Sample records for large-scale geographical patterns

  1. The geographical distribution of underweight children in Africa.

    PubMed Central

    Nubé, Maarten; Sonneveld, Benjamin G. J. S.

    2005-01-01

    OBJECTIVE: To study geographical patterns of underweight children in Africa by combining information on prevalence with headcounts at a subnational level. METHODS: We used large-scale, nationally representative nutrition surveys, in particular the Demographic and Health Surveys and the Multiple Indicator Cluster Surveys, which have been designed, analysed and presented according to largely similar protocols, and which report at the national and subnational levels. FINDINGS: We found distinct geographical patterns in the occurrence of underweight children, which could be linked to factors such as agronomic and climatic conditions, population density and economic integration. CONCLUSION: Patterns of underweight children cross national borders suggesting that regional characteristics and interactions need to be considered when addressing malnutrition. PMID:16283053

  2. Global isolation by distance despite strong regional phylogeography in a small metazoan

    PubMed Central

    Mills, Scott; Lunt, David H; Gómez, Africa

    2007-01-01

    Background Small vagile eukaryotic organisms, which comprise a large proportion of the Earth's biodiversity, have traditionally been thought to lack the extent of population structuring and geographic speciation observed in larger taxa. Here we investigate the patterns of genetic diversity, amongst populations of the salt lake microscopic metazoan Brachionus plicatilis s. s. (sensu stricto) (Rotifera: Monogononta) on a global scale. We examine the phylogenetic relationships of geographic isolates from four continents using a 603 bp fragment of the mitochondrial COI gene to investigate patterns of phylogeographic subdivision in this species. In addition we investigate the relationship between genetic and geographic distances on a global scale to try and reconcile the paradox between the high vagility of this species and the previously reported patterns of restricted gene flow, even over local spatial scales. Results Analysis of global sequence diversity of B. plicatilis s. s. reveals the presence of four allopatric genetic lineages: North American-Far East Asian, Western Mediterranean, Australian, and an Eastern Mediterranean lineage represented by a single isolate. Geographically orientated substructure is also apparent within the three best sampled lineages. Surprisingly, given this strong phylogeographic structure, B. plicatilis s. s. shows a significant correlation between geographic and genetic distance on a global scale ('isolation by distance' – IBD). Conclusion Despite its cosmopolitan distribution and potential for high gene flow, B. plicatilis s. s. is strongly structured at a global scale. IBD patterns have traditionally been interpreted to indicate migration-drift equilibrium, although in this system equilibrium conditions are incompatible with the observed genetic structure. Instead, we suggest the pattern may have arisen through persistent founder effects, acting in a similar fashion to geographic barriers for larger organisms. Our data indicates that geographic speciation, contrary to historical views, is likely to be very important in microorganisms. By presenting compelling evidence for geographic speciation in a small eukaryote we add to the growing body of evidence that is forcing us to rethink our views of global biodiversity. PMID:17999774

  3. A CONCEPTUAL FRAMEWORK FOR SELECTING AND ANALYZING STRESSOR DATA TO STUDY SPECIES RICHNESS AT LARGE SPATIAL SCALES

    EPA Science Inventory

    In this paper we develop a conceptual framework for selecting stressor data and anlyzing their relationship to geographic patterns of species richness at large spatial scales. Aspects of climate and topography, which are not stressors per se, have been most strongly linked with g...

  4. Temporal and geographic patterns in population trends of brown-headed cowbirds

    USGS Publications Warehouse

    Peterjohn, B.G.; Sauer, J.R.; Schwarz, S.

    2000-01-01

    The temporal and geographic patterns in the population trends of Brown-headed Cowbirds are summarized from the North American Breeding Bird Survey. During 1966-1992, the survey-wide population declined significantly, a result of declining populations in the Eastern BBS Region, southern Great Plains, and the Pacific coast states. Increasing populations were most evident in the northern Great Plains. Cowbird populations were generally stable or increasing during 1966-1976, but their trends became more negative after 1976. The trends in cowbird populations were generally directly correlated with the trends of both host and nonhost species, suggesting that large-scale factors such as changing weather patterns, land use practices, or habitat availability were responsible for the observed temporal and geographic patterns in the trends of cowbirds and their hosts.

  5. Income inequality and income segregation.

    PubMed

    Reardon, Sean F; Bischoff, Kendra

    2011-01-01

    This article investigates how the growth in income inequality from 1970 to 2000 affected patterns of income segregation along three dimensions: the spatial segregation of poverty and affluence, race-specific patterns of income segregation, and the geographic scale of income segregation. The evidence reveals a robust relationship between income inequality and income segregation, an effect that is larger for black families than for white families. In addition, income inequality affects income segregation primarily through its effect on the large-scale spatial segregation of affluence rather than by affecting the spatial segregation of poverty or by altering small-scale patterns of income segregation.

  6. Fragmented patterns of flood change across the United States

    USGS Publications Warehouse

    Archfield, Stacey A.; Hirsch, Robert M.; Viglione, A.; Blöschl, G.

    2016-01-01

    Trends in the peak magnitude, frequency, duration, and volume of frequent floods (floods occurring at an average of two events per year relative to a base period) across the United States show large changes; however, few trends are found to be statistically significant. The multidimensional behavior of flood change across the United States can be described by four distinct groups, with streamgages experiencing (1) minimal change, (2) increasing frequency, (3) decreasing frequency, or (4) increases in all flood properties. Yet group membership shows only weak geographic cohesion. Lack of geographic cohesion is further demonstrated by weak correlations between the temporal patterns of flood change and large-scale climate indices. These findings reveal a complex, fragmented pattern of flood change that, therefore, clouds the ability to make meaningful generalizations about flood change across the United States.

  7. Disruptive technologies for Massachusetts Bay Transportation Authority business strategy exploration.

    DOT National Transportation Integrated Search

    2013-04-01

    There are three tasks for this research : 1. Methodology to extract Road Usage Patterns from Phone Data: We combined the : most complete record of daily mobility, based on large-scale mobile phone data, with : detailed Geographic Information System (...

  8. Specialization in Plant-Hummingbird Networks Is Associated with Species Richness, Contemporary Precipitation and Quaternary Climate-Change Velocity

    PubMed Central

    Dalsgaard, Bo; Magård, Else; Fjeldså, Jon; Martín González, Ana M.; Rahbek, Carsten; Olesen, Jens M.; Ollerton, Jeff; Alarcón, Ruben; Cardoso Araujo, Andrea; Cotton, Peter A.; Lara, Carlos; Machado, Caio Graco; Sazima, Ivan; Sazima, Marlies; Timmermann, Allan; Watts, Stella; Sandel, Brody; Sutherland, William J.; Svenning, Jens-Christian

    2011-01-01

    Large-scale geographical patterns of biotic specialization and the underlying drivers are poorly understood, but it is widely believed that climate plays an important role in determining specialization. As climate-driven range dynamics should diminish local adaptations and favor generalization, one hypothesis is that contemporary biotic specialization is determined by the degree of past climatic instability, primarily Quaternary climate-change velocity. Other prominent hypotheses predict that either contemporary climate or species richness affect biotic specialization. To gain insight into geographical patterns of contemporary biotic specialization and its drivers, we use network analysis to determine the degree of specialization in plant-hummingbird mutualistic networks sampled at 31 localities, spanning a wide range of climate regimes across the Americas. We found greater biotic specialization at lower latitudes, with latitude explaining 20–22% of the spatial variation in plant-hummingbird specialization. Potential drivers of specialization - contemporary climate, Quaternary climate-change velocity, and species richness - had superior explanatory power, together explaining 53–64% of the variation in specialization. Notably, our data provides empirical evidence for the hypothesized roles of species richness, contemporary precipitation and Quaternary climate-change velocity as key predictors of biotic specialization, whereas contemporary temperature and seasonality seem unimportant in determining specialization. These results suggest that both ecological and evolutionary processes at Quaternary time scales can be important in driving large-scale geographical patterns of contemporary biotic specialization, at least for co-evolved systems such as plant-hummingbird networks. PMID:21998716

  9. Agricultural landscapes: Can they support healthy bird populations as well as farm products?

    USGS Publications Warehouse

    Peterjohn, B.G.

    2003-01-01

    At the beginning of the twentieth century, prospects for bird populations occupying farmlands were promising. Agricultural expansion and the resulting deforestation produced wholesale changes to the landscape of eastern North America (Trautman 1977, Zeranski and Baptist 1990, Nicholson 1997). Regional avifaunas were transformed as Horned Larks (Eremophila alpestris), Dickcissels (Spiza americana), and other farmland birds undertook range expansions (Hurley and Franks 1976, Askins 1999). Those farmland birds became conspicuous, frequently in numbers that are hard to imagine today (Trautman 1940).One hundred years later, many of those once plentiful species experienced dramatic population declines (Askins 1993, Peterjohn and Sauer 1999). Those trends were evident for many decades, although pre-1965 trends were largely based on anecdotal accounts and were frequently attributed to changing regional landscapes due to urban expansion, farm abandonment resulting in increased forest cover, and the more intensive use of remaining agricultural fields (Trautman 1940, Herkert 1991, Askins 2000). However, numerous specific factors were implicated in local declines of individual species (Kantrud 1981, Bollinger et al. 1990, Lymn and Temple 1991, Bowen and Kruse 1993, Herkert 1994, Houston and Schmutz 1999, Blackwell and Dolbeer 2001).Understanding factors responsible for population changes can be approached at various geographic scales. Local studies identify specific factors influencing small populations, but the applicability of those results across broad geographic areas is often uncertain. Studies conducted at large geographic scales identify broad patterns of change, but those patterns frequently involve interrelated factors that may be only loosely related to the actual causes of population change. However, correlations between broad patterns of changes in bird populations and land-use characteristics provide a basis for directing future studies conducted at smaller geographic scales.

  10. Spatial and temporal variation in population genetic structure of wild Nile tilapia (Oreochromis niloticus) across Africa

    PubMed Central

    2011-01-01

    Background Reconstructing the evolutionary history of a species is challenging. It often depends not only on the past biogeographic and climatic events but also the contemporary and ecological factors, such as current connectivity and habitat heterogeneity. In fact, these factors might interact with each other and shape the current species distribution. However, to what extent the current population genetic structure reflects the past and the contemporary factors is largely unknown. Here we investigated spatio-temporal genetic structures of Nile tilapia (Oreochromis niloticus) populations, across their natural distribution in Africa. While its large biogeographic distribution can cause genetic differentiation at the paleo-biogeographic scales, its restricted dispersal capacity might induce a strong genetic structure at micro-geographic scales. Results Using nine microsatellite loci and 350 samples from ten natural populations, we found the highest genetic differentiation among the three ichthyofaunal provinces and regions (Ethiopian, Nilotic and Sudano-Sahelian) (RST = 0.38 - 0.69). This result suggests the predominant effect of paleo-geographic events at macro-geographic scale. In addition, intermediate divergences were found between rivers and lakes within the regions, presumably reflecting relatively recent interruptions of gene flow between hydrographic basins (RST = 0.24 - 0.32). The lowest differentiations were observed among connected populations within a basin (RST = 0.015 in the Volta basin). Comparison of temporal sample series revealed subtle changes in the gene pools in a few generations (F = 0 - 0.053). The estimated effective population sizes were 23 - 143 and the estimated migration rate was moderate (m ~ 0.094 - 0.097) in the Volta populations. Conclusions This study revealed clear hierarchical patterns of the population genetic structuring of O. niloticus in Africa. The effects of paleo-geographic and climatic events were predominant at macro-geographic scale, and the significant effect of geographic connectivity was detected at micro-geographic scale. The estimated effective population size, the moderate level of dispersal and the rapid temporal change in genetic composition might reflect a potential effect of life history strategy on population dynamics. This hypothesis deserves further investigation. The dynamic pattern revealed at micro-geographic and temporal scales appears important from a genetic resource management as well as from a biodiversity conservation point of view. PMID:22151746

  11. Effects of Large-Scale Releases on the Genetic Structure of Red Sea Bream (Pagrus major, Temminck et Schlegel) Populations in Japan.

    PubMed

    Blanco Gonzalez, Enrique; Aritaki, Masato; Knutsen, Halvor; Taniguchi, Nobuhiko

    2015-01-01

    Large-scale hatchery releases are carried out for many marine fish species worldwide; nevertheless, the long-term effects of this practice on the genetic structure of natural populations remains unclear. The lack of knowledge is especially evident when independent stock enhancement programs are conducted simultaneously on the same species at different geographical locations, as occurs with red sea bream (Pagrus major, Temminck et Schlegel) in Japan. In this study, we examined the putative effects of intensive offspring releases on the genetic structure of red sea bream populations along the Japanese archipelago by genotyping 848 fish at fifteen microsatellite loci. Our results suggests weak but consistent patterns of genetic divergence (F(ST) = 0.002, p < 0.001). Red sea bream in Japan appeared spatially structured with several patches of distinct allelic composition, which corresponded to areas receiving an important influx of fish of hatchery origin, either released intentionally or from unintentional escapees from aquaculture operations. In addition to impacts upon local populations inhabiting semi-enclosed embayments, large-scale releases (either intentionally or from unintentional escapes) appeared also to have perturbed genetic structure in open areas. Hence, results of the present study suggest that independent large-scale marine stock enhancement programs conducted simultaneously on one species at different geographical locations may compromise native genetic structure and lead to patchy patterns in population genetic structure.

  12. Beyond Serial Founder Effects: The Impact of Admixture and Localized Gene Flow on Patterns of Regional Genetic Diversity.

    PubMed

    Hunley, Keith L; Cabana, Graciela S

    2016-07-01

    Geneticists have argued that the linear decay in within-population genetic diversity with increasing geographic distance from East Africa is best explained by a phylogenetic process of repeated founder effects, growth, and isolation. However, this serial founder effect (SFE) process has not yet been adequately vetted against other evolutionary processes that may also affect geospatial patterns of diversity. Additionally, studies of the SFE process have been largely based on a limited 52-population sample. Here, we assess the effects of founder effect, admixture, and localized gene flow processes on patterns of global and regional diversity using a published data set of 645 autosomal microsatellite genotypes from 5,415 individuals in 248 widespread populations. We used a formal tree-fitting approach to explore the role of founder effects. The approach involved fitting global and regional population trees to extant patterns of gene diversity and then systematically examining the deviations in fit. We also informally tested the SFE process using linear models of gene diversity versus waypoint geographic distances from Africa. We tested the role of localized gene flow using partial Mantel correlograms of gene diversity versus geographic distance controlling for the confounding effects of treelike genetic structure. We corroborate previous findings that global patterns of diversity, both within and between populations, are the product of an out-of-Africa SFE process. Within regions, however, diversity within populations is uncorrelated with geographic distance from Africa. Here, patterns of diversity have been largely shaped by recent interregional admixture and secondary range expansions. Our detailed analyses of the pattern of diversity within and between populations reveal that the signatures of different evolutionary processes dominate at different geographic scales. These findings have important implications for recent publications on the biology of race.

  13. Region-specific patterns and drivers of macroscale forest plant invasions

    Treesearch

    Basil V. Iannone; Christopher M. Oswalt; Andrew M. Liebhold; Qinfeng Guo; Kevin M. Potter; Gabriela C. Nunez-Mir; Sonja N. Oswalt; Bryan C. Pijanowski; Songlin Fei; Bethany Bradley

    2015-01-01

    Aim Stronger inferences about biological invasions may be obtained when accounting for multiple invasion measures and the spatial heterogeneity occurring across large geographic areas. We pursued this enquiry by utilizing a multimeasure, multiregional framework to investigate forest plant invasions at a subcontinental scale. ...

  14. Determinants of Spatial Distribution in a Bee Community: Nesting Resources, Flower Resources, and Body Size

    PubMed Central

    Torné-Noguera, Anna; Rodrigo, Anselm; Arnan, Xavier; Osorio, Sergio; Barril-Graells, Helena; da Rocha-Filho, Léo Correia; Bosch, Jordi

    2014-01-01

    Understanding biodiversity distribution is a primary goal of community ecology. At a landscape scale, bee communities are affected by habitat composition, anthropogenic land use, and fragmentation. However, little information is available on local-scale spatial distribution of bee communities within habitats that are uniform at the landscape scale. We studied a bee community along with floral and nesting resources over a 32 km2 area of uninterrupted Mediterranean scrubland. Our objectives were (i) to analyze floral and nesting resource composition at the habitat scale. We ask whether these resources follow a geographical pattern across the scrubland at bee-foraging relevant distances; (ii) to analyze the distribution of bee composition across the scrubland. Bees being highly mobile organisms, we ask whether bee composition shows a homogeneous distribution or else varies spatially. If so, we ask whether this variation is irregular or follows a geographical pattern and whether bees respond primarily to flower or to nesting resources; and (iii) to establish whether body size influences the response to local resource availability and ultimately spatial distribution. We obtained 6580 specimens belonging to 98 species. Despite bee mobility and the absence of environmental barriers, our bee community shows a clear geographical pattern. This pattern is mostly attributable to heterogeneous distribution of small (<55 mg) species (with presumed smaller foraging ranges), and is mostly explained by flower resources rather than nesting substrates. Even then, a large proportion (54.8%) of spatial variability remains unexplained by flower or nesting resources. We conclude that bee communities are strongly conditioned by local effects and may exhibit spatial heterogeneity patterns at a scale as low as 500–1000 m in patches of homogeneous habitat. These results have important implications for local pollination dynamics and spatial variation of plant-pollinator networks. PMID:24824445

  15. Determinants of spatial distribution in a bee community: nesting resources, flower resources, and body size.

    PubMed

    Torné-Noguera, Anna; Rodrigo, Anselm; Arnan, Xavier; Osorio, Sergio; Barril-Graells, Helena; da Rocha-Filho, Léo Correia; Bosch, Jordi

    2014-01-01

    Understanding biodiversity distribution is a primary goal of community ecology. At a landscape scale, bee communities are affected by habitat composition, anthropogenic land use, and fragmentation. However, little information is available on local-scale spatial distribution of bee communities within habitats that are uniform at the landscape scale. We studied a bee community along with floral and nesting resources over a 32 km2 area of uninterrupted Mediterranean scrubland. Our objectives were (i) to analyze floral and nesting resource composition at the habitat scale. We ask whether these resources follow a geographical pattern across the scrubland at bee-foraging relevant distances; (ii) to analyze the distribution of bee composition across the scrubland. Bees being highly mobile organisms, we ask whether bee composition shows a homogeneous distribution or else varies spatially. If so, we ask whether this variation is irregular or follows a geographical pattern and whether bees respond primarily to flower or to nesting resources; and (iii) to establish whether body size influences the response to local resource availability and ultimately spatial distribution. We obtained 6580 specimens belonging to 98 species. Despite bee mobility and the absence of environmental barriers, our bee community shows a clear geographical pattern. This pattern is mostly attributable to heterogeneous distribution of small (<55 mg) species (with presumed smaller foraging ranges), and is mostly explained by flower resources rather than nesting substrates. Even then, a large proportion (54.8%) of spatial variability remains unexplained by flower or nesting resources. We conclude that bee communities are strongly conditioned by local effects and may exhibit spatial heterogeneity patterns at a scale as low as 500-1000 m in patches of homogeneous habitat. These results have important implications for local pollination dynamics and spatial variation of plant-pollinator networks.

  16. Large-scale patterns of benthic marine communities in the Brazilian Province.

    PubMed

    Aued, Anaide W; Smith, Franz; Quimbayo, Juan P; Cândido, Davi V; Longo, Guilherme O; Ferreira, Carlos E L; Witman, Jon D; Floeter, Sergio R; Segal, Bárbara

    2018-01-01

    As marine ecosystems are influenced by global and regional processes, standardized information on community structure has become crucial for assessing broad-scale responses to natural and anthropogenic disturbances. Extensive biogeographic provinces, such as the Brazilian Province in the southwest Atlantic, present numerous theoretical and methodological challenges for understanding community patterns on a macroecological scale. In particular, the Brazilian Province is composed of a complex system of heterogeneous reefs and a few offshore islands, with contrasting histories and geophysical-chemical environments. Despite the large extent of the Brazilian Province (almost 8,000 kilometers), most studies of shallow benthic communities are qualitative surveys and/or have been geographically restricted. We quantified community structure of shallow reef habitats from 0° to 27°S latitude using a standard photographic quadrat technique. Percent cover data indicated that benthic communities of Brazilian reefs were dominated by algal turfs and frondose macroalgae, with low percent cover of reef-building corals. Community composition differed significantly among localities, mostly because of their macroalgal abundance, despite reef type or geographic region, with no evident latitudinal pattern. Benthic diversity was lower in the tropics, contrary to the general latitudinal diversity gradient pattern. Richness peaked at mid-latitudes, between 20°S to 23°S, where it was ~3.5-fold higher than localities with the lowest richness. This study provides the first large-scale description of benthic communities along the southwestern Atlantic, providing a baseline for macroecological comparisons and evaluation of future impacts. Moreover, the new understanding of richness distribution along Brazilian reefs will contribute to conservation planning efforts, such as management strategies and the spatial prioritization for the creation of new marine protected areas.

  17. Large-scale patterns of benthic marine communities in the Brazilian Province

    PubMed Central

    Smith, Franz; Quimbayo, Juan P.; Cândido, Davi V.; Longo, Guilherme O.; Ferreira, Carlos E. L.; Witman, Jon D.; Floeter, Sergio R.; Segal, Bárbara

    2018-01-01

    As marine ecosystems are influenced by global and regional processes, standardized information on community structure has become crucial for assessing broad-scale responses to natural and anthropogenic disturbances. Extensive biogeographic provinces, such as the Brazilian Province in the southwest Atlantic, present numerous theoretical and methodological challenges for understanding community patterns on a macroecological scale. In particular, the Brazilian Province is composed of a complex system of heterogeneous reefs and a few offshore islands, with contrasting histories and geophysical-chemical environments. Despite the large extent of the Brazilian Province (almost 8,000 kilometers), most studies of shallow benthic communities are qualitative surveys and/or have been geographically restricted. We quantified community structure of shallow reef habitats from 0° to 27°S latitude using a standard photographic quadrat technique. Percent cover data indicated that benthic communities of Brazilian reefs were dominated by algal turfs and frondose macroalgae, with low percent cover of reef-building corals. Community composition differed significantly among localities, mostly because of their macroalgal abundance, despite reef type or geographic region, with no evident latitudinal pattern. Benthic diversity was lower in the tropics, contrary to the general latitudinal diversity gradient pattern. Richness peaked at mid-latitudes, between 20°S to 23°S, where it was ~3.5-fold higher than localities with the lowest richness. This study provides the first large-scale description of benthic communities along the southwestern Atlantic, providing a baseline for macroecological comparisons and evaluation of future impacts. Moreover, the new understanding of richness distribution along Brazilian reefs will contribute to conservation planning efforts, such as management strategies and the spatial prioritization for the creation of new marine protected areas. PMID:29883496

  18. Spatial patterns of close relationships across the lifespan

    NASA Astrophysics Data System (ADS)

    Jo, Hang-Hyun; Saramäki, Jari; Dunbar, Robin I. M.; Kaski, Kimmo

    2014-11-01

    The dynamics of close relationships is important for understanding the migration patterns of individual life-courses. The bottom-up approach to this subject by social scientists has been limited by sample size, while the more recent top-down approach using large-scale datasets suffers from a lack of detail about the human individuals. We incorporate the geographic and demographic information of millions of mobile phone users with their communication patterns to study the dynamics of close relationships and its effect in their life-course migration. We demonstrate how the close age- and sex-biased dyadic relationships are correlated with the geographic proximity of the pair of individuals, e.g., young couples tend to live further from each other than old couples. In addition, we find that emotionally closer pairs are living geographically closer to each other. These findings imply that the life-course framework is crucial for understanding the complex dynamics of close relationships and their effect on the migration patterns of human individuals.

  19. Continental-scale distributions of dust-associated bacteria and fungi

    PubMed Central

    Barberán, Albert; Ladau, Joshua; Pollard, Katherine S.; Menninger, Holly L.; Dunn, Robert R.; Fierer, Noah

    2015-01-01

    It has been known for centuries that microorganisms are ubiquitous in the atmosphere, where they are capable of long-distance dispersal. Likewise, it is well-established that these airborne bacteria and fungi can have myriad effects on human health, as well as the health of plants and livestock. However, we have a limited understanding of how these airborne communities vary across different geographic regions or the factors that structure the geographic patterns of near-surface microbes across large spatial scales. We collected dust samples from the external surfaces of ∼1,200 households located across the United States to understand the continental-scale distributions of bacteria and fungi in the near-surface atmosphere. The microbial communities were highly variable in composition across the United States, but the geographic patterns could be explained by climatic and soil variables, with coastal regions of the United States sharing similar airborne microbial communities. Although people living in more urbanized areas were not found to be exposed to distinct outdoor air microbial communities compared with those living in more rural areas, our results do suggest that urbanization leads to homogenization of the airborne microbiota, with more urban communities exhibiting less continental-scale geographic variability than more rural areas. These results provide our first insight into the continental-scale distributions of airborne microbes, which is information that could be used to identify likely associations between microbial exposures in outdoor air and incidences of disease in crops, livestock, and humans. PMID:25902536

  20. Genes mirror geography in Daphnia magna.

    PubMed

    Fields, Peter D; Reisser, Céline; Dukić, Marinela; Haag, Christoph R; Ebert, Dieter

    2015-09-01

    Identifying the presence and magnitude of population genetic structure remains a major consideration in evolutionary biology as doing so allows one to understand the demographic history of a species as well as make predictions of how the evolutionary process will proceed. Next-generation sequencing methods allow us to reconsider previous ideas and conclusions concerning the distribution of genetic variation, and what this distribution implies about a given species evolutionary history. A previous phylogeographic study of the crustacean Daphnia magna suggested that, despite strong genetic differentiation among populations at a local scale, the species shows only moderate genetic structure across its European range, with a spatially patchy occurrence of individual lineages. We apply RAD sequencing to a sample of D. magna collected across a wide swath of the species' Eurasian range and analyse the data using principle component analysis (PCA) of genetic variation and Procrustes analytical approaches, to quantify spatial genetic structure. We find remarkable consistency between the first two PCA axes and the geographic coordinates of individual sampling points, suggesting that, on a continent-wide scale, genetic differentiation is driven to a large extent by geographic distance. The observed pattern is consistent with unimpeded (i.e. no barriers, landscape or otherwise) migration at large spatial scales, despite the fragmented and patchy nature of favourable habitats at local scales. With high-resolution genetic data similar patterns may be uncovered for other species with wide geographic distributions, allowing an increased understanding of how genetic drift and selection have shaped their evolutionary history. © 2015 John Wiley & Sons Ltd.

  1. Towards a New Assessment of Urban Areas from Local to Global Scales

    NASA Astrophysics Data System (ADS)

    Bhaduri, B. L.; Roy Chowdhury, P. K.; McKee, J.; Weaver, J.; Bright, E.; Weber, E.

    2015-12-01

    Since early 2000s, starting with NASA MODIS, satellite based remote sensing has facilitated collection of imagery with medium spatial resolution but high temporal resolution (daily). This trend continues with an increasing number of sensors and data products. Increasing spatial and temporal resolutions of remotely sensed data archives, from both public and commercial sources, have significantly enhanced the quality of mapping and change data products. However, even with automation of such analysis on evolving computing platforms, rates of data processing have been suboptimal largely because of the ever-increasing pixel to processor ratio coupled with limitations of the computing architectures. Novel approaches utilizing spatiotemporal data mining techniques and computational architectures have emerged that demonstrates the potential for sustained and geographically scalable landscape monitoring to be operational. We exemplify this challenge with two broad research initiatives on High Performance Geocomputation at Oak Ridge National Laboratory: (a) mapping global settlement distribution; (b) developing national critical infrastructure databases. Our present effort, on large GPU based architectures, to exploit high resolution (1m or less) satellite and airborne imagery for extracting settlements at global scale is yielding understanding of human settlement patterns and urban areas at unprecedented resolution. Comparison of such urban land cover database, with existing national and global land cover products, at various geographic scales in selected parts of the world is revealing intriguing patterns and insights for urban assessment. Early results, from the USA, Taiwan, and Egypt, indicate closer agreements (5-10%) in urban area assessments among databases at larger, aggregated geographic extents. However, spatial variability at local scales could be significantly different (over 50% disagreement).

  2. Landscape pattern metrics and regional assessment

    Treesearch

    Robert V. O' Neill; Kurt H. Riitters; J.D. Wickham; Bruce K. Jones

    1999-01-01

    The combination of remote imagery data, geographic information systems software, and landscape ecology theory provides a unique basis for monitoring and assessing large-scale ecological systems. The unique feature of the work has been the need to develop interpret quantitative measures of spatial patter-the landscape indices. This article reviews what is known about...

  3. True polar wander on Europa from global-scale small-circle depressions.

    PubMed

    Schenk, Paul; Matsuyama, Isamu; Nimmo, Francis

    2008-05-15

    The tectonic patterns and stress history of Europa are exceedingly complex and many large-scale features remain unexplained. True polar wander, involving reorientation of Europa's floating outer ice shell about the tidal axis with Jupiter, has been proposed as a possible explanation for some of the features. This mechanism is possible if the icy shell is latitudinally variable in thickness and decoupled from the rocky interior. It would impose high stress levels on the shell, leading to predictable fracture patterns. No satisfactory match to global-scale features has hitherto been found for polar wander stress patterns. Here we describe broad arcuate troughs and depressions on Europa that do not fit other proposed stress mechanisms in their current position. Using imaging from three spacecraft, we have mapped two global-scale organized concentric antipodal sets of arcuate troughs up to hundreds of kilometres long and 300 m to approximately 1.5 km deep. An excellent match to these features is found with stresses caused by an episode of approximately 80 degrees true polar wander. These depressions also appear to be geographically related to other large-scale bright and dark lineaments, suggesting that many of Europa's tectonic patterns may also be related to true polar wander.

  4. Continental synchronicity of human influenza virus epidemics despite climatic variation.

    PubMed

    Geoghegan, Jemma L; Saavedra, Aldo F; Duchêne, Sebastián; Sullivan, Sheena; Barr, Ian; Holmes, Edward C

    2018-01-01

    The factors that determine the pattern and rate of spread of influenza virus at a continental-scale are uncertain. Although recent work suggests that influenza epidemics in the United States exhibit a strong geographical correlation, the spatiotemporal dynamics of influenza in Australia, a country and continent of approximately similar size and climate complexity but with a far smaller population, are not known. Using a unique combination of large-scale laboratory-confirmed influenza surveillance comprising >450,000 entries and genomic sequence data we determined the local-level spatial diffusion of this important human pathogen nationwide in Australia. We used laboratory-confirmed influenza data to characterize the spread of influenza virus across Australia during 2007-2016. The onset of established epidemics varied across seasons, with highly synchronized epidemics coinciding with the emergence of antigenically distinct viruses, particularly during the 2009 A/H1N1 pandemic. The onset of epidemics was largely synchronized between the most populous cities, even those separated by distances of >3000 km and those that experience vastly diverse climates. In addition, by analyzing global phylogeographic patterns we show that the synchronized dissemination of influenza across Australian cities involved multiple introductions from the global influenza population, coupled with strong domestic connectivity, rather than through the distinct radial patterns of geographic dispersal that are driven by work-flow transmission as observed in the United States. In addition, by comparing the spatial structure of influenza A and B, we found that these viruses tended to occupy different geographic regions, and peak in different seasons, perhaps indicative of moderate cross-protective immunity or viral interference effects. The highly synchronized outbreaks of influenza virus at a continental-scale revealed here highlight the importance of coordinated public health responses in the event of the emergence of a novel, human-to-human transmissible, virus.

  5. Genetically distinct populations of northern shrimp, Pandalus borealis, in the North Atlantic: adaptation to different temperatures as an isolation factor.

    PubMed

    Jorde, Per Erik; Søvik, Guldborg; Westgaard, Jon-Ivar; Albretsen, Jon; André, Carl; Hvingel, Carsten; Johansen, Torild; Sandvik, Anne Dagrun; Kingsley, Michael; Jørstad, Knut Eirik

    2015-04-01

    The large-scale population genetic structure of northern shrimp, Pandalus borealis, was investigated over the species' range in the North Atlantic, identifying multiple genetically distinct groups. Genetic divergence among sample localities varied among 10 microsatellite loci (range: FST = -0.0002 to 0.0475) with a highly significant average (FST = 0.0149; P < 0.0001). In contrast, little or no genetic differences were observed among temporal replicates from the same localities (FST = 0.0004; P = 0.33). Spatial genetic patterns were compared to geographic distances, patterns of larval drift obtained through oceanographic modelling, and temperature differences, within a multiple linear regression framework. The best-fit model included all three factors and explained approximately 29% of all spatial genetic divergence. However, geographic distance and larval drift alone had only minor effects (2.5-4.7%) on large-scale genetic differentiation patterns, whereas bottom temperature differences explained most (26%). Larval drift was found to promote genetic homogeneity in parts of the study area with strong currents, but appeared ineffective across large temperature gradients. These findings highlight the breakdown of gene flow in a species with a long pelagic larval phase (up to 3 months) and indicate a role for local adaptation to temperature conditions in promoting evolutionary diversification and speciation in the marine environment. © 2015 John Wiley & Sons Ltd.

  6. Review and synthesis of problems and directions for large scale geographic information system development

    NASA Technical Reports Server (NTRS)

    Boyle, A. R.; Dangermond, J.; Marble, D.; Simonett, D. S.; Tomlinson, R. F.

    1983-01-01

    Problems and directions for large scale geographic information system development were reviewed and the general problems associated with automated geographic information systems and spatial data handling were addressed.

  7. Geographical PCB and DDT patterns in shearwaters (Calonectris sp.) breeding across the NE Atlantic and the Mediterranean archipelagos.

    PubMed

    Roscales, Jose L; Muñoz-Arnanz, Juan; González-Solís, Jacob; Jiménez, Begoña

    2010-04-01

    Although seabirds have been proposed as useful biomonitors for organochlorine contaminants (OCs) in marine environments, their suitability is still unclear. To understand the geographic variability and the influence of seabird trophic ecology in OC levels, we analyzed PCBs, DDTs, delta(13)C, and delta(15)N in the blood of adult Calonectris shearwaters throughout a vast geographic range within the northeast Atlantic Ocean (from Cape Verde to Azores) and the Mediterranean Sea (from the Alboran Sea to Crete). OC concentrations were greater in birds from the Mediterranean than in those from the Atlantic colonies, showing higher and lower chlorinated PCB profiles, respectively. This large-scale pattern may reflect the influence of historical European runoffs in the Mediterranean basin and diffused sources for OCs in remote Atlantic islands. Spatial patterns also emerged within the Atlantic basin, probably associated with pollutant long-range transport and recent inputs of DDT in the food webs of shearwaters from Cape Verde and the Canary islands. Moreover, a positive association of OC concentrations with delta(15)N within each locality points out diet specialization as a major factor explaining differences in OCs at the intraspecific level. Overall, this study highlights wide range breeding seabirds, such as Calonectris shearwaters, as suitable organisms for biomonitoring large geographic trends of organochlorine contamination in the marine environment.

  8. Fragmented patterns of flood change across the United States

    PubMed Central

    Hirsch, R. M.; Viglione, A.; Blöschl, G.

    2016-01-01

    Abstract Trends in the peak magnitude, frequency, duration, and volume of frequent floods (floods occurring at an average of two events per year relative to a base period) across the United States show large changes; however, few trends are found to be statistically significant. The multidimensional behavior of flood change across the United States can be described by four distinct groups, with streamgages experiencing (1) minimal change, (2) increasing frequency, (3) decreasing frequency, or (4) increases in all flood properties. Yet group membership shows only weak geographic cohesion. Lack of geographic cohesion is further demonstrated by weak correlations between the temporal patterns of flood change and large‐scale climate indices. These findings reveal a complex, fragmented pattern of flood change that, therefore, clouds the ability to make meaningful generalizations about flood change across the United States. PMID:27917010

  9. Exploring Potential of Crowdsourced Geographic Information in Studies of Active Travel and Health: Strava Data and Cycling Behaviour

    NASA Astrophysics Data System (ADS)

    Sun, Y.

    2017-09-01

    In development of sustainable transportation and green city, policymakers encourage people to commute by cycling and walking instead of motor vehicles in cities. One the one hand, cycling and walking enables decrease in air pollution emissions. On the other hand, cycling and walking offer health benefits by increasing people's physical activity. Earlier studies on investigating spatial patterns of active travel (cycling and walking) are limited by lacks of spatially fine-grained data. In recent years, with the development of information and communications technology, GPS-enabled devices are popular and portable. With smart phones or smart watches, people are able to record their cycling or walking GPS traces when they are moving. A large number of cyclists and pedestrians upload their GPS traces to sport social media to share their historical traces with other people. Those sport social media thus become a potential source for spatially fine-grained cycling and walking data. Very recently, Strava Metro offer aggregated cycling and walking data with high spatial granularity. Strava Metro aggregated a large amount of cycling and walking GPS traces of Strava users to streets or intersections across a city. Accordingly, as a kind of crowdsourced geographic information, the aggregated data is useful for investigating spatial patterns of cycling and walking activities, and thus is of high potential in understanding cycling or walking behavior at a large spatial scale. This study is a start of demonstrating usefulness of Strava Metro data for exploring cycling or walking patterns at a large scale.

  10. Hurricane Activity and the Large-Scale Pattern of Spread of an Invasive Plant Species

    PubMed Central

    Bhattarai, Ganesh P.; Cronin, James T.

    2014-01-01

    Disturbances are a primary facilitator of the growth and spread of invasive species. However, the effects of large-scale disturbances, such as hurricanes and tropical storms, on the broad geographic patterns of invasive species growth and spread have not been investigated. We used historical aerial imagery to determine the growth rate of invasive Phragmites australis patches in wetlands along the Atlantic and Gulf Coasts of the United States. These were relatively undisturbed wetlands where P. australis had room for unrestricted growth. Over the past several decades, invasive P. australis stands expanded in size by 6–35% per year. Based on tropical storm and hurricane activity over that same time period, we found that the frequency of hurricane-force winds explained 81% of the variation in P. australis growth over this broad geographic range. The expansion of P. australis stands was strongly and positively correlated with hurricane frequency. In light of the many climatic models that predict an increase in the frequency and intensity of hurricanes over the next century, these results suggest a strong link between climate change and species invasion and a challenging future ahead for the management of invasive species. PMID:24878928

  11. Diversity and Distribution of Freshwater Aerobic Anoxygenic Phototrophic Bacteria across a Wide Latitudinal Gradient

    PubMed Central

    Ferrera, Isabel; Sarmento, Hugo; Priscu, John C.; Chiuchiolo, Amy; González, José M.; Grossart, Hans-Peter

    2017-01-01

    Aerobic anoxygenic phototrophs (AAPs) have been shown to exist in numerous marine and brackish environments where they are hypothesized to play important ecological roles. Despite their potential significance, the study of freshwater AAPs is in its infancy and limited to local investigations. Here, we explore the occurrence, diversity and distribution of AAPs in lakes covering a wide latitudinal gradient: Mongolian and German lakes located in temperate regions of Eurasia, tropical Great East African lakes, and polar permanently ice-covered Antarctic lakes. Our results show a widespread distribution of AAPs in lakes with contrasting environmental conditions and confirm that this group is composed of different members of the Alpha- and Betaproteobacteria. While latitude does not seem to strongly influence AAP abundance, clear patterns of community structure and composition along geographic regions were observed as indicated by a strong macro-geographical signal in the taxonomical composition of AAPs. Overall, our results suggest that the distribution patterns of freshwater AAPs are likely driven by a combination of small-scale environmental conditions (specific of each lake and region) and large-scale geographic factors (climatic regions across a latitudinal gradient). PMID:28275369

  12. Limited Phylogeographic Signal in Sex-Linked and Autosomal Loci Despite Geographically, Ecologically, and Phenotypically Concordant Structure of mtDNA Variation in the Holarctic Avian Genus Eremophila

    PubMed Central

    Drovetski, Sergei V.; Raković, Marko; Semenov, Georgy; Fadeev, Igor V.; Red’kin, Yaroslav A.

    2014-01-01

    Phylogeographic studies of Holarctic birds are challenging because they involve vast geographic scale, complex glacial history, extensive phenotypic variation, and heterogeneous taxonomic treatment across countries, all of which require large sample sizes. Knowledge about the quality of phylogeographic information provided by different loci is crucial for study design. We use sequences of one mtDNA gene, one sex-linked intron, and one autosomal intron to elucidate large scale phylogeographic patterns in the Holarctic lark genus Eremophila. The mtDNA ND2 gene identified six geographically, ecologically, and phenotypically concordant clades in the Palearctic that diverged in the Early - Middle Pleistocene and suggested paraphyly of the horned lark (E. alpestris) with respect to the Temminck's lark (E. bilopha). In the Nearctic, ND2 identified five subclades which diverged in the Late Pleistocene. They overlapped geographically and were not concordant phenotypically or ecologically. Nuclear alleles provided little information on geographic structuring of genetic variation in horned larks beyond supporting the monophyly of Eremophila and paraphyly of the horned lark. Multilocus species trees based on two nuclear or all three loci provided poor support for haplogroups identified by mtDNA. The node ages calculated using mtDNA were consistent with the available paleontological data, whereas individual nuclear loci and multilocus species trees appeared to underestimate node ages. We argue that mtDNA is capable of discovering independent evolutionary units within avian taxa and can provide a reasonable phylogeographic hypothesis when geographic scale, geologic history, and phenotypic variation in the study system are too complex for proposing reasonable a priori hypotheses required for multilocus methods. Finally, we suggest splitting the currently recognized horned lark into five Palearctic and one Nearctic species. PMID:24498139

  13. Spatial patterns and broad-scale weather cues of beech mast seeding in Europe.

    PubMed

    Vacchiano, Giorgio; Hacket-Pain, Andrew; Turco, Marco; Motta, Renzo; Maringer, Janet; Conedera, Marco; Drobyshev, Igor; Ascoli, Davide

    2017-07-01

    Mast seeding is a crucial population process in many tree species, but its spatio-temporal patterns and drivers at the continental scale remain unknown . Using a large dataset (8000 masting observations across Europe for years 1950-2014) we analysed the spatial pattern of masting across the entire geographical range of European beech, how it is influenced by precipitation, temperature and drought, and the temporal and spatial stability of masting-weather correlations. Beech masting exhibited a general distance-dependent synchronicity and a pattern structured in three broad geographical groups consistent with continental climate regimes. Spearman's correlations and logistic regression revealed a general pattern of beech masting correlating negatively with temperature in the summer 2 yr before masting, and positively with summer temperature 1 yr before masting (i.e. 2T model). The temperature difference between the two previous summers (DeltaT model) was also a good predictor. Moving correlation analysis applied to the longest eight chronologies (74-114 yr) revealed stable correlations between temperature and masting, confirming consistency in weather cues across space and time. These results confirm widespread dependency of masting on temperature and lend robustness to the attempts to reconstruct and predict mast years using temperature data. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  14. Large-Scale Circulation and Climate Variability. Chapter 5

    NASA Technical Reports Server (NTRS)

    Perlwitz, J.; Knutson, T.; Kossin, J. P.; LeGrande, A. N.

    2017-01-01

    The causes of regional climate trends cannot be understood without considering the impact of variations in large-scale atmospheric circulation and an assessment of the role of internally generated climate variability. There are contributions to regional climate trends from changes in large-scale latitudinal circulation, which is generally organized into three cells in each hemisphere-Hadley cell, Ferrell cell and Polar cell-and which determines the location of subtropical dry zones and midlatitude jet streams. These circulation cells are expected to shift poleward during warmer periods, which could result in poleward shifts in precipitation patterns, affecting natural ecosystems, agriculture, and water resources. In addition, regional climate can be strongly affected by non-local responses to recurring patterns (or modes) of variability of the atmospheric circulation or the coupled atmosphere-ocean system. These modes of variability represent preferred spatial patterns and their temporal variation. They account for gross features in variance and for teleconnections which describe climate links between geographically separated regions. Modes of variability are often described as a product of a spatial climate pattern and an associated climate index time series that are identified based on statistical methods like Principal Component Analysis (PC analysis), which is also called Empirical Orthogonal Function Analysis (EOF analysis), and cluster analysis.

  15. Speciation on a local geographic scale: the evolution of a rare rock outcrop specialist in Mimulus.

    PubMed

    Ferris, Kathleen G; Sexton, Jason P; Willis, John H

    2014-08-05

    Speciation can occur on both large and small geographical scales. In plants, local speciation, where small populations split off from a large-ranged progenitor species, is thought to be the dominant mode, yet there are still few examples to verify speciation has occurred in this manner. A recently described morphological species in the yellow monkey flowers, Mimulus filicifolius, is an excellent candidate for local speciation because of its highly restricted geographical range. Mimulus filicifolius was formerly identified as a population of M. laciniatus due to similar lobed leaf morphology and rocky outcrop habitat. To investigate whether M. filicifolius is genetically divergent and reproductively isolated from M. laciniatus, we examined patterns of genetic diversity in ten nuclear and eight microsatellite loci, and hybrid fertility in M. filicifolius and its purported close relatives: M. laciniatus, M. guttatus and M. nasutus. We found that M. filicifolius is genetically divergent from the other species and strongly reproductively isolated from M. laciniatus. We conclude that M. filicifolius is an independent rock outcrop specialist despite being morphologically and ecologically similar to M. laciniatus, and that its small geographical range nested within other wide-ranging members of the M. guttatus species complex is consistent with local speciation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. Interpreting multiscale domains of tree cover disturbance patterns in North America

    Treesearch

    Kurt Riitters; Jennifer K. Costanza; Brian Buma

    2017-01-01

    Spatial patterns at multiple observation scales provide a framework to improve understanding of pattern-related phenomena. However, the metrics that are most sensitive to local patterns are least likely to exhibit consistent scaling relations with increasing extent (observation scale). A conceptual framework based on multiscale domains (i.e., geographic locations...

  17. [Geographic patterns and ecological factors correlates of snake species richness in China].

    PubMed

    Cai, Bo; Huang, Yong; Chen, Yue-Ying; Hu, Jun-Hua; Guo, Xian-Guang; Wang, Yue-Zhao

    2012-08-01

    Understanding large-scale geographic patterns of species richness as well its underlying mechanisms are among the most significant objectives of macroecology and biogeography. The ecological hypothesis is one of the most accepted explanations of this mechanism. Here, we studied the geographic patterns of snakes and investigated the relationships between species richness and ecological factors in China at a spatial resolution of 100 km×100 km. We obtained the eigenvector-based spatial filters by Principal Coordinates Neighbor Matrices, and then analyzed ecological factors by multiple regression analysis. The results indicated several things: (1) species richness of snakes showed multi-peak patterns along both the latitudinal and longitudinal gradient. The areas of highest richness of snake are tropics and subtropical areas of Oriental realm in China while the areas of lowest richness are Qinghai-Tibet Plateau, the grasslands and deserts in northern China, Yangtze-Huai Plain, Two-lake Plain, and the Poyang-lake Plain; (2) results of multiple regression analysis explained a total of 56.5% variance in snake richness. Among ecological factors used to explore the species richness patterns, we found the best factors were the normalized difference vegetation index, precipitation in the coldest quarter and temperature annual range ; (3) our results indicated that the model based on the significant variables that (P<0.05) uses a combination of precipitation of coldest quarter, normalized difference vegetation index and temperature annual range is the most parsimonious model for explaining the mechanism of snake richness in China. This finding demonstrates that different ecological factors work together to affect the geographic distribution of snakes in China. Studying the mechanisms that underlie these geographic patterns are complex, so we must carefully consider the choice of impact-factors and the influence of human activities.

  18. Global biogeography and ecology of body size in birds.

    PubMed

    Olson, Valérie A; Davies, Richard G; Orme, C David L; Thomas, Gavin H; Meiri, Shai; Blackburn, Tim M; Gaston, Kevin J; Owens, Ian P F; Bennett, Peter M

    2009-03-01

    In 1847, Karl Bergmann proposed that temperature gradients are the key to understanding geographic variation in the body sizes of warm-blooded animals. Yet both the geographic patterns of body-size variation and their underlying mechanisms remain controversial. Here, we conduct the first assemblage-level global examination of 'Bergmann's rule' within an entire animal class. We generate global maps of avian body size and demonstrate a general pattern of larger body sizes at high latitudes, conforming to Bergmann's rule. We also show, however, that median body size within assemblages is systematically large on islands and small in species-rich areas. Similarly, while spatial models show that temperature is the single strongest environmental correlate of body size, there are secondary correlations with resource availability and a strong pattern of decreasing body size with increasing species richness. Finally, our results suggest that geographic patterns of body size are caused both by adaptation within lineages, as invoked by Bergmann, and by taxonomic turnover among lineages. Taken together, these results indicate that while Bergmann's prediction based on physiological scaling is remarkably accurate, it is far from the full picture. Global patterns of body size in avian assemblages are driven by interactions between the physiological demands of the environment, resource availability, species richness and taxonomic turnover among lineages.

  19. Continental synchronicity of human influenza virus epidemics despite climactic variation

    PubMed Central

    Sullivan, Sheena; Barr, Ian

    2018-01-01

    The factors that determine the pattern and rate of spread of influenza virus at a continental-scale are uncertain. Although recent work suggests that influenza epidemics in the United States exhibit a strong geographical correlation, the spatiotemporal dynamics of influenza in Australia, a country and continent of approximately similar size and climate complexity but with a far smaller population, are not known. Using a unique combination of large-scale laboratory-confirmed influenza surveillance comprising >450,000 entries and genomic sequence data we determined the local-level spatial diffusion of this important human pathogen nationwide in Australia. We used laboratory-confirmed influenza data to characterize the spread of influenza virus across Australia during 2007–2016. The onset of established epidemics varied across seasons, with highly synchronized epidemics coinciding with the emergence of antigenically distinct viruses, particularly during the 2009 A/H1N1 pandemic. The onset of epidemics was largely synchronized between the most populous cities, even those separated by distances of >3000 km and those that experience vastly diverse climates. In addition, by analyzing global phylogeographic patterns we show that the synchronized dissemination of influenza across Australian cities involved multiple introductions from the global influenza population, coupled with strong domestic connectivity, rather than through the distinct radial patterns of geographic dispersal that are driven by work-flow transmission as observed in the United States. In addition, by comparing the spatial structure of influenza A and B, we found that these viruses tended to occupy different geographic regions, and peak in different seasons, perhaps indicative of moderate cross-protective immunity or viral interference effects. The highly synchronized outbreaks of influenza virus at a continental-scale revealed here highlight the importance of coordinated public health responses in the event of the emergence of a novel, human-to-human transmissible, virus. PMID:29324895

  20. Intensive agriculture erodes β-diversity at large scales.

    PubMed

    Karp, Daniel S; Rominger, Andrew J; Zook, Jim; Ranganathan, Jai; Ehrlich, Paul R; Daily, Gretchen C

    2012-09-01

    Biodiversity is declining from unprecedented land conversions that replace diverse, low-intensity agriculture with vast expanses under homogeneous, intensive production. Despite documented losses of species richness, consequences for β-diversity, changes in community composition between sites, are largely unknown, especially in the tropics. Using a 10-year data set on Costa Rican birds, we find that low-intensity agriculture sustained β-diversity across large scales on a par with forest. In high-intensity agriculture, low local (α) diversity inflated β-diversity as a statistical artefact. Therefore, at small spatial scales, intensive agriculture appeared to retain β-diversity. Unlike in forest or low-intensity systems, however, high-intensity agriculture also homogenised vegetation structure over large distances, thereby decoupling the fundamental ecological pattern of bird communities changing with geographical distance. This ~40% decline in species turnover indicates a significant decline in β-diversity at large spatial scales. These findings point the way towards multi-functional agricultural systems that maintain agricultural productivity while simultaneously conserving biodiversity. © 2012 Blackwell Publishing Ltd/CNRS.

  1. Multi-approaches analysis reveals local adaptation in the emmer wheat (Triticum dicoccoides) at macro- but not micro-geographical scale.

    PubMed

    Volis, Sergei; Ormanbekova, Danara; Yermekbayev, Kanat; Song, Minshu; Shulgina, Irina

    2015-01-01

    Detecting local adaptation and its spatial scale is one of the most important questions of evolutionary biology. However, recognition of the effect of local selection can be challenging when there is considerable environmental variation across the distance at the whole species range. We analyzed patterns of local adaptation in emmer wheat, Triticum dicoccoides, at two spatial scales, small (inter-population distance less than one km) and large (inter-population distance more than 50 km) using several approaches. Plants originating from four distinct habitats at two geographic scales (cold edge, arid edge and two topographically dissimilar core locations) were reciprocally transplanted and their success over time was measured as 1) lifetime fitness in a year of planting, and 2) population growth four years after planting. In addition, we analyzed molecular (SSR) and quantitative trait variation and calculated the QST/FST ratio. No home advantage was detected at the small spatial scale. At the large spatial scale, home advantage was detected for the core population and the cold edge population in the year of introduction via measuring life-time plant performance. However, superior performance of the arid edge population in its own environment was evident only after several generations via measuring experimental population growth rate through genotyping with SSRs allowing counting the number of plants and seeds per introduced genotype per site. These results highlight the importance of multi-generation surveys of population growth rate in local adaptation testing. Despite predominant self-fertilization of T. dicoccoides and the associated high degree of structuring of genetic variation, the results of the QST - FST comparison were in general agreement with the pattern of local adaptation at the two spatial scales detected by reciprocal transplanting.

  2. Large-scale phytogeographical patterns in East Asia in relation to latitudinal and climatic gradients

    USGS Publications Warehouse

    Qian, H.; Song, J.-S.; Krestov, P.; Guo, Q.; Wu, Z.; Shen, X.; Guo, X.

    2003-01-01

    Aim: This paper aims at determining how different floristic elements (e.g. cosmopolitan, tropical, and temperate) change with latitude and major climate factors, and how latitude affects the floristic relationships between East Asia and the other parts of the world. Location: East Asia from the Arctic to tropical regions, an area crossing over 50?? of latitudes and covering the eastern part of China, Korea, Japan and the eastern part of Russia. Methods: East Asia is divided into forty-five geographical regions. Based on the similarity of their world-wide distributional patterns, a total of 2808 indigenous genera of seed plants found in East Asia were grouped into fourteen geographical elements, belonging to three major categories (cosmopolitan, tropical and temperate). The 50??-long latitudinal gradient of East Asia was divided into five latitudinal zones, each of c. 10??. Phytogeographical relationships of East Asia to latitude and climatic variables were examined based on the forty-five regional floras. Results: Among all geographical and climatic variables considered, latitude showed the strongest relationship to phytogeographical composition. Tropical genera (with pantropical, amphi-Pacific tropical, palaeotropical, tropical Asia-tropical Australia, tropical Asia-tropical Africa and tropical Asia geographical elements combined) accounted for c. 80% of the total genera at latitude 20??N and for c. 0% at latitude 55-60??N. In contrast, temperate genera (including holarctic, eastern Asia-North America, temperate Eurasia, temperate Asia, Mediterranean, western Asia to central Asia, central Asia and eastern Asia geographical elements) accounted for 15.5% in the southernmost latitude and for 80% at 55-60??N, from where northward the percentage tended to level off. The proportion of cosmopolitan genera increased gradually with latitude from 5% at the southernmost latitude to 21% at 55-60??N, where it levelled off northward. In general, the genera present in a more northerly flora are a subset of the genera present in a more southerly flora. Main conclusions: The large-scale patterns of phytogeography in East Asia are strongly related to latitude, which covaries with several climatic variables such as temperature. Evolutionary processes such as the adaptation of plants to cold climates and current and past land connections are likely responsible for the observed latitudinal patterns.

  3. Population signatures of large-scale, long-term disjunction and small-scale, short-term habitat fragmentation in an Afromontane forest bird

    PubMed Central

    Habel, J C; Mulwa, R K; Gassert, F; Rödder, D; Ulrich, W; Borghesio, L; Husemann, M; Lens, L

    2014-01-01

    The Eastern Afromontane cloud forests occur as geographically distinct mountain exclaves. The conditions of these forests range from large to small and from fairly intact to strongly degraded. For this study, we sampled individuals of the forest bird species, the Montane White-eye Zosterops poliogaster from 16 sites and four mountain archipelagos. We analysed 12 polymorphic microsatellites and three phenotypic traits, and calculated Species Distribution Models (SDMs) to project past distributions and predict potential future range shifts under a scenario of climate warming. We found well-supported genetic and morphologic clusters corresponding to the mountain ranges where populations were sampled, with 43% of all alleles being restricted to single mountains. Our data suggest that large-scale and long-term geographic isolation on mountain islands caused genetically and morphologically distinct population clusters in Z. poliogaster. However, major genetic and biometric splits were not correlated to the geographic distances among populations. This heterogeneous pattern can be explained by past climatic shifts, as highlighted by our SDM projections. Anthropogenically fragmented populations showed lower genetic diversity and a lower mean body mass, possibly in response to suboptimal habitat conditions. On the basis of these findings and the results from our SDM analysis we predict further loss of genotypic and phenotypic uniqueness in the wake of climate change, due to the contraction of the species' climatic niche and subsequent decline in population size. PMID:24713824

  4. Population signatures of large-scale, long-term disjunction and small-scale, short-term habitat fragmentation in an Afromontane forest bird.

    PubMed

    Habel, J C; Mulwa, R K; Gassert, F; Rödder, D; Ulrich, W; Borghesio, L; Husemann, M; Lens, L

    2014-09-01

    The Eastern Afromontane cloud forests occur as geographically distinct mountain exclaves. The conditions of these forests range from large to small and from fairly intact to strongly degraded. For this study, we sampled individuals of the forest bird species, the Montane White-eye Zosterops poliogaster from 16 sites and four mountain archipelagos. We analysed 12 polymorphic microsatellites and three phenotypic traits, and calculated Species Distribution Models (SDMs) to project past distributions and predict potential future range shifts under a scenario of climate warming. We found well-supported genetic and morphologic clusters corresponding to the mountain ranges where populations were sampled, with 43% of all alleles being restricted to single mountains. Our data suggest that large-scale and long-term geographic isolation on mountain islands caused genetically and morphologically distinct population clusters in Z. poliogaster. However, major genetic and biometric splits were not correlated to the geographic distances among populations. This heterogeneous pattern can be explained by past climatic shifts, as highlighted by our SDM projections. Anthropogenically fragmented populations showed lower genetic diversity and a lower mean body mass, possibly in response to suboptimal habitat conditions. On the basis of these findings and the results from our SDM analysis we predict further loss of genotypic and phenotypic uniqueness in the wake of climate change, due to the contraction of the species' climatic niche and subsequent decline in population size.

  5. Relevant Spatial Scales of Chemical Variation in Aplysina aerophoba

    PubMed Central

    Sacristan-Soriano, Oriol; Banaigs, Bernard; Becerro, Mikel A.

    2011-01-01

    Understanding the scale at which natural products vary the most is critical because it sheds light on the type of factors that regulate their production. The sponge Aplysina aerophoba is a common Mediterranean sponge inhabiting shallow waters in the Mediterranean and its area of influence in Atlantic Ocean. This species contains large concentrations of brominated alkaloids (BAs) that play a number of ecological roles in nature. Our research investigates the ecological variation in BAs of A. aerophoba from a scale of hundred of meters to thousand kilometers. We used a nested design to sample sponges from two geographically distinct regions (Canary Islands and Mediterranean, over 2500 km), with two zones within each region (less than 50 km), two locations within each zone (less than 5 km), and two sites within each location (less than 500 m). We used high-performance liquid chromatography to quantify multiple BAs and a spectrophotometer to quantify chlorophyll a (Chl a). Our results show a striking degree of variation in both natural products and Chl a content. Significant variation in Chl a content occurred at the largest and smallest geographic scales. The variation patterns of BAs also occurred at the largest and smallest scales, but varied depending on which BA was analyzed. Concentrations of Chl a and isofistularin-3 were negatively correlated, suggesting that symbionts may impact the concentration of some of these compounds. Our results underline the complex control of the production of secondary metabolites, with factors acting at both small and large geographic scales affecting the production of multiple secondary metabolites. PMID:22363236

  6. Physical and human dimensions of deforestation in Amazonia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skole, D.L.; Chomentowski, W.H.; Salas W.A.

