrastructure exhibit challenges, they also provide a feasible opportunity to develop an efficient and effective approach to identify clinically actionable genetic variants for individualized diagnosis and therapy. In this paper, we review the challenges of manipulating large-scale next-generation sequencing (NGS) data and diverse clinical data derived from the EHRs for genomic medicine. We introduce possible solutions for different challenges in manipulating, managing, and analyzing genomic and clinical data to implement genomic medicine. Additionally, we also present a practical Big Data toolset for identifying clinically actionable genetic variants using high-throughput NGS data and EHRs.

  2. GIGGLE: a search engine for large-scale integrated genome analysis.

    PubMed

    Layer, Ryan M; Pedersen, Brent S; DiSera, Tonya; Marth, Gabor T; Gertz, Jason; Quinlan, Aaron R

    2018-02-01

    GIGGLE is a genomics search engine that identifies and ranks the significance of genomic loci shared between query features and thousands of genome interval files. GIGGLE (https://github.com/ryanlayer/giggle) scales to billions of intervals and is over three orders of magnitude faster than existing methods. Its speed extends the accessibility and utility of resources such as ENCODE, Roadmap Epigenomics, and GTEx by facilitating data integration and hypothesis generation.

  3. GIGGLE: a search engine for large-scale integrated genome analysis

    PubMed Central

    Layer, Ryan M; Pedersen, Brent S; DiSera, Tonya; Marth, Gabor T; Gertz, Jason; Quinlan, Aaron R

    2018-01-01

    GIGGLE is a genomics search engine that identifies and ranks the significance of genomic loci shared between query features and thousands of genome interval files. GIGGLE (https://github.com/ryanlayer/giggle) scales to billions of intervals and is over three orders of magnitude faster than existing methods. Its speed extends the accessibility and utility of resources such as ENCODE, Roadmap Epigenomics, and GTEx by facilitating data integration and hypothesis generation. PMID:29309061

  4. WormBase ParaSite - a comprehensive resource for helminth genomics.

    PubMed

    Howe, Kevin L; Bolt, Bruce J; Shafie, Myriam; Kersey, Paul; Berriman, Matthew

    2017-07-01

    The number of publicly available parasitic worm genome sequences has increased dramatically in the past three years, and research interest in helminth functional genomics is now quickly gathering pace in response to the foundation that has been laid by these collective efforts. A systematic approach to the organisation, curation, analysis and presentation of these data is clearly vital for maximising the utility of these data to researchers. We have developed a portal called WormBase ParaSite (http://parasite.wormbase.org) for interrogating helminth genomes on a large scale. Data from over 100 nematode and platyhelminth species are integrated, adding value by way of systematic and consistent functional annotation (e.g. protein domains and Gene Ontology terms), gene expression analysis (e.g. alignment of life-stage specific transcriptome data sets), and comparative analysis (e.g. orthologues and paralogues). We provide several ways of exploring the data, including genome browsers, genome and gene summary pages, text search, sequence search, a query wizard, bulk downloads, and programmatic interfaces. In this review, we provide an overview of the back-end infrastructure and analysis behind WormBase ParaSite, and the displays and tools available to users for interrogating helminth genomic data. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Rapid diversification of five Oryza AA genomes associated with rice adaptation.

    PubMed

    Zhang, Qun-Jie; Zhu, Ting; Xia, En-Hua; Shi, Chao; Liu, Yun-Long; Zhang, Yun; Liu, Yuan; Jiang, Wen-Kai; Zhao, You-Jie; Mao, Shu-Yan; Zhang, Li-Ping; Huang, Hui; Jiao, Jun-Ying; Xu, Ping-Zhen; Yao, Qiu-Yang; Zeng, Fan-Chun; Yang, Li-Li; Gao, Ju; Tao, Da-Yun; Wang, Yue-Ju; Bennetzen, Jeffrey L; Gao, Li-Zhi

    2014-11-18

    Comparative genomic analyses among closely related species can greatly enhance our understanding of plant gene and genome evolution. We report de novo-assembled AA-genome sequences for Oryza nivara, Oryza glaberrima, Oryza barthii, Oryza glumaepatula, and Oryza meridionalis. Our analyses reveal massive levels of genomic structural variation, including segmental duplication and rapid gene family turnover, with particularly high instability in defense-related genes. We show, on a genomic scale, how lineage-specific expansion or contraction of gene families has led to their morphological and reproductive diversification, thus enlightening the evolutionary process of speciation and adaptation. Despite strong purifying selective pressures on most Oryza genes, we documented a large number of positively selected genes, especially those genes involved in flower development, reproduction, and resistance-related processes. These diversifying genes are expected to have played key roles in adaptations to their ecological niches in Asia, South America, Africa and Australia. Extensive variation in noncoding RNA gene numbers, function enrichment, and rates of sequence divergence might also help account for the different genetic adaptations of these rice species. Collectively, these resources provide new opportunities for evolutionary genomics, numerous insights into recent speciation, a valuable database of functional variation for crop improvement, and tools for efficient conservation of wild rice germplasm.

  6. Rapid diversification of five Oryza AA genomes associated with rice adaptation

    PubMed Central

    Zhang, Qun-Jie; Zhu, Ting; Xia, En-Hua; Shi, Chao; Liu, Yun-Long; Zhang, Yun; Liu, Yuan; Jiang, Wen-Kai; Zhao, You-Jie; Mao, Shu-Yan; Zhang, Li-Ping; Huang, Hui; Jiao, Jun-Ying; Xu, Ping-Zhen; Yao, Qiu-Yang; Zeng, Fan-Chun; Yang, Li-Li; Gao, Ju; Tao, Da-Yun; Wang, Yue-Ju; Bennetzen, Jeffrey L.; Gao, Li-Zhi

    2014-01-01

    Comparative genomic analyses among closely related species can greatly enhance our understanding of plant gene and genome evolution. We report de novo-assembled AA-genome sequences for Oryza nivara, Oryza glaberrima, Oryza barthii, Oryza glumaepatula, and Oryza meridionalis. Our analyses reveal massive levels of genomic structural variation, including segmental duplication and rapid gene family turnover, with particularly high instability in defense-related genes. We show, on a genomic scale, how lineage-specific expansion or contraction of gene families has led to their morphological and reproductive diversification, thus enlightening the evolutionary process of speciation and adaptation. Despite strong purifying selective pressures on most Oryza genes, we documented a large number of positively selected genes, especially those genes involved in flower development, reproduction, and resistance-related processes. These diversifying genes are expected to have played key roles in adaptations to their ecological niches in Asia, South America, Africa and Australia. Extensive variation in noncoding RNA gene numbers, function enrichment, and rates of sequence divergence might also help account for the different genetic adaptations of these rice species. Collectively, these resources provide new opportunities for evolutionary genomics, numerous insights into recent speciation, a valuable database of functional variation for crop improvement, and tools for efficient conservation of wild rice germplasm. PMID:25368197

  7. Chromosomal targeting by CRISPR-Cas systems can contribute to genome plasticity in bacteria

    PubMed Central

    Dy, Ron L; Pitman, Andrew R; Fineran, Peter C

    2013-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR) and their associated (Cas) proteins form adaptive immune systems in bacteria to combat phage and other foreign genetic elements. Typically, short spacer sequences are acquired from the invader DNA and incorporated into CRISPR arrays in the bacterial genome. Small RNAs are generated that contain these spacer sequences and enable sequence-specific destruction of the foreign nucleic acids. Occasionally, spacers are acquired from the chromosome, which instead leads to targeting of the host genome. Chromosomal targeting is highly toxic to the bacterium, providing a strong selective pressure for a variety of evolutionary routes that enable host cell survival. Mutations that inactivate the CRISPR-Cas functionality, such as within the cas genes, CRISPR repeat, protospacer adjacent motifs (PAM), and target sequence, mediate escape from toxicity. This self-targeting might provide some explanation for the incomplete distribution of CRISPR-Cas systems in less than half of sequenced bacterial genomes. More importantly, self-genome targeting can cause large-scale genomic alterations, including remodeling or deletion of pathogenicity islands and other non-mobile chromosomal regions. While control of horizontal gene transfer is perceived as their main function, our recent work illuminates an alternative role of CRISPR-Cas systems in causing host genomic changes and influencing bacterial evolution. PMID:24251073

  8. Genome Calligrapher: A Web Tool for Refactoring Bacterial Genome Sequences for de Novo DNA Synthesis.

    PubMed

    Christen, Matthias; Deutsch, Samuel; Christen, Beat

    2015-08-21

    Recent advances in synthetic biology have resulted in an increasing demand for the de novo synthesis of large-scale DNA constructs. Any process improvement that enables fast and cost-effective streamlining of digitized genetic information into fabricable DNA sequences holds great promise to study, mine, and engineer genomes. Here, we present Genome Calligrapher, a computer-aided design web tool intended for whole genome refactoring of bacterial chromosomes for de novo DNA synthesis. By applying a neutral recoding algorithm, Genome Calligrapher optimizes GC content and removes obstructive DNA features known to interfere with the synthesis of double-stranded DNA and the higher order assembly into large DNA constructs. Subsequent bioinformatics analysis revealed that synthesis constraints are prevalent among bacterial genomes. However, a low level of codon replacement is sufficient for refactoring bacterial genomes into easy-to-synthesize DNA sequences. To test the algorithm, 168 kb of synthetic DNA comprising approximately 20 percent of the synthetic essential genome of the cell-cycle bacterium Caulobacter crescentus was streamlined and then ordered from a commercial supplier of low-cost de novo DNA synthesis. The successful assembly into eight 20 kb segments indicates that Genome Calligrapher algorithm can be efficiently used to refactor difficult-to-synthesize DNA. Genome Calligrapher is broadly applicable to recode biosynthetic pathways, DNA sequences, and whole bacterial genomes, thus offering new opportunities to use synthetic biology tools to explore the functionality of microbial diversity. The Genome Calligrapher web tool can be accessed at https://christenlab.ethz.ch/GenomeCalligrapher  .

  9. The connectivity structure, giant strong component and centrality of metabolic networks.

    PubMed

    Ma, Hong-Wu; Zeng, An-Ping

    2003-07-22

    Structural and functional analysis of genome-based large-scale metabolic networks is important for understanding the design principles and regulation of the metabolism at a system level. The metabolic network is conventionally considered to be highly integrated and very complex. A rational reduction of the metabolic network to its core structure and a deeper understanding of its functional modules are important. In this work, we show that the metabolites in a metabolic network are far from fully connected. A connectivity structure consisting of four major subsets of metabolites and reactions, i.e. a fully connected sub-network, a substrate subset, a product subset and an isolated subset is found to exist in metabolic networks of 65 fully sequenced organisms. The largest fully connected part of a metabolic network, called 'the giant strong component (GSC)', represents the most complicated part and the core of the network and has the feature of scale-free networks. The average path length of the whole network is primarily determined by that of the GSC. For most of the organisms, GSC normally contains less than one-third of the nodes of the network. This connectivity structure is very similar to the 'bow-tie' structure of World Wide Web. Our results indicate that the bow-tie structure may be common for large-scale directed networks. More importantly, the uncovered structure feature makes a structural and functional analysis of large-scale metabolic network more amenable. As shown in this work, comparing the closeness centrality of the nodes in the GSC can identify the most central metabolites of a metabolic network. To quantitatively characterize the overall connection structure of the GSC we introduced the term 'overall closeness centralization index (OCCI)'. OCCI correlates well with the average path length of the GSC and is a useful parameter for a system-level comparison of metabolic networks of different organisms. http://genome.gbf.de/bioinformatics/

  10. Large-Scale Phylogenomics of the Lactobacillus casei Group Highlights Taxonomic Inconsistencies and Reveals Novel Clade-Associated Features

    PubMed Central

    Wuyts, Sander; Wittouck, Stijn; De Boeck, Ilke; Allonsius, Camille N.; Pasolli, Edoardo

    2017-01-01

    ABSTRACT Although the genotypic and phenotypic properties of the Lactobacillus casei group have been studied extensively, the taxonomic structure has been the subject of debate for a long time. Here, we performed a large-scale comparative analysis by using 183 publicly available genomes supplemented with a Lactobacillus strain isolated from the human upper respiratory tract. On the basis of this analysis, we identified inconsistencies in the taxonomy and reclassified all of the genomes according to their most closely related type strains. This led to the identification of a catalase-encoding gene in all 10 L. casei sensu stricto strains, making it the first described catalase-positive species in the Lactobacillus genus. Moreover, we found that 6 of 10 L. casei genomes contained a SecA2/SecY2 gene cluster with two putative glycosylated surface adhesin proteins. Altogether, our results highlight current inconsistencies in the taxonomy of the L. casei group and reveal new clade-associated functional features. IMPORTANCE The closely related species of the Lactobacillus casei group are extensively studied because of their applications in food fermentations and as probiotics. Our results show that many strains in this group are incorrectly classified and that reclassifying them to their most closely related species type strain improves the functional predictive power of their taxonomy. In addition, our findings may spark increased interest in the L. casei species. We find that after reclassification, only 10 genomes remain classified as L. casei. These strains show some interesting properties. First, they all appear to be catalase positive. This suggests that they have increased oxidative stress resistance. Second, we isolated an L. casei strain from the human upper respiratory tract and discovered that it and multiple other L. casei strains harbor one or even two large, glycosylated putative surface adhesins. This might inspire further exploration of this species as a potential probiotic organism. PMID:28845461

  11. Automated multiplex genome-scale engineering in yeast

    PubMed Central

    Si, Tong; Chao, Ran; Min, Yuhao; Wu, Yuying; Ren, Wen; Zhao, Huimin

    2017-01-01

    Genome-scale engineering is indispensable in understanding and engineering microorganisms, but the current tools are mainly limited to bacterial systems. Here we report an automated platform for multiplex genome-scale engineering in Saccharomyces cerevisiae, an important eukaryotic model and widely used microbial cell factory. Standardized genetic parts encoding overexpression and knockdown mutations of >90% yeast genes are created in a single step from a full-length cDNA library. With the aid of CRISPR-Cas, these genetic parts are iteratively integrated into the repetitive genomic sequences in a modular manner using robotic automation. This system allows functional mapping and multiplex optimization on a genome scale for diverse phenotypes including cellulase expression, isobutanol production, glycerol utilization and acetic acid tolerance, and may greatly accelerate future genome-scale engineering endeavours in yeast. PMID:28469255

  12. Automated microscopy for high-content RNAi screening

    PubMed Central

    2010-01-01

    Fluorescence microscopy is one of the most powerful tools to investigate complex cellular processes such as cell division, cell motility, or intracellular trafficking. The availability of RNA interference (RNAi) technology and automated microscopy has opened the possibility to perform cellular imaging in functional genomics and other large-scale applications. Although imaging often dramatically increases the content of a screening assay, it poses new challenges to achieve accurate quantitative annotation and therefore needs to be carefully adjusted to the specific needs of individual screening applications. In this review, we discuss principles of assay design, large-scale RNAi, microscope automation, and computational data analysis. We highlight strategies for imaging-based RNAi screening adapted to different library and assay designs. PMID:20176920

  13. LOLAweb: a containerized web server for interactive genomic locus overlap enrichment analysis.

    PubMed

    Nagraj, V P; Magee, Neal E; Sheffield, Nathan C

    2018-06-06

    The past few years have seen an explosion of interest in understanding the role of regulatory DNA. This interest has driven large-scale production of functional genomics data and analytical methods. One popular analysis is to test for enrichment of overlaps between a query set of genomic regions and a database of region sets. In this way, new genomic data can be easily connected to annotations from external data sources. Here, we present an interactive interface for enrichment analysis of genomic locus overlaps using a web server called LOLAweb. LOLAweb accepts a set of genomic ranges from the user and tests it for enrichment against a database of region sets. LOLAweb renders results in an R Shiny application to provide interactive visualization features, enabling users to filter, sort, and explore enrichment results dynamically. LOLAweb is built and deployed in a Linux container, making it scalable to many concurrent users on our servers and also enabling users to download and run LOLAweb locally.

  14. From genes to genomes: a new paradigm for studying fungal pathogenesis in Magnaporthe oryzae.

    PubMed

    Xu, Jin-Rong; Zhao, Xinhua; Dean, Ralph A

    2007-01-01

    Magnaporthe oryzae is the most destructive fungal pathogen of rice worldwide and because of its amenability to classical and molecular genetic manipulation, availability of a genome sequence, and other resources it has emerged as a leading model system to study host-pathogen interactions. This chapter reviews recent progress toward elucidation of the molecular basis of infection-related morphogenesis, host penetration, invasive growth, and host-pathogen interactions. Related information on genome analysis and genomic studies of plant infection processes is summarized under specific topics where appropriate. Particular emphasis is placed on the role of MAP kinase and cAMP signal transduction pathways and unique features in the genome such as repetitive sequences and expanded gene families. Emerging developments in functional genome analysis through large-scale insertional mutagenesis and gene expression profiling are detailed. The chapter concludes with new prospects in the area of systems biology, such as protein expression profiling, and highlighting remaining crucial information needed to fully appreciate host-pathogen interactions.

  15. Analyses of deep mammalian sequence alignments and constraint predictions for 1% of the human genome

    PubMed Central

    Margulies, Elliott H.; Cooper, Gregory M.; Asimenos, George; Thomas, Daryl J.; Dewey, Colin N.; Siepel, Adam; Birney, Ewan; Keefe, Damian; Schwartz, Ariel S.; Hou, Minmei; Taylor, James; Nikolaev, Sergey; Montoya-Burgos, Juan I.; Löytynoja, Ari; Whelan, Simon; Pardi, Fabio; Massingham, Tim; Brown, James B.; Bickel, Peter; Holmes, Ian; Mullikin, James C.; Ureta-Vidal, Abel; Paten, Benedict; Stone, Eric A.; Rosenbloom, Kate R.; Kent, W. James; Bouffard, Gerard G.; Guan, Xiaobin; Hansen, Nancy F.; Idol, Jacquelyn R.; Maduro, Valerie V.B.; Maskeri, Baishali; McDowell, Jennifer C.; Park, Morgan; Thomas, Pamela J.; Young, Alice C.; Blakesley, Robert W.; Muzny, Donna M.; Sodergren, Erica; Wheeler, David A.; Worley, Kim C.; Jiang, Huaiyang; Weinstock, George M.; Gibbs, Richard A.; Graves, Tina; Fulton, Robert; Mardis, Elaine R.; Wilson, Richard K.; Clamp, Michele; Cuff, James; Gnerre, Sante; Jaffe, David B.; Chang, Jean L.; Lindblad-Toh, Kerstin; Lander, Eric S.; Hinrichs, Angie; Trumbower, Heather; Clawson, Hiram; Zweig, Ann; Kuhn, Robert M.; Barber, Galt; Harte, Rachel; Karolchik, Donna; Field, Matthew A.; Moore, Richard A.; Matthewson, Carrie A.; Schein, Jacqueline E.; Marra, Marco A.; Antonarakis, Stylianos E.; Batzoglou, Serafim; Goldman, Nick; Hardison, Ross; Haussler, David; Miller, Webb; Pachter, Lior; Green, Eric D.; Sidow, Arend

    2007-01-01

    A key component of the ongoing ENCODE project involves rigorous comparative sequence analyses for the initially targeted 1% of the human genome. Here, we present orthologous sequence generation, alignment, and evolutionary constraint analyses of 23 mammalian species for all ENCODE targets. Alignments were generated using four different methods; comparisons of these methods reveal large-scale consistency but substantial differences in terms of small genomic rearrangements, sensitivity (sequence coverage), and specificity (alignment accuracy). We describe the quantitative and qualitative trade-offs concomitant with alignment method choice and the levels of technical error that need to be accounted for in applications that require multisequence alignments. Using the generated alignments, we identified constrained regions using three different methods. While the different constraint-detecting methods are in general agreement, there are important discrepancies relating to both the underlying alignments and the specific algorithms. However, by integrating the results across the alignments and constraint-detecting methods, we produced constraint annotations that were found to be robust based on multiple independent measures. Analyses of these annotations illustrate that most classes of experimentally annotated functional elements are enriched for constrained sequences; however, large portions of each class (with the exception of protein-coding sequences) do not overlap constrained regions. The latter elements might not be under primary sequence constraint, might not be constrained across all mammals, or might have expendable molecular functions. Conversely, 40% of the constrained sequences do not overlap any of the functional elements that have been experimentally identified. Together, these findings demonstrate and quantify how many genomic functional elements await basic molecular characterization. PMID:17567995

  16. Likelihood-based gene annotations for gap filling and quality assessment in genome-scale metabolic models

    DOE PAGES

    Benedict, Matthew N.; Mundy, Michael B.; Henry, Christopher S.; ...

    2014-10-16

    Genome-scale metabolic models provide a powerful means to harness information from genomes to deepen biological insights. With exponentially increasing sequencing capacity, there is an enormous need for automated reconstruction techniques that can provide more accurate models in a short time frame. Current methods for automated metabolic network reconstruction rely on gene and reaction annotations to build draft metabolic networks and algorithms to fill gaps in these networks. However, automated reconstruction is hampered by database inconsistencies, incorrect annotations, and gap filling largely without considering genomic information. Here we develop an approach for applying genomic information to predict alternative functions for genesmore » and estimate their likelihoods from sequence homology. We show that computed likelihood values were significantly higher for annotations found in manually curated metabolic networks than those that were not. We then apply these alternative functional predictions to estimate reaction likelihoods, which are used in a new gap filling approach called likelihood-based gap filling to predict more genomically consistent solutions. To validate the likelihood-based gap filling approach, we applied it to models where essential pathways were removed, finding that likelihood-based gap filling identified more biologically relevant solutions than parsimony-based gap filling approaches. We also demonstrate that models gap filled using likelihood-based gap filling provide greater coverage and genomic consistency with metabolic gene functions compared to parsimony-based approaches. Interestingly, despite these findings, we found that likelihoods did not significantly affect consistency of gap filled models with Biolog and knockout lethality data. This indicates that the phenotype data alone cannot necessarily be used to discriminate between alternative solutions for gap filling and therefore, that the use of other information is necessary to obtain a more accurate network. All described workflows are implemented as part of the DOE Systems Biology Knowledgebase (KBase) and are publicly available via API or command-line web interface.« less

  17. Likelihood-Based Gene Annotations for Gap Filling and Quality Assessment in Genome-Scale Metabolic Models

    PubMed Central

    Benedict, Matthew N.; Mundy, Michael B.; Henry, Christopher S.; Chia, Nicholas; Price, Nathan D.

    2014-01-01

    Genome-scale metabolic models provide a powerful means to harness information from genomes to deepen biological insights. With exponentially increasing sequencing capacity, there is an enormous need for automated reconstruction techniques that can provide more accurate models in a short time frame. Current methods for automated metabolic network reconstruction rely on gene and reaction annotations to build draft metabolic networks and algorithms to fill gaps in these networks. However, automated reconstruction is hampered by database inconsistencies, incorrect annotations, and gap filling largely without considering genomic information. Here we develop an approach for applying genomic information to predict alternative functions for genes and estimate their likelihoods from sequence homology. We show that computed likelihood values were significantly higher for annotations found in manually curated metabolic networks than those that were not. We then apply these alternative functional predictions to estimate reaction likelihoods, which are used in a new gap filling approach called likelihood-based gap filling to predict more genomically consistent solutions. To validate the likelihood-based gap filling approach, we applied it to models where essential pathways were removed, finding that likelihood-based gap filling identified more biologically relevant solutions than parsimony-based gap filling approaches. We also demonstrate that models gap filled using likelihood-based gap filling provide greater coverage and genomic consistency with metabolic gene functions compared to parsimony-based approaches. Interestingly, despite these findings, we found that likelihoods did not significantly affect consistency of gap filled models with Biolog and knockout lethality data. This indicates that the phenotype data alone cannot necessarily be used to discriminate between alternative solutions for gap filling and therefore, that the use of other information is necessary to obtain a more accurate network. All described workflows are implemented as part of the DOE Systems Biology Knowledgebase (KBase) and are publicly available via API or command-line web interface. PMID:25329157

  18. Spatial organization of chromatin domains and compartments in single chromosomes

    NASA Astrophysics Data System (ADS)

    Wang, Siyuan; Su, Jun-Han; Beliveau, Brian; Bintu, Bogdan; Moffitt, Jeffrey; Wu, Chao-Ting; Zhuang, Xiaowei

    The spatial organization of chromatin critically affects genome function. Recent chromosome-conformation-capture studies have revealed topologically associating domains (TADs) as a conserved feature of chromatin organization, but how TADs are spatially organized in individual chromosomes remains unknown. Here, we developed an imaging method for mapping the spatial positions of numerous genomic regions along individual chromosomes and traced the positions of TADs in human interphase autosomes and X chromosomes. We observed that chromosome folding deviates from the ideal fractal-globule model at large length scales and that TADs are largely organized into two compartments spatially arranged in a polarized manner in individual chromosomes. Active and inactive X chromosomes adopt different folding and compartmentalization configurations. These results suggest that the spatial organization of chromatin domains can change in response to regulation.

  19. Genomic structural variation contributes to phenotypic change of industrial bioethanol yeast Saccharomyces cerevisiae.

    PubMed

    Zhang, Ke; Zhang, Li-Jie; Fang, Ya-Hong; Jin, Xin-Na; Qi, Lei; Wu, Xue-Chang; Zheng, Dao-Qiong

    2016-03-01

    Genomic structural variation (GSV) is a ubiquitous phenomenon observed in the genomes of Saccharomyces cerevisiae strains with different genetic backgrounds; however, the physiological and phenotypic effects of GSV are not well understood. Here, we first revealed the genetic characteristics of a widely used industrial S. cerevisiae strain, ZTW1, by whole genome sequencing. ZTW1 was identified as an aneuploidy strain and a large-scale GSV was observed in the ZTW1 genome compared with the genome of a diploid strain YJS329. These GSV events led to copy number variations (CNVs) in many chromosomal segments as well as one whole chromosome in the ZTW1 genome. Changes in the DNA dosage of certain functional genes directly affected their expression levels and the resultant ZTW1 phenotypes. Moreover, CNVs of large chromosomal regions triggered an aneuploidy stress in ZTW1. This stress decreased the proliferation ability and tolerance of ZTW1 to various stresses, while aneuploidy response stress may also provide some benefits to the fermentation performance of the yeast, including increased fermentation rates and decreased byproduct generation. This work reveals genomic characters of the bioethanol S. cerevisiae strain ZTW1 and suggests that GSV is an important kind of mutation that changes the traits of industrial S. cerevisiae strains. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. CNVcaller: highly efficient and widely applicable software for detecting copy number variations in large populations.

    PubMed

    Wang, Xihong; Zheng, Zhuqing; Cai, Yudong; Chen, Ting; Li, Chao; Fu, Weiwei; Jiang, Yu

    2017-12-01

    The increasing amount of sequencing data available for a wide variety of species can be theoretically used for detecting copy number variations (CNVs) at the population level. However, the growing sample sizes and the divergent complexity of nonhuman genomes challenge the efficiency and robustness of current human-oriented CNV detection methods. Here, we present CNVcaller, a read-depth method for discovering CNVs in population sequencing data. The computational speed of CNVcaller was 1-2 orders of magnitude faster than CNVnator and Genome STRiP for complex genomes with thousands of unmapped scaffolds. CNV detection of 232 goats required only 1.4 days on a single compute node. Additionally, the Mendelian consistency of sheep trios indicated that CNVcaller mitigated the influence of high proportions of gaps and misassembled duplications in the nonhuman reference genome assembly. Furthermore, multiple evaluations using real sheep and human data indicated that CNVcaller achieved the best accuracy and sensitivity for detecting duplications. The fast generalized detection algorithms included in CNVcaller overcome prior computational barriers for detecting CNVs in large-scale sequencing data with complex genomic structures. Therefore, CNVcaller promotes population genetic analyses of functional CNVs in more species. © The Authors 2017. Published by Oxford University Press.

  1. CNVcaller: highly efficient and widely applicable software for detecting copy number variations in large populations

    PubMed Central

    Wang, Xihong; Zheng, Zhuqing; Cai, Yudong; Chen, Ting; Li, Chao; Fu, Weiwei

    2017-01-01

    Abstract Background The increasing amount of sequencing data available for a wide variety of species can be theoretically used for detecting copy number variations (CNVs) at the population level. However, the growing sample sizes and the divergent complexity of nonhuman genomes challenge the efficiency and robustness of current human-oriented CNV detection methods. Results Here, we present CNVcaller, a read-depth method for discovering CNVs in population sequencing data. The computational speed of CNVcaller was 1–2 orders of magnitude faster than CNVnator and Genome STRiP for complex genomes with thousands of unmapped scaffolds. CNV detection of 232 goats required only 1.4 days on a single compute node. Additionally, the Mendelian consistency of sheep trios indicated that CNVcaller mitigated the influence of high proportions of gaps and misassembled duplications in the nonhuman reference genome assembly. Furthermore, multiple evaluations using real sheep and human data indicated that CNVcaller achieved the best accuracy and sensitivity for detecting duplications. Conclusions The fast generalized detection algorithms included in CNVcaller overcome prior computational barriers for detecting CNVs in large-scale sequencing data with complex genomic structures. Therefore, CNVcaller promotes population genetic analyses of functional CNVs in more species. PMID:29220491

  2. Gene Fusion: A Genome Wide Survey

    NASA Technical Reports Server (NTRS)

    Liang, Ping; Riley, Monica

    2001-01-01

    As a well known fact, organisms form larger and complex multimodular (composite or chimeric) and mostly multi-functional proteins through gene fusion of two or more individual genes which have independent evolution histories and functions. We call each of these components a module. The existence of multimodular proteins may improves the efficiency in gene regulation and in cellular functions, and thus may give the host organism advantages in adaptation to environments. Analysis of all gene fusions in present-day organisms should allow us to examine the patterns of gene fusion in context with cellular functions, to trace back the evolution processes from the ancient smaller and uni-functional proteins to the present-day larger and complex multi-functional proteins, and to estimate the minimal number of ancestor proteins that existed in the last common ancestor for all life on earth. Although many multimodular proteins have been experimentally known, identification of gene fusion events systematically at genome scale had not been possible until recently when large number of completed genome sequences have been becoming available. In addition, technical difficulties for such analysis also exist due to the complexity of this biological and evolutionary process. We report from this study a new strategy to computationally identify multimodular proteins using completed genome sequences and the results surveyed from 22 organisms with the data from over 40 organisms to be presented during the meeting. Additional information is contained in the original extended abstract.

  3. Reconstructing relative genome size of vascular plants through geological time.

    PubMed

    Lomax, Barry H; Hilton, Jason; Bateman, Richard M; Upchurch, Garland R; Lake, Janice A; Leitch, Ilia J; Cromwell, Avery; Knight, Charles A

    2014-01-01

    The strong positive relationship evident between cell and genome size in both animals and plants forms the basis of using the size of stomatal guard cells as a proxy to track changes in plant genome size through geological time. We report for the first time a taxonomic fine-scale investigation into changes in stomatal guard-cell length and use these data to infer changes in genome size through the evolutionary history of land plants. Our data suggest that many of the earliest land plants had exceptionally large genome sizes and that a predicted overall trend of increasing genome size within individual lineages through geological time is not supported. However, maximum genome size steadily increases from the Mississippian (c. 360 million yr ago (Ma)) to the present. We hypothesise that the functional relationship between stomatal size, genome size and atmospheric CO2 may contribute to the dichotomy reported between preferential extinction of neopolyploids and the prevalence of palaeopolyploidy observed in DNA sequence data of extant vascular plants. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  4. COMPUTATIONAL RESOURCES FOR BIOFUEL FEEDSTOCK SPECIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buell, Carol Robin; Childs, Kevin L

    2013-05-07

    While current production of ethanol as a biofuel relies on starch and sugar inputs, it is anticipated that sustainable production of ethanol for biofuel use will utilize lignocellulosic feedstocks. Candidate plant species to be used for lignocellulosic ethanol production include a large number of species within the Grass, Pine and Birch plant families. For these biofuel feedstock species, there are variable amounts of genome sequence resources available, ranging from complete genome sequences (e.g. sorghum, poplar) to transcriptome data sets (e.g. switchgrass, pine). These data sets are not only dispersed in location but also disparate in content. It will be essentialmore » to leverage and improve these genomic data sets for the improvement of biofuel feedstock production. The objectives of this project were to provide computational tools and resources for data-mining genome sequence/annotation and large-scale functional genomic datasets available for biofuel feedstock species. We have created a Bioenergy Feedstock Genomics Resource that provides a web-based portal or clearing house for genomic data for plant species relevant to biofuel feedstock production. Sequence data from a total of 54 plant species are included in the Bioenergy Feedstock Genomics Resource including model plant species that permit leveraging of knowledge across taxa to biofuel feedstock species.We have generated additional computational analyses of these data, including uniform annotation, to facilitate genomic approaches to improved biofuel feedstock production. These data have been centralized in the publicly available Bioenergy Feedstock Genomics Resource (http://bfgr.plantbiology.msu.edu/).« less

  5. The Cancer Genome Atlas (TCGA): The next stage - TCGA

    Cancer.gov

    The Cancer Genome Atlas (TCGA), the NIH research program that has helped set the standards for characterizing the genomic underpinnings of dozens of cancers on a large scale, is moving to its next phase.

  6. Frequently Asked Questions about Genetic and Genomic Science

    MedlinePlus

    ... of the new genetic and genomic techniques and technologies? Proteomics The suffix "-ome" comes from the Greek ... pharmacogenomics is one of the large-scale "omic" technologies, it can examine the entirety of the genome, ...

  7. Establishment of an efficient virus-induced gene silencing (VIGS) assay in Arabidopsis by Agrobacterium-mediated rubbing infection.

    PubMed

    Manhães, Ana Marcia E de A; de Oliveira, Marcos V V; Shan, Libo

    2015-01-01

    Several VIGS protocols have been established for high-throughput functional genomic screens as it bypasses the time-consuming and laborious process of generation of transgenic plants. The silencing efficiency in this approach is largely hindered by a technically demanding step in which the first pair of newly emerged true leaves at the 2-week-old stage are infiltrated with a needleless syringe. To further optimize VIGS efficiency and achieve rapid inoculation for a large-scale functional genomic study, here we describe a protocol of an efficient VIGS assay in Arabidopsis using Agrobacterium-mediated rubbing infection. The Agrobacterium inoculation is performed by simply rubbing the leaves with Filter Agent Celite(®) 545. The highly efficient and uniform silencing effect was indicated by the development of a visibly albino phenotype due to silencing of the Cloroplastos alterados 1 (CLA1) gene in the newly emerged leaves. In addition, the albino phenotype could be observed in stems and flowers, indicating its potential application for gene functional studies in the late vegetative development and flowering stages.

  8. Wheat EST resources for functional genomics of abiotic stress

    PubMed Central

    Houde, Mario; Belcaid, Mahdi; Ouellet, François; Danyluk, Jean; Monroy, Antonio F; Dryanova, Ani; Gulick, Patrick; Bergeron, Anne; Laroche, André; Links, Matthew G; MacCarthy, Luke; Crosby, William L; Sarhan, Fathey

    2006-01-01

    Background Wheat is an excellent species to study freezing tolerance and other abiotic stresses. However, the sequence of the wheat genome has not been completely characterized due to its complexity and large size. To circumvent this obstacle and identify genes involved in cold acclimation and associated stresses, a large scale EST sequencing approach was undertaken by the Functional Genomics of Abiotic Stress (FGAS) project. Results We generated 73,521 quality-filtered ESTs from eleven cDNA libraries constructed from wheat plants exposed to various abiotic stresses and at different developmental stages. In addition, 196,041 ESTs for which tracefiles were available from the National Science Foundation wheat EST sequencing program and DuPont were also quality-filtered and used in the analysis. Clustering of the combined ESTs with d2_cluster and TGICL yielded a few large clusters containing several thousand ESTs that were refractory to routine clustering techniques. To resolve this problem, the sequence proximity and "bridges" were identified by an e-value distance graph to manually break clusters into smaller groups. Assembly of the resolved ESTs generated a 75,488 unique sequence set (31,580 contigs and 43,908 singletons/singlets). Digital expression analyses indicated that the FGAS dataset is enriched in stress-regulated genes compared to the other public datasets. Over 43% of the unique sequence set was annotated and classified into functional categories according to Gene Ontology. Conclusion We have annotated 29,556 different sequences, an almost 5-fold increase in annotated sequences compared to the available wheat public databases. Digital expression analysis combined with gene annotation helped in the identification of several pathways associated with abiotic stress. The genomic resources and knowledge developed by this project will contribute to a better understanding of the different mechanisms that govern stress tolerance in wheat and other cereals. PMID:16772040

  9. Continental-level population differentiation and environmental adaptation in the mushroom Suillus brevipes

    PubMed Central

    Branco, Sara; Bi, Ke; Liao, Hui-Ling; Gladieux, Pierre; Badouin, Hélène; Ellison, Christopher E.; Nguyen, Nhu H.; Vilgalys, Rytas; Peay, Kabir G.; Taylor, John W.; Bruns, Thomas D.

    2016-01-01

    Recent advancements in sequencing technology allowed researchers to better address the patterns and mechanisms involved in microbial environmental adaptation at large spatial scales. Here we investigated the genomic basis of adaptation to climate at the continental scale in Suillus brevipes, an ectomycorrhizal fungus symbiotically associated with the roots of pine trees. We used genomic data from 55 individuals in seven locations across North America to perform genome scans to detect signatures of positive selection and assess whether temperature and precipitation were associated with genetic differentiation. We found that S. brevipes exhibited overall strong population differentiation, with potential admixture in Canadian populations. This species also displayed genomic signatures of positive selection as well as genomic sites significantly associated with distinct climatic regimes and abiotic environmental parameters. These genomic regions included genes involved in transmembrane transport of substances and helicase activity potentially involved in cold stress response. Our study sheds light on large-scale environmental adaptation in fungi by identifying putative adaptive genes and providing a framework to further investigate the genetic basis of fungal adaptation. PMID:27761941

  10. Globus | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    Globus software services provide secure cancer research data transfer, synchronization, and sharing in distributed environments at large scale. These services can be integrated into applications and research data gateways, leveraging Globus identity management, single sign-on, search, and authorization capabilities. Globus Genomics integrates Globus with the Galaxy genomics workflow engine and Amazon Web Services to enable cancer genomics analysis that can elastically scale compute resources with demand.

  11. Pharmacogenomic agreement between two cancer cell line data sets.

    PubMed

    2015-12-03

    Large cancer cell line collections broadly capture the genomic diversity of human cancers and provide valuable insight into anti-cancer drug response. Here we show substantial agreement and biological consilience between drug sensitivity measurements and their associated genomic predictors from two publicly available large-scale pharmacogenomics resources: The Cancer Cell Line Encyclopedia and the Genomics of Drug Sensitivity in Cancer databases.

  12. Genomics Portals: integrative web-platform for mining genomics data.

    PubMed

    Shinde, Kaustubh; Phatak, Mukta; Johannes, Freudenberg M; Chen, Jing; Li, Qian; Vineet, Joshi K; Hu, Zhen; Ghosh, Krishnendu; Meller, Jaroslaw; Medvedovic, Mario

    2010-01-13

    A large amount of experimental data generated by modern high-throughput technologies is available through various public repositories. Our knowledge about molecular interaction networks, functional biological pathways and transcriptional regulatory modules is rapidly expanding, and is being organized in lists of functionally related genes. Jointly, these two sources of information hold a tremendous potential for gaining new insights into functioning of living systems. Genomics Portals platform integrates access to an extensive knowledge base and a large database of human, mouse, and rat genomics data with basic analytical visualization tools. It provides the context for analyzing and interpreting new experimental data and the tool for effective mining of a large number of publicly available genomics datasets stored in the back-end databases. The uniqueness of this platform lies in the volume and the diversity of genomics data that can be accessed and analyzed (gene expression, ChIP-chip, ChIP-seq, epigenomics, computationally predicted binding sites, etc), and the integration with an extensive knowledge base that can be used in such analysis. The integrated access to primary genomics data, functional knowledge and analytical tools makes Genomics Portals platform a unique tool for interpreting results of new genomics experiments and for mining the vast amount of data stored in the Genomics Portals backend databases. Genomics Portals can be accessed and used freely at http://GenomicsPortals.org.

  13. Genomics Portals: integrative web-platform for mining genomics data

    PubMed Central

    2010-01-01

    Background A large amount of experimental data generated by modern high-throughput technologies is available through various public repositories. Our knowledge about molecular interaction networks, functional biological pathways and transcriptional regulatory modules is rapidly expanding, and is being organized in lists of functionally related genes. Jointly, these two sources of information hold a tremendous potential for gaining new insights into functioning of living systems. Results Genomics Portals platform integrates access to an extensive knowledge base and a large database of human, mouse, and rat genomics data with basic analytical visualization tools. It provides the context for analyzing and interpreting new experimental data and the tool for effective mining of a large number of publicly available genomics datasets stored in the back-end databases. The uniqueness of this platform lies in the volume and the diversity of genomics data that can be accessed and analyzed (gene expression, ChIP-chip, ChIP-seq, epigenomics, computationally predicted binding sites, etc), and the integration with an extensive knowledge base that can be used in such analysis. Conclusion The integrated access to primary genomics data, functional knowledge and analytical tools makes Genomics Portals platform a unique tool for interpreting results of new genomics experiments and for mining the vast amount of data stored in the Genomics Portals backend databases. Genomics Portals can be accessed and used freely at http://GenomicsPortals.org. PMID:20070909

  14. Spermatogenesis in mammals: proteomic insights.

    PubMed

    Chocu, Sophie; Calvel, Pierre; Rolland, Antoine D; Pineau, Charles

    2012-08-01

    Spermatogenesis is a highly sophisticated process involved in the transmission of genetic heritage. It includes halving ploidy, repackaging of the chromatin for transport, and the equipment of developing spermatids and eventually spermatozoa with the advanced apparatus (e.g., tightly packed mitochondrial sheat in the mid piece, elongating of the tail, reduction of cytoplasmic volume) to elicit motility once they reach the epididymis. Mammalian spermatogenesis is divided into three phases. In the first the primitive germ cells or spermatogonia undergo a series of mitotic divisions. In the second the spermatocytes undergo two consecutive divisions in meiosis to produce haploid spermatids. In the third the spermatids differentiate into spermatozoa in a process called spermiogenesis. Paracrine, autocrine, juxtacrine, and endocrine pathways all contribute to the regulation of the process. The array of structural elements and chemical factors modulating somatic and germ cell activity is such that the network linking the various cellular activities during spermatogenesis is unimaginably complex. Over the past two decades, advances in genomics have greatly improved our knowledge of spermatogenesis, by identifying numerous genes essential for the development of functional male gametes. Large-scale analyses of testicular function have deepened our insight into normal and pathological spermatogenesis. Progress in genome sequencing and microarray technology have been exploited for genome-wide expression studies, leading to the identification of hundreds of genes differentially expressed within the testis. However, although proteomics has now come of age, the proteomics-based investigation of spermatogenesis remains in its infancy. Here, we review the state-of-the-art of large-scale proteomic analyses of spermatogenesis, from germ cell development during sex determination to spermatogenesis in the adult. Indeed, a few laboratories have undertaken differential protein profiling expression studies and/or systematic analyses of testicular proteomes in entire organs or isolated cells from various species. We consider the pros and cons of proteomics for studying the testicular germ cell gene expression program. Finally, we address the use of protein datasets, through integrative genomics (i.e., combining genomics, transcriptomics, and proteomics), bioinformatics, and modelling.

  15. The Genetics of Mexico Recapitulates Native American Substructure and Affects Biomedical Traits

    PubMed Central

    Moreno-Estrada, Andrés; Gignoux, Christopher R.; Fernández-López, Juan Carlos; Zakharia, Fouad; Sikora, Martin; Contreras, Alejandra V.; Acuña-Alonzo, Victor; Sandoval, Karla; Eng, Celeste; Romero-Hidalgo, Sandra; Ortiz-Tello, Patricia; Robles, Victoria; Kenny, Eimear E.; Nuño-Arana, Ismael; Barquera-Lozano, Rodrigo; Macín-Pérez, Gastón; Granados-Arriola, Julio; Huntsman, Scott; Galanter, Joshua M.; Via, Marc; Ford, Jean G.; Chapela, Rocío; Rodriguez-Cintron, William; Rodríguez-Santana, Jose R.; Romieu, Isabelle; Sienra-Monge, Juan José; Navarro, Blanca del Rio; London, Stephanie J.; Ruiz-Linares, Andrés; Garcia-Herrera, Rodrigo; Estrada, Karol; Hidalgo-Miranda, Alfredo; Jimenez-Sanchez, Gerardo; Carnevale, Alessandra; Soberón, Xavier; Canizales-Quinteros, Samuel; Rangel-Villalobos, Héctor; Silva-Zolezzi, Irma; Burchard, Esteban Gonzalez; Bustamante, Carlos D.

    2014-01-01

    Mexico harbors great cultural and ethnic diversity, yet fine-scale patterns of human genome-wide variation from this region remain largely uncharacterized. We studied genomic variation within Mexico from over 1,000 individuals representing 20 indigenous and 11 mestizo populations. We found striking genetic stratification among indigenous populations within Mexico at varying degrees of geographic isolation. Some groups were as differentiated as Europeans are from East Asians. Pre-Columbian genetic substructure is recapitulated in the indigenous ancestry of admixed mestizo individuals across the country. Furthermore, two independently phenotyped cohorts of Mexicans and Mexican Americans showed a significant association between sub-continental ancestry and lung function. Thus, accounting for fine-scale ancestry patterns is critical for medical and population genetic studies within Mexico, in Mexican-descent populations, and likely in many other populations worldwide. PMID:24926019

  16. Chromatin organization and global regulation of Hox gene clusters

    PubMed Central

    Montavon, Thomas; Duboule, Denis

    2013-01-01

    During development, a properly coordinated expression of Hox genes, within their different genomic clusters is critical for patterning the body plans of many animals with a bilateral symmetry. The fascinating correspondence between the topological organization of Hox clusters and their transcriptional activation in space and time has served as a paradigm for understanding the relationships between genome structure and function. Here, we review some recent observations, which revealed highly dynamic changes in the structure of chromatin at Hox clusters, in parallel with their activation during embryonic development. We discuss the relevance of these findings for our understanding of large-scale gene regulation. PMID:23650639

  17. Shedding new light on opsin evolution

    PubMed Central

    Porter, Megan L.; Blasic, Joseph R.; Bok, Michael J.; Cameron, Evan G.; Pringle, Thomas; Cronin, Thomas W.; Robinson, Phyllis R.

    2012-01-01

    Opsin proteins are essential molecules in mediating the ability of animals to detect and use light for diverse biological functions. Therefore, understanding the evolutionary history of opsins is key to understanding the evolution of light detection and photoreception in animals. As genomic data have appeared and rapidly expanded in quantity, it has become possible to analyse opsins that functionally and histologically are less well characterized, and thus to examine opsin evolution strictly from a genetic perspective. We have incorporated these new data into a large-scale, genome-based analysis of opsin evolution. We use an extensive phylogeny of currently known opsin sequence diversity as a foundation for examining the evolutionary distributions of key functional features within the opsin clade. This new analysis illustrates the lability of opsin protein-expression patterns, site-specific functionality (i.e. counterion position) and G-protein binding interactions. Further, it demonstrates the limitations of current model organisms, and highlights the need for further characterization of many of the opsin sequence groups with unknown function. PMID:22012981

  18. Design of a 9K illumina BeadChip for polar bears (Ursus maritimus) from RAD and transcriptome sequencing.

    PubMed

    Malenfant, René M; Coltman, David W; Davis, Corey S

    2015-05-01

    Single-nucleotide polymorphisms (SNPs) offer numerous advantages over anonymous markers such as microsatellites, including improved estimation of population parameters, finer-scale resolution of population structure and more precise genomic dissection of quantitative traits. However, many SNPs are needed to equal the resolution of a single microsatellite, and reliable large-scale genotyping of SNPs remains a challenge in nonmodel species. Here, we document the creation of a 9K Illumina Infinium BeadChip for polar bears (Ursus maritimus), which will be used to investigate: (i) the fine-scale population structure among Canadian polar bears and (ii) the genomic architecture of phenotypic traits in the Western Hudson Bay subpopulation. To this end, we used restriction-site associated DNA (RAD) sequencing from 38 bears across their circumpolar range, as well as blood/fat transcriptome sequencing of 10 individuals from Western Hudson Bay. Six-thousand RAD SNPs and 3000 transcriptomic SNPs were selected for the chip, based primarily on genomic spacing and gene function respectively. Of the 9000 SNPs ordered from Illumina, 8042 were successfully printed, and - after genotyping 1450 polar bears - 5441 of these SNPs were found to be well clustered and polymorphic. Using this array, we show rapid linkage disequilibrium decay among polar bears, we demonstrate that in a subsample of 78 individuals, our SNPs detect known genetic structure more clearly than 24 microsatellites genotyped for the same individuals and that these results are not driven by the SNP ascertainment scheme. Here, we present one of the first large-scale genotyping resources designed for a threatened species. © 2014 John Wiley & Sons Ltd.

  19. The biology and polymer physics underlying large-scale chromosome organization.

    PubMed

    Sazer, Shelley; Schiessel, Helmut

    2018-02-01

    Chromosome large-scale organization is a beautiful example of the interplay between physics and biology. DNA molecules are polymers and thus belong to the class of molecules for which physicists have developed models and formulated testable hypotheses to understand their arrangement and dynamic properties in solution, based on the principles of polymer physics. Biologists documented and discovered the biochemical basis for the structure, function and dynamic spatial organization of chromosomes in cells. The underlying principles of chromosome organization have recently been revealed in unprecedented detail using high-resolution chromosome capture technology that can simultaneously detect chromosome contact sites throughout the genome. These independent lines of investigation have now converged on a model in which DNA loops, generated by the loop extrusion mechanism, are the basic organizational and functional units of the chromosome. © 2017 The Authors. Traffic published by John Wiley & Sons Ltd.

  20. Sequencing of Seven Haloarchaeal Genomes Reveals Patterns of Genomic Flux

    PubMed Central

    Lynch, Erin A.; Langille, Morgan G. I.; Darling, Aaron; Wilbanks, Elizabeth G.; Haltiner, Caitlin; Shao, Katie S. Y.; Starr, Michael O.; Teiling, Clotilde; Harkins, Timothy T.; Edwards, Robert A.; Eisen, Jonathan A.; Facciotti, Marc T.

    2012-01-01

    We report the sequencing of seven genomes from two haloarchaeal genera, Haloferax and Haloarcula. Ease of cultivation and the existence of well-developed genetic and biochemical tools for several diverse haloarchaeal species make haloarchaea a model group for the study of archaeal biology. The unique physiological properties of these organisms also make them good candidates for novel enzyme discovery for biotechnological applications. Seven genomes were sequenced to ∼20×coverage and assembled to an average of 50 contigs (range 5 scaffolds - 168 contigs). Comparisons of protein-coding gene compliments revealed large-scale differences in COG functional group enrichment between these genera. Analysis of genes encoding machinery for DNA metabolism reveals genera-specific expansions of the general transcription factor TATA binding protein as well as a history of extensive duplication and horizontal transfer of the proliferating cell nuclear antigen. Insights gained from this study emphasize the importance of haloarchaea for investigation of archaeal biology. PMID:22848480

  1. Merlin: Computer-Aided Oligonucleotide Design for Large Scale Genome Engineering with MAGE.

    PubMed

    Quintin, Michael; Ma, Natalie J; Ahmed, Samir; Bhatia, Swapnil; Lewis, Aaron; Isaacs, Farren J; Densmore, Douglas

    2016-06-17

    Genome engineering technologies now enable precise manipulation of organism genotype, but can be limited in scalability by their design requirements. Here we describe Merlin ( http://merlincad.org ), an open-source web-based tool to assist biologists in designing experiments using multiplex automated genome engineering (MAGE). Merlin provides methods to generate pools of single-stranded DNA oligonucleotides (oligos) for MAGE experiments by performing free energy calculation and BLAST scoring on a sliding window spanning the targeted site. These oligos are designed not only to improve recombination efficiency, but also to minimize off-target interactions. The application further assists experiment planning by reporting predicted allelic replacement rates after multiple MAGE cycles, and enables rapid result validation by generating primer sequences for multiplexed allele-specific colony PCR. Here we describe the Merlin oligo and primer design procedures and validate their functionality compared to OptMAGE by eliminating seven AvrII restriction sites from the Escherichia coli genome.

  2. Allying with armored snails: the complete genome of gammaproteobacterial endosymbiont.

    PubMed

    Nakagawa, Satoshi; Shimamura, Shigeru; Takaki, Yoshihiro; Suzuki, Yohey; Murakami, Shun-ichi; Watanabe, Tamaki; Fujiyoshi, So; Mino, Sayaka; Sawabe, Tomoo; Maeda, Takahiro; Makita, Hiroko; Nemoto, Suguru; Nishimura, Shin-Ichiro; Watanabe, Hiromi; Watsuji, Tomo-o; Takai, Ken

    2014-01-01

    Deep-sea vents harbor dense populations of various animals that have their specific symbiotic bacteria. Scaly-foot gastropods, which are snails with mineralized scales covering the sides of its foot, have a gammaproteobacterial endosymbiont in their enlarged esophageal glands and diverse epibionts on the surface of their scales. In this study, we report the complete genome sequencing of gammaproteobacterial endosymbiont. The endosymbiont genome displays features consistent with ongoing genome reduction such as large proportions of pseudogenes and insertion elements. The genome encodes functions commonly found in deep-sea vent chemoautotrophs such as sulfur oxidation and carbon fixation. Stable carbon isotope ((13)C)-labeling experiments confirmed the endosymbiont chemoautotrophy. The genome also includes an intact hydrogenase gene cluster that potentially has been horizontally transferred from phylogenetically distant bacteria. Notable findings include the presence and transcription of genes for flagellar assembly, through which proteins are potentially exported from bacterium to the host. Symbionts of snail individuals exhibited extreme genetic homogeneity, showing only two synonymous changes in 19 different genes (13 810 positions in total) determined for 32 individual gastropods collected from a single colony at one time. The extremely low genetic individuality in endosymbionts probably reflects that the stringent symbiont selection by host prevents the random genetic drift in the small population of horizontally transmitted symbiont. This study is the first complete genome analysis of gastropod endosymbiont and offers an opportunity to study genome evolution in a recently evolved endosymbiont.

  3. 3D genomics imposes evolution of the domain model of eukaryotic genome organization.