    1994-05-01

    In the Brazilian Amazon, regional trends are influenced by large scale external forces but mediated by local conditions. Tropical deforestation has a large influence on global hydrology, climate and biogeochemical cycles, but understanding is inadequate because of a lack of accurate measurements of rate, geographic extent and spatial patterns and lack of insight into its causes including interrelated social, economic and environmental factors. This article proposes an interdisciplinary approach for analyzing tropical deforestation in the Brazilian Amazon. The first part shows how deforestation can be measured from satellite remote sensing and sociodemographic and economic data. The second part proposes anmore » explanatory model, considering the relationship among deforestation and large scale social, economic, and institutional factors. 43 refs., 8 figs.« less

  7. Race and Space in the 1990s: Changes in the Geographic Scale of Racial Residential Segregation, 1990-2000

    PubMed Central

    Reardon, Sean F.; Farrell, Chad R.; Matthews, Stephen A.; O'Sullivan, David; Bischoff, Kendra; Firebaugh, Glenn

    2014-01-01

    We use newly developed methods of measuring spatial segregation across a range of spatial scales to assess changes in racial residential segregation patterns in the 100 largest U.S. metropolitan areas from 1990 to 2000. Our results point to three notable trends in segregation from 1990 to 2000: 1) Hispanic-white and Asian-white segregation levels increased at both micro- and macro-scales; 2) black-white segregation declined at a micro-scale, but was unchanged at a macro-scale; and 3) for all three racial groups and for almost all metropolitan areas, macro-scale segregation accounted for more of the total metropolitan area segregation in 2000 than in 1990. Our examination of the variation in these trends among the metropolitan areas suggests that Hispanic-white and Asian-white segregation changes have been driven largely by increases in macro-scale segregation resulting from the rapid growth of the Hispanic and Asian populations in central cities. The changes in black-white segregation, in contrast, appear to be driven by the continuation of a 30-year trend in declining micro-segregation, coupled with persistent and largely stable patterns of macro-segregation. PMID:19569292

  8. Biogeographic affinity helps explain productivity-richness relationships at regional and local scales

    USGS Publications Warehouse

    Harrison, S.; Grace, J.B.

    2007-01-01

    The unresolved question of what causes the observed positive relationship between large-scale productivity and species richness has long interested ecologists and evolutionists. Here we examine a potential explanation that we call the biogeographic affinity hypothesis, which proposes that the productivity-richness relationship is a function of species' climatic tolerances that in turn are shaped by the earth's climatic history combined with evolutionary niche conservatism. Using botanical data from regions and sites across California, we find support for a key prediction of this hypothesis, namely, that the productivity-species richness relationship differs strongly and predictably among groups of higher taxa on the basis of their biogeographic affinities (i.e., between families or genera primarily associated with north-temperate, semiarid, or desert zones). We also show that a consideration of biogeographic affinity can yield new insights on how productivity-richness patterns at large geographic scales filter down to affect patterns of species richness and composition within local communities. ?? 2007 by The University of Chicago. All rights reserved.

  9. Patterns of disturbance at multiple scales in real and simulated landscapes

    Treesearch

    Giovanni Zurlini; Kurt H. Riitters; Nicola Zaccarelli; Irene Petrosoillo

    2007-01-01

    We describe a framework to characterize and interpret the spatial patterns of disturbances at multiple scales in socio-ecological systems. Domains of scale are defined in pattern metric space and mapped in geographic space, which can help to understand how anthropogenic disturbances might impact biodiversity through habitat modification. The approach identifies typical...

  10. Parcels versus pixels: modeling agricultural land use across broad geographic regions using parcel-based field boundaries

    USGS Publications Warehouse

    Sohl, Terry L.; Dornbierer, Jordan; Wika, Steve; Sayler, Kristi L.; Quenzer, Robert

    2017-01-01

    Land use and land cover (LULC) change occurs at a local level within contiguous ownership and management units (parcels), yet LULC models primarily use pixel-based spatial frameworks. The few parcel-based models being used overwhelmingly focus on small geographic areas, limiting the ability to assess LULC change impacts at regional to national scales. We developed a modified version of the Forecasting Scenarios of land use change model to project parcel-based agricultural change across a large region in the United States Great Plains. A scenario representing an agricultural biofuel scenario was modeled from 2012 to 2030, using real parcel boundaries based on contiguous ownership and land management units. The resulting LULC projection provides a vastly improved representation of landscape pattern over existing pixel-based models, while simultaneously providing an unprecedented combination of thematic detail and broad geographic extent. The conceptual approach is practical and scalable, with potential use for national-scale projections.

  11. Spatiotemporal property and predictability of large-scale human mobility

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Tao; Zhu, Tao; Fu, Dongfei; Xu, Bowen; Han, Xiao-Pu; Chen, Duxin

    2018-04-01

    Spatiotemporal characteristics of human mobility emerging from complexity on individual scale have been extensively studied due to the application potential on human behavior prediction and recommendation, and control of epidemic spreading. We collect and investigate a comprehensive data set of human activities on large geographical scales, including both websites browse and mobile towers visit. Numerical results show that the degree of activity decays as a power law, indicating that human behaviors are reminiscent of scale-free random walks known as Lévy flight. More significantly, this study suggests that human activities on large geographical scales have specific non-Markovian characteristics, such as a two-segment power-law distribution of dwelling time and a high possibility for prediction. Furthermore, a scale-free featured mobility model with two essential ingredients, i.e., preferential return and exploration, and a Gaussian distribution assumption on the exploration tendency parameter is proposed, which outperforms existing human mobility models under scenarios of large geographical scales.

  12. The beta-diversity of species interactions: Untangling the drivers of geographic variation in plant-pollinator diversity and function across scales.

    PubMed

    Burkle, Laura A; Myers, Jonathan A; Belote, R Travis

    2016-01-01

    Geographic patterns of biodiversity have long inspired interest in processes that shape the assembly, diversity, and dynamics of communities at different spatial scales. To study mechanisms of community assembly, ecologists often compare spatial variation in community composition (beta-diversity) across environmental and spatial gradients. These same patterns inspired evolutionary biologists to investigate how micro- and macro-evolutionary processes create gradients in biodiversity. Central to these perspectives are species interactions, which contribute to community assembly and geographic variation in evolutionary processes. However, studies of beta-diversity have predominantly focused on single trophic levels, resulting in gaps in our understanding of variation in species-interaction networks (interaction beta-diversity), especially at scales most relevant to evolutionary studies of geographic variation. We outline two challenges and their consequences in scaling-up studies of interaction beta-diversity from local to biogeographic scales using plant-pollinator interactions as a model system in ecology, evolution, and conservation. First, we highlight how variation in regional species pools may contribute to variation in interaction beta-diversity among biogeographic regions with dissimilar evolutionary history. Second, we highlight how pollinator behavior (host-switching) links ecological networks to geographic patterns of plant-pollinator interactions and evolutionary processes. Third, we outline key unanswered questions regarding the role of geographic variation in plant-pollinator interactions for conservation and ecosystem services (pollination) in changing environments. We conclude that the largest advances in the burgeoning field of interaction beta-diversity will come from studies that integrate frameworks in ecology, evolution, and conservation to understand the causes and consequences of interaction beta-diversity across scales. © 2016 Botanical Society of America.

  13. Landscape pattern metrics and regional assessment

    USGS Publications Warehouse

    O'Neill, R. V.; Riitters, K.H.; Wickham, J.D.; Jones, K.B.

    1999-01-01

    The combination of remote imagery data, geographic information systems software, and landscape ecology theory provides a unique basis for monitoring and assessing large-scale ecological systems. The unique feature of the work has been the need to develop and interpret quantitative measures of spatial pattern-the landscape indices. This article reviews what is known about the statistical properties of these pattern metrics and suggests some additional metrics based on island biogeography, percolation theory, hierarchy theory, and economic geography. Assessment applications of this approach have required interpreting the pattern metrics in terms of specific environmental endpoints, such as wildlife and water quality, and research into how to represent synergystic effects of many overlapping sources of stress.

  14. Characterizing Temperature Variability and Associated Large Scale Meteorological Patterns Across South America

    NASA Astrophysics Data System (ADS)

    Detzer, J.; Loikith, P. C.; Mechoso, C. R.; Barkhordarian, A.; Lee, H.

    2017-12-01

    South America's climate varies considerably owing to its large geographic range and diverse topographical features. Spanning the tropics to the mid-latitudes and from high peaks to tropical rainforest, the continent experiences an array of climate and weather patterns. Due to this considerable spatial extent, assessing temperature variability at the continent scale is particularly challenging. It is well documented in the literature that temperatures have been increasing across portions of South America in recent decades, and while there have been many studies that have focused on precipitation variability and change, temperature has received less scientific attention. Therefore, a more thorough understanding of the drivers of temperature variability is critical for interpreting future change. First, k-means cluster analysis is used to identify four primary modes of temperature variability across the continent, stratified by season. Next, composites of large scale meteorological patterns (LSMPs) are calculated for months assigned to each cluster. Initial results suggest that LSMPs, defined using meteorological variables such as sea level pressure (SLP), geopotential height, and wind, are able to identify synoptic scale mechanisms important for driving temperature variability at the monthly scale. Some LSMPs indicate a relationship with known recurrent modes of climate variability. For example, composites of geopotential height suggest that the Southern Annular Mode is an important, but not necessarily dominant, component of temperature variability over southern South America. This work will be extended to assess the drivers of temperature extremes across South America.

  15. Putting Beta-Diversity on the Map: Broad-Scale Congruence and Coincidence in the Extremes

    PubMed Central

    McKnight, Meghan W; White, Peter S; McDonald, Robert I; Lamoreux, John F; Sechrest, Wes; Ridgely, Robert S; Stuart, Simon N

    2007-01-01

    Beta-diversity, the change in species composition between places, is a critical but poorly understood component of biological diversity. Patterns of beta-diversity provide information central to many ecological and evolutionary questions, as well as to conservation planning. Yet beta-diversity is rarely studied across large extents, and the degree of similarity of patterns among taxa at such scales remains untested. To our knowledge, this is the first broad-scale analysis of cross-taxon congruence in beta-diversity, and introduces a new method to map beta-diversity continuously across regions. Congruence between amphibian, bird, and mammal beta-diversity in the Western Hemisphere varies with both geographic location and spatial extent. We demonstrate that areas of high beta-diversity for the three taxa largely coincide, but areas of low beta-diversity exhibit little overlap. These findings suggest that similar processes lead to high levels of differentiation in amphibian, bird, and mammal assemblages, while the ecological and biogeographic factors influencing homogeneity in vertebrate assemblages vary. Knowledge of beta-diversity congruence can help formulate hypotheses about the mechanisms governing regional diversity patterns and should inform conservation, especially as threat from global climate change increases. PMID:17927449

  16. Predicting habitat suitability for wildlife in southeastern Arizona using Geographic Information Systems: scaled quail, a case study

    Treesearch

    Kirby D. Bristow; Susan R. Boe; Richard A. Ockenfels

    2005-01-01

    Studies have used Geographic Information Systems (GIS) to evaluate habitat suitability for wildlife on a landscape scale, yet few have established the accuracy of these models. Based on documented habitat selection patterns of scaled quail (Callipepla squamata pallida), we produced GIS covers for several habitat parameters to create a map of...

  17. Restricted gene flow at the micro- and macro-geographical scale in marble trout based on mtDNA and microsatellite polymorphism.

    PubMed

    Pujolar, José M; Lucarda, Alvise N; Simonato, Mauro; Patarnello, Tomaso

    2011-04-14

    The genetic structure of the marble trout Salmo trutta marmoratus, an endemic salmonid of northern Italy and the Balkan peninsula, was explored at the macro- and micro-scale level using a combination of mitochondrial DNA (mtDNA) and microsatellite data. Sequence variation in the mitochondrial control region showed the presence of nonindigenous haplotypes indicative of introgression from brown trout into marble trout. This was confirmed using microsatellite markers, which showed a higher introgression at nuclear level. Microsatellite loci revealed a strong genetic differentiation across the geographical range of marble trout, which suggests restricted gene flow both at the micro-geographic (within rivers) and macro-geographic (among river systems) scale. A pattern of Isolation-by-Distance was found, in which genetic samples were correlated with hydrographic distances. A general West-to-East partition of the microsatellite polymorphism was observed, which was supported by the geographic distribution of mitochondrial haplotypes. While introgression at both mitochondrial and nuclear level is unlikely to result from natural migration and might be the consequence of current restocking practices, the pattern of genetic substructuring found at microsatellites has been likely shaped by historical colonization patterns determined by the geological evolution of the hydrographic networks.

  18. Towards the planning and design of disturbance patterns across scales to counter biological invasions

    Treesearch

    Giovanni Zurlini; Irene Petrosillo; Kenneth Bruce Jones; Bai-Lian Li; Kurt Hans Riitters; Pietro Medagli; Silvano Marchiori; Nicola Zaccarelli

    2013-01-01

    The way in which disturbances from human land use are patterned in space across scales can have important consequences for efforts to govern human/environment with regard to, but not only, invasive spread-dispersal processes. In this context, we explore the potential of disturbance patterns along a continuum of scales as proxies for identifying the geographical regions...

  19. The consequences of landscape change on ecological resources: An assessment of the United States mid-Atlantic region, 1973-1993

    USGS Publications Warehouse

    Jones, K.B.; Neale, A.C.; Wade, T.G.; Wickham, J.D.; Cross, C.L.; Edmonds, C.M.; Loveland, Thomas R.; Nash, M.S.; Riitters, K.H.; Smith, E.R.

    2001-01-01

    Spatially explicit identification of changes in ecological conditions over large areas is key to targeting and prioritizing areas for environmental protection and restoration by managers at watershed, basin, and regional scales. A critical limitation to this point has been the development of methods to conduct such broad-scale assessments. Field-based methods have proven to be too costly and too inconsistent in their application to make estimates of ecological conditions over large areas. New spatial data derived from satellite imagery and other sources, the development of statistical models relating landscape composition and pattern to ecological endpoints, and geographic information systems (GIS) make it possible to evaluate ecological conditions at multiple scales over broad geographic regions. In this study, we demonstrate the application of spatially distributed models for bird habitat quality and nitrogen yield to streams to assess the consequences of landcover change across the mid-Atlantic region between the 1970s and 1990s. Moreover, we present a way to evaluate spatial concordance between models related to different environmental endpoints. Results of this study should help environmental managers in the mid-Atlantic region target those areas in need of conservation and protection.

  20. Contributions of historical and contemporary geographic and environmental factors to phylogeographic structure in a Tertiary relict species, Emmenopterys henryi (Rubiaceae)

    PubMed Central

    Zhang, Yong-Hua; Wang, Ian J.; Comes, Hans Peter; Peng, Hua; Qiu, Ying-Xiong

    2016-01-01

    Examining how historical and contemporary geographic and environmental factors contribute to genetic divergence at different evolutionary scales is a central yet largely unexplored question in ecology and evolution. Here, we examine this key question by investigating how environmental and geographic factors across different epochs have driven genetic divergence at deeper (phylogeographic) and shallower (landscape genetic) evolutionary scales in the Chinese Tertiary relict tree Emmenopterys henryi. We found that geography played a predominant role at all levels – phylogeographic clades are broadly geographically structured, the deepest levels of divergence are associated with major geological or pre-Quaternary climatic events, and isolation by distance (IBD) primarily explained population genetic structure. However, environmental factors are clearly also important – climatic fluctuations since the Last Interglacial (LIG) have likely contributed to phylogeographic structure, and the population genetic structure (in our AFLP dataset) was partly explained by isolation by environment (IBE), which may have resulted from natural selection in environments with divergent climates. Thus, historical and contemporary geography and historical and contemporary environments have all shaped patterns of genetic structure in E. henryi, and, in fact, changes in the landscape through time have also been critical factors. PMID:27137438

  1. Contributions of historical and contemporary geographic and environmental factors to phylogeographic structure in a Tertiary relict species, Emmenopterys henryi (Rubiaceae).

    PubMed

    Zhang, Yong-Hua; Wang, Ian J; Comes, Hans Peter; Peng, Hua; Qiu, Ying-Xiong

    2016-05-03

    Examining how historical and contemporary geographic and environmental factors contribute to genetic divergence at different evolutionary scales is a central yet largely unexplored question in ecology and evolution. Here, we examine this key question by investigating how environmental and geographic factors across different epochs have driven genetic divergence at deeper (phylogeographic) and shallower (landscape genetic) evolutionary scales in the Chinese Tertiary relict tree Emmenopterys henryi. We found that geography played a predominant role at all levels - phylogeographic clades are broadly geographically structured, the deepest levels of divergence are associated with major geological or pre-Quaternary climatic events, and isolation by distance (IBD) primarily explained population genetic structure. However, environmental factors are clearly also important - climatic fluctuations since the Last Interglacial (LIG) have likely contributed to phylogeographic structure, and the population genetic structure (in our AFLP dataset) was partly explained by isolation by environment (IBE), which may have resulted from natural selection in environments with divergent climates. Thus, historical and contemporary geography and historical and contemporary environments have all shaped patterns of genetic structure in E. henryi, and, in fact, changes in the landscape through time have also been critical factors.

  2. New Statistical Model for Variability of Aerosol Optical Thickness: Theory and Application to MODIS Data over Ocean

    NASA Technical Reports Server (NTRS)

    Alexandrov, Mikhail Dmitrievic; Geogdzhayev, Igor V.; Tsigaridis, Konstantinos; Marshak, Alexander; Levy, Robert; Cairns, Brian

    2016-01-01

    A novel model for the variability in aerosol optical thickness (AOT) is presented. This model is based on the consideration of AOT fields as realizations of a stochastic process, that is the exponent of an underlying Gaussian process with a specific autocorrelation function. In this approach AOT fields have lognormal PDFs and structure functions having the correct asymptotic behavior at large scales. The latter is an advantage compared with fractal (scale-invariant) approaches. The simple analytical form of the structure function in the proposed model facilitates its use for the parameterization of AOT statistics derived from remote sensing data. The new approach is illustrated using a month-long global MODIS AOT dataset (over ocean) with 10 km resolution. It was used to compute AOT statistics for sample cells forming a grid with 5deg spacing. The observed shapes of the structure functions indicated that in a large number of cases the AOT variability is split into two regimes that exhibit different patterns of behavior: small-scale stationary processes and trends reflecting variations at larger scales. The small-scale patterns are suggested to be generated by local aerosols within the marine boundary layer, while the large-scale trends are indicative of elevated aerosols transported from remote continental sources. This assumption is evaluated by comparison of the geographical distributions of these patterns derived from MODIS data with those obtained from the GISS GCM. This study shows considerable potential to enhance comparisons between remote sensing datasets and climate models beyond regional mean AOTs.

  3. Small-scale monitoring - can it be integrated with large-scale programs?

    Treesearch

    C. M. Downes; J. Bart; B. T. Collins; B. Craig; B. Dale; E. H. Dunn; C. M. Francis; S. Woodley; P. Zorn

    2005-01-01

    There are dozens of programs and methodologies for monitoring and inventory of bird populations, differing in geographic scope, species focus, field methods and purpose. However, most of the emphasis has been placed on large-scale monitoring programs. People interested in assessing bird numbers and long-term trends in small geographic areas such as a local birding area...

  4. Geographic scale matters in detecting the relationship between neighbourhood food environments and obesity risk: an analysis of driver license records in Salt Lake County, Utah.

    PubMed

    Fan, Jessie X; Hanson, Heidi A; Zick, Cathleen D; Brown, Barbara B; Kowaleski-Jones, Lori; Smith, Ken R

    2014-08-19

    Empirical studies of the association between neighbourhood food environments and individual obesity risk have found mixed results. One possible cause of these mixed findings is the variation in neighbourhood geographic scale used. The purpose of this paper was to examine how various neighbourhood geographic scales affected the estimated relationship between food environments and obesity risk. Cross-sectional secondary data analysis. Salt Lake County, Utah, USA. 403,305 Salt Lake County adults 25-64 in the Utah driver license database between 1995 and 2008. Utah driver license data were geo-linked to 2000 US Census data and Dun & Bradstreet business data. Food outlets were classified into the categories of large grocery stores, convenience stores, limited-service restaurants and full-service restaurants, and measured at four neighbourhood geographic scales: Census block group, Census tract, ZIP code and a 1 km buffer around the resident's house. These measures were regressed on individual obesity status using multilevel random intercept regressions. Obesity. Food environment was important for obesity but the scale of the relevant neighbourhood differs for different type of outlets: large grocery stores were not significant at all four geographic scales, limited-service restaurants at the medium-to-large scale (Census tract or larger) and convenience stores and full-service restaurants at the smallest scale (Census tract or smaller). The choice of neighbourhood geographic scale can affect the estimated significance of the association between neighbourhood food environments and individual obesity risk. However, variations in geographic scale alone do not explain the mixed findings in the literature. If researchers are constrained to use one geographic scale with multiple categories of food outlets, using Census tract or 1 km buffer as the neighbourhood geographic unit is likely to allow researchers to detect most significant relationships. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. Biogeographical Patterns of Legume-Nodulating Burkholderia spp.: from African Fynbos to Continental Scales.

    PubMed

    Lemaire, Benny; Chimphango, Samson B M; Stirton, Charles; Rafudeen, Suhail; Honnay, Olivier; Smets, Erik; Chen, Wen-Ming; Sprent, Janet; James, Euan K; Muasya, A Muthama

    2016-09-01

    Rhizobia of the genus Burkholderia have large-scale distribution ranges and are usually associated with South African papilionoid and South American mimosoid legumes, yet little is known about their genetic structuring at either local or global geographic scales. To understand variation at different spatial scales, from individual legumes in the fynbos (South Africa) to a global context, we analyzed chromosomal (16S rRNA, recA) and symbiosis (nifH, nodA, nodC) gene sequences. We showed that the global diversity of nodulation genes is generally grouped according to the South African papilionoid or South American mimosoid subfamilies, whereas chromosomal sequence data were unrelated to biogeography. While nodulation genes are structured on a continental scale, a geographic or host-specific distribution pattern was not detected in the fynbos region. In host range experiments, symbiotic promiscuity of Burkholderia tuberum STM678(T) and B phymatum STM815(T) was discovered in selected fynbos species. Finally, a greenhouse experiment was undertaken to assess the ability of mimosoid (Mimosa pudica) and papilionoid (Dipogon lignosus, Indigofera filifolia, Macroptilium atropurpureum, and Podalyria calyptrata) species to nodulate in South African (fynbos) and Malawian (savanna) soils. While the Burkholderia-philous fynbos legumes (D lignosus, I filifolia, and P calyptrata) nodulated only in their native soils, the invasive neotropical species M pudica did not develop nodules in the African soils. The fynbos soil, notably rich in Burkholderia, seems to retain nodulation genes compatible with the local papilionoid legume flora but is incapable of nodulating mimosoid legumes that have their center of diversity in South America. This study is the most comprehensive phylogenetic assessment of root-nodulating Burkholderia and investigated biogeographic and host-related patterns of the legume-rhizobial symbiosis in the South African fynbos biome, as well as at global scales, including native species from the South American Caatinga and Cerrado biomes. While a global investigation of the rhizobial diversity revealed distinct nodulation and nitrogen fixation genes among South African and South American legumes, regionally distributed species in the Cape region were unrelated to geographic and host factors. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Biogeographical Patterns of Legume-Nodulating Burkholderia spp.: from African Fynbos to Continental Scales

    PubMed Central

    Chimphango, Samson B. M.; Stirton, Charles; Rafudeen, Suhail; Honnay, Olivier; Smets, Erik; Chen, Wen-Ming; Sprent, Janet; James, Euan K.; Muasya, A. Muthama

    2016-01-01

    ABSTRACT Rhizobia of the genus Burkholderia have large-scale distribution ranges and are usually associated with South African papilionoid and South American mimosoid legumes, yet little is known about their genetic structuring at either local or global geographic scales. To understand variation at different spatial scales, from individual legumes in the fynbos (South Africa) to a global context, we analyzed chromosomal (16S rRNA, recA) and symbiosis (nifH, nodA, nodC) gene sequences. We showed that the global diversity of nodulation genes is generally grouped according to the South African papilionoid or South American mimosoid subfamilies, whereas chromosomal sequence data were unrelated to biogeography. While nodulation genes are structured on a continental scale, a geographic or host-specific distribution pattern was not detected in the fynbos region. In host range experiments, symbiotic promiscuity of Burkholderia tuberum STM678T and B. phymatum STM815T was discovered in selected fynbos species. Finally, a greenhouse experiment was undertaken to assess the ability of mimosoid (Mimosa pudica) and papilionoid (Dipogon lignosus, Indigofera filifolia, Macroptilium atropurpureum, and Podalyria calyptrata) species to nodulate in South African (fynbos) and Malawian (savanna) soils. While the Burkholderia-philous fynbos legumes (D. lignosus, I. filifolia, and P. calyptrata) nodulated only in their native soils, the invasive neotropical species M. pudica did not develop nodules in the African soils. The fynbos soil, notably rich in Burkholderia, seems to retain nodulation genes compatible with the local papilionoid legume flora but is incapable of nodulating mimosoid legumes that have their center of diversity in South America. IMPORTANCE This study is the most comprehensive phylogenetic assessment of root-nodulating Burkholderia and investigated biogeographic and host-related patterns of the legume-rhizobial symbiosis in the South African fynbos biome, as well as at global scales, including native species from the South American Caatinga and Cerrado biomes. While a global investigation of the rhizobial diversity revealed distinct nodulation and nitrogen fixation genes among South African and South American legumes, regionally distributed species in the Cape region were unrelated to geographic and host factors. PMID:27316955

  7. Spatial analysis and characteristics of pig farming in Thailand.

    PubMed

    Thanapongtharm, Weerapong; Linard, Catherine; Chinson, Pornpiroon; Kasemsuwan, Suwicha; Visser, Marjolein; Gaughan, Andrea E; Epprech, Michael; Robinson, Timothy P; Gilbert, Marius

    2016-10-06

    In Thailand, pig production intensified significantly during the last decade, with many economic, epidemiological and environmental implications. Strategies toward more sustainable future developments are currently investigated, and these could be informed by a detailed assessment of the main trends in the pig sector, and on how different production systems are geographically distributed. This study had two main objectives. First, we aimed to describe the main trends and geographic patterns of pig production systems in Thailand in terms of pig type (native, breeding, and fattening pigs), farm scales (smallholder and large-scale farming systems) and type of farming systems (farrow-to-finish, nursery, and finishing systems) based on a very detailed 2010 census. Second, we aimed to study the statistical spatial association between these different types of pig farming distribution and a set of spatial variables describing access to feed and markets. Over the last decades, pig population gradually increased, with a continuously increasing number of pigs per holder, suggesting a continuing intensification of the sector. The different pig-production systems showed very contrasted geographical distributions. The spatial distribution of large-scale pig farms corresponds with that of commercial pig breeds, and spatial analysis conducted using Random Forest distribution models indicated that these were concentrated in lowland urban or peri-urban areas, close to means of transportation, facilitating supply to major markets such as provincial capitals and the Bangkok Metropolitan region. Conversely the smallholders were distributed throughout the country, with higher densities located in highland, remote, and rural areas, where they supply local rural markets. A limitation of the study was that pig farming systems were defined from the number of animals per farm, resulting in their possible misclassification, but this should have a limited impact on the main patterns revealed by the analysis. The very contrasted distribution of different pig production systems present opportunities for future regionalization of pig production. More specifically, the detailed geographical analysis of the different production systems will be used to spatially-inform planning decisions for pig farming accounting for the specific health, environment and economical implications of the different pig production systems.

  8. Population genetic structure in migratory sandhill cranes and the role of Pleistocene glaciations.

    PubMed

    Jones, Kenneth L; Krapu, Gary L; Brandt, David A; Ashley, Mary V

    2005-08-01

    Previous studies of migratory sandhill cranes (Grus canadensis) have made significant progress explaining evolution of this group at the species scale, but have been unsuccessful in explaining the geographically partitioned variation in morphology seen on the population scale. The objectives of this study were to assess the population structure and gene flow patterns among migratory sandhill cranes using microsatellite DNA genotypes and mitochondrial DNA haplotypes of a large sample of individuals across three populations. In particular, we were interested in evaluating the roles of Pleistocene glaciation events and postglaciation gene flow in shaping the present-day population structure. Our results indicate substantial gene flow across regions of the Midcontinental population that are geographically adjacent, suggesting that gene flow for most of the region follows an isolation-by-distance model. Male-mediated gene flow and strong female philopatry may explain the differing patterns of nuclear and mitochondrial variation. Taken in context with precise geographical information on breeding locations, the morphologic and microsatellite DNA variation shows a gradation from the Arctic-nesting subspecies G. c. canadensis to the nonArctic subspecies G. c. tabida. Analogous to other Arctic-nesting birds, it is probable that the population structure seen in Midcontinental sandhill cranes reflects the result of postglacial secondary contact. Our data suggest that subspecies of migratory sandhills experience significant gene flow and therefore do not represent distinct and independent genetic entities.

  9. Environmental and Historical Determinants of Patterns of Genetic Differentiation in Wild Soybean (Glycine soja Sieb. et Zucc)

    PubMed Central

    He, Shui-Lian; Wang, Yun-Sheng; Li, De-Zhu; Yi, Ting-Shuang

    2016-01-01

    Wild soybean, the direct progenitor of cultivated soybean, inhabits a wide distribution range across the mainland of East Asia and the Japanese archipelago. A multidisciplinary approach combining analyses of population genetics based on 20 nuclear microsatellites and one plastid locus were applied to reveal the genetic variation of wild soybean, and the contributions of geographical, environmental factors and historic climatic change on its patterns of genetic differentiation. High genetic diversity and significant genetic differentiation were revealed in wild soybean. Wild soybean was inferred to be limited to southern and central China during the Last Glacial Maximum (LGM) and experienced large-scale post-LGM range expansion into northern East Asia. A substantial northward range shift has been predicted to occur by the 2080s. A stronger effect of isolation by environment (IBE) versus isolation by geographical distance (IBD) was found for genetic differentiation in wild soybean, which suggested that environmental factors were responsible for the adaptive eco-geographical differentiation. This study indicated that IBE and historical climatic change together shaped patterns of genetic variation and differentiation of wild soybean. Different conservation measures should be implemented on different populations according to their adaptive potential to future changes in climate and human-induced environmental changes. PMID:26952904

  10. Discovering multi-scale co-occurrence patterns of asthma and influenza with the Oak Ridge bio-surveillance toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramanathan, Arvind; Pullum, Laura L.; Hobson, Tanner C.

    Here, we describe a data-driven unsupervised machine learning approach to extract geo-temporal co-occurrence patterns of asthma and the flu from large-scale electronic healthcare reimbursement claims (eHRC) datasets. Specifically, we examine the eHRC data from 2009 to 2010 pandemic H1N1 influenza season and analyze whether different geographic regions within the United States (US) showed an increase in co-occurrence patterns of the flu and asthma. Our analyses reveal that the temporal patterns extracted from the eHRC data show a distinct lag time between the peak incidence of the asthma and the flu. While the increased occurrence of asthma contributed to increased flumore » incidence during the pandemic, this co-occurrence is predominant for female patients. The geo-temporal patterns reveal that the co-occurrence of the flu and asthma are typically concentrated within the south-east US. Further, in agreement with previous studies, large urban areas (such as New York, Miami, and Los Angeles) exhibit co-occurrence patterns that suggest a peak incidence of asthma and flu significantly early in the spring and winter seasons. Together, our data-analytic approach, integrated within the Oak Ridge Bio-surveillance Toolkit platform, demonstrates how eHRC data can provide novel insights into co-occurring disease patterns.« less

  11. Discovering multi-scale co-occurrence patterns of asthma and influenza with the Oak Ridge bio-surveillance toolkit

    DOE PAGES

    Ramanathan, Arvind; Pullum, Laura L.; Hobson, Tanner C.; ...

    2015-08-03

    Here, we describe a data-driven unsupervised machine learning approach to extract geo-temporal co-occurrence patterns of asthma and the flu from large-scale electronic healthcare reimbursement claims (eHRC) datasets. Specifically, we examine the eHRC data from 2009 to 2010 pandemic H1N1 influenza season and analyze whether different geographic regions within the United States (US) showed an increase in co-occurrence patterns of the flu and asthma. Our analyses reveal that the temporal patterns extracted from the eHRC data show a distinct lag time between the peak incidence of the asthma and the flu. While the increased occurrence of asthma contributed to increased flumore » incidence during the pandemic, this co-occurrence is predominant for female patients. The geo-temporal patterns reveal that the co-occurrence of the flu and asthma are typically concentrated within the south-east US. Further, in agreement with previous studies, large urban areas (such as New York, Miami, and Los Angeles) exhibit co-occurrence patterns that suggest a peak incidence of asthma and flu significantly early in the spring and winter seasons. Together, our data-analytic approach, integrated within the Oak Ridge Bio-surveillance Toolkit platform, demonstrates how eHRC data can provide novel insights into co-occurring disease patterns.« less

  12. Range size heritability and diversification patterns in the liverwort genus Radula.

    PubMed

    Patiño, Jairo; Wang, Jian; Renner, Matt A M; Gradstein, S Robbert; Laenen, Benjamin; Devos, Nicolas; Shaw, A Jonathan; Vanderpoorten, Alain

    2017-01-01

    Why some species exhibit larger geographical ranges than others, and to what extent does variation in range size affect diversification rates, remains a fundamental, but largely unanswered question in ecology and evolution. Here, we implement phylogenetic comparative analyses and ancestral area estimations in Radula, a liverwort genus of Cretaceous origin, to investigate the mechanisms that explain differences in geographical range size and diversification rates among lineages. Range size was phylogenetically constrained in the two sub-genera characterized by their almost complete Australasian and Neotropical endemicity, respectively. The congruence between the divergence time of these lineages and continental split suggests that plate tectonics could have played a major role in their present distribution, suggesting that a strong imprint of vicariance can still be found in extant distribution patterns in these highly mobile organisms. Amentuloradula, Volutoradula and Metaradula species did not appear to exhibit losses of dispersal capacities in terms of dispersal life-history traits, but evidence for significant phylogenetic signal in macroecological niche traits suggests that niche conservatism accounts for their restricted geographic ranges. Despite their greatly restricted distribution to Australasia and Neotropics respectively, Amentuloradula and Volutoradula did not exhibit significantly lower diversification rates than more widespread lineages, in contrast with the hypothesis that the probability of speciation increases with range size by promoting geographic isolation and increasing the rate at which novel habitats are encountered. We suggest that stochastic long-distance dispersal events may balance allele frequencies across large spatial scales, leading to low genetic structure among geographically distant areas or even continents, ultimately decreasing the diversification rates in highly mobile, widespread lineages. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Rethinking Trade-Driven Extinction Risk in Marine and Terrestrial Megafauna.

    PubMed

    McClenachan, Loren; Cooper, Andrew B; Dulvy, Nicholas K

    2016-06-20

    Large animals hunted for the high value of their parts (e.g., elephant ivory and shark fins) are at risk of extinction due to both intensive international trade pressure and intrinsic biological sensitivity. However, the relative role of trade, particularly in non-perishable products, and biological factors in driving extinction risk is not well understood [1-4]. Here we identify a taxonomically diverse group of >100 marine and terrestrial megafauna targeted for international luxury markets; estimate their value across three points of sale; test relationships among extinction risk, high value, and body size; and quantify the effects of two mitigating factors: poaching fines and geographic range size. We find that body size is the principal driver of risk for lower value species, but that this biological pattern is eliminated above a value threshold, meaning that the most valuable species face a high extinction risk regardless of size. For example, once mean product values exceed US$12,557 kg(-1), body size no longer drives risk. Total value scales with size for marine animals more strongly than for terrestrial animals, incentivizing the hunting of large marine individuals and species. Poaching fines currently have little effect on extinction risk; fines would need to be increased 10- to 100-fold to be effective. Large geographic ranges reduce risk for terrestrial, but not marine, species, whose ranges are ten times greater. Our results underscore both the evolutionary and ecosystem consequences of targeting large marine animals and the need to geographically scale up and prioritize conservation of high-value marine species to avoid extinction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Geographic boundaries in breast, lung and colorectal cancers in relation to exposure to air toxics in Long Island, New York

    PubMed Central

    Jacquez, Geoffrey M; Greiling, Dunrie A

    2003-01-01

    Background This two-part study employs several statistical techniques to evaluate the geographic distribution of breast cancer in females and colorectal and lung cancers in males and females in Nassau, Queens, and Suffolk counties, New York, USA. In this second paper, we compare patterns in standardized morbidity ratios (SMR values), calculated from New York State Department of Health (NYSDOH) data, to geographic patterns in overall predicted risk (OPR) from air toxics using exposures estimated in the USEPA National Air Toxics Assessment database. Results We identified significant geographic boundaries in SMR and OPR. We found little or no association between the SMR of colorectal and breast cancers and the OPR for each cancer from exposure to the air toxics. We did find boundaries in male and female lung cancer SMR and boundaries in lung cancer OPR to be closer to one another than expected. Conclusion While consistent with a causal relationship between air toxics and lung cancer incidence, the boundary analysis does not demonstrate the existence of a causal relationship. However, now that the areas of overlap between boundaries in lung cancer incidence and potential airborne exposures have been identified, we can begin to evaluate local- as well as large-scale determinants of lung cancer. PMID:12633502

  15. Ocean-wide Drivers of Migration Strategies and Their Influence on Population Breeding Performance in a Declining Seabird.

    PubMed

    Fayet, Annette L; Freeman, Robin; Anker-Nilssen, Tycho; Diamond, Antony; Erikstad, Kjell E; Fifield, Dave; Fitzsimmons, Michelle G; Hansen, Erpur S; Harris, Mike P; Jessopp, Mark; Kouwenberg, Amy-Lee; Kress, Steve; Mowat, Stephen; Perrins, Chris M; Petersen, Aevar; Petersen, Ib K; Reiertsen, Tone K; Robertson, Gregory J; Shannon, Paula; Sigurðsson, Ingvar A; Shoji, Akiko; Wanless, Sarah; Guilford, Tim

    2017-12-18

    Which factors shape animals' migration movements across large geographical scales, how different migratory strategies emerge between populations, and how these may affect population dynamics are central questions in the field of animal migration [1] that only large-scale studies of migration patterns across a species' range can answer [2]. To address these questions, we track the migration of 270 Atlantic puffins Fratercula arctica, a red-listed, declining seabird, across their entire breeding range. We investigate the role of demographic, geographical, and environmental variables in driving spatial and behavioral differences on an ocean-basin scale by measuring puffins' among-colony differences in migratory routes and day-to-day behavior (estimated with individual daily activity budgets and energy expenditure). We show that competition and local winter resource availability are important drivers of migratory movements, with birds from larger colonies or with poorer local winter conditions migrating further and visiting less-productive waters; this in turn led to differences in flight activity and energy expenditure. Other behavioral differences emerge with latitude, with foraging effort and energy expenditure increasing when birds winter further north in colder waters. Importantly, these ocean-wide migration patterns can ultimately be linked with breeding performance: colony productivity is negatively associated with wintering latitude, population size, and migration distance, which demonstrates the cost of competition and migration on future breeding and the link between non-breeding and breeding periods. Our results help us to understand the drivers of animal migration and have important implications for population dynamics and the conservation of migratory species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. How big should a mammal be? A macroecological look at mammalian body size over space and time

    PubMed Central

    Smith, Felisa A.; Lyons, S. Kathleen

    2011-01-01

    Macroecology was developed as a big picture statistical approach to the study of ecology and evolution. By focusing on broadly occurring patterns and processes operating at large spatial and temporal scales rather than on localized and/or fine-scaled details, macroecology aims to uncover general mechanisms operating at organism, population, and ecosystem levels of organization. Macroecological studies typically involve the statistical analysis of fundamental species-level traits, such as body size, area of geographical range, and average density and/or abundance. Here, we briefly review the history of macroecology and use the body size of mammals as a case study to highlight current developments in the field, including the increasing linkage with biogeography and other disciplines. Characterizing the factors underlying the spatial and temporal patterns of body size variation in mammals is a daunting task and moreover, one not readily amenable to traditional statistical analyses. Our results clearly illustrate remarkable regularities in the distribution and variation of mammalian body size across both geographical space and evolutionary time that are related to ecology and trophic dynamics and that would not be apparent without a broader perspective. PMID:21768152

  17. Phylogenetic conservatism of thermal traits explains dispersal limitation and genomic differentiation of Streptomyces sister-taxa.

    PubMed

    Choudoir, Mallory J; Buckley, Daniel H

    2018-06-07

    The latitudinal diversity gradient is a pattern of biogeography observed broadly in plants and animals but largely undocumented in terrestrial microbial systems. Although patterns of microbial biogeography across broad taxonomic scales have been described in a range of contexts, the mechanisms that generate biogeographic patterns between closely related taxa remain incompletely characterized. Adaptive processes are a major driver of microbial biogeography, but there is less understanding of how microbial biogeography and diversification are shaped by dispersal limitation and drift. We recently described a latitudinal diversity gradient of species richness and intraspecific genetic diversity in Streptomyces by using a geographically explicit culture collection. Within this geographically explicit culture collection, we have identified Streptomyces sister-taxa whose geographic distribution is delimited by latitude. These sister-taxa differ in geographic distribution, genomic diversity, and ecological traits despite having nearly identical SSU rRNA gene sequences. Comparative genomic analysis reveals genomic differentiation of these sister-taxa consistent with restricted gene flow across latitude. Furthermore, we show phylogenetic conservatism of thermal traits between the sister-taxa suggesting that thermal trait adaptation limits dispersal and gene flow across climate regimes as defined by latitude. Such phylogenetic conservatism of thermal traits is commonly associated with latitudinal diversity gradients for plants and animals. These data provide further support for the hypothesis that the Streptomyces latitudinal diversity gradient was formed as a result of historical demographic processes defined by dispersal limitation and driven by paleoclimate dynamics.

  18. Spatial Patterns in Water Temperature in Pacific Northwest Rivers: Diversity at Multiple Scales and Potential Influence of Climate Change

    NASA Astrophysics Data System (ADS)

    Torgersen, C. E.; Fullerton, A.; Lawler, J. J.; Ebersole, J. L.; Leibowitz, S. G.; Steel, E. A.; Beechie, T. J.; Faux, R.

    2016-12-01

    Understanding spatial patterns in water temperature will be essential for evaluating vulnerability of aquatic biota to future climate and for identifying and protecting diverse thermal habitats. We used high-resolution remotely sensed water temperature data for over 16,000 km of 2nd to 7th-order rivers throughout the Pacific Northwest and California to evaluate spatial patterns of summertime water temperature at multiple spatial scales. We found a diverse and geographically distributed suite of whole-river patterns. About half of rivers warmed asymptotically in a downstream direction, whereas the rest exhibited complex and unique spatial patterns. Patterns were associated with both broad-scale hydroclimatic variables as well as characteristics unique to each basin. Within-river thermal heterogeneity patterns were highly river-specific; across rivers, median size and spacing of cool patches <15 °C were around 250 m. Patches of this size are large enough for juvenile salmon rearing and for resting during migration, and the distance between patches is well within the movement capabilities of both juvenile and adult salmon. We found considerable thermal heterogeneity at fine spatial scales that may be important to fish that would be missed if data were analyzed at coarser scales. We estimated future thermal heterogeneity and concluded that climate change will cause warmer temperatures overall, but that thermal heterogeneity patterns may remain similar in the future for many rivers. We demonstrated considerable spatial complexity in both current and future water temperature, and resolved spatial patterns that could not have been perceived without spatially continuous data.

  19. Spatial patterns of fish standing biomass across Brazilian reefs.

    PubMed

    Morais, R A; Ferreira, C E L; Floeter, S R

    2017-12-01

    A large fish-count dataset from the Brazilian province was used to describe spatial patterns in standing biomass and test if total biomass, taxonomic and functional trophic structure vary across nested spatial scales. Taxonomic and functional structure varied more among localities and sites than among regions. Total biomass was generally higher at oceanic islands and remote or protected localities along the coast. Lower level carnivores comprised a large part of the biomass at almost all localities (mean of 44%), zooplanktivores never attained more than 14% and omnivores were more representative of subtropical reefs and oceanic islands (up to 66% of total biomass). Small and large herbivores and detritivores varied greatly in their contribution to total biomass, with no clear geographical patterns. Macrocarnivores comprised less than 12% of the biomass anywhere, except for two remote localities. Top predators, such as sharks and very large groupers, were rare and restricted to a few reefs, suggesting that their ecological function might have already been lost in many Brazilian reefs. © 2017 The Fisheries Society of the British Isles.

  20. The Genetics of Mexico Recapitulates Native American Substructure and Affects Biomedical Traits

    PubMed Central

    Moreno-Estrada, Andrés; Gignoux, Christopher R.; Fernández-López, Juan Carlos; Zakharia, Fouad; Sikora, Martin; Contreras, Alejandra V.; Acuña-Alonzo, Victor; Sandoval, Karla; Eng, Celeste; Romero-Hidalgo, Sandra; Ortiz-Tello, Patricia; Robles, Victoria; Kenny, Eimear E.; Nuño-Arana, Ismael; Barquera-Lozano, Rodrigo; Macín-Pérez, Gastón; Granados-Arriola, Julio; Huntsman, Scott; Galanter, Joshua M.; Via, Marc; Ford, Jean G.; Chapela, Rocío; Rodriguez-Cintron, William; Rodríguez-Santana, Jose R.; Romieu, Isabelle; Sienra-Monge, Juan José; Navarro, Blanca del Rio; London, Stephanie J.; Ruiz-Linares, Andrés; Garcia-Herrera, Rodrigo; Estrada, Karol; Hidalgo-Miranda, Alfredo; Jimenez-Sanchez, Gerardo; Carnevale, Alessandra; Soberón, Xavier; Canizales-Quinteros, Samuel; Rangel-Villalobos, Héctor; Silva-Zolezzi, Irma; Burchard, Esteban Gonzalez; Bustamante, Carlos D.

    2014-01-01

    Mexico harbors great cultural and ethnic diversity, yet fine-scale patterns of human genome-wide variation from this region remain largely uncharacterized. We studied genomic variation within Mexico from over 1,000 individuals representing 20 indigenous and 11 mestizo populations. We found striking genetic stratification among indigenous populations within Mexico at varying degrees of geographic isolation. Some groups were as differentiated as Europeans are from East Asians. Pre-Columbian genetic substructure is recapitulated in the indigenous ancestry of admixed mestizo individuals across the country. Furthermore, two independently phenotyped cohorts of Mexicans and Mexican Americans showed a significant association between sub-continental ancestry and lung function. Thus, accounting for fine-scale ancestry patterns is critical for medical and population genetic studies within Mexico, in Mexican-descent populations, and likely in many other populations worldwide. PMID:24926019

  1. Using landscape ecology to test hypotheses about large-scale abundance patterns in migratory birds

    USGS Publications Warehouse

    Flather, C.H.; Sauer, J.R.

    1996-01-01

    The hypothesis that Neotropical migrant birds may be undergoing widespread declines due to land use activities on the breeding grounds has been examined primarily by synthesizing results from local studies. Growing concern for the cumulative influence of land use activities on ecological systems has heightened the need for large-scale studies to complement what has been observed at local scales. We investigated possible landscape effects on Neotropical migrant bird populations for the eastern United States by linking two large-scale inventories designed to monitor breeding-bird abundances and land use patterns. The null hypothesis of no relation between landscape structure and Neotropical migrant abundance was tested by correlating measures of landscape structure with bird abundance, while controlling for the geographic distance among samples. Neotropical migrants as a group were more 'sensitive' to landscape structure than either temperate migrants or permanent residents. Neotropical migrants tended to be more abundant in landscapes with a greater proportion of forest and wetland habitats, fewer edge habitats, large forest patches, and with forest habitats well dispersed throughout the scene. Permanent residents showed few correlations with landscape structure and temperate migrants were associated with habitat diversity and edge attributes rather than with the amount, size, and dispersion of forest habitats. The association between Neotropical migrant abundance and forest fragmentation differed among physiographic strata, suggesting that land-scape context affects observed relations between bird abundance and landscape structure. Finally, associations between landscape structure and temporal trends in Neotropical migrant abundance were negatively correlated with forest habitats. These results suggest that extrapolation of patterns observed in some landscapes is not likely to hold regionally, and that conservation policies must consider the variation in landscape structure associations observed among different types of bird species and in physiographic strata with varying land use histories.

  2. Explaining European fungal fruiting phenology with climate variability.

    PubMed

    Andrew, Carrie; Heegaard, Einar; Høiland, Klaus; Senn-Irlet, Beatrice; Kuyper, Thomas W; Krisai-Greilhuber, Irmgard; Kirk, Paul M; Heilmann-Clausen, Jacob; Gange, Alan C; Egli, Simon; Bässler, Claus; Büntgen, Ulf; Boddy, Lynne; Kauserud, Håvard

    2018-06-01

    Here we assess the impact of geographically dependent (latitude, longitude, and altitude) changes in bioclimatic (temperature, precipitation, and primary productivity) variability on fungal fruiting phenology across Europe. Two main nutritional guilds of fungi, saprotrophic and ectomycorrhizal, were further separated into spring and autumn fruiters. We used a path analysis to investigate how biogeographic patterns in fungal fruiting phenology coincided with seasonal changes in climate and primary production. Across central to northern Europe, mean fruiting varied by approximately 25 d, primarily with latitude. Altitude affected fruiting by up to 30 d, with spring delays and autumnal accelerations. Fruiting was as much explained by the effects of bioclimatic variability as by their large-scale spatial patterns. Temperature drove fruiting of autumnal ectomycorrhizal and saprotrophic groups as well as spring saprotrophic groups, while primary production and precipitation were major drivers for spring-fruiting ectomycorrhizal fungi. Species-specific phenology predictors were not stable, instead deviating from the overall mean. There is significant likelihood that further climatic change, especially in temperature, will impact fungal phenology patterns at large spatial scales. The ecological implications are diverse, potentially affecting food webs (asynchrony), nutrient cycling and the timing of nutrient availability in ecosystems. © 2018 by the Ecological Society of America.

  3. Within-species patterns challenge our understanding of the causes and consequences of trait variation with implications for trait-based models

    NASA Astrophysics Data System (ADS)

    Anderegg, L. D.; Berner, L. T.; Badgley, G.; Hillerislambers, J.; Law, B. E.

    2017-12-01

    Functional traits could facilitate ecological prediction by provide scale-free tools for modeling ecosystem function. Yet much of their utility lies in three key assumptions: 1) that global patterns of trait covariation are the result of universal trade-offs independent of taxonomic scale, so empirical trait-trait relationships can be used to constrain vegetation models 2) that traits respond predictably to environmental gradients and can therefore be reliably quantified to parameterize models and 3) that well sampled traits influence productivity. We use an extensive dataset of within-species leaf trait variation in North American conifers combined with global leaf trait datasets to test these assumptions. We examine traits central to the `leaf economics spectrum', and quantify patterns of trait variation at multiple taxonomic scales. We also test whether site environment explains geographic trait variation within conifers, and ask whether foliar traits explain geographic variation in relative growth rates. We find that most leaf traits vary primarily between rather than within species globally, but that a large fraction of within-PFT trait variation is within-species. We also find that some leaf economics spectrum relationships differ in sign within versus between species, particularly the relationship between leaf lifespan and LMA. In conifers, we find weak and inconsistent relationships between site environment and leaf traits, making it difficult capture within-species leaf trait variation for regional model parameterization. Finally, we find limited relationships between tree relative growth rate and any foliar trait other than leaf lifespan, with leaf traits jointly explaining 42% of within-species growth variation but environmental factors explaining 77% of variation. We suggest that additional traits, particularly whole plant allometry/allocation traits may be better than leaf traits for improving vegetation model performance at smaller taxonomic and spatial scales.

  4. Dual impacts of climate change: forest migration and turnover through life history.

    PubMed

    Zhu, Kai; Woodall, Christopher W; Ghosh, Souparno; Gelfand, Alan E; Clark, James S

    2014-01-01

    Tree species are predicted to track future climate by shifting their geographic distributions, but climate-mediated migrations are not apparent in a recent continental-scale analysis. To better understand the mechanisms of a possible migration lag, we analyzed relative recruitment patterns by comparing juvenile and adult tree abundances in climate space. One would expect relative recruitment to be higher in cold and dry climates as a result of tree migration with juveniles located further poleward than adults. Alternatively, relative recruitment could be higher in warm and wet climates as a result of higher tree population turnover with increased temperature and precipitation. Using the USDA Forest Service's Forest Inventory and Analysis data at regional scales, we jointly modeled juvenile and adult abundance distributions for 65 tree species in climate space of the eastern United States. We directly compared the optimal climate conditions for juveniles and adults, identified the climates where each species has high relative recruitment, and synthesized relative recruitment patterns across species. Results suggest that for 77% and 83% of the tree species, juveniles have higher optimal temperature and optimal precipitation, respectively, than adults. Across species, the relative recruitment pattern is dominated by relatively more abundant juveniles than adults in warm and wet climates. These different abundance-climate responses through life history are consistent with faster population turnover and inconsistent with the geographic trend of large-scale tree migration. Taken together, this juvenile-adult analysis suggests that tree species might respond to climate change by having faster turnover as dynamics accelerate with longer growing seasons and higher temperatures, before there is evidence of poleward migration at biogeographic scales.

  5. Techniques for spatio-temporal analysis of vegetation fires in the topical belt of Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brivio, P.A.; Ober, G.; Koffi, B.

    1995-12-31

    Biomass burning of forests and savannas is a phenomenon of continental or even global proportions, capable of causing large scale environmental changes. Satellite space observations, in particular from NOAA-AVHRR GAC data, are the only source of information allowing one to document burning patterns at regional and continental scale and over long periods of time. This paper presents some techniques, such as clustering and rose-diagram, useful in the spatial-temporal analysis of satellite derived fires maps to characterize the evolution of spatial patterns of vegetation fires at regional scale. An automatic clustering approach is presented which enables one to describe and parameterizemore » spatial distribution of fire patterns at different scales. The problem of geographical distribution of vegetation fires with respect to some location of interest, point or line, is also considered and presented. In particular rose-diagrams are used to relate fires patterns to some reference point, as experimental sites of tropospheric chemistry measurements. Different temporal data-sets in the tropical belt of Africa, covering both Northern and Southern Hemisphere dry seasons, using these techniques were analyzed and showed very promising results when compared with data from rain chemistry studies at different sampling sites in the equatorial forest.« less

  6. Scale-free correlations in the geographical spreading of obesity

    NASA Astrophysics Data System (ADS)

    Gallos, Lazaros; Barttfeld, Pablo; Havlin, Shlomo; Sigman, Mariano; Makse, Hernan

    2012-02-01

    Obesity levels have been universally increasing. A crucial problem is to determine the influence of global and local drivers behind the obesity epidemic, to properly guide effective policies. Despite the numerous factors that affect the obesity evolution, we show a remarkable regularity expressed in a predictable pattern of spatial long-range correlations in the geographical spreading of obesity. We study the spatial clustering of obesity and a number of related health and economic indicators, and we use statistical physics methods to characterize the growth of the resulting clusters. The resulting scaling exponents allow us to broadly classify these indicators into two separate universality classes, weakly or strongly correlated. Weak correlations are found in generic human activity such as population distribution and the growth of the whole economy. Strong correlations are recovered, among others, for obesity, diabetes, and the food industry sectors associated with food consumption. Obesity turns out to be a global problem where local details are of little importance. The long-range correlations suggest influence that extends to large scales, hinting that the physical model of obesity clustering can be mapped to a long-range correlated percolation process.

  7. Geographical Pattern and Environmental Correlates of Regional-Scale General Flowering in Peninsular Malaysia

    PubMed Central

    Numata, Shinya; Yasuda, Masatoshi; Suzuki, Ryo O.; Hosaka, Tetsuro; Noor, Nur Supardi Md.; Fletcher, Christine D.; Hashim, Mazlan

    2013-01-01

    In South-East Asian dipterocarp forests, many trees synchronize their reproduction at the community level, but irregularly, in a phenomenon known as general flowering (GF). Several proximate cues have been proposed as triggers for the synchronization of Southeast Asian GF, but the debate continues, as many studies have not considered geographical variation in climate and flora. We hypothesized that the spatial pattern of GF forests is explained by previously proposed climatic cues if there are common cues for GF among regions. During the study, GF episodes occurred every year, but the spatial occurrence varied considerably from just a few forests to the whole of Peninsular Malaysia. In 2001, 2002 and 2005, minor and major GF occurred widely throughout Peninsular Malaysia (GF2001, GF2002, and GF2005), and the geographical patterns of GF varied between the episodes. In the three regional-scale GF episodes, most major events occurred in regions where prolonged drought (PD) had been recorded prior, and significant associations between GF scores and PD were found in GF2001 and GF2002. However, the frequency of PD was higher than that of GF throughout the peninsula. In contrast, low temperature (LT) was observed during the study period only before GF2002 and GF2005, but there was no clear spatial relationship between GF and LT in the regional-scale episodes. There was also no evidence that last GF condition influenced the magnitude of GF. Thus, our results suggest that PD would be essential to trigger regional-scale GF in the peninsula, but also that PD does not fully explain the spatial and temporal patterns of GF. The coarse relationships between GF and the proposed climatic cues may be due to the geographical variation in proximate cues for GF, and the climatic and floristic geographical variations should be considered to understand the proximate factors of GF. PMID:24260159

  8. Geographical pattern and environmental correlates of regional-scale general flowering in Peninsular Malaysia.

    PubMed

    Numata, Shinya; Yasuda, Masatoshi; Suzuki, Ryo O; Hosaka, Tetsuro; Noor, Nur Supardi Md; Fletcher, Christine D; Hashim, Mazlan

    2013-01-01

    In South-East Asian dipterocarp forests, many trees synchronize their reproduction at the community level, but irregularly, in a phenomenon known as general flowering (GF). Several proximate cues have been proposed as triggers for the synchronization of Southeast Asian GF, but the debate continues, as many studies have not considered geographical variation in climate and flora. We hypothesized that the spatial pattern of GF forests is explained by previously proposed climatic cues if there are common cues for GF among regions. During the study, GF episodes occurred every year, but the spatial occurrence varied considerably from just a few forests to the whole of Peninsular Malaysia. In 2001, 2002 and 2005, minor and major GF occurred widely throughout Peninsular Malaysia (GF2001, GF2002, and GF2005), and the geographical patterns of GF varied between the episodes. In the three regional-scale GF episodes, most major events occurred in regions where prolonged drought (PD) had been recorded prior, and significant associations between GF scores and PD were found in GF2001 and GF2002. However, the frequency of PD was higher than that of GF throughout the peninsula. In contrast, low temperature (LT) was observed during the study period only before GF2002 and GF2005, but there was no clear spatial relationship between GF and LT in the regional-scale episodes. There was also no evidence that last GF condition influenced the magnitude of GF. Thus, our results suggest that PD would be essential to trigger regional-scale GF in the peninsula, but also that PD does not fully explain the spatial and temporal patterns of GF. The coarse relationships between GF and the proposed climatic cues may be due to the geographical variation in proximate cues for GF, and the climatic and floristic geographical variations should be considered to understand the proximate factors of GF.

  9. Dispersal ability and habitat requirements determine landscape-level genetic patterns in desert aquatic insects.

    PubMed

    Phillipsen, Ivan C; Kirk, Emily H; Bogan, Michael T; Mims, Meryl C; Olden, Julian D; Lytle, David A

    2015-01-01

    Species occupying the same geographic range can exhibit remarkably different population structures across the landscape, ranging from highly diversified to panmictic. Given limitations on collecting population-level data for large numbers of species, ecologists seek to identify proximate organismal traits-such as dispersal ability, habitat preference and life history-that are strong predictors of realized population structure. We examined how dispersal ability and habitat structure affect the regional balance of gene flow and genetic drift within three aquatic insects that represent the range of dispersal abilities and habitat requirements observed in desert stream insect communities. For each species, we tested for linear relationships between genetic distances and geographic distances using Euclidean and landscape-based metrics of resistance. We found that the moderate-disperser Mesocapnia arizonensis (Plecoptera: Capniidae) has a strong isolation-by-distance pattern, suggesting migration-drift equilibrium. By contrast, population structure in the flightless Abedus herberti (Hemiptera: Belostomatidae) is influenced by genetic drift, while gene flow is the dominant force in the strong-flying Boreonectes aequinoctialis (Coleoptera: Dytiscidae). The best-fitting landscape model for M. arizonensis was based on Euclidean distance. Analyses also identified a strong spatial scale-dependence, where landscape genetic methods only performed well for species that were intermediate in dispersal ability. Our results highlight the fact that when either gene flow or genetic drift dominates in shaping population structure, no detectable relationship between genetic and geographic distances is expected at certain spatial scales. This study provides insight into how gene flow and drift interact at the regional scale for these insects as well as the organisms that share similar habitats and dispersal abilities. © 2014 John Wiley & Sons Ltd.

  10. Holocene forest dynamics in central and western Mediterranean: periodicity, spatio-temporal patterns and climate influence.

    PubMed

    Di Rita, Federico; Fletcher, William J; Aranbarri, Josu; Margaritelli, Giulia; Lirer, Fabrizio; Magri, Donatella

    2018-06-12

    It is well-known that the Holocene exhibits a millennial-scale climate variability. However, its periodicity, spatio-temporal patterns and underlying processes are not fully deciphered yet. Here we focus on the central and western Mediterranean. We show that recurrent forest declines from the Gulf of Gaeta (central Tyrrhenian Sea) reveal a 1860-yr periodicity, consistent with a ca. 1800-yr climate fluctuation induced by large-scale changes in climate modes, linked to solar activity and/or AMOC intensity. We show that recurrent forest declines and dry events are also recorded in several pollen and palaeohydrological proxy-records in the south-central Mediterranean. We found coeval events also in several palaeohydrological records from the south-western Mediterranean, which however show generally wet climate conditions, indicating a spatio-temporal hydrological pattern opposite to the south-central Mediterranean and suggesting that different expressions of climate modes occurred in the two regions at the same time. We propose that these opposite hydroclimate regimes point to a complex interplay of the prevailing or predominant phases of NAO-like circulation, East Atlantic pattern, and extension and location of the North African anticyclone. At a larger geographical scale, displacements of the ITCZ, modulated by solar activity and/or AMOC intensity, may have also indirectly influenced the observed pattern.

  11. Analysis of Geographical Distribution Patterns in Plants Using Fractals

    NASA Astrophysics Data System (ADS)

    Bari, A.; Ayad, G.; Padulosi, S.; Hodgkin, T.; Martin, A.; Gonzalez-Andujar, J. L.; Brown, A. H. D.

    Geographical distribution patterns in plants have been observed since primeval times and have been used by plant explorers to trace the origin of plants species. These patterns embody the effects of fundamental law-like processes. Diversity in plants has also been found to be proportionate with the area, and this scaling behavior is also known as fractal behavior. In the present study, we use fractal geometry to analyze the distribution patterns of wild taxa of cowpea with the objective to locate where their diversity would be the highest to aid in the planning of targeted explorations and conservation measures.

  12. EVALUATING ECOREGIONS FOR SAMPLING AND MAPPING LAND-COVER PATTERNS

    EPA Science Inventory

    Ecoregional stratification has been proposed for sampling and mapping land- cover composition and pattern over time. Using a wall-to-wall land-cover map of the United States, we evaluated geographic scales of variance for 17 landscape pattern indices, and compared stratification ...

  13. An abrupt centennial-scale drought event and mid-holocene climate change patterns in monsoon marginal zones of East Asia.

    PubMed

    Li, Yu; Wang, Nai'ang; Zhang, Chengqi

    2014-01-01

    The mid-latitudes of East Asia are characterized by the interaction between the Asian summer monsoon and the westerly winds. Understanding long-term climate change in the marginal regions of the Asian monsoon is critical for understanding the millennial-scale interactions between the Asian monsoon and the westerly winds. Abrupt climate events are always associated with changes in large-scale circulation patterns; therefore, investigations into abrupt climate changes provide clues for responses of circulation patterns to extreme climate events. In this paper, we examined the time scale and mid-Holocene climatic background of an abrupt dry mid-Holocene event in the Shiyang River drainage basin in the northwest margin of the Asian monsoon. Mid-Holocene lacustrine records were collected from the middle reaches and the terminal lake of the basin. Using radiocarbon and OSL ages, a centennial-scale drought event, which is characterized by a sand layer in lacustrine sediments both from the middle and lower reaches of the basin, was absolutely dated between 8.0-7.0 cal kyr BP. Grain size data suggest an abrupt decline in lake level and a dry environment in the middle reaches of the basin during the dry interval. Previous studies have shown mid-Holocene drought events in other places of monsoon marginal zones; however, their chronologies are not strong enough to study the mechanism. According to the absolutely dated records, we proposed a new hypothesis that the mid-Holocene dry interval can be related to the weakening Asian summer monsoon and the relatively arid environment in arid Central Asia. Furthermore, abrupt dry climatic events are directly linked to the basin-wide effective moisture change in semi-arid and arid regions. Effective moisture is affected by basin-wide precipitation, evapotranspiration, lake surface evaporation and other geographical settings. As a result, the time scales of the dry interval could vary according to locations due to different geographical features.

  14. An Abrupt Centennial-Scale Drought Event and Mid-Holocene Climate Change Patterns in Monsoon Marginal Zones of East Asia

    PubMed Central

    Li, Yu; Wang, Nai'ang; Zhang, Chengqi

    2014-01-01

    The mid-latitudes of East Asia are characterized by the interaction between the Asian summer monsoon and the westerly winds. Understanding long-term climate change in the marginal regions of the Asian monsoon is critical for understanding the millennial-scale interactions between the Asian monsoon and the westerly winds. Abrupt climate events are always associated with changes in large-scale circulation patterns; therefore, investigations into abrupt climate changes provide clues for responses of circulation patterns to extreme climate events. In this paper, we examined the time scale and mid-Holocene climatic background of an abrupt dry mid-Holocene event in the Shiyang River drainage basin in the northwest margin of the Asian monsoon. Mid-Holocene lacustrine records were collected from the middle reaches and the terminal lake of the basin. Using radiocarbon and OSL ages, a centennial-scale drought event, which is characterized by a sand layer in lacustrine sediments both from the middle and lower reaches of the basin, was absolutely dated between 8.0–7.0 cal kyr BP. Grain size data suggest an abrupt decline in lake level and a dry environment in the middle reaches of the basin during the dry interval. Previous studies have shown mid-Holocene drought events in other places of monsoon marginal zones; however, their chronologies are not strong enough to study the mechanism. According to the absolutely dated records, we proposed a new hypothesis that the mid-Holocene dry interval can be related to the weakening Asian summer monsoon and the relatively arid environment in arid Central Asia. Furthermore, abrupt dry climatic events are directly linked to the basin-wide effective moisture change in semi-arid and arid regions. Effective moisture is affected by basin-wide precipitation, evapotranspiration, lake surface evaporation and other geographical settings. As a result, the time scales of the dry interval could vary according to locations due to different geographical features. PMID:24599259

  15. Isolation by distance and vicariance drive genetic structure of a coral reef fish in the Pacific Ocean.

    PubMed

    Planes, S; Fauvelot, C

    2002-02-01

    We studied the genetic diversity of a coral reef fish species to investigate the origin of the differentiation. A total of 727 Acanthurus triostegus collected from 15 locations throughout the Pacific were analyzed for 20 polymorphic loci. The genetic structure showed limited internal disequilibrium within each population; 3.7% of the loci showed significant Hardy-Weinberg disequilibrium, mostly associated with Adh*, and we subsequently removed this locus from further analysis of geographic pattern. The genetic structure of A. triostegus throughout the tropical Pacific Ocean revealed a strong geographic pattern. Overall, there was significant population differentiation (multilocus F(ST) = 0.199), which was geographically structured according to bootstraps of neighbor-joining analysis on Nei's unbiased genetic distances and AMOVA analysis. The genetic structure revealed five geographic groups in the Pacific Ocean: western Pacific (Guam, Philippines, Palau, and Great Barrier Reef); central Pacific (Solomons, New Caledonia, and Fiji); and three groups made up of the eastern populations, namely Hawaiian Archipelago (north), Marquesas (equatorial), and southern French Polynesia (south) that incorporates Clipperton Island located in the northeastern Pacific. In addition, heterozygosity values were found to be geographically structured with higher values grouped within Polynesian and Clipperton populations, which exhibited lower population size. Finally, the genetic differentiation (F(ST)) was significantly correlated with geographic distance when populations from the Hawaiian and Marquesas archipelagos were separated from all the other locations. These results show that patterns of differentiation vary within the same species according to the spatial scale, with one group probably issued from vicariance, whereas the other followed a pattern of isolation by distance. The geographic pattern for A. triostegus emphasizes the diversity of the evolutionary processes that lead to the present genetic structure with some being more influential in certain areas or according to a particular spatial scale.

  16. A planktonic diatom displays genetic structure over small spatial scales.

    PubMed

    Sefbom, Josefin; Kremp, Anke; Rengefors, Karin; Jonsson, Per R; Sjöqvist, Conny; Godhe, Anna

    2018-04-03

    Marine planktonic microalgae have potentially global dispersal, yet reduced gene flow has been confirmed repeatedly for several species. Over larger distances (>200 km) geographic isolation and restricted oceanographic connectivity have been recognized as instrumental in driving population divergence. Here we investigated whether similar patterns, that is, structured populations governed by geographic isolation and/or oceanographic connectivity, can be observed at smaller (6-152 km) geographic scales. To test this we established 425 clonal cultures of the planktonic diatom Skeletonema marinoi collected from 11 locations in the Archipelago Sea (northern Baltic Sea). The region is characterized by a complex topography, entailing several mixing regions of which four were included in the sampling area. Using eight microsatellite markers and conventional F-statistics, significant genetic differentiation was observed between several sites. Moreover, Bayesian cluster analysis revealed the co-occurrence of two genetic groups spread throughout the area. However, geographic isolation and oceanographic connectivity could not explain the genetic patterns observed. Our data reveal hierarchical genetic structuring whereby despite high dispersal potential, significantly diverged populations have developed over small spatial scales. Our results suggest that biological characteristics and historical events may be more important in generating barriers to gene flow than physical barriers at small spatial scales. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Changes in Diversification Patterns and Signatures of Selection during the Evolution of Murinae-Associated Hantaviruses

    PubMed Central

    Castel, Guillaume; Razzauti, Maria; Jousselin, Emmanuelle; Kergoat, Gael J.; Cosson, Jean-François

    2014-01-01

    In the last 50 years, hantaviruses have significantly affected public health worldwide, but the exact extent of the distribution of hantavirus diseases, species and lineages and the risk of their emergence into new geographic areas are still poorly known. In particular, the determinants of molecular evolution of hantaviruses circulating in different geographical areas or different host species are poorly documented. Yet, this understanding is essential for the establishment of more accurate scenarios of hantavirus emergence under different climatic and environmental constraints. In this study, we focused on Murinae-associated hantaviruses (mainly Seoul Dobrava and Hantaan virus) using sequences available in GenBank and conducted several complementary phylogenetic inferences. We sought for signatures of selection and changes in patterns and rates of diversification in order to characterize hantaviruses’ molecular evolution at different geographical scales (global and local). We then investigated whether these events were localized in particular geographic areas. Our phylogenetic analyses supported the assumption that RNA virus molecular variations were under strong evolutionary constraints and revealed changes in patterns of diversification during the evolutionary history of hantaviruses. These analyses provide new knowledge on the molecular evolution of hantaviruses at different scales of time and space. PMID:24618811

  18. An analysis of species boundaries and biogeographic patterns in a cryptic species complex: the rotifer--Brachionus plicatilis.

    PubMed

    Suatoni, Elizabeth; Vicario, Saverio; Rice, Sean; Snell, Terry; Caccone, Adalgisa

    2006-10-01

    Since the advent of molecular phylogenetics, there is increasing evidence that many small aquatic and marine invertebrates--once believed to be single, cosmopolitan species--are in fact cryptic species complexes. Although the application of the biological species concept is central to the identification of species boundaries in these cryptic complexes, tests of reproductive isolation do not frequently accompany phylogenetic studies. Because different species concepts generally identify different boundaries in cryptic complexes, studies that apply multiple species concepts are needed to gain a more detailed understanding of patterns of diversification in these taxa. Here we explore different methods of empirically delimiting species boundaries in the salt water rotifer Brachionus plicatilis by comparing reproductive data (i.e., the traditional biological species concept) to phylogenetic data (the genealogical species concept). Based on a high degree of molecular sequence divergence and largely concordant genetic patterns in COI and ITS1, the genealogical species hypothesis indicates the existence of at least 14 species--the highest estimate for the group thus far. A test of the genealogical species concept with biological crosses shows a fairly high level of concordance, depending on the degree of reproductive success used to draw boundaries. The convergence of species concepts in this group suggests that many of the species within the group may be old. Although the diversity of the group is higher than previously understood, geographic distributions remain broad. Efficient passive dispersal has resulted in global distributions for many species with some evidence of isolation by distance over large geographic scales. These patterns concur with expectations that micro-meiofauna (0.1-1mm) have biogeographies intermediate to microbial organisms and large vertebrates. Sympatry of genetically distant strains is common.

  19. Continental U.S. streamflow trends from 1940 to 2009 and their relationships with watershed spatial characteristics

    NASA Astrophysics Data System (ADS)

    Rice, Joshua S.; Emanuel, Ryan E.; Vose, James M.; Nelson, Stacy A. C.

    2015-08-01

    Changes in streamflow are an important area of ongoing research in the hydrologic sciences. To better understand spatial patterns in past changes in streamflow, we examined relationships between watershed-scale spatial characteristics and trends in streamflow. Trends in streamflow were identified by analyzing mean daily flow observations between 1940 and 2009 from 967 U.S. Geological Survey stream gages. Results indicated that streamflow across the continental U.S., as a whole, increased while becoming less extreme between 1940 and 2009. However, substantial departures from the continental U.S. (CONUS) scale pattern occurred at the regional scale, including increased annual maxima, decreased annual minima, overall drying trends, and changes in streamflow variability. A subset of watersheds belonging to a reference data set exhibited significantly smaller trend magnitudes than those observed in nonreference watersheds. Boosted regression tree models were applied to examine the influence of watershed characteristics on streamflow trend magnitudes at both the CONUS and regional scale. Geographic location was found to be of particular importance at the CONUS scale while local variability in hydroclimate and topography tended to have a strong influence on regional-scale patterns in streamflow trends. This methodology facilitates detailed, data-driven analyses of how the characteristics of individual watersheds interact with large-scale hydroclimate forces to influence how changes in streamflow manifest.

  20. Geographical Variation in Egg Mass and Egg Content in a Passerine Bird

    PubMed Central

    Ruuskanen, Suvi; Siitari, Heli; Eeva, Tapio; Belskii, Eugen; Järvinen, Antero; Kerimov, Anvar; Krams, Indrikis; Moreno, Juan; Morosinotto, Chiara; Mänd, Raivo; Möstl, Erich; Orell, Markku; Qvarnström, Anna; Salminen, Juha-Pekka; Slater, Fred; Tilgar, Vallo; Visser, Marcel E.; Winkel, Wolfgang; Zang, Herwig; Laaksonen, Toni

    2011-01-01

    Reproductive, phenotypic and life-history traits in many animal and plant taxa show geographic variation, indicating spatial variation in selection regimes. Maternal deposition to avian eggs, such as hormones, antibodies and antioxidants, critically affect development of the offspring, with long-lasting effects on the phenotype and fitness. Little is however known about large-scale geographical patterns of variation in maternal deposition to eggs. We studied geographical variation in egg components of a passerine bird, the pied flycatcher (Ficedula hypoleuca), by collecting samples from 16 populations and measuring egg and yolk mass, albumen lysozyme activity, yolk immunoglobulins, yolk androgens and yolk total carotenoids. We found significant variation among populations in most egg components, but ca. 90% of the variation was among individuals within populations. Population however explained 40% of the variation in carotenoid levels. In contrast to our hypothesis, we found geographical trends only in carotenoids, but not in any of the other egg components. Our results thus suggest high within-population variation and leave little scope for local adaptation and genetic differentiation in deposition of different egg components. The role of these maternally-derived resources in evolutionary change should be further investigated. PMID:22110579

  1. Large-Scale Genomic Analysis of Codon Usage in Dengue Virus and Evaluation of Its Phylogenetic Dependence

    PubMed Central

    Lara-Ramírez, Edgar E.; Salazar, Ma Isabel; López-López, María de Jesús; Salas-Benito, Juan Santiago; Sánchez-Varela, Alejandro

    2014-01-01

    The increasing number of dengue virus (DENV) genome sequences available allows identifying the contributing factors to DENV evolution. In the present study, the codon usage in serotypes 1–4 (DENV1–4) has been explored for 3047 sequenced genomes using different statistics methods. The correlation analysis of total GC content (GC) with GC content at the three nucleotide positions of codons (GC1, GC2, and GC3) as well as the effective number of codons (ENC, ENCp) versus GC3 plots revealed mutational bias and purifying selection pressures as the major forces influencing the codon usage, but with distinct pressure on specific nucleotide position in the codon. The correspondence analysis (CA) and clustering analysis on relative synonymous codon usage (RSCU) within each serotype showed similar clustering patterns to the phylogenetic analysis of nucleotide sequences for DENV1–4. These clustering patterns are strongly related to the virus geographic origin. The phylogenetic dependence analysis also suggests that stabilizing selection acts on the codon usage bias. Our analysis of a large scale reveals new feature on DENV genomic evolution. PMID:25136631

  2. Three-dimensional visualization of cultural clusters in the 1878 yellow fever epidemic of New Orleans

    PubMed Central

    Curtis, Andrew J

    2008-01-01

    Background An epidemic may exhibit different spatial patterns with a change in geographic scale, with each scale having different conduits and impediments to disease spread. Mapping disease at each of these scales often reveals different cluster patterns. This paper will consider this change of geographic scale in an analysis of yellow fever deaths for New Orleans in 1878. Global clustering for the whole city, will be followed by a focus on the French Quarter, then clusters of that area, and finally street-level patterns of a single cluster. The three-dimensional visualization capabilities of a GIS will be used as part of a cluster creation process that incorporates physical buildings in calculating mortality-to-mortality distance. Including nativity of the deceased will also capture cultural connection. Results Twenty-two yellow fever clusters were identified for the French Quarter. These generally mirror the results of other global cluster and density surfaces created for the entire epidemic in New Orleans. However, the addition of building-distance, and disease specific time frame between deaths reveal that disease spread contains a cultural component. Same nativity mortality clusters emerge in a similar time frame irrespective of proximity. Italian nativity mortalities were far more densely grouped than any of the other cohorts. A final examination of mortalities for one of the nativity clusters reveals that further sub-division is present, and that this pattern would only be revealed at this scale (street level) of investigation. Conclusion Disease spread in an epidemic is complex resulting from a combination of geographic distance, geographic distance with specific connection to the built environment, disease-specific time frame between deaths, impediments such as herd immunity, and social or cultural connection. This research has shown that the importance of cultural connection may be more important than simple proximity, which in turn might mean traditional quarantine measures should be re-evaluated. PMID:18721469

  3. Three-dimensional visualization of cultural clusters in the 1878 yellow fever epidemic of New Orleans.

    PubMed

    Curtis, Andrew J

    2008-08-22

    An epidemic may exhibit different spatial patterns with a change in geographic scale, with each scale having different conduits and impediments to disease spread. Mapping disease at each of these scales often reveals different cluster patterns. This paper will consider this change of geographic scale in an analysis of yellow fever deaths for New Orleans in 1878. Global clustering for the whole city, will be followed by a focus on the French Quarter, then clusters of that area, and finally street-level patterns of a single cluster. The three-dimensional visualization capabilities of a GIS will be used as part of a cluster creation process that incorporates physical buildings in calculating mortality-to-mortality distance. Including nativity of the deceased will also capture cultural connection. Twenty-two yellow fever clusters were identified for the French Quarter. These generally mirror the results of other global cluster and density surfaces created for the entire epidemic in New Orleans. However, the addition of building-distance, and disease specific time frame between deaths reveal that disease spread contains a cultural component. Same nativity mortality clusters emerge in a similar time frame irrespective of proximity. Italian nativity mortalities were far more densely grouped than any of the other cohorts. A final examination of mortalities for one of the nativity clusters reveals that further sub-division is present, and that this pattern would only be revealed at this scale (street level) of investigation. Disease spread in an epidemic is complex resulting from a combination of geographic distance, geographic distance with specific connection to the built environment, disease-specific time frame between deaths, impediments such as herd immunity, and social or cultural connection. This research has shown that the importance of cultural connection may be more important than simple proximity, which in turn might mean traditional quarantine measures should be re-evaluated.

  4. Spatial point pattern analysis of human settlements and geographical associations in eastern coastal China - a case study.

    PubMed

    Zhang, Zhonghao; Xiao, Rui; Shortridge, Ashton; Wu, Jiaping

    2014-03-10

    Understanding the spatial point pattern of human settlements and their geographical associations are important for understanding the drivers of land use and land cover change and the relationship between environmental and ecological processes on one hand and cultures and lifestyles on the other. In this study, a Geographic Information System (GIS) approach, Ripley's K function and Monte Carlo simulation were used to investigate human settlement point patterns. Remotely sensed tools and regression models were employed to identify the effects of geographical determinants on settlement locations in the Wen-Tai region of eastern coastal China. Results indicated that human settlements displayed regular-random-cluster patterns from small to big scale. Most settlements located on the coastal plain presented either regular or random patterns, while those in hilly areas exhibited a clustered pattern. Moreover, clustered settlements were preferentially located at higher elevations with steeper slopes and south facing aspects than random or regular settlements. Regression showed that influences of topographic factors (elevation, slope and aspect) on settlement locations were stronger across hilly regions. This study demonstrated a new approach to analyzing the spatial patterns of human settlements from a wide geographical prospective. We argue that the spatial point patterns of settlements, in addition to the characteristics of human settlements, such as area, density and shape, should be taken into consideration in the future, and land planners and decision makers should pay more attention to city planning and management. Conceptual and methodological bridges linking settlement patterns to regional and site-specific geographical characteristics will be a key to human settlement studies and planning.

  5. Deciphering the adjustment between environment and life history in annuals: lessons from a geographically-explicit approach in Arabidopsis thaliana.

    PubMed

    Manzano-Piedras, Esperanza; Marcer, Arnald; Alonso-Blanco, Carlos; Picó, F Xavier

    2014-01-01

    The role that different life-history traits may have in the process of adaptation caused by divergent selection can be assessed by using extensive collections of geographically-explicit populations. This is because adaptive phenotypic variation shifts gradually across space as a result of the geographic patterns of variation in environmental selective pressures. Hence, large-scale experiments are needed to identify relevant adaptive life-history traits as well as their relationships with putative selective agents. We conducted a field experiment with 279 geo-referenced accessions of the annual plant Arabidopsis thaliana collected across a native region of its distribution range, the Iberian Peninsula. We quantified variation in life-history traits throughout the entire life cycle. We built a geographic information system to generate an environmental data set encompassing climate, vegetation and soil data. We analysed the spatial autocorrelation patterns of environmental variables and life-history traits, as well as the relationship between environmental and phenotypic data. Almost all environmental variables were significantly spatially autocorrelated. By contrast, only two life-history traits, seed weight and flowering time, exhibited significant spatial autocorrelation. Flowering time, and to a lower extent seed weight, were the life-history traits with the highest significant correlation coefficients with environmental factors, in particular with annual mean temperature. In general, individual fitness was higher for accessions with more vigorous seed germination, higher recruitment and later flowering times. Variation in flowering time mediated by temperature appears to be the main life-history trait by which A. thaliana adjusts its life history to the varying Iberian environmental conditions. The use of extensive geographically-explicit data sets obtained from field experiments represents a powerful approach to unravel adaptive patterns of variation. In a context of current global warming, geographically-explicit approaches, evaluating the match between organisms and the environments where they live, may contribute to better assess and predict the consequences of global warming.

  6. Circadian Rhythms in Socializing Propensity.

    PubMed

    Zhang, Cheng; Phang, Chee Wei; Zeng, Xiaohua; Wang, Ximeng; Xu, Yunjie; Huang, Yun; Contractor, Noshir

    2015-01-01

    Using large-scale interaction data from a virtual world, we show that people's propensity to socialize (forming new social connections) varies by hour of the day. We arrive at our results by longitudinally tracking people's friend-adding activities in a virtual world. Specifically, we find that people are most likely to socialize during the evening, at approximately 8 p.m. and 12 a.m., and are least likely to do so in the morning, at approximately 8 a.m. Such patterns prevail on weekdays and weekends and are robust to variations in individual characteristics and geographical conditions.

  7. Geographical Scale Effects on the Analysis of Leptospirosis Determinants

    PubMed Central

    Gracie, Renata; Barcellos, Christovam; Magalhães, Mônica; Souza-Santos, Reinaldo; Barrocas, Paulo Rubens Guimarães

    2014-01-01

    Leptospirosis displays a great diversity of routes of exposure, reservoirs, etiologic agents, and clinical symptoms. It occurs almost worldwide but its pattern of transmission varies depending where it happens. Climate change may increase the number of cases, especially in developing countries, like Brazil. Spatial analysis studies of leptospirosis have highlighted the importance of socioeconomic and environmental context. Hence, the choice of the geographical scale and unit of analysis used in the studies is pivotal, because it restricts the indicators available for the analysis and may bias the results. In this study, we evaluated which environmental and socioeconomic factors, typically used to characterize the risks of leptospirosis transmission, are more relevant at different geographical scales (i.e., regional, municipal, and local). Geographic Information Systems were used for data analysis. Correlations between leptospirosis incidence and several socioeconomic and environmental indicators were calculated at different geographical scales. At the regional scale, the strongest correlations were observed between leptospirosis incidence and the amount of people living in slums, or the percent of the area densely urbanized. At the municipal scale, there were no significant correlations. At the local level, the percent of the area prone to flooding best correlated with leptospirosis incidence. PMID:25310536

  8. Seasonal migrations of North Atlantic minke whales: novel insights from large-scale passive acoustic monitoring networks.

    PubMed

    Risch, Denise; Castellote, Manuel; Clark, Christopher W; Davis, Genevieve E; Dugan, Peter J; Hodge, Lynne Ew; Kumar, Anurag; Lucke, Klaus; Mellinger, David K; Nieukirk, Sharon L; Popescu, Cristian Marian; Ramp, Christian; Read, Andrew J; Rice, Aaron N; Silva, Monica A; Siebert, Ursula; Stafford, Kathleen M; Verdaat, Hans; Van Parijs, Sofie M

    2014-01-01

    Little is known about migration patterns and seasonal distribution away from coastal summer feeding habitats of many pelagic baleen whales. Recently, large-scale passive acoustic monitoring networks have become available to explore migration patterns and identify critical habitats of these species. North Atlantic minke whales (Balaenoptera acutorostrata) perform seasonal migrations between high latitude summer feeding and low latitude winter breeding grounds. While the distribution and abundance of the species has been studied across their summer range, data on migration and winter habitat are virtually missing. Acoustic recordings, from 16 different sites from across the North Atlantic, were analyzed to examine the seasonal and geographic variation in minke whale pulse train occurrence, infer information about migration routes and timing, and to identify possible winter habitats. Acoustic detections show that minke whales leave their winter grounds south of 30° N from March through early April. On their southward migration in autumn, minke whales leave waters north of 40° N from mid-October through early November. In the western North Atlantic spring migrants appear to track the warmer waters of the Gulf Stream along the continental shelf, while whales travel farther offshore in autumn. Abundant detections were found off the southeastern US and the Caribbean during winter. Minke whale pulse trains showed evidence of geographic variation, with longer pulse trains recorded south of 40° N. Very few pulse trains were recorded during summer in any of the datasets. This study highlights the feasibility of using acoustic monitoring networks to explore migration patterns of pelagic marine mammals. Results confirm the presence of minke whales off the southeastern US and the Caribbean during winter months. The absence of pulse train detections during summer suggests either that minke whales switch their vocal behaviour at this time of year, are absent from available recording sites or that variation in signal structure influenced automated detection. Alternatively, if pulse trains are produced in a reproductive context by males, these data may indicate their absence from the selected recording sites. Evidence of geographic variation in pulse train duration suggests different behavioural functions or use of these calls at different latitudes.

  9. The geographic distribution patterns of HIV-, HCV- and co-infections among drug users in a national methadone maintenance treatment program in Southwest China.

    PubMed

    Zhou, Yi-Biao; Liang, Song; Wang, Qi-Xing; Gong, Yu-Han; Nie, Shi-Jiao; Nan, Lei; Yang, Ai-Hui; Liao, Qiang; Song, Xiu-Xia; Jiang, Qing-Wu

    2014-03-10

    HIV-, HCV- and HIV/HCV co-infections among drug users have become a rapidly emerging global public health problem. In order to constrain the dual epidemics of HIV/AIDS and drug use, China has adopted a methadone maintenance treatment program (MMTP) since 2004. Studies of the geographic heterogeneity of HIV and HCV infections at a local scale are sparse, which has critical implications for future MMTP implementation and health policies covering both HIV and HCV prevention among drug users in China. This study aimed to characterize geographic patterns of HIV and HCV prevalence at the township level among drug users in a Yi Autonomous Prefecture, Southwest of China. Data on demographic and clinical characteristics of all clients in the 11 MMTP clinics of the Yi Autonomous Prefecture from March 2004 to December 2012 were collected. A GIS-based geographic analysis involving geographic autocorrelation analysis and geographic scan statistics were employed to identify the geographic distribution pattern of HIV-, HCV- and co-infections among drug users. A total of 6690 MMTP clients was analyzed. The prevalence of HIV-, HCV- and co-infections were 25.2%, 30.8%, and 10.9% respectively. There were significant global and local geographic autocorrelations for HIV-, HCV-, and co-infection. The Moran's I was 0.3015, 0.3449, and 0.3155, respectively (P < 0.0001). Both the geographic autocorrelation analysis and the geographic scan statistical analysis showed that HIV-, HCV-, and co-infections in the prefecture exhibited significant geographic clustering at the township level. The geographic distribution pattern of each infection group was different. HIV-, HCV-, and co-infections among drug users in the Yi Autonomous Prefecture all exhibited substantial geographic heterogeneity at the township level. The geographic distribution patterns of the three groups were different. These findings imply that it may be necessary to inform or invent site-specific intervention strategies to better devote currently limited resource to combat these two viruses.

  10. A cross-sectional ecological study of spatial scale and geographic inequality in access to drinking-water and sanitation.

    PubMed

    Yu, Weiyu; Bain, Robert E S; Mansour, Shawky; Wright, Jim A

    2014-11-26

    Measuring inequality in access to safe drinking-water and sanitation is proposed as a component of international monitoring following the expiry of the Millennium Development Goals. This study aims to evaluate the utility of census data in measuring geographic inequality in access to drinking-water and sanitation. Spatially referenced census data were acquired for Colombia, South Africa, Egypt, and Uganda, whilst non-spatially referenced census data were acquired for Kenya. Four variants of the dissimilarity index were used to estimate geographic inequality in access to both services using large and small area units in each country through a cross-sectional, ecological study. Inequality was greatest for piped water in South Africa in 2001 (based on 53 areas (N) with a median population (MP) of 657,015; D = 0.5599) and lowest for access to an improved water source in Uganda in 2008 (N = 56; MP = 419,399; D = 0.2801). For sanitation, inequality was greatest for those lacking any facility in Kenya in 2009 (N = 158; MP = 216,992; D = 0.6981), and lowest for access to an improved facility in Uganda in 2002 (N = 56; MP = 341,954; D = 0.3403). Although dissimilarity index values were greater for smaller areal units, when study countries were ranked in terms of inequality, these ranks remained unaffected by the choice of large or small areal units. International comparability was limited due to definitional and temporal differences between censuses. This five-country study suggests that patterns of inequality for broad regional units do often reflect inequality in service access at a more local scale. This implies household surveys designed to estimate province-level service coverage can provide valuable insights into geographic inequality at lower levels. In comparison with household surveys, censuses facilitate inequality assessment at different spatial scales, but pose challenges in harmonising water and sanitation typologies across countries.

  11. Genetic differentiation and phylogeographical structure of the Brachionus calyciflorus complex in eastern China.

    PubMed

    Xiang, Xian-Ling; Xi, Yi-Long; Wen, Xin-Li; Zhang, Gen; Wang, Jin-Xia; Hu, Ke

    2011-07-01

    Spatio-temporal patterns and processes of genetic differentiation in passively dispersing zooplankton are drawing much attention from both ecologists and evolutionary biologists. Two opposite phylogeographical scenarios have already been demonstrated in rotifers, which consist of high levels of genetic differentiation among populations even on small geographical scales on the one hand and the traditionally known cosmopolitanism that is associated with high levels of gene flow and long-distance dispersal via diapausing stages on the other hand. Here, we analysed the population genetic structure and the phylogeography of the Brachionus calyciflorus species complex in eastern China. By screening a total of 318 individuals from ten locations along a 2320-km gradient and analysing samples from two growing seasons, we aimed at focusing on both small- and large-scale patterns. We identified eight cryptic species and verified species status of two of these by sexual reproduction tests. Samples in summer and winter yielded different cryptic species. The distribution patterns of these genetically distinct cryptic species were diverse across eastern China, from full cosmopolitanism to local endemism. The two most abundant cryptic species BcWIII and BcSW showed a pattern of strong genetic differentiation among populations and no significant isolation by distance. Long-distance colonization, secondary contact and recent range expansion are probably responsible for the indistinct pattern of isolation by distance. Our results suggest that geographical distance is more important than temporal segregation across seasons in explaining population differentiation and the occurrence of cryptic species. We explain the current phylogeographical structure in the B. calyciflorus species complex by a combination of recent population expansion, restricted gene flow, priority effects and long-distance colonization. © 2011 Blackwell Publishing Ltd.

  12. Spatial and temporal diet patterns of subadult and small adult striped bass in Massachusetts estuaries: Data, a synthesis, and trends across scales

    USGS Publications Warehouse

    Ferry, K.H.; Mather, Martha E.

    2012-01-01

    Subadult and small adult (375–475 mm total length) striped bass Morone saxatilis are abundant and represent an important component of the recovered U.S. Atlantic coast stocks. However, little is known about these large aggregations of striped bass during their annual foraging migrations to New England. A quantitative understanding of trends in the diets of subadult and small adult migrants is critical to research and management. Because of the complexity of the Massachusetts coast, we were able to compare diets at multiple spatial, temporal, and taxonomic scales and evaluate which of these provided the greatest insights into the foraging patterns of this size of fish. Specifically, during spring through autumn, we quantified the diets of 797 migratory striped bass collected from 13 Massachusetts estuaries distributed among three geographic regions in two biogeographic provinces. Our data provided three useful results. First, subadult and young adult striped bass ate a season-specific mixture of fish and invertebrates. For example, more juvenile Atlantic herring Clupea harengus were eaten in spring than in summer or autumn, more juvenile Atlantic menhaden Brevoortia tyrannus were eaten in autumn than in spring or summer, amphipods were eaten primarily in the southern biogeographic province, and shrimp Crangon sp. were eaten in all locations and seasons. Second, examining diets by season was essential because of the temporal variability in striped bass prey. Grouping prey by fish and invertebrates revealed the potential for predictable differences in growth across geographic locations and seasons, based on the output from simple bioenergetics simulations. Third, of the three spatial scales examined, region provided the most quantitative and interpretable ecological trends. Our results demonstrate the utility of comparing multiple scales to evaluate the best way to depict diet trends in a migrating predator that seasonally uses different geographic locations.

  13. Speciation has a spatial scale that depends on levels of gene flow.

    PubMed

    Kisel, Yael; Barraclough, Timothy G

    2010-03-01

    Area is generally assumed to affect speciation rates, but work on the spatial context of speciation has focused mostly on patterns of range overlap between emerging species rather than on questions of geographical scale. A variety of geographical theories of speciation predict that the probability of speciation occurring within a given region should (1) increase with the size of the region and (2) increase as the spatial extent of intraspecific gene flow becomes smaller. Using a survey of speciation events on isolated oceanic islands for a broad range of taxa, we find evidence for both predictions. The probability of in situ speciation scales with island area in bats, carnivorous mammals, birds, flowering plants, lizards, butterflies and moths, and snails. Ferns are an exception to these findings, but they exhibit high frequencies of polyploid and hybrid speciation, which are expected to be scale independent. Furthermore, the minimum island size for speciation correlates across groups with the strength of intraspecific gene flow, as is estimated from a meta-analysis of published population genetic studies. These results indicate a general geographical model of speciation rates that are dependent on both area and gene flow. The spatial scale of population divergence is an important but neglected determinant of broad-scale diversity patterns.

  14. Multi-Scale Residential Segregation: Black Exceptionalism and America's Changing Color Line

    ERIC Educational Resources Information Center

    Parisi, Domenico; Lichter, Daniel T.; Taquino, Michael C.

    2011-01-01

    America's changing color line is perhaps best expressed in shifting patterns of neighborhood residential segregation--the geographic separation of races. This research evaluates black exceptionalism by using the universe of U.S. blocks from the 1990 and 2000 decennial censuses to provide a "single" geographically inclusive national…

  15. Genetic structure of colline and montane populations of an endangered plant species

    PubMed Central

    Maurice, Tiphaine; Matthies, Diethart; Muller, Serge; Colling, Guy

    2016-01-01

    Due to land-use intensification, lowland and colline populations of many plants of nutrient-poor grasslands have been strongly fragmented in the last decades, with potentially negative consequences for their genetic diversity and persistence. Populations in mountains might represent a genetic reservoir for grassland plants, because they have been less affected by land-use changes. We studied the genetic structure and diversity of colline and montane Vosges populations of the threatened perennial plant Arnica montana in western central Europe using AFLP markers. Our results indicate that in contrast to our expectation even strongly fragmented colline populations of A. montana have conserved a considerable amount of genetic diversity. However, mean seed mass increased with the proportion of polymorphic loci, suggesting inbreeding effects in low diversity populations. At a similar small geographical scale, there was a clear IBD pattern for the montane Vosges but not for the colline populations. However, there was a strong IBD-pattern for the colline populations at a large geographical scale suggesting that this pattern is a legacy of historical gene flow, as most of the colline populations are today strongly isolated from each other. Genetic differentiation between colline and montane Vosges populations was strong. Moreover, results of a genome scan study indicated differences in loci under selection, suggesting that plants from montane Vosges populations might be maladapted to conditions at colline sites. Our results suggest caution in using material from montane populations of rare plants for the reinforcement of small genetically depauperate lowland populations. PMID:27519913

  16. Contrasting patterns of diversity and population differentiation at the innate immunity gene toll-like receptor 2 (TLR2) in two sympatric rodent species.

    PubMed

    Tschirren, Barbara; Andersson, Martin; Scherman, Kristin; Westerdahl, Helena; Råberg, Lars

    2012-03-01

    Comparing patterns of diversity and divergence between populations at immune genes and neutral markers can give insights into the nature and geographic scale of parasite-mediated selection. To date, studies investigating such patterns of selection in vertebrates have primarily focused on the acquired branch of the immune system, whereas it remains largely unknown how parasite-mediated selection shapes innate immune genes both within and across vertebrate populations. Here, we present a study on the diversity and population differentiation at the innate immune gene Toll-like receptor 2 (TLR2) across nine populations of yellow-necked mice (Apodemus flavicollis) and bank voles (Myodes glareolus) in southern Sweden. In yellow-necked mice, TLR2 diversity was very low, as was TLR2 population differentiation compared to neutral loci. In contrast, several TLR2 haplotypes co-occurred at intermediate frequencies within and across bank vole populations, and pronounced isolation by distance between populations was observed. The diversity and differentiation at neutral loci was similar in the two species. These results indicate that parasite-mediated selection has been acting in dramatically different ways on a given immune gene in ecologically similar and sympatric species. Furthermore, the finding of TLR2 population differentiation at a small geographical scale in bank voles highlights that vertebrate innate immune defense may be evolutionarily more dynamic than has previously been appreciated. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  17. Analysis of Thermal Structure of Arctic Lakes at Local and Regional Scales Using in Situ and Multidate Landsat-8 Data

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Liu, Hongxing; Hinkel, Kenneth; Yu, Bailang; Beck, Richard; Wu, Jianping

    2017-11-01

    The Arctic coastal plain is covered with numerous thermokarst lakes. These lakes are closely linked to climate and environmental change through their heat and water budgets. We examined the intralake thermal structure at the local scale and investigated the water temperature pattern of lakes at the regional scale by utilizing extensive in situ measurements and multidate Landsat-8 remote sensing data. Our analysis indicates that the lake skin temperatures derived from satellite thermal sensors during most of the ice-free summer period effectively represent the lake bulk temperature because the lakes are typically well-mixed and without significant vertical stratification. With the relatively high-resolution Landsat-8 thermal data, we were able to quantitatively examine intralake lateral temperature differences and gradients in relation to geographical location, topography, meteorological factors, and lake morphometry for the first time. Our results suggest that wind speed and direction not only control the vertical stratification but also influences lateral differences and gradients of lake surface temperature. Wind can considerably reduce the intralake temperature gradient. Interestingly, we found that geographical location (latitude, longitude, distance to the ocean) and lake morphometry (surface size, depth, volume) not only control lake temperature regionally but also affect the lateral temperature gradient and homogeneity level within each individual lake. For the Arctic coastal plain, at regional scales, inland and southern lakes tend to have larger horizontal temperature differences and gradients compared to coastal and northern lakes. At local scales, large and shallow lakes tend to have large lateral temperature differences relative to small and deep lakes.

  18. On the role of snow cover ablation variability and synoptic-scale atmospheric forcings at the sub-basin scale within the Great Lakes watershed

    NASA Astrophysics Data System (ADS)

    Suriano, Zachary J.

    2018-02-01

    Synoptic-scale atmospheric conditions play a critical role in determining the frequency and intensity of snow cover ablation in the mid-latitudes. Using a synoptic classification technique, distinct regional circulation patterns influencing the Great Lakes basin of North America are identified and examined in conjunction with daily snow ablation events from 1960 to 2009. This approach allows for the influence of each synoptic weather type on ablation to be examined independently and for the monthly and inter-annual frequencies of the weather types to be tracked over time. Because of the spatial heterogeneity of snow cover and the relatively large geographic extent of the Great Lakes basin, snow cover ablation events and the synoptic-scale patterns that cause them are examined for each of the Great Lakes watershed's five primary sub-basins to understand the regional complexities of snow cover ablation variability. Results indicate that while many synoptic weather patterns lead to ablation across the basins, they can be generally grouped into one of only a few primary patterns: southerly flow, high-pressure overhead, and rain-on-snow patterns. As expected, the patterns leading to ablation are not necessarily consistent between the five sub-basins due to the seasonality of snow cover and the spatial variability of temperature, moisture, wind, and incoming solar radiation associated with the particular synoptic weather types. Significant trends in the inter-annual frequency of ablation-inducing synoptic types do exist for some sub-basins, indicating a potential change in the hydrologic impact of these patterns over time.

  19. Diversity and geographical distribution of Flavobacterium psychrophilum isolates and their phages: patterns of susceptibility to phage infection and phage host range.

    PubMed

    Castillo, Daniel; Christiansen, Rói Hammershaimb; Espejo, Romilio; Middelboe, Mathias

    2014-05-01

    Flavobacterium psychrophilum is an important fish pathogen worldwide that causes cold water disease (CWD) or rainbow trout fry syndrome (RTFS). Phage therapy has been suggested as an alternative method for the control of this pathogen in aquaculture. However, effective use of bacteriophages in disease control requires detailed knowledge about the diversity and dynamics of host susceptibility to phage infection. For this reason, we examined the genetic diversity of 49 F. psychrophilum strains isolated in three different areas (Chile, Denmark, and USA) through direct genome restriction enzyme analysis (DGREA) and their susceptibility to 33 bacteriophages isolated in Chile and Denmark, thus covering large geographical (>12,000 km) and temporal (>60 years) scales of isolation. An additional 40 phage-resistant isolates obtained from culture experiments after exposure to specific phages were examined for changes in phage susceptibility against the 33 phages. The F. psychrophilum and phage populations isolated from Chile and Denmark clustered into geographically distinct groups with respect to DGREA profile and host range, respectively. However, cross infection between Chilean phage isolates and Danish host isolates and vice versa was observed. Development of resistance to certain bacteriophages led to susceptibility to other phages suggesting that "enhanced infection" is potentially an important cost of resistance in F. psychrophilum, possibly contributing to the observed co-existence of phage-sensitive F. psychrophilum strains and lytic phages across local and global scales. Overall, our results showed that despite the identification of local communities of phages and hosts, some key properties determining phage infection patterns seem to be globally distributed.

  20. Overcoming the dichotomy between open and isolated populations using genomic data from a large European dataset

    PubMed Central

    Anagnostou, Paolo; Dominici, Valentina; Battaggia, Cinzia; Pagani, Luca; Vilar, Miguel; Wells, R. Spencer; Pettener, Davide; Sarno, Stefania; Boattini, Alessio; Francalacci, Paolo; Colonna, Vincenza; Vona, Giuseppe; Calò, Carla; Destro Bisol, Giovanni; Tofanelli, Sergio

    2017-01-01

    Human populations are often dichotomized into “isolated” and “open” categories using cultural and/or geographical barriers to gene flow as differential criteria. Although widespread, the use of these alternative categories could obscure further heterogeneity due to inter-population differences in effective size, growth rate, and timing or amount of gene flow. We compared intra and inter-population variation measures combining novel and literature data relative to 87,818 autosomal SNPs in 14 open populations and 10 geographic and/or linguistic European isolates. Patterns of intra-population diversity were found to vary considerably more among isolates, probably due to differential levels of drift and inbreeding. The relatively large effective size estimated for some population isolates challenges the generalized view that they originate from small founding groups. Principal component scores based on measures of intra-population variation of isolated and open populations were found to be distributed along a continuum, with an area of intersection between the two groups. Patterns of inter-population diversity were even closer, as we were able to detect some differences between population groups only for a few multidimensional scaling dimensions. Therefore, different lines of evidence suggest that dichotomizing human populations into open and isolated groups fails to capture the actual relations among their genomic features. PMID:28145502

  1. Geographic patterns of seed mass are associated with climate factors, but relationships vary between species.

    PubMed

    Soper Gorden, Nicole L; Winkler, Katharine J; Jahnke, Matthew R; Marshall, Elizabeth; Horky, Joshua; Huddelson, Colton; Etterson, Julie R

    2016-01-01

    Seed size is a critical life history attribute with fitness effects that cascade throughout the lifespan of plants. Interspecific studies repeatedly report a negative correlation between seed mass and latitude. Yet, despite its importance, little is known about geographic variation in seed size within species' ranges. To improve our understanding of intraspecific geographic variation in seed size, we collected and weighed seeds by maternal line from 8 to 17 populations of seven herbaceous plant species spanning large geographic areas, and measured a dispersal trait, awn length, for two grass species. We examined the overall relationship between seed mass and latitude, then divided the data into species-specific subsets to compare the fit of three models to explain seed mass and awn length: (1) latitude and longitude, (2) long-term climate, and (3) collection-year weather. Like previous work, we found a negative relationship between interspecific seed mass and latitude. However, the best-fit models explaining seed size and awn length differed between individual species and often included significant interaction terms. For all species, the best model was either long-term or collection-year climate data instead of latitude and longitude. Intraspecific geographic patterns for seed traits were remarkably inconsistent, covarying both negatively and positively with temperature and precipitation. The only apparent generalization is that annual species' seed mass corresponded more with collection-year weather while perennial species covaried more with long-term climate. Overall, this study suggests that the scale of climate variation that molds seed traits is highly species-specific. © 2016 Botanical Society of America.

  2. Synchronous genetic turnovers across Western Eurasia in Late Pleistocene collared lemmings.

    PubMed

    Palkopoulou, Eleftheria; Baca, Mateusz; Abramson, Natalia I; Sablin, Mikhail; Socha, Paweł; Nadachowski, Adam; Prost, Stefan; Germonpré, Mietje; Kosintsev, Pavel; Smirnov, Nickolay G; Vartanyan, Sergey; Ponomarev, Dmitry; Nyström, Johanna; Nikolskiy, Pavel; Jass, Christopher N; Litvinov, Yuriy N; Kalthoff, Daniela C; Grigoriev, Semyon; Fadeeva, Tatyana; Douka, Aikaterini; Higham, Thomas F G; Ersmark, Erik; Pitulko, Vladimir; Pavlova, Elena; Stewart, John R; Węgleński, Piotr; Stankovic, Anna; Dalén, Love

    2016-05-01

    Recent palaeogenetic studies indicate a highly dynamic history in collared lemmings (Dicrostonyx spp.), with several demographical changes linked to climatic fluctuations that took place during the last glaciation. At the western range margin of D. torquatus, these changes were characterized by a series of local extinctions and recolonizations. However, it is unclear whether this pattern represents a local phenomenon, possibly driven by ecological edge effects, or a global phenomenon that took place across large geographical scales. To address this, we explored the palaeogenetic history of the collared lemming using a next-generation sequencing approach for pooled mitochondrial DNA amplicons. Sequences were obtained from over 300 fossil remains sampled across Eurasia and two sites in North America. We identified five mitochondrial lineages of D. torquatus that succeeded each other through time across Europe and western Russia, indicating a history of repeated population extinctions and recolonizations, most likely from eastern Russia, during the last 50 000 years. The observation of repeated extinctions across such a vast geographical range indicates large-scale changes in the steppe-tundra environment in western Eurasia during the last glaciation. All Holocene samples, from across the species' entire range, belonged to only one of the five mitochondrial lineages. Thus, extant D. torquatus populations only harbour a small fraction of the total genetic diversity that existed across different stages of the Late Pleistocene. In North American samples, haplotypes belonging to both D. groenlandicus and D. richardsoni were recovered from a Late Pleistocene site in south-western Canada. This suggests that D. groenlandicus had a more southern and D. richardsoni a more northern glacial distribution than previously thought. This study provides significant insights into the population dynamics of a small mammal at a large geographical scale and reveals a rather complex demographical history, which could have had bottom-up effects in the Late Pleistocene steppe-tundra ecosystem. © 2016 John Wiley & Sons Ltd.

  3. Relations between introduced fish and environmental conditions at large geographic scales

    USGS Publications Warehouse

    Meador, M.R.; Brown, L.R.; Short, T.

    2003-01-01

    Data collected from 20 major river basins between 1993 and 1995 as part of the US Geological Survey's (USGS) National Water-Quality Assessment (NAWQA) Program were analyzed to assess patterns in introduced and native fish species richness and abundance relative to watershed characteristics and stream physicochemistry. Sites (N = 157) were divided into three regions-northeast, southeast, and west- to account for major longitudinal differences in precipitation/runoff and latitudinal limits of glaciation that affect zoogeographic patterns in fish communities. Common carp (Cyprinus carpio) and largemouth bass (Micropterus salmoides) were the most frequently collected introduced fish species across all river basins combined. Based on the percentage of introduced fish species, the fish communities most altered by the presence of introduced fish occurred in the western and northeastern parts of the US. Native fish species richness was not an indicator of introduced fish species richness for any of the three regions. However, in the west, introduced fish species richness was an indicator of total fish species richness and the abundance of introduced fish was negatively related to native fish species richness. Some relations between introduced fish species and environmental conditions were common between regions. Increased introduced fish species richness was related to increased population density in the northeast and southeast; increased total nitrogen in the northeast and west; and increased total phosphorous and water temperature in the southeast and west. These results suggest that introduced fish species tend to be associated with disturbance at large geographic scales, though specific relations may vary regionally. ?? 2003 Elsevier Science Ltd. All rights reserved.

  4. Genetic Population Structure of Tectura paleacea: Implications for the Mechanisms Regulating Population Structure in Patchy Coastal Habitats

    PubMed Central

    Begovic, Emina; Lindberg, David R.

    2011-01-01

    The seagrass limpet Tectura paleacea (Gastropoda; Patellogastropoda) belongs to a seagrass obligate lineage that has shifted from the Caribbean in the late Miocene, across the Isthmus of Panama prior to the closing of the Panamanian seaway, and then northward to its modern Baja California – Oregon distribution. To address whether larval entrainment by seagrass beds contributes to population structuring, populations were sampled at six California/Oregon localities approximately 2 degrees latitude apart during two post-settlement periods in July 2002 and June 2003. Partial cytochrome oxidase b (Cytb) sequences were obtained from 20 individuals (10 per year) from each population in order to determine the levels of population subdivision/connectivity. From the 120 individuals sequenced, there were eighty-one unique haplotypes, with the greatest haplotype diversity occurring in southern populations. The only significant genetic break detected was consistent with a peri-Point Conception (PPC) biogeographic boundary while populations north and south of Point Conception were each panmictic. The data further indicate that populations found south of the PPC biogeographic boundary originated from northern populations. This pattern of population structure suggests that seagrass patches are not entraining the larvae of T. paleacea by altering flow regimes within their environment; a process hypothesized to produce extensive genetic subdivision on fine geographic scales. In contrast to the haplotype data, morphological patterns vary significantly over very fine geographic scales that are inconsistent with the observed patterns of genetic population structure, indicating that morphological variation in T. paleacea might be attributed to differential ecophenotypic expression in response to local habitat variability throughout its distribution. These results suggest that highly localized conservation efforts may not be as effective as large-scale conservation efforts in near shore marine environments. PMID:21490969

  5. Whole-mantle convection with tectonic plates preserves long-term global patterns of upper mantle geochemistry.

    PubMed

    Barry, T L; Davies, J H; Wolstencroft, M; Millar, I L; Zhao, Z; Jian, P; Safonova, I; Price, M

    2017-05-12

    The evolution of the planetary interior during plate tectonics is controlled by slow convection within the mantle. Global-scale geochemical differences across the upper mantle are known, but how they are preserved during convection has not been adequately explained. We demonstrate that the geographic patterns of chemical variations around the Earth's mantle endure as a direct result of whole-mantle convection within largely isolated cells defined by subducting plates. New 3D spherical numerical models embedded with the latest geological paleo-tectonic reconstructions and ground-truthed with new Hf-Nd isotope data, suggest that uppermost mantle at one location (e.g. under Indian Ocean) circulates down to the core-mantle boundary (CMB), but returns within ≥100 Myrs via large-scale convection to its approximate starting location. Modelled tracers pool at the CMB but do not disperse ubiquitously around it. Similarly, mantle beneath the Pacific does not spread to surrounding regions of the planet. The models fit global patterns of isotope data and may explain features such as the DUPAL anomaly and long-standing differences between Indian and Pacific Ocean crust. Indeed, the geochemical data suggests this mode of convection could have influenced the evolution of mantle composition since 550 Ma and potentially since the onset of plate tectonics.

  6. Spatial Point Pattern Analysis of Human Settlements and Geographical Associations in Eastern Coastal China — A Case Study

    PubMed Central

    Zhang, Zhonghao; Xiao, Rui; Shortridge, Ashton; Wu, Jiaping

    2014-01-01

    Understanding the spatial point pattern of human settlements and their geographical associations are important for understanding the drivers of land use and land cover change and the relationship between environmental and ecological processes on one hand and cultures and lifestyles on the other. In this study, a Geographic Information System (GIS) approach, Ripley’s K function and Monte Carlo simulation were used to investigate human settlement point patterns. Remotely sensed tools and regression models were employed to identify the effects of geographical determinants on settlement locations in the Wen-Tai region of eastern coastal China. Results indicated that human settlements displayed regular-random-cluster patterns from small to big scale. Most settlements located on the coastal plain presented either regular or random patterns, while those in hilly areas exhibited a clustered pattern. Moreover, clustered settlements were preferentially located at higher elevations with steeper slopes and south facing aspects than random or regular settlements. Regression showed that influences of topographic factors (elevation, slope and aspect) on settlement locations were stronger across hilly regions. This study demonstrated a new approach to analyzing the spatial patterns of human settlements from a wide geographical prospective. We argue that the spatial point patterns of settlements, in addition to the characteristics of human settlements, such as area, density and shape, should be taken into consideration in the future, and land planners and decision makers should pay more attention to city planning and management. Conceptual and methodological bridges linking settlement patterns to regional and site-specific geographical characteristics will be a key to human settlement studies and planning. PMID:24619117

  7. A system for simulating aerial or orbital TV observations of geographic patterns

    NASA Technical Reports Server (NTRS)

    Latham, J. P.

    1972-01-01

    A system which simulates observation of the earth surface by aerial or orbiting television devices has been developed. By projecting color slides of photographs taken by aircraft and orbiting sensors upon a rear screen system, and altering scale of projected image, screen position, or TV camera position, it is possible to simulate alternatives of altitude, or optical systems. By altering scan line patterns in COHU 3200 series camera from 525 to 945 scan lines, it is possible to study implications of scan line resolution upon the detection and analysis of geographic patterns observed by orbiting TV systems.

  8. A Geographic Information Science (GISc) Approach to Characterizing Spatiotemporal Patterns of Terrorist Incidents in Iraq, 2004-2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medina, Richard M; Siebeneck, Laura K.; Hepner, George F.

    2011-01-01

    As terrorism on all scales continues, it is necessary to improve understanding of terrorist and insurgent activities. This article takes a Geographic Information Systems (GIS) approach to advance the understanding of spatial, social, political, and cultural triggers that influence terrorism incidents. Spatial, temporal, and spatiotemporal patterns of terrorist attacks are examined to improve knowledge about terrorist systems of training, planning, and actions. The results of this study aim to provide a foundation for understanding attack patterns and tactics in emerging havens as well as inform the creation and implementation of various counterterrorism measures.

  9. Patterns of genetic diversity in the polymorphic ground snake (Sonora semiannulata).

    PubMed

    Cox, Christian L; Chippindale, Paul T

    2014-08-01

    We evaluated the genetic diversity of a snake species with color polymorphism to understand the evolutionary processes that drive genetic structure across a large geographic region. Specifically, we analyzed genetic structure of the highly polymorphic ground snake, Sonora semiannulata, (1) among populations, (2) among color morphs (3) at regional and local spatial scales, using an amplified fragment length polymorphism dataset and multiple population genetic analyses, including FST-based and clustering analytical techniques. Based upon these methods, we found that there was moderate to low genetic structure among populations. However, this diversity was not associated with geographic locality at either spatial scale. Similarly, we found no evidence for genetic divergence among color morphs at either spatial scale. These results suggest that despite dramatic color polymorphism, this phenotypic diversity is not a major driver of genetic diversity within or among populations of ground snakes. We suggest that there are two mechanisms that could explain existing genetic diversity in ground snakes: recent range expansion from a genetically diverse founder population and current or recent gene flow among populations. Our findings have further implications for the types of color polymorphism that may generate genetic diversity in snakes.

  10. Landscape permeability for large carnivores in Washington: a geographic information system weighted-distance and least-cost corridor assessment.

    Treesearch

    Peter H. Singleton; William L. Gaines; John F. Lehmkuhl

    2002-01-01

    We conducted a regional-scale evaluation of landscape permeability for large carnivores in Washington and adjacent portions of British Columbia and Idaho. We developed geographic information system based landscape permeability models for wolves (Canis lupus), wolverine (Gulo gulo), lynx (Lynx canadensis),...

  11. Variation in the Mississippi River Plume from Data Synthesis of Model Outputs and MODIS Imagery

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, C.; Kolker, A.; Chu, P. Y.

    2017-12-01

    Understanding the Mississippi River (MR) plume's interaction with the open ocean is crucial for understanding many processes in the Gulf of Mexico. Though the Mississippi River and its delta and plume have been studied extensively, recent archives of model products and satellite imagery have allowed us to highlight patterns in plume behavior over the last two decades through large scale data synthesis. Using 8 years of USGS discharge data and Landsat imagery, we identified the spatial extent, geographic patterns, depth, and freshwater concentration of the MR plume across seasons and years. Using 20 years of HYCOM (HYbrid Coordinate Ocean Model) analysis and reanalysis model output, and several years of NGOFS FVCOM model outputs, we mapped the minimum and maximum spatial area of the MR plume, and its varied extent east and west. From the synthesis and analysis of these data, the statistical probability of the MR plume's spatial area and geographical extent were computed. Measurements of the MR plume and its response to river discharge may predict future behavior and provide a path forward to understanding MR plume influence on nearby ecosystems.