    PubMed

    Razin, Sergey V; Vassetzky, Yegor S

    2017-02-01

    The hypothesis that the genome is composed of a patchwork of structural and functional domains (units) that may be either active or repressed was proposed almost 30 years ago. Here, we examine the evolution of the domain model of eukaryotic genome organization in view of the expansion of genome-scale techniques in the twenty-first century that have provided us with a wealth of information on genome organization, folding, and functioning.

  4. Genome wide analysis of flowering time trait in multiple environments via high-throughput genotyping technique in Brassica napus L.

    PubMed

    Li, Lun; Long, Yan; Zhang, Libin; Dalton-Morgan, Jessica; Batley, Jacqueline; Yu, Longjiang; Meng, Jinling; Li, Maoteng

    2015-01-01

    The prediction of the flowering time (FT) trait in Brassica napus based on genome-wide markers and the detection of underlying genetic factors is important not only for oilseed producers around the world but also for the other crop industry in the rotation system in China. In previous studies the low density and mixture of biomarkers used obstructed genomic selection in B. napus and comprehensive mapping of FT related loci. In this study, a high-density genome-wide SNP set was genotyped from a double-haploid population of B. napus. We first performed genomic prediction of FT traits in B. napus using SNPs across the genome under ten environments of three geographic regions via eight existing genomic predictive models. The results showed that all the models achieved comparably high accuracies, verifying the feasibility of genomic prediction in B. napus. Next, we performed a large-scale mapping of FT related loci among three regions, and found 437 associated SNPs, some of which represented known FT genes, such as AP1 and PHYE. The genes tagged by the associated SNPs were enriched in biological processes involved in the formation of flowers. Epistasis analysis showed that significant interactions were found between detected loci, even among some known FT related genes. All the results showed that our large scale and high-density genotype data are of great practical and scientific values for B. napus. To our best knowledge, this is the first evaluation of genomic selection models in B. napus based on a high-density SNP dataset and large-scale mapping of FT loci.

  5. Evolution of neuronal signalling: transmitters and receptors.

    PubMed

    Hoyle, Charles H V

    2011-11-16

    Evolution is a dynamic process during which the genome should not be regarded as a static entity. Molecular and morphological information yield insights into the evolution of species and their phylogenetic relationships, and molecular information in particular provides information into the evolution of signalling processes. Many signalling systems have their origin in primitive, even unicellular, organisms. Through time, and as organismal complexity increased, certain molecules were employed as intercellular signal molecules. In the autonomic nervous system the basic unit of chemical transmission is a ligand and its cognate receptor. The general mechanisms underlying evolution of signal molecules and their cognate receptors have their basis in the alteration of the genome. In the past this has occurred in large-scale events, represented by two or more doublings of the whole genome, or large segments of the genome, early in the deuterostome lineage, after the emergence of urochordates and cephalochordates, and before the emergence of vertebrates. These duplications were followed by extensive remodelling involving subsequent small-scale changes, ranging from point mutations to exon duplication. Concurrent with these processes was multiple gene loss so that the modern genome contains roughly the same number of genes as in early deuterostomes despite the large-scale genomic duplications. In this review, the principles that underlie evolution that have led to large and small families of autonomic neurotransmitters and their receptors are discussed, with emphasis on G protein-coupled receptors. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Sybil--efficient constraint-based modelling in R.

    PubMed

    Gelius-Dietrich, Gabriel; Desouki, Abdelmoneim Amer; Fritzemeier, Claus Jonathan; Lercher, Martin J

    2013-11-13

    Constraint-based analyses of metabolic networks are widely used to simulate the properties of genome-scale metabolic networks. Publicly available implementations tend to be slow, impeding large scale analyses such as the genome-wide computation of pairwise gene knock-outs, or the automated search for model improvements. Furthermore, available implementations cannot easily be extended or adapted by users. Here, we present sybil, an open source software library for constraint-based analyses in R; R is a free, platform-independent environment for statistical computing and graphics that is widely used in bioinformatics. Among other functions, sybil currently provides efficient methods for flux-balance analysis (FBA), MOMA, and ROOM that are about ten times faster than previous implementations when calculating the effect of whole-genome single gene deletions in silico on a complete E. coli metabolic model. Due to the object-oriented architecture of sybil, users can easily build analysis pipelines in R or even implement their own constraint-based algorithms. Based on its highly efficient communication with different mathematical optimisation programs, sybil facilitates the exploration of high-dimensional optimisation problems on small time scales. Sybil and all its dependencies are open source. Sybil and its documentation are available for download from the comprehensive R archive network (CRAN).

  7. Genome Partitioner: A web tool for multi-level partitioning of large-scale DNA constructs for synthetic biology applications.

    PubMed

    Christen, Matthias; Del Medico, Luca; Christen, Heinz; Christen, Beat

    2017-01-01

    Recent advances in lower-cost DNA synthesis techniques have enabled new innovations in the field of synthetic biology. Still, efficient design and higher-order assembly of genome-scale DNA constructs remains a labor-intensive process. Given the complexity, computer assisted design tools that fragment large DNA sequences into fabricable DNA blocks are needed to pave the way towards streamlined assembly of biological systems. Here, we present the Genome Partitioner software implemented as a web-based interface that permits multi-level partitioning of genome-scale DNA designs. Without the need for specialized computing skills, biologists can submit their DNA designs to a fully automated pipeline that generates the optimal retrosynthetic route for higher-order DNA assembly. To test the algorithm, we partitioned a 783 kb Caulobacter crescentus genome design. We validated the partitioning strategy by assembling a 20 kb test segment encompassing a difficult to synthesize DNA sequence. Successful assembly from 1 kb subblocks into the 20 kb segment highlights the effectiveness of the Genome Partitioner for reducing synthesis costs and timelines for higher-order DNA assembly. The Genome Partitioner is broadly applicable to translate DNA designs into ready to order sequences that can be assembled with standardized protocols, thus offering new opportunities to harness the diversity of microbial genomes for synthetic biology applications. The Genome Partitioner web tool can be accessed at https://christenlab.ethz.ch/GenomePartitioner.

  8. Translational bioinformatics in the cloud: an affordable alternative

    PubMed Central

    2010-01-01

    With the continued exponential expansion of publicly available genomic data and access to low-cost, high-throughput molecular technologies for profiling patient populations, computational technologies and informatics are becoming vital considerations in genomic medicine. Although cloud computing technology is being heralded as a key enabling technology for the future of genomic research, available case studies are limited to applications in the domain of high-throughput sequence data analysis. The goal of this study was to evaluate the computational and economic characteristics of cloud computing in performing a large-scale data integration and analysis representative of research problems in genomic medicine. We find that the cloud-based analysis compares favorably in both performance and cost in comparison to a local computational cluster, suggesting that cloud computing technologies might be a viable resource for facilitating large-scale translational research in genomic medicine. PMID:20691073

  9. Phylogenomic Reconstruction of the Oomycete Phylogeny Derived from 37 Genomes

    PubMed Central

    McCarthy, Charley G. P.

    2017-01-01

    ABSTRACT The oomycetes are a class of microscopic, filamentous eukaryotes within the Stramenopiles-Alveolata-Rhizaria (SAR) supergroup which includes ecologically significant animal and plant pathogens, most infamously the causative agent of potato blight Phytophthora infestans. Single-gene and concatenated phylogenetic studies both of individual oomycete genera and of members of the larger class have resulted in conflicting conclusions concerning species phylogenies within the oomycetes, particularly for the large Phytophthora genus. Genome-scale phylogenetic studies have successfully resolved many eukaryotic relationships by using supertree methods, which combine large numbers of potentially disparate trees to determine evolutionary relationships that cannot be inferred from individual phylogenies alone. With a sufficient amount of genomic data now available, we have undertaken the first whole-genome phylogenetic analysis of the oomycetes using data from 37 oomycete species and 6 SAR species. In our analysis, we used established supertree methods to generate phylogenies from 8,355 homologous oomycete and SAR gene families and have complemented those analyses with both phylogenomic network and concatenated supermatrix analyses. Our results show that a genome-scale approach to oomycete phylogeny resolves oomycete classes and individual clades within the problematic Phytophthora genus. Support for the resolution of the inferred relationships between individual Phytophthora clades varies depending on the methodology used. Our analysis represents an important first step in large-scale phylogenomic analysis of the oomycetes. IMPORTANCE The oomycetes are a class of eukaryotes and include ecologically significant animal and plant pathogens. Single-gene and multigene phylogenetic studies of individual oomycete genera and of members of the larger classes have resulted in conflicting conclusions concerning interspecies relationships among these species, particularly for the Phytophthora genus. The onset of next-generation sequencing techniques now means that a wealth of oomycete genomic data is available. For the first time, we have used genome-scale phylogenetic methods to resolve oomycete phylogenetic relationships. We used supertree methods to generate single-gene and multigene species phylogenies. Overall, our supertree analyses utilized phylogenetic data from 8,355 oomycete gene families. We have also complemented our analyses with superalignment phylogenies derived from 131 single-copy ubiquitous gene families. Our results show that a genome-scale approach to oomycete phylogeny resolves oomycete classes and clades. Our analysis represents an important first step in large-scale phylogenomic analysis of the oomycetes. PMID:28435885

  10. GAMES identifies and annotates mutations in next-generation sequencing projects.

    PubMed

    Sana, Maria Elena; Iascone, Maria; Marchetti, Daniela; Palatini, Jeff; Galasso, Marco; Volinia, Stefano

    2011-01-01

    Next-generation sequencing (NGS) methods have the potential for changing the landscape of biomedical science, but at the same time pose several problems in analysis and interpretation. Currently, there are many commercial and public software packages that analyze NGS data. However, the limitations of these applications include output which is insufficiently annotated and of difficult functional comprehension to end users. We developed GAMES (Genomic Analysis of Mutations Extracted by Sequencing), a pipeline aiming to serve as an efficient middleman between data deluge and investigators. GAMES attains multiple levels of filtering and annotation, such as aligning the reads to a reference genome, performing quality control and mutational analysis, integrating results with genome annotations and sorting each mismatch/deletion according to a range of parameters. Variations are matched to known polymorphisms. The prediction of functional mutations is achieved by using different approaches. Overall GAMES enables an effective complexity reduction in large-scale DNA-sequencing projects. GAMES is available free of charge to academic users and may be obtained from http://aqua.unife.it/GAMES.

  11. Predicting protein-protein interactions on a proteome scale by matching evolutionary and structural similarities at interfaces using PRISM.

    PubMed

    Tuncbag, Nurcan; Gursoy, Attila; Nussinov, Ruth; Keskin, Ozlem

    2011-08-11

    Prediction of protein-protein interactions at the structural level on the proteome scale is important because it allows prediction of protein function, helps drug discovery and takes steps toward genome-wide structural systems biology. We provide a protocol (termed PRISM, protein interactions by structural matching) for large-scale prediction of protein-protein interactions and assembly of protein complex structures. The method consists of two components: rigid-body structural comparisons of target proteins to known template protein-protein interfaces and flexible refinement using a docking energy function. The PRISM rationale follows our observation that globally different protein structures can interact via similar architectural motifs. PRISM predicts binding residues by using structural similarity and evolutionary conservation of putative binding residue 'hot spots'. Ultimately, PRISM could help to construct cellular pathways and functional, proteome-scale annotation. PRISM is implemented in Python and runs in a UNIX environment. The program accepts Protein Data Bank-formatted protein structures and is available at http://prism.ccbb.ku.edu.tr/prism_protocol/.

  12. Genomics and privacy: implications of the new reality of closed data for the field.

    PubMed

    Greenbaum, Dov; Sboner, Andrea; Mu, Xinmeng Jasmine; Gerstein, Mark

    2011-12-01

    Open source and open data have been driving forces in bioinformatics in the past. However, privacy concerns may soon change the landscape, limiting future access to important data sets, including personal genomics data. Here we survey this situation in some detail, describing, in particular, how the large scale of the data from personal genomic sequencing makes it especially hard to share data, exacerbating the privacy problem. We also go over various aspects of genomic privacy: first, there is basic identifiability of subjects having their genome sequenced. However, even for individuals who have consented to be identified, there is the prospect of very detailed future characterization of their genotype, which, unanticipated at the time of their consent, may be more personal and invasive than the release of their medical records. We go over various computational strategies for dealing with the issue of genomic privacy. One can "slice" and reformat datasets to allow them to be partially shared while securing the most private variants. This is particularly applicable to functional genomics information, which can be largely processed without variant information. For handling the most private data there are a number of legal and technological approaches-for example, modifying the informed consent procedure to acknowledge that privacy cannot be guaranteed, and/or employing a secure cloud computing environment. Cloud computing in particular may allow access to the data in a more controlled fashion than the current practice of downloading and computing on large datasets. Furthermore, it may be particularly advantageous for small labs, given that the burden of many privacy issues falls disproportionately on them in comparison to large corporations and genome centers. Finally, we discuss how education of future genetics researchers will be important, with curriculums emphasizing privacy and data security. However, teaching personal genomics with identifiable subjects in the university setting will, in turn, create additional privacy issues and social conundrums. © 2011 Greenbaum et al.

  13. Development of a targeted transgenesis strategy in highly differentiated cells: a powerful tool for functional genomic analysis.

    PubMed

    Puttini, Stefania; Ouvrard-Pascaud, Antoine; Palais, Gael; Beggah, Ahmed T; Gascard, Philippe; Cohen-Tannoudji, Michel; Babinet, Charles; Blot-Chabaud, Marcel; Jaisser, Frederic

    2005-03-16

    Functional genomic analysis is a challenging step in the so-called post-genomic field. Identification of potential targets using large-scale gene expression analysis requires functional validation to identify those that are physiologically relevant. Genetically modified cell models are often used for this purpose allowing up- or down-expression of selected targets in a well-defined and if possible highly differentiated cell type. However, the generation of such models remains time-consuming and expensive. In order to alleviate this step, we developed a strategy aimed at the rapid and efficient generation of genetically modified cell lines with conditional, inducible expression of various target genes. Efficient knock-in of various constructs, called targeted transgenesis, in a locus selected for its permissibility to the tet inducible system, was obtained through the stimulation of site-specific homologous recombination by the meganuclease I-SceI. Our results demonstrate that targeted transgenesis in a reference inducible locus greatly facilitated the functional analysis of the selected recombinant cells. The efficient screening strategy we have designed makes possible automation of the transfection and selection steps. Furthermore, this strategy could be applied to a variety of highly differentiated cells.

  14. Genome-Wide Motif Statistics are Shaped by DNA Binding Proteins over Evolutionary Time Scales

    NASA Astrophysics Data System (ADS)

    Qian, Long; Kussell, Edo

    2016-10-01

    The composition of a genome with respect to all possible short DNA motifs impacts the ability of DNA binding proteins to locate and bind their target sites. Since nonfunctional DNA binding can be detrimental to cellular functions and ultimately to organismal fitness, organisms could benefit from reducing the number of nonfunctional DNA binding sites genome wide. Using in vitro measurements of binding affinities for a large collection of DNA binding proteins, in multiple species, we detect a significant global avoidance of weak binding sites in genomes. We demonstrate that the underlying evolutionary process leaves a distinct genomic hallmark in that similar words have correlated frequencies, a signal that we detect in all species across domains of life. We consider the possibility that natural selection against weak binding sites contributes to this process, and using an evolutionary model we show that the strength of selection needed to maintain global word compositions is on the order of point mutation rates. Likewise, we show that evolutionary mechanisms based on interference of protein-DNA binding with replication and mutational repair processes could yield similar results and operate with similar rates. On the basis of these modeling and bioinformatic results, we conclude that genome-wide word compositions have been molded by DNA binding proteins acting through tiny evolutionary steps over time scales spanning millions of generations.

  15. Genomic Sequence around Butterfly Wing Development Genes: Annotation and Comparative Analysis

    PubMed Central

    Conceição, Inês C.; Long, Anthony D.; Gruber, Jonathan D.; Beldade, Patrícia

    2011-01-01

    Background Analysis of genomic sequence allows characterization of genome content and organization, and access beyond gene-coding regions for identification of functional elements. BAC libraries, where relatively large genomic regions are made readily available, are especially useful for species without a fully sequenced genome and can increase genomic coverage of phylogenetic and biological diversity. For example, no butterfly genome is yet available despite the unique genetic and biological properties of this group, such as diversified wing color patterns. The evolution and development of these patterns is being studied in a few target species, including Bicyclus anynana, where a whole-genome BAC library allows targeted access to large genomic regions. Methodology/Principal Findings We characterize ∼1.3 Mb of genomic sequence around 11 selected genes expressed in B. anynana developing wings. Extensive manual curation of in silico predictions, also making use of a large dataset of expressed genes for this species, identified repetitive elements and protein coding sequence, and highlighted an expansion of Alcohol dehydrogenase genes. Comparative analysis with orthologous regions of the lepidopteran reference genome allowed assessment of conservation of fine-scale synteny (with detection of new inversions and translocations) and of DNA sequence (with detection of high levels of conservation of non-coding regions around some, but not all, developmental genes). Conclusions The general properties and organization of the available B. anynana genomic sequence are similar to the lepidopteran reference, despite the more than 140 MY divergence. Our results lay the groundwork for further studies of new interesting findings in relation to both coding and non-coding sequence: 1) the Alcohol dehydrogenase expansion with higher similarity between the five tandemly-repeated B. anynana paralogs than with the corresponding B. mori orthologs, and 2) the high conservation of non-coding sequence around the genes wingless and Ecdysone receptor, both involved in multiple developmental processes including wing pattern formation. PMID:21909358

  16. The Psychiatric Genomics Consortium Posttraumatic Stress Disorder Workgroup: Posttraumatic Stress Disorder Enters the Age of Large-Scale Genomic Collaboration

    PubMed Central

    Logue, Mark W; Amstadter, Ananda B; Baker, Dewleen G; Duncan, Laramie; Koenen, Karestan C; Liberzon, Israel; Miller, Mark W; Morey, Rajendra A; Nievergelt, Caroline M; Ressler, Kerry J; Smith, Alicia K; Smoller, Jordan W; Stein, Murray B; Sumner, Jennifer A; Uddin, Monica

    2015-01-01

    The development of posttraumatic stress disorder (PTSD) is influenced by genetic factors. Although there have been some replicated candidates, the identification of risk variants for PTSD has lagged behind genetic research of other psychiatric disorders such as schizophrenia, autism, and bipolar disorder. Psychiatric genetics has moved beyond examination of specific candidate genes in favor of the genome-wide association study (GWAS) strategy of very large numbers of samples, which allows for the discovery of previously unsuspected genes and molecular pathways. The successes of genetic studies of schizophrenia and bipolar disorder have been aided by the formation of a large-scale GWAS consortium: the Psychiatric Genomics Consortium (PGC). In contrast, only a handful of GWAS of PTSD have appeared in the literature to date. Here we describe the formation of a group dedicated to large-scale study of PTSD genetics: the PGC-PTSD. The PGC-PTSD faces challenges related to the contingency on trauma exposure and the large degree of ancestral genetic diversity within and across participating studies. Using the PGC analysis pipeline supplemented by analyses tailored to address these challenges, we anticipate that our first large-scale GWAS of PTSD will comprise over 10 000 cases and 30 000 trauma-exposed controls. Following in the footsteps of our PGC forerunners, this collaboration—of a scope that is unprecedented in the field of traumatic stress—will lead the search for replicable genetic associations and new insights into the biological underpinnings of PTSD. PMID:25904361

  17. CGDV: a webtool for circular visualization of genomics and transcriptomics data.

    PubMed

    Jha, Vineet; Singh, Gulzar; Kumar, Shiva; Sonawane, Amol; Jere, Abhay; Anamika, Krishanpal

    2017-10-24

    Interpretation of large-scale data is very challenging and currently there is scarcity of web tools which support automated visualization of a variety of high throughput genomics and transcriptomics data and for a wide variety of model organisms along with user defined karyotypes. Circular plot provides holistic visualization of high throughput large scale data but it is very complex and challenging to generate as most of the available tools need informatics expertise to install and run them. We have developed CGDV (Circos for Genomics and Transcriptomics Data Visualization), a webtool based on Circos, for seamless and automated visualization of a variety of large scale genomics and transcriptomics data. CGDV takes output of analyzed genomics or transcriptomics data of different formats, such as vcf, bed, xls, tab limited matrix text file, CNVnator raw output and Gene fusion raw output, to plot circular view of the sample data. CGDV take cares of generating intermediate files required for circos. CGDV is freely available at https://cgdv-upload.persistent.co.in/cgdv/ . The circular plot for each data type is tailored to gain best biological insights into the data. The inter-relationship between data points, homologous sequences, genes involved in fusion events, differential expression pattern, sequencing depth, types and size of variations and enrichment of DNA binding proteins can be seen using CGDV. CGDV thus helps biologists and bioinformaticians to visualize a variety of genomics and transcriptomics data seamlessly.

  18. A fast boosting-based screening method for large-scale association study in complex traits with genetic heterogeneity.

    PubMed

    Wang, Lu-Yong; Fasulo, D

    2006-01-01

    Genome-wide association study for complex diseases will generate massive amount of single nucleotide polymorphisms (SNPs) data. Univariate statistical test (i.e. Fisher exact test) was used to single out non-associated SNPs. However, the disease-susceptible SNPs may have little marginal effects in population and are unlikely to retain after the univariate tests. Also, model-based methods are impractical for large-scale dataset. Moreover, genetic heterogeneity makes the traditional methods harder to identify the genetic causes of diseases. A more recent random forest method provides a more robust method for screening the SNPs in thousands scale. However, for more large-scale data, i.e., Affymetrix Human Mapping 100K GeneChip data, a faster screening method is required to screening SNPs in whole-genome large scale association analysis with genetic heterogeneity. We propose a boosting-based method for rapid screening in large-scale analysis of complex traits in the presence of genetic heterogeneity. It provides a relatively fast and fairly good tool for screening and limiting the candidate SNPs for further more complex computational modeling task.

  19. Silencing GhNDR1 and GhMKK2 compromised cotton resistance to Verticillium wilt

    PubMed Central

    Gao, Xiquan; Wheeler, Terry; Li, Zhaohu; Kenerley, Charles M.; He, Ping; Shan, Libo

    2011-01-01

    SUMMARY Cotton is an important cash crop worldwide and serves as a significant source of fiber, feed, foodstuff, oil and biofuel products. Considerable effort in genetics and genomics has been expended to increase sustainable yield and quality through molecular breeding and genetic engineering of new cotton cultivars. With the effort of whole genome sequencing of cotton, it is essential to develop molecular tools and resources for large-scale analysis of gene functions at the genome-wide level. We have successfully established an Agrobacterium-mediated virus-induced gene silencing (VIGS) assay in several cotton cultivars with different genetic backgrounds. The genes of interest were potently and readily silenced within 2 weeks after inoculation at the seedling stage. Importantly, we showed that silencing GhNDR1 and GhMKK2 compromised cotton resistance to the infection by Verticillium dahliae, a fungal pathogen causing Verticillium wilt. Furthermore, we established a cotton protoplast system for transient gene expression to study gene functions by a gain-of-function approach. The viable protoplasts were isolated from green cotyledons, etiolated cotyledons, and true leaves, and responded to a wide range of pathogen elicitors and phytohormones. Remarkably, cotton plants possess conserved, but also distinct MAP kinase activation with Arabidopsis upon bacterial elicitor flagellin perception. Thus, we demonstrated that GhNDR1 and GhMKK2 are required for Verticillium resistance in cotton using gene silencing assays, and established the high throughput loss-of-function and gain-of-function assays for functional genomic studies in cotton. PMID:21219508

  20. Genome and methylome of the oleaginous diatom Cyclotella cryptica reveal genetic flexibility toward a high lipid phenotype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traller, Jesse C.; Cokus, Shawn J.; Lopez, David A.

    Here, improvement in the performance of eukaryotic microalgae for biofuel and bioproduct production is largely dependent on characterization of metabolic mechanisms within the cell. The marine diatom Cyclotella cryptica, which was originally identified in the Aquatic Species Program, is a promising strain of microalgae for large-scale production of biofuel and bioproducts, such as omega-3 fatty acids. As a result, we sequenced the nuclear genome and methylome of this oleaginous diatom to identify the genetic traits that enable substantial accumulation of triacylglycerol. The genome is comprised of highly methylated repetitive sequence, which does not significantly change under silicon starved lipid induction,more » and data further suggests the primary role of DNA methylation is to suppress DNA transposition. Annotation of pivotal glycolytic, lipid metabolism, and carbohydrate degradation processes reveal an expanded enzyme repertoire in C. cryptica that would allow for an increased metabolic capacity toward triacylglycerol production. Identification of previously unidentified genes, including those involved in carbon transport and chitin metabolism, provide potential targets for genetic manipulation of carbon flux to further increase its lipid phenotype. New genetic tools were developed, bringing this organism on a par with other microalgae in terms of genetic manipulation and characterization approaches. Furthermore, functional annotation and detailed cross-species comparison of key carbon rich processes in C. cryptica highlights the importance of enzymatic subcellular compartmentation for regulation of carbon flux, which is often overlooked in photosynthetic microeukaryotes. The availability of the genome sequence, as well as advanced genetic manipulation tools enable further development of this organism for deployment in large-scale production systems.« less

  1. Genome and methylome of the oleaginous diatom Cyclotella cryptica reveal genetic flexibility toward a high lipid phenotype

    DOE PAGES

    Traller, Jesse C.; Cokus, Shawn J.; Lopez, David A.; ...

    2016-11-25

    Here, improvement in the performance of eukaryotic microalgae for biofuel and bioproduct production is largely dependent on characterization of metabolic mechanisms within the cell. The marine diatom Cyclotella cryptica, which was originally identified in the Aquatic Species Program, is a promising strain of microalgae for large-scale production of biofuel and bioproducts, such as omega-3 fatty acids. As a result, we sequenced the nuclear genome and methylome of this oleaginous diatom to identify the genetic traits that enable substantial accumulation of triacylglycerol. The genome is comprised of highly methylated repetitive sequence, which does not significantly change under silicon starved lipid induction,more » and data further suggests the primary role of DNA methylation is to suppress DNA transposition. Annotation of pivotal glycolytic, lipid metabolism, and carbohydrate degradation processes reveal an expanded enzyme repertoire in C. cryptica that would allow for an increased metabolic capacity toward triacylglycerol production. Identification of previously unidentified genes, including those involved in carbon transport and chitin metabolism, provide potential targets for genetic manipulation of carbon flux to further increase its lipid phenotype. New genetic tools were developed, bringing this organism on a par with other microalgae in terms of genetic manipulation and characterization approaches. Furthermore, functional annotation and detailed cross-species comparison of key carbon rich processes in C. cryptica highlights the importance of enzymatic subcellular compartmentation for regulation of carbon flux, which is often overlooked in photosynthetic microeukaryotes. The availability of the genome sequence, as well as advanced genetic manipulation tools enable further development of this organism for deployment in large-scale production systems.« less

  2. Applications of species accumulation curves in large-scale biological data analysis.

    PubMed

    Deng, Chao; Daley, Timothy; Smith, Andrew D

    2015-09-01

    The species accumulation curve, or collector's curve, of a population gives the expected number of observed species or distinct classes as a function of sampling effort. Species accumulation curves allow researchers to assess and compare diversity across populations or to evaluate the benefits of additional sampling. Traditional applications have focused on ecological populations but emerging large-scale applications, for example in DNA sequencing, are orders of magnitude larger and present new challenges. We developed a method to estimate accumulation curves for predicting the complexity of DNA sequencing libraries. This method uses rational function approximations to a classical non-parametric empirical Bayes estimator due to Good and Toulmin [Biometrika, 1956, 43, 45-63]. Here we demonstrate how the same approach can be highly effective in other large-scale applications involving biological data sets. These include estimating microbial species richness, immune repertoire size, and k -mer diversity for genome assembly applications. We show how the method can be modified to address populations containing an effectively infinite number of species where saturation cannot practically be attained. We also introduce a flexible suite of tools implemented as an R package that make these methods broadly accessible.

  3. Applications of species accumulation curves in large-scale biological data analysis

    PubMed Central

    Deng, Chao; Daley, Timothy; Smith, Andrew D

    2016-01-01

    The species accumulation curve, or collector’s curve, of a population gives the expected number of observed species or distinct classes as a function of sampling effort. Species accumulation curves allow researchers to assess and compare diversity across populations or to evaluate the benefits of additional sampling. Traditional applications have focused on ecological populations but emerging large-scale applications, for example in DNA sequencing, are orders of magnitude larger and present new challenges. We developed a method to estimate accumulation curves for predicting the complexity of DNA sequencing libraries. This method uses rational function approximations to a classical non-parametric empirical Bayes estimator due to Good and Toulmin [Biometrika, 1956, 43, 45–63]. Here we demonstrate how the same approach can be highly effective in other large-scale applications involving biological data sets. These include estimating microbial species richness, immune repertoire size, and k-mer diversity for genome assembly applications. We show how the method can be modified to address populations containing an effectively infinite number of species where saturation cannot practically be attained. We also introduce a flexible suite of tools implemented as an R package that make these methods broadly accessible. PMID:27252899

  4. A large scale analysis of genetic variants within putative miRNA binding sites in prostate cancer

    PubMed Central

    Stegeman, Shane; Amankwah, Ernest; Klein, Kerenaftali; O’Mara, Tracy A.; Kim, Donghwa; Lin, Hui-Yi; Permuth-Wey, Jennifer; Sellers, Thomas A.; Srinivasan, Srilakshmi; Eeles, Rosalind; Easton, Doug; Kote-Jarai, Zsofia; Olama, Ali Amin Al; Benlloch, Sara; Muir, Kenneth; Giles, Graham G.; Wiklund, Fredrik; Gronberg, Henrik; Haiman, Christopher A.; Schleutker, Johanna; Nordestgaard, Børge G.; Travis, Ruth C.; Neal, David; Pharoah, Paul; Khaw, Kay-Tee; Stanford, Janet L.; Blot, William J.; Thibodeau, Stephen; Maier, Christiane; Kibel, Adam S.; Cybulski, Cezary; Cannon-Albright, Lisa; Brenner, Hermann; Kaneva, Radka; Teixeira, Manuel R.; Consortium, PRACTICAL; Spurdle, Amanda B.; Clements, Judith A.; Park, Jong Y.; Batra, Jyotsna

    2015-01-01

    Prostate cancer is the second most common malignancy among men worldwide. Genome-wide association studies (GWAS) have identified 100 risk variants for prostate cancer, which can explain ~33% of the familial risk of the disease. We hypothesized that a comprehensive analysis of genetic variations found within the 3′ UTR of genes predicted to affect miRNA binding (miRSNPs) can identify additional prostate cancer risk variants. We investigated the association between 2,169 miRSNPs and prostate cancer risk in a large-scale analysis of 22,301 cases and 22,320 controls of European ancestry from 23 participating studies. Twenty-two miRSNPs were associated (p<2.3×10−5) with risk of prostate cancer, 10 of which were within the 7 genes previously not mapped by GWASs. Further, using miRNA mimics and reporter gene assays, we showed that miR-3162-5p has specific affinity for the KLK3 rs1058205 miRSNP T-allele whilst miR-370 has greater affinity for the VAMP8 rs1010 miRSNP A-allele, validating their functional role. Significance Findings from this large association study suggest that a focus on miRSNPs, including functional evaluation, can identify candidate risk loci below currently accepted statistical levels of genome-wide significance. Studies of miRNAs and their interactions with SNPs could provide further insights into the mechanisms of prostate cancer risk. PMID:25691096

  5. Using the underlying biological organization of the Mycobacterium tuberculosis functional network for protein function prediction.

    PubMed

    Mazandu, Gaston K; Mulder, Nicola J

    2012-07-01

    Despite ever-increasing amounts of sequence and functional genomics data, there is still a deficiency of functional annotation for many newly sequenced proteins. For Mycobacterium tuberculosis (MTB), more than half of its genome is still uncharacterized, which hampers the search for new drug targets within the bacterial pathogen and limits our understanding of its pathogenicity. As for many other genomes, the annotations of proteins in the MTB proteome were generally inferred from sequence homology, which is effective but its applicability has limitations. We have carried out large-scale biological data integration to produce an MTB protein functional interaction network. Protein functional relationships were extracted from the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, and additional functional interactions from microarray, sequence and protein signature data. The confidence level of protein relationships in the additional functional interaction data was evaluated using a dynamic data-driven scoring system. This functional network has been used to predict functions of uncharacterized proteins using Gene Ontology (GO) terms, and the semantic similarity between these terms measured using a state-of-the-art GO similarity metric. To achieve better trade-off between improvement of quality, genomic coverage and scalability, this prediction is done by observing the key principles driving the biological organization of the functional network. This study yields a new functionally characterized MTB strain CDC1551 proteome, consisting of 3804 and 3698 proteins out of 4195 with annotations in terms of the biological process and molecular function ontologies, respectively. These data can contribute to research into the Development of effective anti-tubercular drugs with novel biological mechanisms of action. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. A CRISPR-Based Toolbox for Studying T Cell Signal Transduction

    PubMed Central

    Chi, Shen; Weiss, Arthur; Wang, Haopeng

    2016-01-01

    CRISPR/Cas9 system is a powerful technology to perform genome editing in a variety of cell types. To facilitate the application of Cas9 in mapping T cell signaling pathways, we generated a toolbox for large-scale genetic screens in human Jurkat T cells. The toolbox has three different Jurkat cell lines expressing distinct Cas9 variants, including wild-type Cas9, dCas9-KRAB, and sunCas9. We demonstrated that the toolbox allows us to rapidly disrupt endogenous gene expression at the DNA level and to efficiently repress or activate gene expression at the transcriptional level. The toolbox, in combination with multiple currently existing genome-wide sgRNA libraries, will be useful to systematically investigate T cell signal transduction using both loss-of-function and gain-of-function genetic screens. PMID:27057542

  7. The draft genome of Corchorus olitorius cv. JRO-524 (Navin).

    PubMed

    Sarkar, Debabrata; Mahato, Ajay Kumar; Satya, Pratik; Kundu, Avijit; Singh, Sangeeta; Jayaswal, Pawan Kumar; Singh, Akshay; Bahadur, Kaushlendra; Pattnaik, Sasmita; Singh, Nisha; Chakraborty, Avrajit; Mandal, Nur Alam; Das, Debajeet; Basu, Tista; Sevanthi, Amitha Mithra; Saha, Dipnarayan; Datta, Subhojit; Kar, Chandan Sourav; Mitra, Jiban; Datta, Karabi; Karmakar, Pran Gobinda; Sharma, Tilak Raj; Mohapatra, Trilochan; Singh, Nagendra Kumar

    2017-06-01

    Here, we present the draft genome (377.3 Mbp) of Corchorus olitorious cv. JRO-524 (Navin), which is a leading dark jute variety developed from a cross between African (cv. Sudan Green) and indigenous (cv. JRO-632) types. We predicted from the draft genome a total of 57,087 protein-coding genes with annotated functions. We identified a large number of 1765 disease resistance-like and defense response genes in the jute genome. The annotated genes showed the highest sequence similarities with that of Theobroma cacao followed by Gossypium raimondii . Seven chromosome-scale genetically anchored pseudomolecules were constructed with a total size of 8.53 Mbp and used for synteny analyses with the cocoa and cotton genomes. Like other plant species, gypsy and copia retrotransposons were the most abundant classes of repeat elements in jute. The raw data of our study are available in SRA database of NCBI with accession number SRX1506532. The genome sequence has been deposited at DDBJ/EMBL/GenBank under the accession LLWS00000000, and the version described in this paper will be the first version (LLWS01000000).

  8. Large-Scale Comparative Phenotypic and Genomic Analyses Reveal Ecological Preferences of Shewanella Species and Identify Metabolic Pathways Conserved at the Genus Level ▿ †

    PubMed Central

    Rodrigues, Jorge L. M.; Serres, Margrethe H.; Tiedje, James M.

    2011-01-01

    The use of comparative genomics for the study of different microbiological species has increased substantially as sequence technologies become more affordable. However, efforts to fully link a genotype to its phenotype remain limited to the development of one mutant at a time. In this study, we provided a high-throughput alternative to this limiting step by coupling comparative genomics to the use of phenotype arrays for five sequenced Shewanella strains. Positive phenotypes were obtained for 441 nutrients (C, N, P, and S sources), with N-based compounds being the most utilized for all strains. Many genes and pathways predicted by genome analyses were confirmed with the comparative phenotype assay, and three degradation pathways believed to be missing in Shewanella were confirmed as missing. A number of previously unknown gene products were predicted to be parts of pathways or to have a function, expanding the number of gene targets for future genetic analyses. Ecologically, the comparative high-throughput phenotype analysis provided insights into niche specialization among the five different strains. For example, Shewanella amazonensis strain SB2B, isolated from the Amazon River delta, was capable of utilizing 60 C compounds, whereas Shewanella sp. strain W3-18-1, isolated from deep marine sediment, utilized only 25 of them. In spite of the large number of nutrient sources yielding positive results, our study indicated that except for the N sources, they were not sufficiently informative to predict growth phenotypes from increasing evolutionary distances. Our results indicate the importance of phenotypic evaluation for confirming genome predictions. This strategy will accelerate the functional discovery of genes and provide an ecological framework for microbial genome sequencing projects. PMID:21642407

  9. Living laboratory: whole-genome sequencing as a learning healthcare enterprise.

    PubMed

    Angrist, M; Jamal, L

    2015-04-01

    With the proliferation of affordable large-scale human genomic data come profound and vexing questions about management of such data and their clinical uncertainty. These issues challenge the view that genomic research on human beings can (or should) be fully segregated from clinical genomics, either conceptually or practically. Here, we argue that the sharp distinction between clinical care and research is especially problematic in the context of large-scale genomic sequencing of people with suspected genetic conditions. Core goals of both enterprises (e.g. understanding genotype-phenotype relationships; generating an evidence base for genomic medicine) are more likely to be realized at a population scale if both those ordering and those undergoing sequencing for diagnostic reasons are routinely and longitudinally studied. Rather than relying on expensive and lengthy randomized clinical trials and meta-analyses, we propose leveraging nascent clinical-research hybrid frameworks into a broader, more permanent instantiation of exploratory medical sequencing. Such an investment could enlighten stakeholders about the real-life challenges posed by whole-genome sequencing, such as establishing the clinical actionability of genetic variants, returning 'off-target' results to families, developing effective service delivery models and monitoring long-term outcomes. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Performance and Scalability of Discriminative Metrics for Comparative Gene Identification in 12 Drosophila Genomes

    PubMed Central

    Lin, Michael F.; Deoras, Ameya N.; Rasmussen, Matthew D.; Kellis, Manolis

    2008-01-01

    Comparative genomics of multiple related species is a powerful methodology for the discovery of functional genomic elements, and its power should increase with the number of species compared. Here, we use 12 Drosophila genomes to study the power of comparative genomics metrics to distinguish between protein-coding and non-coding regions. First, we study the relative power of different comparative metrics and their relationship to single-species metrics. We find that even relatively simple multi-species metrics robustly outperform advanced single-species metrics, especially for shorter exons (≤240 nt), which are common in animal genomes. Moreover, the two capture largely independent features of protein-coding genes, with different sensitivity/specificity trade-offs, such that their combinations lead to even greater discriminatory power. In addition, we study how discovery power scales with the number and phylogenetic distance of the genomes compared. We find that species at a broad range of distances are comparably effective informants for pairwise comparative gene identification, but that these are surpassed by multi-species comparisons at similar evolutionary divergence. In particular, while pairwise discovery power plateaued at larger distances and never outperformed the most advanced single-species metrics, multi-species comparisons continued to benefit even from the most distant species with no apparent saturation. Last, we find that genes in functional categories typically considered fast-evolving can nonetheless be recovered at very high rates using comparative methods. Our results have implications for comparative genomics analyses in any species, including the human. PMID:18421375

  11. Genome Partitioner: A web tool for multi-level partitioning of large-scale DNA constructs for synthetic biology applications

    PubMed Central

    Del Medico, Luca; Christen, Heinz; Christen, Beat

    2017-01-01

    Recent advances in lower-cost DNA synthesis techniques have enabled new innovations in the field of synthetic biology. Still, efficient design and higher-order assembly of genome-scale DNA constructs remains a labor-intensive process. Given the complexity, computer assisted design tools that fragment large DNA sequences into fabricable DNA blocks are needed to pave the way towards streamlined assembly of biological systems. Here, we present the Genome Partitioner software implemented as a web-based interface that permits multi-level partitioning of genome-scale DNA designs. Without the need for specialized computing skills, biologists can submit their DNA designs to a fully automated pipeline that generates the optimal retrosynthetic route for higher-order DNA assembly. To test the algorithm, we partitioned a 783 kb Caulobacter crescentus genome design. We validated the partitioning strategy by assembling a 20 kb test segment encompassing a difficult to synthesize DNA sequence. Successful assembly from 1 kb subblocks into the 20 kb segment highlights the effectiveness of the Genome Partitioner for reducing synthesis costs and timelines for higher-order DNA assembly. The Genome Partitioner is broadly applicable to translate DNA designs into ready to order sequences that can be assembled with standardized protocols, thus offering new opportunities to harness the diversity of microbial genomes for synthetic biology applications. The Genome Partitioner web tool can be accessed at https://christenlab.ethz.ch/GenomePartitioner. PMID:28531174

  12. GSuite HyperBrowser: integrative analysis of dataset collections across the genome and epigenome.

    PubMed

    Simovski, Boris; Vodák, Daniel; Gundersen, Sveinung; Domanska, Diana; Azab, Abdulrahman; Holden, Lars; Holden, Marit; Grytten, Ivar; Rand, Knut; Drabløs, Finn; Johansen, Morten; Mora, Antonio; Lund-Andersen, Christin; Fromm, Bastian; Eskeland, Ragnhild; Gabrielsen, Odd Stokke; Ferkingstad, Egil; Nakken, Sigve; Bengtsen, Mads; Nederbragt, Alexander Johan; Thorarensen, Hildur Sif; Akse, Johannes Andreas; Glad, Ingrid; Hovig, Eivind; Sandve, Geir Kjetil

    2017-07-01

    Recent large-scale undertakings such as ENCODE and Roadmap Epigenomics have generated experimental data mapped to the human reference genome (as genomic tracks) representing a variety of functional elements across a large number of cell types. Despite the high potential value of these publicly available data for a broad variety of investigations, little attention has been given to the analytical methodology necessary for their widespread utilisation. We here present a first principled treatment of the analysis of collections of genomic tracks. We have developed novel computational and statistical methodology to permit comparative and confirmatory analyses across multiple and disparate data sources. We delineate a set of generic questions that are useful across a broad range of investigations and discuss the implications of choosing different statistical measures and null models. Examples include contrasting analyses across different tissues or diseases. The methodology has been implemented in a comprehensive open-source software system, the GSuite HyperBrowser. To make the functionality accessible to biologists, and to facilitate reproducible analysis, we have also developed a web-based interface providing an expertly guided and customizable way of utilizing the methodology. With this system, many novel biological questions can flexibly be posed and rapidly answered. Through a combination of streamlined data acquisition, interoperable representation of dataset collections, and customizable statistical analysis with guided setup and interpretation, the GSuite HyperBrowser represents a first comprehensive solution for integrative analysis of track collections across the genome and epigenome. The software is available at: https://hyperbrowser.uio.no. © The Author 2017. Published by Oxford University Press.

  13. Uniform standards for genome databases in forest and fruit trees

    USDA-ARS?s Scientific Manuscript database

    TreeGenes and tfGDR serve the international forestry and fruit tree genomics research communities, respectively. These databases hold similar sequence data and provide resources for the submission and recovery of this information in order to enable comparative genomics research. Large-scale genotype...

  14. Multi-tissue analysis of co-expression networks by higher-order generalized singular value decomposition identifies functionally coherent transcriptional modules.

    PubMed

    Xiao, Xiaolin; Moreno-Moral, Aida; Rotival, Maxime; Bottolo, Leonardo; Petretto, Enrico

    2014-01-01

    Recent high-throughput efforts such as ENCODE have generated a large body of genome-scale transcriptional data in multiple conditions (e.g., cell-types and disease states). Leveraging these data is especially important for network-based approaches to human disease, for instance to identify coherent transcriptional modules (subnetworks) that can inform functional disease mechanisms and pathological pathways. Yet, genome-scale network analysis across conditions is significantly hampered by the paucity of robust and computationally-efficient methods. Building on the Higher-Order Generalized Singular Value Decomposition, we introduce a new algorithmic approach for efficient, parameter-free and reproducible identification of network-modules simultaneously across multiple conditions. Our method can accommodate weighted (and unweighted) networks of any size and can similarly use co-expression or raw gene expression input data, without hinging upon the definition and stability of the correlation used to assess gene co-expression. In simulation studies, we demonstrated distinctive advantages of our method over existing methods, which was able to recover accurately both common and condition-specific network-modules without entailing ad-hoc input parameters as required by other approaches. We applied our method to genome-scale and multi-tissue transcriptomic datasets from rats (microarray-based) and humans (mRNA-sequencing-based) and identified several common and tissue-specific subnetworks with functional significance, which were not detected by other methods. In humans we recapitulated the crosstalk between cell-cycle progression and cell-extracellular matrix interactions processes in ventricular zones during neocortex expansion and further, we uncovered pathways related to development of later cognitive functions in the cortical plate of the developing brain which were previously unappreciated. Analyses of seven rat tissues identified a multi-tissue subnetwork of co-expressed heat shock protein (Hsp) and cardiomyopathy genes (Bag3, Cryab, Kras, Emd, Plec), which was significantly replicated using separate failing heart and liver gene expression datasets in humans, thus revealing a conserved functional role for Hsp genes in cardiovascular disease.

  15. Sequence Analysis of Leuconostoc mesenteroides Bacteriophage Φ1-A4 Isolated from an Industrial Vegetable Fermentation▿

    PubMed Central

    Lu, Z.; Altermann, E.; Breidt, F.; Kozyavkin, S.

    2010-01-01

    Vegetable fermentations rely on the proper succession of a variety of lactic acid bacteria (LAB). Leuconostoc mesenteroides initiates fermentation. As fermentation proceeds, L. mesenteroides dies off and other LAB complete the fermentation. Phages infecting L. mesenteroides may significantly influence the die-off of L. mesenteroides. However, no L. mesenteroides phages have been previously genetically characterized. Knowledge of more phage genome sequences may provide new insights into phage genomics, phage evolution, and phage-host interactions. We have determined the complete genome sequence of L. mesenteroides phage Φ1-A4, isolated from an industrial sauerkraut fermentation. The phage possesses a linear, double-stranded DNA genome consisting of 29,508 bp with a G+C content of 36%. Fifty open reading frames (ORFs) were predicted. Putative functions were assigned to 26 ORFs (52%), including 5 ORFs of structural proteins. The phage genome was modularly organized, containing DNA replication, DNA-packaging, head and tail morphogenesis, cell lysis, and DNA regulation/modification modules. In silico analyses showed that Φ1-A4 is a unique lytic phage with a large-scale genome inversion (∼30% of the genome). The genome inversion encompassed the lysis module, part of the structural protein module, and a cos site. The endolysin gene was flanked by two holin genes. The tail morphogenesis module was interspersed with cell lysis genes and other genes with unknown functions. The predicted amino acid sequences of the phage proteins showed little similarity to other phages, but functional analyses showed that Φ1-A4 clusters with several Lactococcus phages. To our knowledge, Φ1-A4 is the first genetically characterized L. mesenteroides phage. PMID:20118355

  16. Systematically Differentiating Functions for Alternatively Spliced Isoforms through Integrating RNA-seq Data

    PubMed Central

    Menon, Rajasree; Wen, Yuchen; Omenn, Gilbert S.; Kretzler, Matthias; Guan, Yuanfang

    2013-01-01

    Integrating large-scale functional genomic data has significantly accelerated our understanding of gene functions. However, no algorithm has been developed to differentiate functions for isoforms of the same gene using high-throughput genomic data. This is because standard supervised learning requires ‘ground-truth’ functional annotations, which are lacking at the isoform level. To address this challenge, we developed a generic framework that interrogates public RNA-seq data at the transcript level to differentiate functions for alternatively spliced isoforms. For a specific function, our algorithm identifies the ‘responsible’ isoform(s) of a gene and generates classifying models at the isoform level instead of at the gene level. Through cross-validation, we demonstrated that our algorithm is effective in assigning functions to genes, especially the ones with multiple isoforms, and robust to gene expression levels and removal of homologous gene pairs. We identified genes in the mouse whose isoforms are predicted to have disparate functionalities and experimentally validated the ‘responsible’ isoforms using data from mammary tissue. With protein structure modeling and experimental evidence, we further validated the predicted isoform functional differences for the genes Cdkn2a and Anxa6. Our generic framework is the first to predict and differentiate functions for alternatively spliced isoforms, instead of genes, using genomic data. It is extendable to any base machine learner and other species with alternatively spliced isoforms, and shifts the current gene-centered function prediction to isoform-level predictions. PMID:24244129

  17. Correcting Inconsistencies and Errors in Bacterial Genome Metadata Using an Automated Curation Tool in Excel (AutoCurE).

    PubMed

    Schmedes, Sarah E; King, Jonathan L; Budowle, Bruce

    2015-01-01

    Whole-genome data are invaluable for large-scale comparative genomic studies. Current sequencing technologies have made it feasible to sequence entire bacterial genomes with relative ease and time with a substantially reduced cost per nucleotide, hence cost per genome. More than 3,000 bacterial genomes have been sequenced and are available at the finished status. Publically available genomes can be readily downloaded; however, there are challenges to verify the specific supporting data contained within the download and to identify errors and inconsistencies that may be present within the organizational data content and metadata. AutoCurE, an automated tool for bacterial genome database curation in Excel, was developed to facilitate local database curation of supporting data that accompany downloaded genomes from the National Center for Biotechnology Information. AutoCurE provides an automated approach to curate local genomic databases by flagging inconsistencies or errors by comparing the downloaded supporting data to the genome reports to verify genome name, RefSeq accession numbers, the presence of archaea, BioProject/UIDs, and sequence file descriptions. Flags are generated for nine metadata fields if there are inconsistencies between the downloaded genomes and genomes reports and if erroneous or missing data are evident. AutoCurE is an easy-to-use tool for local database curation for large-scale genome data prior to downstream analyses.

  18. GenoMycDB: a database for comparative analysis of mycobacterial genes and genomes.

    PubMed

    Catanho, Marcos; Mascarenhas, Daniel; Degrave, Wim; Miranda, Antonio Basílio de

    2006-03-31

    Several databases and computational tools have been created with the aim of organizing, integrating and analyzing the wealth of information generated by large-scale sequencing projects of mycobacterial genomes and those of other organisms. However, with very few exceptions, these databases and tools do not allow for massive and/or dynamic comparison of these data. GenoMycDB (http://www.dbbm.fiocruz.br/GenoMycDB) is a relational database built for large-scale comparative analyses of completely sequenced mycobacterial genomes, based on their predicted protein content. Its central structure is composed of the results obtained after pair-wise sequence alignments among all the predicted proteins coded by the genomes of six mycobacteria: Mycobacterium tuberculosis (strains H37Rv and CDC1551), M. bovis AF2122/97, M. avium subsp. paratuberculosis K10, M. leprae TN, and M. smegmatis MC2 155. The database stores the computed similarity parameters of every aligned pair, providing for each protein sequence the predicted subcellular localization, the assigned cluster of orthologous groups, the features of the corresponding gene, and links to several important databases. Tables containing pairs or groups of potential homologs between selected species/strains can be produced dynamically by user-defined criteria, based on one or multiple sequence similarity parameters. In addition, searches can be restricted according to the predicted subcellular localization of the protein, the DNA strand of the corresponding gene and/or the description of the protein. Massive data search and/or retrieval are available, and different ways of exporting the result are offered. GenoMycDB provides an on-line resource for the functional classification of mycobacterial proteins as well as for the analysis of genome structure, organization, and evolution.

  19. Using Galaxy to Perform Large-Scale Interactive Data Analyses

    PubMed Central

    Hillman-Jackson, Jennifer; Clements, Dave; Blankenberg, Daniel; Taylor, James; Nekrutenko, Anton

    2014-01-01

    Innovations in biomedical research technologies continue to provide experimental biologists with novel and increasingly large genomic and high-throughput data resources to be analyzed. As creating and obtaining data has become easier, the key decision faced by many researchers is a practical one: where and how should an analysis be performed? Datasets are large and analysis tool set-up and use is riddled with complexities outside of the scope of core research activities. The authors believe that Galaxy provides a powerful solution that simplifies data acquisition and analysis in an intuitive Web application, granting all researchers access to key informatics tools previously only available to computational specialists working in Unix-based environments. We will demonstrate through a series of biomedically relevant protocols how Galaxy specifically brings together (1) data retrieval from public and private sources, for example, UCSC's Eukaryote and Microbial Genome Browsers, (2) custom tools (wrapped Unix functions, format standardization/conversions, interval operations), and 3rd-party analysis tools. PMID:22700312

  20. Transposable element genomic fissuring in Pyrenophora teres is associated with genome expansion and dynamics of host-pathogen genetic interactions

    USDA-ARS?s Scientific Manuscript database

    Pyrenophora teres, P. teres f. teres (PTT) and P. teres f. maculata (PTM) cause significant diseases in barley, but little is known about the large-scale genomic differences that may distinguish the two forms. Comprehensive genome assemblies were constructed from long DNA reads, optical and genetic ...

  1. Targeted enrichment strategies for next-generation plant biology

    Treesearch

    Richard Cronn; Brian J. Knaus; Aaron Liston; Peter J. Maughan; Matthew Parks; John V. Syring; Joshua Udall

    2012-01-01

    The dramatic advances offered by modem DNA sequencers continue to redefine the limits of what can be accomplished in comparative plant biology. Even with recent achievements, however, plant genomes present obstacles that can make it difficult to execute large-scale population and phylogenetic studies on next-generation sequencing platforms. Factors like large genome...

  2. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence.