  12. Geographic Variation in Advertisement Calls in a Tree Frog Species: Gene Flow and Selection Hypotheses

    PubMed Central

    Jang, Yikweon; Hahm, Eun Hye; Lee, Hyun-Jung; Park, Soyeon; Won, Yong-Jin; Choe, Jae C.

    2011-01-01

    Background In a species with a large distribution relative to its dispersal capacity, geographic variation in traits may be explained by gene flow, selection, or the combined effects of both. Studies of genetic diversity using neutral molecular markers show that patterns of isolation by distance (IBD) or barrier effect may be evident for geographic variation at the molecular level in amphibian species. However, selective factors such as habitat, predator, or interspecific interactions may be critical for geographic variation in sexual traits. We studied geographic variation in advertisement calls in the tree frog Hyla japonica to understand patterns of variation in these traits across Korea and provide clues about the underlying forces for variation. Methodology We recorded calls of H. japonica in three breeding seasons from 17 localities including localities in remote Jeju Island. Call characters analyzed were note repetition rate (NRR), note duration (ND), and dominant frequency (DF), along with snout-to-vent length. Results The findings of a barrier effect on DF and a longitudinal variation in NRR seemed to suggest that an open sea between the mainland and Jeju Island and mountain ranges dominated by the north-south Taebaek Mountains were related to geographic variation in call characters. Furthermore, there was a pattern of IBD in mitochondrial DNA sequences. However, no comparable pattern of IBD was found between geographic distance and call characters. We also failed to detect any effects of habitat or interspecific interaction on call characters. Conclusions Geographic variations in call characters as well as mitochondrial DNA sequences were largely stratified by geographic factors such as distance and barriers in Korean populations of H. japoinca. Although we did not detect effects of habitat or interspecific interaction, some other selective factors such as sexual selection might still be operating on call characters in conjunction with restricted gene flow. PMID:21858061

  13. Ecological Inferences from a deep screening of the Complex Bacterial Consortia associated with the coral, Porites astreoides.

    PubMed

    Rodriguez-Lanetty, Mauricio; Granados-Cifuentes, Camila; Barberan, Albert; Bellantuono, Anthony J; Bastidas, Carolina

    2013-08-01

    The functional role of the bacterial organisms in the reef ecosystem and their contribution to the coral well-being remain largely unclear. The first step in addressing this gap of knowledge relies on in-depth characterization of the coral microbial community and its changes in diversity across coral species, space and time. In this study, we focused on the exploration of microbial community assemblages associated with an ecologically important Caribbean scleractinian coral, Porites astreoides, using Illumina high-throughput sequencing of the V5 fragment of 16S rRNA gene. We collected data from a large set of biological replicates, allowing us to detect patterns of geographical structure and resolve co-occurrence patterns using network analyses. The taxonomic analysis of the resolved diversity showed consistent and dominant presence of two OTUs affiliated with the order Oceanospirillales, which corroborates a specific pattern of bacterial association emerging for this coral species and for many other corals within the genus Porites. We argue that this specific association might indicate a symbiotic association with the adult coral partner. Furthermore, we identified a highly diverse rare bacterial 'biosphere' (725 OTUs) also living along with the dominant bacterial symbionts, but the assemblage of this biosphere is significantly structured along the geographical scale. We further discuss that some of these rare bacterial members show significant association with other members of the community reflecting the complexity of the networked consortia within the coral holobiont. © 2013 John Wiley & Sons Ltd.

  14. Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales

    PubMed Central

    Neave, Matthew J; Rachmawati, Rita; Xun, Liping; Michell, Craig T; Bourne, David G; Apprill, Amy; Voolstra, Christian R

    2017-01-01

    Reef-building corals are well regarded not only for their obligate association with endosymbiotic algae, but also with prokaryotic symbionts, the specificity of which remains elusive. To identify the central microbial symbionts of corals, their specificity across species and conservation over geographic regions, we sequenced partial SSU ribosomal RNA genes of Bacteria and Archaea from the common corals Stylophora pistillata and Pocillopora verrucosa across 28 reefs within seven major geographical regions. We demonstrate that both corals harbor Endozoicomonas bacteria as their prevalent symbiont. Importantly, catalyzed reporter deposition–fluorescence in situ hybridization (CARD–FISH) with Endozoicomonas-specific probes confirmed their residence as large aggregations deep within coral tissues. Using fine-scale genotyping techniques and single-cell genomics, we demonstrate that P. verrucosa harbors the same Endozoicomonas, whereas S. pistillata associates with geographically distinct genotypes. This specificity may be shaped by the different reproductive strategies of the hosts, potentially uncovering a pattern of symbiont selection that is linked to life history. Spawning corals such as P. verrucosa acquire prokaryotes from the environment. In contrast, brooding corals such as S. pistillata release symbiont-packed planula larvae, which may explain a strong regional signature in their microbiome. Our work contributes to the factors underlying microbiome specificity and adds detail to coral holobiont functioning. PMID:27392086

  15. Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales.

    PubMed

    Neave, Matthew J; Rachmawati, Rita; Xun, Liping; Michell, Craig T; Bourne, David G; Apprill, Amy; Voolstra, Christian R

    2017-01-01

    Reef-building corals are well regarded not only for their obligate association with endosymbiotic algae, but also with prokaryotic symbionts, the specificity of which remains elusive. To identify the central microbial symbionts of corals, their specificity across species and conservation over geographic regions, we sequenced partial SSU ribosomal RNA genes of Bacteria and Archaea from the common corals Stylophora pistillata and Pocillopora verrucosa across 28 reefs within seven major geographical regions. We demonstrate that both corals harbor Endozoicomonas bacteria as their prevalent symbiont. Importantly, catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) with Endozoicomonas-specific probes confirmed their residence as large aggregations deep within coral tissues. Using fine-scale genotyping techniques and single-cell genomics, we demonstrate that P. verrucosa harbors the same Endozoicomonas, whereas S. pistillata associates with geographically distinct genotypes. This specificity may be shaped by the different reproductive strategies of the hosts, potentially uncovering a pattern of symbiont selection that is linked to life history. Spawning corals such as P. verrucosa acquire prokaryotes from the environment. In contrast, brooding corals such as S. pistillata release symbiont-packed planula larvae, which may explain a strong regional signature in their microbiome. Our work contributes to the factors underlying microbiome specificity and adds detail to coral holobiont functioning.

  16. Beyond the Census Tract: Patterns and Determinants of Racial Segregation at Multiple Geographic Scales*

    PubMed Central

    Lee, Barrett A.; Reardon, Sean F.; Firebaugh, Glenn; Farrell, Chad R.; Matthews, Stephen A.; O'Sullivan, David

    2014-01-01

    The census tract-based residential segregation literature rests on problematic assumptions about geographic scale and proximity. We pursue a new tract-free approach that combines explicitly spatial concepts and methods to examine racial segregation across egocentric local environments of varying size. Using 2000 census data for the 100 largest U.S. metropolitan areas, we compute a spatially modified version of the information theory index H to describe patterns of black-white, Hispanic-white, Asian-white, and multi-group segregation at different scales. The metropolitan structural characteristics that best distinguish micro-segregation from macro-segregation for each group combination are identified, and their effects are decomposed into portions due to racial variation occurring over short and long distances. A comparison of our results to those from tract-based analyses confirms the value of the new approach. PMID:25324575

  17. A geographic comparison of selected large-scale planetary surface features

    NASA Technical Reports Server (NTRS)

    Meszaros, S. P.

    1984-01-01

    Photographic and cartographic comparisons of geographic features on Mercury, the Moon, Earth, Mars, Ganymede, Callisto, Mimas, and Tethys are presented. Planetary structures caused by impacts, volcanism, tectonics, and other natural forces are included. Each feature is discussed individually and then those of similar origin are compared at the same scale.

  18. Evaluating ecoregions for sampling and mapping land-cover patterns

    Treesearch

    Kurt H. Riitters; James D. Wickham; Timothy G. Wade

    2006-01-01

    Ecoregional stratification has been proposed for sampling and mapping land-cover composition and pattern over time. Using a wall-to-wall land-cover map of the United States, we evaluated geographic scales of variance for nine landscapelevel and eight forest pattern indices, and compared stratification by ecoregions, administrative units, and watersheds. Ecoregions...

  19. Geographical Topics Learning of Geo-Tagged Social Images.

    PubMed

    Zhang, Xiaoming; Ji, Shufan; Wang, Senzhang; Li, Zhoujun; Lv, Xueqiang

    2016-03-01

    With the availability of cheap location sensors, geotagging of images in online social media is very popular. With a large amount of geo-tagged social images, it is interesting to study how these images are shared across geographical regions and how the geographical language characteristics and vision patterns are distributed across different regions. Unlike textual document, geo-tagged social image contains multiple types of content, i.e., textual description, visual content, and geographical information. Existing approaches usually mine geographical characteristics using a subset of multiple types of image contents or combining those contents linearly, which ignore correlations between different types of contents, and their geographical distributions. Therefore, in this paper, we propose a novel method to discover geographical characteristics of geo-tagged social images using a geographical topic model called geographical topic model of social images (GTMSIs). GTMSI integrates multiple types of social image contents as well as the geographical distributions, in which image topics are modeled based on both vocabulary and visual features. In GTMSI, each region of the image would have its own topic distribution, and hence have its own language model and vision pattern. Experimental results show that our GTMSI could identify interesting topics and vision patterns, as well as provide location prediction and image tagging.

  20. Patterns of Nitrogen Fixation and Related Genetic Diversity (nifH) in Microbial Mats and Stromatolites from Different Environments

    NASA Astrophysics Data System (ADS)

    Beltrán, Y. Y.; Centeno, C.; Falcón, L. I.

    2010-04-01

    We want to estimate the patterns of nitrogen fixation and the related genetic diversity (nifH) of microbial mats and microbialites on dial and temporal scales along a physicochemical and geographical gradient.

  1. Gone with the currents: lack of genetic differentiation at the circum-continental scale in the Antarctic krill Euphausia superba

    PubMed Central

    2011-01-01

    Background Southern Ocean fauna represent a significant amount of global biodiversity, whose origin may be linked to glacial cycles determining local extinction/eradication with ice advance, survival of refugee populations and post-glacial re-colonization. This pattern implies high potential for differentiation in benthic shelf species with limited dispersal, yet consequences for pelagic organisms are less clear. The present study investigates levels of genetic variation and population structure of the Antarctic krill Euphausia superba using mitochondrial DNA and EST-linked microsatellite markers for an unprecedentedly comprehensive sampling of its populations over a circum-Antarctic range. Results MtDNA (ND1) sequences and EST-linked microsatellite markers indicated no clear sign of genetic structure among populations over large geographic scales, despite considerable power to detect differences inferred from forward-time simulations. Based on ND1, few instances of genetic heterogeneity, not significant after correction for multiple tests, were detected between geographic or temporal samples. Neutrality tests and mismatch distribution based on mtDNA sequences revealed strong evidence of past population expansion. Significant positive values of the parameter g (a measure of population growth) were obtained from microsatellite markers using a coalescent-based genealogical method and suggested a recent start (60 000 - 40 000 years ago) for the expansion. Conclusions The results provide evidence of lack of genetic heterogeneity of Antarctic krill at large geographic scales and unequivocal support for recent population expansion. Lack of genetic structuring likely reflects the tight link between krill and circum-Antarctic ocean currents and is consistent with the hypothesis that differentiation processes in Antarctic species are largely influenced by dispersal potential, whereas small-scale spatial and temporal differentiation might be due to local conditions leading to genetic patchiness. The signal of recent population growth suggests differential impact of glacial cycles on pelagic Antarctic species, which experienced population expansion during glaciations with increased available habitat, versus sedentary benthic shelf species. EST-linked microsatellites provide new perspectives to complement the results based on mtDNA and suggest that data-mining of EST libraries will be a useful approach to facilitate use of microsatellites for additional species. PMID:21486439

  2. Natural Scales in Geographical Patterns

    NASA Astrophysics Data System (ADS)

    Menezes, Telmo; Roth, Camille

    2017-04-01

    Human mobility is known to be distributed across several orders of magnitude of physical distances, which makes it generally difficult to endogenously find or define typical and meaningful scales. Relevant analyses, from movements to geographical partitions, seem to be relative to some ad-hoc scale, or no scale at all. Relying on geotagged data collected from photo-sharing social media, we apply community detection to movement networks constrained by increasing percentiles of the distance distribution. Using a simple parameter-free discontinuity detection algorithm, we discover clear phase transitions in the community partition space. The detection of these phases constitutes the first objective method of characterising endogenous, natural scales of human movement. Our study covers nine regions, ranging from cities to countries of various sizes and a transnational area. For all regions, the number of natural scales is remarkably low (2 or 3). Further, our results hint at scale-related behaviours rather than scale-related users. The partitions of the natural scales allow us to draw discrete multi-scale geographical boundaries, potentially capable of providing key insights in fields such as epidemiology or cultural contagion where the introduction of spatial boundaries is pivotal.

  3. Circadian Rhythms in Socializing Propensity

    PubMed Central

    Zhang, Cheng; Phang, Chee Wei; Zeng, Xiaohua; Wang, Ximeng; Xu, Yunjie; Huang, Yun; Contractor, Noshir

    2015-01-01

    Using large-scale interaction data from a virtual world, we show that people’s propensity to socialize (forming new social connections) varies by hour of the day. We arrive at our results by longitudinally tracking people’s friend-adding activities in a virtual world. Specifically, we find that people are most likely to socialize during the evening, at approximately 8 p.m. and 12 a.m., and are least likely to do so in the morning, at approximately 8 a.m. Such patterns prevail on weekdays and weekends and are robust to variations in individual characteristics and geographical conditions. PMID:26353080

  4. Global analysis of thermal tolerance and latitude in ectotherms

    PubMed Central

    Sunday, Jennifer M.; Bates, Amanda E.; Dulvy, Nicholas K.

    2011-01-01

    A tenet of macroecology is that physiological processes of organisms are linked to large-scale geographical patterns in environmental conditions. Species at higher latitudes experience greater seasonal temperature variation and are consequently predicted to withstand greater temperature extremes. We tested for relationships between breadths of thermal tolerance in ectothermic animals and the latitude of specimen location using all available data, while accounting for habitat, hemisphere, methodological differences and taxonomic affinity. We found that thermal tolerance breadths generally increase with latitude, and do so at a greater rate in the Northern Hemisphere. In terrestrial ectotherms, upper thermal limits vary little while lower thermal limits decrease with latitude. By contrast, marine species display a coherent poleward decrease in both upper and lower thermal limits. Our findings provide comprehensive global support for hypotheses generated from studies at smaller taxonomic subsets and geographical scales. Our results further indicate differences between terrestrial and marine ectotherms in how thermal physiology varies with latitude that may relate to the degree of temperature variability experienced on land and in the ocean. PMID:21106582

  5. The geographic distribution patterns of HIV-, HCV- and co-infections among drug users in a national methadone maintenance treatment program in Southwest China

    PubMed Central

    2014-01-01

    Background HIV-, HCV- and HIV/HCV co-infections among drug users have become a rapidly emerging global public health problem. In order to constrain the dual epidemics of HIV/AIDS and drug use, China has adopted a methadone maintenance treatment program (MMTP) since 2004. Studies of the geographic heterogeneity of HIV and HCV infections at a local scale are sparse, which has critical implications for future MMTP implementation and health policies covering both HIV and HCV prevention among drug users in China. This study aimed to characterize geographic patterns of HIV and HCV prevalence at the township level among drug users in a Yi Autonomous Prefecture, Southwest of China. Methods Data on demographic and clinical characteristics of all clients in the 11 MMTP clinics of the Yi Autonomous Prefecture from March 2004 to December 2012 were collected. A GIS-based geographic analysis involving geographic autocorrelation analysis and geographic scan statistics were employed to identify the geographic distribution pattern of HIV-, HCV- and co-infections among drug users. Results A total of 6690 MMTP clients was analyzed. The prevalence of HIV-, HCV- and co-infections were 25.2%, 30.8%, and 10.9% respectively. There were significant global and local geographic autocorrelations for HIV-, HCV-, and co-infection. The Moran’s I was 0.3015, 0.3449, and 0.3155, respectively (P < 0.0001). Both the geographic autocorrelation analysis and the geographic scan statistical analysis showed that HIV-, HCV-, and co-infections in the prefecture exhibited significant geographic clustering at the township level. The geographic distribution pattern of each infection group was different. Conclusion HIV-, HCV-, and co-infections among drug users in the Yi Autonomous Prefecture all exhibited substantial geographic heterogeneity at the township level. The geographic distribution patterns of the three groups were different. These findings imply that it may be necessary to inform or invent site-specific intervention strategies to better devote currently limited resource to combat these two viruses. PMID:24612875

  6. Large-scale disturbance legacies and the climate sensitivity of primary Picea abies forests.

    PubMed

    Schurman, Jonathan S; Trotsiuk, Volodymyr; Bače, Radek; Čada, Vojtěch; Fraver, Shawn; Janda, Pavel; Kulakowski, Dominik; Labusova, Jana; Mikoláš, Martin; Nagel, Thomas A; Seidl, Rupert; Synek, Michal; Svobodová, Kristýna; Chaskovskyy, Oleh; Teodosiu, Marius; Svoboda, Miroslav

    2018-05-01

    Determining the drivers of shifting forest disturbance rates remains a pressing global change issue. Large-scale forest dynamics are commonly assumed to be climate driven, but appropriately scaled disturbance histories are rarely available to assess how disturbance legacies alter subsequent disturbance rates and the climate sensitivity of disturbance. We compiled multiple tree ring-based disturbance histories from primary Picea abies forest fragments distributed throughout five European landscapes spanning the Bohemian Forest and the Carpathian Mountains. The regional chronology includes 11,595 tree cores, with ring dates spanning the years 1750-2000, collected from 560 inventory plots in 37 stands distributed across a 1,000 km geographic gradient, amounting to the largest disturbance chronology yet constructed in Europe. Decadal disturbance rates varied significantly through time and declined after 1920, resulting in widespread increases in canopy tree age. Approximately 75% of current canopy area recruited prior to 1900. Long-term disturbance patterns were compared to an historical drought reconstruction, and further linked to spatial variation in stand structure and contemporary disturbance patterns derived from LANDSAT imagery. Historically, decadal Palmer drought severity index minima corresponded to higher rates of canopy removal. The severity of contemporary disturbances increased with each stand's estimated time since last major disturbance, increased with mean diameter, and declined with increasing within-stand structural variability. Reconstructed spatial patterns suggest that high small-scale structural variability has historically acted to reduce large-scale susceptibility and climate sensitivity of disturbance. Reduced disturbance rates since 1920, a potential legacy of high 19th century disturbance rates, have contributed to a recent region-wide increase in disturbance susceptibility. Increasingly common high-severity disturbances throughout primary Picea forests of Central Europe should be reinterpreted in light of both legacy effects (resulting in increased susceptibility) and climate change (resulting in increased exposure to extreme events). © 2018 John Wiley & Sons Ltd.

  7. Mortality during a Large-Scale Heat Wave by Place, Demographic Group, Internal and External Causes of Death, and Building Climate Zone.

    PubMed

    Joe, Lauren; Hoshiko, Sumi; Dobraca, Dina; Jackson, Rebecca; Smorodinsky, Svetlana; Smith, Daniel; Harnly, Martha

    2016-03-09

    Mortality increases during periods of elevated heat. Identification of vulnerable subgroups by demographics, causes of death, and geographic regions, including deaths occurring at home, is needed to inform public health prevention efforts. We calculated mortality relative risks (RRs) and excess deaths associated with a large-scale California heat wave in 2006, comparing deaths during the heat wave with reference days. For total (all-place) and at-home mortality, we examined risks by demographic factors, internal and external causes of death, and building climate zones. During the heat wave, 582 excess deaths occurred, a 5% increase over expected (RR = 1.05, 95% confidence interval (CI) 1.03-1.08). Sixty-six percent of excess deaths were at home (RR = 1.12, CI 1.07-1.16). Total mortality risk was higher among those aged 35-44 years than ≥ 65, and among Hispanics than whites. Deaths from external causes increased more sharply (RR = 1.18, CI 1.10-1.27) than from internal causes (RR = 1.04, CI 1.02-1.07). Geographically, risk varied by building climate zone; the highest risks of at-home death occurred in the northernmost coastal zone (RR = 1.58, CI 1.01-2.48) and the southernmost zone of California's Central Valley (RR = 1.43, CI 1.21-1.68). Heat wave mortality risk varied across subpopulations, and some patterns of vulnerability differed from those previously identified. Public health efforts should also address at-home mortality, non-elderly adults, external causes, and at-risk geographic regions.

  8. Hydroclimatology of the 2008 Midwest floods

    NASA Astrophysics Data System (ADS)

    Budikova, D.; Coleman, J. S. M.; Strope, S. A.; Austin, A.

    2010-12-01

    The late spring/early summer flooding that occurred in the American Midwest between May and June 2008 resulted from a combination of large-scale atmospheric circulation patterns that supported a steady influx of moisture into the area. A low pressure system centered over the central-western United States steered a strong jet and associated storms along its eastern edge from the west to southwest and an anomalously strong Great Plains Low Level Jet brought continuous warm and moist air into the area from the Gulf of Mexico into the area. We examine and quantify here the impact these circulation patterns had on the hydroclimatology of the Midwest highlighting the magnitude, frequency, geographic distribution, and temporal evolution of precipitation that ultimately magnified the flooding. Historical precipitation records were used to assess the regional rainfall characteristics at various geographic and time scales. Five distinct hydroclimatic characteristics contributed to the definition of the 2008 flood including persistent high surface soil moisture conditions prior to flooding exasperated by anomalously high rainfall, extreme rainfall totals covering extensive areas, increased frequency of shorter-term, smaller-magnitude events, persistent multiday heavy precipitation events, and extreme flood-producing rain storms. The major flooding lasted for approximately 24 days and most greatly impacted the state of Iowa, southern Wisconsin, and central Indiana. Its occurrence during the May-June period makes the event especially unusual for this region.

  9. The scaling of contact rates with population density for the infectious disease models.

    PubMed

    Hu, Hao; Nigmatulina, Karima; Eckhoff, Philip

    2013-08-01

    Contact rates and patterns among individuals in a geographic area drive transmission of directly-transmitted pathogens, making it essential to understand and estimate contacts for simulation of disease dynamics. Under the uniform mixing assumption, one of two mechanisms is typically used to describe the relation between contact rate and population density: density-dependent or frequency-dependent. Based on existing evidence of population threshold and human mobility patterns, we formulated a spatial contact model to describe the appropriate form of transmission with initial growth at low density and saturation at higher density. We show that the two mechanisms are extreme cases that do not capture real population movement across all scales. Empirical data of human and wildlife diseases indicate that a nonlinear function may work better when looking at the full spectrum of densities. This estimation can be applied to large areas with population mixing in general activities. For crowds with unusually large densities (e.g., transportation terminals, stadiums, or mass gatherings), the lack of organized social contact structure deviates the physical contacts towards a special case of the spatial contact model - the dynamics of kinetic gas molecule collision. In this case, an ideal gas model with van der Waals correction fits well; existing movement observation data and the contact rate between individuals is estimated using kinetic theory. A complete picture of contact rate scaling with population density may help clarify the definition of transmission rates in heterogeneous, large-scale spatial systems. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Complex seasonal patterns of primary producers at the land-sea interface

    USGS Publications Warehouse

    Cloern, J.E.; Jassby, A.D.

    2008-01-01

    Seasonal fluctuations of plant biomass and photosynthesis are key features of the Earth system because they drive variability of atmospheric CO 2, water and nutrient cycling, and food supply to consumers. There is no inventory of phytoplankton seasonal cycles in nearshore coastal ecosystems where forcings from ocean, land and atmosphere intersect. We compiled time series of phytoplankton biomass (chlorophyll a) from 114 estuaries, lagoons, inland seas, bays and shallow coastal waters around the world, and searched for seasonal patterns as common timing and amplitude of monthly variability. The data revealed a broad continuum of seasonal patterns, with large variability across and within ecosystems. This contrasts with annual cycles of terrestrial and oceanic primary producers for which seasonal fluctuations are recurrent and synchronous over large geographic regions. This finding bears on two fundamental ecological questions: (1) how do estuarine and coastal consumers adapt to an irregular and unpredictable food supply, and (2) how can we extract signals of climate change from phytoplankton observations in coastal ecosystems where local-scale processes can mask responses to changing climate? ?? 2008 Blackwell Publishing Ltd/CNRS.

  11. Strong genetic structure corresponds to small-scale geographic breaks in the Australian alpine grasshopper Kosciuscola tristis.

    PubMed

    Slatyer, Rachel A; Nash, Michael A; Miller, Adam D; Endo, Yoshinori; Umbers, Kate D L; Hoffmann, Ary A

    2014-10-02

    Mountain landscapes are topographically complex, creating discontinuous 'islands' of alpine and sub-alpine habitat with a dynamic history. Changing climatic conditions drive their expansion and contraction, leaving signatures on the genetic structure of their flora and fauna. Australia's high country covers a small, highly fragmented area. Although the area is thought to have experienced periods of relative continuity during Pleistocene glacial periods, small-scale studies suggest deep lineage divergence across low-elevation gaps. Using both DNA sequence data and microsatellite markers, we tested the hypothesis that genetic partitioning reflects observable geographic structuring across Australia's mainland high country, in the widespread alpine grasshopper Kosciuscola tristis (Sjösted). We found broadly congruent patterns of regional structure between the DNA sequence and microsatellite datasets, corresponding to strong divergence among isolated mountain regions. Small and isolated mountains in the south of the range were particularly distinct, with well-supported divergence corresponding to climate cycles during the late Pliocene and Pleistocene. We found mixed support, however, for divergence among other mountain regions. Interestingly, within areas of largely contiguous alpine and sub-alpine habitat around Mt Kosciuszko, microsatellite data suggested significant population structure, accompanied by a strong signature of isolation-by-distance. Consistent patterns of strong lineage divergence among different molecular datasets indicate genetic breaks between populations inhabiting geographically distinct mountain regions. Three primary phylogeographic groups were evident in the highly fragmented Victorian high country, while within-region structure detected with microsatellites may reflect more recent population isolation. Despite the small area of Australia's alpine and sub-alpine habitats, their low topographic relief and lack of extensive glaciation, divergence among populations was on the same scale as that detected in much more extensive Northern hemisphere mountain systems. The processes driving divergence in the Australian mountains might therefore differ from their Northern hemisphere counterparts.

  12. Recreational freshwater fishing drives non-native aquatic species richness patterns at a continental scale.

    EPA Science Inventory

    Mapping the geographic distribution of non-native aquatic species is a critically important precursor to understanding the anthropogenic and environmental factors that drive freshwater biological invasions. Such efforts are often limited to local scales and/or to single species, ...

  13. Pattern detection in stream networks: Quantifying spatialvariability in fish distribution

    USGS Publications Warehouse

    Torgersen, Christian E.; Gresswell, Robert E.; Bateman, Douglas S.

    2004-01-01

    Biological and physical properties of rivers and streams are inherently difficult to sample and visualize at the resolution and extent necessary to detect fine-scale distributional patterns over large areas. Satellite imagery and broad-scale fish survey methods are effective for quantifying spatial variability in biological and physical variables over a range of scales in marine environments but are often too coarse in resolution to address conservation needs in inland fisheries management. We present methods for sampling and analyzing multiscale, spatially continuous patterns of stream fishes and physical habitat in small- to medium-size watersheds (500–1000 hectares). Geospatial tools, including geographic information system (GIS) software such as ArcInfo dynamic segmentation and ArcScene 3D analyst modules, were used to display complex biological and physical datasets. These tools also provided spatial referencing information (e.g. Cartesian and route-measure coordinates) necessary for conducting geostatistical analyses of spatial patterns (empirical semivariograms and wavelet analysis) in linear stream networks. Graphical depiction of fish distribution along a one-dimensional longitudinal profile and throughout the stream network (superimposed on a 10-metre digital elevation model) provided the spatial context necessary for describing and interpreting the relationship between landscape pattern and the distribution of coastal cutthroat trout (Oncorhynchus clarki clarki) in western Oregon, U.S.A. The distribution of coastal cutthroat trout was highly autocorrelated and exhibited a spherical semivariogram with a defined nugget, sill, and range. Wavelet analysis of the main-stem longitudinal profile revealed periodicity in trout distribution at three nested spatial scales corresponding ostensibly to landscape disturbances and the spacing of tributary junctions.

  14. Selectivity by host plants affects the distribution of arbuscular mycorrhizal fungi: evidence from ITS rDNA sequence metadata.

    PubMed

    Yang, Haishui; Zang, Yanyan; Yuan, Yongge; Tang, Jianjun; Chen, Xin

    2012-04-12

    Arbuscular mycorrhizal fungi (AMF) can form obligate symbioses with the vast majority of land plants, and AMF distribution patterns have received increasing attention from researchers. At the local scale, the distribution of AMF is well documented. Studies at large scales, however, are limited because intensive sampling is difficult. Here, we used ITS rDNA sequence metadata obtained from public databases to study the distribution of AMF at continental and global scales. We also used these sequence metadata to investigate whether host plant is the main factor that affects the distribution of AMF at large scales. We defined 305 ITS virtual taxa (ITS-VTs) among all sequences of the Glomeromycota by using a comprehensive maximum likelihood phylogenetic analysis. Each host taxonomic order averaged about 53% specific ITS-VTs, and approximately 60% of the ITS-VTs were host specific. Those ITS-VTs with wide host range showed wide geographic distribution. Most ITS-VTs occurred in only one type of host functional group. The distributions of most ITS-VTs were limited across ecosystem, across continent, across biogeographical realm, and across climatic zone. Non-metric multidimensional scaling analysis (NMDS) showed that AMF community composition differed among functional groups of hosts, and among ecosystem, continent, biogeographical realm, and climatic zone. The Mantel test showed that AMF community composition was significantly correlated with plant community composition among ecosystem, among continent, among biogeographical realm, and among climatic zone. The structural equation modeling (SEM) showed that the effects of ecosystem, continent, biogeographical realm, and climatic zone were mainly indirect on AMF distribution, but plant had strongly direct effects on AMF. The distribution of AMF as indicated by ITS rDNA sequences showed a pattern of high endemism at large scales. This pattern indicates high specificity of AMF for host at different scales (plant taxonomic order and functional group) and high selectivity from host plants for AMF. The effects of ecosystemic, biogeographical, continental and climatic factors on AMF distribution might be mediated by host plants.

  15. Plant community, geographic distance and abiotic factors play different roles in predicting AMF biogeography at the regional scale in northern China.

    PubMed

    Xu, Tianle; Veresoglou, Stavros D; Chen, Yongliang; Rillig, Matthias C; Xiang, Dan; Ondřej, Daniel; Hao, Zhipeng; Liu, Lei; Deng, Ye; Hu, Yajun; Chen, Weiping; Wang, Juntao; He, Jizheng; Chen, Baodong

    2016-12-01

    Arbuscular mycorrhizal fungi (AMF) are ubiquitous mutualists of terrestrial plants and play key roles in regulating various ecosystem processes, but little is known about AMF biogeography at regional scale. This study aims at exploring the key predictors of AMF communities across a 5000-km transect in northern China. We determined the soil AMF species richness and community composition at 47 sites representative of four vegetation types (meadow steppe, typical steppe, desert steppe and desert) and related them to plant community characteristics, abiotic factors and geographic distance. The results showed that soil pH was the strongest predictor of AMF richness and phylogenetic diversity. However, abiotic factors only have a low predictive effect on AMF community composition or phylogenetic patterns. By contrast, we found a significant relationship between community composition of AMF and plants, which was a surprising result given the extent of heterogeneity in the plant community across this transect. Moreover, the geographic distance predominantly explained the AMF phylogenetic structure, implying that history evolutionary may play a role in shaping AMF biogeographic patterns. This study highlighted the different roles of main factors in predicting AMF biogeography, and bridge landscape-scale studies to more recent global-scale efforts. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Latitude delineates patterns of biogeography in terrestrial Streptomyces.

    PubMed

    Choudoir, Mallory J; Doroghazi, James R; Buckley, Daniel H

    2016-12-01

    The biogeography of Streptomyces was examined at regional spatial scales to identify factors that govern patterns of microbial diversity. Streptomyces are spore forming filamentous bacteria which are widespread in soil. Streptomyces strains were isolated from perennial grass habitats sampled across a spatial scale of more than 6000 km. Previous analysis of this geographically explicit culture collection provided evidence for a latitudinal diversity gradient in Streptomyces species. Here the hypothesis that this latitudinal diversity gradient is a result of evolutionary dynamics associated with historical demographic processes was evaluated. Historical demographic phenomena have genetic consequences that can be evaluated through analysis of population genetics. Population genetic approaches were applied to analyze population structure in six of the most numerically abundant and geographically widespread Streptomyces phylogroups from our culture collection. Streptomyces population structure varied at regional spatial scales, and allelic diversity correlated with geographic distance. In addition, allelic diversity and gene flow are partitioned by latitude. Finally, it was found that nucleotide diversity within phylogroups was negatively correlated with latitude. These results indicate that phylogroup diversification is constrained by dispersal limitation at regional spatial scales, and they are consistent with the hypothesis that historical demographic processes have influenced the contemporary biogeography of Streptomyces. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Assessing the influence of biogeographical region and phylogenetic history on chemical defences and herbivory in Quercus species.

    PubMed

    Moreira, Xoaquín; Abdala-Roberts, Luis; Galmán, Andrea; Francisco, Marta; Fuente, María de la; Butrón, Ana; Rasmann, Sergio

    2018-06-07

    Biogeographical factors and phylogenetic history are key determinants of inter-specific variation in plant defences. However, few studies have conducted broad-scale geographical comparisons of plant defences while controlling for phylogenetic relationships, and, in doing so, none have separated constitutive from induced defences. This gap has limited our understanding of how historical or large-scale processes mediate biogeographical patterns in plant defences since these may be contingent upon shared evolutionary history and phylogenetic constraints. We conducted a phylogenetically-controlled experiment testing for differences in constitutive leaf chemical defences and their inducibility between Palearctic and Nearctic oak species (Quercus, total 18 species). We induced defences in one-year old plants by inflicting damage by gypsy moth larvae (Lymantria dispar), estimated the amount of leaf area consumed, and quantified various groups of phenolic compounds. There was no detectable phylogenetic signal for constitutive or induced levels of most defensive traits except for constitutive condensed tannins, as well as no phylogenetic signal in leaf herbivory. We did, however, find marked differences in defence levels between oak species from each region: Palearctic species had higher levels of constitutive condensed tannins, but less constitutive lignins and less constitutive and induced hydrolysable tannins compared with Nearctic species. Additionally, Palearctic species had lower levels of leaf damage compared with Nearctic species. These differences in leaf damage, lignins and hydrolysable (but not condensed) tannins were lost after accounting for phylogeny, suggesting that geographical structuring of phylogenetic relationships mediated biogeographical differences in defences and herbivore resistance. Together, these findings suggest that historical processes and large-scale drivers have shaped differences in allocation to constitutive defences (and in turn resistance) between Palearctic and Nearctic oaks. Moreover, although evidence of phylogenetic conservatism in the studied traits is rather weak, shared evolutionary history appears to mediate some of these biogeographical patterns in allocation to chemical defences. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Characteristics of atmospheric circulation patterns associated with extreme temperatures over North America in observations and climate models

    NASA Astrophysics Data System (ADS)

    Loikith, Paul C.

    Motivated by a desire to understand the physical mechanisms involved in future anthropogenic changes in extreme temperature events, the key atmospheric circulation patterns associated with extreme daily temperatures over North America in the current climate are identified. Several novel metrics are used to systematically identify and describe these patterns for the entire continent. The orientation, physical characteristics, and spatial scale of these circulation patterns vary based on latitude, season, and proximity to important geographic features (i.e., mountains, coastlines). The anomaly patterns associated with extreme cold events tend to be similar to, but opposite in sign of, those associated with extreme warm events, especially within the westerlies, and tend to scale with temperature in the same locations. The influence of the Pacific North American (PNA) pattern, the Northern Annular Mode (NAM), and the El Niño-Southern Oscillation (ENSO) on extreme temperature days and months shows that associations between extreme temperatures and the PNA and NAM are stronger than associations with ENSO. In general, the association with extremes tends to be stronger on monthly than daily time scales. Extreme temperatures are associated with the PNA and NAM in locations typically influenced by these circulation patterns; however many extremes still occur on days when the amplitude and polarity of these patterns do not favor their occurrence. In winter, synoptic-scale, transient weather disturbances are important drivers of extreme temperature days; however these smaller-scale events are often concurrent with amplified PNA or NAM patterns. Associations are weaker in summer when other physical mechanisms affecting the surface energy balance, such as anomalous soil moisture content, are associated with extreme temperatures. Analysis of historical runs from seventeen climate models from the CMIP5 database suggests that most models simulate realistic circulation patterns associated with extreme temperature days in most places. Model-simulated patterns tend to resemble observed patterns better in the winter than the summer and at 500 hPa than at the surface. There is substantial variability among the suite of models analyzed and most models simulate circulation patterns more realistically away from influential features such as large bodies of water and complex topography.

  19. Recreational freshwater fishing drives non-native aquatic species richness patterns at a continental scale.

    EPA Science Inventory

    Aim Mapping the geographic distribution of non-native aquatic species is a critically important precursor to understanding the anthropogenic and environmental factors that drive freshwater biological invasions. Such efforts are often limited to local scales and/or to single spec...

  20. CHARACTERIZATION OF SMALL ESTUARIES AS A COMPONENT OF A REGIONAL-SCALE MONITORING PROGRAM

    EPA Science Inventory

    Large-scale environmental monitoring programs, such as EPA's Environmental Monitoring and Assessment Program (EMAP), by nature focus on estimating the ecological condition of large geographic areas. Generally missing is the ability to provide estimates of condition of individual ...

  1. Region effects influence local tree species diversity.

    PubMed

    Ricklefs, Robert E; He, Fangliang

    2016-01-19

    Global patterns of biodiversity reflect both regional and local processes, but the relative importance of local ecological limits to species coexistence, as influenced by the physical environment, in contrast to regional processes including species production, dispersal, and extinction, is poorly understood. Failure to distinguish regional influences from local effects has been due, in part, to sampling limitations at small scales, environmental heterogeneity within local or regional samples, and incomplete geographic sampling of species. Here, we use a global dataset comprising 47 forest plots to demonstrate significant region effects on diversity, beyond the influence of local climate, which together explain more than 92% of the global variation in local forest tree species richness. Significant region effects imply that large-scale processes shaping the regional diversity of forest trees exert influence down to the local scale, where they interact with local processes to determine the number of coexisting species.

  2. Diabetes Interactive Atlas

    PubMed Central

    Burrows, Nilka R.; Geiss, Linda S.

    2014-01-01

    The Diabetes Interactive Atlas is a recently released Web-based collection of maps that allows users to view geographic patterns and examine trends in diabetes and its risk factors over time across the United States and within states. The atlas provides maps, tables, graphs, and motion charts that depict national, state, and county data. Large amounts of data can be viewed in various ways simultaneously. In this article, we describe the design and technical issues for developing the atlas and provide an overview of the atlas’ maps and graphs. The Diabetes Interactive Atlas improves visualization of geographic patterns, highlights observation of trends, and demonstrates the concomitant geographic and temporal growth of diabetes and obesity. PMID:24503340

  3. Phylogenetic congruence of lichenised fungi and algae is affected by spatial scale and taxonomic diversity.

    PubMed

    Buckley, Hannah L; Rafat, Arash; Ridden, Johnathon D; Cruickshank, Robert H; Ridgway, Hayley J; Paterson, Adrian M

    2014-01-01

    The role of species' interactions in structuring biological communities remains unclear. Mutualistic symbioses, involving close positive interactions between two distinct organismal lineages, provide an excellent means to explore the roles of both evolutionary and ecological processes in determining how positive interactions affect community structure. In this study, we investigate patterns of co-diversification between fungi and algae for a range of New Zealand lichens at the community, genus, and species levels and explore explanations for possible patterns related to spatial scale and pattern, taxonomic diversity of the lichens considered, and the level sampling replication. We assembled six independent datasets to compare patterns in phylogenetic congruence with varied spatial extent of sampling, taxonomic diversity and level of specimen replication. For each dataset, we used the DNA sequences from the ITS regions of both the fungal and algal genomes from lichen specimens to produce genetic distance matrices. Phylogenetic congruence between fungi and algae was quantified using distance-based redundancy analysis and we used geographic distance matrices in Moran's eigenvector mapping and variance partitioning to evaluate the effects of spatial variation on the quantification of phylogenetic congruence. Phylogenetic congruence was highly significant for all datasets and a large proportion of variance in both algal and fungal genetic distances was explained by partner genetic variation. Spatial variables, primarily at large and intermediate scales, were also important for explaining genetic diversity patterns in all datasets. Interestingly, spatial structuring was stronger for fungal than algal genetic variation. As the spatial extent of the samples increased, so too did the proportion of explained variation that was shared between the spatial variables and the partners' genetic variation. Different lichen taxa showed some variation in their phylogenetic congruence and spatial genetic patterns and where greater sample replication was used, the amount of variation explained by partner genetic variation increased. Our results suggest that the phylogenetic congruence pattern, at least at small spatial scales, is likely due to reciprocal co-adaptation or co-dispersal. However, the detection of these patterns varies among different lichen taxa, across spatial scales and with different levels of sample replication. This work provides insight into the complexities faced in determining how evolutionary and ecological processes may interact to generate diversity in symbiotic association patterns at the population and community levels. Further, it highlights the critical importance of considering sample replication, taxonomic diversity and spatial scale in designing studies of co-diversification.

  4. The Endpoint Hypothesis: A Topological-Cognitive Assessment of Geographic Scale Movement Patterns

    NASA Astrophysics Data System (ADS)

    Klippel, Alexander; Li, Rui

    Movement patterns of individual entities at the geographic scale are becoming a prominent research focus in spatial sciences. One pertinent question is how cognitive and formal characterizations of movement patterns relate. In other words, are (mostly qualitative) formal characterizations cognitively adequate? This article experimentally evaluates movement patterns that can be characterized as paths through a conceptual neighborhood graph, that is, two extended spatial entities changing their topological relationship gradually. The central questions addressed are: (a) Do humans naturally use topology to create cognitive equivalent classes, that is, is topology the basis for categorizing movement patterns spatially? (b) Are ‘all’ topological relations equally salient, and (c) does language influence categorization. The first two questions are addressed using a modification of the endpoint hypothesis stating that: movement patterns are distinguished by the topological relation they end in. The third question addresses whether language has an influence on the classification of movement patterns, that is, whether there is a difference between linguistic and non-linguistic category construction. In contrast to our previous findings we were able to document the importance of topology for conceptualizing movement patterns but also reveal differences in the cognitive saliency of topological relations. The latter aspect calls for a weighted conceptual neighborhood graph to cognitively adequately model human conceptualization processes.

  5. Long-term citizen-collected data reveal geographical patterns and temporal trends in lake water clarity

    USGS Publications Warehouse

    Lottig, Noah R.; Wagner, Tyler; Henry, Emily N.; Cheruvelil, Kendra Spence; Webster, Katherine E.; Downing, John A.; Stow, Craig A.

    2014-01-01

    We compiled a lake-water clarity database using publically available, citizen volunteer observations made between 1938 and 2012 across eight states in the Upper Midwest, USA. Our objectives were to determine (1) whether temporal trends in lake-water clarity existed across this large geographic area and (2) whether trends were related to the lake-specific characteristics of latitude, lake size, or time period the lake was monitored. Our database consisted of >140,000 individual Secchi observations from 3,251 lakes that we summarized per lake-year, resulting in 21,020 summer averages. Using Bayesian hierarchical modeling, we found approximately a 1% per year increase in water clarity (quantified as Secchi depth) for the entire population of lakes. On an individual lake basis, 7% of lakes showed increased water clarity and 4% showed decreased clarity. Trend direction and strength were related to latitude and median sample date. Lakes in the southern part of our study-region had lower average annual summer water clarity, more negative long-term trends, and greater inter-annual variability in water clarity compared to northern lakes. Increasing trends were strongest for lakes with median sample dates earlier in the period of record (1938–2012). Our ability to identify specific mechanisms for these trends is currently hampered by the lack of a large, multi-thematic database of variables that drive water clarity (e.g., climate, land use/cover). Our results demonstrate, however, that citizen science can provide the critical monitoring data needed to address environmental questions at large spatial and long temporal scales. Collaborations among citizens, research scientists, and government agencies may be important for developing the data sources and analytical tools necessary to move toward an understanding of the factors influencing macro-scale patterns such as those shown here for lake water clarity.

  6. Long-Term Citizen-Collected Data Reveal Geographical Patterns and Temporal Trends in Lake Water Clarity

    PubMed Central

    Lottig, Noah R.; Wagner, Tyler; Norton Henry, Emily; Spence Cheruvelil, Kendra; Webster, Katherine E.; Downing, John A.; Stow, Craig A.

    2014-01-01

    We compiled a lake-water clarity database using publically available, citizen volunteer observations made between 1938 and 2012 across eight states in the Upper Midwest, USA. Our objectives were to determine (1) whether temporal trends in lake-water clarity existed across this large geographic area and (2) whether trends were related to the lake-specific characteristics of latitude, lake size, or time period the lake was monitored. Our database consisted of >140,000 individual Secchi observations from 3,251 lakes that we summarized per lake-year, resulting in 21,020 summer averages. Using Bayesian hierarchical modeling, we found approximately a 1% per year increase in water clarity (quantified as Secchi depth) for the entire population of lakes. On an individual lake basis, 7% of lakes showed increased water clarity and 4% showed decreased clarity. Trend direction and strength were related to latitude and median sample date. Lakes in the southern part of our study-region had lower average annual summer water clarity, more negative long-term trends, and greater inter-annual variability in water clarity compared to northern lakes. Increasing trends were strongest for lakes with median sample dates earlier in the period of record (1938–2012). Our ability to identify specific mechanisms for these trends is currently hampered by the lack of a large, multi-thematic database of variables that drive water clarity (e.g., climate, land use/cover). Our results demonstrate, however, that citizen science can provide the critical monitoring data needed to address environmental questions at large spatial and long temporal scales. Collaborations among citizens, research scientists, and government agencies may be important for developing the data sources and analytical tools necessary to move toward an understanding of the factors influencing macro-scale patterns such as those shown here for lake water clarity. PMID:24788722

  7. Habitat heterogeneity of hadal trenches: Considerations and implications for future studies

    NASA Astrophysics Data System (ADS)

    Stewart, Heather A.; Jamieson, Alan J.

    2018-02-01

    The hadal zone largely comprises a series of subduction trenches that do not form part of the continental shelf-slope rise to abyssal plain continuum. Instead they form geographically isolated clusters of deep-sea (6000-11,000 m water depth) environments. There is a growing realization in hadal science that ecological patterns and processes are not driven solely by responses to hydrostatic pressure, with comparable levels of habitat heterogeneity as observed in other marine biozones. Furthermore, this heterogeneity can be expressed at multiple scales from inter-trench levels (degrees of geographical isolation, and biochemical province), to intra-trench levels (variation between trench flanks and axis), topographical features within the trench interior (sedimentary basins, ridges, escarpments, 'deeps', seamounts) to the substrate of the trench floor (seabed-sediment composition, mass movement deposits, bedrock outcrop). Using best available bathymetry data combined with the largest lander-derived imaging dataset that spans the full depth range of three hadal trenches (including adjacent slopes); the Mariana, Kermadec and New Hebrides trenches, the topographic variability, fine-scale habitat heterogeneity and distribution of seabed sediments of these three trenches have been assessed for the first time. As well as serving as the first descriptive study of habitat heterogeneity at hadal depths, this study also provides guidance for future hadal sampling campaigns taking into account geographic isolation, total trench particulate organic matter flux, maximum water depth and area.

  8. Large-Scale Atmospheric Teleconnection Patterns Associated with the Interannual Variability of Heatwaves in East Asia and Its Decadal Changes

    NASA Astrophysics Data System (ADS)

    Choi, N.; Lee, M. I.; Lim, Y. K.; Kim, K. M.

    2017-12-01

    Heatwave is an extreme hot weather event which accompanies fatal damage to human health. The heatwave has a strong relationship with the large-scale atmospheric teleconnection patterns. In this study, we examine the spatial pattern of heatwave in East Asia by using the EOF analysis and the relationship between heatwave frequency and large-scale atmospheric teleconnection patterns. We also separate the time scale of heatwave frequency as the time scale longer than a decade and the interannual time scale. The long-term variation of heatwave frequency in East Asia shows a linkage with the sea surface temperature (SST) variability over the North Atlantic with a decadal time scale (a.k.a. the Atlantic Multidecadal Oscillation; AMO). On the other hands, the interannual variation of heatwave frequency is linked with the two dominant spatial patterns associated with the large-scale teleconnection patterns mimicking the Scandinavian teleconnection (SCAND-like) pattern and the circumglobal teleconnection (CGT-like) pattern, respectively. It is highlighted that the interannual variation of heatwave frequency in East Asia shows a remarkable change after mid-1990s. While the heatwave frequency was mainly associated with the CGT-like pattern before mid-1990s, the SCAND-like pattern becomes the most dominant one after mid-1990s, making the CGT-like pattern as the second. This study implies that the large-scale atmospheric teleconnection patterns play a key role in developing heatwave events in East Asia. This study further discusses possible mechanisms for the decadal change in the linkage between heatwave frequency and the large-scale teleconnection patterns in East Asia such as early melting of snow cover and/or weakening of East Asian jet stream due to global warming.

  9. Contribution of large-scale midlatitude disturbances to hourly precipitation extremes in the United States

    NASA Astrophysics Data System (ADS)

    Barbero, Renaud; Abatzoglou, John T.; Fowler, Hayley J.

    2018-02-01

    Midlatitude synoptic weather regimes account for a substantial portion of annual precipitation accumulation as well as multi-day precipitation extremes across parts of the United States (US). However, little attention has been devoted to understanding how synoptic-scale patterns contribute to hourly precipitation extremes. A majority of 1-h annual maximum precipitation (AMP) across the western US were found to be linked to two coherent midlatitude synoptic patterns: disturbances propagating along the jet stream, and cutoff upper-level lows. The influence of these two patterns on 1-h AMP varies geographically. Over 95% of 1-h AMP along the western coastal US were coincident with progressive midlatitude waves embedded within the jet stream, while over 30% of 1-h AMP across the interior western US were coincident with cutoff lows. Between 30-60% of 1-h AMP were coincident with the jet stream across the Ohio River Valley and southeastern US, whereas a a majority of 1-h AMP over the rest of central and eastern US were not found to be associated with either midlatitude synoptic features. Composite analyses for 1-h AMP days coincident to cutoff lows and jet stream show that an anomalous moisture flux and upper-level dynamics are responsible for initiating instability and setting up an environment conducive to 1-h AMP events. While hourly precipitation extremes are generally thought to be purely convective in nature, this study shows that large-scale dynamics and baroclinic disturbances may also contribute to precipitation extremes on sub-daily timescales.

  10. Vertical transmission explains the specific Burkholderia pattern in Sphagnum mosses at multi-geographic scale

    PubMed Central

    Bragina, Anastasia; Cardinale, Massimiliano; Berg, Christian; Berg, Gabriele

    2013-01-01

    The betaproteobacterial genus Burkholderia is known for its versatile interactions with its hosts that can range from beneficial to pathogenic. A plant-beneficial-environmental (PBE) Burkholderia cluster was recently separated from the pathogen cluster, yet still little is known about burkholderial diversity, distribution, colonization, and transmission patterns on plants. In our study, we applied a combination of high-throughput molecular and microscopic methods to examine the aforementioned factors for Burkholderia communities associated with Sphagnum mosses – model plants for long-term associations – in Austrian and Russian bogs. Analysis of 16S rRNA gene amplicons libraries revealed that most of the Burkholderia are part of the PBE group, but a minor fraction was closely related to B. glathei and B. andropogonis from the pathogen cluster. Notably, Burkholderia showed highly similar composition patterns for each moss species independent of the geographic region, and Burkholderia-specific fluorescent in situ hybridization of Sphagnum gametophytes exhibited similar colonization patterns in different Sphagnum species at multi-geographic scales. To explain these patterns, we compared the compositions of the surrounding water, gametophyte-, and sporophyte-associated microbiome at genus level and discovered that Burkholderia were present in the Sphagnum sporophyte and gametophyte, but were absent in the flark water. Therefore, Burkholderia is a part of the core microbiome transmitted from the moss sporophyte to the gametophyte. This suggests a vertical transmission of Burkholderia strains, and thus underlines their importance for the plants themselves. PMID:24391630

  11. Comparison of Thaumarchaeotal populations from four deep sea basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Techtman, Stephen M.; Mahmoudi, Nagissa; Whitt, Kendall T.

    The nitrogen cycle in the marine environment is strongly affected by ammonia-oxidizing Thaumarchaeota. In some marine settings, Thaumarchaeotes can comprise a large percentage of the prokaryotic population. To better understand the biogeographic patterns of Thaumarchaeotes, we sought to investigate differences in their abundance and phylogenetic diversity between geographically distinct basins. Samples were collected from four marine basins (The Caspian Sea, the Great Australian Bight, and the Central and Eastern Mediterranean). The concentration of bacterial and archaeal 16S rRNA genes and archaeal amoA genes were assessed using qPCR. Minimum entropy decomposition was used to elucidate the fine-scale diversity of Thaumarchaeotes. Wemore » demonstrated that there were significant differences in the abundance and diversity of Thaumarchaeotes between these four basins. The diversity of Thaumarchaeotal oligotypes differed between basins with many oligotypes only present in one of the four basins, which suggests that their distribution showed biogeographic patterning. There were also significant differences in Thaumarchaeotal community structure between these basins. This would suggest that geographically distant, yet geochemically similar basins may house distinct Thaumarchaeaotal populations. In conclusion, these findings suggest that Thaumarchaeota are very diverse and that biogeography in part contributes in determining the diversity and distribution of Thaumarchaeotes.« less

  12. Comparison of Thaumarchaeotal populations from four deep sea basins

    DOE PAGES

    Techtman, Stephen M.; Mahmoudi, Nagissa; Whitt, Kendall T.; ...

    2017-10-03

    The nitrogen cycle in the marine environment is strongly affected by ammonia-oxidizing Thaumarchaeota. In some marine settings, Thaumarchaeotes can comprise a large percentage of the prokaryotic population. To better understand the biogeographic patterns of Thaumarchaeotes, we sought to investigate differences in their abundance and phylogenetic diversity between geographically distinct basins. Samples were collected from four marine basins (The Caspian Sea, the Great Australian Bight, and the Central and Eastern Mediterranean). The concentration of bacterial and archaeal 16S rRNA genes and archaeal amoA genes were assessed using qPCR. Minimum entropy decomposition was used to elucidate the fine-scale diversity of Thaumarchaeotes. Wemore » demonstrated that there were significant differences in the abundance and diversity of Thaumarchaeotes between these four basins. The diversity of Thaumarchaeotal oligotypes differed between basins with many oligotypes only present in one of the four basins, which suggests that their distribution showed biogeographic patterning. There were also significant differences in Thaumarchaeotal community structure between these basins. This would suggest that geographically distant, yet geochemically similar basins may house distinct Thaumarchaeaotal populations. In conclusion, these findings suggest that Thaumarchaeota are very diverse and that biogeography in part contributes in determining the diversity and distribution of Thaumarchaeotes.« less

  13. Are lowland rainforests really evolutionary museums? Phylogeography of the green hylia (Hylia prasina) in the Afrotropics.

    PubMed

    Marks, Ben D

    2010-04-01

    A recent trend in the literature highlights the special role that tropical montane regions and habitat transitions peripheral to large blocks of lowland rainforest play in the diversification process. The emerging view is one of lowland rainforests as evolutionary 'museums'; where biotic diversity is maintained over evolutionary time, and additional diversity is accrued from peripheral areas, but where there has been little recent diversification. This leads to the prediction of genetic diversity without geographic structure in widespread taxa. Here, I assess the notion of the lowland rainforest 'museum' with a phylogeographic study of the green hylia (Aves: Sylviidae: Hylia prasina) using 1132 bp of mtDNA sequence data. The distribution of genetic diversity within the mainland subspecies of Hylia reveals five highly divergent haplotype groups distributed in accordance with broad-scale areas of endemism in the Afrotropics. This pattern of genetic diversity within a currently described subspecies refutes the characterization of lowland forests as evolutionary museums. If the pattern of geographic variation in Hylia occurs broadly in widespread rainforest species, conservation policy makers may need to rethink their priorities for conservation in the Afrotropics. (c) 2009 Elsevier Inc. All rights reserved.

  14. Genetic diversity patterns of arbuscular mycorrhizal fungi associated with the mycoheterotroph Arachnitis uniflora Phil. (Corsiaceae)

    PubMed Central

    Acosta, M. Cristina; Cofré, Noelia; Domínguez, Laura S.; Bidartondo, Martin I.; Sérsic, Alicia N.

    2017-01-01

    Abstract Background and Aims Arachnitis uniflora is a mycoheterotrophic plant that exploits arbuscular mycorrhizal fungi of neighbouring plants. We tested A. uniflora's specificity towards fungi across its large latitudinal range, as well as the role of historical events and current environmental, geographical and altitudinal variables on fungal genetic diversity. Methods Arachnitis uniflora mycorrhizas were sampled at 25 sites. Fungal phylogenetic relationships were reconstructed, genetic diversity was calculated and the main divergent lineages were dated. Phylogeographical analysis was performed with the main fungal clade. Fungal diversity correlations with environmental factors were investigated. Key Results Glomeraceae fungi dominated, with a main clade that likely originated in the Upper Cretaceous and diversified in the Miocene. Two other arbuscular mycorrhizal fungal families not previously known to be targeted by A. uniflora were detected rarely and appear to be facultative associations. High genetic diversity, found in Bolivia and both northern and southern Patagonia, was correlated with temperature, rainfall and soil features. Conclusions Fungal genetic diversity and its distribution can be explained by the ancient evolutionary history of the target fungi and by micro-scale environmental conditions with a geographical mosaic pattern. PMID:28398457

  15. Cross-National Patterns of Intergenerational Continuities in Childbearing in Developed Countries

    PubMed Central

    Murphy, Michael

    2013-01-01

    Earlier work has shown that the association between the fertility of parents and the fertility of children has become stronger over time in some societies. This article updates and broadens the geographic coverage to assess the magnitude of intergenerational continuities in childbearing in developed and middle-income societies using data for 46 populations from 28 developed countries drawn from a number of recent large-scale survey programs. Robust positive intergenerational fertility correlations are found across these countries into the most recent period, and although there is no indication that the strength of the relationship is declining, the increasing trend does not appear to be continuing. PMID:24215254

  16. Multilocus phylogeography of the common lizard Zootoca vivipara at the Ibero-Pyrenean suture zone reveals lowland barriers and high-elevation introgression

    PubMed Central

    2013-01-01

    Background The geographic distribution of evolutionary lineages and the patterns of gene flow upon secondary contact provide insight into the process of divergence and speciation. We explore the evolutionary history of the common lizard Zootoca vivipara (= Lacerta vivipara) in the Iberian Peninsula and test the role of the Pyrenees and the Cantabrian Mountains in restricting gene flow and driving lineage isolation and divergence. We also assess patterns of introgression among lineages upon secondary contact, and test for the role of high-elevation trans-mountain colonisations in explaining spatial patterns of genetic diversity. We use mtDNA sequence data and genome-wide AFLP loci to reconstruct phylogenetic relationships among lineages, and measure genetic structure. Results The main genetic split in mtDNA corresponds generally to the French and Spanish sides of the Pyrenees as previously reported, in contrast to genome-wide AFLP data, which show a major division between NW Spain and the rest. Both types of markers support the existence of four distinct and geographically congruent genetic groups, which are consistent with major topographic barriers. Both datasets reveal the presence of three independent contact zones between lineages in the Pyrenean region, one in the Basque lowlands, one in the low-elevation mountains of the western Pyrenees, and one in the French side of the central Pyrenees. The latter shows genetic evidence of a recent, high-altitude trans-Pyrenean incursion from Spain into France. Conclusions The distribution and age of major lineages is consistent with a Pleistocene origin and a role for both the Pyrenees and the Cantabrian Mountains in driving isolation and differentiation of Z. vivipara lineages at large geographic scales. However, mountain ranges are not always effective barriers to dispersal, and have not prevented a recent high-elevation trans-Pyrenean incursion that has led to asymmetrical introgression among divergent lineages. Cytonuclear discordance in patterns of genetic structure and introgression at contact zones suggests selection may be involved at various scales. Suture zones are important areas for the study of lineage formation and speciation, and our results show that biogeographic barriers can yield markedly different phylogeographic patterns in different vertebrate and invertebrate taxa. PMID:24021154

  17. A ZigBee wireless networking for remote sensing applications in hydrological monitoring system

    NASA Astrophysics Data System (ADS)

    Weng, Songgan; Zhai, Duo; Yang, Xing; Hu, Xiaodong

    2017-01-01

    Hydrological monitoring is recognized as one of the most important factors in hydrology. Particularly, investigation of the tempo-spatial variation patterns of water-level and their effect on hydrological research has attracted more and more attention in recent. Because of the limitations in both human costs and existing water-level monitoring devices, however, it is very hard for researchers to collect real-time water-level data from large-scale geographical areas. This paper designs and implements a real-time water-level data monitoring system (MCH) based on ZigBee networking, which explicitly serves as an effective and efficient scientific instrument for domain experts to facilitate the measurement of large-scale and real-time water-level data monitoring. We implement a proof-of-concept prototype of the MCH, which can monitor water-level automatically, real-timely and accurately with low cost and low power consumption. The preliminary laboratory results and analyses demonstrate the feasibility and the efficacy of the MCH.

  18. Influence of geographical scale on the detection of density dependence in the host-parasite system, Arvicola terrestris and Taenia taeniaeformis.

    PubMed

    Deter, J; Berthier, K; Chaval, Y; Cosson, J F; Morand, S; Charbonnel, N

    2006-04-01

    Infection by the cestode Taenia taeniaeformis was investigated within numerous cyclic populations of the fossorial water vole Arvicola terrestris sampled during 4 years in Franche-Comté (France). The relative influence of different rodent demographic parameters on the presence of this cestode was assessed by considering (1) the demographic phase of the cycle; (2) density at the local geographical scale (<0.1 km2); (3) mean density at a larger scale (>10 km2). The local scale corresponded to the rodent population (intermediate host), while the large scale corresponded to the definitive host population (wild and feral cats). General linear models based on analyses of 1804 voles revealed the importance of local density but also of year, rodent age, season and interactions between year and season and between age and season. Prevalence was significantly higher in low vole densities than during local outbreaks. By contrast, the large geographical scale density and the demographic phase had less influence on infection by the cestode. The potential impacts of the cestode on the fitness of the host were assessed and infection had no effect on the host body mass, litter size or sexual activity of voles.

  19. From ratites to rats: the size of fleshy fruits shapes species' distributions and continental rainforest assembly

    PubMed Central

    Rossetto, Maurizio; Kooyman, Robert; Yap, Jia-Yee S.; Laffan, Shawn W.

    2015-01-01

    Seed dispersal is a key process in plant spatial dynamics. However, consistently applicable generalizations about dispersal across scales are mostly absent because of the constraints on measuring propagule dispersal distances for many species. Here, we focus on fleshy-fruited taxa, specifically taxa with large fleshy fruits and their dispersers across an entire continental rainforest biome. We compare species-level results of whole-chloroplast DNA analyses in sister taxa with large and small fruits, to regional plot-based samples (310 plots), and whole-continent patterns for the distribution of woody species with either large (more than 30 mm) or smaller fleshy fruits (1093 taxa). The pairwise genomic comparison found higher genetic distances between populations and between regions in the large-fruited species (Endiandra globosa), but higher overall diversity within the small-fruited species (Endiandra discolor). Floristic comparisons among plots confirmed lower numbers of large-fruited species in areas where more extreme rainforest contraction occurred, and re-colonization by small-fruited species readily dispersed by the available fauna. Species' distribution patterns showed that larger-fruited species had smaller geographical ranges than smaller-fruited species and locations with stable refugia (and high endemism) aligned with concentrations of large fleshy-fruited taxa, making them a potentially valuable conservation-planning indicator. PMID:26645199

  20. From ratites to rats: the size of fleshy fruits shapes species' distributions and continental rainforest assembly.

    PubMed

    Rossetto, Maurizio; Kooyman, Robert; Yap, Jia-Yee S; Laffan, Shawn W

    2015-12-07

    Seed dispersal is a key process in plant spatial dynamics. However, consistently applicable generalizations about dispersal across scales are mostly absent because of the constraints on measuring propagule dispersal distances for many species. Here, we focus on fleshy-fruited taxa, specifically taxa with large fleshy fruits and their dispersers across an entire continental rainforest biome. We compare species-level results of whole-chloroplast DNA analyses in sister taxa with large and small fruits, to regional plot-based samples (310 plots), and whole-continent patterns for the distribution of woody species with either large (more than 30 mm) or smaller fleshy fruits (1093 taxa). The pairwise genomic comparison found higher genetic distances between populations and between regions in the large-fruited species (Endiandra globosa), but higher overall diversity within the small-fruited species (Endiandra discolor). Floristic comparisons among plots confirmed lower numbers of large-fruited species in areas where more extreme rainforest contraction occurred, and re-colonization by small-fruited species readily dispersed by the available fauna. Species' distribution patterns showed that larger-fruited species had smaller geographical ranges than smaller-fruited species and locations with stable refugia (and high endemism) aligned with concentrations of large fleshy-fruited taxa, making them a potentially valuable conservation-planning indicator. © 2015 The Author(s).

  1. Population Genetic Structure of the Tropical Two-Wing Flyingfish (Exocoetus volitans)

    PubMed Central

    Lewallen, Eric A.; Bohonak, Andrew J.; Bonin, Carolina A.; van Wijnen, Andre J.; Pitman, Robert L.; Lovejoy, Nathan R.

    2016-01-01

    Delineating populations of pantropical marine fish is a difficult process, due to widespread geographic ranges and complex life history traits in most species. Exocoetus volitans, a species of two-winged flyingfish, is a good model for understanding large-scale patterns of epipelagic fish population structure because it has a circumtropical geographic range and completes its entire life cycle in the epipelagic zone. Buoyant pelagic eggs should dictate high local dispersal capacity in this species, although a brief larval phase, small body size, and short lifespan may limit the dispersal of individuals over large spatial scales. Based on these biological features, we hypothesized that E. volitans would exhibit statistically and biologically significant population structure defined by recognized oceanographic barriers. We tested this hypothesis by analyzing cytochrome b mtDNA sequence data (1106 bps) from specimens collected in the Pacific, Atlantic and Indian oceans (n = 266). AMOVA, Bayesian, and coalescent analytical approaches were used to assess and interpret population-level genetic variability. A parsimony-based haplotype network did not reveal population subdivision among ocean basins, but AMOVA revealed limited, statistically significant population structure between the Pacific and Atlantic Oceans (ΦST = 0.035, p<0.001). A spatially-unbiased Bayesian approach identified two circumtropical population clusters north and south of the Equator (ΦST = 0.026, p<0.001), a previously unknown dispersal barrier for an epipelagic fish. Bayesian demographic modeling suggested the effective population size of this species increased by at least an order of magnitude ~150,000 years ago, to more than 1 billion individuals currently. Thus, high levels of genetic similarity observed in E. volitans can be explained by high rates of gene flow, a dramatic and recent population expansion, as well as extensive and consistent dispersal throughout the geographic range of the species. PMID:27736863

  2. Mortality during a Large-Scale Heat Wave by Place, Demographic Group, Internal and External Causes of Death, and Building Climate Zone

    PubMed Central

    Joe, Lauren; Hoshiko, Sumi; Dobraca, Dina; Jackson, Rebecca; Smorodinsky, Svetlana; Smith, Daniel; Harnly, Martha

    2016-01-01

    Mortality increases during periods of elevated heat. Identification of vulnerable subgroups by demographics, causes of death, and geographic regions, including deaths occurring at home, is needed to inform public health prevention efforts. We calculated mortality relative risks (RRs) and excess deaths associated with a large-scale California heat wave in 2006, comparing deaths during the heat wave with reference days. For total (all-place) and at-home mortality, we examined risks by demographic factors, internal and external causes of death, and building climate zones. During the heat wave, 582 excess deaths occurred, a 5% increase over expected (RR = 1.05, 95% confidence interval (CI) 1.03–1.08). Sixty-six percent of excess deaths were at home (RR = 1.12, CI 1.07–1.16). Total mortality risk was higher among those aged 35–44 years than ≥65, and among Hispanics than whites. Deaths from external causes increased more sharply (RR = 1.18, CI 1.10–1.27) than from internal causes (RR = 1.04, CI 1.02–1.07). Geographically, risk varied by building climate zone; the highest risks of at-home death occurred in the northernmost coastal zone (RR = 1.58, CI 1.01–2.48) and the southernmost zone of California’s Central Valley (RR = 1.43, CI 1.21–1.68). Heat wave mortality risk varied across subpopulations, and some patterns of vulnerability differed from those previously identified. Public health efforts should also address at-home mortality, non-elderly adults, external causes, and at-risk geographic regions. PMID:27005646

  3. Population Genetic Structure of the Tropical Two-Wing Flyingfish (Exocoetus volitans).

    PubMed

    Lewallen, Eric A; Bohonak, Andrew J; Bonin, Carolina A; van Wijnen, Andre J; Pitman, Robert L; Lovejoy, Nathan R

    2016-01-01

    Delineating populations of pantropical marine fish is a difficult process, due to widespread geographic ranges and complex life history traits in most species. Exocoetus volitans, a species of two-winged flyingfish, is a good model for understanding large-scale patterns of epipelagic fish population structure because it has a circumtropical geographic range and completes its entire life cycle in the epipelagic zone. Buoyant pelagic eggs should dictate high local dispersal capacity in this species, although a brief larval phase, small body size, and short lifespan may limit the dispersal of individuals over large spatial scales. Based on these biological features, we hypothesized that E. volitans would exhibit statistically and biologically significant population structure defined by recognized oceanographic barriers. We tested this hypothesis by analyzing cytochrome b mtDNA sequence data (1106 bps) from specimens collected in the Pacific, Atlantic and Indian oceans (n = 266). AMOVA, Bayesian, and coalescent analytical approaches were used to assess and interpret population-level genetic variability. A parsimony-based haplotype network did not reveal population subdivision among ocean basins, but AMOVA revealed limited, statistically significant population structure between the Pacific and Atlantic Oceans (ΦST = 0.035, p<0.001). A spatially-unbiased Bayesian approach identified two circumtropical population clusters north and south of the Equator (ΦST = 0.026, p<0.001), a previously unknown dispersal barrier for an epipelagic fish. Bayesian demographic modeling suggested the effective population size of this species increased by at least an order of magnitude ~150,000 years ago, to more than 1 billion individuals currently. Thus, high levels of genetic similarity observed in E. volitans can be explained by high rates of gene flow, a dramatic and recent population expansion, as well as extensive and consistent dispersal throughout the geographic range of the species.

  4. Final Technical Report for DE-SC0005467

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broccoli, Anthony J.

    2014-09-14

    The objective of this project is to gain a comprehensive understanding of the key atmospheric mechanisms and physical processes associated with temperature extremes in order to better interpret and constrain uncertainty in climate model simulations of future extreme temperatures. To achieve this objective, we first used climate observations and a reanalysis product to identify the key atmospheric circulation patterns associated with extreme temperature days over North America during the late twentieth century. We found that temperature extremes were associated with distinctive signatures in near-surface and mid-tropospheric circulation. The orientations and spatial scales of these circulation anomalies vary with latitude, season,more » and proximity to important geographic features such as mountains and coastlines. We next examined the associations between daily and monthly temperature extremes and large-scale, recurrent modes of climate variability, including the Pacific-North American (PNA) pattern, the northern annular mode (NAM), and the El Niño-Southern Oscillation (ENSO). The strength of the associations are strongest with the PNA and NAM and weaker for ENSO, and also depend upon season, time scale, and location. The associations are stronger in winter than summer, stronger for monthly than daily extremes, and stronger in the vicinity of the centers of action of the PNA and NAM patterns. In the final stage of this project, we compared climate model simulations of the circulation patterns associated with extreme temperature days over North America with those obtained from observations. Using a variety of metrics and self-organizing maps, we found the multi-model ensemble and the majority of individual models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) generally capture the observed patterns well, including their strength and as well as variations with latitude and season. The results from this project indicate that current models are capable of simulating the large-scale meteorological patterns associated with daily temperature extremes and they suggest that such models can be used to evaluate the extent to which changes in atmospheric circulation will influence future changes in temperature extremes.« less

  5. Geographic approaches to biodiversity conservation: implications of scale and error to landscape planning

    Treesearch

    Curtis H. Flather; Kenneth R. Wilson; Susan A. Shriner

    2009-01-01

    Conservation science is concerned with understanding why distribution and abundance patterns of species vary in time and space. Although these patterns have strong signatures tied to the availability of energy and nutrients, variation in climate, physiographic heterogeneity, and differences in the structural complexity of natural vegetation, it is becoming more...

  6. Population genomic analysis suggests strong influence of river network on spatial distribution of genetic variation in invasive saltcedar across the southwestern United States

    USGS Publications Warehouse

    Lee, Soo-Rang; Jo, Yeong-Seok; Park, Chan-Ho; Friedman, Jonathan M.; Olson, Matthew S.

    2018-01-01

    Understanding the complex influences of landscape and anthropogenic elements that shape the population genetic structure of invasive species provides insight into patterns of colonization and spread. The application of landscape genomics techniques to these questions may offer detailed, previously undocumented insights into factors influencing species invasions. We investigated the spatial pattern of genetic variation and the influences of landscape factors on population similarity in an invasive riparian shrub, saltcedar (Tamarix L.) by analysing 1,997 genomewide SNP markers for 259 individuals from 25 populations collected throughout the southwestern United States. Our results revealed a broad-scale spatial genetic differentiation of saltcedar populations between the Colorado and Rio Grande river basins and identified potential barriers to population similarity along both river systems. River pathways most strongly contributed to population similarity. In contrast, low temperature and dams likely served as barriers to population similarity. We hypothesize that large-scale geographic patterns in genetic diversity resulted from a combination of early introductions from distinct populations, the subsequent influence of natural selection, dispersal barriers and founder effects during range expansion.

  7. Molecular and Phenotypic Evidence of a New Species of Genus Esox (Esocidae, Esociformes, Actinopterygii): The Southern Pike, Esox flaviae

    PubMed Central

    Lucentini, Livia; Puletti, Maria Elena; Ricciolini, Claudia; Gigliarelli, Lilia; Fontaneto, Diego; Lanfaloni, Luisa; Bilò, Fabiana; Natali, Mauro; Panara, Fausto

    2011-01-01

    We address the taxonomic position of the southern European individuals of pike, performing a series of tests and comparisons from morphology, DNA taxonomy and population genetics parameters, in order to support the hypothesis that two species of pike, and not only one, exist in Europe. A strong relationship emerged between a northern genotype supported by COI, Cytb, AFLP and specific fragments, and a phenotype with round spot skin colour pattern and a large number of scales in the lateral line, clearly separated from a southern genotype with other skin colour pattern and a low number of scales in the lateral line. DNA taxonomy, based on a coalescent approach (GMYC) from phylogenetic reconstructions on COI and Cytb together with AFLP admixture analysis, supported the existence of two independently evolving entities. Such differences are not simply due to geographic distances, as northern European samples are more similar to Canadian and Chinese samples than the southern Europe ones. Thus, given that the differences between the two groups of European pike are significant at the phenotypic, genotypic and geographical levels, we propose the identification of two pike species: the already known northern pike (Esox lucius) and the southern pike (E. flaviae n.sp.). The correct identification of these two lineages as independent species should give rise to a ban on the introduction of northern pikes in southern Europe for recreational fishing, due to potential problems of hybridisation. PMID:22164201

  8. Divergence of stable isotopes in tap water across China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Sihan; Hu, Hongchang; Tian, Fuqiang

    Stable isotopes in water (e.g., δ2H and δ18O) are important indicators of hydrological and ecological patterns and processes. Tap water can reflect integrated features of regional hydrological processes and human activities. China is a large country with significant meteorological and geographical variations. This report presents the first national-scale survey of Stable Isotopes in Tap Water (SITW) across China. 780 tap water samples have been collected from 95 cities across China from December 2014 to December 2015. (1) Results yielded the Tap Water Line in China is δ2H = 7.72 δ18O + 6.57 (r2 = 0.95). (2) SITW spatial distribution presentsmore » typical "continental effect". (3) SITW seasonal variations indicate clearly regional patterns but no trends at the national level. (4) SITW can be correlated in some parts with geographic or meteorological factors. This work presents the first SITW map in China, which sets up a benchmark for further stable isotopes research across China. This is a critical step toward monitoring and investigating water resources in climate-sensitive regions, so the human-hydrological system. These findings could be used in the future to establish water management strategies at a national or regional scale. Title: Divergence of stable isotopes in tap water across China Authors: Zhao, SH; Hu, HC; Tian, FQ; Tie, Q; Wang, LX; Liu, YL; Shi, CX Source: SCIENTIFIC REPORTS, 7 10.1038/srep43653 MAR 2 2017« less

  9. Socio-Spatial Patterning of Off-Sale and On-Sale Alcohol Outlets in a Texas City

    PubMed Central

    Han, Daikwon; Gorman, Dennis M.

    2014-01-01

    Introduction and Aims To examine the socio-spatial patterning of off-sale and on-sale alcohol outlets following a policy change that ended prohibition of off-sale outlets in Lubbock, Texas. Design and Methods The spatial patterning of alcohol outlets by licensing type was examined using the k-function difference (D statistic) to compare the relative degree of spatial aggregation of the two types of alcohol outlets and by the spatial scan statistic to identify statistically significant geographic clusters of outlets. The sociodemographic characteristics of the areas containing clusters of outlets were compared to the rest of the city. In addition, the socioeconomic characteristics of census block groups with and without existing on-sale outlets were compared, as were the socioeconomic characteristics of census block groups with and without the newly issued off-sale licenses. Results The existing on-sale premises in Lubbock and the newly established off-sale premises introduced as a result of the 2009 policy change displayed different spatial patterns, with the latter being more spatially dispersed. A large cluster of on-sale outlets identified in the north-east of the city was located in a socially and economically disadvantaged area of the city. Discussion and Conclusion The findings support the view that it is important to understand the local context of deprivation within a city when examining the location of alcohol outlets and add to the existing research by drawing attention to the importance of geographic scale in assessing such relationships. PMID:24320205

  10. Socio-spatial patterning of off-sale and on-sale alcohol outlets in a Texas city.

    PubMed

    Han, Daikwon; Gorman, Dennis M

    2014-03-01

    To examine the socio-spatial patterning of off-sale and on-sale alcohol outlets following a policy change that ended prohibition of off-sale outlets in Lubbock, Texas. The spatial patterning of alcohol outlets by licensing type was examined using the k-function difference (D statistic) to compare the relative degree of spatial aggregation of the two types of alcohol outlets and by the spatial scan statistic to identify statistically significant geographic clusters of outlets. The sociodemographic characteristics of the areas containing clusters of outlets were compared with the rest of the city. In addition, the socioeconomic characteristics of census block groups with and without existing on-sale outlets were compared, as were the socioeconomic characteristics of census block groups with and without the newly issued off-sale licenses. The existing on-sale premises in Lubbock and the newly established off-sale premises introduced as a result of the 2009 policy change displayed different spatial patterns, with the latter being more spatially dispersed. A large cluster of on-sale outlets identified in the north-east of the city was located in a socially and economically disadvantaged area of the city. The findings support the view that it is important to understand the local context of deprivation within a city when examining the location of alcohol outlets and add to the existing research by drawing attention to the importance of geographic scale in assessing such relationships. © 2013 Australasian Professional Society on Alcohol and other Drugs.

  11. Temperature extremes: geographic patterns, recent changes, and implications for organismal vulnerabilities.

    PubMed

    Buckley, Lauren B; Huey, Raymond B

    2016-12-01

    Extreme temperatures can injure or kill organisms and can drive evolutionary patterns. Many indices of extremes have been proposed, but few attempts have been made to establish geographic patterns of extremes and to evaluate whether they align with geographic patterns in biological vulnerability and diversity. To examine these issues, we adopt the CLIMDEX indices of thermal extremes. We compute scores for each index on a geographic grid during a baseline period (1961-1990) and separately for the recent period (1991-2010). Heat extremes (temperatures above the 90th percentile during the baseline period) have become substantially more common during the recent period, particularly in the tropics. Importantly, the various indices show weak geographic concordance, implying that organisms in different regions will face different forms of thermal stress. The magnitude of recent shifts in indices is largely uncorrelated with baseline scores in those indices, suggesting that organisms are likely to face novel thermal stresses. Organismal tolerances correlate roughly with absolute metrics (mainly for cold), but poorly with metrics defined relative to local conditions. Regions with high extreme scores do not correlate closely with regions with high species diversity, human population density, or agricultural production. Even though frequency and intensity of extreme temperature events have - and are likely to have - major impacts on organisms, the impacts are likely to be geographically and taxonomically idiosyncratic and difficult to predict. © 2016 John Wiley & Sons Ltd.

  12. Large-scale absence of sharks on reefs in the greater-Caribbean: a footprint of human pressures.

    PubMed

    Ward-Paige, Christine A; Mora, Camilo; Lotze, Heike K; Pattengill-Semmens, Christy; McClenachan, Loren; Arias-Castro, Ery; Myers, Ransom A

    2010-08-05

    In recent decades, large pelagic and coastal shark populations have declined dramatically with increased fishing; however, the status of sharks in other systems such as coral reefs remains largely unassessed despite a long history of exploitation. Here we explore the contemporary distribution and sighting frequency of sharks on reefs in the greater-Caribbean and assess the possible role of human pressures on observed patterns. We analyzed 76,340 underwater surveys carried out by trained volunteer divers between 1993 and 2008. Surveys were grouped within one km2 cells, which allowed us to determine the contemporary geographical distribution and sighting frequency of sharks. Sighting frequency was calculated as the ratio of surveys with sharks to the total number of surveys in each cell. We compared sighting frequency to the number of people in the cell vicinity and used population viability analyses to assess the effects of exploitation on population trends. Sharks, with the exception of nurse sharks occurred mainly in areas with very low human population or strong fishing regulations and marine conservation. Population viability analysis suggests that exploitation alone could explain the large-scale absence; however, this pattern is likely to be exacerbated by additional anthropogenic stressors, such as pollution and habitat degradation, that also correlate with human population. Human pressures in coastal zones have lead to the broad-scale absence of sharks on reefs in the greater-Caribbean. Preventing further loss of sharks requires urgent management measures to curb fishing mortality and to mitigate other anthropogenic stressors to protect sites where sharks still exist. The fact that sharks still occur in some densely populated areas where strong fishing regulations are in place indicates the possibility of success and encourages the implementation of conservation measures.

  13. FISH ASSEMBLAGES IN NORTHERN GULF OF MEXICO ESTUARIES: LARGE SCALE ECOLOGICAL CHARACTERIZATION

    EPA Science Inventory

    Abstract for American Fisheries Society Annual Meeting.

    We are using trawl data from >100 estuaries, bayous, and coastal lagoons of the EMAP Louisianan Province to develop indicators of ecological condition over large geographic scales. Our primary goal is to enhance the s...

  14. Global climate forcing from albedo change caused by large-scale deforestation and reforestation: quantification and attribution of geographic variation

    USDA-ARS?s Scientific Manuscript database

    Large-scale deforestation and reforestation have contributed substantially to historical and contemporary global climate change in part through albedo-induced radiative forcing, with meaningful implications for forest management aiming to mitigate climate change. Associated warming or cooling varies...

  15. DNA barcoding at riverscape scales: Assessing biodiversity among fishes of the genus Cottus (Teleostei) in northern Rocky Mountain streams

    Treesearch

    Michael K. Young; Kevin S. McKelvey; Kristine L. Pilgrim; Michael K. Schwartz

    2013-01-01

    There is growing interest in broad-scale biodiversity assessments that can serve as benchmarks for identifying ecological change. Genetic tools have been used for such assessments for decades, but spatial sampling considerations have largely been ignored. Here, we demonstrate how intensive sampling efforts across a large geographical scale can influence identification...

  16. Links between scale and neotropical migratory bird populations

    Treesearch

    Deborah M. Finch

    1994-01-01

    Recent concerns about the future for migratory birds, particularly those that migrate to the Tropics, have led to the development of a variety of new research and education initiatives addressing avian population ecology and conservation. Research that focuses on the relationships between migrant population trends, geographical patterns, and spatial and temporal scales...

  17. Geographic techniques and recent applications of remote sensing to landscape-water quality studies

    USGS Publications Warehouse

    Griffith, J.A.

    2002-01-01

    This article overviews recent advances in studies of landscape-water quality relationships using remote sensing techniques. With the increasing feasibility of using remotely-sensed data, landscape-water quality studies can now be more easily performed on regional, multi-state scales. The traditional method of relating land use and land cover to water quality has been extended to include landscape pattern and other landscape information derived from satellite data. Three items are focused on in this article: 1) the increasing recognition of the importance of larger-scale studies of regional water quality that require a landscape perspective; 2) the increasing importance of remotely sensed data, such as the imagery-derived normalized difference vegetation index (NDVI) and vegetation phenological metrics derived from time-series NDVI data; and 3) landscape pattern. In some studies, using landscape pattern metrics explained some of the variation in water quality not explained by land use/cover. However, in some other studies, the NDVI metrics were even more highly correlated to certain water quality parameters than either landscape pattern metrics or land use/cover proportions. Although studies relating landscape pattern metrics to water quality have had mixed results, this recent body of work applying these landscape measures and satellite-derived metrics to water quality analysis has demonstrated their potential usefulness in monitoring watershed conditions across large regions.

  18. Spatial Analysis of Large Woody Debris Arrangement in a Midwestern U.S. River System: Geomorphic Implications and Influences

    NASA Astrophysics Data System (ADS)

    Martin, D. J.

    2013-12-01

    Large woody debris (LWD) is universally recognized as a key component of the geomorphological and ecological function of fluvial systems and has been increasingly incorporated into stream restoration and watershed management projects. However, 'natural' processes of recruitment and the subsequent arrangement of LWD within the river network are poorly understood and are thus, rarely a management consideration. Additionally, LWD research tends to be regionally biased toward mountainous regions, and scale biased toward the micro-scale. In many locations, the lack of understanding has led to the failure of restoration/rehabilitation projects that involved the use of LWD. This research uses geographic information systems and spatial analysis techniques to investigate longitudinal arrangement patterns of LWD in a low-gradient, Midwestern river. A large-scale GPS inventory of LWD was performed on the Big River, located in the eastern Missouri Ozarks resulting in over 5,000 logged positions of LWD along seven river segments covering nearly 100 km of the 237 km river system. A time series analysis framework was used to statistically identify longitudinal spatial patterns of LWD arrangement along the main stem of the river, and correlation analyses were performed to help identify physical controls of those patterns. Results indicate that upstream segments have slightly lower densities than downstream segments, with the exception of the farthest upstream segment. Results also show lack of an overall longitudinal trend in LWD density; however, periodogram analysis revealed an inherent periodicity in LWD arrangement. Periodicities were most evident in the downstream segments with frequencies ranging from 3 km to 7 km. Additionally, Pearson correlation analysis, performed within the segment displaying the strongest periodic behavior, show that LWD densities are correlated with channel sinuosity (r=0.25). Ongoing research is investigating further relationships between arrangement patterns and geomorphic and riparian variables. Understanding these spatial patterns and relationships will provide valuable insight into the application of LWD-related stream and watershed management practices, and fill a necessary regional knowledge gap in our understanding of LWD's role in fluvial processes.

  19. Pervasive Rise of Small-scale Deforestation in Amazonia.

    PubMed

    Kalamandeen, Michelle; Gloor, Emanuel; Mitchard, Edward; Quincey, Duncan; Ziv, Guy; Spracklen, Dominick; Spracklen, Benedict; Adami, Marcos; Aragão, Luiz E O C; Galbraith, David

    2018-01-25

    Understanding forest loss patterns in Amazonia, the Earth's largest rainforest region, is critical for effective forest conservation and management. Following the most detailed analysis to date, spanning the entire Amazon and extending over a 14-year period (2001-2014), we reveal significant shifts in deforestation dynamics of Amazonian forests. Firstly, hotspots of Amazonian forest loss are moving away from the southern Brazilian Amazon to Peru and Bolivia. Secondly, while the number of new large forest clearings (>50 ha) has declined significantly over time (46%), the number of new small clearings (<1 ha) increased by 34% between 2001-2007 and 2008-2014. Thirdly, we find that small-scale low-density forest loss expanded markedly in geographical extent during 2008-2014. This shift presents an important and alarming new challenge for forest conservation, despite reductions in overall deforestation rates.

  20. Changes to zooplankton community structure following colonization of a small lake by Leptodora kindti

    USGS Publications Warehouse

    McNaught, A.S.; Kiesling, R.L.; Ghadouani, A.

    2004-01-01

    The predaceous cladoceran Leptodora kindti (Focke) became established in Third Sister Lake, Michigan, after individuals escaped from experimental enclosures in 1987. By 1988, the Leptodora population exhibited seasonal dynamics characteristic of natural populations. The maximum seasonal abundance of Leptodora increased to 85 individuals m-3 3 yr following the introduction. After the appearance of Leptodora, small-bodied cladocerans (Ceriodaphnia and Bosmina) virtually disappeared from the lake. There were strong seasonal shifts in the dominance patterns of both cladocerans and copepods, and Daphnia species diversity increased. Results from this unplanned introduction suggest that invertebrate predators can have a rapid and lasting effect on prey populations, even in the presence of planktivorous fish. Small-scale (<20 km) geographic barriers might be as important as large-scale barriers to dispersal of planktonic animals.

  1. Validating a Geographical Image Retrieval System.

    ERIC Educational Resources Information Center

    Zhu, Bin; Chen, Hsinchun

    2000-01-01

    Summarizes a prototype geographical image retrieval system that demonstrates how to integrate image processing and information analysis techniques to support large-scale content-based image retrieval. Describes an experiment to validate the performance of this image retrieval system against that of human subjects by examining similarity analysis…

  2. Ecologic and Geographic Distribution of Filovirus Disease

    PubMed Central

    Bauer, John T.; Mills, James N.

    2004-01-01

    We used ecologic niche modeling of outbreaks and sporadic cases of filovirus-associated hemorrhagic fever (HF) to provide a large-scale perspective on the geographic and ecologic distributions of Ebola and Marburg viruses. We predicted that filovirus would occur across the Afrotropics: Ebola HF in the humid rain forests of central and western Africa, and Marburg HF in the drier and more open areas of central and eastern Africa. Most of the predicted geographic extent of Ebola HF has been observed; Marburg HF has the potential to occur farther south and east. Ecologic conditions appropriate for Ebola HF are also present in Southeast Asia and the Philippines, where Ebola Reston is hypothesized to be distributed. This first large-scale ecologic analysis provides a framework for a more informed search for taxa that could constitute the natural reservoir for this virus family. PMID:15078595

  3. Symbiosis limits establishment of legumes outside their native range at a global scale

    PubMed Central

    Simonsen, Anna K.; Dinnage, Russell; Barrett, Luke G.; Prober, Suzanne M.; Thrall, Peter H.

    2017-01-01

    Microbial symbiosis is integral to plant growth and reproduction, but its contribution to global patterns of plant distribution is unknown. Legumes (Fabaceae) are a diverse and widely distributed plant family largely dependent on symbiosis with nitrogen-fixing rhizobia, which are acquired from soil after germination. This dependency is predicted to limit establishment in new geographic areas, owing to a disruption of compatible host-symbiont associations. Here we compare non-native establishment patterns of symbiotic and non-symbiotic legumes across over 3,500 species, covering multiple independent gains and losses of rhizobial symbiosis. We find that symbiotic legume species have spread to fewer non-native regions compared to non-symbiotic legumes, providing strong support for the hypothesis that lack of suitable symbionts or environmental conditions required for effective nitrogen-fixation are driving these global introduction patterns. These results highlight the importance of mutualisms in predicting non-native species establishment and the potential impacts of microbial biogeography on global plant distributions. PMID:28387250

  4. Long-term trends in the structure of eastern Adriatic littoral fish assemblages: Consequences for fisheries management

    NASA Astrophysics Data System (ADS)

    Stagličić, N.; Matić-Skoko, S.; Pallaoro, A.; Grgičević, R.; Kraljević, M.; Tutman, P.; Dragičević, B.; Dulčić, J.

    2011-09-01

    Long-term interannual changes in abundance, biomass, diversity and structure of littoral fish assemblages were examined between 1993 and 2009 by experimental trammel net fishing up to six times per year, within the warm period - May to September, at multiple areas along the eastern Adriatic coast with the aim of testing for the consistency of patterns of change across a large spatial scale (˜600 km). The results revealed spatially consistent increasing trends of total fish abundance and biomass growing at an average rate of 15 and 14% per year, respectively. Of the diversity indices analysed, the same pattern of variability was observed for Shannon diversity, while Pielou evenness and average taxonomic distinctness measures Δ ∗ and Δ + showed spatial variability with no obvious temporal trends. Multivariate fish assemblage structure underwent a directional change displaying a similar pattern through time for all the areas. The structural change in fish assemblages generally involved most of the species present in trammel net catches. A large pool of fish species responsible for producing the temporal pattern of assemblage change was relatively different in each of the areas reflecting a large geographic range covered by the study. An analysis of 4 fish species ( Symphodus tinca, Pagellus erythrinus, Mullus surmuletus, Scorpaena porcus) common to each of the study areas as the ones driving the temporal change indicated that there were clear increasing trends of their mean catches across the years at all the study areas. A common pattern among time trajectories across the spatial scale studied implies that the factor affecting the littoral fish assemblages is not localised but regional in nature. As an underlying factor having the potential to induce such widespread and consistent improvements in littoral fish assemblages, a more restrictive artisanal fishery management that has progressively been put in place during the study period, is suggested and discussed.

  5. Examining geographic patterns of mortality: the atlas of mortality in small areas in Spain (1987-1995).

    PubMed

    Benach, Joan; Yasui, Yutaka; Borrell, Carme; Rosa, Elisabeth; Pasarín, M Isabel; Benach, Núria; Español, Esther; Martínez, José Miguel; Daponte, Antonio

    2003-06-01

    Small-area mortality atlases have been demonstrated to be a useful tool for both showing general geographical patterns in mortality data and identifying specific high-risk locations. In Spain no study has so far systematically examined geographic patterns of small-area mortality for the main causes of death. This paper presents the main features, contents and potential uses of the Spanish Atlas of Mortality in small areas (1987-1995). Population data for 2,218 small areas were drawn from the 1991 Census. Aggregated mortality data for 14 specific causes of death for the period 1987-1995 were obtained for each small area. Empirical Bayes-model-based estimates of age-adjusted relative risk were displayed in small-area maps for each cause/gender/age group (0-64 or 65 and over) combination using the same range of values (i.e. septiles) and colour schemes. The 'Spanish Atlas of Mortality' includes multiple choropleth (area-shaded) small-area maps and graphs to answer different questions about the data. The atlas is divided into three main sections. Section 1 includes the methods and comments on the main maps. Section 2 presents a two-page layout for each leading cause of death by gender including 1) a large map with relative risk estimates, 2) a map that indicates high- and low-risk small areas, 3) a graph with median and interquartile range of relative risk estimates for 17 large regions of Spain, and 4) relative-risk maps for two age groups. Section 3 provides specific information on the geographical units of analysis, statistical methods and other supplemental maps. The 'Spanish Atlas of Mortality' is a useful tool for examining geographical patterns of mortality risk and identifying specific high-risk areas. Mortality patterns displayed in the atlas may have important implications for research and social/health policy planning purposes.

  6. Fire management over large landscapes: a hierarchical approach

    Treesearch

    Kenneth G. Boykin

    2008-01-01

    Management planning for fires becomes increasingly difficult as scale increases. Stratification provides land managers with multiple scales in which to prepare plans. Using statistical techniques, Geographic Information Systems (GIS), and meetings with land managers, we divided a large landscape of over 2 million acres (White Sands Missile Range) into parcels useful in...

  7. Large-Scale Teacher Professional Development Endeavor: The Lincoln Tri-State Institute

    ERIC Educational Resources Information Center

    Murley, Lisa D.; Gandy, S. Kay; Sublett, Michael D.; Kruger, Darrell P.

    2014-01-01

    This article explores a two-year professional development initiative with four state geographic alliances. Professional development planners, whether planning for a large- or small-scale initiative or one with unlimited or limited funding, will benefit from learning about this successful professional development activity and how the impact in the…

  8. Language Learning Motivation in China: Results of a Large-Scale Stratified Survey

    ERIC Educational Resources Information Center

    You, Chenjing; Dörnyei, Zoltán

    2016-01-01

    This article reports on the findings of a large-scale cross-sectional survey of the motivational disposition of English language learners in secondary schools and universities in China. The total sample involved over 10,000 students and was stratified according to geographical region and teaching contexts, selecting participants both from urban…

  9. Pleistocene and ecological effects on continental-scale genetic differentiation in the bobcat (Lynx rufus).

    PubMed

    Reding, Dawn M; Bronikowski, Anne M; Johnson, Warren E; Clark, William R

    2012-06-01

    The potential for widespread, mobile species to exhibit genetic structure without clear geographic barriers is a topic of growing interest. Yet the patterns and mechanisms of structure--particularly over broad spatial scales--remain largely unexplored for these species. Bobcats occur across North America and possess many characteristics expected to promote gene flow. To test whether historical, topographic or ecological factors have influenced genetic differentiation in this species, we analysed 1 kb mtDNA sequence and 15 microsatellite loci from over 1700 samples collected across its range. The primary signature in both marker types involved a longitudinal cline with a sharp transition, or suture zone, occurring along the Great Plains. Thus, the data distinguished bobcats in the eastern USA from those in the western half, with no obvious physical barrier to gene flow. Demographic analyses supported a scenario of expansion from separate Pleistocene refugia, with the Great Plains representing a zone of secondary contact. Substructure within the two main lineages likely reflected founder effects, ecological factors, anthropogenic/topographic effects or a combination of these forces. Two prominent topographic features, the Mississippi River and Rocky Mountains, were not supported as significant genetic barriers. Ecological regions and environmental correlates explained a small but significant proportion of genetic variation. Overall, results implicate historical processes as the primary cause of broad-scale genetic differentiation, but contemporary forces seem to also play a role in promoting and maintaining structure. Despite the bobcat's mobility and broad niche, large-scale landscape changes have contributed to significant and complex patterns of genetic structure. © 2012 Blackwell Publishing Ltd.

  10. Spatial Modeling of Agricultural Land-Use Change at Global Scale

    NASA Astrophysics Data System (ADS)

    Meiyappan, Prasanth; Dalton, Michael; O'Neill, Brian C.; Jain, Atul K.

    2013-12-01

    Land use is both a source and consequence of climate change. Long-term modeling of land use is central in global scale assessments using Integrated Assessment Models (IAMs) to explore policy alternatives; especially because adaptation and mitigation of climate change requires long-term commitment. We present a land-use change modeling framework that can reproduce the past 100 years of evolution of global cropland and pastureland patterns to a reasonable accuracy. The novelty of our approach underlies in integrating knowledge from both the observed behavior and economic rationale behind land-use decisions, thereby making up for the intrinsic deficits in both the disciplines. The underlying economic rationale is profit maximization of individual landowners that implicitly reflects local-level decisions-making process at a larger scale. Observed behavior based on examining the relationships between contemporary land-use patterns and its socioeconomic and biophysical drivers, enters as an explicit factor into the economic framework. The land-use allocation is modified by autonomous developments and competition between land-use types. The framework accounts for spatial heterogeneity in the nature of driving factors across geographic regions. The model is currently configured to downscale continental-scale aggregate land-use information to region specific changes in land-use patterns (0.5-deg spatial resolution). The temporal resolution is one year. The historical validation experiment is facilitated by synthesizing gridded maps of a wide range of potential biophysical and socioeconomic driving factors for the 20th century. To our knowledge, this is the first retrospective analysis that has been successful in reproducing the historical experience at a global scale. We apply the method to gain useful insights on two questions: (1) what are the dominant socioeconomic and biophysical driving factors of contemporary cropland and pastureland patterns, across geographic regions, and (2) the impacts of various driving factors on shaping the cropland and pastureland patterns over the 20th century. Specifically, we focus on the causes of changes in land-use patterns in certain key regions of the world, such as the abandonment of cropland in the eastern US and a subsequent expansion to the mid-west US. This presentation will focus on the scientific basis behind the developed framework and motivations behind selecting specific statistical techniques to implement the scientific theory. Specifically, we will highlight the application of recently developed statistical techniques that are highly efficient in dealing with problems such as spatial autocorrelation and multicollinearity that are common in land-change studies. However, these statistical techniques have largely been confined to medical literature. We will present the validation results and an example application of the developed framework within an IAM. The presented framework provides a benchmark for long-term spatial modeling of land use that will benefit the IAM, land use and the Earth system modeling communities.

  11. Host and geographic structure of endophytic and endolichenic fungi at a continental scale.

    PubMed

    U'Ren, Jana M; Lutzoni, François; Miadlikowska, Jolanta; Laetsch, Alexander D; Arnold, A Elizabeth

    2012-05-01

    Endophytic and endolichenic fungi occur in healthy tissues of plants and lichens, respectively, playing potentially important roles in the ecology and evolution of their hosts. However, previous sampling has not comprehensively evaluated the biotic, biogeographic, and abiotic factors that structure their communities. Using molecular data we examined the diversity, composition, and distributions of 4154 endophytic and endolichenic Ascomycota cultured from replicate surveys of ca. 20 plant and lichen species in each of five North American sites (Madrean coniferous forest, Arizona; montane semideciduous forest, North Carolina; scrub forest, Florida; Beringian tundra and forest, western Alaska; subalpine tundra, eastern central Alaska). Endolichenic fungi were more abundant and diverse per host species than endophytes, but communities of endophytes were more diverse overall, reflecting high diversity in mosses and lycophytes. Endophytes of vascular plants were largely distinct from fungal communities that inhabit mosses and lichens. Fungi from closely related hosts from different regions were similar in higher taxonomy, but differed at shallow taxonomic levels. These differences reflected climate factors more strongly than geographic distance alone. Our study provides a first evaluation of endophytic and endolichenic fungal associations with their hosts at a continental scale. Both plants and lichens harbor abundant and diverse fungal communities whose incidence, diversity, and composition reflect the interplay of climatic patterns, geographic separation, host type, and host lineage. Although culture-free methods will inform future work, our study sets the stage for empirical assessments of ecological specificity, metabolic capability, and comparative genomics.

  12. Cultural variation in savannah sparrow, Passerculus sandwichensis, songs: an analysis using the meme concept.

    PubMed

    Burnell

    1998-10-01

    I used the meme concept to investigate patterns of cultural variation among the songs of eight, geographically distinct populations of savannah sparrows. Memes composed of only one syllable were geographically widespread and randomly distributed among populations, but memes of two-, three- and four-syllables became progressively more restricted in their geographical distribution. Thus, the populations were memetically more similar with respect to one-syllable memes and more divergent with respect to larger memes. These results suggest that differences in memetic mutation rates and susceptibility to loss by memetic drift could be sufficient to create the observed pattern of greater divergence among populations for large memes. Copyright 1998 The Association for the Study of Animal Behaviour.

  13. Biogeography and Change among Regional Coral Communities across the Western Indian Ocean

    PubMed Central

    McClanahan, Timothy R.; Ateweberhan, Mebrahtu; Darling, Emily S.; Graham, Nicholas A. J.; Muthiga, Nyawira A.

    2014-01-01

    Coral reefs are biodiverse ecosystems structured by abiotic and biotic factors operating across many spatial scales. Regional-scale interactions between climate change, biogeography and fisheries management remain poorly understood. Here, we evaluated large-scale patterns of coral communities in the western Indian Ocean after a major coral bleaching event in 1998. We surveyed 291 coral reef sites in 11 countries and over 30° of latitude between 2004 and 2011 to evaluate variations in coral communities post 1998 across gradients in latitude, mainland-island geography and fisheries management. We used linear mixed-effect hierarchical models to assess total coral cover, the abundance of four major coral families (acroporids, faviids, pocilloporids and poritiids), coral genus richness and diversity, and the bleaching susceptibility of the coral communities. We found strong latitudinal and geographic gradients in coral community structure and composition that supports the presence of a high coral cover and diversity area that harbours temperature-sensitive taxa in the northern Mozambique Channel between Tanzania, northern Mozambique and northern Madagascar. Coral communities in the more northern latitudes of Kenya, Seychelles and the Maldives were generally composed of fewer bleaching-tolerant coral taxa and with reduced richness and diversity. There was also evidence for continued declines in the abundance of temperature-sensitive taxa and community change after 2004. While there are limitations of our regional dataset in terms of spatial and temporal replication, these patterns suggest that large-scale interactions between biogeographic factors and strong temperature anomalies influence coral communities while smaller-scale factors, such as the effect of fisheries closures, were weak. The northern Mozambique Channel, while not immune to temperature disturbances, shows continued signs of resistance to climate disturbances and remains a priority for future regional conservation and management actions. PMID:24718371

  14. Biogeography and change among regional coral communities across the Western Indian Ocean.

    PubMed

    McClanahan, Timothy R; Ateweberhan, Mebrahtu; Darling, Emily S; Graham, Nicholas A J; Muthiga, Nyawira A

    2014-01-01

    Coral reefs are biodiverse ecosystems structured by abiotic and biotic factors operating across many spatial scales. Regional-scale interactions between climate change, biogeography and fisheries management remain poorly understood. Here, we evaluated large-scale patterns of coral communities in the western Indian Ocean after a major coral bleaching event in 1998. We surveyed 291 coral reef sites in 11 countries and over 30° of latitude between 2004 and 2011 to evaluate variations in coral communities post 1998 across gradients in latitude, mainland-island geography and fisheries management. We used linear mixed-effect hierarchical models to assess total coral cover, the abundance of four major coral families (acroporids, faviids, pocilloporids and poritiids), coral genus richness and diversity, and the bleaching susceptibility of the coral communities. We found strong latitudinal and geographic gradients in coral community structure and composition that supports the presence of a high coral cover and diversity area that harbours temperature-sensitive taxa in the northern Mozambique Channel between Tanzania, northern Mozambique and northern Madagascar. Coral communities in the more northern latitudes of Kenya, Seychelles and the Maldives were generally composed of fewer bleaching-tolerant coral taxa and with reduced richness and diversity. There was also evidence for continued declines in the abundance of temperature-sensitive taxa and community change after 2004. While there are limitations of our regional dataset in terms of spatial and temporal replication, these patterns suggest that large-scale interactions between biogeographic factors and strong temperature anomalies influence coral communities while smaller-scale factors, such as the effect of fisheries closures, were weak. The northern Mozambique Channel, while not immune to temperature disturbances, shows continued signs of resistance to climate disturbances and remains a priority for future regional conservation and management actions.

  15. River Networks and Human Activities: Global Fractal Analysis Using Nightlight Data

    NASA Astrophysics Data System (ADS)

    McCurley, K. 4553; Fang, Y.; Ceola, S.; Paik, K.; McGrath, G. S.; Montanari, A.; Rao, P. S.; Jawitz, J. W.

    2016-12-01

    River networks hold an important historical role in affecting human population distribution. In this study, we link the geomorphological structure of river networks to the pattern of human activities at a global scale. We use nightlights as a valuable proxy for the presence of human settlements and economic activity, and we employ HydroSHEDS as the main data source on river networks. We test the hypotheses that, analogous to Horton's laws, human activities (magnitude of nightlights) also show scaling relationship with stream order, and that the intensity of human activities decrease as the distance from the basin outlet increase. Our results demonstrate that the distribution of human activities shows a fractal structure, with power-law scaling between human activities and stream order. This relationship is robust among global river basins. Human activities are more concentrated in larger order basins, but show large variation in equivalent order basins, with higher population density emergent in the basins connected with high-order rivers. For all global river basins longer than 400km, the average intensity of human activities decrease as the distance to the outlets increases, albeit with signatures of large cities at varied distances. The power spectrum of human width (area) function is found to exhibit power law scaling, with a scaling exponent that indicates enrichment of low frequency variation. The universal fractal structure of human activities may reflect an optimum arrangement for humans in river basins to better utilize the water resources, ecological assets, and geographic advantages. The generalized patterns of human activities could be applied to better understand hydrologic and biogeochemical responses in river basins, and to advance catchment management.

  16. Evaluation of an index of biotic integrity approach used to assess biological condition in western U.S. streams and rivers at varying spatial scales

    USGS Publications Warehouse

    Meador, M.R.; Whittier, T.R.; Goldstein, R.M.; Hughes, R.M.; Peck, D.V.

    2008-01-01

    Consistent assessments of biological condition are needed across multiple ecoregions to provide a greater understanding of the spatial extent of environmental degradation. However, consistent assessments at large geographic scales are often hampered by lack of uniformity in data collection, analyses, and interpretation. The index of biotic integrity (IBI) has been widely used in eastern and central North America, where fish assemblages are complex and largely composed of native species, but IBI development has been hindered in the western United States because of relatively low fish species richness and greater relative abundance of alien fishes. Approaches to developing IBIs rarely provide a consistent means of assessing biological condition across multiple ecoregions. We conducted an evaluation of IBIs recently proposed for three ecoregions of the western United States using an independent data set covering a large geographic scale. We standardized the regional IBIs and developed biological condition criteria, assessed the responsiveness of IBIs to basin-level land uses, and assessed their precision and concordance with basin-scale IBIs. Standardized IBI scores from 318 sites in the western United States comprising mountain, plains, and xeric ecoregions were significantly related to combined urban and agricultural land uses. Standard deviations and coefficients of variation revealed relatively low variation in IBI scores based on multiple sampling reaches at sites. A relatively high degree of corroboration with independent, locally developed IBIs indicates that the regional IBIs are robust across large geographic scales, providing precise and accurate assessments of biological condition for western U.S. streams. ?? Copyright by the American Fisheries Society 2008.

  17. A latitudinal phylogeographic diversity gradient in birds

    PubMed Central

    Seeholzer, Glenn F.; Harvey, Michael G.; Cuervo, Andrés M.; Brumfield, Robb T.

    2017-01-01

    High tropical species diversity is often attributed to evolutionary dynamics over long timescales. It is possible, however, that latitudinal variation in diversification begins when divergence occurs within species. Phylogeographic data capture this initial stage of diversification in which populations become geographically isolated and begin to differentiate genetically. There is limited understanding of the broader implications of intraspecific diversification because comparative analyses have focused on species inhabiting and evolving in restricted regions and environments. Here, we scale comparative phylogeography up to the hemisphere level and examine whether the processes driving latitudinal differences in species diversity are also evident within species. We collected genetic data for 210 New World bird species distributed across a broad latitudinal gradient and estimated a suite of metrics characterizing phylogeographic history. We found that lower latitude species had, on average, greater phylogeographic diversity than higher latitude species and that intraspecific diversity showed evidence of greater persistence in the tropics. Factors associated with species ecologies, life histories, and habitats explained little of the variation in phylogeographic structure across the latitudinal gradient. Our results suggest that the latitudinal gradient in species richness originates, at least partly, from population-level processes within species and are consistent with hypotheses implicating age and environmental stability in the formation of diversity gradients. Comparative phylogeographic analyses scaled up to large geographic regions and hundreds of species can show connections between population-level processes and broad-scale species-richness patterns. PMID:28406905

  18. Moving water to South America as observed from space

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Xie, Xiaosu

    2006-01-01

    The approximate balance of the mass change rate measured by the Gravity Recovery and Climate Experiment (GRACE) with the moisture influx across the entire coastline less climatological river discharge for South America (SA), in agreement with the conservation principle, bolsters not only the credibility of the spacebased measurements, but supports the characterization of ocean's influence on the annual variation of continental water balance. The moisture transport integrated over the depth of the atmosphere is estimated using measurements by QuikSCAT and Special Sensor Microwave/Imager. The large-scale geographic patterns of precipitation from the Tropical Rain Measuring Mission (TRMM) and the mass change rate were found to follow similar annual changes over South America.

  19. Modelling human mobility patterns using photographic data shared online.

    PubMed

    Barchiesi, Daniele; Preis, Tobias; Bishop, Steven; Moat, Helen Susannah

    2015-08-01

    Humans are inherently mobile creatures. The way we move around our environment has consequences for a wide range of problems, including the design of efficient transportation systems and the planning of urban areas. Here, we gather data about the position in space and time of about 16 000 individuals who uploaded geo-tagged images from locations within the UK to the Flickr photo-sharing website. Inspired by the theory of Lévy flights, which has previously been used to describe the statistical properties of human mobility, we design a machine learning algorithm to infer the probability of finding people in geographical locations and the probability of movement between pairs of locations. Our findings are in general agreement with official figures in the UK and on travel flows between pairs of major cities, suggesting that online data sources may be used to quantify and model large-scale human mobility patterns.

  20. Understanding Road Usage Patterns in Urban Areas

    NASA Astrophysics Data System (ADS)

    Wang, Pu; Hunter, Timothy; Bayen, Alexandre M.; Schechtner, Katja; González, Marta C.

    2012-12-01

    In this paper, we combine the most complete record of daily mobility, based on large-scale mobile phone data, with detailed Geographic Information System (GIS) data, uncovering previously hidden patterns in urban road usage. We find that the major usage of each road segment can be traced to its own - surprisingly few - driver sources. Based on this finding we propose a network of road usage by defining a bipartite network framework, demonstrating that in contrast to traditional approaches, which define road importance solely by topological measures, the role of a road segment depends on both: its betweeness and its degree in the road usage network. Moreover, our ability to pinpoint the few driver sources contributing to the major traffic flow allows us to create a strategy that achieves a significant reduction of the travel time across the entire road system, compared to a benchmark approach.

  1. Modelling human mobility patterns using photographic data shared online

    PubMed Central

    Barchiesi, Daniele; Preis, Tobias; Bishop, Steven; Moat, Helen Susannah

    2015-01-01

    Humans are inherently mobile creatures. The way we move around our environment has consequences for a wide range of problems, including the design of efficient transportation systems and the planning of urban areas. Here, we gather data about the position in space and time of about 16 000 individuals who uploaded geo-tagged images from locations within the UK to the Flickr photo-sharing website. Inspired by the theory of Lévy flights, which has previously been used to describe the statistical properties of human mobility, we design a machine learning algorithm to infer the probability of finding people in geographical locations and the probability of movement between pairs of locations. Our findings are in general agreement with official figures in the UK and on travel flows between pairs of major cities, suggesting that online data sources may be used to quantify and model large-scale human mobility patterns. PMID:26361545

  2. Comparative Analysis of the Pattern of Population Genetic Diversity in Three Indo-West Pacific Rhizophora Mangrove Species

    PubMed Central

    Yan, Yu-Bin; Duke, Norm C.; Sun, Mei

    2016-01-01

    Rhizophora species are the most widely distributed mangrove trees in the Indo-West Pacific (IWP) region. Comparative studies of these species with shared life history traits can help identify evolutionary factors that have played most important roles in determining genetic diversity within and between populations in ocean-current dispersed mangrove tree species. We sampled 935 individuals from 54 natural populations for genotyping with 13 microsatellite markers to investigate the level of genetic variation, population structure, and gene flow on a broad geographic scale in Rhizophora apiculata, Rhizophora mucronata, and Rhizophora stylosa across the IWP region. In contrast to the pattern expected of long-lived woody plants with predominant wind-pollination, water-dispersed seeds and wide geographic range, genetic variation within populations was generally low in all the three species, especially in those peripheral populations from geographic range limits. Although the large water-buoyant propagules of Rhizophora have capacity for long distance dispersal, such events might be rare in reality, as reflected by the low level of gene flow and high genetic differentiation between most of population pairs within each species. Phylogeographic separation of Australian and Pacific island populations from SE Asian lineages previously revealed with DNA sequence data was still detectable in R. apiculata based on genetic distances, but this pattern of disjunction was not always evident in R. mucronata and R. stylosa, suggesting that fast-evolving molecular markers could be more suitable for detecting contemporary genetic structure but not deep evolutionary divergence caused by historical vicariance. Given that mangrove species generally have small effective population sizes, we conclude that genetic drift coupled with limited gene flow have played a dominant role in producing the current pattern of population genetic diversity in the IWP Rhizophora species, overshadowing the effects of their life history traits. Recent population fragmentation and disturbances arising from human activities could further endanger genetic diversity in mangrove trees. PMID:27746790

  3. Comparative Analysis of the Pattern of Population Genetic Diversity in Three Indo-West Pacific Rhizophora Mangrove Species.

    PubMed

    Yan, Yu-Bin; Duke, Norm C; Sun, Mei

    2016-01-01

    Rhizophora species are the most widely distributed mangrove trees in the Indo-West Pacific (IWP) region. Comparative studies of these species with shared life history traits can help identify evolutionary factors that have played most important roles in determining genetic diversity within and between populations in ocean-current dispersed mangrove tree species. We sampled 935 individuals from 54 natural populations for genotyping with 13 microsatellite markers to investigate the level of genetic variation, population structure, and gene flow on a broad geographic scale in Rhizophora apiculata, Rhizophora mucronata , and Rhizophora stylosa across the IWP region. In contrast to the pattern expected of long-lived woody plants with predominant wind-pollination, water-dispersed seeds and wide geographic range, genetic variation within populations was generally low in all the three species, especially in those peripheral populations from geographic range limits. Although the large water-buoyant propagules of Rhizophora have capacity for long distance dispersal, such events might be rare in reality, as reflected by the low level of gene flow and high genetic differentiation between most of population pairs within each species. Phylogeographic separation of Australian and Pacific island populations from SE Asian lineages previously revealed with DNA sequence data was still detectable in R. apiculata based on genetic distances, but this pattern of disjunction was not always evident in R. mucronata and R. stylosa , suggesting that fast-evolving molecular markers could be more suitable for detecting contemporary genetic structure but not deep evolutionary divergence caused by historical vicariance. Given that mangrove species generally have small effective population sizes, we conclude that genetic drift coupled with limited gene flow have played a dominant role in producing the current pattern of population genetic diversity in the IWP Rhizophora species, overshadowing the effects of their life history traits. Recent population fragmentation and disturbances arising from human activities could further endanger genetic diversity in mangrove trees.

  4. Continental-scale variation in seaweed host-associated bacterial communities is a function of host condition, not geography.

    PubMed

    Marzinelli, Ezequiel M; Campbell, Alexandra H; Zozaya Valdes, Enrique; Vergés, Adriana; Nielsen, Shaun; Wernberg, Thomas; de Bettignies, Thibaut; Bennett, Scott; Caporaso, J Gregory; Thomas, Torsten; Steinberg, Peter D

    2015-10-01

    Interactions between hosts and associated microbial communities can fundamentally shape the development and ecology of 'holobionts', from humans to marine habitat-forming organisms such as seaweeds. In marine systems, planktonic microbial community structure is mainly driven by geography and related environmental factors, but the large-scale drivers of host-associated microbial communities are largely unknown. Using 16S-rRNA gene sequencing, we characterized 260 seaweed-associated bacterial and archaeal communities on the kelp Ecklonia radiata from three biogeographical provinces spanning 10° of latitude and 35° of longitude across the Australian continent. These phylogenetically and taxonomically diverse communities were more strongly and consistently associated with host condition than geographical location or environmental variables, and a 'core' microbial community characteristic of healthy kelps appears to be lost when hosts become stressed. Microbial communities on stressed individuals were more similar to each other among locations than those on healthy hosts. In contrast to biogeographical patterns of planktonic marine microbial communities, host traits emerge as critical determinants of associated microbial community structure of these holobionts, even at a continental scale. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Towards a theoretical determination of the geographical probability distribution of meteoroid impacts on Earth

    NASA Astrophysics Data System (ADS)

    Zuluaga, Jorge I.; Sucerquia, Mario

    2018-06-01

    Tunguska and Chelyabinsk impact events occurred inside a geographical area of only 3.4 per cent of the Earth's surface. Although two events hardly constitute a statistically significant demonstration of a geographical pattern of impacts, their spatial coincidence is at least tantalizing. To understand if this concurrence reflects an underlying geographical and/or temporal pattern, we must aim at predicting the spatio-temporal distribution of meteoroid impacts on Earth. For this purpose we designed, implemented, and tested a novel numerical technique, the `Gravitational Ray Tracing' (GRT) designed to compute the relative impact probability (RIP) on the surface of any planet. GRT is inspired by the so-called ray-casting techniques used to render realistic images of complex 3D scenes. In this paper we describe the method and the results of testing it at the time of large impact events. Our findings suggest a non-trivial pattern of impact probabilities at any given time on the Earth. Locations at 60-90° from the apex are more prone to impacts, especially at midnight. Counterintuitively, sites close to apex direction have the lowest RIP, while in the antapex RIP are slightly larger than average. We present here preliminary maps of RIP at the time of Tunguska and Chelyabinsk events and found no evidence of a spatial or temporal pattern, suggesting that their coincidence was fortuitous. We apply the GRT method to compute theoretical RIP at the location and time of 394 large fireballs. Although the predicted spatio-temporal impact distribution matches marginally the observed events, we successfully predict their impact speed distribution.