    PubMed

    Savage, Jeanne E; Jansen, Philip R; Stringer, Sven; Watanabe, Kyoko; Bryois, Julien; de Leeuw, Christiaan A; Nagel, Mats; Awasthi, Swapnil; Barr, Peter B; Coleman, Jonathan R I; Grasby, Katrina L; Hammerschlag, Anke R; Kaminski, Jakob A; Karlsson, Robert; Krapohl, Eva; Lam, Max; Nygaard, Marianne; Reynolds, Chandra A; Trampush, Joey W; Young, Hannah; Zabaneh, Delilah; Hägg, Sara; Hansell, Narelle K; Karlsson, Ida K; Linnarsson, Sten; Montgomery, Grant W; Muñoz-Manchado, Ana B; Quinlan, Erin B; Schumann, Gunter; Skene, Nathan G; Webb, Bradley T; White, Tonya; Arking, Dan E; Avramopoulos, Dimitrios; Bilder, Robert M; Bitsios, Panos; Burdick, Katherine E; Cannon, Tyrone D; Chiba-Falek, Ornit; Christoforou, Andrea; Cirulli, Elizabeth T; Congdon, Eliza; Corvin, Aiden; Davies, Gail; Deary, Ian J; DeRosse, Pamela; Dickinson, Dwight; Djurovic, Srdjan; Donohoe, Gary; Conley, Emily Drabant; Eriksson, Johan G; Espeseth, Thomas; Freimer, Nelson A; Giakoumaki, Stella; Giegling, Ina; Gill, Michael; Glahn, David C; Hariri, Ahmad R; Hatzimanolis, Alex; Keller, Matthew C; Knowles, Emma; Koltai, Deborah; Konte, Bettina; Lahti, Jari; Le Hellard, Stephanie; Lencz, Todd; Liewald, David C; London, Edythe; Lundervold, Astri J; Malhotra, Anil K; Melle, Ingrid; Morris, Derek; Need, Anna C; Ollier, William; Palotie, Aarno; Payton, Antony; Pendleton, Neil; Poldrack, Russell A; Räikkönen, Katri; Reinvang, Ivar; Roussos, Panos; Rujescu, Dan; Sabb, Fred W; Scult, Matthew A; Smeland, Olav B; Smyrnis, Nikolaos; Starr, John M; Steen, Vidar M; Stefanis, Nikos C; Straub, Richard E; Sundet, Kjetil; Tiemeier, Henning; Voineskos, Aristotle N; Weinberger, Daniel R; Widen, Elisabeth; Yu, Jin; Abecasis, Goncalo; Andreassen, Ole A; Breen, Gerome; Christiansen, Lene; Debrabant, Birgit; Dick, Danielle M; Heinz, Andreas; Hjerling-Leffler, Jens; Ikram, M Arfan; Kendler, Kenneth S; Martin, Nicholas G; Medland, Sarah E; Pedersen, Nancy L; Plomin, Robert; Polderman, Tinca J C; Ripke, Stephan; van der Sluis, Sophie; Sullivan, Patrick F; Vrieze, Scott I; Wright, Margaret J; Posthuma, Danielle

    2018-06-25

    Intelligence is highly heritable 1 and a major determinant of human health and well-being 2 . Recent genome-wide meta-analyses have identified 24 genomic loci linked to variation in intelligence 3-7 , but much about its genetic underpinnings remains to be discovered. Here, we present a large-scale genetic association study of intelligence (n = 269,867), identifying 205 associated genomic loci (190 new) and 1,016 genes (939 new) via positional mapping, expression quantitative trait locus (eQTL) mapping, chromatin interaction mapping, and gene-based association analysis. We find enrichment of genetic effects in conserved and coding regions and associations with 146 nonsynonymous exonic variants. Associated genes are strongly expressed in the brain, specifically in striatal medium spiny neurons and hippocampal pyramidal neurons. Gene set analyses implicate pathways related to nervous system development and synaptic structure. We confirm previous strong genetic correlations with multiple health-related outcomes, and Mendelian randomization analysis results suggest protective effects of intelligence for Alzheimer's disease and ADHD and bidirectional causation with pleiotropic effects for schizophrenia. These results are a major step forward in understanding the neurobiology of cognitive function as well as genetically related neurological and psychiatric disorders.

  3. Trends in structural coverage of the protein universe and the impact of the Protein Structure Initiative

    PubMed Central

    Khafizov, Kamil; Madrid-Aliste, Carlos; Almo, Steven C.; Fiser, Andras

    2014-01-01

    The exponential growth of protein sequence data provides an ever-expanding body of unannotated and misannotated proteins. The National Institutes of Health-supported Protein Structure Initiative and related worldwide structural genomics efforts facilitate functional annotation of proteins through structural characterization. Recently there have been profound changes in the taxonomic composition of sequence databases, which are effectively redefining the scope and contribution of these large-scale structure-based efforts. The faster-growing bacterial genomic entries have overtaken the eukaryotic entries over the last 5 y, but also have become more redundant. Despite the enormous increase in the number of sequences, the overall structural coverage of proteins—including proteins for which reliable homology models can be generated—on the residue level has increased from 30% to 40% over the last 10 y. Structural genomics efforts contributed ∼50% of this new structural coverage, despite determining only ∼10% of all new structures. Based on current trends, it is expected that ∼55% structural coverage (the level required for significant functional insight) will be achieved within 15 y, whereas without structural genomics efforts, realizing this goal will take approximately twice as long. PMID:24567391

  4. Trends in structural coverage of the protein universe and the impact of the Protein Structure Initiative.

    PubMed

    Khafizov, Kamil; Madrid-Aliste, Carlos; Almo, Steven C; Fiser, Andras

    2014-03-11

    The exponential growth of protein sequence data provides an ever-expanding body of unannotated and misannotated proteins. The National Institutes of Health-supported Protein Structure Initiative and related worldwide structural genomics efforts facilitate functional annotation of proteins through structural characterization. Recently there have been profound changes in the taxonomic composition of sequence databases, which are effectively redefining the scope and contribution of these large-scale structure-based efforts. The faster-growing bacterial genomic entries have overtaken the eukaryotic entries over the last 5 y, but also have become more redundant. Despite the enormous increase in the number of sequences, the overall structural coverage of proteins--including proteins for which reliable homology models can be generated--on the residue level has increased from 30% to 40% over the last 10 y. Structural genomics efforts contributed ∼50% of this new structural coverage, despite determining only ∼10% of all new structures. Based on current trends, it is expected that ∼55% structural coverage (the level required for significant functional insight) will be achieved within 15 y, whereas without structural genomics efforts, realizing this goal will take approximately twice as long.

  5. Progress toward a low budget reference grade genome assembly

    USDA-ARS?s Scientific Manuscript database

    Reference quality de novo genome assemblies were once solely the domain of large, well-funded genome projects. While next-generation short read technology removed some of the cost barriers, accurate chromosome-scale assembly remains a real challenge. Here we present efforts to de novo assemble the...

  6. PRIMED: PRIMEr Database for Deleting and Tagging All Fission and Budding Yeast Genes Developed Using the Open-Source Genome Retrieval Script (GRS)

    PubMed Central

    Cummings, Michael T.; Joh, Richard I.; Motamedi, Mo

    2015-01-01

    The fission (Schizosaccharomyces pombe) and budding (Saccharomyces cerevisiae) yeasts have served as excellent models for many seminal discoveries in eukaryotic biology. In these organisms, genes are deleted or tagged easily by transforming cells with PCR-generated DNA inserts, flanked by short (50-100bp) regions of gene homology. These PCR reactions use especially designed long primers, which, in addition to the priming sites, carry homology for gene targeting. Primer design follows a fixed method but is tedious and time-consuming especially when done for a large number of genes. To automate this process, we developed the Python-based Genome Retrieval Script (GRS), an easily customizable open-source script for genome analysis. Using GRS, we created PRIMED, the complete PRIMEr D atabase for deleting and C-terminal tagging genes in the main S. pombe and five of the most commonly used S. cerevisiae strains. Because of the importance of noncoding RNAs (ncRNAs) in many biological processes, we also included the deletion primer set for these features in each genome. PRIMED are accurate and comprehensive and are provided as downloadable Excel files, removing the need for future primer design, especially for large-scale functional analyses. Furthermore, the open-source GRS can be used broadly to retrieve genome information from custom or other annotated genomes, thus providing a suitable platform for building other genomic tools by the yeast or other research communities. PMID:25643023

  7. CoCoNUT: an efficient system for the comparison and analysis of genomes

    PubMed Central

    2008-01-01

    Background Comparative genomics is the analysis and comparison of genomes from different species. This area of research is driven by the large number of sequenced genomes and heavily relies on efficient algorithms and software to perform pairwise and multiple genome comparisons. Results Most of the software tools available are tailored for one specific task. In contrast, we have developed a novel system CoCoNUT (Computational Comparative geNomics Utility Toolkit) that allows solving several different tasks in a unified framework: (1) finding regions of high similarity among multiple genomic sequences and aligning them, (2) comparing two draft or multi-chromosomal genomes, (3) locating large segmental duplications in large genomic sequences, and (4) mapping cDNA/EST to genomic sequences. Conclusion CoCoNUT is competitive with other software tools w.r.t. the quality of the results. The use of state of the art algorithms and data structures allows CoCoNUT to solve comparative genomics tasks more efficiently than previous tools. With the improved user interface (including an interactive visualization component), CoCoNUT provides a unified, versatile, and easy-to-use software tool for large scale studies in comparative genomics. PMID:19014477

  8. Exception to the Rule: Genomic Characterization of Naturally Occurring Unusual Vibrio cholerae Strains with a Single Chromosome

    DOE PAGES

    Xie, Gary; Johnson, Shannon Lyn; Davenport, Karen Walston; ...

    2017-08-29

    Here, the genetic make-up of most bacteria is encoded in a single chromosome while about 10% have more than one chromosome. Among these, Vibrio cholerae, with two chromosomes, has served as a model system to study various aspects of chromosome maintenance, mainly replication, and faithful partitioning of multipartite genomes. Here, we describe the genomic characterization of strains that are an exception to the two chromosome rules: naturally occurring single-chromosome V. cholerae. Whole genome sequence analyses of NSCV1 and NSCV2 (natural single-chromosome vibrio) revealed that the Chr1 and Chr2 fusion junctions contain prophages, IS elements, and direct repeats, in addition tomore » large-scale chromosomal rearrangements such as inversions, insertions, and long tandem repeats elsewhere in the chromosome compared to prototypical two chromosome V. cholerae genomes. Many of the known cholera virulence factors are absent. The two origins of replication and associated genes are generally intact with synonymous mutations in some genes, as arerecAand mismatch repair (MMR) genes dam, mutH, and mutL; MutS function is probably impaired in NSCV2. These strains are ideal tools for studying mechanistic aspects of maintenance of chromosomes with multiple origins and other rearrangements and the biological, functional, and evolutionary significance of multipartite genome architecture in general.« less

  9. Pdsg1 and Pdsg2, Novel Proteins Involved in Developmental Genome Remodelling in Paramecium

    PubMed Central

    Hoehener, Cristina; Singh, Aditi; Swart, Estienne C.; Nowacki, Mariusz

    2014-01-01

    The epigenetic influence of maternal cells on the development of their progeny has long been studied in various eukaryotes. Multicellular organisms usually provide their zygotes not only with nutrients but also with functional elements required for proper development, such as coding and non-coding RNAs. These maternally deposited RNAs exhibit a variety of functions, from regulating gene expression to assuring genome integrity. In ciliates, such as Paramecium these RNAs participate in the programming of large-scale genome reorganization during development, distinguishing germline-limited DNA, which is excised, from somatic-destined DNA. Only a handful of proteins playing roles in this process have been identified so far, including typical RNAi-derived factors such as Dicer-like and Piwi proteins. Here we report and characterize two novel proteins, Pdsg1 and Pdsg2 (Paramecium protein involved in Development of the Somatic Genome 1 and 2), involved in Paramecium genome reorganization. We show that these proteins are necessary for the excision of germline-limited DNA during development and the survival of sexual progeny. Knockdown of PDSG1 and PDSG2 genes affects the populations of small RNAs known to be involved in the programming of DNA elimination (scanRNAs and iesRNAs) and chromatin modification patterns during development. Our results suggest an association between RNA-mediated trans-generational epigenetic signal and chromatin modifications in the process of Paramecium genome reorganization. PMID:25397898

  10. Pdsg1 and Pdsg2, novel proteins involved in developmental genome remodelling in Paramecium.

    PubMed

    Arambasic, Miroslav; Sandoval, Pamela Y; Hoehener, Cristina; Singh, Aditi; Swart, Estienne C; Nowacki, Mariusz

    2014-01-01

    The epigenetic influence of maternal cells on the development of their progeny has long been studied in various eukaryotes. Multicellular organisms usually provide their zygotes not only with nutrients but also with functional elements required for proper development, such as coding and non-coding RNAs. These maternally deposited RNAs exhibit a variety of functions, from regulating gene expression to assuring genome integrity. In ciliates, such as Paramecium these RNAs participate in the programming of large-scale genome reorganization during development, distinguishing germline-limited DNA, which is excised, from somatic-destined DNA. Only a handful of proteins playing roles in this process have been identified so far, including typical RNAi-derived factors such as Dicer-like and Piwi proteins. Here we report and characterize two novel proteins, Pdsg1 and Pdsg2 (Paramecium protein involved in Development of the Somatic Genome 1 and 2), involved in Paramecium genome reorganization. We show that these proteins are necessary for the excision of germline-limited DNA during development and the survival of sexual progeny. Knockdown of PDSG1 and PDSG2 genes affects the populations of small RNAs known to be involved in the programming of DNA elimination (scanRNAs and iesRNAs) and chromatin modification patterns during development. Our results suggest an association between RNA-mediated trans-generational epigenetic signal and chromatin modifications in the process of Paramecium genome reorganization.

  11. Exception to the Rule: Genomic Characterization of Naturally Occurring Unusual Vibrio cholerae Strains with a Single Chromosome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Gary; Johnson, Shannon Lyn; Davenport, Karen Walston

    Here, the genetic make-up of most bacteria is encoded in a single chromosome while about 10% have more than one chromosome. Among these, Vibrio cholerae, with two chromosomes, has served as a model system to study various aspects of chromosome maintenance, mainly replication, and faithful partitioning of multipartite genomes. Here, we describe the genomic characterization of strains that are an exception to the two chromosome rules: naturally occurring single-chromosome V. cholerae. Whole genome sequence analyses of NSCV1 and NSCV2 (natural single-chromosome vibrio) revealed that the Chr1 and Chr2 fusion junctions contain prophages, IS elements, and direct repeats, in addition tomore » large-scale chromosomal rearrangements such as inversions, insertions, and long tandem repeats elsewhere in the chromosome compared to prototypical two chromosome V. cholerae genomes. Many of the known cholera virulence factors are absent. The two origins of replication and associated genes are generally intact with synonymous mutations in some genes, as arerecAand mismatch repair (MMR) genes dam, mutH, and mutL; MutS function is probably impaired in NSCV2. These strains are ideal tools for studying mechanistic aspects of maintenance of chromosomes with multiple origins and other rearrangements and the biological, functional, and evolutionary significance of multipartite genome architecture in general.« less

  12. Asymmetric author-topic model for knowledge discovering of big data in toxicogenomics.

    PubMed

    Chung, Ming-Hua; Wang, Yuping; Tang, Hailin; Zou, Wen; Basinger, John; Xu, Xiaowei; Tong, Weida

    2015-01-01

    The advancement of high-throughput screening technologies facilitates the generation of massive amount of biological data, a big data phenomena in biomedical science. Yet, researchers still heavily rely on keyword search and/or literature review to navigate the databases and analyses are often done in rather small-scale. As a result, the rich information of a database has not been fully utilized, particularly for the information embedded in the interactive nature between data points that are largely ignored and buried. For the past 10 years, probabilistic topic modeling has been recognized as an effective machine learning algorithm to annotate the hidden thematic structure of massive collection of documents. The analogy between text corpus and large-scale genomic data enables the application of text mining tools, like probabilistic topic models, to explore hidden patterns of genomic data and to the extension of altered biological functions. In this paper, we developed a generalized probabilistic topic model to analyze a toxicogenomics dataset that consists of a large number of gene expression data from the rat livers treated with drugs in multiple dose and time-points. We discovered the hidden patterns in gene expression associated with the effect of doses and time-points of treatment. Finally, we illustrated the ability of our model to identify the evidence of potential reduction of animal use.

  13. In silico identification and comparative analysis of differentially expressed genes in human and mouse tissues

    PubMed Central

    Pao, Sheng-Ying; Lin, Win-Li; Hwang, Ming-Jing

    2006-01-01

    Background Screening for differentially expressed genes on the genomic scale and comparative analysis of the expression profiles of orthologous genes between species to study gene function and regulation are becoming increasingly feasible. Expressed sequence tags (ESTs) are an excellent source of data for such studies using bioinformatic approaches because of the rich libraries and tremendous amount of data now available in the public domain. However, any large-scale EST-based bioinformatics analysis must deal with the heterogeneous, and often ambiguous, tissue and organ terms used to describe EST libraries. Results To deal with the issue of tissue source, in this work, we carefully screened and organized more than 8 million human and mouse ESTs into 157 human and 108 mouse tissue/organ categories, to which we applied an established statistic test using different thresholds of the p value to identify genes differentially expressed in different tissues. Further analysis of the tissue distribution and level of expression of human and mouse orthologous genes showed that tissue-specific orthologs tended to have more similar expression patterns than those lacking significant tissue specificity. On the other hand, a number of orthologs were found to have significant disparity in their expression profiles, hinting at novel functions, divergent regulation, or new ortholog relationships. Conclusion Comprehensive statistics on the tissue-specific expression of human and mouse genes were obtained in this very large-scale, EST-based analysis. These statistical results have been organized into a database, freely accessible at our website , for easy searching of human and mouse tissue-specific genes and for investigating gene expression profiles in the context of comparative genomics. Comparative analysis showed that, although highly tissue-specific genes tend to exhibit similar expression profiles in human and mouse, there are significant exceptions, indicating that orthologous genes, while sharing basic genomic properties, could result in distinct phenotypes. PMID:16626500

  14. Stochastic dynamics of genetic broadcasting networks

    NASA Astrophysics Data System (ADS)

    Potoyan, Davit; Wolynes, Peter

    The complex genetic programs of eukaryotic cells are often regulated by key transcription factors occupying or clearing out of a large number of genomic locations. Orchestrating the residence times of these factors is therefore important for the well organized functioning of a large network. The classic models of genetic switches sidestep this timing issue by assuming the binding of transcription factors to be governed entirely by thermodynamic protein-DNA affinities. Here we show that relying on passive thermodynamics and random release times can lead to a ''time-scale crisis'' of master genes that broadcast their signals to large number of binding sites. We demonstrate that this ''time-scale crisis'' can be resolved by actively regulating residence times through molecular stripping. We illustrate these ideas by studying the stochastic dynamics of the genetic network of the central eukaryotic master regulator NFκB which broadcasts its signals to many downstream genes that regulate immune response, apoptosis etc.

  15. Major soybean maturity gene haplotypes revealed by SNPViz analysis of 72 sequenced soybean genomes

    USDA-ARS?s Scientific Manuscript database

    In this Genomics Era, vast amounts of next generation sequencing data have become publicly-available for multiple genomes across hundreds of species. Analysis of these large-scale datasets can become cumbersome, especially when comparing nucleotide polymorphisms across many samples within a dataset...

  16. Phylogenomic detection and functional prediction of genes potentially important for plant meiosis.

    PubMed

    Zhang, Luoyan; Kong, Hongzhi; Ma, Hong; Yang, Ji

    2018-02-15

    Meiosis is a specialized type of cell division necessary for sexual reproduction in eukaryotes. A better understanding of the cytological procedures of meiosis has been achieved by comprehensive cytogenetic studies in plants, while the genetic mechanisms regulating meiotic progression remain incompletely understood. The increasing accumulation of complete genome sequences and large-scale gene expression datasets has provided a powerful resource for phylogenomic inference and unsupervised identification of genes involved in plant meiosis. By integrating sequence homology and expression data, 164, 131, 124 and 162 genes potentially important for meiosis were identified in the genomes of Arabidopsis thaliana, Oryza sativa, Selaginella moellendorffii and Pogonatum aloides, respectively. The predicted genes were assigned to 45 meiotic GO terms, and their functions were related to different processes occurring during meiosis in various organisms. Most of the predicted meiotic genes underwent lineage-specific duplication events during plant evolution, with about 30% of the predicted genes retaining only a single copy in higher plant genomes. The results of this study provided clues to design experiments for better functional characterization of meiotic genes in plants, promoting the phylogenomic approach to the evolutionary dynamics of the plant meiotic machineries. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Large Scale Comparative Visualisation of Regulatory Networks with TRNDiff

    DOE PAGES

    Chua, Xin-Yi; Buckingham, Lawrence; Hogan, James M.; ...

    2015-06-01

    The advent of Next Generation Sequencing (NGS) technologies has seen explosive growth in genomic datasets, and dense coverage of related organisms, supporting study of subtle, strain-specific variations as a determinant of function. Such data collections present fresh and complex challenges for bioinformatics, those of comparing models of complex relationships across hundreds and even thousands of sequences. Transcriptional Regulatory Network (TRN) structures document the influence of regulatory proteins called Transcription Factors (TFs) on associated Target Genes (TGs). TRNs are routinely inferred from model systems or iterative search, and analysis at these scales requires simultaneous displays of multiple networks well beyond thosemore » of existing network visualisation tools [1]. In this paper we describe TRNDiff, an open source system supporting the comparative analysis and visualization of TRNs (and similarly structured data) from many genomes, allowing rapid identification of functional variations within species. The approach is demonstrated through a small scale multiple TRN analysis of the Fur iron-uptake system of Yersinia, suggesting a number of candidate virulence factors; and through a larger study exploiting integration with the RegPrecise database (http://regprecise.lbl.gov; [2]) - a collection of hundreds of manually curated and predicted transcription factor regulons drawn from across the entire spectrum of prokaryotic organisms.« less

  18. Improving microbial fitness in the mammalian gut by in vivo temporal functional metagenomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaung, Stephanie J.; Deng, Luxue; Li, Ning

    Elucidating functions of commensal microbial genes in the mammalian gut is challenging because many commensals are recalcitrant to laboratory cultivation and genetic manipulation. We present Temporal FUnctional Metagenomics sequencing (TFUMseq), a platform to functionally mine bacterial genomes for genes that contribute to fitness of commensal bacteria in vivo. Our approach uses metagenomic DNA to construct large-scale heterologous expression libraries that are tracked over time in vivo by deep sequencing and computational methods. To demonstrate our approach, we built a TFUMseq plasmid library using the gut commensal Bacteroides thetaiotaomicron (Bt) and introduced Escherichia coli carrying this library into germfree mice. Populationmore » dynamics of library clones revealed Bt genes conferring significant fitness advantages in E. coli over time, including carbohydrate utilization genes, with a Bt galactokinase central to early colonization, and subsequent dominance by a Bt glycoside hydrolase enabling sucrose metabolism coupled with co-evolution of the plasmid library and E. coli genome driving increased galactose utilization. Here, our findings highlight the utility of functional metagenomics for engineering commensal bacteria with improved properties, including expanded colonization capabilities in vivo.« less

  19. Improving microbial fitness in the mammalian gut by in vivo temporal functional metagenomics

    DOE PAGES

    Yaung, Stephanie J.; Deng, Luxue; Li, Ning; ...

    2015-03-11

    Elucidating functions of commensal microbial genes in the mammalian gut is challenging because many commensals are recalcitrant to laboratory cultivation and genetic manipulation. We present Temporal FUnctional Metagenomics sequencing (TFUMseq), a platform to functionally mine bacterial genomes for genes that contribute to fitness of commensal bacteria in vivo. Our approach uses metagenomic DNA to construct large-scale heterologous expression libraries that are tracked over time in vivo by deep sequencing and computational methods. To demonstrate our approach, we built a TFUMseq plasmid library using the gut commensal Bacteroides thetaiotaomicron (Bt) and introduced Escherichia coli carrying this library into germfree mice. Populationmore » dynamics of library clones revealed Bt genes conferring significant fitness advantages in E. coli over time, including carbohydrate utilization genes, with a Bt galactokinase central to early colonization, and subsequent dominance by a Bt glycoside hydrolase enabling sucrose metabolism coupled with co-evolution of the plasmid library and E. coli genome driving increased galactose utilization. Here, our findings highlight the utility of functional metagenomics for engineering commensal bacteria with improved properties, including expanded colonization capabilities in vivo.« less

  20. Brain Genomics Superstruct Project initial data release with structural, functional, and behavioral measures

    PubMed Central

    Holmes, Avram J.; Hollinshead, Marisa O.; O’Keefe, Timothy M.; Petrov, Victor I.; Fariello, Gabriele R.; Wald, Lawrence L.; Fischl, Bruce; Rosen, Bruce R.; Mair, Ross W.; Roffman, Joshua L.; Smoller, Jordan W.; Buckner, Randy L.

    2015-01-01

    The goal of the Brain Genomics Superstruct Project (GSP) is to enable large-scale exploration of the links between brain function, behavior, and ultimately genetic variation. To provide the broader scientific community data to probe these associations, a repository of structural and functional magnetic resonance imaging (MRI) scans linked to genetic information was constructed from a sample of healthy individuals. The initial release, detailed in the present manuscript, encompasses quality screened cross-sectional data from 1,570 participants ages 18 to 35 years who were scanned with MRI and completed demographic and health questionnaires. Personality and cognitive measures were obtained on a subset of participants. Each dataset contains a T1-weighted structural MRI scan and either one (n=1,570) or two (n=1,139) resting state functional MRI scans. Test-retest reliability datasets are included from 69 participants scanned within six months of their initial visit. For the majority of participants self-report behavioral and cognitive measures are included (n=926 and n=892 respectively). Analyses of data quality, structure, function, personality, and cognition are presented to demonstrate the dataset’s utility. PMID:26175908

  1. Brain Genomics Superstruct Project initial data release with structural, functional, and behavioral measures.

    PubMed

    Holmes, Avram J; Hollinshead, Marisa O; O'Keefe, Timothy M; Petrov, Victor I; Fariello, Gabriele R; Wald, Lawrence L; Fischl, Bruce; Rosen, Bruce R; Mair, Ross W; Roffman, Joshua L; Smoller, Jordan W; Buckner, Randy L

    2015-01-01

    The goal of the Brain Genomics Superstruct Project (GSP) is to enable large-scale exploration of the links between brain function, behavior, and ultimately genetic variation. To provide the broader scientific community data to probe these associations, a repository of structural and functional magnetic resonance imaging (MRI) scans linked to genetic information was constructed from a sample of healthy individuals. The initial release, detailed in the present manuscript, encompasses quality screened cross-sectional data from 1,570 participants ages 18 to 35 years who were scanned with MRI and completed demographic and health questionnaires. Personality and cognitive measures were obtained on a subset of participants. Each dataset contains a T1-weighted structural MRI scan and either one (n=1,570) or two (n=1,139) resting state functional MRI scans. Test-retest reliability datasets are included from 69 participants scanned within six months of their initial visit. For the majority of participants self-report behavioral and cognitive measures are included (n=926 and n=892 respectively). Analyses of data quality, structure, function, personality, and cognition are presented to demonstrate the dataset's utility.

  2. Zebrafish pancreas development.

    PubMed

    Tiso, Natascia; Moro, Enrico; Argenton, Francesco

    2009-11-27

    An accurate understanding of the molecular events governing pancreas development can have an impact on clinical medicine related to diabetes, obesity and pancreatic cancer, diseases with a high impact in public health. Until 1996, the main animal models in which pancreas formation and differentiation could be studied were mouse and, for some instances related to early development, chicken and Xenopus. Zebrafish has penetrated this field very rapidly offering a new model of investigation; by joining functional genomics, genetics and in vivo whole mount visualization, Danio rerio has allowed large scale and fine multidimensional analysis of gene functions during pancreas formation and differentiation.

  3. Exercise genomics--a paradigm shift is needed: a commentary.

    PubMed

    Bouchard, Claude

    2015-12-01

    The overarching goal of exercise genomics is to illuminate exercise biology and behaviour in order to better understand the preventive and therapeutic values of exercise. An ancillary aim is to understand the role of genomic variation in human physical attributes and sports performance. The aim of this report is to briefly comment on the current status of exercise genetics and genomics and to suggest potential improvements to the research agenda and translational activities. First, the genomic features of interest to the biology of exercise are defined. Then, the limit of the current focus on common variants and their implications for exercise genomics is highlighted. The need for a major paradigm shift in exercise genomics research is discussed with an emphasis on study designs and appropriately powered studies as well as on more mechanistic and functional research. Finally, a summary of current practices in translational activities compared with what best practice demands is introduced. One suggestion is that the research portfolio of exercise genomics be composed of a larger fraction of experimental and mechanistic investigations and a smaller fraction of observational studies. It is also recommended that research should shift to unbiased exploration of the genome using all the power of genomics, epigenomics and transcriptomics in combination with large observational but preferably experimental study designs, including Mendelian randomisation. In all cases, emphasis on replications is of paramount importance. This represents an extraordinary challenge that can only be met with large-scale collaborative and multicentre research programmes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  4. Construction of a plant-transformation-competent BIBAC library and genome sequence analysis of polyploid Upland cotton (Gossypium hirsutum L.)

    PubMed Central

    2013-01-01

    Background Cotton, one of the world’s leading crops, is important to the world’s textile and energy industries, and is a model species for studies of plant polyploidization, cellulose biosynthesis and cell wall biogenesis. Here, we report the construction of a plant-transformation-competent binary bacterial artificial chromosome (BIBAC) library and comparative genome sequence analysis of polyploid Upland cotton (Gossypium hirsutum L.) with one of its diploid putative progenitor species, G. raimondii Ulbr. Results We constructed the cotton BIBAC library in a vector competent for high-molecular-weight DNA transformation in different plant species through either Agrobacterium or particle bombardment. The library contains 76,800 clones with an average insert size of 135 kb, providing an approximate 99% probability of obtaining at least one positive clone from the library using a single-copy probe. The quality and utility of the library were verified by identifying BIBACs containing genes important for fiber development, fiber cellulose biosynthesis, seed fatty acid metabolism, cotton-nematode interaction, and bacterial blight resistance. In order to gain an insight into the Upland cotton genome and its relationship with G. raimondii, we sequenced nearly 10,000 BIBAC ends (BESs) randomly selected from the library, generating approximately one BES for every 250 kb along the Upland cotton genome. The retroelement Gypsy/DIRS1 family predominates in the Upland cotton genome, accounting for over 77% of all transposable elements. From the BESs, we identified 1,269 simple sequence repeats (SSRs), of which 1,006 were new, thus providing additional markers for cotton genome research. Surprisingly, comparative sequence analysis showed that Upland cotton is much more diverged from G. raimondii at the genomic sequence level than expected. There seems to be no significant difference between the relationships of the Upland cotton D- and A-subgenomes with the G. raimondii genome, even though G. raimondii contains a D genome (D5). Conclusions The library represents the first BIBAC library in cotton and related species, thus providing tools useful for integrative physical mapping, large-scale genome sequencing and large-scale functional analysis of the Upland cotton genome. Comparative sequence analysis provides insights into the Upland cotton genome, and a possible mechanism underlying the divergence and evolution of polyploid Upland cotton from its diploid putative progenitor species, G. raimondii. PMID:23537070

  5. Interactive Exploration on Large Genomic Datasets.

    PubMed

    Tu, Eric

    2016-01-01

    The prevalence of large genomics datasets has made the the need to explore this data more important. Large sequencing projects like the 1000 Genomes Project [1], which reconstructed the genomes of 2,504 individuals sampled from 26 populations, have produced over 200TB of publically available data. Meanwhile, existing genomic visualization tools have been unable to scale with the growing amount of larger, more complex data. This difficulty is acute when viewing large regions (over 1 megabase, or 1,000,000 bases of DNA), or when concurrently viewing multiple samples of data. While genomic processing pipelines have shifted towards using distributed computing techniques, such as with ADAM [4], genomic visualization tools have not. In this work we present Mango, a scalable genome browser built on top of ADAM that can run both locally and on a cluster. Mango presents a combination of different optimizations that can be combined in a single application to drive novel genomic visualization techniques over terabytes of genomic data. By building visualization on top of a distributed processing pipeline, we can perform visualization queries over large regions that are not possible with current tools, and decrease the time for viewing large data sets. Mango is part of the Big Data Genomics project at University of California-Berkeley [25] and is published under the Apache 2 license. Mango is available at https://github.com/bigdatagenomics/mango.

  6. Measurement and genetics of human subcortical and hippocampal asymmetries in large datasets.

    PubMed

    Guadalupe, Tulio; Zwiers, Marcel P; Teumer, Alexander; Wittfeld, Katharina; Vasquez, Alejandro Arias; Hoogman, Martine; Hagoort, Peter; Fernandez, Guillen; Buitelaar, Jan; Hegenscheid, Katrin; Völzke, Henry; Franke, Barbara; Fisher, Simon E; Grabe, Hans J; Francks, Clyde

    2014-07-01

    Functional and anatomical asymmetries are prevalent features of the human brain, linked to gender, handedness, and cognition. However, little is known about the neurodevelopmental processes involved. In zebrafish, asymmetries arise in the diencephalon before extending within the central nervous system. We aimed to identify genes involved in the development of subtle, left-right volumetric asymmetries of human subcortical structures using large datasets. We first tested the feasibility of measuring left-right volume differences in such large-scale samples, as assessed by two automated methods of subcortical segmentation (FSL|FIRST and FreeSurfer), using data from 235 subjects who had undergone MRI twice. We tested the agreement between the first and second scan, and the agreement between the segmentation methods, for measures of bilateral volumes of six subcortical structures and the hippocampus, and their volumetric asymmetries. We also tested whether there were biases introduced by left-right differences in the regional atlases used by the methods, by analyzing left-right flipped images. While many bilateral volumes were measured well (scan-rescan r = 0.6-0.8), most asymmetries, with the exception of the caudate nucleus, showed lower repeatabilites. We meta-analyzed genome-wide association scan results for caudate nucleus asymmetry in a combined sample of 3,028 adult subjects but did not detect associations at genome-wide significance (P < 5 × 10(-8) ). There was no enrichment of genetic association in genes involved in left-right patterning of the viscera. Our results provide important information for researchers who are currently aiming to carry out large-scale genome-wide studies of subcortical and hippocampal volumes, and their asymmetries. Copyright © 2013 Wiley Periodicals, Inc.

  7. Read count-based method for high-throughput allelic genotyping of transposable elements and structural variants.

    PubMed

    Kuhn, Alexandre; Ong, Yao Min; Quake, Stephen R; Burkholder, William F

    2015-07-08

    Like other structural variants, transposable element insertions can be highly polymorphic across individuals. Their functional impact, however, remains poorly understood. Current genome-wide approaches for genotyping insertion-site polymorphisms based on targeted or whole-genome sequencing remain very expensive and can lack accuracy, hence new large-scale genotyping methods are needed. We describe a high-throughput method for genotyping transposable element insertions and other types of structural variants that can be assayed by breakpoint PCR. The method relies on next-generation sequencing of multiplex, site-specific PCR amplification products and read count-based genotype calls. We show that this method is flexible, efficient (it does not require rounds of optimization), cost-effective and highly accurate. This method can benefit a wide range of applications from the routine genotyping of animal and plant populations to the functional study of structural variants in humans.

  8. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells.

    PubMed

    Zhou, Yuexin; Zhu, Shiyou; Cai, Changzu; Yuan, Pengfei; Li, Chunmei; Huang, Yanyi; Wei, Wensheng

    2014-05-22

    Targeted genome editing technologies are powerful tools for studying biology and disease, and have a broad range of research applications. In contrast to the rapid development of toolkits to manipulate individual genes, large-scale screening methods based on the complete loss of gene expression are only now beginning to be developed. Here we report the development of a focused CRISPR/Cas-based (clustered regularly interspaced short palindromic repeats/CRISPR-associated) lentiviral library in human cells and a method of gene identification based on functional screening and high-throughput sequencing analysis. Using knockout library screens, we successfully identified the host genes essential for the intoxication of cells by anthrax and diphtheria toxins, which were confirmed by functional validation. The broad application of this powerful genetic screening strategy will not only facilitate the rapid identification of genes important for bacterial toxicity but will also enable the discovery of genes that participate in other biological processes.

  9. Phylogenomic evolutionary surveys of subtilase superfamily genes in fungi.

    PubMed

    Li, Juan; Gu, Fei; Wu, Runian; Yang, JinKui; Zhang, Ke-Qin

    2017-03-30

    Subtilases belong to a superfamily of serine proteases which are ubiquitous in fungi and are suspected to have developed distinct functional properties to help fungi adapt to different ecological niches. In this study, we conducted a large-scale phylogenomic survey of subtilase protease genes in 83 whole genome sequenced fungal species in order to identify the evolutionary patterns and subsequent functional divergences of different subtilase families among the main lineages of the fungal kingdom. Our comparative genomic analyses of the subtilase superfamily indicated that extensive gene duplications, losses and functional diversifications have occurred in fungi, and that the four families of subtilase enzymes in fungi, including proteinase K-like, Pyrolisin, kexin and S53, have distinct evolutionary histories which may have facilitated the adaptation of fungi to a broad array of life strategies. Our study provides new insights into the evolution of the subtilase superfamily in fungi and expands our understanding of the evolution of fungi with different lifestyles.

  10. Gene Expression Analysis: Teaching Students to Do 30,000 Experiments at Once with Microarray

    ERIC Educational Resources Information Center

    Carvalho, Felicia I.; Johns, Christopher; Gillespie, Marc E.

    2012-01-01

    Genome scale experiments routinely produce large data sets that require computational analysis, yet there are few student-based labs that illustrate the design and execution of these experiments. In order for students to understand and participate in the genomic world, teaching labs must be available where students generate and analyze large data…

  11. De Novo Protein Structure Prediction

    NASA Astrophysics Data System (ADS)

    Hung, Ling-Hong; Ngan, Shing-Chung; Samudrala, Ram

    An unparalleled amount of sequence data is being made available from large-scale genome sequencing efforts. The data provide a shortcut to the determination of the function of a gene of interest, as long as there is an existing sequenced gene with similar sequence and of known function. This has spurred structural genomic initiatives with the goal of determining as many protein folds as possible (Brenner and Levitt, 2000; Burley, 2000; Brenner, 2001; Heinemann et al., 2001). The purpose of this is twofold: First, the structure of a gene product can often lead to direct inference of its function. Second, since the function of a protein is dependent on its structure, direct comparison of the structures of gene products can be more sensitive than the comparison of sequences of genes for detecting homology. Presently, structural determination by crystallography and NMR techniques is still slow and expensive in terms of manpower and resources, despite attempts to automate the processes. Computer structure prediction algorithms, while not providing the accuracy of the traditional techniques, are extremely quick and inexpensive and can provide useful low-resolution data for structure comparisons (Bonneau and Baker, 2001). Given the immense number of structures which the structural genomic projects are attempting to solve, there would be a considerable gain even if the computer structure prediction approach were applicable to a subset of proteins.

  12. An Approach to Function Annotation for Proteins of Unknown Function (PUFs) in the Transcriptome of Indian Mulberry.

    PubMed

    Dhanyalakshmi, K H; Naika, Mahantesha B N; Sajeevan, R S; Mathew, Oommen K; Shafi, K Mohamed; Sowdhamini, Ramanathan; N Nataraja, Karaba

    2016-01-01

    The modern sequencing technologies are generating large volumes of information at the transcriptome and genome level. Translation of this information into a biological meaning is far behind the race due to which a significant portion of proteins discovered remain as proteins of unknown function (PUFs). Attempts to uncover the functional significance of PUFs are limited due to lack of easy and high throughput functional annotation tools. Here, we report an approach to assign putative functions to PUFs, identified in the transcriptome of mulberry, a perennial tree commonly cultivated as host of silkworm. We utilized the mulberry PUFs generated from leaf tissues exposed to drought stress at whole plant level. A sequence and structure based computational analysis predicted the probable function of the PUFs. For rapid and easy annotation of PUFs, we developed an automated pipeline by integrating diverse bioinformatics tools, designated as PUFs Annotation Server (PUFAS), which also provides a web service API (Application Programming Interface) for a large-scale analysis up to a genome. The expression analysis of three selected PUFs annotated by the pipeline revealed abiotic stress responsiveness of the genes, and hence their potential role in stress acclimation pathways. The automated pipeline developed here could be extended to assign functions to PUFs from any organism in general. PUFAS web server is available at http://caps.ncbs.res.in/pufas/ and the web service is accessible at http://capservices.ncbs.res.in/help/pufas.

  13. Microdiversification of a Pelagic Polynucleobacter Species Is Mainly Driven by Acquisition of Genomic Islands from a Partially Interspecific Gene Pool

    PubMed Central

    Schmidt, Johanna; Jezberová, Jitka; Koll, Ulrike; Hahn, Martin W.

    2016-01-01

    ABSTRACT Microdiversification of a planktonic freshwater bacterium was studied by comparing 37 Polynucleobacter asymbioticus strains obtained from three geographically separated sites in the Austrian Alps. Genome comparison of nine strains revealed a core genome of 1.8 Mb, representing 81% of the average genome size. Seventy-five percent of the remaining flexible genome is clustered in genomic islands (GIs). Twenty-four genomic positions could be identified where GIs are potentially located. These positions are occupied strain specifically from a set of 28 GI variants, classified according to similarities in their gene content. One variant, present in 62% of the isolates, encodes a pathway for the degradation of aromatic compounds, and another, found in 78% of the strains, contains an operon for nitrate assimilation. Both variants were shown in ecophysiological tests to be functional, thus providing the potential for microniche partitioning. In addition, detected interspecific horizontal exchange of GIs indicates a large gene pool accessible to Polynucleobacter species. In contrast to core genes, GIs are spread more successfully across spatially separated freshwater habitats. The mobility and functional diversity of GIs allow for rapid evolution, which may be a key aspect for the ubiquitous occurrence of Polynucleobacter bacteria. IMPORTANCE Assessing the ecological relevance of bacterial diversity is a key challenge for current microbial ecology. The polyphasic approach which was applied in this study, including targeted isolation of strains, genome analysis, and ecophysiological tests, is crucial for the linkage of genetic and ecological knowledge. Particularly great importance is attached to the high number of closely related strains which were investigated, represented by genome-wide average nucleotide identities (ANI) larger than 97%. The extent of functional diversification found on this narrow phylogenetic scale is compelling. Moreover, the transfer of metabolically relevant genomic islands between more distant members of the Polynucleobacter community provides important insights toward a better understanding of the evolution of these globally abundant freshwater bacteria. PMID:27836842

  14. Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains.

    PubMed

    Kyrpides, Nikos C; Hugenholtz, Philip; Eisen, Jonathan A; Woyke, Tanja; Göker, Markus; Parker, Charles T; Amann, Rudolf; Beck, Brian J; Chain, Patrick S G; Chun, Jongsik; Colwell, Rita R; Danchin, Antoine; Dawyndt, Peter; Dedeurwaerdere, Tom; DeLong, Edward F; Detter, John C; De Vos, Paul; Donohue, Timothy J; Dong, Xiu-Zhu; Ehrlich, Dusko S; Fraser, Claire; Gibbs, Richard; Gilbert, Jack; Gilna, Paul; Glöckner, Frank Oliver; Jansson, Janet K; Keasling, Jay D; Knight, Rob; Labeda, David; Lapidus, Alla; Lee, Jung-Sook; Li, Wen-Jun; Ma, Juncai; Markowitz, Victor; Moore, Edward R B; Morrison, Mark; Meyer, Folker; Nelson, Karen E; Ohkuma, Moriya; Ouzounis, Christos A; Pace, Norman; Parkhill, Julian; Qin, Nan; Rossello-Mora, Ramon; Sikorski, Johannes; Smith, David; Sogin, Mitch; Stevens, Rick; Stingl, Uli; Suzuki, Ken-Ichiro; Taylor, Dorothea; Tiedje, Jim M; Tindall, Brian; Wagner, Michael; Weinstock, George; Weissenbach, Jean; White, Owen; Wang, Jun; Zhang, Lixin; Zhou, Yu-Guang; Field, Dawn; Whitman, William B; Garrity, George M; Klenk, Hans-Peter

    2014-08-01

    Microbes hold the key to life. They hold the secrets to our past (as the descendants of the earliest forms of life) and the prospects for our future (as we mine their genes for solutions to some of the planet's most pressing problems, from global warming to antibiotic resistance). However, the piecemeal approach that has defined efforts to study microbial genetic diversity for over 20 years and in over 30,000 genome projects risks squandering that promise. These efforts have covered less than 20% of the diversity of the cultured archaeal and bacterial species, which represent just 15% of the overall known prokaryotic diversity. Here we call for the funding of a systematic effort to produce a comprehensive genomic catalog of all cultured Bacteria and Archaea by sequencing, where available, the type strain of each species with a validly published name (currently∼11,000). This effort will provide an unprecedented level of coverage of our planet's genetic diversity, allow for the large-scale discovery of novel genes and functions, and lead to an improved understanding of microbial evolution and function in the environment.

  15. Targeting protein translation, RNA splicing, and degradation by morpholino-based conjugates in Plasmodium falciparum.

    PubMed

    Garg, Aprajita; Wesolowski, Donna; Alonso, Dulce; Deitsch, Kirk W; Ben Mamoun, Choukri; Altman, Sidney

    2015-09-22

    Identification and genetic validation of new targets from available genome sequences are critical steps toward the development of new potent and selective antimalarials. However, no methods are currently available for large-scale functional analysis of the Plasmodium falciparum genome. Here we present evidence for successful use of morpholino oligomers (MO) to mediate degradation of target mRNAs or to inhibit RNA splicing or translation of several genes of P. falciparum involved in chloroquine transport, apicoplast biogenesis, and phospholipid biosynthesis. Consistent with their role in the parasite life cycle, down-regulation of these essential genes resulted in inhibition of parasite development. We show that a MO conjugate that targets the chloroquine-resistant transporter PfCRT is effective against chloroquine-sensitive and -resistant parasites, causes enlarged digestive vacuoles, and renders chloroquine-resistant strains more sensitive to chloroquine. Similarly, we show that a MO conjugate that targets the PfDXR involved in apicoplast biogenesis inhibits parasite growth and that this defect can be rescued by addition of isopentenyl pyrophosphate. MO-based gene regulation is a viable alternative approach to functional analysis of the P. falciparum genome.

  16. Optimizing high performance computing workflow for protein functional annotation.

    PubMed

    Stanberry, Larissa; Rekepalli, Bhanu; Liu, Yuan; Giblock, Paul; Higdon, Roger; Montague, Elizabeth; Broomall, William; Kolker, Natali; Kolker, Eugene

    2014-09-10

    Functional annotation of newly sequenced genomes is one of the major challenges in modern biology. With modern sequencing technologies, the protein sequence universe is rapidly expanding. Newly sequenced bacterial genomes alone contain over 7.5 million proteins. The rate of data generation has far surpassed that of protein annotation. The volume of protein data makes manual curation infeasible, whereas a high compute cost limits the utility of existing automated approaches. In this work, we present an improved and optmized automated workflow to enable large-scale protein annotation. The workflow uses high performance computing architectures and a low complexity classification algorithm to assign proteins into existing clusters of orthologous groups of proteins. On the basis of the Position-Specific Iterative Basic Local Alignment Search Tool the algorithm ensures at least 80% specificity and sensitivity of the resulting classifications. The workflow utilizes highly scalable parallel applications for classification and sequence alignment. Using Extreme Science and Engineering Discovery Environment supercomputers, the workflow processed 1,200,000 newly sequenced bacterial proteins. With the rapid expansion of the protein sequence universe, the proposed workflow will enable scientists to annotate big genome data.

  17. Optimizing high performance computing workflow for protein functional annotation

    PubMed Central

    Stanberry, Larissa; Rekepalli, Bhanu; Liu, Yuan; Giblock, Paul; Higdon, Roger; Montague, Elizabeth; Broomall, William; Kolker, Natali; Kolker, Eugene

    2014-01-01

    Functional annotation of newly sequenced genomes is one of the major challenges in modern biology. With modern sequencing technologies, the protein sequence universe is rapidly expanding. Newly sequenced bacterial genomes alone contain over 7.5 million proteins. The rate of data generation has far surpassed that of protein annotation. The volume of protein data makes manual curation infeasible, whereas a high compute cost limits the utility of existing automated approaches. In this work, we present an improved and optmized automated workflow to enable large-scale protein annotation. The workflow uses high performance computing architectures and a low complexity classification algorithm to assign proteins into existing clusters of orthologous groups of proteins. On the basis of the Position-Specific Iterative Basic Local Alignment Search Tool the algorithm ensures at least 80% specificity and sensitivity of the resulting classifications. The workflow utilizes highly scalable parallel applications for classification and sequence alignment. Using Extreme Science and Engineering Discovery Environment supercomputers, the workflow processed 1,200,000 newly sequenced bacterial proteins. With the rapid expansion of the protein sequence universe, the proposed workflow will enable scientists to annotate big genome data. PMID:25313296

  18. Genomic Encyclopedia of Bacteria and Archaea: Sequencing a Myriad of Type Strains

    PubMed Central

    Kyrpides, Nikos C.; Hugenholtz, Philip; Eisen, Jonathan A.; Woyke, Tanja; Göker, Markus; Parker, Charles T.; Amann, Rudolf; Beck, Brian J.; Chain, Patrick S. G.; Chun, Jongsik; Colwell, Rita R.; Danchin, Antoine; Dawyndt, Peter; Dedeurwaerdere, Tom; DeLong, Edward F.; Detter, John C.; De Vos, Paul; Donohue, Timothy J.; Dong, Xiu-Zhu; Ehrlich, Dusko S.; Fraser, Claire; Gibbs, Richard; Gilbert, Jack; Gilna, Paul; Glöckner, Frank Oliver; Jansson, Janet K.; Keasling, Jay D.; Knight, Rob; Labeda, David; Lapidus, Alla; Lee, Jung-Sook; Li, Wen-Jun; MA, Juncai; Markowitz, Victor; Moore, Edward R. B.; Morrison, Mark; Meyer, Folker; Nelson, Karen E.; Ohkuma, Moriya; Ouzounis, Christos A.; Pace, Norman; Parkhill, Julian; Qin, Nan; Rossello-Mora, Ramon; Sikorski, Johannes; Smith, David; Sogin, Mitch; Stevens, Rick; Stingl, Uli; Suzuki, Ken-ichiro; Taylor, Dorothea; Tiedje, Jim M.; Tindall, Brian; Wagner, Michael; Weinstock, George; Weissenbach, Jean; White, Owen; Wang, Jun; Zhang, Lixin; Zhou, Yu-Guang; Field, Dawn; Whitman, William B.; Garrity, George M.; Klenk, Hans-Peter

    2014-01-01

    Microbes hold the key to life. They hold the secrets to our past (as the descendants of the earliest forms of life) and the prospects for our future (as we mine their genes for solutions to some of the planet's most pressing problems, from global warming to antibiotic resistance). However, the piecemeal approach that has defined efforts to study microbial genetic diversity for over 20 years and in over 30,000 genome projects risks squandering that promise. These efforts have covered less than 20% of the diversity of the cultured archaeal and bacterial species, which represent just 15% of the overall known prokaryotic diversity. Here we call for the funding of a systematic effort to produce a comprehensive genomic catalog of all cultured Bacteria and Archaea by sequencing, where available, the type strain of each species with a validly published name (currently∼11,000). This effort will provide an unprecedented level of coverage of our planet's genetic diversity, allow for the large-scale discovery of novel genes and functions, and lead to an improved understanding of microbial evolution and function in the environment. PMID:25093819

  19. Meta-analysis of 49 549 individuals imputed with the 1000 Genomes Project reveals an exonic damaging variant in ANGPTL4 determining fasting TG levels

    PubMed Central

    van Leeuwen, Elisabeth M; Sabo, Aniko; Bis, Joshua C; Huffman, Jennifer E; Manichaikul, Ani; Smith, Albert V; Feitosa, Mary F; Demissie, Serkalem; Joshi, Peter K; Duan, Qing; Marten, Jonathan; van Klinken, Jan B; Surakka, Ida; Nolte, Ilja M; Zhang, Weihua; Mbarek, Hamdi; Li-Gao, Ruifang; Trompet, Stella; Verweij, Niek; Evangelou, Evangelos; Lyytikäinen, Leo-Pekka; Tayo, Bamidele O; Deelen, Joris; van der Most, Peter J; van der Laan, Sander W; Arking, Dan E; Morrison, Alanna; Dehghan, Abbas; Franco, Oscar H; Hofman, Albert; Rivadeneira, Fernando; Sijbrands, Eric J; Uitterlinden, Andre G; Mychaleckyj, Josyf C; Campbell, Archie; Hocking, Lynne J; Padmanabhan, Sandosh; Brody, Jennifer A; Rice, Kenneth M; White, Charles C; Harris, Tamara; Isaacs, Aaron; Campbell, Harry; Lange, Leslie A; Rudan, Igor; Kolcic, Ivana; Navarro, Pau; Zemunik, Tatijana; Salomaa, Veikko; Kooner, Angad S; Kooner, Jaspal S; Lehne, Benjamin; Scott, William R; Tan, Sian-Tsung; de Geus, Eco J; Milaneschi, Yuri; Penninx, Brenda W J H; Willemsen, Gonneke; de Mutsert, Renée; Ford, Ian; Gansevoort, Ron T; Segura-Lepe, Marcelo P; Raitakari, Olli T; Viikari, Jorma S; Nikus, Kjell; Forrester, Terrence; McKenzie, Colin A; de Craen, Anton J M; de Ruijter, Hester M; Pasterkamp, Gerard; Snieder, Harold; Oldehinkel, Albertine J; Slagboom, P Eline; Cooper, Richard S; Kähönen, Mika; Lehtimäki, Terho; Elliott, Paul; van der Harst, Pim; Jukema, J Wouter; Mook-Kanamori, Dennis O; Boomsma, Dorret I; Chambers, John C; Swertz, Morris; Ripatti, Samuli; Willems van Dijk, Ko; Vitart, Veronique; Polasek, Ozren; Hayward, Caroline; Wilson, James G; Wilson, James F; Gudnason, Vilmundur; Rich, Stephen S; Psaty, Bruce M; Borecki, Ingrid B; Boerwinkle, Eric; Rotter, Jerome I; Cupples, L Adrienne; van Duijn, Cornelia M

    2016-01-01

    Background So far, more than 170 loci have been associated with circulating lipid levels through genome-wide association studies (GWAS). These associations are largely driven by common variants, their function is often not known, and many are likely to be markers for the causal variants. In this study we aimed to identify more new rare and low-frequency functional variants associated with circulating lipid levels. Methods We used the 1000 Genomes Project as a reference panel for the imputations of GWAS data from ∼60 000 individuals in the discovery stage and ∼90 000 samples in the replication stage. Results Our study resulted in the identification of five new associations with circulating lipid levels at four loci. All four loci are within genes that can be linked biologically to lipid metabolism. One of the variants, rs116843064, is a damaging missense variant within the ANGPTL4 gene. Conclusions This study illustrates that GWAS with high-scale imputation may still help us unravel the biological mechanism behind circulating lipid levels. PMID:27036123

  20. Fungal glycoside hydrolases for saccharification of lignocellulose: outlook for new discoveries fueled by genomics and functional studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jovanovic, Iva; Magnuson, Jon K.; Collart, Frank R.