  6. Some considerations on the use of ecological models to predict species' geographic distributions

    USGS Publications Warehouse

    Peterjohn, B.G.

    2001-01-01

    Peterson (2001) used Genetic Algorithm for Rule-set Prediction (GARP) models to predict distribution patterns from Breeding Bird Survey (BBS) data. Evaluations of these models should consider inherent limitations of BBS data: (1) BBS methods may not sample species and habitats equally; (2) using BBS data for both model development and testing may overlook poor fit of some models; and (3) BBS data may not provide the desired spatial resolution or capture temporal changes in species distributions. The predictive value of GARP models requires additional study, especially comparisons with distribution patterns from independent data sets. When employed at appropriate temporal and geographic scales, GARP models show considerable promise for conservation biology applications but provide limited inferences concerning processes responsible for the observed patterns.

  7. Predicting and setting conservation priorities for Bolivian mammals based on biological correlates of the risk of decline.

    PubMed

    Peñaranda, Diego A; Simonetti, Javier A

    2015-06-01

    The recognition that growing proportions of species worldwide are endangered has led to the development of comparative analyses to elucidate why some species are more prone to extinction than others. Understanding factors and patterns of species vulnerability might provide an opportunity to develop proactive conservation strategies. Such comparative analyses are of special concern at national scales because this is the scale at which most conservation initiatives take place. We applied powerful ensemble learning models to test for biological correlates of the risk of decline among the Bolivian mammals to understand species vulnerability at a national scale and to predict the population trend for poorly known species. Risk of decline was nonrandomly distributed: higher proportions of large-sized taxa were under decline, whereas small-sized taxa were less vulnerable. Body mass, mode of life (i.e., aquatic, terrestrial, volant), geographic range size, litter size, home range, niche specialization, and reproductive potential were strongly associated with species vulnerability. Moreover, we found interacting and nonlinear effects of key traits on the risk of decline of mammals at a national scale. Our model predicted 35 data-deficient species in decline on the basis of their biological vulnerability, which should receive more attention in order to prevent their decline. Our results highlight the relevance of comparative analysis at relatively narrow geographical scales, reveal previously unknown factors related to species vulnerability, and offer species-by-species outcomes that can be used to identify targets for conservation, especially for insufficiently known species. © 2015 Society for Conservation Biology.

  8. The Production of Urban Educational Space

    ERIC Educational Resources Information Center

    Morgan, John

    2012-01-01

    It is widely recognised that large urban centres exhibit significant and enduring patterns of educational inequality. This paper explores the social production of urban educational space. In particular, it argues that since these patterns are geographical, it will be useful to revisit the emergence of an "urban crisis" in education and…

  9. The Structure of Borders in a Small World

    PubMed Central

    Thiemann, Christian; Theis, Fabian; Grady, Daniel; Brune, Rafael; Brockmann, Dirk

    2010-01-01

    Territorial subdivisions and geographic borders are essential for understanding phenomena in sociology, political science, history, and economics. They influence the interregional flow of information and cross-border trade and affect the diffusion of innovation and technology. However, it is unclear if existing administrative subdivisions that typically evolved decades ago still reflect the most plausible organizational structure of today. The complexity of modern human communication, the ease of long-distance movement, and increased interaction across political borders complicate the operational definition and assessment of geographic borders that optimally reflect the multi-scale nature of today's human connectivity patterns. What border structures emerge directly from the interplay of scales in human interactions is an open question. Based on a massive proxy dataset, we analyze a multi-scale human mobility network and compute effective geographic borders inherent to human mobility patterns in the United States. We propose two computational techniques for extracting these borders and for quantifying their strength. We find that effective borders only partially overlap with existing administrative borders, and show that some of the strongest mobility borders exist in unexpected regions. We show that the observed structures cannot be generated by gravity models for human traffic. Finally, we introduce the concept of link significance that clarifies the observed structure of effective borders. Our approach represents a novel type of quantitative, comparative analysis framework for spatially embedded multi-scale interaction networks in general and may yield important insight into a multitude of spatiotemporal phenomena generated by human activity. PMID:21124970

  10. The structure of borders in a small world.

    PubMed

    Thiemann, Christian; Theis, Fabian; Grady, Daniel; Brune, Rafael; Brockmann, Dirk

    2010-11-18

    Territorial subdivisions and geographic borders are essential for understanding phenomena in sociology, political science, history, and economics. They influence the interregional flow of information and cross-border trade and affect the diffusion of innovation and technology. However, it is unclear if existing administrative subdivisions that typically evolved decades ago still reflect the most plausible organizational structure of today. The complexity of modern human communication, the ease of long-distance movement, and increased interaction across political borders complicate the operational definition and assessment of geographic borders that optimally reflect the multi-scale nature of today's human connectivity patterns. What border structures emerge directly from the interplay of scales in human interactions is an open question. Based on a massive proxy dataset, we analyze a multi-scale human mobility network and compute effective geographic borders inherent to human mobility patterns in the United States. We propose two computational techniques for extracting these borders and for quantifying their strength. We find that effective borders only partially overlap with existing administrative borders, and show that some of the strongest mobility borders exist in unexpected regions. We show that the observed structures cannot be generated by gravity models for human traffic. Finally, we introduce the concept of link significance that clarifies the observed structure of effective borders. Our approach represents a novel type of quantitative, comparative analysis framework for spatially embedded multi-scale interaction networks in general and may yield important insight into a multitude of spatiotemporal phenomena generated by human activity.

  11. Interactions between hydrology and water chemistry shape bacterioplankton biogeography across boreal freshwater networks

    PubMed Central

    Niño-García, Juan Pablo; Ruiz-González, Clara; del Giorgio, Paul A

    2016-01-01

    Disentangling the mechanisms shaping bacterioplankton communities across freshwater ecosystems requires considering a hydrologic dimension that can influence both dispersal and local sorting, but how the environment and hydrology interact to shape the biogeography of freshwater bacterioplankton over large spatial scales remains unexplored. Using Illumina sequencing of the 16S ribosomal RNA gene, we investigate the large-scale spatial patterns of bacterioplankton across 386 freshwater systems from seven distinct regions in boreal Québec. We show that both hydrology and local water chemistry (mostly pH) interact to shape a sequential structuring of communities from highly diverse assemblages in headwater streams toward larger rivers and lakes dominated by fewer taxa. Increases in water residence time along the hydrologic continuum were accompanied by major losses of bacterial richness and by an increased differentiation of communities driven by local conditions (pH and other related variables). This suggests that hydrology and network position modulate the relative role of environmental sorting and mass effects on community assembly by determining both the time frame for bacterial growth and the composition of the immigrant pool. The apparent low dispersal limitation (that is, the lack of influence of geographic distance on the spatial patterns observed at the taxonomic resolution used) suggests that these boreal bacterioplankton communities derive from a shared bacterial pool that enters the networks through the smallest streams, largely dominated by mass effects, and that is increasingly subjected to local sorting of species during transit along the hydrologic continuum. PMID:26849312

  12. Interactions between hydrology and water chemistry shape bacterioplankton biogeography across boreal freshwater networks.

    PubMed

    Niño-García, Juan Pablo; Ruiz-González, Clara; Del Giorgio, Paul A

    2016-07-01

    Disentangling the mechanisms shaping bacterioplankton communities across freshwater ecosystems requires considering a hydrologic dimension that can influence both dispersal and local sorting, but how the environment and hydrology interact to shape the biogeography of freshwater bacterioplankton over large spatial scales remains unexplored. Using Illumina sequencing of the 16S ribosomal RNA gene, we investigate the large-scale spatial patterns of bacterioplankton across 386 freshwater systems from seven distinct regions in boreal Québec. We show that both hydrology and local water chemistry (mostly pH) interact to shape a sequential structuring of communities from highly diverse assemblages in headwater streams toward larger rivers and lakes dominated by fewer taxa. Increases in water residence time along the hydrologic continuum were accompanied by major losses of bacterial richness and by an increased differentiation of communities driven by local conditions (pH and other related variables). This suggests that hydrology and network position modulate the relative role of environmental sorting and mass effects on community assembly by determining both the time frame for bacterial growth and the composition of the immigrant pool. The apparent low dispersal limitation (that is, the lack of influence of geographic distance on the spatial patterns observed at the taxonomic resolution used) suggests that these boreal bacterioplankton communities derive from a shared bacterial pool that enters the networks through the smallest streams, largely dominated by mass effects, and that is increasingly subjected to local sorting of species during transit along the hydrologic continuum.

  13. Large scale air pollution estimation method combining land use regression and chemical transport modeling in a geostatistical framework.

    PubMed

    Akita, Yasuyuki; Baldasano, Jose M; Beelen, Rob; Cirach, Marta; de Hoogh, Kees; Hoek, Gerard; Nieuwenhuijsen, Mark; Serre, Marc L; de Nazelle, Audrey

    2014-04-15

    In recognition that intraurban exposure gradients may be as large as between-city variations, recent air pollution epidemiologic studies have become increasingly interested in capturing within-city exposure gradients. In addition, because of the rapidly accumulating health data, recent studies also need to handle large study populations distributed over large geographic domains. Even though several modeling approaches have been introduced, a consistent modeling framework capturing within-city exposure variability and applicable to large geographic domains is still missing. To address these needs, we proposed a modeling framework based on the Bayesian Maximum Entropy method that integrates monitoring data and outputs from existing air quality models based on Land Use Regression (LUR) and Chemical Transport Models (CTM). The framework was applied to estimate the yearly average NO2 concentrations over the region of Catalunya in Spain. By jointly accounting for the global scale variability in the concentration from the output of CTM and the intraurban scale variability through LUR model output, the proposed framework outperformed more conventional approaches.

  14. Genetic diversity patterns of arbuscular mycorrhizal fungi associated with the mycoheterotroph Arachnitis uniflora Phil. (Corsiaceae).

    PubMed

    Renny, Mauricio; Acosta, M Cristina; Cofré, Noelia; Domínguez, Laura S; Bidartondo, Martin I; Sérsic, Alicia N

    2017-06-01

    Arachnitis uniflora is a mycoheterotrophic plant that exploits arbuscular mycorrhizal fungi of neighbouring plants. We tested A. uniflora 's specificity towards fungi across its large latitudinal range, as well as the role of historical events and current environmental, geographical and altitudinal variables on fungal genetic diversity. Arachnitis uniflora mycorrhizas were sampled at 25 sites. Fungal phylogenetic relationships were reconstructed, genetic diversity was calculated and the main divergent lineages were dated. Phylogeographical analysis was performed with the main fungal clade. Fungal diversity correlations with environmental factors were investigated. Glomeraceae fungi dominated, with a main clade that likely originated in the Upper Cretaceous and diversified in the Miocene. Two other arbuscular mycorrhizal fungal families not previously known to be targeted by A. uniflora were detected rarely and appear to be facultative associations. High genetic diversity, found in Bolivia and both northern and southern Patagonia, was correlated with temperature, rainfall and soil features. Fungal genetic diversity and its distribution can be explained by the ancient evolutionary history of the target fungi and by micro-scale environmental conditions with a geographical mosaic pattern. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  15. Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere.

    PubMed

    Reynolds, Pamela L; Stachowicz, John J; Hovel, Kevin; Boström, Christoffer; Boyer, Katharyn; Cusson, Mathieu; Eklöf, Johan S; Engel, Friederike G; Engelen, Aschwin H; Eriksson, Britas Klemens; Fodrie, F Joel; Griffin, John N; Hereu, Clara M; Hori, Masakazu; Hanley, Torrance C; Ivanov, Mikhail; Jorgensen, Pablo; Kruschel, Claudia; Lee, Kun-Seop; McGlathery, Karen; Moksnes, Per-Olav; Nakaoka, Masahiro; O'Connor, Mary I; O'Connor, Nessa E; Orth, Robert J; Rossi, Francesca; Ruesink, Jennifer; Sotka, Erik E; Thormar, Jonas; Tomas, Fiona; Unsworth, Richard K F; Whalen, Matthew A; Duffy, J Emmett

    2018-01-01

    Latitudinal gradients in species interactions are widely cited as potential causes or consequences of global patterns of biodiversity. However, mechanistic studies documenting changes in interactions across broad geographic ranges are limited. We surveyed predation intensity on common prey (live amphipods and gastropods) in communities of eelgrass (Zostera marina) at 48 sites across its Northern Hemisphere range, encompassing over 37° of latitude and four continental coastlines. Predation on amphipods declined with latitude on all coasts but declined more strongly along western ocean margins where temperature gradients are steeper. Whereas in situ water temperature at the time of the experiments was uncorrelated with predation, mean annual temperature strongly positively predicted predation, suggesting a more complex mechanism than simply increased metabolic activity at the time of predation. This large-scale biogeographic pattern was modified by local habitat characteristics; predation declined with higher shoot density both among and within sites. Predation rates on gastropods, by contrast, were uniformly low and varied little among sites. The high replication and geographic extent of our study not only provides additional evidence to support biogeographic variation in predation intensity, but also insight into the mechanisms that relate temperature and biogeographic gradients in species interactions. © 2017 by the Ecological Society of America.

  16. Large-scale quarantine following biological terrorism in the United States: scientific examination, logistic and legal limits, and possible consequences.

    PubMed

    Barbera, J; Macintyre, A; Gostin, L; Inglesby, T; O'Toole, T; DeAtley, C; Tonat, K; Layton, M

    2001-12-05

    Concern for potential bioterrorist attacks causing mass casualties has increased recently. Particular attention has been paid to scenarios in which a biological agent capable of person-to-person transmission, such as smallpox, is intentionally released among civilians. Multiple public health interventions are possible to effect disease containment in this context. One disease control measure that has been regularly proposed in various settings is the imposition of large-scale or geographic quarantine on the potentially exposed population. Although large-scale quarantine has not been implemented in recent US history, it has been used on a small scale in biological hoaxes, and it has been invoked in federally sponsored bioterrorism exercises. This article reviews the scientific principles that are relevant to the likely effectiveness of quarantine, the logistic barriers to its implementation, legal issues that a large-scale quarantine raises, and possible adverse consequences that might result from quarantine action. Imposition of large-scale quarantine-compulsory sequestration of groups of possibly exposed persons or human confinement within certain geographic areas to prevent spread of contagious disease-should not be considered a primary public health strategy in most imaginable circumstances. In the majority of contexts, other less extreme public health actions are likely to be more effective and create fewer unintended adverse consequences than quarantine. Actions and areas for future research, policy development, and response planning efforts are provided.

  17. Spatiotemporal Structure of Molecular Evolution of H5N1 Highly Pathogenic Avian Influenza Viruses in Vietnam

    PubMed Central

    Emch, Michael; Jobe, R. Todd; Moody, Aaron

    2010-01-01

    Background Vietnam is one of the countries most affected by outbreaks of H5N1 highly pathogenic avian influenza viruses. First identified in Vietnam in poultry in 2001 and in humans in 2004, the virus has since caused 111 cases and 56 deaths in humans. In 2003/2004 H5N1 outbreaks, nearly the entire poultry population of Vietnam was culled. Our earlier study (Wan et al., 2008, PLoS ONE, 3(10): e3462) demonstrated that there have been at least six independent H5N1 introductions into Vietnam and there were nine newly emerged reassortants from 2001 to 2007 in Vietnam. H5N1 viruses in Vietnam cluster distinctly around Hanoi and Ho Chi Minh City. However, the nature of the relationship between genetic divergence and geographic patterns is still unclear. Methodology/Principal Findings In this study, we hypothesized that genetic distances between H5N1 viruses in Vietnam are correlated with geographic distances, as the result of distinct population and environment patterns along Vietnam's long north to south longitudinal extent. Based on this hypothesis, we combined spatial statistical methods with genetic analytic techniques and explicitly used geographic space to explore genetic evolution of H5N1 highly pathogenic avian influenza viruses at the sub-national scale in Vietnam. Our dataset consisted of 125 influenza viruses (with whole genome sets) isolated in Vietnam from 2003 to 2007. Our results document the significant effect of space and time on genetic evolution and the rise of two regional centers of genetic mixing by 2007. These findings give insight into processes underlying viral evolution and suggest that genetic differentiation is associated with the distance between concentrations of human and poultry populations around Hanoi and Ho Chi Minh City. Conclusions/Significance The results show that genetic evolution of H5N1 viruses in Vietnamese domestic poultry is highly correlated with the location and spread of those viruses in geographic space. This correlation varies by scale, time, and gene, though a classic isolation by distance pattern is observed. This study is the first to characterize the geographic structure of influenza viral evolution at the sub-national scale in Vietnam and can shed light on how H5N1 HPAIVs evolve in certain geographic settings. PMID:20072619

  18. Spatiotemporal structure of molecular evolution of H5N1 highly pathogenic avian influenza viruses in Vietnam.

    PubMed

    Carrel, Margaret A; Emch, Michael; Jobe, R Todd; Moody, Aaron; Wan, Xiu-Feng

    2010-01-08

    Vietnam is one of the countries most affected by outbreaks of H5N1 highly pathogenic avian influenza viruses. First identified in Vietnam in poultry in 2001 and in humans in 2004, the virus has since caused 111 cases and 56 deaths in humans. In 2003/2004 H5N1 outbreaks, nearly the entire poultry population of Vietnam was culled. Our earlier study (Wan et al., 2008, PLoS ONE, 3(10): e3462) demonstrated that there have been at least six independent H5N1 introductions into Vietnam and there were nine newly emerged reassortants from 2001 to 2007 in Vietnam. H5N1 viruses in Vietnam cluster distinctly around Hanoi and Ho Chi Minh City. However, the nature of the relationship between genetic divergence and geographic patterns is still unclear. In this study, we hypothesized that genetic distances between H5N1 viruses in Vietnam are correlated with geographic distances, as the result of distinct population and environment patterns along Vietnam's long north to south longitudinal extent. Based on this hypothesis, we combined spatial statistical methods with genetic analytic techniques and explicitly used geographic space to explore genetic evolution of H5N1 highly pathogenic avian influenza viruses at the sub-national scale in Vietnam. Our dataset consisted of 125 influenza viruses (with whole genome sets) isolated in Vietnam from 2003 to 2007. Our results document the significant effect of space and time on genetic evolution and the rise of two regional centers of genetic mixing by 2007. These findings give insight into processes underlying viral evolution and suggest that genetic differentiation is associated with the distance between concentrations of human and poultry populations around Hanoi and Ho Chi Minh City. The results show that genetic evolution of H5N1 viruses in Vietnamese domestic poultry is highly correlated with the location and spread of those viruses in geographic space. This correlation varies by scale, time, and gene, though a classic isolation by distance pattern is observed. This study is the first to characterize the geographic structure of influenza viral evolution at the sub-national scale in Vietnam and can shed light on how H5N1 HPAIVs evolve in certain geographic settings.

  19. A sub-national scale geospatial analysis of diamond deposit lootability: the case of the Central African Republic

    USGS Publications Warehouse

    Malpeli, Katherine C.; Chirico, Peter G.

    2014-01-01

    The Central African Republic (CAR), a country with rich diamond deposits and a tumultuous political history, experienced a government takeover by the Seleka rebel coalition in 2013. It is within this context that we developed and implemented a geospatial approach for assessing the lootability of high value-to-weight resource deposits, using the case of diamonds in CAR as an example. According to current definitions of lootability, or the vulnerability of deposits to exploitation, CAR's two major diamond deposits are similarly lootable. However, using this geospatial approach, we demonstrate that the deposits experience differing political geographic, spatial location, and cultural geographic contexts, rendering the eastern deposits more lootable than the western deposits. The patterns identified through this detailed analysis highlight the geographic complexities surrounding the issue of conflict resources and lootability, and speak to the importance of examining these topics at the sub-national scale, rather than relying on national-scale statistics.

  20. Host-specificity among abundant and rare taxa in the sponge microbiome.

    PubMed

    Reveillaud, Julie; Maignien, Loïs; Murat Eren, A; Huber, Julie A; Apprill, Amy; Sogin, Mitchell L; Vanreusel, Ann

    2014-06-01

    Microbial communities have a key role in the physiology of the sponge host, and it is therefore essential to understand the stability and specificity of sponge-symbiont associations. Host-specific bacterial associations spanning large geographic distance are widely acknowledged in sponges. However, the full spectrum of specificity remains unclear. In particular, it is not known whether closely related sponges host similar or very different microbiota over wide bathymetric and geographic gradients, and whether specific associations extend to the rare members of the sponge microbiome. Using the ultra-deep Illumina sequencing technology, we conducted a comparison of sponge bacterial communities in seven closely related Hexadella species with a well-resolved host phylogeny, as well as of a distantly related sponge Mycale. These samples spanned unprecedentedly large bathymetric (15-960 m) gradients and varying European locations. In addition, this study included a bacterial community analysis of the local background seawater for both Mycale and the widespread deep-sea taxa Hexadella cf. dedritifera. We observed a striking diversity of microbes associated with the sponges, spanning 47 bacterial phyla. The data did not reveal any Hexadella microbiota co-speciation pattern, but confirmed sponge-specific and species-specific host-bacteria associations, even within extremely low abundant taxa. Oligotyping analysis also revealed differential enrichment preferences of closely related Nitrospira members in closely related sponges species. Overall, these results demonstrate highly diverse, remarkably specific and stable sponge-bacteria associations that extend to members of the rare biosphere at a very fine phylogenetic scale, over significant geographic and bathymetric gradients.

  1. Dispersal and the transition to sympatry in vertebrates

    PubMed Central

    Pigot, Alex L.; Tobias, Joseph A.

    2015-01-01

    Under allopatric speciation models, a key step in the build-up of species richness is population dispersal leading to the co-occurrence of previously geographically isolated forms. Despite its central importance for community assembly, the extent to which the transition from spatial segregation (allopatry or parapatry) to coexistence (sympatry) is a predictable process, or alternatively one governed by chance and the vagaries of biogeographic history, remains poorly understood. Here, we use estimated divergence times and current patterns of geographical range overlap among sister species to explore the evolution of sympatry in vertebrates. We show that rates of transition to sympatry vary predictably according to ecology, being faster in marine or strongly dispersive terrestrial clades. This association with organism vagility is robust to the relative frequency of geographical speciation modes and consistent across taxonomic scales and metrics of dispersal ability. These findings reject neutral models of dispersal assembly based simply on evolutionary age and are not predicted by the main alternative view that range overlap is primarily constrained by biotic interactions. We conclude that species differences in dispersal limitation are fundamental in organizing the assembly of ecological communities and shaping broad-scale patterns of biodiversity over space and time. PMID:25621326

  2. Requirements and principles for the implementation and construction of large-scale geographic information systems

    NASA Technical Reports Server (NTRS)

    Smith, Terence R.; Menon, Sudhakar; Star, Jeffrey L.; Estes, John E.

    1987-01-01

    This paper provides a brief survey of the history, structure and functions of 'traditional' geographic information systems (GIS), and then suggests a set of requirements that large-scale GIS should satisfy, together with a set of principles for their satisfaction. These principles, which include the systematic application of techniques from several subfields of computer science to the design and implementation of GIS and the integration of techniques from computer vision and image processing into standard GIS technology, are discussed in some detail. In particular, the paper provides a detailed discussion of questions relating to appropriate data models, data structures and computational procedures for the efficient storage, retrieval and analysis of spatially-indexed data.

  3. Large-scale P2P network based distributed virtual geographic environment (DVGE)

    NASA Astrophysics Data System (ADS)

    Tan, Xicheng; Yu, Liang; Bian, Fuling

    2007-06-01

    Virtual Geographic Environment has raised full concern as a kind of software information system that helps us understand and analyze the real geographic environment, and it has also expanded to application service system in distributed environment--distributed virtual geographic environment system (DVGE), and gets some achievements. However, limited by the factor of the mass data of VGE, the band width of network, as well as numerous requests and economic, etc. DVGE still faces some challenges and problems which directly cause the current DVGE could not provide the public with high-quality service under current network mode. The Rapid development of peer-to-peer network technology has offered new ideas of solutions to the current challenges and problems of DVGE. Peer-to-peer network technology is able to effectively release and search network resources so as to realize efficient share of information. Accordingly, this paper brings forth a research subject on Large-scale peer-to-peer network extension of DVGE as well as a deep study on network framework, routing mechanism, and DVGE data management on P2P network.

  4. The Impact of Geographic Information Systems on Emergency Management Decision Making at the U.S. Department of Homeland Security

    ERIC Educational Resources Information Center

    King, Steven Gray

    2012-01-01

    Geographic information systems (GIS) reveal relationships and patterns from large quantities of diverse data in the form of maps and reports. The United States spends billions of dollars to use GIS to improve decisions made during responses to natural disasters and terrorist attacks, but precisely how GIS improves or impairs decision making is not…

  5. The Contributions of Places to Metropolitan Ethnoracial Diversity and Segregation: Decomposing Change Across Space and Time

    PubMed Central

    Fowler, Christopher S.; Lee, Barrett A.; Matthews, Stephen A.

    2016-01-01

    Although the trend toward greater ethnoracial diversity in the United States has been documented at a variety of geographic scales, most research tracks diversity one scale at a time. Our study bridges scales, asking how the diversity and segregation patterns of metropolitan areas are influenced by shifts in the racial/ethnic composition of their constituent places. Drawing on 1980–2010 decennial census data, we use a new visual tool to compare the distributions of place diversity for 50 U.S. metro areas over three decades. We also undertake a decomposition analysis of segregation within these areas to evaluate hypotheses about the roles of different types of places in ethnoracial change. The decomposition indicates that although principal cities continue to shape the overall diversity of metro areas, their relative impact has declined since 1980. Inner suburbs have experienced substantial increases in diversity during the same period. Places with large white majorities now contribute more to overall metropolitan diversity than in the past. In contrast, majority black and majority Hispanic places contribute less to metropolitan diversity than in the past. The complexity of the patterns we observe is underscored through an inspection of two featured metropolises: Chicago and Dallas. PMID:27783360

  6. Scale and modeling issues in water resources planning

    USGS Publications Warehouse

    Lins, H.F.; Wolock, D.M.; McCabe, G.J.

    1997-01-01

    Resource planners and managers interested in utilizing climate model output as part of their operational activities immediately confront the dilemma of scale discordance. Their functional responsibilities cover relatively small geographical areas and necessarily require data of relatively high spatial resolution. Climate models cover a large geographical, i.e. global, domain and produce data at comparatively low spatial resolution. Although the scale differences between model output and planning input are large, several techniques have been developed for disaggregating climate model output to a scale appropriate for use in water resource planning and management applications. With techniques in hand to reduce the limitations imposed by scale discordance, water resource professionals must now confront a more fundamental constraint on the use of climate models-the inability to produce accurate representations and forecasts of regional climate. Given the current capabilities of climate models, and the likelihood that the uncertainty associated with long-term climate model forecasts will remain high for some years to come, the water resources planning community may find it impractical to utilize such forecasts operationally.

  7. A Macrophysiological Analysis of Energetic Constraints on Geographic Range Size in Mammals

    PubMed Central

    Ceballos, Gerardo; Steele, Michael A.

    2013-01-01

    Physiological processes are essential for understanding the distribution and abundance of organisms, and recently, with widespread attention to climate change, physiology has been ushered back to the forefront of ecological thinking. We present a macrophysiological analysis of the energetics of geographic range size using combined data on body size, basal metabolic rate (BMR), phylogeny and range properties for 574 species of mammals. We propose three mechanisms by which interspecific variation in BMR should relate positively to geographic range size: (i) Thermal Plasticity Hypothesis, (ii) Activity Levels/Dispersal Hypothesis, and (iii) Energy Constraint Hypothesis. Although each mechanism predicts a positive correlation between BMR and range size, they can be further distinguished based on the shape of the relationship they predict. We found evidence for the predicted positive relationship in two dimensions of energetics: (i) the absolute, mass-dependent dimension (BMR) and (ii) the relative, mass-independent dimension (MIBMR). The shapes of both relationships were similar and most consistent with that expected from the Energy Constraint Hypothesis, which was proposed previously to explain the classic macroecological relationship between range size and body size in mammals and birds. The fact that this pattern holds in the MIBMR dimension indicates that species with supra-allometric metabolic rates require among the largest ranges, above and beyond the increasing energy demands that accrue as an allometric consequence of large body size. The relationship is most evident at high latitudes north of the Tropics, where large ranges and elevated MIBMR are most common. Our results suggest that species that are most vulnerable to extinction from range size reductions are both large-bodied and have elevated MIBMR, but also, that smaller species with elevated MIBMR are at heightened risk. We also provide insights into the global latitudinal trends in range size and MIBMR and more general issues of phylogenetic and geographic scale. PMID:24058444

  8. Corn rootworms (Coleoptera: Chrysomelidae) in space and time

    NASA Astrophysics Data System (ADS)

    Park, Yong-Lak

    Spatial dispersion is a main characteristic of insect populations. Dispersion pattern provides useful information for developing effective sampling and scouting programs because it affects sampling accuracy, efficiency, and precision. Insect dispersion, however, is dynamic in space and time and largely dependent upon interactions among insect, plant and environmental factors. This study investigated the spatial and temporal dynamics of corn rootworm dispersion at different spatial scales by using the global positioning system, the geographic information system, and geostatistics. Egg dispersion pattern was random or uniform in 8-ha cornfields, but could be aggregated at a smaller scale. Larval dispersion pattern was aggregated regardless of spatial scales used in this study. Soil moisture positively affected corn rootworm egg and larval dispersions. Adult dispersion tended to be aggregated during peak population period and random or uniform early and late in the season and corn plant phenology was a major factor to determine dispersion patterns. The dispersion pattern of root injury by corn rootworm larval feeding was aggregated and the degree of aggregation increased as the root injury increased within the range of root injury observed in microscale study. Between-year relationships in dispersion among eggs, larvae, adult, and environment provided a strategy that could predict potential root damage the subsequent year. The best prediction map for the subsequent year's potential root damage was the dispersion maps of adults during population peaked in the cornfield. The prediction map was used to develop site-specific pest management that can reduce chemical input and increase control efficiency by controlling pests only where management is needed. This study demonstrated the spatio-temporal dynamics of insect population and spatial interactions among insects, plants, and environment.

  9. Spatial genetic structuring of baobab (Adansonia digitata, Malvaceae) in the traditional agroforestry systems of West Africa.

    PubMed

    Kyndt, Tina; Assogbadjo, Achille E; Hardy, Olivier J; Glele Kakaï, Romain; Sinsin, Brice; Van Damme, Patrick; Gheysen, Godelieve

    2009-05-01

    This study evaluates the spatial genetic structure of baobab (Adansonia digitata) populations from West African agroforestry systems at different geographical scales using AFLP fingerprints. Eleven populations from four countries (Benin, Ghana, Burkina Faso, and Senegal) had comparable levels of genetic diversity, although the two populations in the extreme west (Senegal) had less diversity. Pairwise F(ST) ranged from 0.02 to 0.28 and increased with geographic distance, even at a regional scale. Gene pools detected by Bayesian clustering seem to be a byproduct of the isolation-by-distance pattern rather than representing actual discrete entities. The organization of genetic diversity appears to result essentially from spatially restricted gene flow, with some influences of human seed exchange. Despite the potential for relatively long-distance pollen and seed dispersal by bats within populations, statistically significant spatial genetic structuring within populations (SGS) was detected and gave a mean indirect estimate of neighborhood size of ca. 45. This study demonstrated that relatively high levels of genetic structuring are present in baobab at both large and within-population level, which was unexpected in regard to its dispersal by bats and the influence of human exchange of seeds. Implications of these results for the conservation of baobab populations are discussed.

  10. Coevolution of languages and genes on the island of Sumba, eastern Indonesia.

    PubMed

    Lansing, J Stephen; Cox, Murray P; Downey, Sean S; Gabler, Brandon M; Hallmark, Brian; Karafet, Tatiana M; Norquest, Peter; Schoenfelder, John W; Sudoyo, Herawati; Watkins, Joseph C; Hammer, Michael F

    2007-10-09

    Numerous studies indicate strong associations between languages and genes among human populations at the global scale, but all broader scale genetic and linguistic patterns must arise from processes originating at the community level. We examine linguistic and genetic variation in a contact zone on the eastern Indonesian island of Sumba, where Neolithic Austronesian farming communities settled and began interacting with aboriginal foraging societies approximately 3,500 years ago. Phylogenetic reconstruction based on a 200-word Swadesh list sampled from 29 localities supports the hypothesis that Sumbanese languages derive from a single ancestral Austronesian language. However, the proportion of cognates (words with a common origin) traceable to Proto-Austronesian (PAn) varies among language subgroups distributed across the island. Interestingly, a positive correlation was found between the percentage of Y chromosome lineages that derive from Austronesian (as opposed to aboriginal) ancestors and the retention of PAn cognates. We also find a striking correlation between the percentage of PAn cognates and geographic distance from the site where many Sumbanese believe their ancestors arrived on the island. These language-gene-geography correlations, unprecedented at such a fine scale, imply that historical patterns of social interaction between expanding farmers and resident hunter-gatherers largely explain community-level language evolution on Sumba. We propose a model to explain linguistic and demographic coevolution at fine spatial and temporal scales.

  11. Temporal consistency of spatial pattern in growth of the mussel, Mytilus edulis: Implications for predictive modelling

    NASA Astrophysics Data System (ADS)

    Bergström, Per; Lindegarth, Susanne; Lindegarth, Mats

    2013-10-01

    Human pressures on coastal seas are increasing and methods for sustainable management, including spatial planning and mitigative actions, are therefore needed. In coastal areas worldwide, the development of mussel farming as an economically and ecologically sustainable industry requires geographic information on the growth and potential production capacity. In practice this means that coherent maps of temporally stable spatial patterns of growth need to be available in the planning process and that maps need to be based on mechanistic or empirical models. Therefore, as a first step towards development of models of growth, we assessed empirically the fundamental requirement that there are temporally consistent spatial patterns of growth in the blue mussel, Mytilus edulis. Using a pilot study we designed and dimensioned a transplant experiment, where the spatial consistency in the growth of mussels was evaluated at two resolutions. We found strong temporal and scale-dependent spatial variability in growth but patterns suggested that spatial patterns were uncoupled between growth of shell and that of soft tissue. Spatial patterns of shell growth were complex and largely inconsistent among years. Importantly, however, the growth of soft tissue was qualitatively consistent among years at the scale of km. The results suggest that processes affecting the whole coastal area cause substantial differences in growth of soft tissue among years but that factors varying at the scale of km create strong and persistent spatial patterns of growth, with a potential doubling of productivity by identifying the most suitable locations. We conclude that the observed spatial consistency provides a basis for further development of predictive modelling and mapping of soft tissue growth in these coastal areas. Potential causes of observed patterns, consequences for mussel-farming as a tool for mitigating eutrophication, aspects of precision of modelling and sampling of mussel growth as well as ecological functions in general are discussed.

  12. Connectivity of the South Florida Coral Reef Ecosystem to Upstream Waters of the Western Caribbean and Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Johns, E. M.; Smith, R. H.; Lamkin, J. T.; Birbriezca, L. C.; Vasquez-Yeomans, L.; Cordero, E. S.

    2008-05-01

    The coastal waters of south Florida, including the coral reefs of NOAA's Florida Keys National Marine Sanctuary (FKNMS), are directly connected by means of strong ocean currents with upstream waters of the western Caribbean Sea and the Gulf of Mexico. The Caribbean Current and the Loop Current provide a rapid conduit for transport from Mexican and Belizean coral reefs, located off the eastern shore of the Yucatan Peninsula, to nearshore regions of northern Cuba, Florida, and the Bahamas. Interdisciplinary cruise data collected in August 2002, March 2006 and January 2007 aboard the NOAA Ship Gordon Gunter, in combination with satellite-tracked surface drifter trajectories and remote sensing imagery, clearly show the highly variable and dynamic nature of the regional current regimes and provide a means of quantifying the potential pathways and transport rates of the coastal waters and their biological and chemical constituents from one region to another. Results from these cruises and ancillary data show that the study areas are connected with rapid transport time scales, and that frontal eddies and gyres play an important role in establishing the time and length scales of this connectivity. Such direct physical connectivity between the coral reef biota of these geographically separated spawning grounds via ocean currents may have an important influence on the degree of biological connectivity between regional larval populations. Initial analyses of ichthyoplankton surveys and inshore collections along the Yucatan mesoamerican reef suggest large scale variability in both local recruitment and large scale spatial distribution. Despite strong northward flowing currents, inshore collections indicate that local recruitment in some areas is strongly influenced by small scale circulation patterns. However, the distribution of spawning aggregations along the Yucatan coast suggests a larger role for the Caribbean Current. Determining the interactions between the larger scale circulation patterns and the smaller scale biological processes is a key research objective for understanding the observed regional population connections.

  13. Geographic variation in the age- and gender-specific prevalence and incidence of epilepsy: analysis of Taiwanese National Health Insurance-based data.

    PubMed

    Chen, Chih-Chuan; Chen, Li-Sheng; Yen, Ming-Fang; Chen, Hsiu-Hsi; Liou, Horng-Huei

    2012-02-01

    We studied geographic variation in age- and gender-specific prevalence and incidence of epilepsy in four different areas of Taiwan. By using large-scale, National Health Insurance (NHI)-based data from 2000-2003 in Taiwan, we identified 131,287 patients diagnosed with epilepsy (ICD code 345) receiving at least of one of 11 antiepileptic drugs (AEDs). Information on age, gender, and location were also collected. The multivariable Poisson regression analysis was used to assess the heterogeneity of the morbidity of epilepsy in different regions. External data validation was also performed to assess the accuracy of capturing epilepsy cases through our NHI data set. The age-adjusted prevalence and incidence of epilepsy were 5.85 (per 1,000) between 2000 and 2003 and 97 (per 100,000 person-years) during the follow-up time from 2001 to 2003 in Taiwan. The sensitivity and specificity of ICD-9 coding for epilepsy in the NHI data set were 83.91% and 99.83%, respectively, resulting in a slight overestimation. Male patients had a higher probability of having epilepsy than did females. East Taiwan had significantly higher prevalence and incidence than did other areas. The age-specific incidence pattern in east Taiwan was atypical in that it revealed clustering in young and middle-aged groups. Our study demonstrated geographic variation in epidemiologic patterns of epilepsy within Taiwan. The findings are informative and provide insight into the clinical management of epilepsy based on consideration of different target groups in different areas. Wiley Periodicals, Inc. © 2011 International League Against Epilepsy.

  14. Recent human history governs global ant invasion dynamics

    Treesearch

    Cleo Bertelsmeier; Sébastien Ollier; Andrew Liebhold; Laurent Keller

    2017-01-01

    Human trade and travel are breaking down biogeographic barriers, resulting in shifts in the geographical distribution of organisms, yet it remains largely unknown whether different alien species generally follow similar spatiotemporal colonization patterns and how such patterns are driven by trends in global trade. Here, we analyse the global distribution of 241 alien...

  15. Comparing large-scale computational approaches to epidemic modeling: agent-based versus structured metapopulation models.

    PubMed

    Ajelli, Marco; Gonçalves, Bruno; Balcan, Duygu; Colizza, Vittoria; Hu, Hao; Ramasco, José J; Merler, Stefano; Vespignani, Alessandro

    2010-06-29

    In recent years large-scale computational models for the realistic simulation of epidemic outbreaks have been used with increased frequency. Methodologies adapt to the scale of interest and range from very detailed agent-based models to spatially-structured metapopulation models. One major issue thus concerns to what extent the geotemporal spreading pattern found by different modeling approaches may differ and depend on the different approximations and assumptions used. We provide for the first time a side-by-side comparison of the results obtained with a stochastic agent-based model and a structured metapopulation stochastic model for the progression of a baseline pandemic event in Italy, a large and geographically heterogeneous European country. The agent-based model is based on the explicit representation of the Italian population through highly detailed data on the socio-demographic structure. The metapopulation simulations use the GLobal Epidemic and Mobility (GLEaM) model, based on high-resolution census data worldwide, and integrating airline travel flow data with short-range human mobility patterns at the global scale. The model also considers age structure data for Italy. GLEaM and the agent-based models are synchronized in their initial conditions by using the same disease parameterization, and by defining the same importation of infected cases from international travels. The results obtained show that both models provide epidemic patterns that are in very good agreement at the granularity levels accessible by both approaches, with differences in peak timing on the order of a few days. The relative difference of the epidemic size depends on the basic reproductive ratio, R0, and on the fact that the metapopulation model consistently yields a larger incidence than the agent-based model, as expected due to the differences in the structure in the intra-population contact pattern of the approaches. The age breakdown analysis shows that similar attack rates are obtained for the younger age classes. The good agreement between the two modeling approaches is very important for defining the tradeoff between data availability and the information provided by the models. The results we present define the possibility of hybrid models combining the agent-based and the metapopulation approaches according to the available data and computational resources.

  16. Canal construction destroys the barrier between major European invasion lineages of the zebra mussel.

    PubMed Central

    Müller, Jakob C; Hidde, Dennis; Seitz, Alfred

    2002-01-01

    Since the mid-1980s the zebra mussel, Dreissena polymorpha, Pallas 1771, has become the protagonist of a spectacular freshwater invasion in North America due to its large economic and biological impact. Several genetic studies on American populations have failed to detect any large-scale geographical patterns. In western Europe, where D. polymorpha has been a classical invader from the Pontocaspian since the early 19th century, the situation is strikingly different. Here, we show with genetic markers that two major western European invasion lineages with lowered genetic variability within and among populations can be discriminated. These two invasion lineages correspond with two separate navigable waterways to western Europe. We found a rapid and asymmetrical genetic interchange of the two invasion lines after the construction of the Main-Danube canal in 1992, which interconnected the two waterways across the main watershed. PMID:12061957

  17. Seismic patterns and migration history of submarine fan channels in deep-water area, Niger Delta, West Africa

    NASA Astrophysics Data System (ADS)

    Zhang, Guotao; Zhang, Shangfeng; Li, Yuan

    2015-04-01

    The channels of deep-water submarine fan under Niger delta slope are characterized by large dimensions special deposition positions and complex formation processes, its geographical location and sedimentary environment also hinder the research and exploration development. According to the strata slicing, RMS amplitude attribute and other techniques, we exhibit the platforms patterns of channels at different period, and based on the analysis of internal architecture and deformation history of channel-leveed systems, migration and evolution process of channel systems could be understood accurately. A great quantity of isolated channels develop in middle Miocene and aggrading streams in late Miocene, which generating because of large scale of turbidity caused by the drop of second order sea-level, which characterized by vertical accretion at smooth channel, while vertical accretion and lateral migration at bend. Evolution of channel systems can be divided into three stages: the initial erosion, erosion and filling alternately, and abandoned stage. With these three stages, the sinuosity of channel change from moderate to high, then decrease. Incision and filling of channels, being during the three development phases, is the driving force of meander-loops migration, which promote three kinds of migration patterns: lateral, down-system and combination migration. The research provides theoretical basis for high-precision prediction and evaluation of deep-water reservoir.

  18. Deconstructing mammal dispersals and faunal dynamics in SW Europe during the Quaternary

    NASA Astrophysics Data System (ADS)

    Palombo, Maria Rita

    2014-07-01

    This research aims to investigate the relationships between climate change and faunal dynamics in south-west Europe, disentangling the asynchronous and diachronous dispersal bioevents of large mammals across geographical and ecological boundaries, analysing biodiversity and its changes through time. The analysis of local versus regional biological dynamics may shed new light on whether turnovers and ecological and evolutionary changes developed because of global climate changes and related phenomena, or because of intrinsic biological factors. The SW European Quaternary fossil record is particularly suitable for studying the role of climate change at local and regional levels because of the complex physiographic and climatic heterogeneity of the study area, the presence of important geographical/ecological barriers and the complex history of invasions of species of varying geographical origin and provenance. The data base consists of taxonomically revised lists of large mammal species from selected SW European local faunal assemblages ranging in age from the Early to the late Middle Pleistocene (middle Villafranchian to early Aurelian European Land Mammal Ages). The new biochronological scheme proposed here allows for the comparison of local turnovers and biodiversity trends, yielding a better understanding of the action of geographical/ecological barriers that either prevented the range of some taxa from reaching some regions or caused delays in the dispersal of a taxon in some territories. The results obtained provide evidence that major environmental perturbations, triggering dispersal events and removing keystone species, modified the structure of the pre-existing mammalian faunas, merging previously independently-evolved taxa into new palaeo-communities. The coupled action of climatic changes and internal biotic dynamics thus caused the Quaternary SW European faunal complexes to significantly restructure. Diachroneity in local turnover across the study area probably relates to differences in local dynamic patterns of competition/coevolution, although different manifestations of global climate changes in different geographic settings would have contributed to the scale of local bioevents.

  19. Geographic smoothing of solar PV: Results from Gujarat

    DOE PAGES

    Klima, Kelly; Apt, Jay

    2015-09-24

    We examine the potential for geographic smoothing of solar photovoltaic (PV) electricity generation using 13 months of observed power production from utility-scale plants in Gujarat, India. To our knowledge, this is the first published analysis of geographic smoothing of solar PV using actual generation data at high time resolution from utility-scale solar PV plants. We use geographic correlation and Fourier transform estimates of the power spectral density (PSD) to characterize the observed variability of operating solar PV plants as a function of time scale. Most plants show a spectrum that is linear in the log–log domain at high frequencies f,more » ranging from f -1.23 to f -1.56 (slopes of -1.23 and -1.56), thus exhibiting more relative variability at high frequencies than exhibited by wind plants. PSDs for large PV plants have a steeper slope than those for small plants, hence more smoothing at short time scales. Interconnecting 20 Gujarat plants yields a f -1.66 spectrum, reducing fluctuations at frequencies corresponding to 6 h and 1 h by 23% and 45%, respectively. Half of this smoothing can be obtained through connecting 4-5 plants; reaching marginal improvement of 1% per added plant occurs at 12-14 plants. The largest plant (322 MW) showed an f -1.76 spectrum. Furthermore, this suggests that in Gujarat the potential for smoothing is limited to that obtained by one large plant.« less

  20. Climate Drivers of Alaska Summer Stream Temperature

    NASA Astrophysics Data System (ADS)

    Bieniek, P.; Bhatt, U. S.; Plumb, E. W.; Thoman, R.; Trammell, E. J.

    2016-12-01

    The temperature of the water in lakes, rivers and streams has wide ranging impacts from local water quality and fish habitats to global climate change. Salmon fisheries in Alaska, a critical source of food in many subsistence communities, are sensitive to large-scale climate variability and river and stream temperatures have also been linked with salmon production in Alaska. Given current and projected climate change, understanding the mechanisms that link the large-scale climate and river and stream temperatures is essential to better understand the changes that may occur with aquatic life in Alaska's waterways on which subsistence users depend. An analysis of Alaska stream temperatures in the context of reanalysis, downscaled, station and other climate data is undertaken in this study to fill that need. Preliminary analysis identified eight stream observation sites with sufficiently long (>15 years) data available for climate-scale analysis in Alaska with one station, Terror Creek in Kodiak, having a 30-year record. Cross-correlation of summer (June-August) water temperatures between the stations are generally high even though they are spread over a large geographic region. Correlation analysis of the Terror Creek summer observations with seasonal sea surface temperatures (SSTs) in the North Pacific broadly resembles the SST anomaly fields typically associated with the Pacific Decadal Oscillation (PDO). A similar result was found for the remaining stations and in both cases PDO-like correlation patterns also occurred in the preceding spring. These preliminary results demonstrate that there is potential to diagnose the mechanisms that link the large-scale climate system and Alaska stream temperatures.

  1. An integrated framework for the geographic surveillance of chronic disease

    PubMed Central

    2009-01-01

    Background Geographic public health surveillance is concerned with describing and disseminating geographic information about disease and other measures of health to policy makers and the public. While methodological developments in the geographical analysis of disease are numerous, few have been integrated into a framework that also considers the effects of case ascertainment bias on the effectiveness of chronic disease surveillance. Results We present a framework for the geographic surveillance of chronic disease that integrates methodological developments in the spatial statistical analysis and case ascertainment. The framework uses an hierarchical approach to organize and model health information derived from an administrative health data system, and importantly, supports the detection and analysis of case ascertainment bias in geographic data. We test the framework on asthmatic data from Alberta, Canada. We observe high prevalence in south-western Alberta, particularly among Aboriginal females. We also observe that persons likely mistaken for asthmatics tend to be distributed in a pattern similar to asthmatics, suggesting that there may be an underlying social vulnerability to a variety of respiratory illnesses, or the presence of a diagnostic practice style effect. Finally, we note that clustering of asthmatics tends to occur at small geographic scales, while clustering of persons mistaken for asthmatics tends to occur at larger geographic scales. Conclusion Routine and ongoing geographic surveillance of chronic diseases is critical to developing an understanding of underlying epidemiology, and is critical to informing policy makers and the public about the health of the population. PMID:19948046

  2. Development and Application of the Key Technologies for the Quality Control and Inspection of National Geographical Conditions Survey Products

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhang, L.; Ma, W.; Zhang, P.; Zhao, T.

    2018-04-01

    The First National Geographical Condition Survey is a predecessor task to dynamically master basic situations of the nature, ecology and human activities on the earth's surface and it is the brand-new mapping geographic information engineering. In order to ensure comprehensive, real and accurate survey results and achieve the quality management target which the qualified rate is 100 % and the yield is more than 80 %, it is necessary to carry out the quality control and result inspection for national geographical conditions survey on a national scale. To ensure that achievement quality meets quality target requirements, this paper develops the key technology method of "five-in-one" quality control that is constituted by "quality control system of national geographical condition survey, quality inspection technology system, quality evaluation system, quality inspection information management system and national linked quality control institutions" by aiming at large scale, wide coverage range, more undertaking units, more management levels, technical updating, more production process and obvious regional differences in the national geographical condition survey and combining with novel achievement manifestation, complicated dependency, more special reference data, and large data size. This project fully considering the domestic and foreign related research results and production practice experience, combined with the technology development and the needs of the production, it stipulates the inspection methods and technical requirements of each stage in the quality inspection of the geographical condition survey results, and extends the traditional inspection and acceptance technology, and solves the key technologies that are badly needed in the first national geographic survey.

  3. Data, data everywhere: detecting spatial patterns in fine-scale ecological information collected across a continent

    Treesearch

    Kevin M. Potter; Frank H. Koch; Christopher M. Oswalt; Basil V. Iannone

    2016-01-01

    Context Fine-scale ecological data collected across broad regions are becoming increasingly available. Appropriate geographic analyses of these data can help identify locations of ecological concern. Objectives We present one such approach, spatial association of scalable hexagons (SASH), whichidentifies locations where ecological phenomena occur at greater...

  4. A large-scale assessment of European rabbit damage to agriculture in Spain.

    PubMed

    Delibes-Mateos, Miguel; Farfán, Miguel Ángel; Rouco, Carlos; Olivero, Jesús; Márquez, Ana Luz; Fa, John E; Vargas, Juan Mario; Villafuerte, Rafael

    2018-01-01

    Numerous small and medium-sized mammal pests cause widespread and economically significant damage to crops all over the globe. However, most research on pest species has focused on accounts of the level of damage. There are fewer studies concentrating on the description of crop damage caused by pests at large geographical scales, or on analysis of the ecological and anthropogenic factors correlated with these observed patterns. We investigated the relationship between agricultural damage by the European rabbit (Oryctolagus cuniculus) and environmental and anthropogenic variables throughout Spain. Rabbit damage was mainly concentrated within the central-southern regions of Spain. We found that rabbit damage increased significantly between the early 2000s and 2013. Greater losses were typical of those areas where farming dominated and natural vegetation was scarce, where main railways and highways were present, and where environmental conditions were generally favourable for rabbit populations to proliferate. From our analysis, we suggest that roads and railway lines act as potential corridors along which rabbits can spread. The recent increase in Spain of such infrastructure may explain the rise in rabbit damage reported in this study. Our approach is valuable as a method for assessing drivers of wildlife pest damage at large spatial scales, and can be used to propose methods to reduce human - wildlife conflict. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Development of National Future Extreme Heat Scenario to Enable the Assessment of Climate Impacts on Public Health

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Cresson, William L.; Al-Hamdan, Mohammad Z.; Estes, Maurice G.

    2013-01-01

    The project's emphasis is on providing assessments of the magnitude, frequency and geographic distribution of EHEs to facilitate public health studies. We focus on the daily to weekly time scales on which EHEs occur, not on decadal-scale climate changes. There is, however, a very strong connection between air temperature patterns at the two time scales and long-term climatic changes will certainly alter the frequency of EHEs.

  6. Rainfall From Resolved Rather Than Parameterized Processes Better Represents the Present-Day and Climate Change Response of Moderate Rates in the Community Atmosphere Model

    DOE PAGES

    Kooperman, Gabriel J.; Pritchard, Michael S.; O'Brien, Travis A.; ...

    2018-04-01

    Deficiencies in the parameterizations of convection used in global climate models often lead to a distorted representation of the simulated rainfall intensity distribution (i.e., too much rainfall from weak rain rates). While encouraging improvements in high percentile rainfall intensity have been found as the horizontal resolution of the Community Atmosphere Model is increased to ~25 km, we demonstrate no corresponding improvement in the moderate rain rates that generate the majority of accumulated rainfall. Using a statistical framework designed to emphasize links between precipitation intensity and accumulated rainfall beyond just the frequency distribution, we show that CAM cannot realistically simulate moderatemore » rain rates, and cannot capture their intensification with climate change, even as resolution is increased. However, by separating the parameterized convective and large-scale resolved contributions to total rainfall, we find that the intensity, geographic pattern, and climate change response of CAM's large-scale rain rates are more consistent with observations (TRMM 3B42), superparameterization, and theoretical expectations, despite issues with parameterized convection. Increasing CAM's horizontal resolution does improve the representation of total rainfall intensity, but not due to changes in the intensity of large-scale rain rates, which are surprisingly insensitive to horizontal resolution. Rather, improvements occur through an increase in the relative contribution of the large-scale component to the total amount of accumulated rainfall. Analysis of sensitivities to convective timescale and entrainment rate confirm the importance of these parameters in the possible development of scale-aware parameterizations, but also reveal unrecognized trade-offs from the entanglement of precipitation frequency and total amount.« less

  7. Rainfall From Resolved Rather Than Parameterized Processes Better Represents the Present-Day and Climate Change Response of Moderate Rates in the Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Kooperman, Gabriel J.; Pritchard, Michael S.; O'Brien, Travis A.; Timmermans, Ben W.

    2018-04-01

    Deficiencies in the parameterizations of convection used in global climate models often lead to a distorted representation of the simulated rainfall intensity distribution (i.e., too much rainfall from weak rain rates). While encouraging improvements in high percentile rainfall intensity have been found as the horizontal resolution of the Community Atmosphere Model is increased to ˜25 km, we demonstrate no corresponding improvement in the moderate rain rates that generate the majority of accumulated rainfall. Using a statistical framework designed to emphasize links between precipitation intensity and accumulated rainfall beyond just the frequency distribution, we show that CAM cannot realistically simulate moderate rain rates, and cannot capture their intensification with climate change, even as resolution is increased. However, by separating the parameterized convective and large-scale resolved contributions to total rainfall, we find that the intensity, geographic pattern, and climate change response of CAM's large-scale rain rates are more consistent with observations (TRMM 3B42), superparameterization, and theoretical expectations, despite issues with parameterized convection. Increasing CAM's horizontal resolution does improve the representation of total rainfall intensity, but not due to changes in the intensity of large-scale rain rates, which are surprisingly insensitive to horizontal resolution. Rather, improvements occur through an increase in the relative contribution of the large-scale component to the total amount of accumulated rainfall. Analysis of sensitivities to convective timescale and entrainment rate confirm the importance of these parameters in the possible development of scale-aware parameterizations, but also reveal unrecognized trade-offs from the entanglement of precipitation frequency and total amount.

  8. Rainfall From Resolved Rather Than Parameterized Processes Better Represents the Present-Day and Climate Change Response of Moderate Rates in the Community Atmosphere Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kooperman, Gabriel J.; Pritchard, Michael S.; O'Brien, Travis A.

    Deficiencies in the parameterizations of convection used in global climate models often lead to a distorted representation of the simulated rainfall intensity distribution (i.e., too much rainfall from weak rain rates). While encouraging improvements in high percentile rainfall intensity have been found as the horizontal resolution of the Community Atmosphere Model is increased to ~25 km, we demonstrate no corresponding improvement in the moderate rain rates that generate the majority of accumulated rainfall. Using a statistical framework designed to emphasize links between precipitation intensity and accumulated rainfall beyond just the frequency distribution, we show that CAM cannot realistically simulate moderatemore » rain rates, and cannot capture their intensification with climate change, even as resolution is increased. However, by separating the parameterized convective and large-scale resolved contributions to total rainfall, we find that the intensity, geographic pattern, and climate change response of CAM's large-scale rain rates are more consistent with observations (TRMM 3B42), superparameterization, and theoretical expectations, despite issues with parameterized convection. Increasing CAM's horizontal resolution does improve the representation of total rainfall intensity, but not due to changes in the intensity of large-scale rain rates, which are surprisingly insensitive to horizontal resolution. Rather, improvements occur through an increase in the relative contribution of the large-scale component to the total amount of accumulated rainfall. Analysis of sensitivities to convective timescale and entrainment rate confirm the importance of these parameters in the possible development of scale-aware parameterizations, but also reveal unrecognized trade-offs from the entanglement of precipitation frequency and total amount.« less

  9. Nestedness in assemblages of helminth parasites of bats: a function of geography, environment, or host nestedness?

    PubMed

    Warburton, Elizabeth M; Van Der Mescht, Luther; Khokhlova, Irina S; Krasnov, Boris R; Vonhof, Maarten J

    2018-05-01

    Nested subsets occur in ecological communities when species-poor communities are subsets of larger, species-rich communities. Understanding this pattern can help elucidate species colonization abilities, extinction risks, and general structuring of biological communities. Here, we evaluate nestedness in a poorly studied host-parasite system, bats and their helminths, across the Japanese archipelago and within its different bioclimatic regions. We hypothesized that (1) if helminth communities are nested across geographic sites at the level of the archipelago, then broad-scale processes, like colonization-extinction dynamics, mainly structure parasite assemblages; (2) if helminth communities are nested across geographic sites at the level of the bioclimatic region, then fine-scale environmental variation plays a significant role in species nestedness; (3) if helminth community nestedness mirrors host species nestedness, then communities are nested because the habitats they occupy are nested; and (4) if nestedness does not occur or if it is not correlated with any geographical or host data, then passive sampling could be responsible for the patterns of parasite assemblage in our sample. We found that helminth communities were nested across host species throughout the archipelago but, when considering each bioclimatic region, helminths in only one region were significantly more nested than the null model. Helminth communities were also nested across sites within all four bioclimatic regions. These results suggest that helminths form nested subsets across the archipelago due to broad-scale processes that reflect the overall lineages of their mammalian hosts; however, at the regional scale, environmental processes related to nestedness of their habitats drive parasite community nestedness.

  10. [Prediction and spatial distribution of recruitment trees of natural secondary forest based on geographically weighted Poisson model].

    PubMed

    Zhang, Ling Yu; Liu, Zhao Gang

    2017-12-01

    Based on the data collected from 108 permanent plots of the forest resources survey in Maoershan Experimental Forest Farm during 2004-2016, this study investigated the spatial distribution of recruitment trees in natural secondary forest by global Poisson regression and geographically weighted Poisson regression (GWPR) with four bandwidths of 2.5, 5, 10 and 15 km. The simulation effects of the 5 regressions and the factors influencing the recruitment trees in stands were analyzed, a description was given to the spatial autocorrelation of the regression residuals on global and local levels using Moran's I. The results showed that the spatial distribution of the number of natural secondary forest recruitment was significantly influenced by stands and topographic factors, especially average DBH. The GWPR model with small scale (2.5 km) had high accuracy of model fitting, a large range of model parameter estimates was generated, and the localized spatial distribution effect of the model parameters was obtained. The GWPR model at small scale (2.5 and 5 km) had produced a small range of model residuals, and the stability of the model was improved. The global spatial auto-correlation of the GWPR model residual at the small scale (2.5 km) was the lowe-st, and the local spatial auto-correlation was significantly reduced, in which an ideal spatial distribution pattern of small clusters with different observations was formed. The local model at small scale (2.5 km) was much better than the global model in the simulation effect on the spatial distribution of recruitment tree number.

  11. Forest Ecosystem Analysis Using a GIS

    Treesearch

    S.G. McNulty; W.T. Swank

    1996-01-01

    Forest ecosystem studies have expanded spatially in recent years to address large scale environmental issues. We are using a geographic information system (GIS) to understand and integrate forest processes at landscape to regional spatial scales. This paper presents three diverse research studies using a GIS. First, we used a GIS to develop a landscape scale model to...

  12. Continental-scale footprint of balancing and positive selection in a small rodent (Microtus arvalis).

    PubMed

    Fischer, Martin C; Foll, Matthieu; Heckel, Gerald; Excoffier, Laurent

    2014-01-01

    Genetic adaptation to different environmental conditions is expected to lead to large differences between populations at selected loci, thus providing a signature of positive selection. Whereas balancing selection can maintain polymorphisms over long evolutionary periods and even geographic scale, thus leads to low levels of divergence between populations at selected loci. However, little is known about the relative importance of these two selective forces in shaping genomic diversity, partly due to difficulties in recognizing balancing selection in species showing low levels of differentiation. Here we address this problem by studying genomic diversity in the European common vole (Microtus arvalis) presenting high levels of differentiation between populations (average F ST = 0.31). We studied 3,839 Amplified Fragment Length Polymorphism (AFLP) markers genotyped in 444 individuals from 21 populations distributed across the European continent and hence over different environmental conditions. Our statistical approach to detect markers under selection is based on a Bayesian method specifically developed for AFLP markers, which treats AFLPs as a nearly codominant marker system, and therefore has increased power to detect selection. The high number of screened populations allowed us to detect the signature of balancing selection across a large geographic area. We detected 33 markers potentially under balancing selection, hence strong evidence of stabilizing selection in 21 populations across Europe. However, our analyses identified four-times more markers (138) being under positive selection, and geographical patterns suggest that some of these markers are probably associated with alpine regions, which seem to have environmental conditions that favour adaptation. We conclude that despite favourable conditions in this study for the detection of balancing selection, this evolutionary force seems to play a relatively minor role in shaping the genomic diversity of the common vole, which is more influenced by positive selection and neutral processes like drift and demographic history.

  13. US County-Level Trends in Mortality Rates for Major Causes of Death, 1980-2014.

    PubMed

    Dwyer-Lindgren, Laura; Bertozzi-Villa, Amelia; Stubbs, Rebecca W; Morozoff, Chloe; Kutz, Michael J; Huynh, Chantal; Barber, Ryan M; Shackelford, Katya A; Mackenbach, Johan P; van Lenthe, Frank J; Flaxman, Abraham D; Naghavi, Mohsen; Mokdad, Ali H; Murray, Christopher J L

    2016-12-13

    County-level patterns in mortality rates by cause have not been systematically described but are potentially useful for public health officials, clinicians, and researchers seeking to improve health and reduce geographic disparities. To demonstrate the use of a novel method for county-level estimation and to estimate annual mortality rates by US county for 21 mutually exclusive causes of death from 1980 through 2014. Redistribution methods for garbage codes (implausible or insufficiently specific cause of death codes) and small area estimation methods (statistical methods for estimating rates in small subpopulations) were applied to death registration data from the National Vital Statistics System to estimate annual county-level mortality rates for 21 causes of death. These estimates were raked (scaled along multiple dimensions) to ensure consistency between causes and with existing national-level estimates. Geographic patterns in the age-standardized mortality rates in 2014 and in the change in the age-standardized mortality rates between 1980 and 2014 for the 10 highest-burden causes were determined. County of residence. Cause-specific age-standardized mortality rates. A total of 80 412 524 deaths were recorded from January 1, 1980, through December 31, 2014, in the United States. Of these, 19.4 million deaths were assigned garbage codes. Mortality rates were analyzed for 3110 counties or groups of counties. Large between-county disparities were evident for every cause, with the gap in age-standardized mortality rates between counties in the 90th and 10th percentiles varying from 14.0 deaths per 100 000 population (cirrhosis and chronic liver diseases) to 147.0 deaths per 100 000 population (cardiovascular diseases). Geographic regions with elevated mortality rates differed among causes: for example, cardiovascular disease mortality tended to be highest along the southern half of the Mississippi River, while mortality rates from self-harm and interpersonal violence were elevated in southwestern counties, and mortality rates from chronic respiratory disease were highest in counties in eastern Kentucky and western West Virginia. Counties also varied widely in terms of the change in cause-specific mortality rates between 1980 and 2014. For most causes (eg, neoplasms, neurological disorders, and self-harm and interpersonal violence), both increases and decreases in county-level mortality rates were observed. In this analysis of US cause-specific county-level mortality rates from 1980 through 2014, there were large between-county differences for every cause of death, although geographic patterns varied substantially by cause of death. The approach to county-level analyses with small area models used in this study has the potential to provide novel insights into US disease-specific mortality time trends and their differences across geographic regions.

  14. The impact of geographic information systems on emergency management decision making at the U.S. Department of Homeland Security

    NASA Astrophysics Data System (ADS)

    King, Steven Gray

    Geographic information systems (GIS) reveal relationships and patterns from large quantities of diverse data in the form of maps and reports. The United States spends billions of dollars to use GIS to improve decisions made during responses to natural disasters and terrorist attacks, but precisely how GIS improves or impairs decision making is not known. This research examined how GIS affect decision making during natural disasters, and how GIS can be more effectively used to improve decision making for emergency management. Using a qualitative case study methodology, this research examined decision making at the U.S. Department of Homeland Security (DHS) during a large full-scale disaster exercise. This study indicates that GIS provided decision makers at DHS with an outstanding context for information that would otherwise be challenging to understand, especially through the integration of multiple data sources and dynamic three-dimensional interactive maps. Decision making was hampered by outdated information, a reliance on predictive models based on hypothetical data rather than actual event data, and a lack of understanding of the capabilities of GIS beyond cartography. Geospatial analysts, emergency managers, and other decision makers who use GIS should take specific steps to improve decision making based on GIS for disaster response and emergency management.

  15. Collaborative Working for Large Digitisation Projects

    ERIC Educational Resources Information Center

    Yeates, Robin; Guy, Damon

    2006-01-01

    Purpose: To explore the effectiveness of large-scale consortia for disseminating local heritage via the web. To describe the creation of a large geographically based cultural heritage consortium in the South East of England and management lessons resulting from a major web site digitisation project. To encourage the improved sharing of experience…

  16. Fast Updating National Geo-Spatial Databases with High Resolution Imagery: China's Methodology and Experience

    NASA Astrophysics Data System (ADS)

    Chen, J.; Wang, D.; Zhao, R. L.; Zhang, H.; Liao, A.; Jiu, J.

    2014-04-01

    Geospatial databases are irreplaceable national treasure of immense importance. Their up-to-dateness referring to its consistency with respect to the real world plays a critical role in its value and applications. The continuous updating of map databases at 1:50,000 scales is a massive and difficult task for larger countries of the size of more than several million's kilometer squares. This paper presents the research and technological development to support the national map updating at 1:50,000 scales in China, including the development of updating models and methods, production tools and systems for large-scale and rapid updating, as well as the design and implementation of the continuous updating workflow. The use of many data sources and the integration of these data to form a high accuracy, quality checked product were required. It had in turn required up to date techniques of image matching, semantic integration, generalization, data base management and conflict resolution. Design and develop specific software tools and packages to support the large-scale updating production with high resolution imagery and large-scale data generalization, such as map generalization, GIS-supported change interpretation from imagery, DEM interpolation, image matching-based orthophoto generation, data control at different levels. A national 1:50,000 databases updating strategy and its production workflow were designed, including a full coverage updating pattern characterized by all element topographic data modeling, change detection in all related areas, and whole process data quality controlling, a series of technical production specifications, and a network of updating production units in different geographic places in the country.

  17. Geographic-time distribution of ambulance calls in Singapore: utility of geographic information system in ambulance deployment (CARE 3).

    PubMed

    Ong, Marcus E H; Ng, Faith S P; Overton, Jerry; Yap, Susan; Andresen, Derek; Yong, David K L; Lim, Swee Han; Anantharaman, V

    2009-03-01

    Pre-hospital ambulance calls are not random events, but occur in patterns and trends that are related to movement patterns of people, as well as the geographical epidemiology of the population. This study describes the geographic-time epidemiology of ambulance calls in a large urban city and conducts a time demand analysis. This will facilitate a Systems Status Plan for the deployment of ambulances based on the most cost effective deployment strategy. An observational prospective study looking at the geographic-time epidemiology of all ambulance calls in Singapore. Locations of ambulance calls were spot mapped using Geographic Information Systems (GIS) technology. Ambulance response times were mapped and a demand analysis conducted by postal districts. Between 1 January 2006 and 31 May 2006, 31,896 patients were enrolled into the study. Mean age of patients was 51.6 years (S.D. 23.0) with 60.0% male. Race distribution was 62.5% Chinese, 19.4% Malay, 12.9% Indian and 5.2% others. Trauma consisted 31.2% of calls and medical 68.8%. 9.7% of cases were priority 1 (most severe) and 70.1% priority 2 (moderate severity). Mean call receipt to arrival at scene was 8.0 min (S.D. 4.8). Call volumes in the day were almost twice those at night, with the most calls on Mondays. We found a definite geographical distribution pattern with heavier call volumes in the suburban town centres in the Eastern and Southern part of the country. We characterised the top 35 districts with the highest call volumes by time periods, which will form the basis for ambulance deployment plans. We found a definite geographical distribution pattern of ambulance calls. This study demonstrates the utility of GIS with despatch demand analysis and has implications for maximising the effectiveness of ambulance deployment.

  18. PKI security in large-scale healthcare networks.

    PubMed

    Mantas, Georgios; Lymberopoulos, Dimitrios; Komninos, Nikos

    2012-06-01

    During the past few years a lot of PKI (Public Key Infrastructures) infrastructures have been proposed for healthcare networks in order to ensure secure communication services and exchange of data among healthcare professionals. However, there is a plethora of challenges in these healthcare PKI infrastructures. Especially, there are a lot of challenges for PKI infrastructures deployed over large-scale healthcare networks. In this paper, we propose a PKI infrastructure to ensure security in a large-scale Internet-based healthcare network connecting a wide spectrum of healthcare units geographically distributed within a wide region. Furthermore, the proposed PKI infrastructure facilitates the trust issues that arise in a large-scale healthcare network including multi-domain PKI infrastructures.

  19. Ecological niche modeling as a new paradigm for large-scale investigations of diversity and distribution of birds

    Treesearch

    A. Townsend Peterson; Daniel A. Kluza

    2005-01-01

    Large-scale assessments of the distribution and diversity of birds have been challenged by the need for a robust methodology for summarizing or predicting species' geographic distributions (e.g. Beard et al. 1999, Manel et al. 1999, Saveraid et al. 2001). Methodologies used in such studies have at times been inappropriate, or even more frequently limited in their...

  20. Historical and current landscape-scale ponderosa pine and mixed conifer forest structure in the Southern Sierra Nevada

    Treesearch

    Scott L. Stephens; Jamie M. Lydersen; Brandon M. Collins; Danny L. Fry; Marc D. Meyer

    2015-01-01

    Many managers today are tasked with restoring forests to mitigate the potential for uncharacteristically severe fire. One challenge to this mandate is the lack of large-scale reference information on forest structure prior to impacts from Euro-American settlement. We used a robust 1911 historical dataset that covers a large geographic extent (>10,000 ha) and has...

  1. Population structure and cultural geography of a folktale in Europe

    PubMed Central

    Ross, Robert M.; Greenhill, Simon J.; Atkinson, Quentin D.

    2013-01-01

    Despite a burgeoning science of cultural evolution, relatively little work has focused on the population structure of human cultural variation. By contrast, studies in human population genetics use a suite of tools to quantify and analyse spatial and temporal patterns of genetic variation within and between populations. Human genetic diversity can be explained largely as a result of migration and drift giving rise to gradual genetic clines, together with some discontinuities arising from geographical and cultural barriers to gene flow. Here, we adapt theory and methods from population genetics to quantify the influence of geography and ethnolinguistic boundaries on the distribution of 700 variants of a folktale in 31 European ethnolinguistic populations. We find that geographical distance and ethnolinguistic affiliation exert significant independent effects on folktale diversity and that variation between populations supports a clustering concordant with European geography. This pattern of geographical clines and clusters parallels the pattern of human genetic diversity in Europe, although the effects of geographical distance and ethnolinguistic boundaries are stronger for folktales than genes. Our findings highlight the importance of geography and population boundaries in models of human cultural variation and point to key similarities and differences between evolutionary processes operating on human genes and culture. PMID:23390109

  2. Phylogenetic patterns of geographical and ecological diversification in the subgenus Drosophila.

    PubMed

    Morales-Hojas, Ramiro; Vieira, Jorge

    2012-01-01

    Colonisation of new geographic regions and/or of new ecological resources can result in rapid species diversification into the new ecological niches available. Members of the subgenus Drosophila are distributed across the globe and show a large diversity of ecological niches. Furthermore, taxonomic classification of Drosophila includes the rank radiation, which refers to closely related species groups. Nevertheless, it has never been tested if these taxonomic radiations correspond to evolutionary radiations. Here we present a study of the patterns of diversification of Drosophila to test for increased diversification rates in relation to the geographic and ecological diversification processes. For this, we have estimated and dated a phylogeny of 218 species belonging to the major species groups of the subgenus. The obtained phylogenies are largely consistent with previous studies and indicate that the major groups appeared during the Oligocene/Miocene transition or early Miocene, characterized by a trend of climate warming with brief periods of glaciation. Ancestral reconstruction of geographic ranges and ecological resource use suggest at least two dispersals to the Neotropics from the ancestral Asiatic tropical disribution, and several transitions to specialized ecological resource use (mycophagous and cactophilic). Colonisation of new geographic regions and/or of new ecological resources can result in rapid species diversification into the new ecological niches available. However, diversification analyses show no significant support for adaptive radiations as a result of geographic dispersal or ecological resource shift. Also, cactophily has not resulted in an increase in the diversification rate of the repleta and related groups. It is thus concluded that the taxonomic radiations do not correspond to adaptive radiations.

  3. A Matter of Life or Death: Untangling the Coupled Roles of Behavior, Microclimate and Physiological Polymorphism in Governing Vulnerability of Intertidal Snails to Heat Stress

    NASA Astrophysics Data System (ADS)

    Dong, Y.; Li, X.; Choi, F.; Willams, G.; Somero, G. N.; Helmuth, B.

    2016-12-01

    Changing patterns of species' biogeographic distributions are driven by cumulative effects of much smaller scale processes. Specifically, vulnerability of animals to thermal stress is the result of physiological sensitivities to body temperature (Tb), local microclimatic conditions, and abilities to anticipate extreme conditions and move to cooler refugia. These variables have rarely been quantified simultaneously over large geographic scales. We analyzed the thermal tolerances of three species of rocky intertidal snails from eight sites spanning 11.5 degrees of latitude along the Chinese coast. Using a biophysical model, we estimated potential Tb in sun-exposed and shaded microhabitats for all species at these sites for 30 years. We then compared maximum predicted Tb against the temperatures at which cardiac function was impaired (Arrhenius Break Temperatures, ABT) and lethal limits were reached (cardiac Flat Line Temperatures, FLT) to calculate thermal Safety Margins (TSM) for normal physiological function (TSMABT) and heat death (TSMFLT). Regular exceedance of FLT in sun-exposed microhabitats was predicted for only one site in the middle of the geographic gradient. However, ABT was exceeded at sun-exposed microhabitats in most sites, suggesting significant physiological impairment for snails that fail to move into the shade. An autocorrelation analysis of snail Tb showed that predictability of extreme temperatures was lowest at the hottest sites, an indication that reliance on behavioral thermoregulation may be a risky strategy. Observed large differences in ABT and FLT among conspecifics emphasize the critical role of physiological polymorphisms in governing the vulnerability of populations to heat stress.

  4. Multi-Scale Fractal Analysis of Image Texture and Pattern

    NASA Technical Reports Server (NTRS)

    Emerson, Charles W.

    1998-01-01

    Fractals embody important ideas of self-similarity, in which the spatial behavior or appearance of a system is largely independent of scale. Self-similarity is defined as a property of curves or surfaces where each part is indistinguishable from the whole, or where the form of the curve or surface is invariant with respect to scale. An ideal fractal (or monofractal) curve or surface has a constant dimension over all scales, although it may not be an integer value. This is in contrast to Euclidean or topological dimensions, where discrete one, two, and three dimensions describe curves, planes, and volumes. Theoretically, if the digital numbers of a remotely sensed image resemble an ideal fractal surface, then due to the self-similarity property, the fractal dimension of the image will not vary with scale and resolution. However, most geographical phenomena are not strictly self-similar at all scales, but they can often be modeled by a stochastic fractal in which the scaling and self-similarity properties of the fractal have inexact patterns that can be described by statistics. Stochastic fractal sets relax the monofractal self-similarity assumption and measure many scales and resolutions in order to represent the varying form of a phenomenon as a function of local variables across space. In image interpretation, pattern is defined as the overall spatial form of related features, and the repetition of certain forms is a characteristic pattern found in many cultural objects and some natural features. Texture is the visual impression of coarseness or smoothness caused by the variability or uniformity of image tone or color. A potential use of fractals concerns the analysis of image texture. In these situations it is commonly observed that the degree of roughness or inexactness in an image or surface is a function of scale and not of experimental technique. The fractal dimension of remote sensing data could yield quantitative insight on the spatial complexity and information content contained within these data. A software package known as the Image Characterization and Modeling System (ICAMS) was used to explore how fractal dimension is related to surface texture and pattern. The ICAMS software was verified using simulated images of ideal fractal surfaces with specified dimensions. The fractal dimension for areas of homogeneous land cover in the vicinity of Huntsville, Alabama was measured to investigate the relationship between texture and resolution for different land covers.

  5. Behavioral self-organization underlies the resilience of a coastal ecosystem.

    PubMed

    de Paoli, Hélène; van der Heide, Tjisse; van den Berg, Aniek; Silliman, Brian R; Herman, Peter M J; van de Koppel, Johan

    2017-07-25

    Self-organized spatial patterns occur in many terrestrial, aquatic, and marine ecosystems. Theoretical models and observational studies suggest self-organization, the formation of patterns due to ecological interactions, is critical for enhanced ecosystem resilience. However, experimental tests of this cross-ecosystem theory are lacking. In this study, we experimentally test the hypothesis that self-organized pattern formation improves the persistence of mussel beds ( Mytilus edulis ) on intertidal flats. In natural beds, mussels generate self-organized patterns at two different spatial scales: regularly spaced clusters of mussels at centimeter scale driven by behavioral aggregation and large-scale, regularly spaced bands at meter scale driven by ecological feedback mechanisms. To test for the relative importance of these two spatial scales of self-organization on mussel bed persistence, we conducted field manipulations in which we factorially constructed small-scale and/or large-scale patterns. Our results revealed that both forms of self-organization enhanced the persistence of the constructed mussel beds in comparison to nonorganized beds. Small-scale, behaviorally driven cluster patterns were found to be crucial for persistence, and thus resistance to wave disturbance, whereas large-scale, self-organized patterns facilitated reformation of small-scale patterns if mussels were dislodged. This study provides experimental evidence that self-organization can be paramount to enhancing ecosystem persistence. We conclude that ecosystems with self-organized spatial patterns are likely to benefit greatly from conservation and restoration actions that use the emergent effects of self-organization to increase ecosystem resistance to disturbance.

  6. Behavioral self-organization underlies the resilience of a coastal ecosystem

    PubMed Central

    de Paoli, Hélène; van der Heide, Tjisse; van den Berg, Aniek; Silliman, Brian R.; Herman, Peter M. J.

    2017-01-01

    Self-organized spatial patterns occur in many terrestrial, aquatic, and marine ecosystems. Theoretical models and observational studies suggest self-organization, the formation of patterns due to ecological interactions, is critical for enhanced ecosystem resilience. However, experimental tests of this cross-ecosystem theory are lacking. In this study, we experimentally test the hypothesis that self-organized pattern formation improves the persistence of mussel beds (Mytilus edulis) on intertidal flats. In natural beds, mussels generate self-organized patterns at two different spatial scales: regularly spaced clusters of mussels at centimeter scale driven by behavioral aggregation and large-scale, regularly spaced bands at meter scale driven by ecological feedback mechanisms. To test for the relative importance of these two spatial scales of self-organization on mussel bed persistence, we conducted field manipulations in which we factorially constructed small-scale and/or large-scale patterns. Our results revealed that both forms of self-organization enhanced the persistence of the constructed mussel beds in comparison to nonorganized beds. Small-scale, behaviorally driven cluster patterns were found to be crucial for persistence, and thus resistance to wave disturbance, whereas large-scale, self-organized patterns facilitated reformation of small-scale patterns if mussels were dislodged. This study provides experimental evidence that self-organization can be paramount to enhancing ecosystem persistence. We conclude that ecosystems with self-organized spatial patterns are likely to benefit greatly from conservation and restoration actions that use the emergent effects of self-organization to increase ecosystem resistance to disturbance. PMID:28696313

  7. Study on Dissemination Patterns in Location-Aware Gossiping Networks

    NASA Astrophysics Data System (ADS)

    Kami, Nobuharu; Baba, Teruyuki; Yoshikawa, Takashi; Morikawa, Hiroyuki

    We study the properties of information dissemination over location-aware gossiping networks leveraging location-based real-time communication applications. Gossiping is a promising method for quickly disseminating messages in a large-scale system, but in its application to information dissemination for location-aware applications, it is important to consider the network topology and patterns of spatial dissemination over the network in order to achieve effective delivery of messages to potentially interested users. To this end, we propose a continuous-space network model extended from Kleinberg's small-world model applicable to actual location-based applications. Analytical and simulation-based study shows that the proposed network achieves high dissemination efficiency resulting from geographically neutral dissemination patterns as well as selective dissemination to proximate users. We have designed a highly scalable location management method capable of promptly updating the network topology in response to node movement and have implemented a distributed simulator to perform dynamic target pursuit experiments as one example of applications that are the most sensitive to message forwarding delay. The experimental results show that the proposed network surpasses other types of networks in pursuit efficiency and achieves the desirable dissemination patterns.

  8. Biogeographic patterns in life history traits of the Pan-American sandy beach isopod Excirolana braziliensis

    NASA Astrophysics Data System (ADS)

    Cardoso, Ricardo S.; Defeo, Omar

    2004-11-01

    Biogeographic patterns in life history traits of the Pan-American sandy beach isopod Excirolana braziliensis were analyzed to determine latitudinal variations along its distribution, from tropical (9°N) to temperate (39°S) sandy beaches in Atlantic and Pacific oceans. Population features exhibited systematic geographical patterns of variation: (1) an increase in individual sizes and growth rates towards temperate beaches, following an inverse relationship with mean water temperature of the surf zone; (2) a shift from almost continuous to seasonal growth from subtropical to temperate Atlantic beaches and a positive relationship between amplitude of intra-annual growth oscillations and temperature range; (3) a linear decrease in life span and an increase in natural mortality from temperate to subtropical beaches; and (4) an increase in the individual mass-at-size (length-mass relationship) from subtropical to temperate beaches. Analyses discriminated by sex were consistent with the patterns illustrated above. Local effects of temperature and beach morphodynamics are discussed. Our results demonstrate that the population dynamics of E. braziliensis is highly plastic over latitudinal gradients, with large-scale variations in temperature and concurrent environmental variables leading to an adjustment of the phenotype-environment relationship.

  9. Geographic distribution of HIV stigma among women of childbearing age in rural Kenya

    PubMed Central

    Akullian, Adam; Kohler, Pamela; Kinuthia, John; Laserson, Kayla; Mills, Lisa A.; Okanda, John; Olilo, George; Ombok, Maurice; Odhiambo, Frank; Rao, Deepa; Wakefield, Jonathan; John-Stewart, Grace

    2015-01-01

    Objective(s) HIV stigma is considered to be a major driver of the HIV/AIDS pandemic, yet there is a limited understanding of its occurrence. We describe the geographic patterns of two forms of HIV stigma in a cross-sectional sample of women of childbearing age from western Kenya: internalized stigma (associated with shame) and externalized stigma (associated with blame). Design Geographic studies of HIV stigma provide a first step in generating hypotheses regarding potential community-level causes of stigma and may lead to more effective community-level interventions. Methods Spatial regression using generalized additive models and point pattern analyses using K-functions were used to assess the spatial scale(s) at which each form of HIV stigma clusters, and to assess whether the spatial clustering of each stigma indicator was present after adjustment for individual-level characteristics. Results There was evidence that externalized stigma (blame) was geographically heterogeneous across the study area, even after controlling for individual-level factors (P=0.01). In contrast, there was less evidence (P=0.70) of spatial trend or clustering of internalized stigma (shame). Conclusion Our results may point to differences in the underlying social processes motivating each form of HIV stigma. Externalized stigma may be driven more by cultural beliefs disseminated within communities, whereas internalized stigma may be the result of individual-level characteristics outside the domain of community influence. These data may inform community-level interventions to decrease HIV-related stigma, and thus impact the HIV epidemic. PMID:24835356

  10. Large-scale modeling on the fate and transport of polycyclic aromatic hydrocarbons (PAHs) in multimedia over China

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Liu, M.; Wada, Y.; He, X.; Sun, X.

    2017-12-01

    In recent decades, with rapid economic growth, industrial development and urbanization, expanding pollution of polycyclic aromatic hydrocarbons (PAHs) has become a diversified and complicated phenomenon in China. However, the availability of sufficient monitoring activities for PAHs in multi-compartment and the corresponding multi-interface migration processes are still limited, especially at a large geographic area. In this study, we couple the Multimedia Fate Model (MFM) to the Community Multi-Scale Air Quality (CMAQ) model in order to consider the fugacity and the transient contamination processes. This coupled dynamic contaminant model can evaluate the detailed local variations and mass fluxes of PAHs in different environmental media (e.g., air, surface film, soil, sediment, water and vegetation) across different spatial (a county to country) and temporal (days to years) scales. This model has been applied to a large geographical domain of China at a 36 km by 36 km grid resolution. The model considers response characteristics of typical environmental medium to complex underlying surface. Results suggest that direct emission is the main input pathway of PAHs entering the atmosphere, while advection is the main outward flow of pollutants from the environment. In addition, both soil and sediment act as the main sink of PAHs and have the longest retention time. Importantly, the highest PAHs loadings are found in urbanized and densely populated regions of China, such as Yangtze River Delta and Pearl River Delta. This model can provide a good scientific basis towards a better understanding of the large-scale dynamics of environmental pollutants for land conservation and sustainable development. In a next step, the dynamic contaminant model will be integrated with the continental-scale hydrological and water resources model (i.e., Community Water Model, CWatM) to quantify a more accurate representation and feedbacks between the hydrological cycle and water quality at even larger geographical domains. Keywords: PAHs; Community multi-scale air quality model; Multimedia fate model; Land use

  11. Spatial and temporal drivers of phenotypic diversity in polymorphic snakes.

    PubMed

    Cox, Christian L; Davis Rabosky, Alison R

    2013-08-01

    Color polymorphism in natural populations presents an ideal opportunity to study the evolutionary drivers of phenotypic diversity. Systems with striking spatial, temporal, and qualitative variation in color can be leveraged to study the mechanisms promoting the distribution of different types of variation in nature. We used the highly polymorphic ground snake (Sonora semiannulata), a putative coral snake mimic with both cryptic and conspicuous morphs, to compare patterns of neutral genetic variation and variation over space and time in color polymorphism to investigate the mechanistic drivers of phenotypic variation across scales. We found that strong selection promotes color polymorphism across spatial and temporal scales, with morph frequencies differing markedly between juvenile and adult age classes within a single population, oscillating over time within multiple populations, and varying drastically over the landscape despite minimal population genetic structure. However, we found no evidence that conspicuousness of morphs was related to which color pattern was favored by selection or to any geographic factors, including sympatry with coral snakes. We suggest that complex patterns of phenotypic variation in polymorphic systems may be a fundamental outcome of the conspicuousness of morphs and that explicit tests of temporal and geographic variation are critical to the interpretation of conspicuousness and mimicry.

  12. ANALYTICAL TOOL INTERFACE FOR LANDSCAPE ASSESSMENTS (ATIILA): AN ARCVIEW EXTENSION FOR THE ANALYSIS OF LANDSCAPE PATTERNS, COMPOSITION, AND STRUCTURE

    EPA Science Inventory

    Environmental management practices are trending away from simple, local- scale assessments toward complex, multiple-stressor regional assessments. Landscape ecology provides the theory behind these assessments while geographic information systems (GIS) supply the tools to impleme...

  13. Demeter-W

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-09-27

    Demeter-W, an open-access software written in Python, consists of extensible module packages. It is developed with statistical downscaling algorithms, to spatially and temporally downscale water demand data into finer scale. The spatial resolution will be downscaled from region/basin scale to grid (0.5 geographic degree) scale and the temporal resolution will be downscaled from year to month. For better understanding of the driving forces and patterns for global water withdrawal, the researchers is able to utilize Demeter-W to reconstruct the data sets to examine the issues related to water withdrawals at fine spatial and temporal scales.

  14. Helicity patterns on the Sun

    NASA Astrophysics Data System (ADS)

    Pevtsov, A.

    Solar magnetic fields exhibit hemispheric preference for negative (pos- itive) helicity in northern (southern) hemisphere. The hemispheric he- licity rule, however, is not very strong, - the patterns of opposite sign helicity were observed on different spatial scales in each hemisphere. For instance, many individual sunspots exhibit patches of opposite he- licity inside the single polarity field. There are also helicity patterns on scales larger than the size of typical active region. Such patterns were observed in distribution of active regions with abnormal (for a give hemisphere) helicity, in large-scale photospheric magnetic fields and coronal flux systems. We will review the observations of large-scale pat- terns of helicity in solar atmosphere and their possible relationship with (sub-)photospheric processes. The emphasis will be on large-scale pho- tospheric magnetic field and solar corona.

  15. Spatial analysis of lettuce downy mildew using geostatistics and geographic information systems.

    PubMed

    Wu, B M; van Bruggen, A H; Subbarao, K V; Pennings, G G

    2001-02-01

    ABSTRACT The epidemiology of lettuce downy mildew has been investigated extensively in coastal California. However, the spatial patterns of the disease and the distance that Bremia lactucae spores can be transported have not been determined. During 1995 to 1998, we conducted several field- and valley-scale surveys to determine spatial patterns of this disease in the Salinas valley. Geostatistical analyses of the survey data at both scales showed that the influence range of downy mildew incidence at one location on incidence at other locations was between 80 and 3,000 m. A linear relationship was detected between semivariance and lag distance at the field scale, although no single statistical model could fit the semi-variograms at the valley scale. Spatial interpolation by the inverse distance weighting method with a power of 2 resulted in plausible estimates of incidence throughout the valley. Cluster analysis in geographic information systems on the interpolated disease incidence from different dates demonstrated that the Salinas valley could be divided into two areas, north and south of Salinas City, with high and low disease pressure, respectively. Seasonal and spatial trends along the valley suggested that the distinction between the downy mildew conducive and nonconducive areas might be determined by environmental factors.

  16. A Development of Nonstationary Regional Frequency Analysis Model with Large-scale Climate Information: Its Application to Korean Watershed

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Young; Kwon, Hyun-Han; Kim, Hung-Soo

    2015-04-01

    The existing regional frequency analysis has disadvantages in that it is difficult to consider geographical characteristics in estimating areal rainfall. In this regard, this study aims to develop a hierarchical Bayesian model based nonstationary regional frequency analysis in that spatial patterns of the design rainfall with geographical information (e.g. latitude, longitude and altitude) are explicitly incorporated. This study assumes that the parameters of Gumbel (or GEV distribution) are a function of geographical characteristics within a general linear regression framework. Posterior distribution of the regression parameters are estimated by Bayesian Markov Chain Monte Carlo (MCMC) method, and the identified functional relationship is used to spatially interpolate the parameters of the distributions by using digital elevation models (DEM) as inputs. The proposed model is applied to derive design rainfalls over the entire Han-river watershed. It was found that the proposed Bayesian regional frequency analysis model showed similar results compared to L-moment based regional frequency analysis. In addition, the model showed an advantage in terms of quantifying uncertainty of the design rainfall and estimating the area rainfall considering geographical information. Finally, comprehensive discussion on design rainfall in the context of nonstationary will be presented. KEYWORDS: Regional frequency analysis, Nonstationary, Spatial information, Bayesian Acknowledgement This research was supported by a grant (14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

  17. A leap forward in geographic scale for forest ectomycorrhizal fungi

    Treesearch

    Filipa Cox; Nadia Barsoum; Martin I. Bidartondo; Isabella Børja; Erik Lilleskov; Lars O. Nilsson; Pasi Rautio; Kath Tubby; Lars Vesterdal

    2010-01-01

    In this letter we propose a first large-scale assessment of mycorrhizas with a European-wide network of intensively monitored forest plots as a research platform. This effort would create a qualitative and quantitative shift in mycorrhizal research by delivering the first continental-scale map of mycorrhizal fungi. Readersmay note that several excellent detailed...

  18. Geographical ecology of the palms (Arecaceae): determinants of diversity and distributions across spatial scales

    PubMed Central

    Eiserhardt, Wolf L.; Svenning, Jens-Christian; Kissling, W. Daniel; Balslev, Henrik

    2011-01-01

    Background The palm family occurs in all tropical and sub-tropical regions of the world. Palms are of high ecological and economical importance, and display complex spatial patterns of species distributions and diversity. Scope This review summarizes empirical evidence for factors that determine palm species distributions, community composition and species richness such as the abiotic environment (climate, soil chemistry, hydrology and topography), the biotic environment (vegetation structure and species interactions) and dispersal. The importance of contemporary vs. historical impacts of these factors and the scale at which they function is discussed. Finally a hierarchical scale framework is developed to guide predictor selection for future studies. Conclusions Determinants of palm distributions, composition and richness vary with spatial scale. For species distributions, climate appears to be important at landscape and broader scales, soil, topography and vegetation at landscape and local scales, hydrology at local scales, and dispersal at all scales. For community composition, soil appears important at regional and finer scales, hydrology, topography and vegetation at landscape and local scales, and dispersal again at all scales. For species richness, climate and dispersal appear to be important at continental to global scales, soil at landscape and broader scales, and topography at landscape and finer scales. Some scale–predictor combinations have not been studied or deserve further attention, e.g. climate on regional to finer scales, and hydrology and topography on landscape and broader scales. The importance of biotic interactions – apart from general vegetation structure effects – for the geographic ecology of palms is generally underexplored. Future studies should target scale–predictor combinations and geographic domains not studied yet. To avoid biased inference, one should ideally include at least all predictors previously found important at the spatial scale of investigation. PMID:21712297

  19. Genesis, Pathways, and Terminations of Intense Global Water Vapor Transport in Association with Large-Scale Climate Patterns

    NASA Astrophysics Data System (ADS)

    Sellars, S. L.; Kawzenuk, B.; Nguyen, P.; Ralph, F. M.; Sorooshian, S.

    2017-12-01

    The CONNected objECT (CONNECT) algorithm is applied to global Integrated Water Vapor Transport data from the NASA's Modern-Era Retrospective Analysis for Research and Applications - Version 2 reanalysis product for the period of 1980 to 2016. The algorithm generates life-cycle records in time and space evolving strong vapor transport events. We show five regions, located in the midlatitudes, where events typically exist (off the coast of the southeast United States, eastern China, eastern South America, off the southern tip of South Africa, and in the southeastern Pacific Ocean). Global statistics show distinct genesis and termination regions and global seasonal peak frequency during Northern Hemisphere late fall/winter and Southern Hemisphere winter. In addition, the event frequency and geographical location are shown to be modulated by the Arctic Oscillation, Pacific North American Pattern, and the quasi-biennial oscillation. Moreover, a positive linear trend in the annual number of objects is reported, increasing by 3.58 objects year-over-year.

  20. A Tale of Many Cities: Universal Patterns in Human Urban Mobility

    PubMed Central

    Noulas, Anastasios; Scellato, Salvatore; Lambiotte, Renaud; Pontil, Massimiliano; Mascolo, Cecilia

    2012-01-01

    The advent of geographic online social networks such as Foursquare, where users voluntarily signal their current location, opens the door to powerful studies on human movement. In particular the fine granularity of the location data, with GPS accuracy down to 10 meters, and the worldwide scale of Foursquare adoption are unprecedented. In this paper we study urban mobility patterns of people in several metropolitan cities around the globe by analyzing a large set of Foursquare users. Surprisingly, while there are variations in human movement in different cities, our analysis shows that those are predominantly due to different distributions of places across different urban environments. Moreover, a universal law for human mobility is identified, which isolates as a key component the rank-distance, factoring in the number of places between origin and destination, rather than pure physical distance, as considered in some previous works. Building on our findings, we also show how a rank-based movement model accurately captures real human movements in different cities. PMID:22666339

  1. Toward conservation of midcontinental shorebird migrations

    USGS Publications Warehouse

    Skagen, Susan K.; Knopf, Fritz L.

    1993-01-01

    Shorebirds represent a highly diverse group of species, many of which experience tremendous energy demands associated with long-distance migratory flights. Transcontinental migrants are dependant upon dynamic freshwater wetlands for stopover resources essential for replenishment of lipid reserves and completion of migration. Patterns of shorebird migration across midcontinental wetlands were detected from migration reports to American Birds and information provided by U.S. Fish and Wildlife Service national wildlife refuges. Patterns in species composition and abundance varied geographically, emphasizing the uniqueness of different regions to migrating shorebirds. Smaller species and neotropical migrants moved primarily across the Great Plains, whereas larger species and North American migrants predominated in assemblages in the intermountain west. Shorebirds were broadly dispersed in wetland habitats with dynamic water regimes. Whereas populations of shorebirds in coastal system appear to concentrate at sites of seasonally predictable and abundant food resources, we propose that transcontinental shorebirds disperse and use wetlands opportunistically. This migration system exemplifies the need for large-scale, coordinated regional management efforts that recognize the dynamic nature of ecosystem processes.

  2. Large-scale gene flow in the barnacle Jehlius cirratus and contrasts with other broadly-distributed taxa along the Chilean coast

    PubMed Central

    Guo, Baoying

    2017-01-01

    We evaluate the population genetic structure of the intertidal barnacle Jehlius cirratus across a broad portion of its geographic distribution using data from the mitochondrial cytochrome oxidase I (COI) gene region. Despite sampling diversity from over 3,000 km of the linear range of this species, there is only slight regional structure indicated, with overall Φ CT of 0.036 (p < 0.001) yet no support for isolation by distance. While these results suggest greater structure than previous studies of J. cirratus had indicated, the pattern of diversity is still far more subtle than in other similarly-distributed species with similar larval and life history traits. We compare these data and results with recent findings in four other intertidal species that have planktotrophic larvae. There are no clear patterns among these taxa that can be associated with intertidal depth or other known life history traits. PMID:28194316

  3. Classifying rarity and abundance at a regional scale: Implementation within a new ecoinformatics tool

    EPA Science Inventory

    One factor that determines a species vulnerability to extinction is its rarity in the environment and a goal of many species analyses is to evaluate geographic patterns of abundance. In an attempt to assess vulnerability to climate change, we evaluated relative species abundance...

  4. Seasonal patterns of oral antihistamine and intranasal corticosteroid purchases from Australian community pharmacies: a retrospective observational study

    PubMed Central

    Carney, A Simon; Price, David B; Smith, Pete K; Harvey, Richard; Kritikos, Vicky; Bosnic-Anticevich, Sinthia Z; Christian, Louise; Skinner, Derek A; Carter, Victoria; Durieux, Alice MS

    2017-01-01

    Purpose To explore patterns in the purchase of prescription and over-the-counter (OTC) oral antihistamines (OAHs) and intranasal corticosteroids (INCSs) by patients, from pharmacies in different geographical regions of Australia. Patients and methods Retrospective observational study using a database containing anonymous pharmacy transaction data from 20.0% of the pharmacies in Australia that link doctor prescriptions and OTC information. Pharmacy purchases of at least one prescription or OTC rhinitis treatment during 2013 and 2014 were assessed. Results In total, 4,247,193 prescription and OTC rhinitis treatments were purchased from 909 pharmacies over 12 months. Of treatments purchased, 75.9% were OAHs and 16.6% were INCSs. OTC purchases of both treatments exceeded purchases through prescription. OTC OAHs purchasing patterns were seasonal and almost identical in the Australian Capital Territory, Victoria, Western Australia, South Australia, and New South Wales, and similar seasonal patterns for OTC INCSs were noted in most regions except for South Australia and Tasmania. Prescription purchasing patterns of both OAHs and INCSs remained unchanged throughout the year in most regions. Conclusion This large-scale retrospective observational study identified seasonal purchasing patterns of OTC and prescription OAHs and INCSs in a real-world setting. It highlighted that seasonality only affects OTC purchasing patterns of OAHs and INCSs across Australia and that practitioner prescribing remains unchanged, suggesting that it is only for persistent disease. PMID:28919832

  5. Seasonal patterns of oral antihistamine and intranasal corticosteroid purchases from Australian community pharmacies: a retrospective observational study.

    PubMed

    Carney, A Simon; Price, David B; Smith, Pete K; Harvey, Richard; Kritikos, Vicky; Bosnic-Anticevich, Sinthia Z; Christian, Louise; Skinner, Derek A; Carter, Victoria; Durieux, Alice Ms

    2017-01-01

    To explore patterns in the purchase of prescription and over-the-counter (OTC) oral antihistamines (OAHs) and intranasal corticosteroids (INCSs) by patients, from pharmacies in different geographical regions of Australia. Retrospective observational study using a database containing anonymous pharmacy transaction data from 20.0% of the pharmacies in Australia that link doctor prescriptions and OTC information. Pharmacy purchases of at least one prescription or OTC rhinitis treatment during 2013 and 2014 were assessed. In total, 4,247,193 prescription and OTC rhinitis treatments were purchased from 909 pharmacies over 12 months. Of treatments purchased, 75.9% were OAHs and 16.6% were INCSs. OTC purchases of both treatments exceeded purchases through prescription. OTC OAHs purchasing patterns were seasonal and almost identical in the Australian Capital Territory, Victoria, Western Australia, South Australia, and New South Wales, and similar seasonal patterns for OTC INCSs were noted in most regions except for South Australia and Tasmania. Prescription purchasing patterns of both OAHs and INCSs remained unchanged throughout the year in most regions. This large-scale retrospective observational study identified seasonal purchasing patterns of OTC and prescription OAHs and INCSs in a real-world setting. It highlighted that seasonality only affects OTC purchasing patterns of OAHs and INCSs across Australia and that practitioner prescribing remains unchanged, suggesting that it is only for persistent disease.

  6. Diverse elevational diversity gradients in Great Smoky Mountains National Park, U.S.A.: Chapter 10

    USGS Publications Warehouse

    Sanders, Nathan J.; Dunn, Robert R.; Fitzpatrick, Matthew C.; Carlton, Christopher E.; Pogue, Michael R.; Parker, Charles R.; Simons, Theodore R.

    2009-01-01

    Why does the number of species vary geographically? The earliest naturalists puzzled over this question, as do many biogeographers and macroecologists today. Over the last 200-plus years, the most striking geographic pattern in species richness – the decline in species richness with increasing latitude – has received the most attention. Thanks to many recent theoretical developments, coupled with global-scale databases and satellite technology, the number of candidate mechanisms that shape the latitudinal diversity gradient has been whittled down to a manageable number.

  7. Contingency planning for a deliberate release of smallpox in Great Britain--the role of geographical scale and contact structure.

    PubMed

    House, Thomas; Hall, Ian; Danon, Leon; Keeling, Matt J

    2010-02-14

    In the event of a release of a pathogen such as smallpox, which is human-to-human transmissible and has high associated mortality, a key question is how best to deploy containment and control strategies. Given the general uncertainty surrounding this issue, mathematical modelling has played an important role in informing the likely optimal response, in particular defining the conditions under which mass-vaccination would be appropriate. In this paper, we consider two key questions currently unanswered in the literature: firstly, what is the optimal spatial scale for intervention; and secondly, how sensitive are results to the modelling assumptions made about the pattern of human contacts? Here we develop a novel mathematical model for smallpox that incorporates both information on individual contact structure (which is important if the effects of contact tracing are to be captured accurately) and large-scale patterns of movement across a range of spatial scales in Great Britain. Analysis of this model confirms previous work suggesting that a locally targeted 'ring' vaccination strategy is optimal, and that this conclusion is actually quite robust for different socio-demographic and epidemiological assumptions. Our method allows for intuitive understanding of the reasons why national mass vaccination is typically predicted to be suboptimal. As such, we present a general framework for fast calculation of expected outcomes during the attempted control of diverse emerging infections; this is particularly important given that parameters would need to be interactively estimated and modelled in any release scenario.

  8. Future of applied watershed science at regional scales

    Treesearch

    Lee Benda; Daniel Miller; Steve Lanigan; Gordon Reeves

    2009-01-01

    Resource managers must deal increasingly with land use and conservation plans applied at large spatial scales (watersheds, landscapes, states, regions) involving multiple interacting federal agencies and stakeholders. Access to a geographically focused and application-oriented database would allow users in different locations and with different concerns to quickly...

  9. Dynamic Patterns of Modern Epidemics

    NASA Astrophysics Data System (ADS)

    Brockmann, Dirk; Hufnagel, Lars; Geisel, Theo

    2004-03-01

    We investigate the effects of scale-free travelling of humans and their inhomogeneous geographic distribution on the dynamic patterns of spreading epidemics. Our approach combines the susceptible/infected/recovered paradigm for the infection dynamics with superdiffusive dispersion of individuals and their inhomogeneous spatial distribution. We show that scale-free motion of individuals and their variable spatial distribution leads to the absence of wavefronts in dynamic epidemic patterns which are typical for the limiting cases of ordinary diffusion and spatially homogeneous populations. Instead, patterns emerge with isolated hotspots on highly populated areas from which regional epidemic outbursts are triggered. Hotspot sizes are independent of the correlation length in the spatial distribution of individuals and occur on all scales. Our theory predicts that highly populated areas are reached by an epidemic in advance and must receive special attention in control measure strategies. Furthermore, our analysis predicts strong fluctuations in the time course of the total infection which cannot be accounted for by ordinary reaction-diffusion models for epidemics.

  10. Local differentiation amidst extensive allele sharing in Oryza nivara and O. rufipogon

    PubMed Central

    Banaticla-Hilario, Maria Celeste N; van den Berg, Ronald G; Hamilton, Nigel Ruaraidh Sackville; McNally, Kenneth L

    2013-01-01

    Genetic variation patterns within and between species may change along geographic gradients and at different spatial scales. This was revealed by microsatellite data at 29 loci obtained from 119 accessions of three Oryza series Sativae species in Asia Pacific: Oryza nivara Sharma and Shastry, O. rufipogon Griff., and O. meridionalis Ng. Genetic similarities between O. nivara and O. rufipogon across their distribution are evident in the clustering and ordination results and in the large proportion of shared alleles between these taxa. However, local-level species separation is recognized by Bayesian clustering and neighbor-joining analyses. At the regional scale, the two species seem more differentiated in South Asia than in Southeast Asia as revealed by FST analysis. The presence of strong gene flow barriers in smaller spatial units is also suggested in the analysis of molecular variance (AMOVA) results where 64% of the genetic variation is contained among populations (as compared to 26% within populations and 10% among species). Oryza nivara (HE = 0.67) exhibits slightly lower diversity and greater population differentiation than O. rufipogon (HE = 0.70). Bayesian inference identified four, and at a finer structural level eight, genetically distinct population groups that correspond to geographic populations within the three taxa. Oryza meridionalis and the Nepalese O. nivara seemed diverged from all the population groups of the series, whereas the Australasian O. rufipogon appeared distinct from the rest of the species. PMID:24101993

  11. Geographic epidemiology of gonorrhoea and chlamydia on a large military installation: application of a GIS system

    PubMed Central

    Zenilman, J; Glass, G; Shields, T; Jenkins, P; Gaydos, J; McKee, K

    2002-01-01

    Objectives: The geographic epidemiology of infectious diseases can help in identifying point source outbreaks, elucidating dispersion patterns, and giving direction to control strategies. We sought to establish a geographic information system (GIS) infectious disease surveillance system at a large US military post (Fort Bragg, North Carolina) using STDs as the initial outcome for the model. Methods: Addresses of incident cases were plotted onto digitised base maps of Fort Bragg (for on-post addresses) and surrounding Cumberland County, NC (for off-post addresses) using MAPINFO Version 5. We defined 26 geographic sectors on the installation. Active duty soldiers attending the post preventive medicine clinic were enrolled between July 1998 and June 1999. Results: Gonorrhoea (GC) was diagnosed in 210/2854 (7.4%) and chlamydia (CT) in 445/2860 (15.6%). African-American male soldiers were at higher risk for GC (OR = 4.6 (95% CL 3.0 to 7.2)) and chlamydia (OR = 2.0 (1.4 to 2.7)). For women, there were no ethnic differences in gonorrhoea prevalence, but chlamydia was higher in African-Americans (OR = 2.0 (1.4–2.7)). Rank and housing type were associated with gonorrhoea and chlamydia in men, but were not significant factors in women. For gonorrhoea, two geographic sectors had prevalences between 14.0%–16.5%, three between 10.3%–13.9%, three between 7.1%–10.2%, and five between 3.0%–7.1%.. The geographic distribution demonstrated a core-like pattern where the highest sectors were contiguous and were sectors containing barracks housing lower enlisted grade personnel. In contrast, chlamydia prevalence was narrowly distributed. Conclusion: GIS based disease surveillance was easily and rapidly implemented in this setting and should be useful in developing preventive interventions. PMID:11872858

  12. 87Sr/88Sr a useful tool for the identification of geographic origin of Styrian pumpkin seed oils?

    NASA Astrophysics Data System (ADS)

    Meisel, T.; Bandoniene, D.; Zettl, D.; Maneiko, M.; Horschinegg, M.

    2012-04-01

    The authenticity and the geographic origin of Styrian pumpkin seed oil (PGI) a regional specialty needs to be protected, but the current specification of this high priced product does not include the proof of origin through analytical tools. As it turns out, this and many other products within the Protected Geographical Status (PGS) framework of the European Union, cannot be protected from fraud without forensic tools. In previous studies we were able to demonstrate, that distribution and content of trace elements in particular the rare earth elements, are useful parameters to discriminate Austrian from non-Austrian pumpkin seed oils and seeds. Unlike stable isotopes ratios (C and H), the trace element patterns are not influenced by changes in weather conditions and temperature during growing and harvesting cycle. Though the study of the distribution of element traces can be used not only for the identification of the geographic origin with very useful PLS and PCA models but also can identify fraud through mixing with other oils, this method need to be validated by other means. Radiogenic isotopes, in particular the 87Sr/86Sr isotope amount ratio has been successfully applied to food and other products for forensic studies. In this study we determined the 87Sr/86Sr isotope amount ratio in pumpkin seed oils extracted from seeds of known geographic origin from Austria, Russia and China, as these are the largest producers, to see if significant differences occur and if they can be used as a forensic tool. Although the total area of the Russian and the Chinese crop fields are magnitudes larger than the ones from Austria, it turns out that the variance of the Austrian 87Sr/86Sr data is much larger than that from other sources. Reasons are the large diversity of the Austrian geology (pre-varsican, alpine to sub-recent ages of the underlying bedrock of the soils can be found), the small farm sizes and the small scale production. In Russia large farms are situated on homogeneous bedrock and are also influenced by sea spray. On the other hand, in China cooperatives collect and probably homogenize seeds from many small farms in a geologically relatively homogeneous area in China (Inner Mongolia). Through these differences expressed in geology, farm size and production type, the radiogenic strontium isotopic composition is thus a useful and complementary addition to the existing classification method based on element trace contents and patterns but it cannot substitute the existing method.

  13. Patterns of DNA barcode variation in Canadian marine molluscs.

    PubMed

    Layton, Kara K S; Martel, André L; Hebert, Paul D N

    2014-01-01

    Molluscs are the most diverse marine phylum and this high diversity has resulted in considerable taxonomic problems. Because the number of species in Canadian oceans remains uncertain, there is a need to incorporate molecular methods into species identifications. A 648 base pair segment of the cytochrome c oxidase subunit I gene has proven useful for the identification and discovery of species in many animal lineages. While the utility of DNA barcoding in molluscs has been demonstrated in other studies, this is the first effort to construct a DNA barcode registry for marine molluscs across such a large geographic area. This study examines patterns of DNA barcode variation in 227 species of Canadian marine molluscs. Intraspecific sequence divergences ranged from 0-26.4% and a barcode gap existed for most taxa. Eleven cases of relatively deep (>2%) intraspecific divergence were detected, suggesting the possible presence of overlooked species. Structural variation was detected in COI with indels found in 37 species, mostly bivalves. Some indels were present in divergent lineages, primarily in the region of the first external loop, suggesting certain areas are hotspots for change. Lastly, mean GC content varied substantially among orders (24.5%-46.5%), and showed a significant positive correlation with nearest neighbour distances. DNA barcoding is an effective tool for the identification of Canadian marine molluscs and for revealing possible cases of overlooked species. Some species with deep intraspecific divergence showed a biogeographic partition between lineages on the Atlantic, Arctic and Pacific coasts, suggesting the role of Pleistocene glaciations in the subdivision of their populations. Indels were prevalent in the barcode region of the COI gene in bivalves and gastropods. This study highlights the efficacy of DNA barcoding for providing insights into sequence variation across a broad taxonomic group on a large geographic scale.

  14. Uncontacted Waorani in the Yasuní Biosphere Reserve: Geographical Validation of the Zona Intangible Tagaeri Taromenane (ZITT).

    PubMed

    Pappalardo, Salvatore Eugenio; De Marchi, Massimo; Ferrarese, Francesco

    2013-01-01

    The Tagaeri Taromenane People are two indigenous groups belonging to the Waorani first nation living in voluntary isolation within the Napo region of the western Amazon rainforest. To protect their territory the Ecuadorean State has declared and geographically defined, by Decrees, the Zona Intangible Tagaeri Taromenane (ZITT). This zone is located within the UNESCO Yasuní Biosphere Reserve (1989), one of the most biodiverse areas in the world. Due to several hydrocarbon reserve exploitation projects running in the area and the advancing of a large-scale deforestation front, the survival of these groups is presently at risk. The general aim was to validate the ZITT boundary using the geographical references included in the Decree 2187 (2007) by analyzing the geomorphological characteristics of the area. Remote sensing data such as Digital Elevation Models (DEM), Landsat imagery, topographic cartography of IGM-Ecuador, and fieldwork geographical data have been integrated and processed by Geographical Information System (GIS). The ZITT presents two levels of geographic inconsistencies. The first dimension is about the serious cartographical weaknesses in the perimeter delimitation related to the impossibility of linking two rivers belonging to different basins while the second deals with the perimeter line not respecting the hydrographic network. The GIS analysis results clearly show that ZITT boundary is cartographically nonsense due to the impossibility of mapping out the perimeter. Furthermore, GIS analysis of anthropological data shows presence of Tagaeri Taromenane clans outside the ZITT perimeter, within oil production areas and in nearby farmer settlements, reflecting the limits of protection policies for non-contacted indigenous territory. The delimitation of the ZITT followed a traditional pattern of geometric boundary not taking into account the nomadic characteristic of Tagaeri Taromenane: it is necessary to adopt geographical approaches to recognize the indigenous right to their liveable territories in the complex territorialities enacted by different stakeholders.

  15. Uncontacted Waorani in the Yasuní Biosphere Reserve: Geographical Validation of the Zona Intangible Tagaeri Taromenane (ZITT)

    PubMed Central

    Pappalardo, Salvatore Eugenio; De Marchi, Massimo; Ferrarese, Francesco

    2013-01-01

    The Tagaeri Taromenane People are two indigenous groups belonging to the Waorani first nation living in voluntary isolation within the Napo region of the western Amazon rainforest. To protect their territory the Ecuadorean State has declared and geographically defined, by Decrees, the Zona Intangible Tagaeri Taromenane (ZITT). This zone is located within the UNESCO Yasuní Biosphere Reserve (1989), one of the most biodiverse areas in the world. Due to several hydrocarbon reserve exploitation projects running in the area and the advancing of a large-scale deforestation front, the survival of these groups is presently at risk. The general aim was to validate the ZITT boundary using the geographical references included in the Decree 2187 (2007) by analyzing the geomorphological characteristics of the area. Remote sensing data such as Digital Elevation Models (DEM), Landsat imagery, topographic cartography of IGM-Ecuador, and fieldwork geographical data have been integrated and processed by Geographical Information System (GIS). The ZITT presents two levels of geographic inconsistencies. The first dimension is about the serious cartographical weaknesses in the perimeter delimitation related to the impossibility of linking two rivers belonging to different basins while the second deals with the perimeter line not respecting the hydrographic network. The GIS analysis results clearly show that ZITT boundary is cartographically nonsense due to the impossibility of mapping out the perimeter. Furthermore, GIS analysis of anthropological data shows presence of Tagaeri Taromenane clans outside the ZITT perimeter, within oil production areas and in nearby farmer settlements, reflecting the limits of protection policies for non-contacted indigenous territory. The delimitation of the ZITT followed a traditional pattern of geometric boundary not taking into account the nomadic characteristic of Tagaeri Taromenane: it is necessary to adopt geographical approaches to recognize the indigenous right to their liveable territories in the complex territorialities enacted by different stakeholders. PMID:23840436

  16. Detecting and monitoring large-scale drought effects on forests: toward an integrated approach

    Treesearch

    Steve Norman; Frank H. Koch; William W. Hargrove

    2016-01-01

    Although drought is recognized as an important and overarching driver of ecosystem change, its occurrence and effects have been difficult to describe over large geographic areas (Hogg and others 2008, Panu and Sharma 2002).

  17. Spatial patterns of schistosomiasis in Burkina Faso: relevance of human mobility and water resources development

    NASA Astrophysics Data System (ADS)

    Perez-Saez, Javier; Bertuzzo, Enrico; Frohelich, Jean-Marc; Mande, Theophile; Ceperley, Natalie; Sou, Mariam; Yacouba, Hamma; Maiga, Hamadou; Sokolow, Susanne; De Leo, Giulio; Casagrandi, Renato; Gatto, Marino; Mari, Lorenzo; Rinaldo, Andrea

    2015-04-01

    We study the spatial geography of schistosomiasis in the african context of Burkina Faso by means of a spatially explicit model of disease dynamics and spread. The relevance of our work lies in its ability to describe quantitatively a geographic stratification of the disease burden capable of reproducing important spatial differences, and drivers/controls of disease spread. Among the latters, we consider specifically the development and management of water resources which have been singled out empirically as an important risk factor for schistosomiasis. The model includes remotely acquired and objectively manipulated information on the distributions of population, infrastructure, elevation and climatic drivers. It also includes a general description of human mobility and addresses a first-order characterization of the ecology of the intermediate host of the parasite causing the disease based on maximum entropy learning of relevant environmenal covariates. Spatial patterns of the disease were analyzed about their disease-free equilibrium by proper extraction and mapping of suitable eigenvectors of the Jacobian matrix subsuming all stability properties of the system. Human mobility was found to be a primary control of both pathogen invasion success and of the overall distribution of disease burden. The effects of water resources development were studied by accounting for the (prior and posterior) average distances of human settlements from water bodies that may serve as suitable habitats to the intermediate host of the parasite. Water developments, in combination with human mobility, were quantitatively related to disease spread into regions previously nearly disease-free and to large-scale empirical incidence patterns. We concluded that while the model still needs refinements based on field and epidemiological evidence, the framework proposed provides a powerful tool for large-scale, long-term public health planning and management of schistosomiasis.