    2009-08-01

    Genome sequencing of a variety of fungi is a major initiative currently supported by the Department of Energy’s Joint Genome Institute. Encoded within the genomes of many fungi are upwards of 200+ enzymes called glycoside hydrolases (GHs). GHs are known for their ability to hydrolyze the polysaccharide components of lignocellulosic biomass. Production of ethanol and “next generation” biofuels from lignocellulosic biomass represents a sustainable route to biofuels production. However this process has to become more economical before large scale operations are put into place. Identifying and characterizing GHs with improved properties for biomass degradation is a key factor for themore » development of cost effective processes to convert biomass to fuels and chemicals. With the recent explosion in the number of GH encoding genes discovered by fungal genome sequencing projects, it has become apparent that improvements in GH gene annotation processes have to be developed. This will enable more informed and efficient decision making with regard to selection and utilization of these important enzymes in bioprocess that produce fuels and chemicals from lignocellulosic feedstocks.« less

  1. PinAPL-Py: A comprehensive web-application for the analysis of CRISPR/Cas9 screens.

    PubMed

    Spahn, Philipp N; Bath, Tyler; Weiss, Ryan J; Kim, Jihoon; Esko, Jeffrey D; Lewis, Nathan E; Harismendy, Olivier

    2017-11-20

    Large-scale genetic screens using CRISPR/Cas9 technology have emerged as a major tool for functional genomics. With its increased popularity, experimental biologists frequently acquire large sequencing datasets for which they often do not have an easy analysis option. While a few bioinformatic tools have been developed for this purpose, their utility is still hindered either due to limited functionality or the requirement of bioinformatic expertise. To make sequencing data analysis of CRISPR/Cas9 screens more accessible to a wide range of scientists, we developed a Platform-independent Analysis of Pooled Screens using Python (PinAPL-Py), which is operated as an intuitive web-service. PinAPL-Py implements state-of-the-art tools and statistical models, assembled in a comprehensive workflow covering sequence quality control, automated sgRNA sequence extraction, alignment, sgRNA enrichment/depletion analysis and gene ranking. The workflow is set up to use a variety of popular sgRNA libraries as well as custom libraries that can be easily uploaded. Various analysis options are offered, suitable to analyze a large variety of CRISPR/Cas9 screening experiments. Analysis output includes ranked lists of sgRNAs and genes, and publication-ready plots. PinAPL-Py helps to advance genome-wide screening efforts by combining comprehensive functionality with user-friendly implementation. PinAPL-Py is freely accessible at http://pinapl-py.ucsd.edu with instructions and test datasets.

  2. Linear score tests for variance components in linear mixed models and applications to genetic association studies.

    PubMed

    Qu, Long; Guennel, Tobias; Marshall, Scott L

    2013-12-01

    Following the rapid development of genome-scale genotyping technologies, genetic association mapping has become a popular tool to detect genomic regions responsible for certain (disease) phenotypes, especially in early-phase pharmacogenomic studies with limited sample size. In response to such applications, a good association test needs to be (1) applicable to a wide range of possible genetic models, including, but not limited to, the presence of gene-by-environment or gene-by-gene interactions and non-linearity of a group of marker effects, (2) accurate in small samples, fast to compute on the genomic scale, and amenable to large scale multiple testing corrections, and (3) reasonably powerful to locate causal genomic regions. The kernel machine method represented in linear mixed models provides a viable solution by transforming the problem into testing the nullity of variance components. In this study, we consider score-based tests by choosing a statistic linear in the score function. When the model under the null hypothesis has only one error variance parameter, our test is exact in finite samples. When the null model has more than one variance parameter, we develop a new moment-based approximation that performs well in simulations. Through simulations and analysis of real data, we demonstrate that the new test possesses most of the aforementioned characteristics, especially when compared to existing quadratic score tests or restricted likelihood ratio tests. © 2013, The International Biometric Society.

  3. Recent advances in ChIP-seq analysis: from quality management to whole-genome annotation.

    PubMed

    Nakato, Ryuichiro; Shirahige, Katsuhiko

    2017-03-01

    Chromatin immunoprecipitation followed by sequencing (ChIP-seq) analysis can detect protein/DNA-binding and histone-modification sites across an entire genome. Recent advances in sequencing technologies and analyses enable us to compare hundreds of samples simultaneously; such large-scale analysis has potential to reveal the high-dimensional interrelationship level for regulatory elements and annotate novel functional genomic regions de novo. Because many experimental considerations are relevant to the choice of a method in a ChIP-seq analysis, the overall design and quality management of the experiment are of critical importance. This review offers guiding principles of computation and sample preparation for ChIP-seq analyses, highlighting the validity and limitations of the state-of-the-art procedures at each step. We also discuss the latest challenges of single-cell analysis that will encourage a new era in this field. © The Author 2016. Published by Oxford University Press.

  4. SCOTCH: Secure Counting Of encrypTed genomiC data using a Hybrid approach.

    PubMed

    Chenghong, Wang; Jiang, Yichen; Mohammed, Noman; Chen, Feng; Jiang, Xiaoqian; Al Aziz, Md Momin; Sadat, Md Nazmus; Wang, Shuang

    2017-01-01

    As genomic data are usually at large scale and highly sensitive, it is essential to enable both efficient and secure analysis, by which the data owner can securely delegate both computation and storage on untrusted public cloud. Counting query of genotypes is a basic function for many downstream applications in biomedical research (e.g., computing allele frequency, calculating chi-squared statistics, etc.). Previous solutions show promise on secure counting of outsourced data but the efficiency is still a big limitation for real world applications. In this paper, we propose a novel hybrid solution to combine a rigorous theoretical model (homomorphic encryption) and the latest hardware-based infrastructure (i.e., Software Guard Extensions) to speed up the computation while preserving the privacy of both data owners and data users. Our results demonstrated efficiency by using the real data from the personal genome project.

  5. Large-scale whole-genome sequencing of the Icelandic population.

    PubMed

    Gudbjartsson, Daniel F; Helgason, Hannes; Gudjonsson, Sigurjon A; Zink, Florian; Oddson, Asmundur; Gylfason, Arnaldur; Besenbacher, Soren; Magnusson, Gisli; Halldorsson, Bjarni V; Hjartarson, Eirikur; Sigurdsson, Gunnar Th; Stacey, Simon N; Frigge, Michael L; Holm, Hilma; Saemundsdottir, Jona; Helgadottir, Hafdis Th; Johannsdottir, Hrefna; Sigfusson, Gunnlaugur; Thorgeirsson, Gudmundur; Sverrisson, Jon Th; Gretarsdottir, Solveig; Walters, G Bragi; Rafnar, Thorunn; Thjodleifsson, Bjarni; Bjornsson, Einar S; Olafsson, Sigurdur; Thorarinsdottir, Hildur; Steingrimsdottir, Thora; Gudmundsdottir, Thora S; Theodors, Asgeir; Jonasson, Jon G; Sigurdsson, Asgeir; Bjornsdottir, Gyda; Jonsson, Jon J; Thorarensen, Olafur; Ludvigsson, Petur; Gudbjartsson, Hakon; Eyjolfsson, Gudmundur I; Sigurdardottir, Olof; Olafsson, Isleifur; Arnar, David O; Magnusson, Olafur Th; Kong, Augustine; Masson, Gisli; Thorsteinsdottir, Unnur; Helgason, Agnar; Sulem, Patrick; Stefansson, Kari

    2015-05-01

    Here we describe the insights gained from sequencing the whole genomes of 2,636 Icelanders to a median depth of 20×. We found 20 million SNPs and 1.5 million insertions-deletions (indels). We describe the density and frequency spectra of sequence variants in relation to their functional annotation, gene position, pathway and conservation score. We demonstrate an excess of homozygosity and rare protein-coding variants in Iceland. We imputed these variants into 104,220 individuals down to a minor allele frequency of 0.1% and found a recessive frameshift mutation in MYL4 that causes early-onset atrial fibrillation, several mutations in ABCB4 that increase risk of liver diseases and an intronic variant in GNAS associating with increased thyroid-stimulating hormone levels when maternally inherited. These data provide a study design that can be used to determine how variation in the sequence of the human genome gives rise to human diversity.

  6. 3D organization of synthetic and scrambled chromosomes.

    PubMed

    Mercy, Guillaume; Mozziconacci, Julien; Scolari, Vittore F; Yang, Kun; Zhao, Guanghou; Thierry, Agnès; Luo, Yisha; Mitchell, Leslie A; Shen, Michael; Shen, Yue; Walker, Roy; Zhang, Weimin; Wu, Yi; Xie, Ze-Xiong; Luo, Zhouqing; Cai, Yizhi; Dai, Junbiao; Yang, Huanming; Yuan, Ying-Jin; Boeke, Jef D; Bader, Joel S; Muller, Héloïse; Koszul, Romain

    2017-03-10

    Although the design of the synthetic yeast genome Sc2.0 is highly conservative with respect to gene content, the deletion of several classes of repeated sequences and the introduction of thousands of designer changes may affect genome organization and potentially alter cellular functions. We report here the Hi-C-determined three-dimensional (3D) conformations of Sc2.0 chromosomes. The absence of repeats leads to a smoother contact pattern and more precisely tractable chromosome conformations, and the large-scale genomic organization is globally unaffected by the presence of synthetic chromosome(s). Two exceptions are synIII, which lacks the silent mating-type cassettes, and synXII, specifically when the ribosomal DNA is moved to another chromosome. We also exploit the contact maps to detect rearrangements induced in SCRaMbLE (synthetic chromosome rearrangement and modification by loxP -mediated evolution) strains. Copyright © 2017, American Association for the Advancement of Science.

  7. Incorporating evolutionary processes into population viability models.

    PubMed

    Pierson, Jennifer C; Beissinger, Steven R; Bragg, Jason G; Coates, David J; Oostermeijer, J Gerard B; Sunnucks, Paul; Schumaker, Nathan H; Trotter, Meredith V; Young, Andrew G

    2015-06-01

    We examined how ecological and evolutionary (eco-evo) processes in population dynamics could be better integrated into population viability analysis (PVA). Complementary advances in computation and population genomics can be combined into an eco-evo PVA to offer powerful new approaches to understand the influence of evolutionary processes on population persistence. We developed the mechanistic basis of an eco-evo PVA using individual-based models with individual-level genotype tracking and dynamic genotype-phenotype mapping to model emergent population-level effects, such as local adaptation and genetic rescue. We then outline how genomics can allow or improve parameter estimation for PVA models by providing genotypic information at large numbers of loci for neutral and functional genome regions. As climate change and other threatening processes increase in rate and scale, eco-evo PVAs will become essential research tools to evaluate the effects of adaptive potential, evolutionary rescue, and locally adapted traits on persistence. © 2014 Society for Conservation Biology.

  8. SCOTCH: Secure Counting Of encrypTed genomiC data using a Hybrid approach

    PubMed Central

    Chenghong, Wang; Jiang, Yichen; Mohammed, Noman; Chen, Feng; Jiang, Xiaoqian; Al Aziz, Md Momin; Sadat, Md Nazmus; Wang, Shuang

    2017-01-01

    As genomic data are usually at large scale and highly sensitive, it is essential to enable both efficient and secure analysis, by which the data owner can securely delegate both computation and storage on untrusted public cloud. Counting query of genotypes is a basic function for many downstream applications in biomedical research (e.g., computing allele frequency, calculating chi-squared statistics, etc.). Previous solutions show promise on secure counting of outsourced data but the efficiency is still a big limitation for real world applications. In this paper, we propose a novel hybrid solution to combine a rigorous theoretical model (homomorphic encryption) and the latest hardware-based infrastructure (i.e., Software Guard Extensions) to speed up the computation while preserving the privacy of both data owners and data users. Our results demonstrated efficiency by using the real data from the personal genome project. PMID:29854245

  9. Integration, warehousing, and analysis strategies of Omics data.

    PubMed

    Gedela, Srinubabu

    2011-01-01

    "-Omics" is a current suffix for numerous types of large-scale biological data generation procedures, which naturally demand the development of novel algorithms for data storage and analysis. With next generation genome sequencing burgeoning, it is pivotal to decipher a coding site on the genome, a gene's function, and information on transcripts next to the pure availability of sequence information. To explore a genome and downstream molecular processes, we need umpteen results at the various levels of cellular organization by utilizing different experimental designs, data analysis strategies and methodologies. Here comes the need for controlled vocabularies and data integration to annotate, store, and update the flow of experimental data. This chapter explores key methodologies to merge Omics data by semantic data carriers, discusses controlled vocabularies as eXtensible Markup Languages (XML), and provides practical guidance, databases, and software links supporting the integration of Omics data.

  10. Independent evolution of genomic characters during major metazoan transitions.

    PubMed

    Simakov, Oleg; Kawashima, Takeshi

    2017-07-15

    Metazoan evolution encompasses a vast evolutionary time scale spanning over 600 million years. Our ability to infer ancestral metazoan characters, both morphological and functional, is limited by our understanding of the nature and evolutionary dynamics of the underlying regulatory networks. Increasing coverage of metazoan genomes enables us to identify the evolutionary changes of the relevant genomic characters such as the loss or gain of coding sequences, gene duplications, micro- and macro-synteny, and non-coding element evolution in different lineages. In this review we describe recent advances in our understanding of ancestral metazoan coding and non-coding features, as deduced from genomic comparisons. Some genomic changes such as innovations in gene and linkage content occur at different rates across metazoan clades, suggesting some level of independence among genomic characters. While their contribution to biological innovation remains largely unclear, we review recent literature about certain genomic changes that do correlate with changes to specific developmental pathways and metazoan innovations. In particular, we discuss the origins of the recently described pharyngeal cluster which is conserved across deuterostome genomes, and highlight different genomic features that have contributed to the evolution of this group. We also assess our current capacity to infer ancestral metazoan states from gene models and comparative genomics tools and elaborate on the future directions of metazoan comparative genomics relevant to evo-devo studies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Integrative View of α2,3-Sialyltransferases (ST3Gal) Molecular and Functional Evolution in Deuterostomes: Significance of Lineage-Specific Losses

    PubMed Central

    Petit, Daniel; Teppa, Elin; Mir, Anne-Marie; Vicogne, Dorothée; Thisse, Christine; Thisse, Bernard; Filloux, Cyril; Harduin-Lepers, Anne

    2015-01-01

    Sialyltransferases are responsible for the synthesis of a diverse range of sialoglycoconjugates predicted to be pivotal to deuterostomes’ evolution. In this work, we reconstructed the evolutionary history of the metazoan α2,3-sialyltransferases family (ST3Gal), a subset of sialyltransferases encompassing six subfamilies (ST3Gal I–ST3Gal VI) functionally characterized in mammals. Exploration of genomic and expressed sequence tag databases and search of conserved sialylmotifs led to the identification of a large data set of st3gal-related gene sequences. Molecular phylogeny and large scale sequence similarity network analysis identified four new vertebrate subfamilies called ST3Gal III-r, ST3Gal VII, ST3Gal VIII, and ST3Gal IX. To address the issue of the origin and evolutionary relationships of the st3gal-related genes, we performed comparative syntenic mapping of st3gal gene loci combined to ancestral genome reconstruction. The ten vertebrate ST3Gal subfamilies originated from genome duplication events at the base of vertebrates and are organized in three distinct and ancient groups of genes predating the early deuterostomes. Inferring st3gal gene family history identified also several lineage-specific gene losses, the significance of which was explored in a functional context. Toward this aim, spatiotemporal distribution of st3gal genes was analyzed in zebrafish and bovine tissues. In addition, molecular evolutionary analyses using specificity determining position and coevolved amino acid predictions led to the identification of amino acid residues with potential implication in functional divergence of vertebrate ST3Gal. We propose a detailed scenario of the evolutionary relationships of st3gal genes coupled to a conceptual framework of the evolution of ST3Gal functions. PMID:25534026

  12. A New Omics Data Resource of Pleurocybella porrigens for Gene Discovery

    PubMed Central

    Dohra, Hideo; Someya, Takumi; Takano, Tomoyuki; Harada, Kiyonori; Omae, Saori; Hirai, Hirofumi; Yano, Kentaro; Kawagishi, Hirokazu

    2013-01-01

    Background Pleurocybella porrigens is a mushroom-forming fungus, which has been consumed as a traditional food in Japan. In 2004, 55 people were poisoned by eating the mushroom and 17 people among them died of acute encephalopathy. Since then, the Japanese government has been alerting Japanese people to take precautions against eating the P . porrigens mushroom. Unfortunately, despite efforts, the molecular mechanism of the encephalopathy remains elusive. The genome and transcriptome sequence data of P . porrigens and the related species, however, are not stored in the public database. To gain the omics data in P . porrigens , we sequenced genome and transcriptome of its fruiting bodies and mycelia by next generation sequencing. Methodology/Principal Findings Short read sequences of genomic DNAs and mRNAs in P . porrigens were generated by Illumina Genome Analyzer. Genome short reads were de novo assembled into scaffolds using Velvet. Comparisons of genome signatures among Agaricales showed that P . porrigens has a unique genome signature. Transcriptome sequences were assembled into contigs (unigenes). Biological functions of unigenes were predicted by Gene Ontology and KEGG pathway analyses. The majority of unigenes would be novel genes without significant counterparts in the public omics databases. Conclusions Functional analyses of unigenes present the existence of numerous novel genes in the basidiomycetes division. The results mean that the omics information such as genome, transcriptome and metabolome in basidiomycetes is short in the current databases. The large-scale omics information on P . porrigens , provided from this research, will give a new data resource for gene discovery in basidiomycetes. PMID:23936076

  13. Comparative genomic analysis of single-molecule sequencing and hybrid approaches for finishing the Clostridium autoethanogenum JA1-1 strain DSM 10061 genome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Steven D; Nagaraju, Shilpa; Utturkar, Sagar M

    Background Clostridium autoethanogenum strain JA1-1 (DSM 10061) is an acetogen capable of fermenting CO, CO2 and H2 (e.g. from syngas or waste gases) into biofuel ethanol and commodity chemicals such as 2,3-butanediol. A draft genome sequence consisting of 100 contigs has been published. Results A closed, high-quality genome sequence for C. autoethanogenum DSM10061 was generated using only the latest single-molecule DNA sequencing technology and without the need for manual finishing. It is assigned to the most complex genome classification based upon genome features such as repeats, prophage, nine copies of the rRNA gene operons. It has a low G +more » C content of 31.1%. Illumina, 454, Illumina/454 hybrid assemblies were generated and then compared to the draft and PacBio assemblies using summary statistics, CGAL, QUAST and REAPR bioinformatics tools and comparative genomic approaches. Assemblies based upon shorter read DNA technologies were confounded by the large number repeats and their size, which in the case of the rRNA gene operons were ~5 kb. CRISPR (Clustered Regularly Interspaced Short Paloindromic Repeats) systems among biotechnologically relevant Clostridia were classified and related to plasmid content and prophages. Potential associations between plasmid content and CRISPR systems may have implications for historical industrial scale Acetone-Butanol-Ethanol (ABE) fermentation failures and future large scale bacterial fermentations. While C. autoethanogenum contains an active CRISPR system, no such system is present in the closely related Clostridium ljungdahlii DSM 13528. A common prophage inserted into the Arg-tRNA shared between the strains suggests a common ancestor. However, C. ljungdahlii contains several additional putative prophages and it has more than double the amount of prophage DNA compared to C. autoethanogenum. Other differences include important metabolic genes for central metabolism (as an additional hydrogenase and the absence of a phophoenolpyruvate synthase) and substrate utilization pathway (mannose and aromatics utilization) that might explain phenotypic differences between C. autoethanogenum and C. ljungdahlii. Conclusions Single molecule sequencing will be increasingly used to produce finished microbial genomes. The complete genome will facilitate comparative genomics and functional genomics and support future comparisons between Clostridia and studies that examine the evolution of plasmids, bacteriophage and CRISPR systems.« less

  14. IMG-ABC: A Knowledge Base To Fuel Discovery of Biosynthetic Gene Clusters and Novel Secondary Metabolites.

    PubMed

    Hadjithomas, Michalis; Chen, I-Min Amy; Chu, Ken; Ratner, Anna; Palaniappan, Krishna; Szeto, Ernest; Huang, Jinghua; Reddy, T B K; Cimermančič, Peter; Fischbach, Michael A; Ivanova, Natalia N; Markowitz, Victor M; Kyrpides, Nikos C; Pati, Amrita

    2015-07-14

    In the discovery of secondary metabolites, analysis of sequence data is a promising exploration path that remains largely underutilized due to the lack of computational platforms that enable such a systematic approach on a large scale. In this work, we present IMG-ABC (https://img.jgi.doe.gov/abc), an atlas of biosynthetic gene clusters within the Integrated Microbial Genomes (IMG) system, which is aimed at harnessing the power of "big" genomic data for discovering small molecules. IMG-ABC relies on IMG's comprehensive integrated structural and functional genomic data for the analysis of biosynthetic gene clusters (BCs) and associated secondary metabolites (SMs). SMs and BCs serve as the two main classes of objects in IMG-ABC, each with a rich collection of attributes. A unique feature of IMG-ABC is the incorporation of both experimentally validated and computationally predicted BCs in genomes as well as metagenomes, thus identifying BCs in uncultured populations and rare taxa. We demonstrate the strength of IMG-ABC's focused integrated analysis tools in enabling the exploration of microbial secondary metabolism on a global scale, through the discovery of phenazine-producing clusters for the first time in Alphaproteobacteria. IMG-ABC strives to fill the long-existent void of resources for computational exploration of the secondary metabolism universe; its underlying scalable framework enables traversal of uncovered phylogenetic and chemical structure space, serving as a doorway to a new era in the discovery of novel molecules. IMG-ABC is the largest publicly available database of predicted and experimental biosynthetic gene clusters and the secondary metabolites they produce. The system also includes powerful search and analysis tools that are integrated with IMG's extensive genomic/metagenomic data and analysis tool kits. As new research on biosynthetic gene clusters and secondary metabolites is published and more genomes are sequenced, IMG-ABC will continue to expand, with the goal of becoming an essential component of any bioinformatic exploration of the secondary metabolism world. Copyright © 2015 Hadjithomas et al.

  15. Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs

    PubMed Central

    Sharifpoor, Sara; van Dyk, Dewald; Costanzo, Michael; Baryshnikova, Anastasia; Friesen, Helena; Douglas, Alison C.; Youn, Ji-Young; VanderSluis, Benjamin; Myers, Chad L.; Papp, Balázs; Boone, Charles; Andrews, Brenda J.

    2012-01-01

    A combinatorial genetic perturbation strategy was applied to interrogate the yeast kinome on a genome-wide scale. We assessed the global effects of gene overexpression or gene deletion to map an integrated genetic interaction network of synthetic dosage lethal (SDL) and loss-of-function genetic interactions (GIs) for 92 kinases, producing a meta-network of 8700 GIs enriched for pathways known to be regulated by cognate kinases. Kinases most sensitive to dosage perturbations had constitutive cell cycle or cell polarity functions under standard growth conditions. Condition-specific screens confirmed that the spectrum of kinase dosage interactions can be expanded substantially in activating conditions. An integrated network composed of systematic SDL, negative and positive loss-of-function GIs, and literature-curated kinase–substrate interactions revealed kinase-dependent regulatory motifs predictive of novel gene-specific phenotypes. Our study provides a valuable resource to unravel novel functional relationships and pathways regulated by kinases and outlines a general strategy for deciphering mutant phenotypes from large-scale GI networks. PMID:22282571

  16. A genomic investigation of ecological differentiation between free-living and Drosophila-associated bacteria.

    PubMed

    Winans, Nathan J; Walter, Alec; Chouaia, Bessem; Chaston, John M; Douglas, Angela E; Newell, Peter D

    2017-09-01

    Various bacterial taxa have been identified both in association with animals and in the external environment, but the extent to which related bacteria from the two habitat types are ecologically and evolutionarily distinct is largely unknown. This study investigated the scale and pattern of genetic differentiation between bacteria of the family Acetobacteraceae isolated from the guts of Drosophila fruit flies, plant material and industrial fermentations. Genome-scale analysis of the phylogenetic relationships and predicted functions was conducted on 44 Acetobacteraceae isolates, including newly sequenced genomes from 18 isolates from wild and laboratory Drosophila. Isolates from the external environment and Drosophila could not be assigned to distinct phylogenetic groups, nor are their genomes enriched for any different sets of genes or category of predicted gene functions. In contrast, analysis of bacteria from laboratory Drosophila showed they were genetically distinct in their universal capacity to degrade uric acid (a major nitrogenous waste product of Drosophila) and absence of flagellar motility, while these traits vary among wild Drosophila isolates. Analysis of the competitive fitness of Acetobacter discordant for these traits revealed a significant fitness deficit for bacteria that cannot degrade uric acid in culture with Drosophila. We propose that, for wild populations, frequent cycling of Acetobacter between Drosophila and the external environment prevents genetic differentiation by maintaining selection for traits adaptive in both the gut and external habitats. However, laboratory isolates bear the signs of adaptation to persistent association with the Drosophila host under tightly defined environmental conditions. © 2017 John Wiley & Sons Ltd.

  17. A New Framework and Prototype Solution for Clinical Decision Support and Research in Genomics and Other Data-intensive Fields of Medicine.

    PubMed

    Evans, James P; Wilhelmsen, Kirk C; Berg, Jonathan; Schmitt, Charles P; Krishnamurthy, Ashok; Fecho, Karamarie; Ahalt, Stanley C

    2016-01-01

    In genomics and other fields, it is now possible to capture and store large amounts of data in electronic medical records (EMRs). However, it is not clear if the routine accumulation of massive amounts of (largely uninterpretable) data will yield any health benefits to patients. Nevertheless, the use of large-scale medical data is likely to grow. To meet emerging challenges and facilitate optimal use of genomic data, our institution initiated a comprehensive planning process that addresses the needs of all stakeholders (e.g., patients, families, healthcare providers, researchers, technical staff, administrators). Our experience with this process and a key genomics research project contributed to the proposed framework. We propose a two-pronged Genomic Clinical Decision Support System (CDSS) that encompasses the concept of the "Clinical Mendeliome" as a patient-centric list of genomic variants that are clinically actionable and introduces the concept of the "Archival Value Criterion" as a decision-making formalism that approximates the cost-effectiveness of capturing, storing, and curating genome-scale sequencing data. We describe a prototype Genomic CDSS that we developed as a first step toward implementation of the framework. The proposed framework and prototype solution are designed to address the perspectives of stakeholders, stimulate effective clinical use of genomic data, drive genomic research, and meet current and future needs. The framework also can be broadly applied to additional fields, including other '-omics' fields. We advocate for the creation of a Task Force on the Clinical Mendeliome, charged with defining Clinical Mendeliomes and drafting clinical guidelines for their use.

  18. Development of a high-throughput SNP resource to advance genomic, genetic and breeding research in carrot (Daucus carota L.)

    USDA-ARS?s Scientific Manuscript database

    The rapid advancement in high-throughput SNP genotyping technologies along with next generation sequencing (NGS) platforms has decreased the cost, improved the quality of large-scale genome surveys, and allowed specialty crops with limited genomic resources such as carrot (Daucus carota) to access t...

  19. The Plant Genome Integrative Explorer Resource: PlantGenIE.org.

    PubMed

    Sundell, David; Mannapperuma, Chanaka; Netotea, Sergiu; Delhomme, Nicolas; Lin, Yao-Cheng; Sjödin, Andreas; Van de Peer, Yves; Jansson, Stefan; Hvidsten, Torgeir R; Street, Nathaniel R

    2015-12-01

    Accessing and exploring large-scale genomics data sets remains a significant challenge to researchers without specialist bioinformatics training. We present the integrated PlantGenIE.org platform for exploration of Populus, conifer and Arabidopsis genomics data, which includes expression networks and associated visualization tools. Standard features of a model organism database are provided, including genome browsers, gene list annotation, Blast homology searches and gene information pages. Community annotation updating is supported via integration of WebApollo. We have produced an RNA-sequencing (RNA-Seq) expression atlas for Populus tremula and have integrated these data within the expression tools. An updated version of the ComPlEx resource for performing comparative plant expression analyses of gene coexpression network conservation between species has also been integrated. The PlantGenIE.org platform provides intuitive access to large-scale and genome-wide genomics data from model forest tree species, facilitating both community contributions to annotation improvement and tools supporting use of the included data resources to inform biological insight. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  20. Synthetic Genetic Arrays: Automation of Yeast Genetics.

    PubMed

    Kuzmin, Elena; Costanzo, Michael; Andrews, Brenda; Boone, Charles

    2016-04-01

    Genome-sequencing efforts have led to great strides in the annotation of protein-coding genes and other genomic elements. The current challenge is to understand the functional role of each gene and how genes work together to modulate cellular processes. Genetic interactions define phenotypic relationships between genes and reveal the functional organization of a cell. Synthetic genetic array (SGA) methodology automates yeast genetics and enables large-scale and systematic mapping of genetic interaction networks in the budding yeast,Saccharomyces cerevisiae SGA facilitates construction of an output array of double mutants from an input array of single mutants through a series of replica pinning steps. Subsequent analysis of genetic interactions from SGA-derived mutants relies on accurate quantification of colony size, which serves as a proxy for fitness. Since its development, SGA has given rise to a variety of other experimental approaches for functional profiling of the yeast genome and has been applied in a multitude of other contexts, such as genome-wide screens for synthetic dosage lethality and integration with high-content screening for systematic assessment of morphology defects. SGA-like strategies can also be implemented similarly in a number of other cell types and organisms, includingSchizosaccharomyces pombe,Escherichia coli, Caenorhabditis elegans, and human cancer cell lines. The genetic networks emerging from these studies not only generate functional wiring diagrams but may also play a key role in our understanding of the complex relationship between genotype and phenotype. © 2016 Cold Spring Harbor Laboratory Press.

  1. Stochastic dynamics of genetic broadcasting networks

    NASA Astrophysics Data System (ADS)

    Potoyan, Davit A.; Wolynes, Peter G.

    2017-11-01

    The complex genetic programs of eukaryotic cells are often regulated by key transcription factors occupying or clearing out of a large number of genomic locations. Orchestrating the residence times of these factors is therefore important for the well organized functioning of a large network. The classic models of genetic switches sidestep this timing issue by assuming the binding of transcription factors to be governed entirely by thermodynamic protein-DNA affinities. Here we show that relying on passive thermodynamics and random release times can lead to a "time-scale crisis" for master genes that broadcast their signals to a large number of binding sites. We demonstrate that this time-scale crisis for clearance in a large broadcasting network can be resolved by actively regulating residence times through molecular stripping. We illustrate these ideas by studying a model of the stochastic dynamics of the genetic network of the central eukaryotic master regulator NFκ B which broadcasts its signals to many downstream genes that regulate immune response, apoptosis, etc.

  2. AlgaGEM – a genome-scale metabolic reconstruction of algae based on the Chlamydomonas reinhardtii genome

    PubMed Central

    2011-01-01

    Background Microalgae have the potential to deliver biofuels without the associated competition for land resources. In order to realise the rates and titres necessary for commercial production, however, system-level metabolic engineering will be required. Genome scale metabolic reconstructions have revolutionized microbial metabolic engineering and are used routinely for in silico analysis and design. While genome scale metabolic reconstructions have been developed for many prokaryotes and model eukaryotes, the application to less well characterized eukaryotes such as algae is challenging not at least due to a lack of compartmentalization data. Results We have developed a genome-scale metabolic network model (named AlgaGEM) covering the metabolism for a compartmentalized algae cell based on the Chlamydomonas reinhardtii genome. AlgaGEM is a comprehensive literature-based genome scale metabolic reconstruction that accounts for the functions of 866 unique ORFs, 1862 metabolites, 2249 gene-enzyme-reaction-association entries, and 1725 unique reactions. The reconstruction was compartmentalized into the cytoplasm, mitochondrion, plastid and microbody using available data for algae complemented with compartmentalisation data for Arabidopsis thaliana. AlgaGEM describes a functional primary metabolism of Chlamydomonas and significantly predicts distinct algal behaviours such as the catabolism or secretion rather than recycling of phosphoglycolate in photorespiration. AlgaGEM was validated through the simulation of growth and algae metabolic functions inferred from literature. Using efficient resource utilisation as the optimality criterion, AlgaGEM predicted observed metabolic effects under autotrophic, heterotrophic and mixotrophic conditions. AlgaGEM predicts increased hydrogen production when cyclic electron flow is disrupted as seen in a high producing mutant derived from mutational studies. The model also predicted the physiological pathway for H2 production and identified new targets to further improve H2 yield. Conclusions AlgaGEM is a viable and comprehensive framework for in silico functional analysis and can be used to derive new, non-trivial hypotheses for exploring this metabolically versatile organism. Flux balance analysis can be used to identify bottlenecks and new targets to metabolically engineer microalgae for production of biofuels. PMID:22369158

  3. Parallel Mutual Information Based Construction of Genome-Scale Networks on the Intel® Xeon Phi™ Coprocessor.

    PubMed

    Misra, Sanchit; Pamnany, Kiran; Aluru, Srinivas

    2015-01-01

    Construction of whole-genome networks from large-scale gene expression data is an important problem in systems biology. While several techniques have been developed, most cannot handle network reconstruction at the whole-genome scale, and the few that can, require large clusters. In this paper, we present a solution on the Intel Xeon Phi coprocessor, taking advantage of its multi-level parallelism including many x86-based cores, multiple threads per core, and vector processing units. We also present a solution on the Intel® Xeon® processor. Our solution is based on TINGe, a fast parallel network reconstruction technique that uses mutual information and permutation testing for assessing statistical significance. We demonstrate the first ever inference of a plant whole genome regulatory network on a single chip by constructing a 15,575 gene network of the plant Arabidopsis thaliana from 3,137 microarray experiments in only 22 minutes. In addition, our optimization for parallelizing mutual information computation on the Intel Xeon Phi coprocessor holds out lessons that are applicable to other domains.

  4. Reduced representation approaches to interrogate genome diversity in large repetitive plant genomes.

    PubMed

    Hirsch, Cory D; Evans, Joseph; Buell, C Robin; Hirsch, Candice N

    2014-07-01

    Technology and software improvements in the last decade now provide methodologies to access the genome sequence of not only a single accession, but also multiple accessions of plant species. This provides a means to interrogate species diversity at the genome level. Ample diversity among accessions in a collection of species can be found, including single-nucleotide polymorphisms, insertions and deletions, copy number variation and presence/absence variation. For species with small, non-repetitive rich genomes, re-sequencing of query accessions is robust, highly informative, and economically feasible. However, for species with moderate to large sized repetitive-rich genomes, technical and economic barriers prevent en masse genome re-sequencing of accessions. Multiple approaches to access a focused subset of loci in species with larger genomes have been developed, including reduced representation sequencing, exome capture and transcriptome sequencing. Collectively, these approaches have enabled interrogation of diversity on a genome scale for large plant genomes, including crop species important to worldwide food security. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Multi-OMICs and Genome Editing Perspectives on Liver Cancer Signaling Networks.

    PubMed

    Lin, Shengda; Yin, Yi A; Jiang, Xiaoqian; Sahni, Nidhi; Yi, Song

    2016-01-01

    The advent of the human genome sequence and the resulting ~20,000 genes provide a crucial framework for a transition from traditional biology to an integrative "OMICs" arena (Lander et al., 2001; Venter et al., 2001; Kitano, 2002). This brings in a revolution for cancer research, which now enters a big data era. In the past decade, with the facilitation by next-generation sequencing, there have been a huge number of large-scale sequencing efforts, such as The Cancer Genome Atlas (TCGA), the HapMap, and the 1000 genomes project. As a result, a deluge of genomic information becomes available from patients stricken by a variety of cancer types. The list of cancer-associated genes is ever expanding. New discoveries are made on how frequent and highly penetrant mutations, such as those in the telomerase reverse transcriptase (TERT) and TP53, function in cancer initiation, progression, and metastasis. Most genes with relatively frequent but weakly penetrant cancer mutations still remain to be characterized. In addition, genes that harbor rare but highly penetrant cancer-associated mutations continue to emerge. Here, we review recent advances related to cancer genomics, proteomics, and systems biology and suggest new perspectives in targeted therapy and precision medicine.

  6. Sockeye: A 3D Environment for Comparative Genomics

    PubMed Central

    Montgomery, Stephen B.; Astakhova, Tamara; Bilenky, Mikhail; Birney, Ewan; Fu, Tony; Hassel, Maik; Melsopp, Craig; Rak, Marcin; Robertson, A. Gordon; Sleumer, Monica; Siddiqui, Asim S.; Jones, Steven J.M.

    2004-01-01

    Comparative genomics techniques are used in bioinformatics analyses to identify the structural and functional properties of DNA sequences. As the amount of available sequence data steadily increases, the ability to perform large-scale comparative analyses has become increasingly relevant. In addition, the growing complexity of genomic feature annotation means that new approaches to genomic visualization need to be explored. We have developed a Java-based application called Sockeye that uses three-dimensional (3D) graphics technology to facilitate the visualization of annotation and conservation across multiple sequences. This software uses the Ensembl database project to import sequence and annotation information from several eukaryotic species. A user can additionally import their own custom sequence and annotation data. Individual annotation objects are displayed in Sockeye by using custom 3D models. Ensembl-derived and imported sequences can be analyzed by using a suite of multiple and pair-wise alignment algorithms. The results of these comparative analyses are also displayed in the 3D environment of Sockeye. By using the Java3D API to visualize genomic data in a 3D environment, we are able to compactly display cross-sequence comparisons. This provides the user with a novel platform for visualizing and comparing genomic feature organization. PMID:15123592

  7. Genome-Wide Motif Statistics are Shaped by DNA Binding Proteins over Evolutionary Time Scales

    NASA Astrophysics Data System (ADS)

    Qian, Long; Kussell, Edo

    The composition of genomes with respect to short DNA motifs impacts the ability of DNA binding proteins to locate and bind their target sites. Since nonfunctional DNA binding can be detrimental to cellular functions and ultimately to organismal fitness, organisms could benefit from reducing the number of nonfunctional binding sites genome wide. Using in vitro measurements of binding affinities for a large collection of DNA binding proteins, in multiple species, we detect a significant global avoidance of weak binding sites in genomes. The underlying evolutionary process leaves a distinct genomic hallmark in that similar words have correlated frequencies, which we detect in all species across domains of life. We hypothesize that natural selection against weak binding sites contributes to this process, and using an evolutionary model we show that the strength of selection needed to maintain global word compositions is on the order of point mutation rates. Alternative contributions may come from interference of protein-DNA binding with replication and mutational repair processes, which operates with similar rates. We conclude that genome-wide word compositions have been molded by DNA binding proteins through tiny evolutionary steps over timescales spanning millions of generations.

  8. Genome Wide Re-Annotation of Caldicellulosiruptor saccharolyticus with New Insights into Genes Involved in Biomass Degradation and Hydrogen Production

    PubMed Central

    Chowdhary, Nupoor; Selvaraj, Ashok; KrishnaKumaar, Lakshmi; Kumar, Gopal Ramesh

    2015-01-01

    Caldicellulosiruptor saccharolyticus has proven itself to be an excellent candidate for biological hydrogen (H2) production, but still it has major drawbacks like sensitivity to high osmotic pressure and low volumetric H2 productivity, which should be considered before it can be used industrially. A whole genome re-annotation work has been carried out as an attempt to update the incomplete genome information that causes gap in the knowledge especially in the area of metabolic engineering, to improve the H2 producing capabilities of C. saccharolyticus. Whole genome re-annotation was performed through manual means for 2,682 Coding Sequences (CDSs). Bioinformatics tools based on sequence similarity, motif search, phylogenetic analysis and fold recognition were employed for re-annotation. Our methodology could successfully add functions for 409 hypothetical proteins (HPs), 46 proteins previously annotated as putative and assigned more accurate functions for the known protein sequences. Homology based gene annotation has been used as a standard method for assigning function to novel proteins, but over the past few years many non-homology based methods such as genomic context approaches for protein function prediction have been developed. Using non-homology based functional prediction methods, we were able to assign cellular processes or physical complexes for 249 hypothetical sequences. Our re-annotation pipeline highlights the addition of 231 new CDSs generated from MicroScope Platform, to the original genome with functional prediction for 49 of them. The re-annotation of HPs and new CDSs is stored in the relational database that is available on the MicroScope web-based platform. In parallel, a comparative genome analyses were performed among the members of genus Caldicellulosiruptor to understand the function and evolutionary processes. Further, with results from integrated re-annotation studies (homology and genomic context approach), we strongly suggest that Csac_0437 and Csac_0424 encode for glycoside hydrolases (GH) and are proposed to be involved in the decomposition of recalcitrant plant polysaccharides. Similarly, HPs: Csac_0732, Csac_1862, Csac_1294 and Csac_0668 are suggested to play a significant role in biohydrogen production. Function prediction of these HPs by using our integrated approach will considerably enhance the interpretation of large-scale experiments targeting this industrially important organism. PMID:26196387

  9. Genome Wide Re-Annotation of Caldicellulosiruptor saccharolyticus with New Insights into Genes Involved in Biomass Degradation and Hydrogen Production.

    PubMed

    Chowdhary, Nupoor; Selvaraj, Ashok; KrishnaKumaar, Lakshmi; Kumar, Gopal Ramesh

    2015-01-01

    Caldicellulosiruptor saccharolyticus has proven itself to be an excellent candidate for biological hydrogen (H2) production, but still it has major drawbacks like sensitivity to high osmotic pressure and low volumetric H2 productivity, which should be considered before it can be used industrially. A whole genome re-annotation work has been carried out as an attempt to update the incomplete genome information that causes gap in the knowledge especially in the area of metabolic engineering, to improve the H2 producing capabilities of C. saccharolyticus. Whole genome re-annotation was performed through manual means for 2,682 Coding Sequences (CDSs). Bioinformatics tools based on sequence similarity, motif search, phylogenetic analysis and fold recognition were employed for re-annotation. Our methodology could successfully add functions for 409 hypothetical proteins (HPs), 46 proteins previously annotated as putative and assigned more accurate functions for the known protein sequences. Homology based gene annotation has been used as a standard method for assigning function to novel proteins, but over the past few years many non-homology based methods such as genomic context approaches for protein function prediction have been developed. Using non-homology based functional prediction methods, we were able to assign cellular processes or physical complexes for 249 hypothetical sequences. Our re-annotation pipeline highlights the addition of 231 new CDSs generated from MicroScope Platform, to the original genome with functional prediction for 49 of them. The re-annotation of HPs and new CDSs is stored in the relational database that is available on the MicroScope web-based platform. In parallel, a comparative genome analyses were performed among the members of genus Caldicellulosiruptor to understand the function and evolutionary processes. Further, with results from integrated re-annotation studies (homology and genomic context approach), we strongly suggest that Csac_0437 and Csac_0424 encode for glycoside hydrolases (GH) and are proposed to be involved in the decomposition of recalcitrant plant polysaccharides. Similarly, HPs: Csac_0732, Csac_1862, Csac_1294 and Csac_0668 are suggested to play a significant role in biohydrogen production. Function prediction of these HPs by using our integrated approach will considerably enhance the interpretation of large-scale experiments targeting this industrially important organism.

  10. Using SQL Databases for Sequence Similarity Searching and Analysis.

    PubMed

    Pearson, William R; Mackey, Aaron J

    2017-09-13

    Relational databases can integrate diverse types of information and manage large sets of similarity search results, greatly simplifying genome-scale analyses. By focusing on taxonomic subsets of sequences, relational databases can reduce the size and redundancy of sequence libraries and improve the statistical significance of homologs. In addition, by loading similarity search results into a relational database, it becomes possible to explore and summarize the relationships between all of the proteins in an organism and those in other biological kingdoms. This unit describes how to use relational databases to improve the efficiency of sequence similarity searching and demonstrates various large-scale genomic analyses of homology-related data. It also describes the installation and use of a simple protein sequence database, seqdb_demo, which is used as a basis for the other protocols. The unit also introduces search_demo, a database that stores sequence similarity search results. The search_demo database is then used to explore the evolutionary relationships between E. coli proteins and proteins in other organisms in a large-scale comparative genomic analysis. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  11. Identification and characterization of large DNA deletions affecting oil quality traits in soybean seeds through transcriptome sequencing analysis.

    PubMed

    Goettel, Wolfgang; Ramirez, Martha; Upchurch, Robert G; An, Yong-Qiang Charles

    2016-08-01

    Identification and characterization of a 254-kb genomic deletion on a duplicated chromosome segment that resulted in a low level of palmitic acid in soybean seeds using transcriptome sequencing. A large number of soybean genotypes varying in seed oil composition and content have been identified. Understanding the molecular mechanisms underlying these variations is important for breeders to effectively utilize them as a genetic resource. Through design and application of a bioinformatics approach, we identified nine co-regulated gene clusters by comparing seed transcriptomes of nine soybean genotypes varying in oil composition and content. We demonstrated that four gene clusters in the genotypes M23, Jack and N0304-303-3 coincided with large-scale genome rearrangements. The co-regulated gene clusters in M23 and Jack mapped to a previously described 164-kb deletion and a copy number amplification of the Rhg1 locus, respectively. The coordinately down-regulated gene clusters in N0304-303-3 were caused by a 254-kb deletion containing 19 genes including a fatty acyl-ACP thioesterase B gene (FATB1a). This deletion was associated with reduced palmitic acid content in seeds and was the molecular cause of a previously reported nonfunctional FATB1a allele, fap nc . The M23 and N0304-304-3 deletions were located in duplicated genome segments retained from the Glycine-specific whole genome duplication that occurred 13 million years ago. The homoeologous genes in these duplicated regions shared a strong similarity in both their encoded protein sequences and transcript accumulation levels, suggesting that they may have conserved and important functions in seeds. The functional conservation of homoeologous genes may result in genetic redundancy and gene dosage effects for their associated seed traits, explaining why the large deletion did not cause lethal effects or completely eliminate palmitic acid in N0304-303-3.

  12. Transposable Element Genomic Fissuring in Pyrenophora teres Is Associated With Genome Expansion and Dynamics of Host–Pathogen Genetic Interactions

    PubMed Central

    Syme, Robert A.; Martin, Anke; Wyatt, Nathan A.; Lawrence, Julie A.; Muria-Gonzalez, Mariano J.; Friesen, Timothy L.; Ellwood, Simon R.

    2018-01-01

    Pyrenophora teres, P. teres f. teres (PTT) and P. teres f. maculata (PTM) cause significant diseases in barley, but little is known about the large-scale genomic differences that may distinguish the two forms. Comprehensive genome assemblies were constructed from long DNA reads, optical and genetic maps. As repeat masking in fungal genomes influences the final gene annotations, an accurate and reproducible pipeline was developed to ensure comparability between isolates. The genomes of the two forms are highly collinear, each composed of 12 chromosomes. Genome evolution in P. teres is characterized by genome fissuring through the insertion and expansion of transposable elements (TEs), a process that isolates blocks of genic sequence. The phenomenon is particularly pronounced in PTT, which has a larger, more repetitive genome than PTM and more recent transposon activity measured by the frequency and size of genome fissures. PTT has a longer cultivated host association and, notably, a greater range of host–pathogen genetic interactions compared to other Pyrenophora spp., a property which associates better with genome size than pathogen lifestyle. The two forms possess similar complements of TE families with Tc1/Mariner and LINE-like Tad-1 elements more abundant in PTT. Tad-1 was only detectable as vestigial fragments in PTM and, within the forms, differences in genome sizes and the presence and absence of several TE families indicated recent lineage invasions. Gene differences between P. teres forms are mainly associated with gene-sparse regions near or within TE-rich regions, with many genes possessing characteristics of fungal effectors. Instances of gene interruption by transposons resulting in pseudogenization were detected in PTT. In addition, both forms have a large complement of secondary metabolite gene clusters indicating significant capacity to produce an array of different molecules. This study provides genomic resources for functional genetics to help dissect factors underlying the host–pathogen interactions. PMID:29720997

  13. Multi-scale structural community organisation of the human genome.

    PubMed

    Boulos, Rasha E; Tremblay, Nicolas; Arneodo, Alain; Borgnat, Pierre; Audit, Benjamin

    2017-04-11

    Structural interaction frequency matrices between all genome loci are now experimentally achievable thanks to high-throughput chromosome conformation capture technologies. This ensues a new methodological challenge for computational biology which consists in objectively extracting from these data the structural motifs characteristic of genome organisation. We deployed the fast multi-scale community mining algorithm based on spectral graph wavelets to characterise the networks of intra-chromosomal interactions in human cell lines. We observed that there exist structural domains of all sizes up to chromosome length and demonstrated that the set of structural communities forms a hierarchy of chromosome segments. Hence, at all scales, chromosome folding predominantly involves interactions between neighbouring sites rather than the formation of links between distant loci. Multi-scale structural decomposition of human chromosomes provides an original framework to question structural organisation and its relationship to functional regulation across the scales. By construction the proposed methodology is independent of the precise assembly of the reference genome and is thus directly applicable to genomes whose assembly is not fully determined.

  14. The Paris-Sud yeast structural genomics pilot-project: from structure to function.

    PubMed

    Quevillon-Cheruel, Sophie; Liger, Dominique; Leulliot, Nicolas; Graille, Marc; Poupon, Anne; Li de La Sierra-Gallay, Inès; Zhou, Cong-Zhao; Collinet, Bruno; Janin, Joël; Van Tilbeurgh, Herman

    2004-01-01

    We present here the outlines and results from our yeast structural genomics (YSG) pilot-project. A lab-scale platform for the systematic production and structure determination is presented. In order to validate this approach, 250 non-membrane proteins of unknown structure were targeted. Strategies and final statistics are evaluated. We finally discuss the opportunity of structural genomics programs to contribute to functional biochemical annotation.

  15. Leveraging Large-Scale Cancer Genomics Datasets for Germline Discovery - TCGA

    Cancer.gov

    The session will review how data types have changed over time, focusing on how next-generation sequencing is being employed to yield more precise information about the underlying genomic variation that influences tumor etiology and biology.

  16. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes

    PubMed Central

    Parks, Donovan H.; Imelfort, Michael; Skennerton, Connor T.; Hugenholtz, Philip; Tyson, Gene W.

    2015-01-01

    Large-scale recovery of genomes from isolates, single cells, and metagenomic data has been made possible by advances in computational methods and substantial reductions in sequencing costs. Although this increasing breadth of draft genomes is providing key information regarding the evolutionary and functional diversity of microbial life, it has become impractical to finish all available reference genomes. Making robust biological inferences from draft genomes requires accurate estimates of their completeness and contamination. Current methods for assessing genome quality are ad hoc and generally make use of a limited number of “marker” genes conserved across all bacterial or archaeal genomes. Here we introduce CheckM, an automated method for assessing the quality of a genome using a broader set of marker genes specific to the position of a genome within a reference genome tree and information about the collocation of these genes. We demonstrate the effectiveness of CheckM using synthetic data and a wide range of isolate-, single-cell-, and metagenome-derived genomes. CheckM is shown to provide accurate estimates of genome completeness and contamination and to outperform existing approaches. Using CheckM, we identify a diverse range of errors currently impacting publicly available isolate genomes and demonstrate that genomes obtained from single cells and metagenomic data vary substantially in quality. In order to facilitate the use of draft genomes, we propose an objective measure of genome quality that can be used to select genomes suitable for specific gene- and genome-centric analyses of microbial communities. PMID:25977477

  17. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes.

    PubMed

    Parks, Donovan H; Imelfort, Michael; Skennerton, Connor T; Hugenholtz, Philip; Tyson, Gene W

    2015-07-01

    Large-scale recovery of genomes from isolates, single cells, and metagenomic data has been made possible by advances in computational methods and substantial reductions in sequencing costs. Although this increasing breadth of draft genomes is providing key information regarding the evolutionary and functional diversity of microbial life, it has become impractical to finish all available reference genomes. Making robust biological inferences from draft genomes requires accurate estimates of their completeness and contamination. Current methods for assessing genome quality are ad hoc and generally make use of a limited number of "marker" genes conserved across all bacterial or archaeal genomes. Here we introduce CheckM, an automated method for assessing the quality of a genome using a broader set of marker genes specific to the position of a genome within a reference genome tree and information about the collocation of these genes. We demonstrate the effectiveness of CheckM using synthetic data and a wide range of isolate-, single-cell-, and metagenome-derived genomes. CheckM is shown to provide accurate estimates of genome completeness and contamination and to outperform existing approaches. Using CheckM, we identify a diverse range of errors currently impacting publicly available isolate genomes and demonstrate that genomes obtained from single cells and metagenomic data vary substantially in quality. In order to facilitate the use of draft genomes, we propose an objective measure of genome quality that can be used to select genomes suitable for specific gene- and genome-centric analyses of microbial communities. © 2015 Parks et al.; Published by Cold Spring Harbor Laboratory Press.

  18. Genetics of Resistant Hypertension: the Missing Heritability and Opportunities.

    PubMed

    Teixeira, Samantha K; Pereira, Alexandre C; Krieger, Jose E

    2018-05-19

    Blood pressure regulation in humans has long been known to be a genetically determined trait. The identification of causal genetic modulators for this trait has been unfulfilling at the least. Despite the recent advances of genome-wide genetic studies, loci associated with hypertension or blood pressure still explain a very low percentage of the overall variation of blood pressure in the general population. This has precluded the translation of discoveries in the genetics of human hypertension to clinical use. Here, we propose the combined use of resistant hypertension as a trait for mapping genetic determinants in humans and the integration of new large-scale technologies to approach in model systems the multidimensional nature of the problem. New large-scale efforts in the genetic and genomic arenas are paving the way for an increased and granular understanding of genetic determinants of hypertension. New technologies for whole genome sequence and large-scale forward genetic screens can help prioritize gene and gene-pathways for downstream characterization and large-scale population studies, and guided pharmacological design can be used to drive discoveries to the translational application through better risk stratification and new therapeutic approaches. Although significant challenges remain in the mapping and identification of genetic determinants of hypertension, new large-scale technological approaches have been proposed to surpass some of the shortcomings that have limited progress in the area for the last three decades. The incorporation of these technologies to hypertension research may significantly help in the understanding of inter-individual blood pressure variation and the deployment of new phenotyping and treatment approaches for the condition.

  19. Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes.

    PubMed

    Sharma, S; Raina, S N

    2005-01-01

    A major component of the plant nuclear genome is constituted by different classes of repetitive DNA sequences. The structural, functional and evolutionary aspects of the satellite repetitive DNA families, and their organization in the chromosomes is reviewed. The tandem satellite DNA sequences exhibit characteristic chromosomal locations, usually at subtelomeric and centromeric regions. The repetitive DNA family(ies) may be widely distributed in a taxonomic family or a genus, or may be specific for a species, genome or even a chromosome. They may acquire large-scale variations in their sequence and copy number over an evolutionary time-scale. These features have formed the basis of extensive utilization of repetitive sequences for taxonomic and phylogenetic studies. Hybrid polyploids have especially proven to be excellent models for studying the evolution of repetitive DNA sequences. Recent studies explicitly show that some repetitive DNA families localized at the telomeres and centromeres have acquired important structural and functional significance. The repetitive elements are under different evolutionary constraints as compared to the genes. Satellite DNA families are thought to arise de novo as a consequence of molecular mechanisms such as unequal crossing over, rolling circle amplification, replication slippage and mutation that constitute "molecular drive". Copyright 2005 S. Karger AG, Basel.

  20. MetReS, an Efficient Database for Genomic Applications.

    PubMed

    Vilaplana, Jordi; Alves, Rui; Solsona, Francesc; Mateo, Jordi; Teixidó, Ivan; Pifarré, Marc

    2018-02-01

    MetReS (Metabolic Reconstruction Server) is a genomic database that is shared between two software applications that address important biological problems. Biblio-MetReS is a data-mining tool that enables the reconstruction of molecular networks based on automated text-mining analysis of published scientific literature. Homol-MetReS allows functional (re)annotation of proteomes, to properly identify both the individual proteins involved in the processes of interest and their function. The main goal of this work was to identify the areas where the performance of the MetReS database performance could be improved and to test whether this improvement would scale to larger datasets and more complex types of analysis. The study was started with a relational database, MySQL, which is the current database server used by the applications. We also tested the performance of an alternative data-handling framework, Apache Hadoop. Hadoop is currently used for large-scale data processing. We found that this data handling framework is likely to greatly improve the efficiency of the MetReS applications as the dataset and the processing needs increase by several orders of magnitude, as expected to happen in the near future.

  1. Functional sequencing read annotation for high precision microbiome analysis

    PubMed Central

    Zhu, Chengsheng; Miller, Maximilian; Marpaka, Srinayani; Vaysberg, Pavel; Rühlemann, Malte C; Wu, Guojun; Heinsen, Femke-Anouska; Tempel, Marie; Zhao, Liping; Lieb, Wolfgang; Franke, Andre; Bromberg, Yana

    2018-01-01

    Abstract The vast majority of microorganisms on Earth reside in often-inseparable environment-specific communities—microbiomes. Meta-genomic/-transcriptomic sequencing could reveal the otherwise inaccessible functionality of microbiomes. However, existing analytical approaches focus on attributing sequencing reads to known genes/genomes, often failing to make maximal use of available data. We created faser (functional annotation of sequencing reads), an algorithm that is optimized to map reads to molecular functions encoded by the read-correspondent genes. The mi-faser microbiome analysis pipeline, combining faser with our manually curated reference database of protein functions, accurately annotates microbiome molecular functionality. mi-faser’s minutes-per-microbiome processing speed is significantly faster than that of other methods, allowing for large scale comparisons. Microbiome function vectors can be compared between different conditions to highlight environment-specific and/or time-dependent changes in functionality. Here, we identified previously unseen oil degradation-specific functions in BP oil-spill data, as well as functional signatures of individual-specific gut microbiome responses to a dietary intervention in children with Prader–Willi syndrome. Our method also revealed variability in Crohn's Disease patient microbiomes and clearly distinguished them from those of related healthy individuals. Our analysis highlighted the microbiome role in CD pathogenicity, demonstrating enrichment of patient microbiomes in functions that promote inflammation and that help bacteria survive it. PMID:29194524

  2. PTGBase: an integrated database to study tandem duplicated genes in plants.

    PubMed

    Yu, Jingyin; Ke, Tao; Tehrim, Sadia; Sun, Fengming; Liao, Boshou; Hua, Wei

    2015-01-01

    Tandem duplication is a wide-spread phenomenon in plant genomes and plays significant roles in evolution and adaptation to changing environments. Tandem duplicated genes related to certain functions will lead to the expansion of gene families and bring increase of gene dosage in the form of gene cluster arrays. Many tandem duplication events have been studied in plant genomes; yet, there is a surprising shortage of efforts to systematically present the integration of large amounts of information about publicly deposited tandem duplicated gene data across the plant kingdom. To address this shortcoming, we developed the first plant tandem duplicated genes database, PTGBase. It delivers the most comprehensive resource available to date, spanning 39 plant genomes, including model species and newly sequenced species alike. Across these genomes, 54 130 tandem duplicated gene clusters (129 652 genes) are presented in the database. Each tandem array, as well as its member genes, is characterized in complete detail. Tandem duplicated genes in PTGBase can be explored through browsing or searching by identifiers or keywords of functional annotation and sequence similarity. Users can download tandem duplicated gene arrays easily to any scale, up to the complete annotation data set for an entire plant genome. PTGBase will be updated regularly with newly sequenced plant species as they become available. © The Author(s) 2015. Published by Oxford University Press.

  3. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies.

    PubMed

    Jafri, Mohammad A; Ansari, Shakeel A; Alqahtani, Mohammed H; Shay, Jerry W

    2016-06-20

    Telomeres maintain genomic integrity in normal cells, and their progressive shortening during successive cell divisions induces chromosomal instability. In the large majority of cancer cells, telomere length is maintained by telomerase. Thus, telomere length and telomerase activity are crucial for cancer initiation and the survival of tumors. Several pathways that regulate telomere length have been identified, and genome-scale studies have helped in mapping genes that are involved in telomere length control. Additionally, genomic screening for recurrent human telomerase gene hTERT promoter mutations and mutations in genes involved in the alternative lengthening of telomeres pathway, such as ATRX and DAXX, has elucidated how these genomic changes contribute to the activation of telomere maintenance mechanisms in cancer cells. Attempts have also been made to develop telomere length- and telomerase-based diagnostic tools and anticancer therapeutics. Recent efforts have revealed key aspects of telomerase assembly, intracellular trafficking and recruitment to telomeres for completing DNA synthesis, which may provide novel targets for the development of anticancer agents. Here, we summarize telomere organization and function and its role in oncogenesis. We also highlight genomic mutations that lead to reactivation of telomerase, and mechanisms of telomerase reconstitution and trafficking that shed light on its function in cancer initiation and tumor development. Additionally, recent advances in the clinical development of telomerase inhibitors, as well as potential novel targets, will be summarized.

  4. Annotated Draft Genome Assemblies for the Northern Bobwhite (Colinus virginianus) and the Scaled Quail (Callipepla squamata) Reveal Disparate Estimates of Modern Genome Diversity and Historic Effective Population Size.

    PubMed

    Oldeschulte, David L; Halley, Yvette A; Wilson, Miranda L; Bhattarai, Eric K; Brashear, Wesley; Hill, Joshua; Metz, Richard P; Johnson, Charles D; Rollins, Dale; Peterson, Markus J; Bickhart, Derek M; Decker, Jared E; Sewell, John F; Seabury, Christopher M

    2017-09-07

    Northern bobwhite ( Colinus virginianus ; hereafter bobwhite) and scaled quail ( Callipepla squamata ) populations have suffered precipitous declines across most of their US ranges. Illumina-based first- (v1.0) and second- (v2.0) generation draft genome assemblies for the scaled quail and the bobwhite produced N50 scaffold sizes of 1.035 and 2.042 Mb, thereby producing a 45-fold improvement in contiguity over the existing bobwhite assembly, and ≥90% of the assembled genomes were captured within 1313 and 8990 scaffolds, respectively. The scaled quail assembly (v1.0 = 1.045 Gb) was ∼20% smaller than the bobwhite (v2.0 = 1.254 Gb), which was supported by kmer-based estimates of genome size. Nevertheless, estimates of GC content (41.72%; 42.66%), genome-wide repetitive content (10.40%; 10.43%), and MAKER-predicted protein coding genes (17,131; 17,165) were similar for the scaled quail (v1.0) and bobwhite (v2.0) assemblies, respectively. BUSCO analyses utilizing 3023 single-copy orthologs revealed a high level of assembly completeness for the scaled quail (v1.0; 84.8%) and the bobwhite (v2.0; 82.5%), as verified by comparison with well-established avian genomes. We also detected 273 putative segmental duplications in the scaled quail genome (v1.0), and 711 in the bobwhite genome (v2.0), including some that were shared among both species. Autosomal variant prediction revealed ∼2.48 and 4.17 heterozygous variants per kilobase within the scaled quail (v1.0) and bobwhite (v2.0) genomes, respectively, and estimates of historic effective population size were uniformly higher for the bobwhite across all time points in a coalescent model. However, large-scale declines were predicted for both species beginning ∼15-20 KYA. Copyright © 2017 Oldeschulte et al.

  5. Global MLST of Salmonella Typhi Revisited in Post-genomic Era: Genetic Conservation, Population Structure, and Comparative Genomics of Rare Sequence Types.

    PubMed

    Yap, Kien-Pong; Ho, Wing S; Gan, Han M; Chai, Lay C; Thong, Kwai L

    2016-01-01

    Typhoid fever, caused by Salmonella enterica serovar Typhi, remains an important public health burden in Southeast Asia and other endemic countries. Various genotyping methods have been applied to study the genetic variations of this human-restricted pathogen. Multilocus sequence typing (MLST) is one of the widely accepted methods, and recently, there is a growing interest in the re-application of MLST in the post-genomic era. In this study, we provide the global MLST distribution of S. Typhi utilizing both publicly available 1,826 S. Typhi genome sequences in addition to performing conventional MLST on S. Typhi strains isolated from various endemic regions spanning over a century. Our global MLST analysis confirms the predominance of two sequence types (ST1 and ST2) co-existing in the endemic regions. Interestingly, S. Typhi strains with ST8 are currently confined within the African continent. Comparative genomic analyses of ST8 and other rare STs with genomes of ST1/ST2 revealed unique mutations in important virulence genes such as flhB, sipC, and tviD that may explain the variations that differentiate between seemingly successful (widespread) and unsuccessful (poor dissemination) S. Typhi populations. Large scale whole-genome phylogeny demonstrated evidence of phylogeographical structuring and showed that ST8 may have diverged from the earlier ancestral population of ST1 and ST2, which later lost some of its fitness advantages, leading to poor worldwide dissemination. In response to the unprecedented increase in genomic data, this study demonstrates and highlights the utility of large-scale genome-based MLST as a quick and effective approach to narrow the scope of in-depth comparative genomic analysis and consequently provide new insights into the fine scale of pathogen evolution and population structure.

  6. Integrative and conjugative elements and their hosts: composition, distribution and organization

    PubMed Central

    Touchon, Marie; Rocha, Eduardo P. C.

    2017-01-01

    Abstract Conjugation of single-stranded DNA drives horizontal gene transfer between bacteria and was widely studied in conjugative plasmids. The organization and function of integrative and conjugative elements (ICE), even if they are more abundant, was only studied in a few model systems. Comparative genomics of ICE has been precluded by the difficulty in finding and delimiting these elements. Here, we present the results of a method that circumvents these problems by requiring only the identification of the conjugation genes and the species’ pan-genome. We delimited 200 ICEs and this allowed the first large-scale characterization of these elements. We quantified the presence in ICEs of a wide set of functions associated with the biology of mobile genetic elements, including some that are typically associated with plasmids, such as partition and replication. Protein sequence similarity networks and phylogenetic analyses revealed that ICEs are structured in functional modules. Integrases and conjugation systems have different evolutionary histories, even if the gene repertoires of ICEs can be grouped in function of conjugation types. Our characterization of the composition and organization of ICEs paves the way for future functional and evolutionary analyses of their cargo genes, composed of a majority of unknown function genes. PMID:28911112

  7. Tissue-aware data integration approach for the inference of pathway interactions in metazoan organisms

    PubMed Central

    Park, Christopher Y.; Krishnan, Arjun; Zhu, Qian; Wong, Aaron K.; Lee, Young-Suk; Troyanskaya, Olga G.

    2015-01-01

    Motivation: Leveraging the large compendium of genomic data to predict biomedical pathways and specific mechanisms of protein interactions genome-wide in metazoan organisms has been challenging. In contrast to unicellular organisms, biological and technical variation originating from diverse tissues and cell-lineages is often the largest source of variation in metazoan data compendia. Therefore, a new computational strategy accounting for the tissue heterogeneity in the functional genomic data is needed to accurately translate the vast amount of human genomic data into specific interaction-level hypotheses. Results: We developed an integrated, scalable strategy for inferring multiple human gene interaction types that takes advantage of data from diverse tissue and cell-lineage origins. Our approach specifically predicts both the presence of a functional association and also the most likely interaction type among human genes or its protein products on a whole-genome scale. We demonstrate that directly incorporating tissue contextual information improves the accuracy of our predictions, and further, that such genome-wide results can be used to significantly refine regulatory interactions from primary experimental datasets (e.g. ChIP-Seq, mass spectrometry). Availability and implementation: An interactive website hosting all of our interaction predictions is publically available at http://pathwaynet.princeton.edu. Software was implemented using the open-source Sleipnir library, which is available for download at https://bitbucket.org/libsleipnir/libsleipnir.bitbucket.org. Contact: ogt@cs.princeton.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25431329

  8. MEGANTE: A Web-Based System for Integrated Plant Genome Annotation

    PubMed Central

    Numa, Hisataka; Itoh, Takeshi

    2014-01-01

    The recent advancement of high-throughput genome sequencing technologies has resulted in a considerable increase in demands for large-scale genome annotation. While annotation is a crucial step for downstream data analyses and experimental studies, this process requires substantial expertise and knowledge of bioinformatics. Here we present MEGANTE, a web-based annotation system that makes plant genome annotation easy for researchers unfamiliar with bioinformatics. Without any complicated configuration, users can perform genomic sequence annotations simply by uploading a sequence and selecting the species to query. MEGANTE automatically runs several analysis programs and integrates the results to select the appropriate consensus exon–intron structures and to predict open reading frames (ORFs) at each locus. Functional annotation, including a similarity search against known proteins and a functional domain search, are also performed for the predicted ORFs. The resultant annotation information is visualized with a widely used genome browser, GBrowse. For ease of analysis, the results can be downloaded in Microsoft Excel format. All of the query sequences and annotation results are stored on the server side so that users can access their own data from virtually anywhere on the web. The current release of MEGANTE targets 24 plant species from the Brassicaceae, Fabaceae, Musaceae, Poaceae, Salicaceae, Solanaceae, Rosaceae and Vitaceae families, and it allows users to submit a sequence up to 10 Mb in length and to save up to 100 sequences with the annotation information on the server. The MEGANTE web service is available at https://megante.dna.affrc.go.jp/. PMID:24253915

  9. The house spider genome reveals an ancient whole-genome duplication during arachnid evolution.

    PubMed

    Schwager, Evelyn E; Sharma, Prashant P; Clarke, Thomas; Leite, Daniel J; Wierschin, Torsten; Pechmann, Matthias; Akiyama-Oda, Yasuko; Esposito, Lauren; Bechsgaard, Jesper; Bilde, Trine; Buffry, Alexandra D; Chao, Hsu; Dinh, Huyen; Doddapaneni, HarshaVardhan; Dugan, Shannon; Eibner, Cornelius; Extavour, Cassandra G; Funch, Peter; Garb, Jessica; Gonzalez, Luis B; Gonzalez, Vanessa L; Griffiths-Jones, Sam; Han, Yi; Hayashi, Cheryl; Hilbrant, Maarten; Hughes, Daniel S T; Janssen, Ralf; Lee, Sandra L; Maeso, Ignacio; Murali, Shwetha C; Muzny, Donna M; Nunes da Fonseca, Rodrigo; Paese, Christian L B; Qu, Jiaxin; Ronshaugen, Matthew; Schomburg, Christoph; Schönauer, Anna; Stollewerk, Angelika; Torres-Oliva, Montserrat; Turetzek, Natascha; Vanthournout, Bram; Werren, John H; Wolff, Carsten; Worley, Kim C; Bucher, Gregor; Gibbs, Richard A; Coddington, Jonathan; Oda, Hiroki; Stanke, Mario; Ayoub, Nadia A; Prpic, Nikola-Michael; Flot, Jean-François; Posnien, Nico; Richards, Stephen; McGregor, Alistair P

    2017-07-31

    The duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence for a large-scale duplication of genes in some chelicerate lineages including two rounds of whole genome duplication (WGD) in horseshoe crabs. To investigate this further, we sequenced and analyzed the genome of the common house spider Parasteatoda tepidariorum. We found pervasive duplication of both coding and non-coding genes in this spider, including two clusters of Hox genes. Analysis of synteny conservation across the P. tepidariorum genome suggests that there has been an ancient WGD in spiders. Comparison with the genomes of other chelicerates, including that of the newly sequenced bark scorpion Centruroides sculpturatus, suggests that this event occurred in the common ancestor of spiders and scorpions, and is probably independent of the WGDs in horseshoe crabs. Furthermore, characterization of the sequence and expression of the Hox paralogs in P. tepidariorum suggests that many have been subject to neo-functionalization and/or sub-functionalization since their duplication. Our results reveal that spiders and scorpions are likely the descendants of a polyploid ancestor that lived more than 450 MYA. Given the extensive morphological diversity and ecological adaptations found among these animals, rivaling those of vertebrates, our study of the ancient WGD event in Arachnopulmonata provides a new comparative platform to explore common and divergent evolutionary outcomes of polyploidization events across eukaryotes.

  10. Comparison of single-molecule sequencing and hybrid approaches for finishing the genome of Clostridium autoethanogenum and analysis of CRISPR systems in industrial relevant Clostridia

    PubMed Central

    2014-01-01

    Background Clostridium autoethanogenum strain JA1-1 (DSM 10061) is an acetogen capable of fermenting CO, CO2 and H2 (e.g. from syngas or waste gases) into biofuel ethanol and commodity chemicals such as 2,3-butanediol. A draft genome sequence consisting of 100 contigs has been published. Results A closed, high-quality genome sequence for C. autoethanogenum DSM10061 was generated using only the latest single-molecule DNA sequencing technology and without the need for manual finishing. It is assigned to the most complex genome classification based upon genome features such as repeats, prophage, nine copies of the rRNA gene operons. It has a low G + C content of 31.1%. Illumina, 454, Illumina/454 hybrid assemblies were generated and then compared to the draft and PacBio assemblies using summary statistics, CGAL, QUAST and REAPR bioinformatics tools and comparative genomic approaches. Assemblies based upon shorter read DNA technologies were confounded by the large number repeats and their size, which in the case of the rRNA gene operons were ~5 kb. CRISPR (Clustered Regularly Interspaced Short Paloindromic Repeats) systems among biotechnologically relevant Clostridia were classified and related to plasmid content and prophages. Potential associations between plasmid content and CRISPR systems may have implications for historical industrial scale Acetone-Butanol-Ethanol (ABE) fermentation failures and future large scale bacterial fermentations. While C. autoethanogenum contains an active CRISPR system, no such system is present in the closely related Clostridium ljungdahlii DSM 13528. A common prophage inserted into the Arg-tRNA shared between the strains suggests a common ancestor. However, C. ljungdahlii contains several additional putative prophages and it has more than double the amount of prophage DNA compared to C. autoethanogenum. Other differences include important metabolic genes for central metabolism (as an additional hydrogenase and the absence of a phophoenolpyruvate synthase) and substrate utilization pathway (mannose and aromatics utilization) that might explain phenotypic differences between C. autoethanogenum and C. ljungdahlii. Conclusions Single molecule sequencing will be increasingly used to produce finished microbial genomes. The complete genome will facilitate comparative genomics and functional genomics and support future comparisons between Clostridia and studies that examine the evolution of plasmids, bacteriophage and CRISPR systems. PMID:24655715

  11. Characterizing genomic alterations in cancer by complementary functional associations | Office of Cancer Genomics

    Cancer.gov

    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment.

  12. Genome-wide analysis of tandem repeats in plants and green algae

    Treesearch

    Zhixin Zhao; Cheng Guo; Sreeskandarajan Sutharzan; Pei Li; Craig Echt; Jie Zhang; Chun Liang

    2014-01-01

    Tandem repeats (TRs) extensively exist in the genomes of prokaryotes and eukaryotes. Based on the sequenced genomes and gene annotations of 31 plant and algal species in Phytozome version 8.0 (http://www.phytozome.net/), we examined TRs in a genome-wide scale, characterized their distributions and motif features, and explored their putative biological functions. Among...

  13. Genome-wide association analysis based on multiple imputation with low-depth GBS data: application to biofuel traits in reed canarygrass

    USDA-ARS?s Scientific Manuscript database

    Genotyping-by-sequencing allows for large-scale genetic analyses in plant species with no reference genome, creating the challenge of sound inference in the presence of uncertain genotypes. Here we report an imputation-based genome-wide association study (GWAS) in reed canarygrass (Phalaris arundina...

  14. Genome-wide association study based on multiple imputation with low-depth sequencing data: application to biofuel traits in reed canarygrass

    USDA-ARS?s Scientific Manuscript database

    Genotyping by sequencing allows for large-scale genetic analyses in plant species with no reference genome, but sets the challenge of sound inference in presence of uncertain genotypes. We report an imputation-based genome-wide association study (GWAS) in reed canarygrass (Phalaris arundinacea L., P...

  15. Snowball: resampling combined with distance-based regression to discover transcriptional consequences of a driver mutation

    PubMed Central

    Xu, Yaomin; Guo, Xingyi; Sun, Jiayang; Zhao, Zhongming

    2015-01-01

    Motivation: Large-scale cancer genomic studies, such as The Cancer Genome Atlas (TCGA), have profiled multidimensional genomic data, including mutation and expression profiles on a variety of cancer cell types, to uncover the molecular mechanism of cancerogenesis. More than a hundred driver mutations have been characterized that confer the advantage of cell growth. However, how driver mutations regulate the transcriptome to affect cellular functions remains largely unexplored. Differential analysis of gene expression relative to a driver mutation on patient samples could provide us with new insights in understanding driver mutation dysregulation in tumor genome and developing personalized treatment strategies. Results: Here, we introduce the Snowball approach as a highly sensitive statistical analysis method to identify transcriptional signatures that are affected by a recurrent driver mutation. Snowball utilizes a resampling-based approach and combines a distance-based regression framework to assign a robust ranking index of genes based on their aggregated association with the presence of the mutation, and further selects the top significant genes for downstream data analyses or experiments. In our application of the Snowball approach to both synthesized and TCGA data, we demonstrated that it outperforms the standard methods and provides more accurate inferences to the functional effects and transcriptional dysregulation of driver mutations. Availability and implementation: R package and source code are available from CRAN at http://cran.r-project.org/web/packages/DESnowball, and also available at http://bioinfo.mc.vanderbilt.edu/DESnowball/. Contact: zhongming.zhao@vanderbilt.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25192743

  16. A refined genome-scale reconstruction of Chlamydomonas metabolism provides a platform for systems-level analyses.

    PubMed

    Imam, Saheed; Schäuble, Sascha; Valenzuela, Jacob; López García de Lomana, Adrián; Carter, Warren; Price, Nathan D; Baliga, Nitin S

    2015-12-01

    Microalgae have reemerged as organisms of prime biotechnological interest due to their ability to synthesize a suite of valuable chemicals. To harness the capabilities of these organisms, we need a comprehensive systems-level understanding of their metabolism, which can be fundamentally achieved through large-scale mechanistic models of metabolism. In this study, we present a revised and significantly improved genome-scale metabolic model for the widely-studied microalga, Chlamydomonas reinhardtii. The model, iCre1355, represents a major advance over previous models, both in content and predictive power. iCre1355 encompasses a broad range of metabolic functions encoded across the nuclear, chloroplast and mitochondrial genomes accounting for 1355 genes (1460 transcripts), 2394 and 1133 metabolites. We found improved performance over the previous metabolic model based on comparisons of predictive accuracy across 306 phenotypes (from 81 mutants), lipid yield analysis and growth rates derived from chemostat-grown cells (under three conditions). Measurement of macronutrient uptake revealed carbon and phosphate to be good predictors of growth rate, while nitrogen consumption appeared to be in excess. We analyzed high-resolution time series transcriptomics data using iCre1355 to uncover dynamic pathway-level changes that occur in response to nitrogen starvation and changes in light intensity. This approach enabled accurate prediction of growth rates, the cessation of growth and accumulation of triacylglycerols during nitrogen starvation, and the temporal response of different growth-associated pathways to increased light intensity. Thus, iCre1355 represents an experimentally validated genome-scale reconstruction of C. reinhardtii metabolism that should serve as a useful resource for studying the metabolic processes of this and related microalgae. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  17. A refined genome-scale reconstruction of Chlamydomonas metabolism provides a platform for systems-level analyses

    DOE PAGES

    Imam, Saheed; Schäuble, Sascha; Valenzuela, Jacob; ...

    2015-10-20

    Microalgae have reemerged as organisms of prime biotechnological interest due to their ability to synthesize a suite of valuable chemicals. To harness the capabilities of these organisms, we need a comprehensive systems-level understanding of their metabolism, which can be fundamentally achieved through large-scale mechanistic models of metabolism. In this study, we present a revised and significantly improved genome-scale metabolic model for the widely-studied microalga, Chlamydomonas reinhardtii. The model, iCre1355, represents a major advance over previous models, both in content and predictive power. iCre1355 encompasses a broad range of metabolic functions encoded across the nuclear, chloroplast and mitochondrial genomes accounting formore » 1355 genes (1460 transcripts), 2394 and 1133 metabolites. We found improved performance over the previous metabolic model based on comparisons of predictive accuracy across 306 phenotypes (from 81 mutants), lipid yield analysis and growth rates derived from chemostat-grown cells (under three conditions). Measurement of macronutrient uptake revealed carbon and phosphate to be good predictors of growth rate, while nitrogen consumption appeared to be in excess. We analyzed high-resolution time series transcriptomics data using iCre1355 to uncover dynamic pathway-level changes that occur in response to nitrogen starvation and changes in light intensity. This approach enabled accurate prediction of growth rates, the cessation of growth and accumulation of triacylglycerols during nitrogen starvation, and the temporal response of different growth-associated pathways to increased light intensity. Thus, iCre1355 represents an experimentally validated genome-scale reconstruction of C. reinhardtii metabolism that should serve as a useful resource for studying the metabolic processes of this and related microalgae.« less

  18. Interpreting Mammalian Evolution using Fugu Genome Comparisons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stubbs, L; Ovcharenko, I; Loots, G G

    2004-04-02

    Comparative sequence analysis of the human and the pufferfish Fugu rubripes (fugu) genomes has revealed several novel functional coding and noncoding regions in the human genome. In particular, the fugu genome has been extremely valuable for identifying transcriptional regulatory elements in human loci harboring unusually high levels of evolutionary conservation to rodent genomes. In such regions, the large evolutionary distance between human and fishes provides an additional filter through which functional noncoding elements can be detected with high efficiency.

  19. The Enzyme Function Initiative†

    PubMed Central

    Gerlt, John A.; Allen, Karen N.; Almo, Steven C.; Armstrong, Richard N.; Babbitt, Patricia C.; Cronan, John E.; Dunaway-Mariano, Debra; Imker, Heidi J.; Jacobson, Matthew P.; Minor, Wladek; Poulter, C. Dale; Raushel, Frank M.; Sali, Andrej; Shoichet, Brian K.; Sweedler, Jonathan V.

    2011-01-01

    The Enzyme Function Initiative (EFI) was recently established to address the challenge of assigning reliable functions to enzymes discovered in bacterial genome projects; in this Current Topic we review the structure and operations of the EFI. The EFI includes the Superfamily/Genome, Protein, Structure, Computation, and Data/Dissemination Cores that provide the infrastructure for reliably predicting the in vitro functions of unknown enzymes. The initial targets for functional assignment are selected from five functionally diverse superfamilies (amidohydrolase, enolase, glutathione transferase, haloalkanoic acid dehalogenase, and isoprenoid synthase), with five superfamily-specific Bridging Projects experimentally testing the predicted in vitro enzymatic activities. The EFI also includes the Microbiology Core that evaluates the in vivo context of in vitro enzymatic functions and confirms the functional predictions of the EFI. The deliverables of the EFI to the scientific community include: 1) development of a large-scale, multidisciplinary sequence/structure-based strategy for functional assignment of unknown enzymes discovered in genome projects (target selection, protein production, structure determination, computation, experimental enzymology, microbiology, and structure-based annotation); 2) dissemination of the strategy to the community via publications, collaborations, workshops, and symposia; 3) computational and bioinformatic tools for using the strategy; 4) provision of experimental protocols and/or reagents for enzyme production and characterization; and 5) dissemination of data via the EFI’s website, enzymefunction.org. The realization of multidisciplinary strategies for functional assignment will begin to define the full metabolic diversity that exists in nature and will impact basic biochemical and evolutionary understanding, as well as a wide range of applications of central importance to industrial, medicinal and pharmaceutical efforts. PMID:21999478

  20. The Enzyme Function Initiative.

    PubMed

    Gerlt, John A; Allen, Karen N; Almo, Steven C; Armstrong, Richard N; Babbitt, Patricia C; Cronan, John E; Dunaway-Mariano, Debra; Imker, Heidi J; Jacobson, Matthew P; Minor, Wladek; Poulter, C Dale; Raushel, Frank M; Sali, Andrej; Shoichet, Brian K; Sweedler, Jonathan V

    2011-11-22

    The Enzyme Function Initiative (EFI) was recently established to address the challenge of assigning reliable functions to enzymes discovered in bacterial genome projects; in this Current Topic, we review the structure and operations of the EFI. The EFI includes the Superfamily/Genome, Protein, Structure, Computation, and Data/Dissemination Cores that provide the infrastructure for reliably predicting the in vitro functions of unknown enzymes. The initial targets for functional assignment are selected from five functionally diverse superfamilies (amidohydrolase, enolase, glutathione transferase, haloalkanoic acid dehalogenase, and isoprenoid synthase), with five superfamily specific Bridging Projects experimentally testing the predicted in vitro enzymatic activities. The EFI also includes the Microbiology Core that evaluates the in vivo context of in vitro enzymatic functions and confirms the functional predictions of the EFI. The deliverables of the EFI to the scientific community include (1) development of a large-scale, multidisciplinary sequence/structure-based strategy for functional assignment of unknown enzymes discovered in genome projects (target selection, protein production, structure determination, computation, experimental enzymology, microbiology, and structure-based annotation), (2) dissemination of the strategy to the community via publications, collaborations, workshops, and symposia, (3) computational and bioinformatic tools for using the strategy, (4) provision of experimental protocols and/or reagents for enzyme production and characterization, and (5) dissemination of data via the EFI's Website, http://enzymefunction.org. The realization of multidisciplinary strategies for functional assignment will begin to define the full metabolic diversity that exists in nature and will impact basic biochemical and evolutionary understanding, as well as a wide range of applications of central importance to industrial, medicinal, and pharmaceutical efforts. © 2011 American Chemical Society

  1. Genome-Level Longitudinal Expression of Signaling Pathways and Gene Networks in Pediatric Septic Shock

    PubMed Central

    Shanley, Thomas P; Cvijanovich, Natalie; Lin, Richard; Allen, Geoffrey L; Thomas, Neal J; Doctor, Allan; Kalyanaraman, Meena; Tofil, Nancy M; Penfil, Scott; Monaco, Marie; Odoms, Kelli; Barnes, Michael; Sakthivel, Bhuvaneswari; Aronow, Bruce J; Wong, Hector R

    2007-01-01

    We have conducted longitudinal studies focused on the expression profiles of signaling pathways and gene networks in children with septic shock. Genome-level expression profiles were generated from whole blood-derived RNA of children with septic shock (n = 30) corresponding to day one and day three of septic shock, respectively. Based on sequential statistical and expression filters, day one and day three of septic shock were characterized by differential regulation of 2,142 and 2,504 gene probes, respectively, relative to controls (n = 15). Venn analysis demonstrated 239 unique genes in the day one dataset, 598 unique genes in the day three dataset, and 1,906 genes common to both datasets. Functional analyses demonstrated time-dependent, differential regulation of genes involved in multiple signaling pathways and gene networks primarily related to immunity and inflammation. Notably, multiple and distinct gene networks involving T cell- and MHC antigen-related biology were persistently downregulated on both day one and day three. Further analyses demonstrated large scale, persistent downregulation of genes corresponding to functional annotations related to zinc homeostasis. These data represent the largest reported cohort of patients with septic shock subjected to longitudinal genome-level expression profiling. The data further advance our genome-level understanding of pediatric septic shock and support novel hypotheses. PMID:17932561

  2. Two Rounds of Whole Genome Duplication in the Ancestral Vertebrate

    PubMed Central

    Dehal, Paramvir; Boore, Jeffrey L

    2005-01-01

    The hypothesis that the relatively large and complex vertebrate genome was created by two ancient, whole genome duplications has been hotly debated, but remains unresolved. We reconstructed the evolutionary relationships of all gene families from the complete gene sets of a tunicate, fish, mouse, and human, and then determined when each gene duplicated relative to the evolutionary tree of the organisms. We confirmed the results of earlier studies that there remains little signal of these events in numbers of duplicated genes, gene tree topology, or the number of genes per multigene family. However, when we plotted the genomic map positions of only the subset of paralogous genes that were duplicated prior to the fish–tetrapod split, their global physical organization provides unmistakable evidence of two distinct genome duplication events early in vertebrate evolution indicated by clear patterns of four-way paralogous regions covering a large part of the human genome. Our results highlight the potential for these large-scale genomic events to have driven the evolutionary success of the vertebrate lineage. PMID:16128622

  3. Mycotoxins: A fungal genomics perspective

    USDA-ARS?s Scientific Manuscript database

    The chemical and enzymatic diversity in the fungal kingdom is staggering. Large-scale fungal genome sequencing projects are generating a massive catalog of secondary metabolite biosynthetic genes and pathways. Fungal natural products are a boon and bane to man as valuable pharmaceuticals and harmful...

  4. Large-Scale Sequencing: The Future of Genomic Sciences Colloquium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margaret Riley; Merry Buckley

    2009-01-01

    Genetic sequencing and the various molecular techniques it has enabled have revolutionized the field of microbiology. Examining and comparing the genetic sequences borne by microbes - including bacteria, archaea, viruses, and microbial eukaryotes - provides researchers insights into the processes microbes carry out, their pathogenic traits, and new ways to use microorganisms in medicine and manufacturing. Until recently, sequencing entire microbial genomes has been laborious and expensive, and the decision to sequence the genome of an organism was made on a case-by-case basis by individual researchers and funding agencies. Now, thanks to new technologies, the cost and effort of sequencingmore » is within reach for even the smallest facilities, and the ability to sequence the genomes of a significant fraction of microbial life may be possible. The availability of numerous microbial genomes will enable unprecedented insights into microbial evolution, function, and physiology. However, the current ad hoc approach to gathering sequence data has resulted in an unbalanced and highly biased sampling of microbial diversity. A well-coordinated, large-scale effort to target the breadth and depth of microbial diversity would result in the greatest impact. The American Academy of Microbiology convened a colloquium to discuss the scientific benefits of engaging in a large-scale, taxonomically-based sequencing project. A group of individuals with expertise in microbiology, genomics, informatics, ecology, and evolution deliberated on the issues inherent in such an effort and generated a set of specific recommendations for how best to proceed. The vast majority of microbes are presently uncultured and, thus, pose significant challenges to such a taxonomically-based approach to sampling genome diversity. However, we have yet to even scratch the surface of the genomic diversity among cultured microbes. A coordinated sequencing effort of cultured organisms is an appropriate place to begin, since not only are their genomes available, but they are also accompanied by data on environment and physiology that can be used to understand the resulting data. As single cell isolation methods improve, there should be a shift toward incorporating uncultured organisms and communities into this effort. Efforts to sequence cultivated isolates should target characterized isolates from culture collections for which biochemical data are available, as well as other cultures of lasting value from personal collections. The genomes of type strains should be among the first targets for sequencing, but creative culture methods, novel cell isolation, and sorting methods would all be helpful in obtaining organisms we have not yet been able to cultivate for sequencing. The data that should be provided for strains targeted for sequencing will depend on the phylogenetic context of the organism and the amount of information available about its nearest relatives. Annotation is an important part of transforming genome sequences into useful resources, but it represents the most significant bottleneck to the field of comparative genomics right now and must be addressed. Furthermore, there is a need for more consistency in both annotation and achieving annotation data. As new annotation tools become available over time, re-annotation of genomes should be implemented, taking advantage of advancements in annotation techniques in order to capitalize on the genome sequences and increase both the societal and scientific benefit of genomics work. Given the proper resources, the knowledge and ability exist to be able to select model systems, some simple, some less so, and dissect them so that we may understand the processes and interactions at work in them. Colloquium participants suggest a five-pronged, coordinated initiative to exhaustively describe six different microbial ecosystems, designed to describe all the gene diversity, across genomes. In this effort, sequencing should be complemented by other experimental data, particularly transcriptomics and metabolomics data, all of which should be gathered and curated continuously. Systematic genomics efforts like the ones outlined in this document would significantly broaden our view of biological diversity and have major effects on science. This has to be backed up with examples. Considering these potential impacts and the need for acquiescence from both the public and scientists to get such projects funded and functioning, education and training will be crucial. New collaborations within the scientific community will also be necessary.« less

  5. CoryneRegNet: an ontology-based data warehouse of corynebacterial transcription factors and regulatory networks.

    PubMed

    Baumbach, Jan; Brinkrolf, Karina; Czaja, Lisa F; Rahmann, Sven; Tauch, Andreas

    2006-02-14

    The application of DNA microarray technology in post-genomic analysis of bacterial genome sequences has allowed the generation of huge amounts of data related to regulatory networks. This data along with literature-derived knowledge on regulation of gene expression has opened the way for genome-wide reconstruction of transcriptional regulatory networks. These large-scale reconstructions can be converted into in silico models of bacterial cells that allow a systematic analysis of network behavior in response to changing environmental conditions. CoryneRegNet was designed to facilitate the genome-wide reconstruction of transcriptional regulatory networks of corynebacteria relevant in biotechnology and human medicine. During the import and integration process of data derived from experimental studies or literature knowledge CoryneRegNet generates links to genome annotations, to identified transcription factors and to the corresponding cis-regulatory elements. CoryneRegNet is based on a multi-layered, hierarchical and modular concept of transcriptional regulation and was implemented by using the relational database management system MySQL and an ontology-based data structure. Reconstructed regulatory networks can be visualized by using the yFiles JAVA graph library. As an application example of CoryneRegNet, we have reconstructed the global transcriptional regulation of a cellular module involved in SOS and stress response of corynebacteria. CoryneRegNet is an ontology-based data warehouse that allows a pertinent data management of regulatory interactions along with the genome-scale reconstruction of transcriptional regulatory networks. These models can further be combined with metabolic networks to build integrated models of cellular function including both metabolism and its transcriptional regulation.

  6. Comparative Genomics of a Plant-Parasitic Nematode Endosymbiont Suggest a Role in Nutritional Symbiosis

    PubMed Central

    Brown, Amanda M.V.; Howe, Dana K.; Wasala, Sulochana K.; Peetz, Amy B.; Zasada, Inga A.; Denver, Dee R.

    2015-01-01

    Bacterial mutualists can modulate the biochemical capacity of animals. Highly coevolved nutritional mutualists do this by synthesizing nutrients missing from the host’s diet. Genomics tools have advanced the study of these partnerships. Here we examined the endosymbiont Xiphinematobacter (phylum Verrucomicrobia) from the dagger nematode Xiphinema americanum, a migratory ectoparasite of numerous crops that also vectors nepovirus. Previously, this endosymbiont was identified in the gut, ovaries, and eggs, but its role was unknown. We explored the potential role of this symbiont using fluorescence in situ hybridization, genome sequencing, and comparative functional genomics. We report the first genome of an intracellular Verrucomicrobium and the first exclusively intracellular non-Wolbachia nematode symbiont. Results revealed that Xiphinematobacter had a small 0.916-Mb genome with only 817 predicted proteins, resembling genomes of other mutualist endosymbionts. Compared with free-living relatives, conserved proteins were shorter on average, and there was large-scale loss of regulatory pathways. Despite massive gene loss, more genes were retained for biosynthesis of amino acids predicted to be essential to the host. Gene ontology enrichment tests showed enrichment for biosynthesis of arginine, histidine, and aromatic amino acids, as well as thiamine and coenzyme A, diverging from the profiles of relatives Akkermansia muciniphilia (in the human colon), Methylacidiphilum infernorum, and the mutualist Wolbachia from filarial nematodes. Together, these features and the location in the gut suggest that Xiphinematobacter functions as a nutritional mutualist, supplementing essential nutrients that are depleted in the nematode diet. This pattern points to evolutionary convergence with endosymbionts found in sap-feeding insects. PMID:26362082

  7. Similar genomic proportions of copy number variation within gray wolves and modern dog breeds inferred from whole genome sequencing.

    PubMed

    Serres-Armero, Aitor; Povolotskaya, Inna S; Quilez, Javier; Ramirez, Oscar; Santpere, Gabriel; Kuderna, Lukas F K; Hernandez-Rodriguez, Jessica; Fernandez-Callejo, Marcos; Gomez-Sanchez, Daniel; Freedman, Adam H; Fan, Zhenxin; Novembre, John; Navarro, Arcadi; Boyko, Adam; Wayne, Robert; Vilà, Carles; Lorente-Galdos, Belen; Marques-Bonet, Tomas

    2017-12-19

    Whole genome re-sequencing data from dogs and wolves are now commonly used to study how natural and artificial selection have shaped the patterns of genetic diversity. Single nucleotide polymorphisms, microsatellites and variants in mitochondrial DNA have been interrogated for links to specific phenotypes or signals of domestication. However, copy number variation (CNV), despite its increasingly recognized importance as a contributor to phenotypic diversity, has not been extensively explored in canids. Here, we develop a new accurate probabilistic framework to create fine-scale genomic maps of segmental duplications (SDs), compare patterns of CNV across groups and investigate their role in the evolution of the domestic dog by using information from 34 canine genomes. Our analyses show that duplicated regions are enriched in genes and hence likely possess functional importance. We identify 86 loci with large CNV differences between dogs and wolves, enriched in genes responsible for sensory perception, immune response, metabolic processes, etc. In striking contrast to the observed loss of nucleotide diversity in domestic dogs following the population bottlenecks that occurred during domestication and breed creation, we find a similar proportion of CNV loci in dogs and wolves, suggesting that other dynamics are acting to particularly select for CNVs with potentially functional impacts. This work is the first comparison of genome wide CNV patterns in domestic and wild canids using whole-genome sequencing data and our findings contribute to study the impact of novel kinds of genetic changes on the evolution of the domestic dog.

  8. Evolution of a Cellular Immune Response in Drosophila: A Phenotypic and Genomic Comparative Analysis

    PubMed Central

    Salazar-Jaramillo, Laura; Paspati, Angeliki; van de Zande, Louis; Vermeulen, Cornelis Joseph; Schwander, Tanja; Wertheim, Bregje

    2014-01-01

    Understanding the genomic basis of evolutionary adaptation requires insight into the molecular basis underlying phenotypic variation. However, even changes in molecular pathways associated with extreme variation, gains and losses of specific phenotypes, remain largely uncharacterized. Here, we investigate the large interspecific differences in the ability to survive infection by parasitoids across 11 Drosophila species and identify genomic changes associated with gains and losses of parasitoid resistance. We show that a cellular immune defense, encapsulation, and the production of a specialized blood cell, lamellocytes, are restricted to a sublineage of Drosophila, but that encapsulation is absent in one species of this sublineage, Drosophila sechellia. Our comparative analyses of hemopoiesis pathway genes and of genes differentially expressed during the encapsulation response revealed that hemopoiesis-associated genes are highly conserved and present in all species independently of their resistance. In contrast, 11 genes that are differentially expressed during the response to parasitoids are novel genes, specific to the Drosophila sublineage capable of lamellocyte-mediated encapsulation. These novel genes, which are predominantly expressed in hemocytes, arose via duplications, whereby five of them also showed signatures of positive selection, as expected if they were recruited for new functions. Three of these novel genes further showed large-scale and presumably loss-of-function sequence changes in D. sechellia, consistent with the loss of resistance in this species. In combination, these convergent lines of evidence suggest that co-option of duplicated genes in existing pathways and subsequent neofunctionalization are likely to have contributed to the evolution of the lamellocyte-mediated encapsulation in Drosophila. PMID:24443439

  9. Evolution of a cellular immune response in Drosophila: a phenotypic and genomic comparative analysis.

    PubMed

    Salazar-Jaramillo, Laura; Paspati, Angeliki; van de Zande, Louis; Vermeulen, Cornelis Joseph; Schwander, Tanja; Wertheim, Bregje

    2014-02-01

    Understanding the genomic basis of evolutionary adaptation requires insight into the molecular basis underlying phenotypic variation. However, even changes in molecular pathways associated with extreme variation, gains and losses of specific phenotypes, remain largely uncharacterized. Here, we investigate the large interspecific differences in the ability to survive infection by parasitoids across 11 Drosophila species and identify genomic changes associated with gains and losses of parasitoid resistance. We show that a cellular immune defense, encapsulation, and the production of a specialized blood cell, lamellocytes, are restricted to a sublineage of Drosophila, but that encapsulation is absent in one species of this sublineage, Drosophila sechellia. Our comparative analyses of hemopoiesis pathway genes and of genes differentially expressed during the encapsulation response revealed that hemopoiesis-associated genes are highly conserved and present in all species independently of their resistance. In contrast, 11 genes that are differentially expressed during the response to parasitoids are novel genes, specific to the Drosophila sublineage capable of lamellocyte-mediated encapsulation. These novel genes, which are predominantly expressed in hemocytes, arose via duplications, whereby five of them also showed signatures of positive selection, as expected if they were recruited for new functions. Three of these novel genes further showed large-scale and presumably loss-of-function sequence changes in D. sechellia, consistent with the loss of resistance in this species. In combination, these convergent lines of evidence suggest that co-option of duplicated genes in existing pathways and subsequent neofunctionalization are likely to have contributed to the evolution of the lamellocyte-mediated encapsulation in Drosophila.

  10. A New Framework and Prototype Solution for Clinical Decision Support and Research in Genomics and Other Data-intensive Fields of Medicine

    PubMed Central

    Evans, James P.; Wilhelmsen, Kirk C.; Berg, Jonathan; Schmitt, Charles P.; Krishnamurthy, Ashok; Fecho, Karamarie; Ahalt, Stanley C.

    2016-01-01

    Introduction: In genomics and other fields, it is now possible to capture and store large amounts of data in electronic medical records (EMRs). However, it is not clear if the routine accumulation of massive amounts of (largely uninterpretable) data will yield any health benefits to patients. Nevertheless, the use of large-scale medical data is likely to grow. To meet emerging challenges and facilitate optimal use of genomic data, our institution initiated a comprehensive planning process that addresses the needs of all stakeholders (e.g., patients, families, healthcare providers, researchers, technical staff, administrators). Our experience with this process and a key genomics research project contributed to the proposed framework. Framework: We propose a two-pronged Genomic Clinical Decision Support System (CDSS) that encompasses the concept of the “Clinical Mendeliome” as a patient-centric list of genomic variants that are clinically actionable and introduces the concept of the “Archival Value Criterion” as a decision-making formalism that approximates the cost-effectiveness of capturing, storing, and curating genome-scale sequencing data. We describe a prototype Genomic CDSS that we developed as a first step toward implementation of the framework. Conclusion: The proposed framework and prototype solution are designed to address the perspectives of stakeholders, stimulate effective clinical use of genomic data, drive genomic research, and meet current and future needs. The framework also can be broadly applied to additional fields, including other ‘-omics’ fields. We advocate for the creation of a Task Force on the Clinical Mendeliome, charged with defining Clinical Mendeliomes and drafting clinical guidelines for their use. PMID:27195307

  11. Comparative genomics of Eucalyptus and Corymbia reveals low rates of genome structural rearrangement.

    PubMed

    Butler, J B; Vaillancourt, R E; Potts, B M; Lee, D J; King, G J; Baten, A; Shepherd, M; Freeman, J S

    2017-05-22

    Previous studies suggest genome structure is largely conserved between Eucalyptus species. However, it is unknown if this conservation extends to more divergent eucalypt taxa. We performed comparative genomics between the eucalypt genera Eucalyptus and Corymbia. Our results will facilitate transfer of genomic information between these important taxa and provide further insights into the rate of structural change in tree genomes. We constructed three high density linkage maps for two Corymbia species (Corymbia citriodora subsp. variegata and Corymbia torelliana) which were used to compare genome structure between both species and Eucalyptus grandis. Genome structure was highly conserved between the Corymbia species. However, the comparison of Corymbia and E. grandis suggests large (from 1-13 MB) intra-chromosomal rearrangements have occurred on seven of the 11 chromosomes. Most rearrangements were supported through comparisons of the three independent Corymbia maps to the E. grandis genome sequence, and to other independently constructed Eucalyptus linkage maps. These are the first large scale chromosomal rearrangements discovered between eucalypts. Nonetheless, in the general context of plants, the genomic structure of the two genera was remarkably conserved; adding to a growing body of evidence that conservation of genome structure is common amongst woody angiosperms.

  12. Characterizing genomic alterations in cancer by complementary functional associations.

    PubMed

    Kim, Jong Wook; Botvinnik, Olga B; Abudayyeh, Omar; Birger, Chet; Rosenbluh, Joseph; Shrestha, Yashaswi; Abazeed, Mohamed E; Hammerman, Peter S; DiCara, Daniel; Konieczkowski, David J; Johannessen, Cory M; Liberzon, Arthur; Alizad-Rahvar, Amir Reza; Alexe, Gabriela; Aguirre, Andrew; Ghandi, Mahmoud; Greulich, Heidi; Vazquez, Francisca; Weir, Barbara A; Van Allen, Eliezer M; Tsherniak, Aviad; Shao, Diane D; Zack, Travis I; Noble, Michael; Getz, Gad; Beroukhim, Rameen; Garraway, Levi A; Ardakani, Masoud; Romualdi, Chiara; Sales, Gabriele; Barbie, David A; Boehm, Jesse S; Hahn, William C; Mesirov, Jill P; Tamayo, Pablo

    2016-05-01

    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes.

  13. StructRNAfinder: an automated pipeline and web server for RNA families prediction.

    PubMed

    Arias-Carrasco, Raúl; Vásquez-Morán, Yessenia; Nakaya, Helder I; Maracaja-Coutinho, Vinicius

    2018-02-17

    The function of many noncoding RNAs (ncRNAs) depend upon their secondary structures. Over the last decades, several methodologies have been developed to predict such structures or to use them to functionally annotate RNAs into RNA families. However, to fully perform this analysis, researchers should utilize multiple tools, which require the constant parsing and processing of several intermediate files. This makes the large-scale prediction and annotation of RNAs a daunting task even to researchers with good computational or bioinformatics skills. We present an automated pipeline named StructRNAfinder that predicts and annotates RNA families in transcript or genome sequences. This single tool not only displays the sequence/structural consensus alignments for each RNA family, according to Rfam database but also provides a taxonomic overview for each assigned functional RNA. Moreover, we implemented a user-friendly web service that allows researchers to upload their own nucleotide sequences in order to perform the whole analysis. Finally, we provided a stand-alone version of StructRNAfinder to be used in large-scale projects. The tool was developed under GNU General Public License (GPLv3) and is freely available at http://structrnafinder.integrativebioinformatics.me . The main advantage of StructRNAfinder relies on the large-scale processing and integrating the data obtained by each tool and database employed along the workflow, of which several files are generated and displayed in user-friendly reports, useful for downstream analyses and data exploration.

  14. Large-scale SNP discovery and construction of a high-density genetic map of Colossoma macropomum through genotyping-by-sequencing

    PubMed Central

    Nunes, José de Ribamar da Silva; Liu, Shikai; Pértille, Fábio; Perazza, Caio Augusto; Villela, Priscilla Marqui Schmidt; de Almeida-Val, Vera Maria Fonseca; Hilsdorf, Alexandre Wagner Silva; Liu, Zhanjiang; Coutinho, Luiz Lehmann

    2017-01-01

    Colossoma macropomum, or tambaqui, is the largest native Characiform species found in the Amazon and Orinoco river basins, yet few resources for genetic studies and the genetic improvement of tambaqui exist. In this study, we identified a large number of single-nucleotide polymorphisms (SNPs) for tambaqui and constructed a high-resolution genetic linkage map from a full-sib family of 124 individuals and their parents using the genotyping by sequencing method. In all, 68,584 SNPs were initially identified using minimum minor allele frequency (MAF) of 5%. Filtering parameters were used to select high-quality markers for linkage analysis. We selected 7,734 SNPs for linkage mapping, resulting in 27 linkage groups with a minimum logarithm of odds (LOD) of 8 and maximum recombination fraction of 0.35. The final genetic map contains 7,192 successfully mapped markers that span a total of 2,811 cM, with an average marker interval of 0.39 cM. Comparative genomic analysis between tambaqui and zebrafish revealed variable levels of genomic conservation across the 27 linkage groups which allowed for functional SNP annotations. The large-scale SNP discovery obtained here, allowed us to build a high-density linkage map in tambaqui, which will be useful to enhance genetic studies that can be applied in breeding programs. PMID:28387238

  15. FULL-GENOME ANALYSIS OF ALTERNATIVE SPLICING IN MOUSE LIVER AFTER HEPATOTOXICANT EXPOSURE

    EPA Science Inventory

    Alternative splicing plays a role in determining gene function and protein diversity. We have employed whole genome exon profiling using Affymetrix Mouse Exon 1.0 ST arrays to understand the significance of alternative splicing on a genome-wide scale in response to multiple toxic...

  16. Targeted capture and resequencing of 1040 genes reveal environmentally driven functional variation in grey wolves.

    PubMed

    Schweizer, Rena M; Robinson, Jacqueline; Harrigan, Ryan; Silva, Pedro; Galverni, Marco; Musiani, Marco; Green, Richard E; Novembre, John; Wayne, Robert K

    2016-01-01

    In an era of ever-increasing amounts of whole-genome sequence data for individuals and populations, the utility of traditional single nucleotide polymorphisms (SNPs) array-based genome scans is uncertain. We previously performed a SNP array-based genome scan to identify candidate genes under selection in six distinct grey wolf (Canis lupus) ecotypes. Using this information, we designed a targeted capture array for 1040 genes, including all exons and flanking regions, as well as 5000 1-kb nongenic neutral regions, and resequenced these regions in 107 wolves. Selection tests revealed striking patterns of variation within candidate genes relative to noncandidate regions and identified potentially functional variants related to local adaptation. We found 27% and 47% of candidate genes from the previous SNP array study had functional changes that were outliers in sweed and bayenv analyses, respectively. This result verifies the use of genomewide SNP surveys to tag genes that contain functional variants between populations. We highlight nonsynonymous variants in APOB, LIPG and USH2A that occur in functional domains of these proteins, and that demonstrate high correlation with precipitation seasonality and vegetation. We find Arctic and High Arctic wolf ecotypes have higher numbers of genes under selection, which highlight their conservation value and heightened threat due to climate change. This study demonstrates that combining genomewide genotyping arrays with large-scale resequencing and environmental data provides a powerful approach to discern candidate functional variants in natural populations. © 2015 John Wiley & Sons Ltd.

  17. Simulating cyanobacterial phenotypes by integrating flux balance analysis, kinetics, and a light distribution function

    DOE PAGES

    He, Lian; Wu, Stephen G.; Wan, Ni; ...

    2015-12-24

    In this study, genome-scale models (GSMs) are widely used to predict cyanobacterial phenotypes in photobioreactors (PBRs). However, stoichiometric GSMs mainly focus on fluxome that result in maximal yields. Cyanobacterial metabolism is controlled by both intracellular enzymes and photobioreactor conditions. To connect both intracellular and extracellular information and achieve a better understanding of PBRs productivities, this study integrates a genome-scale metabolic model of Synechocystis 6803 with growth kinetics, cell movements, and a light distribution function. The hybrid platform not only maps flux dynamics in cells of sub-populations but also predicts overall production titer and rate in PBRs. Analysis of the integratedmore » GSM demonstrates several results. First, cyanobacteria are capable of reaching high biomass concentration (>20 g/L in 21 days) in PBRs without light and CO 2 mass transfer limitations. Second, fluxome in a single cyanobacterium may show stochastic changes due to random cell movements in PBRs. Third, insufficient light due to cell self-shading can activate the oxidative pentose phosphate pathway in subpopulation cells. Fourth, the model indicates that the removal of glycogen synthesis pathway may not improve cyanobacterial bio-production in large-size PBRs, because glycogen can support cell growth in the dark zones. Based on experimental data, the integrated GSM estimates that Synechocystis 6803 in shake flask conditions has a photosynthesis efficiency of ~2.7 %. Conclusions: The multiple-scale integrated GSM, which examines both intracellular and extracellular domains, can be used to predict production yield/rate/titer in large-size PBRs. More importantly, genetic engineering strategies predicted by a traditional GSM may work well only in optimal growth conditions. In contrast, the integrated GSM may reveal mutant physiologies in diverse bioreactor conditions, leading to the design of robust strains with high chances of success in industrial settings.« less

  18. GIANT 2.0: genome-scale integrated analysis of gene networks in tissues.

    PubMed

    Wong, Aaron K; Krishnan, Arjun; Troyanskaya, Olga G

    2018-05-25

    GIANT2 (Genome-wide Integrated Analysis of gene Networks in Tissues) is an interactive web server that enables biomedical researchers to analyze their proteins and pathways of interest and generate hypotheses in the context of genome-scale functional maps of human tissues. The precise actions of genes are frequently dependent on their tissue context, yet direct assay of tissue-specific protein function and interactions remains infeasible in many normal human tissues and cell-types. With GIANT2, researchers can explore predicted tissue-specific functional roles of genes and reveal changes in those roles across tissues, all through interactive multi-network visualizations and analyses. Additionally, the NetWAS approach available through the server uses tissue-specific/cell-type networks predicted by GIANT2 to re-prioritize statistical associations from GWAS studies and identify disease-associated genes. GIANT2 predicts tissue-specific interactions by integrating diverse functional genomics data from now over 61 400 experiments for 283 diverse tissues and cell-types. GIANT2 does not require any registration or installation and is freely available for use at http://giant-v2.princeton.edu.

  19. A rice kinase-protein interaction map.

    PubMed

    Ding, Xiaodong; Richter, Todd; Chen, Mei; Fujii, Hiroaki; Seo, Young Su; Xie, Mingtang; Zheng, Xianwu; Kanrar, Siddhartha; Stevenson, Rebecca A; Dardick, Christopher; Li, Ying; Jiang, Hao; Zhang, Yan; Yu, Fahong; Bartley, Laura E; Chern, Mawsheng; Bart, Rebecca; Chen, Xiuhua; Zhu, Lihuang; Farmerie, William G; Gribskov, Michael; Zhu, Jian-Kang; Fromm, Michael E; Ronald, Pamela C; Song, Wen-Yuan

    2009-03-01

    Plants uniquely contain large numbers of protein kinases, and for the vast majority of the 1,429 kinases predicted in the rice (Oryza sativa) genome, little is known of their functions. Genetic approaches often fail to produce observable phenotypes; thus, new strategies are needed to delineate kinase function. We previously developed a cost-effective high-throughput yeast two-hybrid system. Using this system, we have generated a protein interaction map of 116 representative rice kinases and 254 of their interacting proteins. Overall, the resulting interaction map supports a large number of known or predicted kinase-protein interactions from both plants and animals and reveals many new functional insights. Notably, we found a potential widespread role for E3 ubiquitin ligases in pathogen defense signaling mediated by receptor-like kinases, particularly by the kinases that may have evolved from recently expanded kinase subfamilies in rice. We anticipate that the data provided here will serve as a foundation for targeted functional studies in rice and other plants. The application of yeast two-hybrid and TAPtag analyses for large-scale plant protein interaction studies is also discussed.

  20. International network of cancer genome projects

    PubMed Central

    2010-01-01

    The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumors from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of over 25,000 cancer genomes at the genomic, epigenomic, and transcriptomic levels will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically-relevant subtypes for prognosis and therapeutic management, and enable the development of new cancer therapies. PMID:20393554

  1. Privacy Challenges of Genomic Big Data.

    PubMed

    Shen, Hong; Ma, Jian

    2017-01-01

    With the rapid advancement of high-throughput DNA sequencing technologies, genomics has become a big data discipline where large-scale genetic information of human individuals can be obtained efficiently with low cost. However, such massive amount of personal genomic data creates tremendous challenge for privacy, especially given the emergence of direct-to-consumer (DTC) industry that provides genetic testing services. Here we review the recent development in genomic big data and its implications on privacy. We also discuss the current dilemmas and future challenges of genomic privacy.

  2. Genome-scale approaches to the epigenetics of common human disease

    PubMed Central

    2011-01-01

    Traditionally, the pathology of human disease has been focused on microscopic examination of affected tissues, chemical and biochemical analysis of biopsy samples, other available samples of convenience, such as blood, and noninvasive or invasive imaging of varying complexity, in order to classify disease and illuminate its mechanistic basis. The molecular age has complemented this armamentarium with gene expression arrays and selective analysis of individual genes. However, we are entering a new era of epigenomic profiling, i.e., genome-scale analysis of cell-heritable nonsequence genetic change, such as DNA methylation. The epigenome offers access to stable measurements of cellular state and to biobanked material for large-scale epidemiological studies. Some of these genome-scale technologies are beginning to be applied to create the new field of epigenetic epidemiology. PMID:19844740

  3. Emerging Genomic Tools for Legume Breeding: Current Status and Future Prospects

    PubMed Central

    Pandey, Manish K.; Roorkiwal, Manish; Singh, Vikas K.; Ramalingam, Abirami; Kudapa, Himabindu; Thudi, Mahendar; Chitikineni, Anu; Rathore, Abhishek; Varshney, Rajeev K.

    2016-01-01

    Legumes play a vital role in ensuring global nutritional food security and improving soil quality through nitrogen fixation. Accelerated higher genetic gains is required to meet the demand of ever increasing global population. In recent years, speedy developments have been witnessed in legume genomics due to advancements in next-generation sequencing (NGS) and high-throughput genotyping technologies. Reference genome sequences for many legume crops have been reported in the last 5 years. The availability of the draft genome sequences and re-sequencing of elite genotypes for several important legume crops have made it possible to identify structural variations at large scale. Availability of large-scale genomic resources and low-cost and high-throughput genotyping technologies are enhancing the efficiency and resolution of genetic mapping and marker-trait association studies. Most importantly, deployment of molecular breeding approaches has resulted in development of improved lines in some legume crops such as chickpea and groundnut. In order to support genomics-driven crop improvement at a fast pace, the deployment of breeder-friendly genomics and decision support tools seems appear to be critical in breeding programs in developing countries. This review provides an overview of emerging genomics and informatics tools/approaches that will be the key driving force for accelerating genomics-assisted breeding and ultimately ensuring nutritional and food security in developing countries. PMID:27199998

  4. CellLineNavigator: a workbench for cancer cell line analysis

    PubMed Central

    Krupp, Markus; Itzel, Timo; Maass, Thorsten; Hildebrandt, Andreas; Galle, Peter R.; Teufel, Andreas

    2013-01-01

    The CellLineNavigator database, freely available at http://www.medicalgenomics.org/celllinenavigator, is a web-based workbench for large scale comparisons of a large collection of diverse cell lines. It aims to support experimental design in the fields of genomics, systems biology and translational biomedical research. Currently, this compendium holds genome wide expression profiles of 317 different cancer cell lines, categorized into 57 different pathological states and 28 individual tissues. To enlarge the scope of CellLineNavigator, the database was furthermore closely linked to commonly used bioinformatics databases and knowledge repositories. To ensure easy data access and search ability, a simple data and an intuitive querying interface were implemented. It allows the user to explore and filter gene expression, focusing on pathological or physiological conditions. For a more complex search, the advanced query interface may be used to query for (i) differentially expressed genes; (ii) pathological or physiological conditions; or (iii) gene names or functional attributes, such as Kyoto Encyclopaedia of Genes and Genomes pathway maps. These queries may also be combined. Finally, CellLineNavigator allows additional advanced analysis of differentially regulated genes by a direct link to the Database for Annotation, Visualization and Integrated Discovery (DAVID) Bioinformatics Resources. PMID:23118487

  5. Partitioning heritability by functional annotation using genome-wide association summary statistics.

    PubMed

    Finucane, Hilary K; Bulik-Sullivan, Brendan; Gusev, Alexander; Trynka, Gosia; Reshef, Yakir; Loh, Po-Ru; Anttila, Verneri; Xu, Han; Zang, Chongzhi; Farh, Kyle; Ripke, Stephan; Day, Felix R; Purcell, Shaun; Stahl, Eli; Lindstrom, Sara; Perry, John R B; Okada, Yukinori; Raychaudhuri, Soumya; Daly, Mark J; Patterson, Nick; Neale, Benjamin M; Price, Alkes L

    2015-11-01

    Recent work has demonstrated that some functional categories of the genome contribute disproportionately to the heritability of complex diseases. Here we analyze a broad set of functional elements, including cell type-specific elements, to estimate their polygenic contributions to heritability in genome-wide association studies (GWAS) of 17 complex diseases and traits with an average sample size of 73,599. To enable this analysis, we introduce a new method, stratified LD score regression, for partitioning heritability from GWAS summary statistics while accounting for linked markers. This new method is computationally tractable at very large sample sizes and leverages genome-wide information. Our findings include a large enrichment of heritability in conserved regions across many traits, a very large immunological disease-specific enrichment of heritability in FANTOM5 enhancers and many cell type-specific enrichments, including significant enrichment of central nervous system cell types in the heritability of body mass index, age at menarche, educational attainment and smoking behavior.

  6. Genotyping-by-sequencing for Populus population genomics: An assessment of genome sampling patterns and filtering approaches

    Treesearch

    Martin P. Schilling; Paul G. Wolf; Aaron M. Duffy; Hardeep S. Rai; Carol A. Rowe; Bryce A. Richardson; Karen E. Mock

    2014-01-01

    Continuing advances in nucleotide sequencing technology are inspiring a suite of genomic approaches in studies of natural populations. Researchers are faced with data management and analytical scales that are increasing by orders of magnitude. With such dramatic advances comes a need to understand biases and error rates, which can be propagated and magnified in large-...

  7. Analyzing large scale genomic data on the cloud with Sparkhit

    PubMed Central

    Huang, Liren; Krüger, Jan

    2018-01-01

    Abstract Motivation The increasing amount of next-generation sequencing data poses a fundamental challenge on large scale genomic analytics. Existing tools use different distributed computational platforms to scale-out bioinformatics workloads. However, the scalability of these tools is not efficient. Moreover, they have heavy run time overheads when pre-processing large amounts of data. To address these limitations, we have developed Sparkhit: a distributed bioinformatics framework built on top of the Apache Spark platform. Results Sparkhit integrates a variety of analytical methods. It is implemented in the Spark extended MapReduce model. It runs 92–157 times faster than MetaSpark on metagenomic fragment recruitment and 18–32 times faster than Crossbow on data pre-processing. We analyzed 100 terabytes of data across four genomic projects in the cloud in 21 h, which includes the run times of cluster deployment and data downloading. Furthermore, our application on the entire Human Microbiome Project shotgun sequencing data was completed in 2 h, presenting an approach to easily associate large amounts of public datasets with reference data. Availability and implementation Sparkhit is freely available at: https://rhinempi.github.io/sparkhit/. Contact asczyrba@cebitec.uni-bielefeld.de Supplementary information Supplementary data are available at Bioinformatics online. PMID:29253074

  8. A New Method for Rapid Screening of End-Point PCR Products: Application to Single Genome Amplified HIV and SIV Envelope Amplicons

    PubMed Central

    Houzet, Laurent; Deleage, Claire; Satie, Anne-Pascale; Merlande, Laetitia; Mahe, Dominique; Dejucq-Rainsford, Nathalie

    2015-01-01

    PCR is the most widely applied technique for large scale screening of bacterial clones, mouse genotypes, virus genomes etc. A drawback of large PCR screening is that amplicon analysis is usually performed using gel electrophoresis, a step that is very labor intensive, tedious and chemical waste generating. Single genome amplification (SGA) is used to characterize the diversity and evolutionary dynamics of virus populations within infected hosts. SGA is based on the isolation of single template molecule using limiting dilution followed by nested PCR amplification and requires the analysis of hundreds of reactions per sample, making large scale SGA studies very challenging. Here we present a novel approach entitled Long Amplicon Melt Profiling (LAMP) based on the analysis of the melting profile of the PCR reactions using SYBR Green and/or EvaGreen fluorescent dyes. The LAMP method represents an attractive alternative to gel electrophoresis and enables the quick discrimination of positive reactions. We validate LAMP for SIV and HIV env-SGA, in 96- and 384-well plate formats. Because the melt profiling allows the screening of several thousands of PCR reactions in a cost-effective, rapid and robust way, we believe it will greatly facilitate any large scale PCR screening. PMID:26053379

  9. Reverse engineering and analysis of large genome-scale gene networks

    PubMed Central

    Aluru, Maneesha; Zola, Jaroslaw; Nettleton, Dan; Aluru, Srinivas

    2013-01-01

    Reverse engineering the whole-genome networks of complex multicellular organisms continues to remain a challenge. While simpler models easily scale to large number of genes and gene expression datasets, more accurate models are compute intensive limiting their scale of applicability. To enable fast and accurate reconstruction of large networks, we developed Tool for Inferring Network of Genes (TINGe), a parallel mutual information (MI)-based program. The novel features of our approach include: (i) B-spline-based formulation for linear-time computation of MI, (ii) a novel algorithm for direct permutation testing and (iii) development of parallel algorithms to reduce run-time and facilitate construction of large networks. We assess the quality of our method by comparison with ARACNe (Algorithm for the Reconstruction of Accurate Cellular Networks) and GeneNet and demonstrate its unique capability by reverse engineering the whole-genome network of Arabidopsis thaliana from 3137 Affymetrix ATH1 GeneChips in just 9 min on a 1024-core cluster. We further report on the development of a new software Gene Network Analyzer (GeNA) for extracting context-specific subnetworks from a given set of seed genes. Using TINGe and GeNA, we performed analysis of 241 Arabidopsis AraCyc 8.0 pathways, and the results are made available through the web. PMID:23042249

  10. Observing copepods through a genomic lens

    PubMed Central

    2011-01-01

    Background Copepods outnumber every other multicellular animal group. They are critical components of the world's freshwater and marine ecosystems, sensitive indicators of local and global climate change, key ecosystem service providers, parasites and predators of economically important aquatic animals and potential vectors of waterborne disease. Copepods sustain the world fisheries that nourish and support human populations. Although genomic tools have transformed many areas of biological and biomedical research, their power to elucidate aspects of the biology, behavior and ecology of copepods has only recently begun to be exploited. Discussion The extraordinary biological and ecological diversity of the subclass Copepoda provides both unique advantages for addressing key problems in aquatic systems and formidable challenges for developing a focused genomics strategy. This article provides an overview of genomic studies of copepods and discusses strategies for using genomics tools to address key questions at levels extending from individuals to ecosystems. Genomics can, for instance, help to decipher patterns of genome evolution such as those that occur during transitions from free living to symbiotic and parasitic lifestyles and can assist in the identification of genetic mechanisms and accompanying physiological changes associated with adaptation to new or physiologically challenging environments. The adaptive significance of the diversity in genome size and unique mechanisms of genome reorganization during development could similarly be explored. Genome-wide and EST studies of parasitic copepods of salmon and large EST studies of selected free-living copepods have demonstrated the potential utility of modern genomics approaches for the study of copepods and have generated resources such as EST libraries, shotgun genome sequences, BAC libraries, genome maps and inbred lines that will be invaluable in assisting further efforts to provide genomics tools for copepods. Summary Genomics research on copepods is needed to extend our exploration and characterization of their fundamental biological traits, so that we can better understand how copepods function and interact in diverse environments. Availability of large scale genomics resources will also open doors to a wide range of systems biology type studies that view the organism as the fundamental system in which to address key questions in ecology and evolution. PMID:21933388

  11. Trace Elements and Healthcare: A Bioinformatics Perspective.

    PubMed

    Zhang, Yan

    2017-01-01

    Biological trace elements are essential for human health. Imbalance in trace element metabolism and homeostasis may play an important role in a variety of diseases and disorders. While the majority of previous researches focused on experimental verification of genes involved in trace element metabolism and those encoding trace element-dependent proteins, bioinformatics study on trace elements is relatively rare and still at the starting stage. This chapter offers an overview of recent progress in bioinformatics analyses of trace element utilization, metabolism, and function, especially comparative genomics of several important metals. The relationship between individual elements and several diseases based on recent large-scale systematic studies such as genome-wide association studies and case-control studies is discussed. Lastly, developments of ionomics and its recent application in human health are also introduced.

  12. The Eukaryotic Pathogen Databases: a functional genomic resource integrating data from human and veterinary parasites.

    PubMed

    Harb, Omar S; Roos, David S

    2015-01-01

    Over the past 20 years, advances in high-throughput biological techniques and the availability of computational resources including fast Internet access have resulted in an explosion of large genome-scale data sets "big data." While such data are readily available for download and personal use and analysis from a variety of repositories, often such analysis requires access to seldom-available computational skills. As a result a number of databases have emerged to provide scientists with online tools enabling the interrogation of data without the need for sophisticated computational skills beyond basic knowledge of Internet browser utility. This chapter focuses on the Eukaryotic Pathogen Databases (EuPathDB: http://eupathdb.org) Bioinformatic Resource Center (BRC) and illustrates some of the available tools and methods.

  13. The layout of a bacterial genome.

    PubMed

    Képès, François; Jester, Brian C; Lepage, Thibaut; Rafiei, Nafiseh; Rosu, Bianca; Junier, Ivan

    2012-07-16

    Recently the mismatch between our newly acquired capacity to synthetize DNA at genome scale, and our low capacity to design ab initio a functional genome has become conspicuous. This essay gathers a variety of constraints that globally shape natural genomes, with a focus on eubacteria. These constraints originate from chromosome replication (leading/lagging strand asymmetry; gene dosage gradient from origin to terminus; collisions with the transcription complexes), from biased codon usage, from noise control in gene expression, and from genome layout for co-functional genes. On the basis of this analysis, lessons are drawn for full genome design. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. GDC 2: Compression of large collections of genomes

    PubMed Central

    Deorowicz, Sebastian; Danek, Agnieszka; Niemiec, Marcin

    2015-01-01

    The fall of prices of the high-throughput genome sequencing changes the landscape of modern genomics. A number of large scale projects aimed at sequencing many human genomes are in progress. Genome sequencing also becomes an important aid in the personalized medicine. One of the significant side effects of this change is a necessity of storage and transfer of huge amounts of genomic data. In this paper we deal with the problem of compression of large collections of complete genomic sequences. We propose an algorithm that is able to compress the collection of 1092 human diploid genomes about 9,500 times. This result is about 4 times better than what is offered by the other existing compressors. Moreover, our algorithm is very fast as it processes the data with speed 200 MB/s on a modern workstation. In a consequence the proposed algorithm allows storing the complete genomic collections at low cost, e.g., the examined collection of 1092 human genomes needs only about 700 MB when compressed, what can be compared to about 6.7 TB of uncompressed FASTA files. The source code is available at http://sun.aei.polsl.pl/REFRESH/index.php?page=projects&project=gdc&subpage=about. PMID:26108279

  15. GDC 2: Compression of large collections of genomes.

    PubMed

    Deorowicz, Sebastian; Danek, Agnieszka; Niemiec, Marcin

    2015-06-25

    The fall of prices of the high-throughput genome sequencing changes the landscape of modern genomics. A number of large scale projects aimed at sequencing many human genomes are in progress. Genome sequencing also becomes an important aid in the personalized medicine. One of the significant side effects of this change is a necessity of storage and transfer of huge amounts of genomic data. In this paper we deal with the problem of compression of large collections of complete genomic sequences. We propose an algorithm that is able to compress the collection of 1092 human diploid genomes about 9,500 times. This result is about 4 times better than what is offered by the other existing compressors. Moreover, our algorithm is very fast as it processes the data with speed 200 MB/s on a modern workstation. In a consequence the proposed algorithm allows storing the complete genomic collections at low cost, e.g., the examined collection of 1092 human genomes needs only about 700 MB when compressed, what can be compared to about 6.7 TB of uncompressed FASTA files. The source code is available at http://sun.aei.polsl.pl/REFRESH/index.php?page=projects&project=gdc&subpage=about.

  16. Radiation-induced genomic instability: radiation quality and dose response

    NASA Technical Reports Server (NTRS)

    Smith, Leslie E.; Nagar, Shruti; Kim, Grace J.; Morgan, William F.

    2003-01-01

    Genomic instability is a term used to describe a phenomenon that results in the accumulation of multiple changes required to convert a stable genome of a normal cell to an unstable genome characteristic of a tumor. There has been considerable recent debate concerning the importance of genomic instability in human cancer and its temporal occurrence in the carcinogenic process. Radiation is capable of inducing genomic instability in mammalian cells and instability is thought to be the driving force responsible for radiation carcinogenesis. Genomic instability is characterized by a large collection of diverse endpoints that include large-scale chromosomal rearrangements and aberrations, amplification of genetic material, aneuploidy, micronucleus formation, microsatellite instability, and gene mutation. The capacity of radiation to induce genomic instability depends to a large extent on radiation quality or linear energy transfer (LET) and dose. There appears to be a low dose threshold effect with low LET, beyond which no additional genomic instability is induced. Low doses of both high and low LET radiation are capable of inducing this phenomenon. This report reviews data concerning dose rate effects of high and low LET radiation and their capacity to induce genomic instability assayed by chromosomal aberrations, delayed lethal mutations, micronuclei and apoptosis.

  17. Functional Assays to Screen and Dissect Genomic Hits: Doubling Down on the National Investment in Genomic Research.

    PubMed

    Musunuru, Kiran; Bernstein, Daniel; Cole, F Sessions; Khokha, Mustafa K; Lee, Frank S; Lin, Shin; McDonald, Thomas V; Moskowitz, Ivan P; Quertermous, Thomas; Sankaran, Vijay G; Schwartz, David A; Silverman, Edwin K; Zhou, Xiaobo; Hasan, Ahmed A K; Luo, Xiao-Zhong James

    2018-04-01

    The National Institutes of Health have made substantial investments in genomic studies and technologies to identify DNA sequence variants associated with human disease phenotypes. The National Heart, Lung, and Blood Institute has been at the forefront of these commitments to ascertain genetic variation associated with heart, lung, blood, and sleep diseases and related clinical traits. Genome-wide association studies, exome- and genome-sequencing studies, and exome-genotyping studies of the National Heart, Lung, and Blood Institute-funded epidemiological and clinical case-control studies are identifying large numbers of genetic variants associated with heart, lung, blood, and sleep phenotypes. However, investigators face challenges in identification of genomic variants that are functionally disruptive among the myriad of computationally implicated variants. Studies to define mechanisms of genetic disruption encoded by computationally identified genomic variants require reproducible, adaptable, and inexpensive methods to screen candidate variant and gene function. High-throughput strategies will permit a tiered variant discovery and genetic mechanism approach that begins with rapid functional screening of a large number of computationally implicated variants and genes for discovery of those that merit mechanistic investigation. As such, improved variant-to-gene and gene-to-function screens-and adequate support for such studies-are critical to accelerating the translation of genomic findings. In this White Paper, we outline the variety of novel technologies, assays, and model systems that are making such screens faster, cheaper, and more accurate, referencing published work and ongoing work supported by the National Heart, Lung, and Blood Institute's R21/R33 Functional Assays to Screen Genomic Hits program. We discuss priorities that can accelerate the impressive but incomplete progress represented by big data genomic research. © 2018 American Heart Association, Inc.

  18. Genome-scale reconstruction of the sigma factor network in Escherichia coli: topology and functional states

    PubMed Central

    2014-01-01

    Background At the beginning of the transcription process, the RNA polymerase (RNAP) core enzyme requires a σ-factor to recognize the genomic location at which the process initiates. Although the crucial role of σ-factors has long been appreciated and characterized for many individual promoters, we do not yet have a genome-scale assessment of their function. Results Using multiple genome-scale measurements, we elucidated the network of σ-factor and promoter interactions in Escherichia coli. The reconstructed network includes 4,724 σ-factor-specific promoters corresponding to transcription units (TUs), representing an increase of more than 300% over what has been previously reported. The reconstructed network was used to investigate competition between alternative σ-factors (the σ70 and σ38 regulons), confirming the competition model of σ substitution and negative regulation by alternative σ-factors. Comparison with σ-factor binding in Klebsiella pneumoniae showed that transcriptional regulation of conserved genes in closely related species is unexpectedly divergent. Conclusions The reconstructed network reveals the regulatory complexity of the promoter architecture in prokaryotic genomes, and opens a path to the direct determination of the systems biology of their transcriptional regulatory networks. PMID:24461193

  19. Genome-based Modeling and Design of Metabolic Interactions in Microbial Communities

    PubMed Central

    Mahadevan, Radhakrishnan; Henson, Michael A.

    2012-01-01

    Biotechnology research is traditionally focused on individual microbial strains that are perceived to have the necessary metabolic functions, or the capability to have these functions introduced, to achieve a particular task. For many important applications, the development of such omnipotent microbes is an extremely challenging if not impossible task. By contrast, nature employs a radically different strategy based on synergistic combinations of different microbial species that collectively achieve the desired task. These natural communities have evolved to exploit the native metabolic capabilities of each species and are highly adaptive to changes in their environments. However, microbial communities have proven difficult to study due to a lack of suitable experimental and computational tools. With the advent of genome sequencing, omics technologies, bioinformatics and genome-scale modeling, researchers now have unprecedented capabilities to analyze and engineer the metabolism of microbial communities. The goal of this review is to summarize recent applications of genome-scale metabolic modeling to microbial communities. A brief introduction to lumped community models is used to motivate the need for genome-level descriptions of individual species and their metabolic interactions. The review of genome-scale models begins with static modeling approaches, which are appropriate for communities where the extracellular environment can be assumed to be time invariant or slowly varying. Dynamic extensions of the static modeling approach are described, and then applications of genome-scale models for design of synthetic microbial communities are reviewed. The review concludes with a summary of metagenomic tools for analyzing community metabolism and an outlook for future research. PMID:24688668

  20. Genome-based Modeling and Design of Metabolic Interactions in Microbial Communities.

    PubMed

    Mahadevan, Radhakrishnan; Henson, Michael A

    2012-01-01

    Biotechnology research is traditionally focused on individual microbial strains that are perceived to have the necessary metabolic functions, or the capability to have these functions introduced, to achieve a particular task. For many important applications, the development of such omnipotent microbes is an extremely challenging if not impossible task. By contrast, nature employs a radically different strategy based on synergistic combinations of different microbial species that collectively achieve the desired task. These natural communities have evolved to exploit the native metabolic capabilities of each species and are highly adaptive to changes in their environments. However, microbial communities have proven difficult to study due to a lack of suitable experimental and computational tools. With the advent of genome sequencing, omics technologies, bioinformatics and genome-scale modeling, researchers now have unprecedented capabilities to analyze and engineer the metabolism of microbial communities. The goal of this review is to summarize recent applications of genome-scale metabolic modeling to microbial communities. A brief introduction to lumped community models is used to motivate the need for genome-level descriptions of individual species and their metabolic interactions. The review of genome-scale models begins with static modeling approaches, which are appropriate for communities where the extracellular environment can be assumed to be time invariant or slowly varying. Dynamic extensions of the static modeling approach are described, and then applications of genome-scale models for design of synthetic microbial communities are reviewed. The review concludes with a summary of metagenomic tools for analyzing community metabolism and an outlook for future research.

  1. Fungal Genomics for Energy and Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigoriev, Igor V.

    2013-03-11

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Sequencing Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for usersmore » to nominate new species for sequencing. Over 200 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.« less

  2. Genome-scale CRISPR-Cas9 knockout screening in human cells.

    PubMed

    Shalem, Ophir; Sanjana, Neville E; Hartenian, Ella; Shi, Xi; Scott, David A; Mikkelson, Tarjei; Heckl, Dirk; Ebert, Benjamin L; Root, David E; Doench, John G; Zhang, Feng

    2014-01-03

    The simplicity of programming the CRISPR (clustered regularly interspaced short palindromic repeats)-associated nuclease Cas9 to modify specific genomic loci suggests a new way to interrogate gene function on a genome-wide scale. We show that lentiviral delivery of a genome-scale CRISPR-Cas9 knockout (GeCKO) library targeting 18,080 genes with 64,751 unique guide sequences enables both negative and positive selection screening in human cells. First, we used the GeCKO library to identify genes essential for cell viability in cancer and pluripotent stem cells. Next, in a melanoma model, we screened for genes whose loss is involved in resistance to vemurafenib, a therapeutic RAF inhibitor. Our highest-ranking candidates include previously validated genes NF1 and MED12, as well as novel hits NF2, CUL3, TADA2B, and TADA1. We observe a high level of consistency between independent guide RNAs targeting the same gene and a high rate of hit confirmation, demonstrating the promise of genome-scale screening with Cas9.

  3. Discovery, genotyping and characterization of structural variation and novel sequence at single nucleotide resolution from de novo genome assemblies on a population scale.

    PubMed

    Liu, Siyang; Huang, Shujia; Rao, Junhua; Ye, Weijian; Krogh, Anders; Wang, Jun

    2015-01-01

    Comprehensive recognition of genomic variation in one individual is important for understanding disease and developing personalized medication and treatment. Many tools based on DNA re-sequencing exist for identification of single nucleotide polymorphisms, small insertions and deletions (indels) as well as large deletions. However, these approaches consistently display a substantial bias against the recovery of complex structural variants and novel sequence in individual genomes and do not provide interpretation information such as the annotation of ancestral state and formation mechanism. We present a novel approach implemented in a single software package, AsmVar, to discover, genotype and characterize different forms of structural variation and novel sequence from population-scale de novo genome assemblies up to nucleotide resolution. Application of AsmVar to several human de novo genome assemblies captures a wide spectrum of structural variants and novel sequences present in the human population in high sensitivity and specificity. Our method provides a direct solution for investigating structural variants and novel sequences from de novo genome assemblies, facilitating the construction of population-scale pan-genomes. Our study also highlights the usefulness of the de novo assembly strategy for definition of genome structure.

  4. Alternatively Spliced Homologous Exons Have Ancient Origins and Are Highly Expressed at the Protein Level

    PubMed Central

    Abascal, Federico; Ezkurdia, Iakes; Rodriguez-Rivas, Juan; Rodriguez, Jose Manuel; del Pozo, Angela; Vázquez, Jesús; Valencia, Alfonso; Tress, Michael L.

    2015-01-01

    Alternative splicing of messenger RNA can generate a wide variety of mature RNA transcripts, and these transcripts may produce protein isoforms with diverse cellular functions. While there is much supporting evidence for the expression of alternative transcripts, the same is not true for the alternatively spliced protein products. Large-scale mass spectroscopy experiments have identified evidence of alternative splicing at the protein level, but with conflicting results. Here we carried out a rigorous analysis of the peptide evidence from eight large-scale proteomics experiments to assess the scale of alternative splicing that is detectable by high-resolution mass spectroscopy. We find fewer splice events than would be expected: we identified peptides for almost 64% of human protein coding genes, but detected just 282 splice events. This data suggests that most genes have a single dominant isoform at the protein level. Many of the alternative isoforms that we could identify were only subtly different from the main splice isoform. Very few of the splice events identified at the protein level disrupted functional domains, in stark contrast to the two thirds of splice events annotated in the human genome that would lead to the loss or damage of functional domains. The most striking result was that more than 20% of the splice isoforms we identified were generated by substituting one homologous exon for another. This is significantly more than would be expected from the frequency of these events in the genome. These homologous exon substitution events were remarkably conserved—all the homologous exons we identified evolved over 460 million years ago—and eight of the fourteen tissue-specific splice isoforms we identified were generated from homologous exons. The combination of proteomics evidence, ancient origin and tissue-specific splicing indicates that isoforms generated from homologous exons may have important cellular roles. PMID:26061177

  5. The COG database: a tool for genome-scale analysis of protein functions and evolution

    PubMed Central

    Tatusov, Roman L.; Galperin, Michael Y.; Natale, Darren A.; Koonin, Eugene V.

    2000-01-01

    Rational classification of proteins encoded in sequenced genomes is critical for making the genome sequences maximally useful for functional and evolutionary studies. The database of Clusters of Orthologous Groups of proteins (COGs) is an attempt on a phylogenetic classification of the proteins encoded in 21 complete genomes of bacteria, archaea and eukaryotes (http://www.ncbi.nlm.nih.gov/COG ). The COGs were constructed by applying the criterion of consistency of genome-specific best hits to the results of an exhaustive comparison of all protein sequences from these genomes. The database comprises 2091 COGs that include 56–83% of the gene products from each of the complete bacterial and archaeal genomes and ~35% of those from the yeast Saccharomyces cerevisiae genome. The COG database is accompanied by the COGNITOR program that is used to fit new proteins into the COGs and can be applied to functional and phylogenetic annotation of newly sequenced genomes. PMID:10592175

  6. BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions

    PubMed Central

    2010-01-01

    Background Genome-scale metabolic reconstructions under the Constraint Based Reconstruction and Analysis (COBRA) framework are valuable tools for analyzing the metabolic capabilities of organisms and interpreting experimental data. As the number of such reconstructions and analysis methods increases, there is a greater need for data uniformity and ease of distribution and use. Description We describe BiGG, a knowledgebase of Biochemically, Genetically and Genomically structured genome-scale metabolic network reconstructions. BiGG integrates several published genome-scale metabolic networks into one resource with standard nomenclature which allows components to be compared across different organisms. BiGG can be used to browse model content, visualize metabolic pathway maps, and export SBML files of the models for further analysis by external software packages. Users may follow links from BiGG to several external databases to obtain additional information on genes, proteins, reactions, metabolites and citations of interest. Conclusions BiGG addresses a need in the systems biology community to have access to high quality curated metabolic models and reconstructions. It is freely available for academic use at http://bigg.ucsd.edu. PMID:20426874

  7. Overlapping contributions of Msh1p and putative recombination proteins Cce1p, Din7p, and Mhr1p in large-scale recombination and genome sorting events in the mitochondrial genome of Saccharomyces cerevisiae.

    PubMed

    Mookerjee, Shona A; Sia, Elaine A

    2006-03-20

    The mechanisms that govern mutation avoidance in the mitochondrial genome, though believed to be numerous, are poorly understood. The identification of individual genes has implicated mismatch repair and several recombination pathways in maintaining the fidelity and structural stability of mitochondrial DNA. However, the majority of genes in these pathways have not been identified and the interactions between different pathways have not been extensively studied. Additionally, the multicopy presence of the mitochondrial genome affects the occurrence and persistence of mutant phenotypes, making mitochondrial DNA transmission and sorting important factors affecting mutation accumulation. We present new evidence that the putative recombination genes CCE1, DIN7, and MHR1 have overlapping function with the mismatch repair homolog MSH1 in point mutation avoidance and suppression of aberrant recombination events. In addition, we demonstrate a novel role for Msh1p in mtDNA transmission, a role not predicted by studies of its nuclear homologs.

  8. Pilot study of large-scale production of mutant pigs by ENU mutagenesis.

    PubMed

    Hai, Tang; Cao, Chunwei; Shang, Haitao; Guo, Weiwei; Mu, Yanshuang; Yang, Shulin; Zhang, Ying; Zheng, Qiantao; Zhang, Tao; Wang, Xianlong; Liu, Yu; Kong, Qingran; Li, Kui; Wang, Dayu; Qi, Meng; Hong, Qianlong; Zhang, Rui; Wang, Xiupeng; Jia, Qitao; Wang, Xiao; Qin, Guosong; Li, Yongshun; Luo, Ailing; Jin, Weiwu; Yao, Jing; Huang, Jiaojiao; Zhang, Hongyong; Li, Menghua; Xie, Xiangmo; Zheng, Xuejuan; Guo, Kenan; Wang, Qinghua; Zhang, Shibin; Li, Liang; Xie, Fei; Zhang, Yu; Weng, Xiaogang; Yin, Zhi; Hu, Kui; Cong, Yimei; Zheng, Peng; Zou, Hailong; Xin, Leilei; Xia, Jihan; Ruan, Jinxue; Li, Hegang; Zhao, Weiming; Yuan, Jing; Liu, Zizhan; Gu, Weiwang; Li, Ming; Wang, Yong; Wang, Hongmei; Yang, Shiming; Liu, Zhonghua; Wei, Hong; Zhao, Jianguo; Zhou, Qi; Meng, Anming

    2017-06-22

    N-ethyl-N-nitrosourea (ENU) mutagenesis is a powerful tool to generate mutants on a large scale efficiently, and to discover genes with novel functions at the whole-genome level in Caenorhabditis elegans, flies, zebrafish and mice, but it has never been tried in large model animals. We describe a successful systematic three-generation ENU mutagenesis screening in pigs with the establishment of the Chinese Swine Mutagenesis Consortium. A total of 6,770 G1 and 6,800 G3 pigs were screened, 36 dominant and 91 recessive novel pig families with various phenotypes were established. The causative mutations in 10 mutant families were further mapped. As examples, the mutation of SOX10 (R109W) in pig causes inner ear malfunctions and mimics human Mondini dysplasia, and upregulated expression of FBXO32 is associated with congenital splay legs. This study demonstrates the feasibility of artificial random mutagenesis in pigs and opens an avenue for generating a reservoir of mutants for agricultural production and biomedical research.

  9. Harnessing quantitative genetics and genomics for understanding and improving complex traits in crops

    USDA-ARS?s Scientific Manuscript database

    Classical quantitative genetics aids crop improvement by providing the means to estimate heritability, genetic correlations, and predicted responses to various selection schemes. Genomics has the potential to aid quantitative genetics and applied crop improvement programs via large-scale, high-thro...

  10. Signatures of selection in the three-spined stickleback along a small-scale brackish water - freshwater transition zone.

    PubMed

    Konijnendijk, Nellie; Shikano, Takahito; Daneels, Dorien; Volckaert, Filip A M; Raeymaekers, Joost A M

    2015-09-01

    Local adaptation is often obvious when gene flow is impeded, such as observed at large spatial scales and across strong ecological contrasts. However, it becomes less certain at small scales such as between adjacent populations or across weak ecological contrasts, when gene flow is strong. While studies on genomic adaptation tend to focus on the former, less is known about the genomic targets of natural selection in the latter situation. In this study, we investigate genomic adaptation in populations of the three-spined stickleback Gasterosteus aculeatus L. across a small-scale ecological transition with salinities ranging from brackish to fresh. Adaptation to salinity has been repeatedly demonstrated in this species. A genome scan based on 87 microsatellite markers revealed only few signatures of selection, likely owing to the constraints that homogenizing gene flow puts on adaptive divergence. However, the detected loci appear repeatedly as targets of selection in similar studies of genomic adaptation in the three-spined stickleback. We conclude that the signature of genomic selection in the face of strong gene flow is weak, yet detectable. We argue that the range of studies of genomic divergence should be extended to include more systems characterized by limited geographical and ecological isolation, which is often a realistic setting in nature.

  11. Dynamic Quantitative Trait Locus Analysis of Plant Phenomic Data.

    PubMed

    Li, Zitong; Sillanpää, Mikko J

    2015-12-01

    Advanced platforms have recently become available for automatic and systematic quantification of plant growth and development. These new techniques can efficiently produce multiple measurements of phenotypes over time, and introduce time as an extra dimension to quantitative trait locus (QTL) studies. Functional mapping utilizes a class of statistical models for identifying QTLs associated with the growth characteristics of interest. A major benefit of functional mapping is that it integrates information over multiple timepoints, and therefore could increase the statistical power for QTL detection. We review the current development of computationally efficient functional mapping methods which provide invaluable tools for analyzing large-scale timecourse data that are readily available in our post-genome era. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Genomic Encyclopedia of Bacteria and Archaea: Sequencing a Myriad of Type Strains

    DOE PAGES

    Kyrpides, Nikos C.; Hugenholtz, Philip; Eisen, Jonathan A.; ...

    2014-08-05

    Microbes hold the key to life. They hold the secrets to our past (as the descendants of the earliest forms of life) and the prospects for our future (as we mine their genes for solutions to some of the planet's most pressing problems, from global warming to antibiotic resistance). However, the piecemeal approach that has defined efforts to study microbial genetic diversity for over 20 years and in over 30,000 genome projects risks squandering that promise. These efforts have covered less than 20% of the diversity of the cultured archaeal and bacterial species, which represent just 15% of the overallmore » known prokaryotic diversity. Here we call for the funding of a systematic effort to produce a comprehensive genomic catalog of all cultured Bacteria and Archaea by sequencing, where available, the type strain of each species with a validly published name (currently~11,000). This effort will provide an unprecedented level of coverage of our planet's genetic diversity, allow for the large-scale discovery of novel genes and functions, and lead to an improved understanding of microbial evolution and function in the environment.« less

  13. Dynamics of DNA methylomes underlie oyster development

    PubMed Central

    Sourdaine, Pascal; Guo, Ximing; Favrel, Pascal

    2017-01-01

    DNA methylation is a critical epigenetic regulator of development in mammals and social insects, but its significance in development outside these groups is not understood. Here we investigated the genome-wide dynamics of DNA methylation in a mollusc model, the oyster Crassostrea gigas, from the egg to the completion of organogenesis. Large-scale methylation maps reveal that the oyster genome displays a succession of methylated and non methylated regions, which persist throughout development. Differentially methylated regions (DMRs) are strongly regulated during cleavage and metamorphosis. The distribution and levels of methylated DNA within genomic features (exons, introns, promoters, repeats and transposons) show different developmental lansdscapes marked by a strong increase in the methylation of exons against introns after metamorphosis. Kinetics of methylation in gene-bodies correlate to their transcription regulation and to distinct functional gene clusters, and DMRs at cleavage and metamorphosis bear the genes functionally related to these steps, respectively. This study shows that DNA methylome dynamics underlie development through transcription regulation in the oyster, a lophotrochozoan species. To our knowledge, this is the first demonstration of such epigenetic regulation outside vertebrates and ecdysozoan models, bringing new insights into the evolution and the epigenetic regulation of developmental processes. PMID:28594821

  14. Dynamics of DNA methylomes underlie oyster development.

    PubMed

    Riviere, Guillaume; He, Yan; Tecchio, Samuele; Crowell, Elizabeth; Gras, Michaël; Sourdaine, Pascal; Guo, Ximing; Favrel, Pascal

    2017-06-01

    DNA methylation is a critical epigenetic regulator of development in mammals and social insects, but its significance in development outside these groups is not understood. Here we investigated the genome-wide dynamics of DNA methylation in a mollusc model, the oyster Crassostrea gigas, from the egg to the completion of organogenesis. Large-scale methylation maps reveal that the oyster genome displays a succession of methylated and non methylated regions, which persist throughout development. Differentially methylated regions (DMRs) are strongly regulated during cleavage and metamorphosis. The distribution and levels of methylated DNA within genomic features (exons, introns, promoters, repeats and transposons) show different developmental lansdscapes marked by a strong increase in the methylation of exons against introns after metamorphosis. Kinetics of methylation in gene-bodies correlate to their transcription regulation and to distinct functional gene clusters, and DMRs at cleavage and metamorphosis bear the genes functionally related to these steps, respectively. This study shows that DNA methylome dynamics underlie development through transcription regulation in the oyster, a lophotrochozoan species. To our knowledge, this is the first demonstration of such epigenetic regulation outside vertebrates and ecdysozoan models, bringing new insights into the evolution and the epigenetic regulation of developmental processes.

  15. Using Galaxy to Perform Large-Scale Interactive Data Analyses

    PubMed Central

    Hillman-Jackson, Jennifer; Clements, Dave; Blankenberg, Daniel; Taylor, James; Nekrutenko, Anton

    2012-01-01

    Innovations in biomedical research technologies continue to provide experimental biologists with novel and increasingly large genomic and high-throughput data resources to be analyzed. As creating and obtaining data has become easier, the key decision faced by many researchers is a practical one: where and how should an analysis be performed? Datasets are large and analysis tool set-up and use is riddled with complexities outside of the scope of core research activities. The authors believe that Galaxy (galaxyproject.org) provides a powerful solution that simplifies data acquisition and analysis in an intuitive web-application, granting all researchers access to key informatics tools previously only available to computational specialists working in Unix-based environments. We will demonstrate through a series of biomedically relevant protocols how Galaxy specifically brings together 1) data retrieval from public and private sources, for example, UCSC’s Eukaryote and Microbial Genome Browsers (genome.ucsc.edu), 2) custom tools (wrapped Unix functions, format standardization/conversions, interval operations) and 3rd party analysis tools, for example, Bowtie/Tuxedo Suite (bowtie-bio.sourceforge.net), Lastz (www.bx.psu.edu/~rsharris/lastz/), SAMTools (samtools.sourceforge.net), FASTX-toolkit (hannonlab.cshl.edu/fastx_toolkit), and MACS (liulab.dfci.harvard.edu/MACS), and creates results formatted for visualization in tools such as the Galaxy Track Browser (GTB, galaxyproject.org/wiki/Learn/Visualization), UCSC Genome Browser (genome.ucsc.edu), Ensembl (www.ensembl.org), and GeneTrack (genetrack.bx.psu.edu). Galaxy rapidly has become the most popular choice for integrated next generation sequencing (NGS) analytics and collaboration, where users can perform, document, and share complex analysis within a single interface in an unprecedented number of ways. PMID:18428782

  16. Comparison of Penalty Functions for Sparse Canonical Correlation Analysis

    PubMed Central

    Chalise, Prabhakar; Fridley, Brooke L.

    2011-01-01

    Canonical correlation analysis (CCA) is a widely used multivariate method for assessing the association between two sets of variables. However, when the number of variables far exceeds the number of subjects, such in the case of large-scale genomic studies, the traditional CCA method is not appropriate. In addition, when the variables are highly correlated the sample covariance matrices become unstable or undefined. To overcome these two issues, sparse canonical correlation analysis (SCCA) for multiple data sets has been proposed using a Lasso type of penalty. However, these methods do not have direct control over sparsity of solution. An additional step that uses Bayesian Information Criterion (BIC) has also been suggested to further filter out unimportant features. In this paper, a comparison of four penalty functions (Lasso, Elastic-net, SCAD and Hard-threshold) for SCCA with and without the BIC filtering step have been carried out using both real and simulated genotypic and mRNA expression data. This study indicates that the SCAD penalty with BIC filter would be a preferable penalty function for application of SCCA to genomic data. PMID:21984855

  17. blastjs: a BLAST+ wrapper for Node.js.

    PubMed

    Page, Martin; MacLean, Dan; Schudoma, Christian

    2016-02-27

    To cope with the ever-increasing amount of sequence data generated in the field of genomics, the demand for efficient and fast database searches that drive functional and structural annotation in both large- and small-scale genome projects is on the rise. The tools of the BLAST+ suite are the most widely employed bioinformatic method for these database searches. Recent trends in bioinformatics application development show an increasing number of JavaScript apps that are based on modern frameworks such as Node.js. Until now, there is no way of using database searches with the BLAST+ suite from a Node.js codebase. We developed blastjs, a Node.js library that wraps the search tools of the BLAST+ suite and thus allows to easily add significant functionality to any Node.js-based application. blastjs is a library that allows the incorporation of BLAST+ functionality into bioinformatics applications based on JavaScript and Node.js. The library was designed to be as user-friendly as possible and therefore requires only a minimal amount of code in the client application. The library is freely available under the MIT license at https://github.com/teammaclean/blastjs.

  18. Single-molecule sequencing and optical mapping yields an improved genome of woodland strawberry (Fragaria vesca) with chromosome-scale contiguity

    USDA-ARS?s Scientific Manuscript database

    Although draft genomes are available for most agronomically important plant species, the majority are incomplete, highly fragmented, and often riddled with assembly and scaffolding errors. These assembly issues hinder advances in tool development for functional genomics and systems biology. Here we ...

  19. SynFind: Compiling Syntenic Regions across Any Set of Genomes on Demand.

    PubMed

    Tang, Haibao; Bomhoff, Matthew D; Briones, Evan; Zhang, Liangsheng; Schnable, James C; Lyons, Eric

    2015-11-11

    The identification of conserved syntenic regions enables discovery of predicted locations for orthologous and homeologous genes, even when no such gene is present. This capability means that synteny-based methods are far more effective than sequence similarity-based methods in identifying true-negatives, a necessity for studying gene loss and gene transposition. However, the identification of syntenic regions requires complex analyses which must be repeated for pairwise comparisons between any two species. Therefore, as the number of published genomes increases, there is a growing demand for scalable, simple-to-use applications to perform comparative genomic analyses that cater to both gene family studies and genome-scale studies. We implemented SynFind, a web-based tool that addresses this need. Given one query genome, SynFind is capable of identifying conserved syntenic regions in any set of target genomes. SynFind is capable of reporting per-gene information, useful for researchers studying specific gene families, as well as genome-wide data sets of syntenic gene and predicted gene locations, critical for researchers focused on large-scale genomic analyses. Inference of syntenic homologs provides the basis for correlation of functional changes around genes of interests between related organisms. Deployed on the CoGe online platform, SynFind is connected to the genomic data from over 15,000 organisms from all domains of life as well as supporting multiple releases of the same organism. SynFind makes use of a powerful job execution framework that promises scalability and reproducibility. SynFind can be accessed at http://genomevolution.org/CoGe/SynFind.pl. A video tutorial of SynFind using Phytophthrora as an example is available at http://www.youtube.com/watch?v=2Agczny9Nyc. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Genome-wide map of Apn1 binding sites under oxidative stress in Saccharomyces cerevisiae.

    PubMed

    Morris, Lydia P; Conley, Andrew B; Degtyareva, Natalya; Jordan, I King; Doetsch, Paul W

    2017-11-01

    The DNA is cells is continuously exposed to reactive oxygen species resulting in toxic and mutagenic DNA damage. Although the repair of oxidative DNA damage occurs primarily through the base excision repair (BER) pathway, the nucleotide excision repair (NER) pathway processes some of the same lesions. In addition, damage tolerance mechanisms, such as recombination and translesion synthesis, enable cells to tolerate oxidative DNA damage, especially when BER and NER capacities are exceeded. Thus, disruption of BER alone or disruption of BER and NER in Saccharomyces cerevisiae leads to increased mutations as well as large-scale genomic rearrangements. Previous studies demonstrated that a particular region of chromosome II is susceptible to chronic oxidative stress-induced chromosomal rearrangements, suggesting the existence of DNA damage and/or DNA repair hotspots. Here we investigated the relationship between oxidative damage and genomic instability utilizing chromatin immunoprecipitation combined with DNA microarray technology to profile DNA repair sites along yeast chromosomes under different oxidative stress conditions. We targeted the major yeast AP endonuclease Apn1 as a representative BER protein. Our results indicate that Apn1 target sequences are enriched for cytosine and guanine nucleotides. We predict that BER protects these sites in the genome because guanines and cytosines are thought to be especially susceptible to oxidative attack, thereby preventing large-scale genome destabilization from chronic accumulation of DNA damage. Information from our studies should provide insight into how regional deployment of oxidative DNA damage management systems along chromosomes protects against large-scale rearrangements. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Fueling the Future with Fungal Genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigoriev, Igor V.

    2014-10-27

    Genomes of fungi relevant to energy and environment are in focus of the JGI Fungal Genomic Program. One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts and pathogens) and biorefinery processes (cellulose degradation and sugar fermentation) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Science Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for users to nominate new species for sequencing. Over 400 fungal genomes have beenmore » sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics will lead to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such ‘parts’ suggested by comparative genomics and functional analysis in these areas are presented here.« less

  2. Adaptive Evolution as a Predictor of Species-Specific Innate Immune Response.

    PubMed

    Webb, Andrew E; Gerek, Z Nevin; Morgan, Claire C; Walsh, Thomas A; Loscher, Christine E; Edwards, Scott V; O'Connell, Mary J

    2015-07-01

    It has been proposed that positive selection may be associated with protein functional change. For example, human and macaque have different outcomes to HIV infection and it has been shown that residues under positive selection in the macaque TRIM5α receptor locate to the region known to influence species-specific response to HIV. In general, however, the relationship between sequence and function has proven difficult to fully elucidate, and it is the role of large-scale studies to help bridge this gap in our understanding by revealing major patterns in the data that correlate genotype with function or phenotype. In this study, we investigate the level of species-specific positive selection in innate immune genes from human and mouse. In total, we analyzed 456 innate immune genes using codon-based models of evolution, comparing human, mouse, and 19 other vertebrate species to identify putative species-specific positive selection. Then we used population genomic data from the recently completed Neanderthal genome project, the 1000 human genomes project, and the 17 laboratory mouse genomes project to determine whether the residues that were putatively positively selected are fixed or variable in these populations. We find evidence of species-specific positive selection on both the human and the mouse branches and we show that the classes of genes under positive selection cluster by function and by interaction. Data from this study provide us with targets to test the relationship between positive selection and protein function and ultimately to test the relationship between positive selection and discordant phenotypes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Structure and variation of the mitochondrial genome of fishes.

    PubMed

    Satoh, Takashi P; Miya, Masaki; Mabuchi, Kohji; Nishida, Mutsumi

    2016-09-07

    The mitochondrial (mt) genome has been used as an effective tool for phylogenetic and population genetic analyses in vertebrates. However, the structure and variability of the vertebrate mt genome are not well understood. A potential strategy for improving our understanding is to conduct a comprehensive comparative study of large mt genome data. The aim of this study was to characterize the structure and variability of the fish mt genome through comparative analysis of large datasets. An analysis of the secondary structure of proteins for 250 fish species (248 ray-finned and 2 cartilaginous fishes) illustrated that cytochrome c oxidase subunits (COI, COII, and COIII) and a cytochrome bc1 complex subunit (Cyt b) had substantial amino acid conservation. Among the four proteins, COI was the most conserved, as more than half of all amino acid sites were invariable among the 250 species. Our models identified 43 and 58 stems within 12S rRNA and 16S rRNA, respectively, with larger numbers than proposed previously for vertebrates. The models also identified 149 and 319 invariable sites in 12S rRNA and 16S rRNA, respectively, in all fishes. In particular, the present result verified that a region corresponding to the peptidyl transferase center in prokaryotic 23S rRNA, which is homologous to mt 16S rRNA, is also conserved in fish mt 16S rRNA. Concerning the gene order, we found 35 variations (in 32 families) that deviated from the common gene order in vertebrates. These gene rearrangements were mostly observed in the area spanning the ND5 gene to the control region as well as two tRNA gene cluster regions (IQM and WANCY regions). Although many of such gene rearrangements were unique to a specific taxon, some were shared polyphyletically between distantly related species. Through a large-scale comparative analysis of 250 fish species mt genomes, we elucidated various structural aspects of the fish mt genome and the encoded genes. The present results will be important for understanding functions of the mt genome and developing programs for nucleotide sequence analysis. This study demonstrated the significance of extensive comparisons for understanding the structure of the mt genome.

  4. Automated detection system of single nucleotide polymorphisms using two kinds of functional magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Hongna; Li, Song; Wang, Zhifei; Li, Zhiyang; Deng, Yan; Wang, Hua; Shi, Zhiyang; He, Nongyue

    2008-11-01

    Single nucleotide polymorphisms (SNPs) comprise the most abundant source of genetic variation in the human genome wide codominant SNPs identification. Therefore, large-scale codominant SNPs identification, especially for those associated with complex diseases, has induced the need for completely high-throughput and automated SNP genotyping method. Herein, we present an automated detection system of SNPs based on two kinds of functional magnetic nanoparticles (MNPs) and dual-color hybridization. The amido-modified MNPs (NH 2-MNPs) modified with APTES were used for DNA extraction from whole blood directly by electrostatic reaction, and followed by PCR, was successfully performed. Furthermore, biotinylated PCR products were captured on the streptavidin-coated MNPs (SA-MNPs) and interrogated by hybridization with a pair of dual-color probes to determine SNP, then the genotype of each sample can be simultaneously identified by scanning the microarray printed with the denatured fluorescent probes. This system provided a rapid, sensitive and highly versatile automated procedure that will greatly facilitate the analysis of different known SNPs in human genome.

  5. Integrative Approaches to Enhance Understanding of Plant Metabolic Pathway Structure and Regulation1

    PubMed Central

    Tohge, Takayuki; Scossa, Federico; Fernie, Alisdair R.

    2015-01-01

    Huge insight into molecular mechanisms and biological network coordination have been achieved following the application of various profiling technologies. Our knowledge of how the different molecular entities of the cell interact with one another suggests that, nevertheless, integration of data from different techniques could drive a more comprehensive understanding of the data emanating from different techniques. Here, we provide an overview of how such data integration is being used to aid the understanding of metabolic pathway structure and regulation. We choose to focus on the pairwise integration of large-scale metabolite data with that of the transcriptomic, proteomics, whole-genome sequence, growth- and yield-associated phenotypes, and archival functional genomic data sets. In doing so, we attempt to provide an update on approaches that integrate data obtained at different levels to reach a better understanding of either single gene function or metabolic pathway structure and regulation within the context of a broader biological process. PMID:26371234

  6. Comparison of codon usage bias across Leishmania and Trypanosomatids to understand mRNA secondary structure, relative protein abundance and pathway functions.

    PubMed

    Subramanian, Abhishek; Sarkar, Ram Rup

    2015-10-01

    Understanding the variations in gene organization and its effect on the phenotype across different Leishmania species, and to study differential clinical manifestations of parasite within the host, we performed large scale analysis of codon usage patterns between Leishmania and other known Trypanosomatid species. We present the causes and consequences of codon usage bias in Leishmania genomes with respect to mutational pressure, translational selection and amino acid composition bias. We establish GC bias at wobble position that governs codon usage bias across Leishmania species, rather than amino acid composition bias. We found that, within Leishmania, homogenous codon context coding for less frequent amino acid pairs and codons avoiding formation of folding structures in mRNA are essentially chosen. We predicted putative differences in global expression between genes belonging to specific pathways across Leishmania. This explains the role of evolution in shaping the otherwise conserved genome to demonstrate species-specific function-level differences for efficient survival. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Multiplexed genome engineering and genotyping methods applications for synthetic biology and metabolic engineering.

    PubMed

    Wang, Harris H; Church, George M

    2011-01-01

    Engineering at the scale of whole genomes requires fundamentally new molecular biology tools. Recent advances in recombineering using synthetic oligonucleotides enable the rapid generation of mutants at high efficiency and specificity and can be implemented at the genome scale. With these techniques, libraries of mutants can be generated, from which individuals with functionally useful phenotypes can be isolated. Furthermore, populations of cells can be evolved in situ by directed evolution using complex pools of oligonucleotides. Here, we discuss ways to utilize these multiplexed genome engineering methods, with special emphasis on experimental design and implementation. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Functional annotation of HOT regions in the human genome: implications for human disease and cancer

    PubMed Central

    Li, Hao; Chen, Hebing; Liu, Feng; Ren, Chao; Wang, Shengqi; Bo, Xiaochen; Shu, Wenjie

    2015-01-01

    Advances in genome-wide association studies (GWAS) and large-scale sequencing studies have resulted in an impressive and growing list of disease- and trait-associated genetic variants. Most studies have emphasised the discovery of genetic variation in coding sequences, however, the noncoding regulatory effects responsible for human disease and cancer biology have been substantially understudied. To better characterise the cis-regulatory effects of noncoding variation, we performed a comprehensive analysis of the genetic variants in HOT (high-occupancy target) regions, which are considered to be one of the most intriguing findings of recent large-scale sequencing studies. We observed that GWAS variants that map to HOT regions undergo a substantial net decrease and illustrate development-specific localisation during haematopoiesis. Additionally, genetic risk variants are disproportionally enriched in HOT regions compared with LOT (low-occupancy target) regions in both disease-relevant and cancer cells. Importantly, this enrichment is biased toward disease- or cancer-specific cell types. Furthermore, we observed that cancer cells generally acquire cancer-specific HOT regions at oncogenes through diverse mechanisms of cancer pathogenesis. Collectively, our findings demonstrate the key roles of HOT regions in human disease and cancer and represent a critical step toward further understanding disease biology, diagnosis, and therapy. PMID:26113264

  9. Functional annotation of HOT regions in the human genome: implications for human disease and cancer.

    PubMed

    Li, Hao; Chen, Hebing; Liu, Feng; Ren, Chao; Wang, Shengqi; Bo, Xiaochen; Shu, Wenjie

    2015-06-26

    Advances in genome-wide association studies (GWAS) and large-scale sequencing studies have resulted in an impressive and growing list of disease- and trait-associated genetic variants. Most studies have emphasised the discovery of genetic variation in coding sequences, however, the noncoding regulatory effects responsible for human disease and cancer biology have been substantially understudied. To better characterise the cis-regulatory effects of noncoding variation, we performed a comprehensive analysis of the genetic variants in HOT (high-occupancy target) regions, which are considered to be one of the most intriguing findings of recent large-scale sequencing studies. We observed that GWAS variants that map to HOT regions undergo a substantial net decrease and illustrate development-specific localisation during haematopoiesis. Additionally, genetic risk variants are disproportionally enriched in HOT regions compared with LOT (low-occupancy target) regions in both disease-relevant and cancer cells. Importantly, this enrichment is biased toward disease- or cancer-specific cell types. Furthermore, we observed that cancer cells generally acquire cancer-specific HOT regions at oncogenes through diverse mechanisms of cancer pathogenesis. Collectively, our findings demonstrate the key roles of HOT regions in human disease and cancer and represent a critical step toward further understanding disease biology, diagnosis, and therapy.

  10. A Powerful Approach to Estimating Annotation-Stratified Genetic Covariance via GWAS Summary Statistics.

    PubMed

    Lu, Qiongshi; Li, Boyang; Ou, Derek; Erlendsdottir, Margret; Powles, Ryan L; Jiang, Tony; Hu, Yiming; Chang, David; Jin, Chentian; Dai, Wei; He, Qidu; Liu, Zefeng; Mukherjee, Shubhabrata; Crane, Paul K; Zhao, Hongyu

    2017-12-07

    Despite the success of large-scale genome-wide association studies (GWASs) on complex traits, our understanding of their genetic architecture is far from complete. Jointly modeling multiple traits' genetic profiles has provided insights into the shared genetic basis of many complex traits. However, large-scale inference sets a high bar for both statistical power and biological interpretability. Here we introduce a principled framework to estimate annotation-stratified genetic covariance between traits using GWAS summary statistics. Through theoretical and numerical analyses, we demonstrate that our method provides accurate covariance estimates, thereby enabling researchers to dissect both the shared and distinct genetic architecture across traits to better understand their etiologies. Among 50 complex traits with publicly accessible GWAS summary statistics (N total ≈ 4.5 million), we identified more than 170 pairs with statistically significant genetic covariance. In particular, we found strong genetic covariance between late-onset Alzheimer disease (LOAD) and amyotrophic lateral sclerosis (ALS), two major neurodegenerative diseases, in single-nucleotide polymorphisms (SNPs) with high minor allele frequencies and in SNPs located in the predicted functional genome. Joint analysis of LOAD, ALS, and other traits highlights LOAD's correlation with cognitive traits and hints at an autoimmune component for ALS. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  11. Evaluation of Targeted Sequencing for Transcriptional Analysis of Archival Formalin-Fixed Paraffin-Embedded (FFPE) Samples

    EPA Science Inventory

    Next-generation sequencing provides unprecedented access to genomic information in archival FFPE tissue samples. However, costs and technical challenges related to RNA isolation and enrichment limit use of whole-genome RNA-sequencing for large-scale studies of FFPE specimens. Rec...

  12. PeanutBase and other bioinformatic resources for peanut

    USDA-ARS?s Scientific Manuscript database

    Large-scale genomic data for peanut have only become available in the last few years, with the advent of low-cost sequencing technologies. To make the data accessible to researchers and to integrate across diverse types of data, the International Peanut Genomics Consortium funded the development of ...

  13. The detailed 3D multi-loop aggregate/rosette chromatin architecture and functional dynamic organization of the human and mouse genomes.

    PubMed

    Knoch, Tobias A; Wachsmuth, Malte; Kepper, Nick; Lesnussa, Michael; Abuseiris, Anis; Ali Imam, A M; Kolovos, Petros; Zuin, Jessica; Kockx, Christel E M; Brouwer, Rutger W W; van de Werken, Harmen J G; van IJcken, Wilfred F J; Wendt, Kerstin S; Grosveld, Frank G

    2016-01-01

    The dynamic three-dimensional chromatin architecture of genomes and its co-evolutionary connection to its function-the storage, expression, and replication of genetic information-is still one of the central issues in biology. Here, we describe the much debated 3D architecture of the human and mouse genomes from the nucleosomal to the megabase pair level by a novel approach combining selective high-throughput high-resolution chromosomal interaction capture ( T2C ), polymer simulations, and scaling analysis of the 3D architecture and the DNA sequence. The genome is compacted into a chromatin quasi-fibre with ~5 ± 1 nucleosomes/11 nm, folded into stable ~30-100 kbp loops forming stable loop aggregates/rosettes connected by similar sized linkers. Minor but significant variations in the architecture are seen between cell types and functional states. The architecture and the DNA sequence show very similar fine-structured multi-scaling behaviour confirming their co-evolution and the above. This architecture, its dynamics, and accessibility, balance stability and flexibility ensuring genome integrity and variation enabling gene expression/regulation by self-organization of (in)active units already in proximity. Our results agree with the heuristics of the field and allow "architectural sequencing" at a genome mechanics level to understand the inseparable systems genomic properties.

  14. The Dockstore: enabling modular, community-focused sharing of Docker-based genomics tools and workflows

    PubMed Central

    O'Connor, Brian D.; Yuen, Denis; Chung, Vincent; Duncan, Andrew G.; Liu, Xiang Kun; Patricia, Janice; Paten, Benedict; Stein, Lincoln; Ferretti, Vincent

    2017-01-01

    As genomic datasets continue to grow, the feasibility of downloading data to a local organization and running analysis on a traditional compute environment is becoming increasingly problematic. Current large-scale projects, such as the ICGC PanCancer Analysis of Whole Genomes (PCAWG), the Data Platform for the U.S. Precision Medicine Initiative, and the NIH Big Data to Knowledge Center for Translational Genomics, are using cloud-based infrastructure to both host and perform analysis across large data sets. In PCAWG, over 5,800 whole human genomes were aligned and variant called across 14 cloud and HPC environments; the processed data was then made available on the cloud for further analysis and sharing. If run locally, an operation at this scale would have monopolized a typical academic data centre for many months, and would have presented major challenges for data storage and distribution. However, this scale is increasingly typical for genomics projects and necessitates a rethink of how analytical tools are packaged and moved to the data. For PCAWG, we embraced the use of highly portable Docker images for encapsulating and sharing complex alignment and variant calling workflows across highly variable environments. While successful, this endeavor revealed a limitation in Docker containers, namely the lack of a standardized way to describe and execute the tools encapsulated inside the container. As a result, we created the Dockstore ( https://dockstore.org), a project that brings together Docker images with standardized, machine-readable ways of describing and running the tools contained within. This service greatly improves the sharing and reuse of genomics tools and promotes interoperability with similar projects through emerging web service standards developed by the Global Alliance for Genomics and Health (GA4GH). PMID:28344774

  15. The Dockstore: enabling modular, community-focused sharing of Docker-based genomics tools and workflows.

    PubMed

    O'Connor, Brian D; Yuen, Denis; Chung, Vincent; Duncan, Andrew G; Liu, Xiang Kun; Patricia, Janice; Paten, Benedict; Stein, Lincoln; Ferretti, Vincent

    2017-01-01

    As genomic datasets continue to grow, the feasibility of downloading data to a local organization and running analysis on a traditional compute environment is becoming increasingly problematic. Current large-scale projects, such as the ICGC PanCancer Analysis of Whole Genomes (PCAWG), the Data Platform for the U.S. Precision Medicine Initiative, and the NIH Big Data to Knowledge Center for Translational Genomics, are using cloud-based infrastructure to both host and perform analysis across large data sets. In PCAWG, over 5,800 whole human genomes were aligned and variant called across 14 cloud and HPC environments; the processed data was then made available on the cloud for further analysis and sharing. If run locally, an operation at this scale would have monopolized a typical academic data centre for many months, and would have presented major challenges for data storage and distribution. However, this scale is increasingly typical for genomics projects and necessitates a rethink of how analytical tools are packaged and moved to the data. For PCAWG, we embraced the use of highly portable Docker images for encapsulating and sharing complex alignment and variant calling workflows across highly variable environments. While successful, this endeavor revealed a limitation in Docker containers, namely the lack of a standardized way to describe and execute the tools encapsulated inside the container. As a result, we created the Dockstore ( https://dockstore.org), a project that brings together Docker images with standardized, machine-readable ways of describing and running the tools contained within. This service greatly improves the sharing and reuse of genomics tools and promotes interoperability with similar projects through emerging web service standards developed by the Global Alliance for Genomics and Health (GA4GH).

  16. Genomic analysis of NAC transcription factors in banana (Musa acuminata) and definition of NAC orthologous groups for monocots and dicots.

    PubMed

    Cenci, Albero; Guignon, Valentin; Roux, Nicolas; Rouard, Mathieu

    2014-05-01

    Identifying the molecular mechanisms underlying tolerance to abiotic stresses is important in crop breeding. A comprehensive understanding of the gene families associated with drought tolerance is therefore highly relevant. NAC transcription factors form a large plant-specific gene family involved in the regulation of tissue development and responses to biotic and abiotic stresses. The main goal of this study was to set up a framework of orthologous groups determined by an expert sequence comparison of NAC genes from both monocots and dicots. In order to clarify the orthologous relationships among NAC genes of different species, we performed an in-depth comparative study of four divergent taxa, in dicots and monocots, whose genomes have already been completely sequenced: Arabidopsis thaliana, Vitis vinifera, Musa acuminata and Oryza sativa. Due to independent evolution, NAC copy number is highly variable in these plant genomes. Based on an expert NAC sequence comparison, we propose forty orthologous groups of NAC sequences that were probably derived from an ancestor gene present in the most recent common ancestor of dicots and monocots. These orthologous groups provide a curated resource for large-scale protein sequence annotation of NAC transcription factors. The established orthology relationships also provide a useful reference for NAC function studies in newly sequenced genomes such as M. acuminata and other plant species.

  17. Defining the transcriptome assembly and its use for genome dynamics and transcriptome profiling studies in pigeonpea (Cajanus cajan L.).

    PubMed

    Dubey, Anuja; Farmer, Andrew; Schlueter, Jessica; Cannon, Steven B; Abernathy, Brian; Tuteja, Reetu; Woodward, Jimmy; Shah, Trushar; Mulasmanovic, Benjamin; Kudapa, Himabindu; Raju, Nikku L; Gothalwal, Ragini; Pande, Suresh; Xiao, Yongli; Town, Chris D; Singh, Nagendra K; May, Gregory D; Jackson, Scott; Varshney, Rajeev K

    2011-06-01

    This study reports generation of large-scale genomic resources for pigeonpea, a so-called 'orphan crop species' of the semi-arid tropic regions. FLX/454 sequencing carried out on a normalized cDNA pool prepared from 31 tissues produced 494 353 short transcript reads (STRs). Cluster analysis of these STRs, together with 10 817 Sanger ESTs, resulted in a pigeonpea trancriptome assembly (CcTA) comprising of 127 754 tentative unique sequences (TUSs). Functional analysis of these TUSs highlights several active pathways and processes in the sampled tissues. Comparison of the CcTA with the soybean genome showed similarity to 10 857 and 16 367 soybean gene models (depending on alignment methods). Additionally, Illumina 1G sequencing was performed on Fusarium wilt (FW)- and sterility mosaic disease (SMD)-challenged root tissues of 10 resistant and susceptible genotypes. More than 160 million sequence tags were used to identify FW- and SMD-responsive genes. Sequence analysis of CcTA and the Illumina tags identified a large new set of markers for use in genetics and breeding, including 8137 simple sequence repeats, 12 141 single-nucleotide polymorphisms and 5845 intron-spanning regions. Genomic resources developed in this study should be useful for basic and applied research, not only for pigeonpea improvement but also for other related, agronomically important legumes.

  18. Ensembl Genomes 2013: scaling up access to genome-wide data.

    PubMed

    Kersey, Paul Julian; Allen, James E; Christensen, Mikkel; Davis, Paul; Falin, Lee J; Grabmueller, Christoph; Hughes, Daniel Seth Toney; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Langridge, Nicholas; McDowall, Mark D; Maheswari, Uma; Maslen, Gareth; Nuhn, Michael; Ong, Chuang Kee; Paulini, Michael; Pedro, Helder; Toneva, Iliana; Tuli, Mary Ann; Walts, Brandon; Williams, Gareth; Wilson, Derek; Youens-Clark, Ken; Monaco, Marcela K; Stein, Joshua; Wei, Xuehong; Ware, Doreen; Bolser, Daniel M; Howe, Kevin Lee; Kulesha, Eugene; Lawson, Daniel; Staines, Daniel Michael

    2014-01-01

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species. The project exploits and extends technologies for genome annotation, analysis and dissemination, developed in the context of the vertebrate-focused Ensembl project, and provides a complementary set of resources for non-vertebrate species through a consistent set of programmatic and interactive interfaces. These provide access to data including reference sequence, gene models, transcriptional data, polymorphisms and comparative analysis. This article provides an update to the previous publications about the resource, with a focus on recent developments. These include the addition of important new genomes (and related data sets) including crop plants, vectors of human disease and eukaryotic pathogens. In addition, the resource has scaled up its representation of bacterial genomes, and now includes the genomes of over 9000 bacteria. Specific extensions to the web and programmatic interfaces have been developed to support users in navigating these large data sets. Looking forward, analytic tools to allow targeted selection of data for visualization and download are likely to become increasingly important in future as the number of available genomes increases within all domains of life, and some of the challenges faced in representing bacterial data are likely to become commonplace for eukaryotes in future.

  19. Optical mapping and its potential for large-scale sequencing projects.

    PubMed

    Aston, C; Mishra, B; Schwartz, D C

    1999-07-01

    Physical mapping has been rediscovered as an important component of large-scale sequencing projects. Restriction maps provide landmark sequences at defined intervals, and high-resolution restriction maps can be assembled from ensembles of single molecules by optical means. Such optical maps can be constructed from both large-insert clones and genomic DNA, and are used as a scaffold for accurately aligning sequence contigs generated by shotgun sequencing.

  20. Pfarao: a web application for protein family analysis customized for cytoskeletal and motor proteins (CyMoBase).

    PubMed

    Odronitz, Florian; Kollmar, Martin

    2006-11-29

    Annotation of protein sequences of eukaryotic organisms is crucial for the understanding of their function in the cell. Manual annotation is still by far the most accurate way to correctly predict genes. The classification of protein sequences, their phylogenetic relation and the assignment of function involves information from various sources. This often leads to a collection of heterogeneous data, which is hard to track. Cytoskeletal and motor proteins consist of large and diverse superfamilies comprising up to several dozen members per organism. Up to date there is no integrated tool available to assist in the manual large-scale comparative genomic analysis of protein families. Pfarao (Protein Family Application for Retrieval, Analysis and Organisation) is a database driven online working environment for the analysis of manually annotated protein sequences and their relationship. Currently, the system can store and interrelate a wide range of information about protein sequences, species, phylogenetic relations and sequencing projects as well as links to literature and domain predictions. Sequences can be imported from multiple sequence alignments that are generated during the annotation process. A web interface allows to conveniently browse the database and to compile tabular and graphical summaries of its content. We implemented a protein sequence-centric web application to store, organize, interrelate, and present heterogeneous data that is generated in manual genome annotation and comparative genomics. The application has been developed for the analysis of cytoskeletal and motor proteins (CyMoBase) but can easily be adapted for any protein.

  1. Using FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) to isolate active regulatory DNA

    PubMed Central

    Simon, Jeremy M.; Giresi, Paul G.; Davis, Ian J.; Lieb, Jason D.

    2013-01-01

    Eviction or destabilization of nucleosomes from chromatin is a hallmark of functional regulatory elements of the eukaryotic genome. Historically identified by nuclease hypersensitivity, these regulatory elements are typically bound by transcription factors or other regulatory proteins. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) is an alternative approach to identify these genomic regions and has proven successful in a multitude of eukaryotic cell and tissue types. Cells or dissociated tissues are crosslinked briefly with formaldehyde, lysed, and sonicated. Sheared chromatin is subjected to phenol-chloroform extraction and the isolated DNA, typically encompassing 1–3% of the human genome, is purified. We provide guidelines for quantitative analysis by PCR, microarrays, or next-generation sequencing. Regulatory elements enriched by FAIRE display high concordance with those identified by nuclease hypersensitivity or ChIP, and the entire procedure can be completed in three days. FAIRE exhibits low technical variability, which allows its use in large-scale studies of chromatin from normal or diseased tissues. PMID:22262007

  2. Single cell Hi-C reveals cell-to-cell variability in chromosome structure

    PubMed Central

    Schoenfelder, Stefan; Yaffe, Eitan; Dean, Wendy; Laue, Ernest D.; Tanay, Amos; Fraser, Peter

    2013-01-01

    Large-scale chromosome structure and spatial nuclear arrangement have been linked to control of gene expression and DNA replication and repair. Genomic techniques based on chromosome conformation capture assess contacts for millions of loci simultaneously, but do so by averaging chromosome conformations from millions of nuclei. Here we introduce single cell Hi-C, combined with genome-wide statistical analysis and structural modeling of single copy X chromosomes, to show that individual chromosomes maintain domain organisation at the megabase scale, but show variable cell-to-cell chromosome territory structures at larger scales. Despite this structural stochasticity, localisation of active gene domains to boundaries of territories is a hallmark of chromosomal conformation. Single cell Hi-C data bridge current gaps between genomics and microscopy studies of chromosomes, demonstrating how modular organisation underlies dynamic chromosome structure, and how this structure is probabilistically linked with genome activity patterns. PMID:24067610

  3. Biogeography of the Sulfolobus islandicus pan-genome

    PubMed Central

    Reno, Michael L.; Held, Nicole L.; Fields, Christopher J.; Burke, Patricia V.; Whitaker, Rachel J.

    2009-01-01

    Variation in gene content has been hypothesized to be the primary mode of adaptive evolution in microorganisms; however, very little is known about the spatial and temporal distribution of variable genes. Through population-scale comparative genomics of 7 Sulfolobus islandicus genomes from 3 locations, we demonstrate the biogeographical structure of the pan-genome of this species, with no evidence of gene flow between geographically isolated populations. The evolutionary independence of each population allowed us to assess genome dynamics over very recent evolutionary time, beginning ≈910,000 years ago. On this time scale, genome variation largely consists of recent strain-specific integration of mobile elements. Localized sectors of parallel gene loss are identified; however, the balance between the gain and loss of genetic material suggests that S. islandicus genomes acquire material slowly over time, primarily from closely related Sulfolobus species. Examination of the genome dynamics through population genomics in S. islandicus exposes the process of allopatric speciation in thermophilic Archaea and brings us closer to a generalized framework for understanding microbial genome evolution in a spatial context. PMID:19435847

  4. Genome-to-Watershed Predictive Understanding of Terrestrial Environments

    NASA Astrophysics Data System (ADS)

    Hubbard, S. S.; Agarwal, D.; Banfield, J. F.; Beller, H. R.; Brodie, E.; Long, P.; Nico, P. S.; Steefel, C. I.; Tokunaga, T. K.; Williams, K. H.

    2014-12-01

    Although terrestrial environments play a critical role in cycling water, greenhouse gasses, and other life-critical elements, the complexity of interactions among component microbes, plants, minerals, migrating fluids and dissolved constituents hinders predictive understanding of system behavior. The 'Sustainable Systems 2.0' project is developing genome-to-watershed scale predictive capabilities to quantify how the microbiome affects biogeochemical watershed functioning, how watershed-scale hydro-biogeochemical processes affect microbial functioning, and how these interactions co-evolve with climate and land-use changes. Development of such predictive capabilities is critical for guiding the optimal management of water resources, contaminant remediation, carbon stabilization, and agricultural sustainability - now and with global change. Initial investigations are focused on floodplains in the Colorado River Basin, and include iterative model development, experiments and observations with an early emphasis on subsurface aspects. Field experiments include local-scale experiments at Rifle CO to quantify spatiotemporal metabolic and geochemical responses to O2and nitrate amendments as well as floodplain-scale monitoring to quantify genomic and biogeochemical response to natural hydrological perturbations. Information obtained from such experiments are represented within GEWaSC, a Genome-Enabled Watershed Simulation Capability, which is being developed to allow mechanistic interrogation of how genomic information stored in a subsurface microbiome affects biogeochemical cycling. This presentation will describe the genome-to-watershed scale approach as well as early highlights associated with the project. Highlights include: first insights into the diversity of the subsurface microbiome and metabolic roles of organisms involved in subsurface nitrogen, sulfur and hydrogen and carbon cycling; the extreme variability of subsurface DOC and hydrological controls on carbon and nitrogen cycling; geophysical identification of floodplain hotspots that are useful for model parameterization; and GEWaSC demonstration of how incorporation of identified microbial metabolic processes improves prediction of the larger system biogeochemical behavior.

  5. Morphology and genomic hallmarks of breast tumours developed by ATM deleterious variant carriers.

    PubMed

    Renault, Anne-Laure; Mebirouk, Noura; Fuhrmann, Laetitia; Bataillon, Guillaume; Cavaciuti, Eve; Le Gal, Dorothée; Girard, Elodie; Popova, Tatiana; La Rosa, Philippe; Beauvallet, Juana; Eon-Marchais, Séverine; Dondon, Marie-Gabrielle; d'Enghien, Catherine Dubois; Laugé, Anthony; Chemlali, Walid; Raynal, Virginie; Labbé, Martine; Bièche, Ivan; Baulande, Sylvain; Bay, Jacques-Olivier; Berthet, Pascaline; Caron, Olivier; Buecher, Bruno; Faivre, Laurence; Fresnay, Marc; Gauthier-Villars, Marion; Gesta, Paul; Janin, Nicolas; Lejeune, Sophie; Maugard, Christine; Moutton, Sébastien; Venat-Bouvet, Laurence; Zattara, Hélène; Fricker, Jean-Pierre; Gladieff, Laurence; Coupier, Isabelle; Chenevix-Trench, Georgia; Hall, Janet; Vincent-Salomon, Anne; Stoppa-Lyonnet, Dominique; Andrieu, Nadine; Lesueur, Fabienne

    2018-04-17

    The ataxia telangiectasia mutated (ATM) gene is a moderate-risk breast cancer susceptibility gene; germline loss-of-function variants are found in up to 3% of hereditary breast and ovarian cancer (HBOC) families who undergo genetic testing. So far, no clear histopathological and molecular features of breast tumours occurring in ATM deleterious variant carriers have been described, but identification of an ATM-associated tumour signature may help in patient management. To characterise hallmarks of ATM-associated tumours, we performed systematic pathology review of tumours from 21 participants from ataxia-telangiectasia families and 18 participants from HBOC families, as well as copy number profiling on a subset of 23 tumours. Morphology of ATM-associated tumours was compared with that of 599 patients with no BRCA1 and BRCA2 mutations from a hospital-based series, as well as with data from The Cancer Genome Atlas. Absolute copy number and loss of heterozygosity (LOH) profiles were obtained from the OncoScan SNP array. In addition, we performed whole-genome sequencing on four tumours from ATM loss-of-function variant carriers with available frozen material. We found that ATM-associated tumours belong mostly to the luminal B subtype, are tetraploid and show LOH at the ATM locus at 11q22-23. Unlike tumours in which BRCA1 or BRCA2 is inactivated, tumours arising in ATM deleterious variant carriers are not associated with increased large-scale genomic instability as measured by the large-scale state transitions signature. Losses at 13q14.11-q14.3, 17p13.2-p12, 21p11.2-p11.1 and 22q11.23 were observed. Somatic alterations at these loci may therefore represent biomarkers for ATM testing and harbour driver mutations in potentially 'druggable' genes that would allow patients to be directed towards tailored therapeutic strategies. Although ATM is involved in the DNA damage response, ATM-associated tumours are distinct from BRCA1-associated tumours in terms of morphological characteristics and genomic alterations, and they are also distinguishable from sporadic breast tumours, thus opening up the possibility to identify ATM variant carriers outside the ataxia-telangiectasia disorder and direct them towards effective cancer risk management and therapeutic strategies.

  6. Kernel methods for large-scale genomic data analysis

    PubMed Central

    Xing, Eric P.; Schaid, Daniel J.

    2015-01-01

    Machine learning, particularly kernel methods, has been demonstrated as a promising new tool to tackle the challenges imposed by today’s explosive data growth in genomics. They provide a practical and principled approach to learning how a large number of genetic variants are associated with complex phenotypes, to help reveal the complexity in the relationship between the genetic markers and the outcome of interest. In this review, we highlight the potential key role it will have in modern genomic data processing, especially with regard to integration with classical methods for gene prioritizing, prediction and data fusion. PMID:25053743

  7. On the need for widespread horizontal gene transfers under genome size constraint.

    PubMed

    Isambert, Hervé; Stein, Richard R

    2009-08-25

    While eukaryotes primarily evolve by duplication-divergence expansion (and reduction) of their own gene repertoire with only rare horizontal gene transfers, prokaryotes appear to evolve under both gene duplications and widespread horizontal gene transfers over long evolutionary time scales. But, the evolutionary origin of this striking difference in the importance of horizontal gene transfers remains by and large a mystery. We propose that the abundance of horizontal gene transfers in free-living prokaryotes is a simple but necessary consequence of two opposite effects: i) their apparent genome size constraint compared to typical eukaryote genomes and ii) their underlying genome expansion dynamics through gene duplication-divergence evolution, as demonstrated by the presence of many tandem and block repeated genes. In principle, this combination of genome size constraint and underlying duplication expansion should lead to a coalescent-like process with extensive turnover of functional genes. This would, however, imply the unlikely, systematic reinvention of functions from discarded genes within independent phylogenetic lineages. Instead, we propose that the long-term evolutionary adaptation of free-living prokaryotes must have resulted in the emergence of efficient non-phylogenetic pathways to circumvent gene loss. This need for widespread horizontal gene transfers due to genome size constraint implies, in particular, that prokaryotes must remain under strong selection pressure in order to maintain the long-term evolutionary adaptation of their "mutualized" gene pool, beyond the inevitable turnover of individual prokaryote species. By contrast, the absence of genome size constraint for typical eukaryotes has presumably relaxed their need for widespread horizontal gene transfers and strong selection pressure. Yet, the resulting loss of genetic functions, due to weak selection pressure and inefficient gene recovery mechanisms, must have ultimately favored the emergence of more complex life styles and ecological integration of many eukaryotes. This article was reviewed by Pierre Pontarotti, Eugene V Koonin and Sergei Maslov.

  8. Comparative Genomics of a Plant-Parasitic Nematode Endosymbiont Suggest a Role in Nutritional Symbiosis.

    PubMed

    Brown, Amanda M V; Howe, Dana K; Wasala, Sulochana K; Peetz, Amy B; Zasada, Inga A; Denver, Dee R

    2015-09-10

    Bacterial mutualists can modulate the biochemical capacity of animals. Highly coevolved nutritional mutualists do this by synthesizing nutrients missing from the host's diet. Genomics tools have advanced the study of these partnerships. Here we examined the endosymbiont Xiphinematobacter (phylum Verrucomicrobia) from the dagger nematode Xiphinema americanum, a migratory ectoparasite of numerous crops that also vectors nepovirus. Previously, this endosymbiont was identified in the gut, ovaries, and eggs, but its role was unknown. We explored the potential role of this symbiont using fluorescence in situ hybridization, genome sequencing, and comparative functional genomics. We report the first genome of an intracellular Verrucomicrobium and the first exclusively intracellular non-Wolbachia nematode symbiont. Results revealed that Xiphinematobacter had a small 0.916-Mb genome with only 817 predicted proteins, resembling genomes of other mutualist endosymbionts. Compared with free-living relatives, conserved proteins were shorter on average, and there was large-scale loss of regulatory pathways. Despite massive gene loss, more genes were retained for biosynthesis of amino acids predicted to be essential to the host. Gene ontology enrichment tests showed enrichment for biosynthesis of arginine, histidine, and aromatic amino acids, as well as thiamine and coenzyme A, diverging from the profiles of relatives Akkermansia muciniphilia (in the human colon), Methylacidiphilum infernorum, and the mutualist Wolbachia from filarial nematodes. Together, these features and the location in the gut suggest that Xiphinematobacter functions as a nutritional mutualist, supplementing essential nutrients that are depleted in the nematode diet. This pattern points to evolutionary convergence with endosymbionts found in sap-feeding insects. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Identification and Characterization of Genomic Amplifications in Ovarian Serous Carcinoma

    DTIC Science & Technology

    2009-07-01

    oncogenes, Rsf1 and Notch3, which were up-regulated in both genomic DNA and transcript levels in ovarian cancer. In a large- scale FISH analysis, Rsf1...associated with worse disease outcome, suggesting that Rsf1 could be potentially used as a prognostic marker in the future (Appendix #1). For the...over- expressed in a recurrent carcinoma. Although the follow-up study in a larger- scale sample size did not demonstrate clear amplification in NAC1

  10. Cloud-Scale Genomic Signals Processing for Robust Large-Scale Cancer Genomic Microarray Data Analysis.

    PubMed

    Harvey, Benjamin Simeon; Ji, Soo-Yeon

    2017-01-01

    As microarray data available to scientists continues to increase in size and complexity, it has become overwhelmingly important to find multiple ways to bring forth oncological inference to the bioinformatics community through the analysis of large-scale cancer genomic (LSCG) DNA and mRNA microarray data that is useful to scientists. Though there have been many attempts to elucidate the issue of bringing forth biological interpretation by means of wavelet preprocessing and classification, there has not been a research effort that focuses on a cloud-scale distributed parallel (CSDP) separable 1-D wavelet decomposition technique for denoising through differential expression thresholding and classification of LSCG microarray data. This research presents a novel methodology that utilizes a CSDP separable 1-D method for wavelet-based transformation in order to initialize a threshold which will retain significantly expressed genes through the denoising process for robust classification of cancer patients. Additionally, the overall study was implemented and encompassed within CSDP environment. The utilization of cloud computing and wavelet-based thresholding for denoising was used for the classification of samples within the Global Cancer Map, Cancer Cell Line Encyclopedia, and The Cancer Genome Atlas. The results proved that separable 1-D parallel distributed wavelet denoising in the cloud and differential expression thresholding increased the computational performance and enabled the generation of higher quality LSCG microarray datasets, which led to more accurate classification results.

  11. CoryneRegNet: An ontology-based data warehouse of corynebacterial transcription factors and regulatory networks

    PubMed Central

    Baumbach, Jan; Brinkrolf, Karina; Czaja, Lisa F; Rahmann, Sven; Tauch, Andreas

    2006-01-01

    Background The application of DNA microarray technology in post-genomic analysis of bacterial genome sequences has allowed the generation of huge amounts of data related to regulatory networks. This data along with literature-derived knowledge on regulation of gene expression has opened the way for genome-wide reconstruction of transcriptional regulatory networks. These large-scale reconstructions can be converted into in silico models of bacterial cells that allow a systematic analysis of network behavior in response to changing environmental conditions. Description CoryneRegNet was designed to facilitate the genome-wide reconstruction of transcriptional regulatory networks of corynebacteria relevant in biotechnology and human medicine. During the import and integration process of data derived from experimental studies or literature knowledge CoryneRegNet generates links to genome annotations, to identified transcription factors and to the corresponding cis-regulatory elements. CoryneRegNet is based on a multi-layered, hierarchical and modular concept of transcriptional regulation and was implemented by using the relational database management system MySQL and an ontology-based data structure. Reconstructed regulatory networks can be visualized by using the yFiles JAVA graph library. As an application example of CoryneRegNet, we have reconstructed the global transcriptional regulation of a cellular module involved in SOS and stress response of corynebacteria. Conclusion CoryneRegNet is an ontology-based data warehouse that allows a pertinent data management of regulatory interactions along with the genome-scale reconstruction of transcriptional regulatory networks. These models can further be combined with metabolic networks to build integrated models of cellular function including both metabolism and its transcriptional regulation. PMID:16478536

  12. De novo assembly and next-generation sequencing to analyse full-length gene variants from codon-barcoded libraries.

    PubMed

    Cho, Namjin; Hwang, Byungjin; Yoon, Jung-ki; Park, Sangun; Lee, Joongoo; Seo, Han Na; Lee, Jeewon; Huh, Sunghoon; Chung, Jinsoo; Bang, Duhee

    2015-09-21

    Interpreting epistatic interactions is crucial for understanding evolutionary dynamics of complex genetic systems and unveiling structure and function of genetic pathways. Although high resolution mapping of en masse variant libraries renders molecular biologists to address genotype-phenotype relationships, long-read sequencing technology remains indispensable to assess functional relationship between mutations that lie far apart. Here, we introduce JigsawSeq for multiplexed sequence identification of pooled gene variant libraries by combining a codon-based molecular barcoding strategy and de novo assembly of short-read data. We first validate JigsawSeq on small sub-pools and observed high precision and recall at various experimental settings. With extensive simulations, we then apply JigsawSeq to large-scale gene variant libraries to show that our method can be reliably scaled using next-generation sequencing. JigsawSeq may serve as a rapid screening tool for functional genomics and offer the opportunity to explore evolutionary trajectories of protein variants.

  13. Dictyostelium mobile elements: strategies to amplify in a compact genome.

    PubMed

    Winckler, T; Dingermann, T; Glöckner, G

    2002-12-01

    Dictyostelium discoideum is a eukaryotic microorganism that is attractive for the study of fundamental biological phenomena such as cell-cell communication, formation of multicellularity, cell differentiation and morphogenesis. Large-scale sequencing of the D. discoideum genome has provided new insights into evolutionary strategies evolved by transposable elements (TEs) to settle in compact microbial genomes and to maintain active populations over evolutionary time. The high gene density (about 1 gene/2.6 kb) of the D. discoideum genome leaves limited space for selfish molecular invaders to move and amplify without causing deleterious mutations that eradicate their host. Targeting of transfer RNA (tRNA) gene loci appears to be a generally successful strategy for TEs residing in compact genomes to insert away from coding regions. In D. discoideum, tRNA gene-targeted retrotransposition has evolved independently at least three times by both non-long terminal repeat (LTR) retrotransposons and retrovirus-like LTR retrotransposons. Unlike the nonspecifically inserting D. discoideum TEs, which have a strong tendency to insert into preexisting TE copies and form large and complex clusters near the ends of chromosomes, the tRNA gene-targeted retrotransposons have managed to occupy 75% of the tRNA gene loci spread on chromosome 2 and represent 80% of the TEs recognized on the assembled central 6.5-Mb part of chromosome 2. In this review we update the available information about D. discoideum TEs which emerges both from previous work and current large-scale genome sequencing, with special emphasis on the fact that tRNA genes are principal determinants of retrotransposon insertions into the D. discoideum genome.

  14. Large-scale turnover of functional transcription factor bindingsites in Drosophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moses, Alan M.; Pollard, Daniel A.; Nix, David A.

    2006-07-14

    The gain and loss of functional transcription-factor bindingsites has been proposed as a major source of evolutionary change incis-regulatory DNA and gene expression. We have developed an evolutionarymodel to study binding site turnover that uses multiple sequencealignments to assess the evolutionary constraint on individual bindingsites, and to map gain and loss events along a phylogenetic tree. Weapply this model to study the evolutionary dynamics of binding sites ofthe Drosophila melanogaster transcription factor Zeste, using genome-widein vivo (ChIP-chip) binding data to identify functional Zeste bindingsites, and the genome sequences of D. melanogaster, D. simulans, D.erecta and D. yakuba to study theirmore » evolution. We estimate that more than5 percent of functional Zeste binding sites in D. melanogaster weregained along the D. melanogaster lineage or lost along one of the otherlineages. We find that Zeste bound regions have a reduced rate of bindingsite loss and an increased rate of binding site gain relative to flankingsequences. Finally, we show that binding site gains and losses areasymmetrically distributed with respect to D. melanogaster, consistentwith lineage-specific acquisition and loss of Zeste-responsive regulatoryelements.« less

  15. Natural Selection and Recombination Rate Variation Shape Nucleotide Polymorphism Across the Genomes of Three Related Populus Species

    PubMed Central

    Wang, Jing; Street, Nathaniel R.; Scofield, Douglas G.; Ingvarsson, Pär K.

    2016-01-01

    A central aim of evolutionary genomics is to identify the relative roles that various evolutionary forces have played in generating and shaping genetic variation within and among species. Here we use whole-genome resequencing data to characterize and compare genome-wide patterns of nucleotide polymorphism, site frequency spectrum, and population-scaled recombination rates in three species of Populus: Populus tremula, P. tremuloides, and P. trichocarpa. We find that P. tremuloides has the highest level of genome-wide variation, skewed allele frequencies, and population-scaled recombination rates, whereas P. trichocarpa harbors the lowest. Our findings highlight multiple lines of evidence suggesting that natural selection, due to both purifying and positive selection, has widely shaped patterns of nucleotide polymorphism at linked neutral sites in all three species. Differences in effective population sizes and rates of recombination largely explain the disparate magnitudes and signatures of linked selection that we observe among species. The present work provides the first phylogenetic comparative study on a genome-wide scale in forest trees. This information will also improve our ability to understand how various evolutionary forces have interacted to influence genome evolution among related species. PMID:26721855

  16. Natural Selection and Recombination Rate Variation Shape Nucleotide Polymorphism Across the Genomes of Three Related Populus Species.

    PubMed

    Wang, Jing; Street, Nathaniel R; Scofield, Douglas G; Ingvarsson, Pär K

    2016-03-01

    A central aim of evolutionary genomics is to identify the relative roles that various evolutionary forces have played in generating and shaping genetic variation within and among species. Here we use whole-genome resequencing data to characterize and compare genome-wide patterns of nucleotide polymorphism, site frequency spectrum, and population-scaled recombination rates in three species of Populus: Populus tremula, P. tremuloides, and P. trichocarpa. We find that P. tremuloides has the highest level of genome-wide variation, skewed allele frequencies, and population-scaled recombination rates, whereas P. trichocarpa harbors the lowest. Our findings highlight multiple lines of evidence suggesting that natural selection, due to both purifying and positive selection, has widely shaped patterns of nucleotide polymorphism at linked neutral sites in all three species. Differences in effective population sizes and rates of recombination largely explain the disparate magnitudes and signatures of linked selection that we observe among species. The present work provides the first phylogenetic comparative study on a genome-wide scale in forest trees. This information will also improve our ability to understand how various evolutionary forces have interacted to influence genome evolution among related species. Copyright © 2016 by the Genetics Society of America.

  17. Cellular Factors Shape 3D Genome Landscape

    Cancer.gov

    Researchers, using novel large-scale imaging technology, have mapped the spatial location of individual genes in the nucleus of human cells and identified 50 cellular factors required for the proper 3D positioning of genes. These spatial locations play important roles in gene expression, DNA repair, genome stability, and other cellular activities.

  18. Developing a Drosophila Model of Schwannomatosis

    DTIC Science & Technology

    2012-08-01

    the entire Drosophila melanogaster genome and compared...et al., 2009; Hanahan and Weinberg, 2011). Over the last decade, the fruit fly Drosophila melanogaster has become an important model system for cancer...studies. Reduced redundancy in the Drosophila genome compared with that of humans, coupled with the ability to conduct large-scale genetic screens

  19. A Glance at Microsatellite Motifs from 454 Sequencing Reads of Watermelon Genomic DNA

    USDA-ARS?s Scientific Manuscript database

    A single 454 (Life Sciences Sequencing Technology) run of Charleston Gray watermelon (Citrullus lanatus var. lanatus) genomic DNA was performed and sequence data were assembled. A large scale identification of simple sequence repeat (SSR) was performed and SSR sequence data were used for the develo...

  20. A genome-wide association study platform built on iPlant cyber-infrastructure

    USDA-ARS?s Scientific Manuscript database

    We demonstrated a flexible Genome-Wide Association (GWA) Study (GWAS) platform built upon the iPlant Collaborative Cyber-infrastructure. The platform supports big data management, sharing, and large scale study of both genotype and phenotype data on clusters. End users can add their own analysis too...

  1. Discovery of novel phosphonate natural products and their biosynthetic pathways by large-scale genome mining

    USDA-ARS?s Scientific Manuscript database

    Genome mining has revolutionized the field of natural products, providing hope that new antibiotics can be discovered in time before all remainders are rendered useless against multidrug resistant pathogens. While this approach has been successful in academic settings focused on small collections or...

  2. New lives for old: evolution of pseudoenzyme function illustrated by iRhoms.

    PubMed

    Adrain, Colin; Freeman, Matthew

    2012-07-11

    Large-scale sequencing of genomes has revealed that most enzyme families include inactive homologues. These pseudoenzymes are often well conserved, implying a selective pressure to retain them during evolution, and therefore that they have significant function. Mechanistic insights and evolutionary lessons are now emerging from the study of a broad range of such 'dead' enzymes. The recently discovered iRhoms - inactive homologues of rhomboid proteases - have joined derlins and other members of the rhomboid-like clan in regulating the fate of proteins as they pass through the secretory pathway. There is a strong case that dead enzymes, which have been rather overlooked, may be a rich source of biological regulators.

  3. Integrative and conjugative elements and their hosts: composition, distribution and organization.

    PubMed

    Cury, Jean; Touchon, Marie; Rocha, Eduardo P C

    2017-09-06

    Conjugation of single-stranded DNA drives horizontal gene transfer between bacteria and was widely studied in conjugative plasmids. The organization and function of integrative and conjugative elements (ICE), even if they are more abundant, was only studied in a few model systems. Comparative genomics of ICE has been precluded by the difficulty in finding and delimiting these elements. Here, we present the results of a method that circumvents these problems by requiring only the identification of the conjugation genes and the species' pan-genome. We delimited 200 ICEs and this allowed the first large-scale characterization of these elements. We quantified the presence in ICEs of a wide set of functions associated with the biology of mobile genetic elements, including some that are typically associated with plasmids, such as partition and replication. Protein sequence similarity networks and phylogenetic analyses revealed that ICEs are structured in functional modules. Integrases and conjugation systems have different evolutionary histories, even if the gene repertoires of ICEs can be grouped in function of conjugation types. Our characterization of the composition and organization of ICEs paves the way for future functional and evolutionary analyses of their cargo genes, composed of a majority of unknown function genes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Swimming in Light: A Large-Scale Computational Analysis of the Metabolism of Dinoroseobacter shibae

    PubMed Central

    Rex, Rene; Bill, Nelli; Schmidt-Hohagen, Kerstin; Schomburg, Dietmar

    2013-01-01

    The Roseobacter clade is a ubiquitous group of marine α-proteobacteria. To gain insight into the versatile metabolism of this clade, we took a constraint-based approach and created a genome-scale metabolic model (iDsh827) of Dinoroseobacter shibae DFL12T. Our model is the first accounting for the energy demand of motility, the light-driven ATP generation and experimentally determined specific biomass composition. To cover a large variety of environmental conditions, as well as plasmid and single gene knock-out mutants, we simulated 391,560 different physiological states using flux balance analysis. We analyzed our results with regard to energy metabolism, validated them experimentally, and revealed a pronounced metabolic response to the availability of light. Furthermore, we introduced the energy demand of motility as an important parameter in genome-scale metabolic models. The results of our simulations also gave insight into the changing usage of the two degradation routes for dimethylsulfoniopropionate, an abundant compound in the ocean. A side product of dimethylsulfoniopropionate degradation is dimethyl sulfide, which seeds cloud formation and thus enhances the reflection of sunlight. By our exhaustive simulations, we were able to identify single-gene knock-out mutants, which show an increased production of dimethyl sulfide. In addition to the single-gene knock-out simulations we studied the effect of plasmid loss on the metabolism. Moreover, we explored the possible use of a functioning phosphofructokinase for D. shibae. PMID:24098096

  5. Modeling and Simulation of Optimal Resource Management during the Diurnal Cycle in Emiliania huxleyi by Genome-Scale Reconstruction and an Extended Flux Balance Analysis Approach.

    PubMed

    Knies, David; Wittmüß, Philipp; Appel, Sebastian; Sawodny, Oliver; Ederer, Michael; Feuer, Ronny

    2015-10-28

    The coccolithophorid unicellular alga Emiliania huxleyi is known to form large blooms, which have a strong effect on the marine carbon cycle. As a photosynthetic organism, it is subjected to a circadian rhythm due to the changing light conditions throughout the day. For a better understanding of the metabolic processes under these periodically-changing environmental conditions, a genome-scale model based on a genome reconstruction of the E. huxleyi strain CCMP 1516 was created. It comprises 410 reactions and 363 metabolites. Biomass composition is variable based on the differentiation into functional biomass components and storage metabolites. The model is analyzed with a flux balance analysis approach called diurnal flux balance analysis (diuFBA) that was designed for organisms with a circadian rhythm. It allows storage metabolites to accumulate or be consumed over the diurnal cycle, while keeping the structure of a classical FBA problem. A feature of this approach is that the production and consumption of storage metabolites is not defined externally via the biomass composition, but the result of optimal resource management adapted to the diurnally-changing environmental conditions. The model in combination with this approach is able to simulate the variable biomass composition during the diurnal cycle in proximity to literature data.

  6. Mammalian Synthetic Biology: Time for Big MACs.

    PubMed

    Martella, Andrea; Pollard, Steven M; Dai, Junbiao; Cai, Yizhi

    2016-10-21

    The enabling technologies of synthetic biology are opening up new opportunities for engineering and enhancement of mammalian cells. This will stimulate diverse applications in many life science sectors such as regenerative medicine, development of biosensing cell lines, therapeutic protein production, and generation of new synthetic genetic regulatory circuits. Harnessing the full potential of these new engineering-based approaches requires the design and assembly of large DNA constructs-potentially up to chromosome scale-and the effective delivery of these large DNA payloads to the host cell. Random integration of large transgenes, encoding therapeutic proteins or genetic circuits into host chromosomes, has several drawbacks such as risks of insertional mutagenesis, lack of control over transgene copy-number and position-specific effects; these can compromise the intended functioning of genetic circuits. The development of a system orthogonal to the endogenous genome is therefore beneficial. Mammalian artificial chromosomes (MACs) are functional, add-on chromosomal elements, which behave as normal chromosomes-being replicating and portioned to daughter cells at each cell division. They are deployed as useful gene expression vectors as they remain independent from the host genome. MACs are maintained as a single-copy and can accommodate multiple gene expression cassettes of, in theory, unlimited DNA size (MACs up to 10 megabases have been constructed). MACs therefore enabled control over ectopic gene expression and represent an excellent platform to rapidly prototype and characterize novel synthetic gene circuits without recourse to engineering the host genome. This review describes the obstacles synthetic biologists face when working with mammalian systems and how the development of improved MACs can overcome these-particularly given the spectacular advances in DNA synthesis and assembly that are fuelling this research area.

  7. Genome-scale prediction of proteins with long intrinsically disordered regions.

    PubMed

    Peng, Zhenling; Mizianty, Marcin J; Kurgan, Lukasz

    2014-01-01

    Proteins with long disordered regions (LDRs), defined as having 30 or more consecutive disordered residues, are abundant in eukaryotes, and these regions are recognized as a distinct class of biologically functional domains. LDRs facilitate various cellular functions and are important for target selection in structural genomics. Motivated by the lack of methods that directly predict proteins with LDRs, we designed Super-fast predictor of proteins with Long Intrinsically DisordERed regions (SLIDER). SLIDER utilizes logistic regression that takes an empirically chosen set of numerical features, which consider selected physicochemical properties of amino acids, sequence complexity, and amino acid composition, as its inputs. Empirical tests show that SLIDER offers competitive predictive performance combined with low computational cost. It outperforms, by at least a modest margin, a comprehensive set of modern disorder predictors (that can indirectly predict LDRs) and is 16 times faster compared to the best currently available disorder predictor. Utilizing our time-efficient predictor, we characterized abundance and functional roles of proteins with LDRs over 110 eukaryotic proteomes. Similar to related studies, we found that eukaryotes have many (on average 30.3%) proteins with LDRs with majority of proteomes having between 25 and 40%, where higher abundance is characteristic to proteomes that have larger proteins. Our first-of-its-kind large-scale functional analysis shows that these proteins are enriched in a number of cellular functions and processes including certain binding events, regulation of catalytic activities, cellular component organization, biogenesis, biological regulation, and some metabolic and developmental processes. A webserver that implements SLIDER is available at http://biomine.ece.ualberta.ca/SLIDER/. Copyright © 2013 Wiley Periodicals, Inc.

  8. IMG-ABC. A knowledge base to fuel discovery of biosynthetic gene clusters and novel secondary metabolites

    DOE PAGES

    Hadjithomas, Michalis; Chen, I-Min Amy; Chu, Ken; ...

    2015-07-14

    In the discovery of secondary metabolites, analysis of sequence data is a promising exploration path that remains largely underutilized due to the lack of computational platforms that enable such a systematic approach on a large scale. In this work, we present IMG-ABC (https://img.jgi.doe.gov/abc), an atlas of biosynthetic gene clusters within the Integrated Microbial Genomes (IMG) system, which is aimed at harnessing the power of “big” genomic data for discovering small molecules. IMG-ABC relies on IMG’s comprehensive integrated structural and functional genomic data for the analysis of biosynthetic gene clusters (BCs) and associated secondary metabolites (SMs). SMs and BCs serve asmore » the two main classes of objects in IMG-ABC, each with a rich collection of attributes. A unique feature of IMG-ABC is the incorporation of both experimentally validated and computationally predicted BCs in genomes as well as metagenomes, thus identifying BCs in uncultured populations and rare taxa. We demonstrate the strength of IMG-ABC’s focused integrated analysis tools in enabling the exploration of microbial secondary metabolism on a global scale, through the discovery of phenazine-producing clusters for the first time in lphaproteobacteria. IMG-ABC strives to fill the long-existent void of resources for computational exploration of the secondary metabolism universe; its underlying scalable framework enables traversal of uncovered phylogenetic and chemical structure space, serving as a doorway to a new era in the discovery of novel molecules. IMG-ABC is the largest publicly available database of predicted and experimental biosynthetic gene clusters and the secondary metabolites they produce. The system also includes powerful search and analysis tools that are integrated with IMG’s extensive genomic/metagenomic data and analysis tool kits. As new research on biosynthetic gene clusters and secondary metabolites is published and more genomes are sequenced, IMG-ABC will continue to expand, with the goal of becoming an essential component of any bioinformatic exploration of the secondary metabolism world.« less

  9. Genome and evolution of the shade-requiring medicinal herb Panax ginseng.

    PubMed

    Kim, Nam-Hoon; Jayakodi, Murukarthick; Lee, Sang-Choon; Choi, Beom-Soon; Jang, Woojong; Lee, Junki; Kim, Hyun Hee; Waminal, Nomar E; Lakshmanan, Meiyappan; van Nguyen, Binh; Lee, Yun Sun; Park, Hyun-Seung; Koo, Hyun Jo; Park, Jee Young; Perumal, Sampath; Joh, Ho Jun; Lee, Hana; Kim, Jinkyung; Kim, In Seo; Kim, Kyunghee; Koduru, Lokanand; Kang, Kyo Bin; Sung, Sang Hyun; Yu, Yeisoo; Park, Daniel S; Choi, Doil; Seo, Eunyoung; Kim, Seungill; Kim, Young-Chang; Hyun, Dong Yun; Park, Youn-Il; Kim, Changsoo; Lee, Tae-Ho; Kim, Hyun Uk; Soh, Moon Soo; Lee, Yi; In, Jun Gyo; Kim, Heui-Soo; Kim, Yong-Min; Yang, Deok-Chun; Wing, Rod A; Lee, Dong-Yup; Paterson, Andrew H; Yang, Tae-Jin

    2018-03-31

    Panax ginseng C. A. Meyer, reputed as the king of medicinal herbs, has slow growth, long generation time, low seed production and complicated genome structure that hamper its study. Here, we unveil the genomic architecture of tetraploid P. ginseng by de novo genome assembly, representing 2.98 Gbp with 59 352 annotated genes. Resequencing data indicated that diploid Panax species diverged in association with global warming in Southern Asia, and two North American species evolved via two intercontinental migrations. Two whole genome duplications (WGD) occurred in the family Araliaceae (including Panax) after divergence with the Apiaceae, the more recent one contributing to the ability of P. ginseng to overwinter, enabling it to spread broadly through the Northern Hemisphere. Functional and evolutionary analyses suggest that production of pharmacologically important dammarane-type ginsenosides originated in Panax and are produced largely in shoot tissues and transported to roots; that newly evolved P. ginseng fatty acid desaturases increase freezing tolerance; and that unprecedented retention of chlorophyll a/b binding protein genes enables efficient photosynthesis under low light. A genome-scale metabolic network provides a holistic view of Panax ginsenoside biosynthesis. This study provides valuable resources for improving medicinal values of ginseng either through genomics-assisted breeding or metabolic engineering. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  10. Genome Mutational and Transcriptional Hotspots Are Traps for Duplicated Genes and Sources of Adaptations.

    PubMed

    Fares, Mario A; Sabater-Muñoz, Beatriz; Toft, Christina

    2017-05-01

    Gene duplication generates new genetic material, which has been shown to lead to major innovations in unicellular and multicellular organisms. A whole-genome duplication occurred in the ancestor of Saccharomyces yeast species but 92% of duplicates returned to single-copy genes shortly after duplication. The persisting duplicated genes in Saccharomyces led to the origin of major metabolic innovations, which have been the source of the unique biotechnological capabilities in the Baker's yeast Saccharomyces cerevisiae. What factors have determined the fate of duplicated genes remains unknown. Here, we report the first demonstration that the local genome mutation and transcription rates determine the fate of duplicates. We show, for the first time, a preferential location of duplicated genes in the mutational and transcriptional hotspots of S. cerevisiae genome. The mechanism of duplication matters, with whole-genome duplicates exhibiting different preservation trends compared to small-scale duplicates. Genome mutational and transcriptional hotspots are rich in duplicates with large repetitive promoter elements. Saccharomyces cerevisiae shows more tolerance to deleterious mutations in duplicates with repetitive promoter elements, which in turn exhibit higher transcriptional plasticity against environmental perturbations. Our data demonstrate that the genome traps duplicates through the accelerated regulatory and functional divergence of their gene copies providing a source of novel adaptations in yeast. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Dichlorvos Exposure Results in Large Scale Disruption of Energy Metabolism in the Liver of the Zebra Fish, Danio Rerio

    DTIC Science & Technology

    2015-10-24

    zebrafish reference genome sequence and its relationship to the human genome . Nature. 2013;496(7446):498–503. 21. Linney E, Upchurch L, Donerly S. Zebrafish...To obtain a broader understanding of the effects of dichlorvos on liver metabolism, we per- formed a genome -wide analysis of gene expression in the ...condition) for whole genome transcript ana- lysis, and fixed another set of fish for histological evaluation (n = 5/condition). We determined the target

  12. EUPAN enables pan-genome studies of a large number of eukaryotic genomes.

    PubMed

    Hu, Zhiqiang; Sun, Chen; Lu, Kuang-Chen; Chu, Xixia; Zhao, Yue; Lu, Jinyuan; Shi, Jianxin; Wei, Chaochun

    2017-08-01

    Pan-genome analyses are routinely carried out for bacteria to interpret the within-species gene presence/absence variations (PAVs). However, pan-genome analyses are rare for eukaryotes due to the large sizes and higher complexities of their genomes. Here we proposed EUPAN, a eukaryotic pan-genome analysis toolkit, enabling automatic large-scale eukaryotic pan-genome analyses and detection of gene PAVs at a relatively low sequencing depth. In the previous studies, we demonstrated the effectiveness and high accuracy of EUPAN in the pan-genome analysis of 453 rice genomes, in which we also revealed widespread gene PAVs among individual rice genomes. Moreover, EUPAN can be directly applied to the current re-sequencing projects primarily focusing on single nucleotide polymorphisms. EUPAN is implemented in Perl, R and C ++. It is supported under Linux and preferred for a computer cluster with LSF and SLURM job scheduling system. EUPAN together with its standard operating procedure (SOP) is freely available for non-commercial use (CC BY-NC 4.0) at http://cgm.sjtu.edu.cn/eupan/index.html . ccwei@sjtu.edu.cn or jianxin.shi@sjtu.edu.cn. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  13. Zebrafish models for the functional genomics of neurogenetic disorders.

    PubMed

    Kabashi, Edor; Brustein, Edna; Champagne, Nathalie; Drapeau, Pierre

    2011-03-01

    In this review, we consider recent work using zebrafish to validate and study the functional consequences of mutations of human genes implicated in a broad range of degenerative and developmental disorders of the brain and spinal cord. Also we present technical considerations for those wishing to study their own genes of interest by taking advantage of this easily manipulated and clinically relevant model organism. Zebrafish permit mutational analyses of genetic function (gain or loss of function) and the rapid validation of human variants as pathological mutations. In particular, neural degeneration can be characterized at genetic, cellular, functional, and behavioral levels. Zebrafish have been used to knock down or express mutations in zebrafish homologs of human genes and to directly express human genes bearing mutations related to neurodegenerative disorders such as spinal muscular atrophy, ataxia, hereditary spastic paraplegia, amyotrophic lateral sclerosis (ALS), epilepsy, Huntington's disease, Parkinson's disease, fronto-temporal dementia, and Alzheimer's disease. More recently, we have been using zebrafish to validate mutations of synaptic genes discovered by large-scale genomic approaches in developmental disorders such as autism, schizophrenia, and non-syndromic mental retardation. Advances in zebrafish genetics such as multigenic analyses and chemical genetics now offer a unique potential for disease research. Thus, zebrafish hold much promise for advancing the functional genomics of human diseases, the understanding of the genetics and cell biology of degenerative and developmental disorders, and the discovery of therapeutics. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Successful application of FTA Classic Card technology and use of bacteriophage phi29 DNA polymerase for large-scale field sampling and cloning of complete maize streak virus genomes.

    PubMed

    Owor, Betty E; Shepherd, Dionne N; Taylor, Nigel J; Edema, Richard; Monjane, Adérito L; Thomson, Jennifer A; Martin, Darren P; Varsani, Arvind

    2007-03-01

    Leaf samples from 155 maize streak virus (MSV)-infected maize plants were collected from 155 farmers' fields in 23 districts in Uganda in May/June 2005 by leaf-pressing infected samples onto FTA Classic Cards. Viral DNA was successfully extracted from cards stored at room temperature for 9 months. The diversity of 127 MSV isolates was analysed by PCR-generated RFLPs. Six representative isolates having different RFLP patterns and causing either severe, moderate or mild disease symptoms, were chosen for amplification from FTA cards by bacteriophage phi29 DNA polymerase using the TempliPhi system. Full-length genomes were inserted into a cloning vector using a unique restriction enzyme site, and sequenced. The 1.3-kb PCR product amplified directly from FTA-eluted DNA and used for RFLP analysis was also cloned and sequenced. Comparison of cloned whole genome sequences with those of the original PCR products indicated that the correct virus genome had been cloned and that no errors were introduced by the phi29 polymerase. This is the first successful large-scale application of FTA card technology to the field, and illustrates the ease with which large numbers of infected samples can be collected and stored for downstream molecular applications such as diversity analysis and cloning of potentially new virus genomes.

  15. First Large-Scale Proteogenomic Study of Breast Cancer Provides Insight into Potential Therapeutic Targets | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    News Release: May 25, 2016 — Building on data from The Cancer Genome Atlas (TCGA) project, a multi-institutional team of scientists has completed the first large-scale “proteogenomic” study of breast cancer, linking DNA mutations to protein signaling and helping pinpoint the genes that drive cancer.

  16. CTD² in Action: Translating High-Content Genomic Data into New Therapies | Office of Cancer Genomics

    Cancer.gov

    Large-scale molecular analyses have provided an unprecedented global view of the molecular defects in cancers and promise to revolutionize precision cancer medicine by guiding the development of therapies that are matched to genomic alterations in tumors. Cancer is a heterogeneous disease which explains why there are varying responses to therapy. This heterogeneity poses a daunting challenge for clinicians managing a patient’s disease.

  17. Continuing Evolution of Burkholderia mallei Through Genome Reduction and Large-Scale Rearrangements

    DTIC Science & Technology

    2010-01-22

    in Materials and Methods. b NRPS, nonribosomal peptide synthase ; PKS, polyketide synthase ; RND, resistance nodulation-division like pump. Losada et al...genomics, genome erosion, bacterial virulence. ª The Author(s) 2010. Published by Oxford University Press on behalf of the Society for Molecular Biology...creativecommons.org/licenses/by-nc/ 2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original

  18. Draft Genome Sequences of 510 Listeria monocytogenes Strains from Food Isolates and Human Listeriosis Cases from Northern Italy.

    PubMed

    Lomonaco, Sara; Gallina, Silvia; Filipello, Virginia; Sanchez Leon, Maria; Kastanis, George John; Allard, Marc; Brown, Eric; Amato, Ettore; Pontello, Mirella; Decastelli, Lucia

    2018-01-18

    Listeriosis outbreaks are frequently multistate/multicountry outbreaks, underlining the importance of molecular typing data for several diverse and well-characterized isolates. Large-scale whole-genome sequencing studies on Listeria monocytogenes isolates from non-U.S. locations have been limited. Herein, we describe the draft genome sequences of 510 L. monocytogenes isolates from northern Italy from different sources.

  19. Integrated Database And Knowledge Base For Genomic Prospective Cohort Study In Tohoku Medical Megabank Toward Personalized Prevention And Medicine.

    PubMed

    Ogishima, Soichi; Takai, Takako; Shimokawa, Kazuro; Nagaie, Satoshi; Tanaka, Hiroshi; Nakaya, Jun

    2015-01-01

    The Tohoku Medical Megabank project is a national project to revitalization of the disaster area in the Tohoku region by the Great East Japan Earthquake, and have conducted large-scale prospective genome-cohort study. Along with prospective genome-cohort study, we have developed integrated database and knowledge base which will be key database for realizing personalized prevention and medicine.

  20. Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses

    PubMed Central

    Liu, Bo; Madduri, Ravi K; Sotomayor, Borja; Chard, Kyle; Lacinski, Lukasz; Dave, Utpal J; Li, Jianqiang; Liu, Chunchen; Foster, Ian T

    2014-01-01

    Due to the upcoming data deluge of genome data, the need for storing and processing large-scale genome data, easy access to biomedical analyses tools, efficient data sharing and retrieval has presented significant challenges. The variability in data volume results in variable computing and storage requirements, therefore biomedical researchers are pursuing more reliable, dynamic and convenient methods for conducting sequencing analyses. This paper proposes a Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses, which enables reliable and highly scalable execution of sequencing analyses workflows in a fully automated manner. Our platform extends the existing Galaxy workflow system by adding data management capabilities for transferring large quantities of data efficiently and reliably (via Globus Transfer), domain-specific analyses tools preconfigured for immediate use by researchers (via user-specific tools integration), automatic deployment on Cloud for on-demand resource allocation and pay-as-you-go pricing (via Globus Provision), a Cloud provisioning tool for auto-scaling (via HTCondor scheduler), and the support for validating the correctness of workflows (via semantic verification tools). Two bioinformatics workflow use cases as well as performance evaluation are presented to validate the feasibility of the proposed approach. PMID:24462600

  1. Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses.

    PubMed

    Liu, Bo; Madduri, Ravi K; Sotomayor, Borja; Chard, Kyle; Lacinski, Lukasz; Dave, Utpal J; Li, Jianqiang; Liu, Chunchen; Foster, Ian T

    2014-06-01

    Due to the upcoming data deluge of genome data, the need for storing and processing large-scale genome data, easy access to biomedical analyses tools, efficient data sharing and retrieval has presented significant challenges. The variability in data volume results in variable computing and storage requirements, therefore biomedical researchers are pursuing more reliable, dynamic and convenient methods for conducting sequencing analyses. This paper proposes a Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses, which enables reliable and highly scalable execution of sequencing analyses workflows in a fully automated manner. Our platform extends the existing Galaxy workflow system by adding data management capabilities for transferring large quantities of data efficiently and reliably (via Globus Transfer), domain-specific analyses tools preconfigured for immediate use by researchers (via user-specific tools integration), automatic deployment on Cloud for on-demand resource allocation and pay-as-you-go pricing (via Globus Provision), a Cloud provisioning tool for auto-scaling (via HTCondor scheduler), and the support for validating the correctness of workflows (via semantic verification tools). Two bioinformatics workflow use cases as well as performance evaluation are presented to validate the feasibility of the proposed approach. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Large-scale genome-wide analysis identifies genetic variants associated with cardiac structure and function

    PubMed Central

    Wild, Philipp S.; Felix, Janine F.; Schillert, Arne; Chen, Ming-Huei; Leening, Maarten J.G.; Völker, Uwe; Großmann, Vera; Brody, Jennifer A.; Irvin, Marguerite R.; Shah, Sanjiv J.; Pramana, Setia; Lieb, Wolfgang; Schmidt, Reinhold; Stanton, Alice V.; Malzahn, Dörthe; Lyytikäinen, Leo-Pekka; Tiller, Daniel; Smith, J. Gustav; Di Tullio, Marco R.; Musani, Solomon K.; Morrison, Alanna C.; Pers, Tune H.; Morley, Michael; Kleber, Marcus E.; Aragam, Jayashri; Bis, Joshua C.; Bisping, Egbert; Broeckel, Ulrich; Cheng, Susan; Deckers, Jaap W.; Del Greco M, Fabiola; Edelmann, Frank; Fornage, Myriam; Franke, Lude; Friedrich, Nele; Harris, Tamara B.; Hofer, Edith; Hofman, Albert; Huang, Jie; Hughes, Alun D.; Kähönen, Mika; investigators, KNHI; Kruppa, Jochen; Lackner, Karl J.; Lannfelt, Lars; Laskowski, Rafael; Launer, Lenore J.; Lindgren, Cecilia M.; Loley, Christina; Mayet, Jamil; Medenwald, Daniel; Morris, Andrew P.; Müller, Christian; Müller-Nurasyid, Martina; Nappo, Stefania; Nilsson, Peter M.; Nuding, Sebastian; Nutile, Teresa; Peters, Annette; Pfeufer, Arne; Pietzner, Diana; Pramstaller, Peter P.; Raitakari, Olli T.; Rice, Kenneth M.; Rotter, Jerome I.; Ruohonen, Saku T.; Sacco, Ralph L.; Samdarshi, Tandaw E.; Sharp, Andrew S.P.; Shields, Denis C.; Sorice, Rossella; Sotoodehnia, Nona; Stricker, Bruno H.; Surendran, Praveen; Töglhofer, Anna M.; Uitterlinden, André G.; Völzke, Henry; Ziegler, Andreas; Münzel, Thomas; März, Winfried; Cappola, Thomas P.; Hirschhorn, Joel N.; Mitchell, Gary F.; Smith, Nicholas L.; Fox, Ervin R.; Dueker, Nicole D.; Jaddoe, Vincent W.V.; Melander, Olle; Lehtimäki, Terho; Ciullo, Marina; Hicks, Andrew A.; Lind, Lars; Gudnason, Vilmundur; Pieske, Burkert; Barron, Anthony J.; Zweiker, Robert; Schunkert, Heribert; Ingelsson, Erik; Liu, Kiang; Arnett, Donna K.; Psaty, Bruce M.; Blankenberg, Stefan; Larson, Martin G.; Felix, Stephan B.; Franco, Oscar H.; Zeller, Tanja; Vasan, Ramachandran S.; Dörr, Marcus

    2017-01-01

    BACKGROUND. Understanding the genetic architecture of cardiac structure and function may help to prevent and treat heart disease. This investigation sought to identify common genetic variations associated with inter-individual variability in cardiac structure and function. METHODS. A GWAS meta-analysis of echocardiographic traits was performed, including 46,533 individuals from 30 studies (EchoGen consortium). The analysis included 16 traits of left ventricular (LV) structure, and systolic and diastolic function. RESULTS. The discovery analysis included 21 cohorts for structural and systolic function traits (n = 32,212) and 17 cohorts for diastolic function traits (n = 21,852). Replication was performed in 5 cohorts (n = 14,321) and 6 cohorts (n = 16,308), respectively. Besides 5 previously reported loci, the combined meta-analysis identified 10 additional genome-wide significant SNPs: rs12541595 near MTSS1 and rs10774625 in ATXN2 for LV end-diastolic internal dimension; rs806322 near KCNRG, rs4765663 in CACNA1C, rs6702619 near PALMD, rs7127129 in TMEM16A, rs11207426 near FGGY, rs17608766 in GOSR2, and rs17696696 in CFDP1 for aortic root diameter; and rs12440869 in IQCH for Doppler transmitral A-wave peak velocity. Findings were in part validated in other cohorts and in GWAS of related disease traits. The genetic loci showed associations with putative signaling pathways, and with gene expression in whole blood, monocytes, and myocardial tissue. CONCLUSION. The additional genetic loci identified in this large meta-analysis of cardiac structure and function provide insights into the underlying genetic architecture of cardiac structure and warrant follow-up in future functional studies. FUNDING. For detailed information per study, see Acknowledgments. PMID:28394258

  3. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways.

    PubMed

    Scott, Robert A; Lagou, Vasiliki; Welch, Ryan P; Wheeler, Eleanor; Montasser, May E; Luan, Jian'an; Mägi, Reedik; Strawbridge, Rona J; Rehnberg, Emil; Gustafsson, Stefan; Kanoni, Stavroula; Rasmussen-Torvik, Laura J; Yengo, Loïc; Lecoeur, Cecile; Shungin, Dmitry; Sanna, Serena; Sidore, Carlo; Johnson, Paul C D; Jukema, J Wouter; Johnson, Toby; Mahajan, Anubha; Verweij, Niek; Thorleifsson, Gudmar; Hottenga, Jouke-Jan; Shah, Sonia; Smith, Albert V; Sennblad, Bengt; Gieger, Christian; Salo, Perttu; Perola, Markus; Timpson, Nicholas J; Evans, David M; Pourcain, Beate St; Wu, Ying; Andrews, Jeanette S; Hui, Jennie; Bielak, Lawrence F; Zhao, Wei; Horikoshi, Momoko; Navarro, Pau; Isaacs, Aaron; O'Connell, Jeffrey R; Stirrups, Kathleen; Vitart, Veronique; Hayward, Caroline; Esko, Tõnu; Mihailov, Evelin; Fraser, Ross M; Fall, Tove; Voight, Benjamin F; Raychaudhuri, Soumya; Chen, Han; Lindgren, Cecilia M; Morris, Andrew P; Rayner, Nigel W; Robertson, Neil; Rybin, Denis; Liu, Ching-Ti; Beckmann, Jacques S; Willems, Sara M; Chines, Peter S; Jackson, Anne U; Kang, Hyun Min; Stringham, Heather M; Song, Kijoung; Tanaka, Toshiko; Peden, John F; Goel, Anuj; Hicks, Andrew A; An, Ping; Müller-Nurasyid, Martina; Franco-Cereceda, Anders; Folkersen, Lasse; Marullo, Letizia; Jansen, Hanneke; Oldehinkel, Albertine J; Bruinenberg, Marcel; Pankow, James S; North, Kari E; Forouhi, Nita G; Loos, Ruth J F; Edkins, Sarah; Varga, Tibor V; Hallmans, Göran; Oksa, Heikki; Antonella, Mulas; Nagaraja, Ramaiah; Trompet, Stella; Ford, Ian; Bakker, Stephan J L; Kong, Augustine; Kumari, Meena; Gigante, Bruna; Herder, Christian; Munroe, Patricia B; Caulfield, Mark; Antti, Jula; Mangino, Massimo; Small, Kerrin; Miljkovic, Iva; Liu, Yongmei; Atalay, Mustafa; Kiess, Wieland; James, Alan L; Rivadeneira, Fernando; Uitterlinden, Andre G; Palmer, Colin N A; Doney, Alex S F; Willemsen, Gonneke; Smit, Johannes H; Campbell, Susan; Polasek, Ozren; Bonnycastle, Lori L; Hercberg, Serge; Dimitriou, Maria; Bolton, Jennifer L; Fowkes, Gerard R; Kovacs, Peter; Lindström, Jaana; Zemunik, Tatijana; Bandinelli, Stefania; Wild, Sarah H; Basart, Hanneke V; Rathmann, Wolfgang; Grallert, Harald; Maerz, Winfried; Kleber, Marcus E; Boehm, Bernhard O; Peters, Annette; Pramstaller, Peter P; Province, Michael A; Borecki, Ingrid B; Hastie, Nicholas D; Rudan, Igor; Campbell, Harry; Watkins, Hugh; Farrall, Martin; Stumvoll, Michael; Ferrucci, Luigi; Waterworth, Dawn M; Bergman, Richard N; Collins, Francis S; Tuomilehto, Jaakko; Watanabe, Richard M; de Geus, Eco J C; Penninx, Brenda W; Hofman, Albert; Oostra, Ben A; Psaty, Bruce M; Vollenweider, Peter; Wilson, James F; Wright, Alan F; Hovingh, G Kees; Metspalu, Andres; Uusitupa, Matti; Magnusson, Patrik K E; Kyvik, Kirsten O; Kaprio, Jaakko; Price, Jackie F; Dedoussis, George V; Deloukas, Panos; Meneton, Pierre; Lind, Lars; Boehnke, Michael; Shuldiner, Alan R; van Duijn, Cornelia M; Morris, Andrew D; Toenjes, Anke; Peyser, Patricia A; Beilby, John P; Körner, Antje; Kuusisto, Johanna; Laakso, Markku; Bornstein, Stefan R; Schwarz, Peter E H; Lakka, Timo A; Rauramaa, Rainer; Adair, Linda S; Smith, George Davey; Spector, Tim D; Illig, Thomas; de Faire, Ulf; Hamsten, Anders; Gudnason, Vilmundur; Kivimaki, Mika; Hingorani, Aroon; Keinanen-Kiukaanniemi, Sirkka M; Saaristo, Timo E; Boomsma, Dorret I; Stefansson, Kari; van der Harst, Pim; Dupuis, Josée; Pedersen, Nancy L; Sattar, Naveed; Harris, Tamara B; Cucca, Francesco; Ripatti, Samuli; Salomaa, Veikko; Mohlke, Karen L; Balkau, Beverley; Froguel, Philippe; Pouta, Anneli; Jarvelin, Marjo-Riitta; Wareham, Nicholas J; Bouatia-Naji, Nabila; McCarthy, Mark I; Franks, Paul W; Meigs, James B; Teslovich, Tanya M; Florez, Jose C; Langenberg, Claudia; Ingelsson, Erik; Prokopenko, Inga; Barroso, Inês

    2012-09-01

    Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have increased the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin concentration showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional analysis of these newly discovered loci will further improve our understanding of glycemic control.

  4. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways

    PubMed Central

    Scott, Robert A; Lagou, Vasiliki; Welch, Ryan P; Wheeler, Eleanor; Montasser, May E; Luan, Jian’an; Mägi, Reedik; Strawbridge, Rona J; Rehnberg, Emil; Gustafsson, Stefan; Kanoni, Stavroula; Rasmussen-Torvik, Laura J; Yengo, Loïc; Lecoeur, Cecile; Shungin, Dmitry; Sanna, Serena; Sidore, Carlo; Johnson, Paul C D; Jukema, J Wouter; Johnson, Toby; Mahajan, Anubha; Verweij, Niek; Thorleifsson, Gudmar; Hottenga, Jouke-Jan; Shah, Sonia; Smith, Albert V; Sennblad, Bengt; Gieger, Christian; Salo, Perttu; Perola, Markus; Timpson, Nicholas J; Evans, David M; Pourcain, Beate St; Wu, Ying; Andrews, Jeanette S; Hui, Jennie; Bielak, Lawrence F; Zhao, Wei; Horikoshi, Momoko; Navarro, Pau; Isaacs, Aaron; O’Connell, Jeffrey R; Stirrups, Kathleen; Vitart, Veronique; Hayward, Caroline; Esko, Tönu; Mihailov, Evelin; Fraser, Ross M; Fall, Tove; Voight, Benjamin F; Raychaudhuri, Soumya; Chen, Han; Lindgren, Cecilia M; Morris, Andrew P; Rayner, Nigel W; Robertson, Neil; Rybin, Denis; Liu, Ching-Ti; Beckmann, Jacques S; Willems, Sara M; Chines, Peter S; Jackson, Anne U; Kang, Hyun Min; Stringham, Heather M; Song, Kijoung; Tanaka, Toshiko; Peden, John F; Goel, Anuj; Hicks, Andrew A; An, Ping; Müller-Nurasyid, Martina; Franco-Cereceda, Anders; Folkersen, Lasse; Marullo, Letizia; Jansen, Hanneke; Oldehinkel, Albertine J; Bruinenberg, Marcel; Pankow, James S; North, Kari E; Forouhi, Nita G; Loos, Ruth J F; Edkins, Sarah; Varga, Tibor V; Hallmans, Göran; Oksa, Heikki; Antonella, Mulas; Nagaraja, Ramaiah; Trompet, Stella; Ford, Ian; Bakker, Stephan J L; Kong, Augustine; Kumari, Meena; Gigante, Bruna; Herder, Christian; Munroe, Patricia B; Caulfield, Mark; Antti, Jula; Mangino, Massimo; Small, Kerrin; Miljkovic, Iva; Liu, Yongmei; Atalay, Mustafa; Kiess, Wieland; James, Alan L; Rivadeneira, Fernando; Uitterlinden, Andre G; Palmer, Colin N A; Doney, Alex S F; Willemsen, Gonneke; Smit, Johannes H; Campbell, Susan; Polasek, Ozren; Bonnycastle, Lori L; Hercberg, Serge; Dimitriou, Maria; Bolton, Jennifer L; Fowkes, Gerard R; Kovacs, Peter; Lindström, Jaana; Zemunik, Tatijana; Bandinelli, Stefania; Wild, Sarah H; Basart, Hanneke V; Rathmann, Wolfgang; Grallert, Harald; Maerz, Winfried; Kleber, Marcus E; Boehm, Bernhard O; Peters, Annette; Pramstaller, Peter P; Province, Michael A; Borecki, Ingrid B; Hastie, Nicholas D; Rudan, Igor; Campbell, Harry; Watkins, Hugh; Farrall, Martin; Stumvoll, Michael; Ferrucci, Luigi; Waterworth, Dawn M; Bergman, Richard N; Collins, Francis S; Tuomilehto, Jaakko; Watanabe, Richard M; de Geus, Eco J C; Penninx, Brenda W; Hofman, Albert; Oostra, Ben A; Psaty, Bruce M; Vollenweider, Peter; Wilson, James F; Wright, Alan F; Hovingh, G Kees; Metspalu, Andres; Uusitupa, Matti; Magnusson, Patrik K E; Kyvik, Kirsten O; Kaprio, Jaakko; Price, Jackie F; Dedoussis, George V; Deloukas, Panos; Meneton, Pierre; Lind, Lars; Boehnke, Michael; Shuldiner, Alan R; van Duijn, Cornelia M; Morris, Andrew D; Toenjes, Anke; Peyser, Patricia A; Beilby, John P; Körner, Antje; Kuusisto, Johanna; Laakso, Markku; Bornstein, Stefan R; Schwarz, Peter E H; Lakka, Timo A; Rauramaa, Rainer; Adair, Linda S; Smith, George Davey; Spector, Tim D; Illig, Thomas; de Faire, Ulf; Hamsten, Anders; Gudnason, Vilmundur; Kivimaki, Mika; Hingorani, Aroon; Keinanen-Kiukaanniemi, Sirkka M; Saaristo, Timo E; Boomsma, Dorret I; Stefansson, Kari; van der Harst, Pim; Dupuis, Josée; Pedersen, Nancy L; Sattar, Naveed; Harris, Tamara B; Cucca, Francesco; Ripatti, Samuli; Salomaa, Veikko; Mohlke, Karen L; Balkau, Beverley; Froguel, Philippe; Pouta, Anneli; Jarvelin, Marjo-Riitta; Wareham, Nicholas J; Bouatia-Naji, Nabila; McCarthy, Mark I; Franks, Paul W; Meigs, James B; Teslovich, Tanya M; Florez, Jose C; Langenberg, Claudia; Ingelsson, Erik; Prokopenko, Inga; Barroso, Inês

    2012-01-01

    Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have raised the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional follow-up of these newly discovered loci will further improve our understanding of glycemic control. PMID:22885924

  5. Construction of a large-scale Burkholderia cenocepacia J2315 transposon mutant library

    NASA Astrophysics Data System (ADS)

    Wong, Yee-Chin; Pain, Arnab; Nathan, Sheila

    2014-09-01

    Burkholderia cenocepacia, a pathogenic member of the Burkholderia cepacia complex (Bcc), has emerged as a significant threat towards cystic fibrosis patients, where infection often leads to the fatal clinical manifestation known as cepacia syndrome. Many studies have investigated the pathogenicity of B. cenocepacia as well as its ability to become highly resistant towards many of the antibiotics currently in use. In addition, studies have also been undertaken to understand the pathogen's capacity to adapt and survive in a broad range of environments. Transposon based mutagenesis has been widely used in creating insertional knock-out mutants and coupled with recent advances in sequencing technology, robust tools to study gene function in a genome-wide manner have been developed based on the assembly of saturated transposon mutant libraries. In this study, we describe the construction of a large-scale library of B. cenocepacia transposon mutants. To create transposon mutants of B. cenocepacia strain J2315, electrocompetent bacteria were electrotransformed with the EZ-Tn5 transposome. Tetracyline resistant colonies were harvested off selective agar and pooled. Mutants were generated in multiple batches with each batch consisting of ˜20,000 to 40,000 mutants. Transposon insertion was validated by PCR amplification of the transposon region. In conclusion, a saturated B. cenocepacia J2315 transposon mutant library with an estimated total number of 500,000 mutants was successfully constructed. This mutant library can now be further exploited as a genetic tool to assess the function of every gene in the genome, facilitating the discovery of genes important for bacterial survival and adaptation, as well as virulence.

  6. The USC Epigenome Center.

    PubMed

    Laird, Peter W

    2009-10-01

    The University of Southern California (USC, CA, USA) has a long tradition of excellence in epigenetics. With the recent explosive growth and technological maturation of the field of epigenetics, it became clear that a dedicated high-throughput epigenomic data production facility would be needed to remain at the forefront of epigenetic research. To address this need, USC launched the USC Epigenome Center as the first large-scale center in academics dedicated to epigenomic research. The Center is providing high-throughput data production for large-scale genomic and epigenomic studies, and developing novel analysis tools for epigenomic research. This unique facility promises to be a valuable resource for multidisciplinary research, education and training in genomics, epigenomics, bioinformatics, and translational medicine.

  7. Algorithm of OMA for large-scale orthology inference

    PubMed Central

    Roth, Alexander CJ; Gonnet, Gaston H; Dessimoz, Christophe

    2008-01-01

    Background OMA is a project that aims to identify orthologs within publicly available, complete genomes. With 657 genomes analyzed to date, OMA is one of the largest projects of its kind. Results The algorithm of OMA improves upon standard bidirectional best-hit approach in several respects: it uses evolutionary distances instead of scores, considers distance inference uncertainty, includes many-to-many orthologous relations, and accounts for differential gene losses. Herein, we describe in detail the algorithm for inference of orthology and provide the rationale for parameter selection through multiple tests. Conclusion OMA contains several novel improvement ideas for orthology inference and provides a unique dataset of large-scale orthology assignments. PMID:19055798

  8. A mixed-integer linear programming approach to the reduction of genome-scale metabolic networks.

    PubMed

    Röhl, Annika; Bockmayr, Alexander

    2017-01-03

    Constraint-based analysis has become a widely used method to study metabolic networks. While some of the associated algorithms can be applied to genome-scale network reconstructions with several thousands of reactions, others are limited to small or medium-sized models. In 2015, Erdrich et al. introduced a method called NetworkReducer, which reduces large metabolic networks to smaller subnetworks, while preserving a set of biological requirements that can be specified by the user. Already in 2001, Burgard et al. developed a mixed-integer linear programming (MILP) approach for computing minimal reaction sets under a given growth requirement. Here we present an MILP approach for computing minimum subnetworks with the given properties. The minimality (with respect to the number of active reactions) is not guaranteed by NetworkReducer, while the method by Burgard et al. does not allow specifying the different biological requirements. Our procedure is about 5-10 times faster than NetworkReducer and can enumerate all minimum subnetworks in case there exist several ones. This allows identifying common reactions that are present in all subnetworks, and reactions appearing in alternative pathways. Applying complex analysis methods to genome-scale metabolic networks is often not possible in practice. Thus it may become necessary to reduce the size of the network while keeping important functionalities. We propose a MILP solution to this problem. Compared to previous work, our approach is more efficient and allows computing not only one, but even all minimum subnetworks satisfying the required properties.

  9. Alternative Splicing of CHEK2 and Codeletion with NF2 Promote Chromosomal Instability in Meningioma1

    PubMed Central

    Yang, Hong Wei; Kim, Tae-Min; Song, Sydney S; Shrinath, Nihal; Park, Richard; Kalamarides, Michel; Park, Peter J; Black, Peter M; Carroll, Rona S; Johnson, Mark D

    2012-01-01

    Mutations of the NF2 gene on chromosome 22q are thought to initiate tumorigenesis in nearly 50% of meningiomas, and 22q deletion is the earliest and most frequent large-scale chromosomal abnormality observed in these tumors. In aggressive meningiomas, 22q deletions are generally accompanied by the presence of large-scale segmental abnormalities involving other chromosomes, but the reasons for this association are unknown. We find that large-scale chromosomal alterations accumulate during meningioma progression primarily in tumors harboring 22q deletions, suggesting 22q-associated chromosomal instability. Here we show frequent codeletion of the DNA repair and tumor suppressor gene, CHEK2, in combination with NF2 on chromosome 22q in a majority of aggressive meningiomas. In addition, tumor-specific splicing of CHEK2 in meningioma leads to decreased functional Chk2 protein expression. We show that enforced Chk2 knockdown in meningioma cells decreases DNA repair. Furthermore, Chk2 depletion increases centrosome amplification, thereby promoting chromosomal instability. Taken together, these data indicate that alternative splicing and frequent codeletion of CHEK2 and NF2 contribute to the genomic instability and associated development of aggressive biologic behavior in meningiomas. PMID:22355270

  10. HiView: an integrative genome browser to leverage Hi-C results for the interpretation of GWAS variants.

    PubMed

    Xu, Zheng; Zhang, Guosheng; Duan, Qing; Chai, Shengjie; Zhang, Baqun; Wu, Cong; Jin, Fulai; Yue, Feng; Li, Yun; Hu, Ming

    2016-03-11

    Genome-wide association studies (GWAS) have identified thousands of genetic variants associated with complex traits and diseases. However, most of them are located in the non-protein coding regions, and therefore it is challenging to hypothesize the functions of these non-coding GWAS variants. Recent large efforts such as the ENCODE and Roadmap Epigenomics projects have predicted a large number of regulatory elements. However, the target genes of these regulatory elements remain largely unknown. Chromatin conformation capture based technologies such as Hi-C can directly measure the chromatin interactions and have generated an increasingly comprehensive catalog of the interactome between the distal regulatory elements and their potential target genes. Leveraging such information revealed by Hi-C holds the promise of elucidating the functions of genetic variants in human diseases. In this work, we present HiView, the first integrative genome browser to leverage Hi-C results for the interpretation of GWAS variants. HiView is able to display Hi-C data and statistical evidence for chromatin interactions in genomic regions surrounding any given GWAS variant, enabling straightforward visualization and interpretation. We believe that as the first GWAS variants-centered Hi-C genome browser, HiView is a useful tool guiding post-GWAS functional genomics studies. HiView is freely accessible at: http://www.unc.edu/~yunmli/HiView .

  11. An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data.

    PubMed

    Jun, Goo; Wing, Mary Kate; Abecasis, Gonçalo R; Kang, Hyun Min

    2015-06-01

    The analysis of next-generation sequencing data is computationally and statistically challenging because of the massive volume of data and imperfect data quality. We present GotCloud, a pipeline for efficiently detecting and genotyping high-quality variants from large-scale sequencing data. GotCloud automates sequence alignment, sample-level quality control, variant calling, filtering of likely artifacts using machine-learning techniques, and genotype refinement using haplotype information. The pipeline can process thousands of samples in parallel and requires less computational resources than current alternatives. Experiments with whole-genome and exome-targeted sequence data generated by the 1000 Genomes Project show that the pipeline provides effective filtering against false positive variants and high power to detect true variants. Our pipeline has already contributed to variant detection and genotyping in several large-scale sequencing projects, including the 1000 Genomes Project and the NHLBI Exome Sequencing Project. We hope it will now prove useful to many medical sequencing studies. © 2015 Jun et al.; Published by Cold Spring Harbor Laboratory Press.

  12. Modulated Modularity Clustering as an Exploratory Tool for Functional Genomic Inference

    PubMed Central

    Stone, Eric A.; Ayroles, Julien F.

    2009-01-01

    In recent years, the advent of high-throughput assays, coupled with their diminishing cost, has facilitated a systems approach to biology. As a consequence, massive amounts of data are currently being generated, requiring efficient methodology aimed at the reduction of scale. Whole-genome transcriptional profiling is a standard component of systems-level analyses, and to reduce scale and improve inference clustering genes is common. Since clustering is often the first step toward generating hypotheses, cluster quality is critical. Conversely, because the validation of cluster-driven hypotheses is indirect, it is critical that quality clusters not be obtained by subjective means. In this paper, we present a new objective-based clustering method and demonstrate that it yields high-quality results. Our method, modulated modularity clustering (MMC), seeks community structure in graphical data. MMC modulates the connection strengths of edges in a weighted graph to maximize an objective function (called modularity) that quantifies community structure. The result of this maximization is a clustering through which tightly-connected groups of vertices emerge. Our application is to systems genetics, and we quantitatively compare MMC both to the hierarchical clustering method most commonly employed and to three popular spectral clustering approaches. We further validate MMC through analyses of human and Drosophila melanogaster expression data, demonstrating that the clusters we obtain are biologically meaningful. We show MMC to be effective and suitable to applications of large scale. In light of these features, we advocate MMC as a standard tool for exploration and hypothesis generation. PMID:19424432

  13. A Protocol for Generating and Exchanging (Genome-Scale) Metabolic Resource Allocation Models.

    PubMed

    Reimers, Alexandra-M; Lindhorst, Henning; Waldherr, Steffen

    2017-09-06

    In this article, we present a protocol for generating a complete (genome-scale) metabolic resource allocation model, as well as a proposal for how to represent such models in the systems biology markup language (SBML). Such models are used to investigate enzyme levels and achievable growth rates in large-scale metabolic networks. Although the idea of metabolic resource allocation studies has been present in the field of systems biology for some years, no guidelines for generating such a model have been published up to now. This paper presents step-by-step instructions for building a (dynamic) resource allocation model, starting with prerequisites such as a genome-scale metabolic reconstruction, through building protein and noncatalytic biomass synthesis reactions and assigning turnover rates for each reaction. In addition, we explain how one can use SBML level 3 in combination with the flux balance constraints and our resource allocation modeling annotation to represent such models.

  14. Grohar: Automated Visualization of Genome-Scale Metabolic Models and Their Pathways.

    PubMed

    Moškon, Miha; Zimic, Nikolaj; Mraz, Miha

    2018-05-01

    Genome-scale metabolic models (GEMs) have become a powerful tool for the investigation of the entire metabolism of the organism in silico. These models are, however, often extremely hard to reconstruct and also difficult to apply to the selected problem. Visualization of the GEM allows us to easier comprehend the model, to perform its graphical analysis, to find and correct the faulty relations, to identify the parts of the system with a designated function, etc. Even though several approaches for the automatic visualization of GEMs have been proposed, metabolic maps are still manually drawn or at least require large amount of manual curation. We present Grohar, a computational tool for automatic identification and visualization of GEM (sub)networks and their metabolic fluxes. These (sub)networks can be specified directly by listing the metabolites of interest or indirectly by providing reference metabolic pathways from different sources, such as KEGG, SBML, or Matlab file. These pathways are identified within the GEM using three different pathway alignment algorithms. Grohar also supports the visualization of the model adjustments (e.g., activation or inhibition of metabolic reactions) after perturbations are induced.

  15. A-WINGS: an integrated genome database for Pleurocybella porrigens (Angel's wing oyster mushroom, Sugihiratake).

    PubMed

    Yamamoto, Naoki; Suzuki, Tomohiro; Kobayashi, Masaaki; Dohra, Hideo; Sasaki, Yohei; Hirai, Hirofumi; Yokoyama, Koji; Kawagishi, Hirokazu; Yano, Kentaro

    2014-12-03

    The angel's wing oyster mushroom (Pleurocybella porrigens, Sugihiratake) is a well-known delicacy. However, its potential risk in acute encephalopathy was recently revealed by a food poisoning incident. To disclose the genes underlying the accident and provide mechanistic insight, we seek to develop an information infrastructure containing omics data. In our previous work, we sequenced the genome and transcriptome using next-generation sequencing techniques. The next step in achieving our goal is to develop a web database to facilitate the efficient mining of large-scale omics data and identification of genes specifically expressed in the mushroom. This paper introduces a web database A-WINGS (http://bioinf.mind.meiji.ac.jp/a-wings/) that provides integrated genomic and transcriptomic information for the angel's wing oyster mushroom. The database contains structure and functional annotations of transcripts and gene expressions. Functional annotations contain information on homologous sequences from NCBI nr and UniProt, Gene Ontology, and KEGG Orthology. Digital gene expression profiles were derived from RNA sequencing (RNA-seq) analysis in the fruiting bodies and mycelia. The omics information stored in the database is freely accessible through interactive and graphical interfaces by search functions that include 'GO TREE VIEW' browsing, keyword searches, and BLAST searches. The A-WINGS database will accelerate omics studies on specific aspects of the angel's wing oyster mushroom and the family Tricholomataceae.

  16. New generation pharmacogenomic tools: a SNP linkage disequilibrium Map, validated SNP assay resource, and high-throughput instrumentation system for large-scale genetic studies.

    PubMed

    De La Vega, Francisco M; Dailey, David; Ziegle, Janet; Williams, Julie; Madden, Dawn; Gilbert, Dennis A

    2002-06-01

    Since public and private efforts announced the first draft of the human genome last year, researchers have reported great numbers of single nucleotide polymorphisms (SNPs). We believe that the availability of well-mapped, quality SNP markers constitutes the gateway to a revolution in genetics and personalized medicine that will lead to better diagnosis and treatment of common complex disorders. A new generation of tools and public SNP resources for pharmacogenomic and genetic studies--specifically for candidate-gene, candidate-region, and whole-genome association studies--will form part of the new scientific landscape. This will only be possible through the greater accessibility of SNP resources and superior high-throughput instrumentation-assay systems that enable affordable, highly productive large-scale genetic studies. We are contributing to this effort by developing a high-quality linkage disequilibrium SNP marker map and an accompanying set of ready-to-use, validated SNP assays across every gene in the human genome. This effort incorporates both the public sequence and SNP data sources, and Celera Genomics' human genome assembly and enormous resource ofphysically mapped SNPs (approximately 4,000,000 unique records). This article discusses our approach and methodology for designing the map, choosing quality SNPs, designing and validating these assays, and obtaining population frequency ofthe polymorphisms. We also discuss an advanced, high-performance SNP assay chemisty--a new generation of the TaqMan probe-based, 5' nuclease assay-and high-throughput instrumentation-software system for large-scale genotyping. We provide the new SNP map and validation information, validated SNP assays and reagents, and instrumentation systems as a novel resource for genetic discoveries.

  17. Genome-wide heterogeneity of nucleotide substitution model fit.

    PubMed

    Arbiza, Leonardo; Patricio, Mateus; Dopazo, Hernán; Posada, David

    2011-01-01

    At a genomic scale, the patterns that have shaped molecular evolution are believed to be largely heterogeneous. Consequently, comparative analyses should use appropriate probabilistic substitution models that capture the main features under which different genomic regions have evolved. While efforts have concentrated in the development and understanding of model selection techniques, no descriptions of overall relative substitution model fit at the genome level have been reported. Here, we provide a characterization of best-fit substitution models across three genomic data sets including coding regions from mammals, vertebrates, and Drosophila (24,000 alignments). According to the Akaike Information Criterion (AIC), 82 of 88 models considered were selected as best-fit models at least in one occasion, although with very different frequencies. Most parameter estimates also varied broadly among genes. Patterns found for vertebrates and Drosophila were quite similar and often more complex than those found in mammals. Phylogenetic trees derived from models in the 95% confidence interval set showed much less variance and were significantly closer to the tree estimated under the best-fit model than trees derived from models outside this interval. Although alternative criteria selected simpler models than the AIC, they suggested similar patterns. All together our results show that at a genomic scale, different gene alignments for the same set of taxa are best explained by a large variety of different substitution models and that model choice has implications on different parameter estimates including the inferred phylogenetic trees. After taking into account the differences related to sample size, our results suggest a noticeable diversity in the underlying evolutionary process. All together, we conclude that the use of model selection techniques is important to obtain consistent phylogenetic estimates from real data at a genomic scale.

  18. Piggy: a rapid, large-scale pan-genome analysis tool for intergenic regions in bacteria.

    PubMed

    Thorpe, Harry A; Bayliss, Sion C; Sheppard, Samuel K; Feil, Edward J

    2018-04-01

    The concept of the "pan-genome," which refers to the total complement of genes within a given sample or species, is well established in bacterial genomics. Rapid and scalable pipelines are available for managing and interpreting pan-genomes from large batches of annotated assemblies. However, despite overwhelming evidence that variation in intergenic regions in bacteria can directly influence phenotypes, most current approaches for analyzing pan-genomes focus exclusively on protein-coding sequences. To address this we present Piggy, a novel pipeline that emulates Roary except that it is based only on intergenic regions. A key utility provided by Piggy is the detection of highly divergent ("switched") intergenic regions (IGRs) upstream of genes. We demonstrate the use of Piggy on large datasets of clinically important lineages of Staphylococcus aureus and Escherichia coli. For S. aureus, we show that highly divergent (switched) IGRs are associated with differences in gene expression and we establish a multilocus reference database of IGR alleles (igMLST; implemented in BIGSdb).

  19. Genome-scale gene expression characteristics define the follicular initiation and developmental rules during folliculogenesis.

    PubMed

    Shi, Kerong; He, Feng; Yuan, Xuefeng; Zhao, Yaofeng; Deng, Xuemei; Hu, Xiaoxiang; Li, Ning

    2013-08-01

    The ovarian follicle supplies a unique dynamic system for gametes that ensures the propagation of the species. During folliculogenesis, the vast majority of the germ cells are lost or inactivated because of ovarian follicle atresia, resulting in diminished reproductive potency and potential infertility. Understanding the underlying molecular mechanism of folliculogenesis rules is essential. Primordial (P), preantral (M), and large antral (L) porcine follicles were used to reveal their genome-wide gene expression profiles. Results indicate that primordial follicles (P) process a diverse gene expression pattern compared to growing follicles (M and L). The 5,548 differentially expressed genes display a similar expression mode in M and L, with a correlation coefficient of 0.892. The number of regulated (both up and down) genes in M is more than that in L. Also, their regulation folds in M (2-364-fold) are much more acute than in L (2-75-fold). Differentially expressed gene groups with different regulation patterns in certain follicular stages are identified and presumed to be closely related following follicular developmental rules. Interestingly, functional annotation analysis revealed that these gene groups feature distinct biological processes or molecular functions. Moreover, representative candidate genes from these gene groups have had their RNA or protein expressions within follicles confirmed. Our study emphasized genome-scale gene expression characteristics, which provide novel entry points for understanding the folliculogenesis rules on the molecular level, such as follicular initiation, atresia, and dominance. Transcriptional regulatory circuitries in certain follicular stages are expected to be found among the identified differentially expressed gene groups.

  20. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, CY; Yang, H; Wei, CL

    Tea is one of the most popular non-alcoholic beverages worldwide. However, the tea plant, Camellia sinensis, is difficult to culture in vitro, to transform, and has a large genome, rendering little genomic information available. Recent advances in large-scale RNA sequencing (RNA-seq) provide a fast, cost-effective, and reliable approach to generate large expression datasets for functional genomic analysis, which is especially suitable for non-model species with un-sequenced genomes. Using high-throughput Illumina RNA-seq, the transcriptome from poly (A){sup +} RNA of C. sinensis was analyzed at an unprecedented depth (2.59 gigabase pairs). Approximate 34.5 million reads were obtained, trimmed, and assembled intomore » 127,094 unigenes, with an average length of 355 bp and an N50 of 506 bp, which consisted of 788 contig clusters and 126,306 singletons. This number of unigenes was 10-fold higher than existing C. sinensis sequences deposited in GenBank (as of August 2010). Sequence similarity analyses against six public databases (Uniprot, NR and COGs at NCBI, Pfam, InterPro and KEGG) found 55,088 unigenes that could be annotated with gene descriptions, conserved protein domains, or gene ontology terms. Some of the unigenes were assigned to putative metabolic pathways. Targeted searches using these annotations identified the majority of genes associated with several primary metabolic pathways and natural product pathways that are important to tea quality, such as flavonoid, theanine and caffeine biosynthesis pathways. Novel candidate genes of these secondary pathways were discovered. Comparisons with four previously prepared cDNA libraries revealed that this transcriptome dataset has both a high degree of consistency with previous EST data and an approximate 20 times increase in coverage. Thirteen unigenes related to theanine and flavonoid synthesis were validated. Their expression patterns in different organs of the tea plant were analyzed by RT-PCR and quantitative real time PCR (qRT-PCR). An extensive transcriptome dataset has been obtained from the deep sequencing of tea plant. The coverage of the transcriptome is comprehensive enough to discover all known genes of several major metabolic pathways. This transcriptome dataset can serve as an important public information platform for gene expression, genomics, and functional genomic studies in C. sinensis.« less

Top