  18. The Association of Geographic Coordinates with Mortality in People with Lower and Higher Education and with Mortality Inequalities in Spain.

    PubMed

    Regidor, Enrique; Reques, Laura; Giráldez-García, Carolina; Miqueleiz, Estrella; Santos, Juana M; Martínez, David; de la Fuente, Luis

    2015-01-01

    Geographic patterns in total mortality and in mortality by cause of death are widely known to exist in many countries. However, the geographic pattern of inequalities in mortality within these countries is unknown. This study shows mathematically and graphically the geographic pattern of mortality inequalities by education in Spain. Data are from a nation-wide prospective study covering all persons living in Spain's 50 provinces in 2001. Individuals were classified in a cohort of subjects with low education and in another cohort of subjects with high education. Age- and sex-adjusted mortality rate from all causes and from leading causes of death in each cohort and mortality rate ratios in the low versus high education cohort were estimated by geographic coordinates and province. Latitude but not longitude was related to mortality. In subjects with low education, latitude had a U-shaped relation to mortality. In those with high education, mortality from all causes, and from cardiovascular, respiratory and digestive diseases decreased with increasing latitude, whereas cancer mortality increased. The mortality-rate ratio for all-cause death was 1.27 in the southern latitudes, 1.14 in the intermediate latitudes, and 1.20 in the northern latitudes. The mortality rate ratios for the leading causes of death were also higher in the lower and upper latitudes than in the intermediate latitudes. The geographic pattern of the mortality rate ratios is similar to that of the mortality rate in the low-education cohort: the highest magnitude is observed in the southern provinces, intermediate magnitudes in the provinces of the north and those of the Mediterranean east coast, and the lowest magnitude in the central provinces and those in the south of the Western Pyrenees. Mortality inequalities by education in Spain are higher in the south and north of the country and lower in the large region making up the central plateau. This geographic pattern is similar to that observed in mortality in the low-education cohort.

  19. Scaling Coastal Ecosystems to Oceanographic and Climatic Drivers: Making Sense of Community Variation on Rocky Shores Using the Comparative-Experimental Approach in Upwelling and Downwelling Systems

    NASA Astrophysics Data System (ADS)

    Menge, B. A.; Gouhier, T.; Chan, F.; Hacker, S.; Menge, D.; Nielsen, K. J.

    2016-02-01

    Ecology focuses increasingly on the issue of matching spatial and temporal scales responsible for ecosystem pattern and dynamics. Benthic coastal communities traditionally were studied at local scales using mostly short-term research, while environmental (oceanographic, climatic) drivers were investigated at large scales (e.g., regional to oceanic, mostly offshore) using combined snapshot and monitoring (time series) research. The comparative-experimental approach combines local-scale studies at multiple sites spanning large-scale environmental gradients in combination with monitoring of inner shelf oceanographic conditions including upwelling/downwelling wind forcing and their consequences (e.g., temperature), and inputs of subsidies (larvae, phytoplankton, detritus). Temporal scale varies depending on the questions, but can extend from years to decades. We discuss two examples of rocky intertidal ecosystem dynamics, one at a regional scale (California Current System, CCS) and one at an interhemispheric scale. In the upwelling-dominated CCS, 52% and 32% of the variance in local community structure (functional group abundances at 13 sites across 725 km) was explained by external factors (ecological subsidies, oceanographic conditions, geographic location), and species interactions, respectively. The interhemispheric study tested the intermittent upwelling hypothesis (IUH), which predicts that key ecological processes will vary unimodally along a persistent downwelling to persistent upwelling gradient. Using 14-22 sites, unimodal relationships between ecological subsidies (phytoplankton, prey recruitment), prey responses (barnacle colonization, mussel growth) and species interactions (competition rate, predation rate and effect) and the Bakun upwelling index calculated at each site accounted for 50% of the variance. Hence, external factors can account for about half of locally-expressed community structure and dynamics.

  20. Large-scale Meteorological Patterns Associated with Extreme Precipitation Events over Portland, OR

    NASA Astrophysics Data System (ADS)

    Aragon, C.; Loikith, P. C.; Lintner, B. R.; Pike, M.

    2017-12-01

    Extreme precipitation events can have profound impacts on human life and infrastructure, with broad implications across a range of stakeholders. Changes to extreme precipitation events are a projected outcome of climate change that warrants further study, especially at regional- to local-scales. While global climate models are generally capable of simulating mean climate at global-to-regional scales with reasonable skill, resiliency and adaptation decisions are made at local-scales where most state-of-the-art climate models are limited by coarse resolution. Characterization of large-scale meteorological patterns associated with extreme precipitation events at local-scales can provide climatic information without this scale limitation, thus facilitating stakeholder decision-making. This research will use synoptic climatology as a tool by which to characterize the key large-scale meteorological patterns associated with extreme precipitation events in the Portland, Oregon metro region. Composite analysis of meteorological patterns associated with extreme precipitation days, and associated watershed-specific flooding, is employed to enhance understanding of the climatic drivers behind such events. The self-organizing maps approach is then used to characterize the within-composite variability of the large-scale meteorological patterns associated with extreme precipitation events, allowing us to better understand the different types of meteorological conditions that lead to high-impact precipitation events and associated hydrologic impacts. A more comprehensive understanding of the meteorological drivers of extremes will aid in evaluation of the ability of climate models to capture key patterns associated with extreme precipitation over Portland and to better interpret projections of future climate at impact-relevant scales.

  1. Lack of sex-biased dispersal promotes fine-scale genetic structure in alpine ungulates

    USGS Publications Warehouse

    Roffler, Gretchen H.; Talbot, Sandra L.; Luikart, Gordon; Sage, George K.; Pilgrim, Kristy L.; Adams, Layne G.; Schwartz, Michael K.

    2014-01-01

    Identifying patterns of fine-scale genetic structure in natural populations can advance understanding of critical ecological processes such as dispersal and gene flow across heterogeneous landscapes. Alpine ungulates generally exhibit high levels of genetic structure due to female philopatry and patchy configuration of mountain habitats. We assessed the spatial scale of genetic structure and the amount of gene flow in 301 Dall’s sheep (Ovis dalli dalli) at the landscape level using 15 nuclear microsatellites and 473 base pairs of the mitochondrial (mtDNA) control region. Dall’s sheep exhibited significant genetic structure within contiguous mountain ranges, but mtDNA structure occurred at a broader geographic scale than nuclear DNA within the study area, and mtDNA structure for other North American mountain sheep populations. No evidence of male-mediated gene flow or greater philopatry of females was observed; there was little difference between markers with different modes of inheritance (pairwise nuclear DNA F ST = 0.004–0.325; mtDNA F ST = 0.009–0.544), and males were no more likely than females to be recent immigrants. Historical patterns based on mtDNA indicate separate northern and southern lineages and a pattern of expansion following regional glacial retreat. Boundaries of genetic clusters aligned geographically with prominent mountain ranges, icefields, and major river valleys based on Bayesian and hierarchical modeling of microsatellite and mtDNA data. Our results suggest that fine-scale genetic structure in Dall’s sheep is influenced by limited dispersal, and structure may be weaker in populations occurring near ancestral levels of density and distribution in continuous habitats compared to other alpine ungulates that have experienced declines and marked habitat fragmentation.

  2. DNA barcoding gap: reliable species identification over morphological and geographical scales.

    PubMed

    Čandek, Klemen; Kuntner, Matjaž

    2015-03-01

    The philosophical basis and utility of DNA barcoding have been a subject of numerous debates. While most literature embraces it, some studies continue to question its use in dipterans, butterflies and marine gastropods. Here, we explore the utility of DNA barcoding in identifying spider species that vary in taxonomic affiliation, morphological diagnosibility and geographic distribution. Our first test searched for a 'barcoding gap' by comparing intra- and interspecific means, medians and overlap in more than 75,000 computed Kimura 2-parameter (K2P) genetic distances in three families. Our second test compared K2P distances of congeneric species with high vs. low morphological distinctness in 20 genera of 11 families. Our third test explored the effect of enlarging geographical sampling area at a continental scale on genetic variability in DNA barcodes within 20 species of nine families. Our results generally point towards a high utility of DNA barcodes in identifying spider species. However, the size of the barcoding gap strongly depends on taxonomic groups and practices. It is becoming critical to define the barcoding gap statistically more consistently and to document its variation over taxonomic scales. Our results support models of independent patterns of morphological and molecular evolution by showing that DNA barcodes are effective in species identification regardless of their morphological diagnosibility. We also show that DNA barcodes represent an effective tool for identifying spider species over geographic scales, yet their variation contains useful biogeographic information. © 2014 John Wiley & Sons Ltd.

  3. Geographic variation in survival and migratory tendency among North American Common Mergansers

    USGS Publications Warehouse

    Pearce, J.M.; Reed, J.A.; Flint, Paul L.

    2005-01-01

    Movement ecology and demographic parameters for the Common Merganser (Mergus merganser americanus) in North America are poorly known. We used band-recovery data from five locations across North America spanning the years 1938-1998 to examine migratory patterns and estimate survival rates. We examined competing time-invariant, age-graduated models with program MARK to study sources of variation in survival and reporting probability. We considered age, sex, geographic location, and the use of nasal saddles on hatching year birds at one location as possible sources of variation. Year-of-banding was included as a covariate in a post-hoc analysis. We found that migratory tendency, defined as the average distance between banding and recovery locations, varied geographically. Similarly, all models accounting for the majority of variation in recovery and survival probabilities included location of banding. Models that included age and sex received less support, but we lacked sufficient data to adequately assess these parameters. Model-averaged estimates of annual survival ranged from 0.21 in Michigan to 0.82 in Oklahoma. Heterogeneity in migration tendency and survival suggests that demographic patterns may vary across geographic scales, with implications for the population dynamics of this species.

  4. Diversity partitioning during the Cambrian radiation

    PubMed Central

    Na, Lin; Kiessling, Wolfgang

    2015-01-01

    The fossil record offers unique insights into the environmental and geographic partitioning of biodiversity during global diversifications. We explored biodiversity patterns during the Cambrian radiation, the most dramatic radiation in Earth history. We assessed how the overall increase in global diversity was partitioned between within-community (alpha) and between-community (beta) components and how beta diversity was partitioned among environments and geographic regions. Changes in gamma diversity in the Cambrian were chiefly driven by changes in beta diversity. The combined trajectories of alpha and beta diversity during the initial diversification suggest low competition and high predation within communities. Beta diversity has similar trajectories both among environments and geographic regions, but turnover between adjacent paleocontinents was probably the main driver of diversification. Our study elucidates that global biodiversity during the Cambrian radiation was driven by niche contraction at local scales and vicariance at continental scales. The latter supports previous arguments for the importance of plate tectonics in the Cambrian radiation, namely the breakup of Pannotia. PMID:25825755

  5. Hierarchical Genetic Analysis of German Cockroach (Blattella germanica) Populations from within Buildings to across Continents

    PubMed Central

    Vargo, Edward L.; Crissman, Jonathan R.; Booth, Warren; Santangelo, Richard G.; Mukha, Dmitry V.; Schal, Coby

    2014-01-01

    Understanding the population structure of species that disperse primarily by human transport is essential to predicting and controlling human-mediated spread of invasive species. The German cockroach (Blattella germanica) is a widespread urban invader that can actively disperse within buildings but is spread solely by human-mediated dispersal over longer distances; however, its population structure is poorly understood. Using microsatellite markers we investigated population structure at several spatial scales, from populations within single apartment buildings to populations from several cities across the U.S. and Eurasia. Both traditional measures of genetic differentiation and Bayesian clustering methods revealed increasing levels of genetic differentiation at greater geographic scales. Our results are consistent with active dispersal of cockroaches largely limited to movement within a building. Their low levels of genetic differentiation, yet limited active spread between buildings, suggests a greater likelihood of human-mediated dispersal at more local scales (within a city) than at larger spatial scales (within and between continents). About half the populations from across the U.S. clustered together with other U.S. populations, and isolation by distance was evident across the U.S. Levels of genetic differentiation among Eurasian cities were greater than those in the U.S. and greater than those between the U.S. and Eurasia, but no clear pattern of structure at the continent level was detected. MtDNA sequence variation was low and failed to reveal any geographical structure. The weak genetic structure detected here is likely due to a combination of historical admixture among populations and periodic population bottlenecks and founder events, but more extensive studies are needed to determine whether signatures of global movement may be present in this species. PMID:25020136

  6. The morphing of geographical features by Fourier transformation.

    PubMed

    Li, Jingzhong; Liu, Pengcheng; Yu, Wenhao; Cheng, Xiaoqiang

    2018-01-01

    This paper presents a morphing model of vector geographical data based on Fourier transformation. This model involves three main steps. They are conversion from vector data to Fourier series, generation of intermediate function by combination of the two Fourier series concerning a large scale and a small scale, and reverse conversion from combination function to vector data. By mirror processing, the model can also be used for morphing of linear features. Experimental results show that this method is sensitive to scale variations and it can be used for vector map features' continuous scale transformation. The efficiency of this model is linearly related to the point number of shape boundary and the interceptive value n of Fourier expansion. The effect of morphing by Fourier transformation is plausible and the efficiency of the algorithm is acceptable.

  7. Cross-scale analysis of cluster correspondence using different operational neighborhoods

    NASA Astrophysics Data System (ADS)

    Lu, Yongmei; Thill, Jean-Claude

    2008-09-01

    Cluster correspondence analysis examines the spatial autocorrelation of multi-location events at the local scale. This paper argues that patterns of cluster correspondence are highly sensitive to the definition of operational neighborhoods that form the spatial units of analysis. A subset of multi-location events is examined for cluster correspondence if they are associated with the same operational neighborhood. This paper discusses the construction of operational neighborhoods for cluster correspondence analysis based on the spatial properties of the underlying zoning system and the scales at which the zones are aggregated into neighborhoods. Impacts of this construction on the degree of cluster correspondence are also analyzed. Empirical analyses of cluster correspondence between paired vehicle theft and recovery locations are conducted on different zoning methods and across a series of geographic scales and the dynamics of cluster correspondence patterns are discussed.

  8. Accurate continuous geographic assignment from low- to high-density SNP data.

    PubMed

    Guillot, Gilles; Jónsson, Hákon; Hinge, Antoine; Manchih, Nabil; Orlando, Ludovic

    2016-04-01

    Large-scale genotype datasets can help track the dispersal patterns of epidemiological outbreaks and predict the geographic origins of individuals. Such genetically-based geographic assignments also show a range of possible applications in forensics for profiling both victims and criminals, and in wildlife management, where poaching hotspot areas can be located. They, however, require fast and accurate statistical methods to handle the growing amount of genetic information made available from genotype arrays and next-generation sequencing technologies. We introduce a novel statistical method for geopositioning individuals of unknown origin from genotypes. Our method is based on a geostatistical model trained with a dataset of georeferenced genotypes. Statistical inference under this model can be implemented within the theoretical framework of Integrated Nested Laplace Approximation, which represents one of the major recent breakthroughs in statistics, as it does not require Monte Carlo simulations. We compare the performance of our method and an alternative method for geospatial inference, SPA in a simulation framework. We highlight the accuracy and limits of continuous spatial assignment methods at various scales by analyzing genotype datasets from a diversity of species, including Florida Scrub-jay birds Aphelocoma coerulescens, Arabidopsis thaliana and humans, representing 41-197,146 SNPs. Our method appears to be best suited for the analysis of medium-sized datasets (a few tens of thousands of loci), such as reduced-representation sequencing data that become increasingly available in ecology. http://www2.imm.dtu.dk/∼gigu/Spasiba/ gilles.b.guillot@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. War, space, and the evolution of Old World complex societies.

    PubMed

    Turchin, Peter; Currie, Thomas E; Turner, Edward A L; Gavrilets, Sergey

    2013-10-08

    How did human societies evolve from small groups, integrated by face-to-face cooperation, to huge anonymous societies of today, typically organized as states? Why is there so much variation in the ability of different human populations to construct viable states? Existing theories are usually formulated as verbal models and, as a result, do not yield sharply defined, quantitative predictions that could be unambiguously tested with data. Here we develop a cultural evolutionary model that predicts where and when the largest-scale complex societies arose in human history. The central premise of the model, which we test, is that costly institutions that enabled large human groups to function without splitting up evolved as a result of intense competition between societies-primarily warfare. Warfare intensity, in turn, depended on the spread of historically attested military technologies (e.g., chariots and cavalry) and on geographic factors (e.g., rugged landscape). The model was simulated within a realistic landscape of the Afroeurasian landmass and its predictions were tested against a large dataset documenting the spatiotemporal distribution of historical large-scale societies in Afroeurasia between 1,500 BCE and 1,500 CE. The model-predicted pattern of spread of large-scale societies was very similar to the observed one. Overall, the model explained 65% of variance in the data. An alternative model, omitting the effect of diffusing military technologies, explained only 16% of variance. Our results support theories that emphasize the role of institutions in state-building and suggest a possible explanation why a long history of statehood is positively correlated with political stability, institutional quality, and income per capita.

  10. War, space, and the evolution of Old World complex societies

    PubMed Central

    Turchin, Peter; Currie, Thomas E.; Turner, Edward A. L.; Gavrilets, Sergey

    2013-01-01

    How did human societies evolve from small groups, integrated by face-to-face cooperation, to huge anonymous societies of today, typically organized as states? Why is there so much variation in the ability of different human populations to construct viable states? Existing theories are usually formulated as verbal models and, as a result, do not yield sharply defined, quantitative predictions that could be unambiguously tested with data. Here we develop a cultural evolutionary model that predicts where and when the largest-scale complex societies arose in human history. The central premise of the model, which we test, is that costly institutions that enabled large human groups to function without splitting up evolved as a result of intense competition between societies—primarily warfare. Warfare intensity, in turn, depended on the spread of historically attested military technologies (e.g., chariots and cavalry) and on geographic factors (e.g., rugged landscape). The model was simulated within a realistic landscape of the Afroeurasian landmass and its predictions were tested against a large dataset documenting the spatiotemporal distribution of historical large-scale societies in Afroeurasia between 1,500 BCE and 1,500 CE. The model-predicted pattern of spread of large-scale societies was very similar to the observed one. Overall, the model explained 65% of variance in the data. An alternative model, omitting the effect of diffusing military technologies, explained only 16% of variance. Our results support theories that emphasize the role of institutions in state-building and suggest a possible explanation why a long history of statehood is positively correlated with political stability, institutional quality, and income per capita. PMID:24062433

  11. Influence of topographic heterogeneity on the abandance of larch forest in eastern Siberia

    NASA Astrophysics Data System (ADS)

    Sato, H.; Kobayashi, H.

    2016-12-01

    In eastern Siberia, larches (Larix spp.) often exist in pure stands, constructing the world's largest coniferous forest, of which changes can significantly affect the earth's albedo and the global carbon balance. We have conducted simulation studies for this vegetation, aiming to forecast its structures and functions under changing climate (1, 2). In previous studies of simulating vegetation at large geographical scales, the examining area is divided into coarse grid cells such as 0.5 * 0.5 degree resolution, and topographical heterogeneities within each grid cell are just ignored. However, in Siberian larch area, which is located on the environmental edge of existence of forest ecosystem, abundance of larch trees largely depends on topographic condition at the scale of tens to hundreds meters. We, therefore, analyzed patterns of within-grid-scale heterogeneity of larch LAI as a function of topographic condition, and examined its underlying reason. For this analysis, larch LAI was estimated for each 1/112 degree from the SPOT-VEGETATION data, and topographic properties such as angularity and aspect direction were estimated form the ASTER-GDEM data. Through this analysis, we found that, for example, sign of correlation between angularity and larch LAI depends on hydrological condition on the grid cell. We then refined the hydrological sub-model of our vegetation model SEIB-DGVM, and validated whether the modified model can reconstruct these patterns, and examined its impact on the estimation of biomass and vegetation productivity of entire larch region. -- References --1. Sato, H., et al. (2010). "Simulation study of the vegetation structure and function in eastern Siberian larch forests using the individual-based vegetation model SEIB-DGVM." Forest Ecology and Management 259(3): 301-311.2. Sato, H., et al. (2016). "Endurance of larch forest ecosystems in eastern Siberia under warming trends." Ecology and Evolution

  12. Using Computing and Data Grids for Large-Scale Science and Engineering

    NASA Technical Reports Server (NTRS)

    Johnston, William E.

    2001-01-01

    We use the term "Grid" to refer to a software system that provides uniform and location independent access to geographically and organizationally dispersed, heterogeneous resources that are persistent and supported. These emerging data and computing Grids promise to provide a highly capable and scalable environment for addressing large-scale science problems. We describe the requirements for science Grids, the resulting services and architecture of NASA's Information Power Grid (IPG) and DOE's Science Grid, and some of the scaling issues that have come up in their implementation.

  13. Geographical Gradients in Argentinean Terrestrial Mammal Species Richness and Their Environmental Correlates

    PubMed Central

    Márquez, Ana L.; Real, Raimundo; Kin, Marta S.; Guerrero, José Carlos; Galván, Betina; Barbosa, A. Márcia; Olivero, Jesús; Palomo, L. Javier; Vargas, J. Mario; Justo, Enrique

    2012-01-01

    We analysed the main geographical trends of terrestrial mammal species richness (SR) in Argentina, assessing how broad-scale environmental variation (defined by climatic and topographic variables) and the spatial form of the country (defined by spatial filters based on spatial eigenvector mapping (SEVM)) influence the kinds and the numbers of mammal species along these geographical trends. We also evaluated if there are pure geographical trends not accounted for by the environmental or spatial factors. The environmental variables and spatial filters that simultaneously correlated with the geographical variables and SR were considered potential causes of the geographic trends. We performed partial correlations between SR and the geographical variables, maintaining the selected explanatory variables statistically constant, to determine if SR was fully explained by them or if a significant residual geographic pattern remained. All groups and subgroups presented a latitudinal gradient not attributable to the spatial form of the country. Most of these trends were not explained by climate. We used a variation partitioning procedure to quantify the pure geographic trend (PGT) that remained unaccounted for. The PGT was larger for latitudinal than for longitudinal gradients. This suggests that historical or purely geographical causes may also be relevant drivers of these geographical gradients in mammal diversity. PMID:23028254

  14. Geo-spatial aspects of acceptance of illegal hunting of large carnivores in Scandinavia.

    PubMed

    Gangaas, Kristin E; Kaltenborn, Bjørn P; Andreassen, Harry P

    2013-01-01

    Human-carnivore conflicts are complex and are influenced by: the spatial distribution of the conflict species; the organisation and intensity of management measures such as zoning; historical experience with wildlife; land use patterns; and local cultural traditions. We have used a geographically stratified sampling of social values and attitudes to provide a novel perspective to the human - wildlife conflict. We have focused on acceptance by and disagreements between residents (measured as Potential Conflict Index; PCI) towards illegal hunting of four species of large carnivores (bear, lynx, wolf, wolverine). The study is based on surveys of residents in every municipality in Sweden and Norway who were asked their opinion on illegal hunting. Our results show how certain social values are associated with acceptance of poaching, and how these values differ geographically independent of carnivore abundance. Our approach differs from traditional survey designs, which are often biased towards urban areas. Although these traditional designs intend to be representative of a region (i.e. a random sample from a country), they tend to receive relatively few respondents from rural areas that experience the majority of conflict with carnivores. Acceptance of poaching differed significantly between Norway (12.7-15.7% of respondents) and Sweden (3.3-4.1% of respondents). We found the highest acceptance of illegal hunting in rural areas with free-ranging sheep and strong hunting traditions. Disagreements between residents (as measured by PCI) were highest in areas with intermediate population density. There was no correlation between carnivore density and either acceptance of illegal hunting or PCI. A strong positive correlation between acceptance of illegal hunting and PCI showed that areas with high acceptance of illegal hunting are areas with high potential conflict between people. Our results show that spatially-stratified surveys are required to reveal the large scale patterns in social dynamics of human-wildlife conflicts.

  15. Spatial inventory integrating raster databases and point sample data. [Geographic Information System for timber inventory

    NASA Technical Reports Server (NTRS)

    Strahler, A. H.; Woodcock, C. E.; Logan, T. L.

    1983-01-01

    A timber inventory of the Eldorado National Forest, located in east-central California, provides an example of the use of a Geographic Information System (GIS) to stratify large areas of land for sampling and the collection of statistical data. The raster-based GIS format of the VICAR/IBIS software system allows simple and rapid tabulation of areas, and facilitates the selection of random locations for ground sampling. Algorithms that simplify the complex spatial pattern of raster-based information, and convert raster format data to strings of coordinate vectors, provide a link to conventional vector-based geographic information systems.

  16. On the relationship between large-scale climate modes and regional synoptic patterns that drive Victorian rainfall

    NASA Astrophysics Data System (ADS)

    Verdon-Kidd, D.; Kiem, A. S.

    2008-10-01

    In this paper regional (synoptic) and large-scale climate drivers of rainfall are investigated for Victoria, Australia. A non-linear classification methodology known as self-organizing maps (SOM) is used to identify 20 key regional synoptic patterns, which are shown to capture a range of significant synoptic features known to influence the climate of the region. Rainfall distributions are assigned to each of the 20 patterns for nine rainfall stations located across Victoria, resulting in a clear distinction between wet and dry synoptic types at each station. The influence of large-scale climate modes on the frequency and timing of the regional synoptic patterns is also investigated. This analysis revealed that phase changes in the El Niño Southern Oscillation (ENSO), the Southern Annular Mode (SAM) and/or Indian Ocean Dipole (IOD) are associated with a shift in the relative frequency of wet and dry synoptic types. Importantly, these results highlight the potential to utilise the link between the regional synoptic patterns derived in this study and large-scale climate modes to improve rainfall forecasting for Victoria, both in the short- (i.e. seasonal) and long-term (i.e. decadal/multi-decadal scale). In addition, the regional and large-scale climate drivers identified in this study provide a benchmark by which the performance of Global Climate Models (GCMs) may be assessed.

  17. Allozyme markers in breeding zone designation

    Treesearch

    R. D. Westfall; M. T. Conkle

    1992-01-01

    Early studies of allozyme variation in plant populations suggested that allelic frequencies in some loci vary by geography. Since then, the expectation that allozymes might be useful in describing geographic patterns has generally not been borne out by single locus analyses, except on the broadest scale. Multi-locus analyses reveal the converse: canonical correlation...

  18. Comparative population genetic structure and diversity of Yellow Perch and Walleye: Broad- and fine-scale patterns across North America

    USDA-ARS?s Scientific Manuscript database

    The yellow perch Perca flavescens and the walleye Sander vitreus are native North American percid fishes, which have considerable fishery and ecological importance across their wide geographic ranges. Over the past century, they were stocked into new habitats, often with relative disregard for conse...

  19. Stevensville West Central Study

    Treesearch

    J. G. Jones; J. D. Chew; N. K. Christianson; D. J. Silvieus; C. A. Stewart

    2000-01-01

    This paper reports on an application of two modeling systems in the assessment and planning effort for a 58,038-acre area on the Bitterroot National Forest: SIMulating Vegetative Patterns and Processes at Landscape ScaLEs (SIMPPLLE), and Multi-resource Analysis and Geographic Information System (MAGIS). SIMPPLLE was a useful model for tracking and analyzing an...

  20. Spatially resolved Spectroscopy of Europa’s Large-scale Compositional Units at 3-4 μm with Keck NIRSPEC

    NASA Astrophysics Data System (ADS)

    Fischer, P. D.; Brown, M. E.; Trumbo, S. K.; Hand, K. P.

    2017-01-01

    We present spatially resolved spectroscopic observations of Europa’s surface at 3-4 μm obtained with the near-infrared spectrograph and adaptive optics system on the Keck II telescope. These are the highest quality spatially resolved reflectance spectra of Europa’s surface at 3-4 μm. The observations spatially resolve Europa’s large-scale compositional units at a resolution of several hundred kilometers. The spectra show distinct features and geographic variations associated with known compositional units; in particular, large-scale leading hemisphere chaos shows a characteristic longward shift in peak reflectance near 3.7 μm compared to icy regions. These observations complement previous spectra of large-scale chaos, and can aid efforts to identify the endogenous non-ice species.

  1. Assembly processes under severe abiotic filtering: adaptation mechanisms of weed vegetation to the gradient of soil constraints.

    PubMed

    Nikolic, Nina; Böcker, Reinhard; Kostic-Kravljanac, Ljiljana; Nikolic, Miroslav

    2014-01-01

    Effects of soil on vegetation patterns are commonly obscured by other environmental factors; clear and general relationships are difficult to find. How would community assembly processes be affected by a substantial change in soil characteristics when all other relevant factors are held constant? In particular, can we identify some functional adaptations which would underpin such soil-induced vegetation response? Eastern Serbia: fields partially damaged by long-term and large-scale fluvial deposition of sulphidic waste from a Cu mine; subcontinental/submediterranean climate. We analysed the multivariate response of cereal weed assemblages (including biomass and foliar analyses) to a strong man-made soil gradient (from highly calcareous to highly acidic, nutrient-poor soils) over short distances (field scale). The soil gradient favoured a substitution of calcicoles by calcifuges, and an increase in abundance of pseudometallophytes, with preferences for Atlantic climate, broad geographical distribution, hemicryptophytic life form, adapted to low-nutrient and acidic soils, with lower concentrations of Ca, and very narrow range of Cu concentrations in leaves. The trends of abundance of the different ecological groups of indicator species along the soil gradient were systematically reflected in the maintenance of leaf P concentrations, and strong homeostasis in biomass N:P ratio. Using annual weed vegetation at the field scale as a fairly simple model, we demonstrated links between gradients in soil properties (pH, nutrient availability) and floristic composition that are normally encountered over large geographic distances. We showed that leaf nutrient status, in particular the maintenance of leaf P concentrations and strong homeostasis of biomass N:P ratio, underpinned a clear functional response of vegetation to mineral stress. These findings can help to understand assembly processes leading to unusual, novel combinations of species which are typically observed as a consequence of strong environmental filtering, as for instance on sites affected by industrial activities.

  2. Assembly Processes under Severe Abiotic Filtering: Adaptation Mechanisms of Weed Vegetation to the Gradient of Soil Constraints

    PubMed Central

    Nikolic, Nina; Böcker, Reinhard; Kostic-Kravljanac, Ljiljana; Nikolic, Miroslav

    2014-01-01

    Questions Effects of soil on vegetation patterns are commonly obscured by other environmental factors; clear and general relationships are difficult to find. How would community assembly processes be affected by a substantial change in soil characteristics when all other relevant factors are held constant? In particular, can we identify some functional adaptations which would underpin such soil-induced vegetation response? Location Eastern Serbia: fields partially damaged by long-term and large-scale fluvial deposition of sulphidic waste from a Cu mine; subcontinental/submediterranean climate. Methods We analysed the multivariate response of cereal weed assemblages (including biomass and foliar analyses) to a strong man-made soil gradient (from highly calcareous to highly acidic, nutrient-poor soils) over short distances (field scale). Results The soil gradient favoured a substitution of calcicoles by calcifuges, and an increase in abundance of pseudometallophytes, with preferences for Atlantic climate, broad geographical distribution, hemicryptophytic life form, adapted to low-nutrient and acidic soils, with lower concentrations of Ca, and very narrow range of Cu concentrations in leaves. The trends of abundance of the different ecological groups of indicator species along the soil gradient were systematically reflected in the maintenance of leaf P concentrations, and strong homeostasis in biomass N:P ratio. Conclusion Using annual weed vegetation at the field scale as a fairly simple model, we demonstrated links between gradients in soil properties (pH, nutrient availability) and floristic composition that are normally encountered over large geographic distances. We showed that leaf nutrient status, in particular the maintenance of leaf P concentrations and strong homeostasis of biomass N:P ratio, underpinned a clear functional response of vegetation to mineral stress. These findings can help to understand assembly processes leading to unusual, novel combinations of species which are typically observed as a consequence of strong environmental filtering, as for instance on sites affected by industrial activities. PMID:25474688

  3. Evaluation of an index of biotic integrity approach to assess fish assemblage condition in Western USA streams and rivers at varying spatial scales

    EPA Science Inventory

    Consistent assessments of biological condition are needed across multiple ecoregions to provide a greater understanding of the spatial extent of environmental degradation. However, consistent assessments at large geographic scales are often hampered by lack of uniformity in data ...

  4. Local Breast Cancer Spatial Patterning: A Tool for Community Health Resource Allocation to Address Local Disparities in Breast Cancer Mortality

    PubMed Central

    Brantley-Sieders, Dana M.; Fan, Kang-Hsien; Deming-Halverson, Sandra L.; Shyr, Yu; Cook, Rebecca S.

    2012-01-01

    Despite available demographic data on the factors that contribute to breast cancer mortality in large population datasets, local patterns are often overlooked. Such local information could provide a valuable metric by which regional community health resources can be allocated to reduce breast cancer mortality. We used national and statewide datasets to assess geographical distribution of breast cancer mortality rates and known risk factors influencing breast cancer mortality in middle Tennessee. Each county in middle Tennessee, and each ZIP code within metropolitan Davidson County, was scored for risk factor prevalence and assigned quartile scores that were used as a metric to identify geographic areas of need. While breast cancer mortality often correlated with age and incidence, geographic areas were identified in which breast cancer mortality rates did not correlate with age and incidence, but correlated with additional risk factors, such as mammography screening and socioeconomic status. Geographical variability in specific risk factors was evident, demonstrating the utility of this approach to identify local areas of risk. This method revealed local patterns in breast cancer mortality that might otherwise be overlooked in a more broadly based analysis. Our data suggest that understanding the geographic distribution of breast cancer mortality, and the distribution of risk factors that contribute to breast cancer mortality, will not only identify communities with the greatest need of support, but will identify the types of resources that would provide the most benefit to reduce breast cancer mortality in the community. PMID:23028869

  5. Regional-scale drivers of marine nematode distribution in Southern Ocean continental shelf sediments

    NASA Astrophysics Data System (ADS)

    Hauquier, Freija; Verleyen, Elie; Tytgat, Bjorn; Vanreusel, Ann

    2018-07-01

    Many marine meiofauna taxa seem to possess cosmopolitan species distributions, despite their endobenthic lifestyle and restricted long-distance dispersal capacities. In light of this paradox we used a metacommunity framework to study spatial turnover in free-living nematode distribution and assess the importance of local environmental conditions in explaining differences between communities in surface and subsurface sediments of the Southern Ocean continental shelf. We analysed nematode community structure in two sediment layers (0-3 cm and 3-5 cm) of locations maximum 2400 km apart. We first focused on a subset of locations to evaluate whether the genus level is sufficiently taxonomically fine-grained to study large-scale patterns in nematode community structure. We subsequently used redundancy and variation partitioning analyses to quantify the unique and combined effects of local environmental conditions and spatial descriptors on genus-level community composition. Macroecological patterns in community structure were highly congruent at the genus and species level. Nematode community composition was highly divergent between both depth strata, likely as a result of local abiotic conditions. Variation in community structure between the different regions largely stemmed from turnover (i.e. genus/species replacement) rather than nestedness (i.e. genus/species loss). The level of turnover among communities increased with geographic distance and was more pronounced in subsurface layers compared to surface sediments. Variation partitioning analysis revealed that both environmental and spatial predictors significantly explained variation in community structure. Moreover, the shared fraction of both sets of variables was high, which suggested a substantial amount of spatially structured environmental variation. Additionally, the effect of space independent of environment was much higher than the effect of environment independent of space, which shows the importance of including spatial descriptors in meiofauna and nematode community ecology. Large-scale assessment of free-living nematode diversity and abundance in the Southern Ocean shelf zone revealed strong horizontal and vertical spatial structuring in response to local environmental conditions, in combination with (most likely) dispersal limitation.

  6. Understanding large-scale, long-term larval connectivity patterns: The case of the Northern Line Islands in the Central Pacific Ocean

    PubMed Central

    Mari, Lorenzo; Bonaventura, Luca; Storto, Andrea; Melià, Paco; Gatto, Marino; Masina, Simona

    2017-01-01

    Protecting key hotspots of marine biodiversity is essential to maintain ecosystem services at large spatial scales. Protected areas serve not only as sources of propagules colonizing other habitats, but also as receptors, thus acting as protected nurseries. To quantify the geographical extent and the temporal persistence of ecological benefits resulting from protection, we investigate larval connectivity within a remote archipelago, characterized by a strong spatial gradient of human impact from pristine to heavily exploited: the Northern Line Islands (NLIs), including part of the Pacific Remote Islands Marine National Monument (PRI-MNM). Larvae are described as passive Lagrangian particles transported by oceanic currents obtained from a oceanographic reanalysis. We compare different simulation schemes and compute connectivity measures (larval exchange probabilities and minimum/average larval dispersal distances from target islands). To explore the role of PRI-MNM in protecting marine organisms with pelagic larval stages, we drive millions of individual-based simulations for various Pelagic Larval Durations (PLDs), in all release seasons, and over a two-decades time horizon (1991–2010). We find that connectivity in the NLIs is spatially asymmetric and displays significant intra- and inter-annual variations. The islands belonging to PRI-MNM act more as sinks than sources of larvae, and connectivity is higher during the winter-spring period. In multi-annual analyses, yearly averaged southward connectivity significantly and negatively correlates with climatological anomalies (El Niño). This points out a possible system fragility and susceptibility to global warming. Quantitative assessments of large-scale, long-term marine connectivity patterns help understand region-specific, ecologically relevant interactions between islands. This is fundamental for devising scientifically-based protection strategies, which must be space- and time-varying to cope with the challenges posed by the concurrent pressures of human exploitation and global climate change. PMID:28809937

  7. Understanding large-scale, long-term larval connectivity patterns: The case of the Northern Line Islands in the Central Pacific Ocean.

    PubMed

    Mari, Lorenzo; Bonaventura, Luca; Storto, Andrea; Melià, Paco; Gatto, Marino; Masina, Simona; Casagrandi, Renato

    2017-01-01

    Protecting key hotspots of marine biodiversity is essential to maintain ecosystem services at large spatial scales. Protected areas serve not only as sources of propagules colonizing other habitats, but also as receptors, thus acting as protected nurseries. To quantify the geographical extent and the temporal persistence of ecological benefits resulting from protection, we investigate larval connectivity within a remote archipelago, characterized by a strong spatial gradient of human impact from pristine to heavily exploited: the Northern Line Islands (NLIs), including part of the Pacific Remote Islands Marine National Monument (PRI-MNM). Larvae are described as passive Lagrangian particles transported by oceanic currents obtained from a oceanographic reanalysis. We compare different simulation schemes and compute connectivity measures (larval exchange probabilities and minimum/average larval dispersal distances from target islands). To explore the role of PRI-MNM in protecting marine organisms with pelagic larval stages, we drive millions of individual-based simulations for various Pelagic Larval Durations (PLDs), in all release seasons, and over a two-decades time horizon (1991-2010). We find that connectivity in the NLIs is spatially asymmetric and displays significant intra- and inter-annual variations. The islands belonging to PRI-MNM act more as sinks than sources of larvae, and connectivity is higher during the winter-spring period. In multi-annual analyses, yearly averaged southward connectivity significantly and negatively correlates with climatological anomalies (El Niño). This points out a possible system fragility and susceptibility to global warming. Quantitative assessments of large-scale, long-term marine connectivity patterns help understand region-specific, ecologically relevant interactions between islands. This is fundamental for devising scientifically-based protection strategies, which must be space- and time-varying to cope with the challenges posed by the concurrent pressures of human exploitation and global climate change.

  8. A Reverse Taxonomic Approach to Assess Macrofaunal Distribution Patterns in Abyssal Pacific Polymetallic Nodule Fields

    PubMed Central

    Janssen, Annika; Kaiser, Stefanie; Meißner, Karin; Brenke, Nils; Menot, Lenaick; Martínez Arbizu, Pedro

    2015-01-01

    Heightened interest in the exploitation of deep seafloor minerals is raising questions on the consequences for the resident fauna. Assessing species ranges and determination of processes underlying current species distributions are prerequisites to conservation planning and predicting faunal responses to changing environmental conditions. The abyssal central Pacific nodule belt, located between the Clarion and Clipperton Fracture Zones (CCZ), is an area prospected for mining of polymetallic nodules. We examined variations in genetic diversity and broad-scale connectivity of isopods and polychaetes across the CCZ. Faunal assemblages were studied from two mining claims (the eastern German and French license areas) located 1300 km apart and influenced by different productivity regimes. Using a reverse taxonomy approach based on DNA barcoding, we tested to what extent distance and large-scale changes in environmental parameters lead to differentiation in two macrofaunal taxa exhibiting different functions and life-history patterns. A fragment of the mitochondrial gene Cytochrome Oxidase Subunit 1 (COI) was analyzed. At a 97% threshold the molecular operational taxonomic units (MOTUs) corresponded well to morphological species. Molecular analyses indicated high local and regional diversity mostly because of large numbers of singletons in the samples. Consequently, variation in composition of genotypic clusters between sites was exceedingly large partly due to paucity of deep-sea sampling and faunal patchiness. A higher proportion of wide-ranging species in polychaetes was contrasted with mostly restricted distributions in isopods. Remarkably, several cryptic lineages appeared to be sympatric and occurred in taxa with putatively good dispersal abilities, whereas some brooding lineages revealed broad distributions across the CCZ. Geographic distance could explain variation in faunal connectivity between regions and sites to some extent, while assumed dispersal capabilities were not as important. PMID:25671322

  9. Simulated Tree Growth across the Northern Hemisphere and the Seasonality of Climate Signals Encoded within Tree-ring Widths

    NASA Astrophysics Data System (ADS)

    Li, X.; St George, S.

    2013-12-01

    Both dendrochronological theory and regional and global networks of tree-ring width measurements indicate that trees can respond to climate variations quite differently from one location to another. To explain these geographical differences at hemispheric scale, we used a process-based model of tree-ring formation (the Vaganov-Shashkin model) to simulate tree growth at over 6000 locations across the Northern Hemisphere. We compared the seasonality and strength of climate signals in the simulated tree-ring records against parallel analysis conducted on a hemispheric network of real tree-ring observations, tested the ability of the model to reproduce behaviors that emerge from large networks of tree-ring widths and used the model outputs to explain why the network exhibits these behaviors. The simulated tree-ring records are consistent with observations with respect to the seasonality and relative strength of the encoded climate signals, and time-related changes in these climate signals can be predicted using the modeled relative growth rate due to temperature or soil moisture. The positive imprint of winter (DJF) precipitation is strongest in simulations from the American Southwest and northern Mexico as well as selected locations in the Mediterranean and central Asia. Summer (JJA) precipitation has higher positive correlations with simulations in the mid-latitudes, but some high-latitude coastal sites exhibit a negative association. The influence of summer temperature is mainly positive at high-latitude or high-altitude sites and negative in the mid-latitudes. The absolute magnitude of climate correlations are generally higher in simulations than in observations, but the pattern and geographical differences remain the same, demonstrating that the model has skill in reproducing tree-ring growth response to climate variability in the Northern Hemisphere. Because the model uses only temperature, precipitation and latitude as input and is not adjusted for species or other biological factors, the fact that the climate response of the simulations largely agrees with the observations may imply that climate, rather than biology, is the main factor that influences large-scale patterns of the climate information recorded by tree rings. Our results also suggest that the Vaganov-Shashkin model could be used to estimate the likely climate response of trees in ';frontier' areas that have not been sampled extensively. Seasonal Climate Correlations of Simulated Tree-ring Records

  10. Process, pattern and scale: hydrogeomorphology and plant diversity in forested wetlands across multiple spatial scales

    NASA Astrophysics Data System (ADS)

    Alexander, L.; Hupp, C. R.; Forman, R. T.

    2002-12-01

    Many geodisturbances occur across large spatial scales, spanning entire landscapes and creating ecological phenomena in their wake. Ecological study at large scales poses special problems: (1) large-scale studies require large-scale resources, and (2) sampling is not always feasible at the appropriate scale, and researchers rely on data collected at smaller scales to interpret patterns across broad regions. A criticism of landscape ecology is that findings at small spatial scales are "scaled up" and applied indiscriminately across larger spatial scales. In this research, landscape scaling is addressed through process-pattern relationships between hydrogeomorphic processes and patterns of plant diversity in forested wetlands. The research addresses: (1) whether patterns and relationships between hydrogeomorphic, vegetation, and spatial variables can transcend scale; and (2) whether data collected at small spatial scales can be used to describe patterns and relationships across larger spatial scales. Field measurements of hydrologic, geomorphic, spatial, and vegetation data were collected or calculated for 15- 1-ha sites on forested floodplains of six (6) Chesapeake Bay Coastal Plain streams over a total area of about 20,000 km2. Hydroperiod (day/yr), floodplain surface elevation range (m), discharge (m3/s), stream power (kg-m/s2), sediment deposition (mm/yr), relative position downstream and other variables were used in multivariate analyses to explain differences in species richness, tree diversity (Shannon-Wiener Diversity Index H'), and plant community composition at four spatial scales. Data collected at the plot (400-m2) and site- (c. 1-ha) scales are applied to and tested at the river watershed and regional spatial scales. Results indicate that plant species richness and tree diversity (Shannon-Wiener diversity index H') can be described by hydrogeomorphic conditions at all scales, but are best described at the site scale. Data collected at plot and site scales are tested for spatial heterogeneity across the Chesapeake Bay Coastal Plain using a geostatistical variogram, and multiple regression analysis is used to relate plant diversity, spatial, and hydrogeomorphic variables across Coastal Plain regions and hydrologic regimes. Results indicate that relationships between hydrogeomorphic processes and patterns of plant diversity at finer scales can proxy relationships at coarser scales in some, not all, cases. Findings also suggest that data collected at small scales can be used to describe trends across broader scales under limited conditions.

  11. History, ocean channels, and distance determine phylogeographic patterns in three widespread Philippine fruit bats (Pteropodidae).

    PubMed

    Roberts, Trina E

    2006-07-01

    The comparative phylogeography of widespread, codistributed species provides unique insights into regional biodiversity and diversification patterns. I used partial DNA sequences of the mitochondrial genes ND2 and cyt b to investigate phylogeographic structure in three widespread Philippine fruit bats. Ptenochirus jagori is endemic to the oceanic region of the Philippines and is most abundant in lowland primary forest. Macroglossus minimus and Cynopterus brachyotis are most common in disturbed and open habitats and are not endemic. In all three, genetic differentiation is present at multiple spatial scales and is associated to some degree with Pleistocene landbridge island groups. In P. jagori and C. brachyotis, genetic distance is correlated with geographic distance; in C. brachyotis and M. minimus, it is correlated with the sea-crossing distance between islands. P. jagori has the least overall genetic structure of these three species, whereas C. brachyotis and M. minimus have more geographic association among haplotypes, suggesting that phylogeographic patterns are linked to ecology and habitat preference. However, contrary to expectation, the two widespread, disturbed habitat species have more structure than the endemic species. Mismatch distributions suggest rapid changes in effective population size in C. brachyotis and P. jagori, whereas M. minimus appears to be demographically more stable. Geologic and geographic history are important in structuring variation, and phylogeographic patterns are the result of dynamic long-term processes rather than simply reflecting current conditions.

  12. Forest dynamics in the U.S. indicate disproportionate attrition in western forests, rural areas and public lands

    PubMed Central

    2017-01-01

    Forests are experiencing significant changes; studying geographic patterns in forests is critical in understanding the impact of forest dynamics to biodiversity, soil erosion, water chemistry and climate. Few studies have examined forest geographic pattern changes other than fragmentation; however, other spatial processes of forest dynamics are of equal importance. Here, we study forest attrition, the complete removal of forest patches, that can result in complete habitat loss, severe decline of population sizes and species richness, and shifts of local and regional environmental conditions. We aim to develop a simple yet insightful proximity-based spatial indicator capturing forest attrition that is independent of spatial scale and boundaries with worldwide application potential. Using this proximity indicator, we evaluate forest attrition across ecoregions, land ownership and urbanization stratifications across continental United States of America. Nationally, the total forest cover loss was approximately 90,400 km2, roughly the size of the state of Maine, constituting a decline of 2.96%. Examining the spatial arrangement of this change the average FAD was 3674m in 1992 and increased by 514m or 14.0% in 2001. Simulations of forest cover loss indicate only a 10m FAD increase suggesting that the observed FAD increase was more than an order of magnitude higher than expected. Furthermore, forest attrition is considerably higher in the western United States, in rural areas and in public lands. Our mathematical model (R2 = 0.93) supports estimation of attrition for a given forest cover. The FAD metric quantifies forest attrition across spatial scales and geographic boundaries and assesses unambiguously changes over time. The metric is applicable to any landscape and offers a new complementary insight on forest landscape patterns from local to global scales, improving future exploration of drivers and repercussions of forest cover changes and supporting more informative management of forest carbon, changing climate and species biodiversity. PMID:28225787

  13. Forest dynamics in the U.S. indicate disproportionate attrition in western forests, rural areas and public lands.

    PubMed

    Yang, Sheng; Mountrakis, Giorgos

    2017-01-01

    Forests are experiencing significant changes; studying geographic patterns in forests is critical in understanding the impact of forest dynamics to biodiversity, soil erosion, water chemistry and climate. Few studies have examined forest geographic pattern changes other than fragmentation; however, other spatial processes of forest dynamics are of equal importance. Here, we study forest attrition, the complete removal of forest patches, that can result in complete habitat loss, severe decline of population sizes and species richness, and shifts of local and regional environmental conditions. We aim to develop a simple yet insightful proximity-based spatial indicator capturing forest attrition that is independent of spatial scale and boundaries with worldwide application potential. Using this proximity indicator, we evaluate forest attrition across ecoregions, land ownership and urbanization stratifications across continental United States of America. Nationally, the total forest cover loss was approximately 90,400 km2, roughly the size of the state of Maine, constituting a decline of 2.96%. Examining the spatial arrangement of this change the average FAD was 3674m in 1992 and increased by 514m or 14.0% in 2001. Simulations of forest cover loss indicate only a 10m FAD increase suggesting that the observed FAD increase was more than an order of magnitude higher than expected. Furthermore, forest attrition is considerably higher in the western United States, in rural areas and in public lands. Our mathematical model (R2 = 0.93) supports estimation of attrition for a given forest cover. The FAD metric quantifies forest attrition across spatial scales and geographic boundaries and assesses unambiguously changes over time. The metric is applicable to any landscape and offers a new complementary insight on forest landscape patterns from local to global scales, improving future exploration of drivers and repercussions of forest cover changes and supporting more informative management of forest carbon, changing climate and species biodiversity.

  14. Large-Scale Atmospheric Circulation Patterns Associated with Temperature Extremes as a Basis for Model Evaluation: Methodological Overview and Results

    NASA Astrophysics Data System (ADS)

    Loikith, P. C.; Broccoli, A. J.; Waliser, D. E.; Lintner, B. R.; Neelin, J. D.

    2015-12-01

    Anomalous large-scale circulation patterns often play a key role in the occurrence of temperature extremes. For example, large-scale circulation can drive horizontal temperature advection or influence local processes that lead to extreme temperatures, such as by inhibiting moderating sea breezes, promoting downslope adiabatic warming, and affecting the development of cloud cover. Additionally, large-scale circulation can influence the shape of temperature distribution tails, with important implications for the magnitude of future changes in extremes. As a result of the prominent role these patterns play in the occurrence and character of extremes, the way in which temperature extremes change in the future will be highly influenced by if and how these patterns change. It is therefore critical to identify and understand the key patterns associated with extremes at local to regional scales in the current climate and to use this foundation as a target for climate model validation. This presentation provides an overview of recent and ongoing work aimed at developing and applying novel approaches to identifying and describing the large-scale circulation patterns associated with temperature extremes in observations and using this foundation to evaluate state-of-the-art global and regional climate models. Emphasis is given to anomalies in sea level pressure and 500 hPa geopotential height over North America using several methods to identify circulation patterns, including self-organizing maps and composite analysis. Overall, evaluation results suggest that models are able to reproduce observed patterns associated with temperature extremes with reasonable fidelity in many cases. Model skill is often highest when and where synoptic-scale processes are the dominant mechanisms for extremes, and lower where sub-grid scale processes (such as those related to topography) are important. Where model skill in reproducing these patterns is high, it can be inferred that extremes are being simulated for plausible physical reasons, boosting confidence in future projections of temperature extremes. Conversely, where model skill is identified to be lower, caution should be exercised in interpreting future projections.

  15. The problem and promise of scale dependency in community phylogenetics.

    PubMed

    Swenson, Nathan G; Enquist, Brian J; Pither, Jason; Thompson, Jill; Zimmerman, Jess K

    2006-10-01

    The problem of scale dependency is widespread in investigations of ecological communities. Null model investigations of community assembly exemplify the challenges involved because they typically include subjectively defined "regional species pools." The burgeoning field of community phylogenetics appears poised to face similar challenges. Our objective is to quantify the scope of the problem of scale dependency by comparing the phylogenetic structure of assemblages across contrasting geographic and taxonomic scales. We conduct phylogenetic analyses on communities within three tropical forests, and perform a sensitivity analysis with respect to two scaleable inputs: taxonomy and species pool size. We show that (1) estimates of phylogenetic overdispersion within local assemblages depend strongly on the taxonomic makeup of the local assemblage and (2) comparing the phylogenetic structure of a local assemblage to a species pool drawn from increasingly larger geographic scales results in an increased signal of phylogenetic clustering. We argue that, rather than posing a problem, "scale sensitivities" are likely to reveal general patterns of diversity that could help identify critical scales at which local or regional influences gain primacy for the structuring of communities. In this way, community phylogenetics promises to fill an important gap in community ecology and biogeography research.

  16. A long-term field experiment of soil transplantation demonstrating the role of contemporary geographic separation in shaping soil microbial community structure

    PubMed Central

    Sun, Bo; Wang, Feng; Jiang, Yuji; Li, Yun; Dong, Zhixin; Li, Zhongpei; Zhang, Xue-Xian

    2014-01-01

    The spatial patterns of microbial communities are largely determined by the combined effects of historical contingencies and contemporary environmental disturbances, but their relative importance remains poorly understood. Empirical biogeographic data currently available are mostly based on the traditional method of observational survey, which typically involves comparing indigenous microbial communities across spatial scales. Here, we report a long-term soil transplantation experiment, whereby the same two soils (red Acrisol and purple Cambisol from Yingtan) were placed into two geographic locations of ∼1000 km apart (i.e., Yingtan in the mid-subtropical region and Fengqiu in warm-temperate region; both located in China). Twenty years after the transplantation, the resulting soil microbial communities were subject to high-throughput 454 pyrosequencing analysis of 16S and 18S rRNA genes. Additionally, bacteria and archaea involved in nitrogen cycling were estimated using clone library analysis of four genes: archaeal amoA, bacterial amoA,nirK, and nifH. Data of subsequent phylogenetic analysis show that bacteria, fungi, and other microbial eukaryotes, as well as the nitrogen cycling genes, are grouped primarily by the factor of geographic location rather than soil type. Moreover, a shift of microbial communities toward those in local soil (i.e., Chao soil in Fengqiu) has been observed. The results thus suggest that the historical effects persistent in the soil microbial communities can be largely erased by contemporary disturbance within a short period of 20 years, implicating weak effects of historical contingencies on the structure and composition of microbial communities in the soil. PMID:24772284

  17. Climate and soil texture influence patterns of forb species richness and composition in big sagebrush plant communities across their spatial extent in the western US

    USGS Publications Warehouse

    Pennington, Victoria E.; Palmquist, Kyle A.; Bradford, John B.; Lauenroth, William K.

    2017-01-01

    Article for outlet: Plant Ecology. Abstract: Big sagebrush (Artemisia tridentata Nutt.) plant communities are widespread non-forested drylands in western North American and similar to all shrub steppe ecosystems world-wide are composed of a shrub overstory layer and a forb and graminoid understory layer. Forbs account for the majority of plant species diversity in big sagebrush plant communities and are important for ecosystem function. Few studies have explored the geographic patterns of forb species richness and composition and their relationships with environmental variables in these communities. Our objectives were to examine the small and large-scale spatial patterns in forb species richness and composition and the influence of environmental variables. We sampled forb species richness and composition along transects at 15 field sites in Colorado, Idaho, Montana, Nevada, Oregon, Utah, and Wyoming, built species-area relationships to quantify differences in forb species richness at sites, and used Principal Components Analysis and nonmetric multidimensional scaling to identify relationships among environmental variables and forb species richness and composition. We found that species richness was most strongly correlated with soil texture, while species composition was most related to climate. The combination of climate and soil texture influences water availability, with important consequences for forb species richness and composition, which suggests climate-change induced modification of soil water availability may have important implications for plant species diversity in the future. Our paper is the first to our knowledge to examine forb biodiversity patterns in big sagebrush ecosystems in relation to environmental factors across the big sagebrush region.

  18. Environmental correlates of plant diversity in Korean temperate forests

    NASA Astrophysics Data System (ADS)

    Černý, Tomáš; Doležal, Jiří; Janeček, Štěpán; Šrůtek, Miroslav; Valachovič, Milan; Petřík, Petr; Altman, Jan; Bartoš, Michael; Song, Jong-Suk

    2013-02-01

    Mountainous areas of the Korean Peninsula are among the biodiversity hotspots of the world's temperate forests. Understanding patterns in spatial distribution of their species richness requires explicit consideration of different environmental drivers and their effects on functionally differing components. In this study, we assess the impact of both geographical and soil variables on the fine-scale (400 m2) pattern of plant diversity using field data from six national parks, spanning a 1300 m altitudinal gradient. Species richness and the slopes of species-area curves were calculated separately for the tree, shrub and herb layer and used as response variables in regression tree analyses. A cluster analysis distinguished three dominant forest communities with specific patterns in the diversity-environment relationship. The most widespread middle-altitude oak forests had the highest tree richness but the lowest richness of herbaceous plants due to a dense bamboo understory. Total richness was positively associated with soil reaction and negatively associated with soluble phosphorus and solar radiation (site dryness). Tree richness was associated mainly with soil factors, although trees are frequently assumed to be controlled mainly by factors with large-scale impact. A U-shaped relationship was found between herbaceous plant richness and altitude, caused by a distribution pattern of dwarf bamboo in understory. No correlation between the degree of canopy openness and herb layer richness was detected. Slopes of the species-area curves indicated the various origins of forest communities. Variable diversity-environment responses in different layers and communities reinforce the necessity of context-dependent differentiation for the assessment of impacts of climate and land-use changes in these diverse but intensively exploited regions.

  19. Geographical distribution of genetic diversity in Secale landrace and wild accessions.

    PubMed

    Hagenblad, Jenny; Oliveira, Hugo R; Forsberg, Nils E G; Leino, Matti W

    2016-01-19

    Rye, Secale cereale L., has historically been a crop of major importance and is still a key cereal in many parts of Europe. Single populations of cultivated rye have been shown to capture a large proportion of the genetic diversity present in the species, but the distribution of genetic diversity in subspecies and across geographical areas is largely unknown. Here we explore the structure of genetic diversity in landrace rye and relate it to that of wild and feral relatives. A total of 567 SNPs were analysed in 434 individuals from 76 accessions of wild, feral and cultivated rye. Genetic diversity was highest in cultivated rye, slightly lower in feral rye taxa and significantly lower in the wild S. strictum Presl. and S. africanum Stapf. Evaluation of effects from ascertainment bias suggests underestimation of diversity primarily in S. strictum and S. africanum. Levels of ascertainment bias, STRUCTURE and principal component analyses all supported the proposed classification of S. africanum and S. strictum as a separate species from S. cereale. S. afghanicum (Vav.) Roshev, S. ancestrale Zhuk., S. dighoricum (Vav.) Roshev, S. segetale (Zhuk.) Roshev and S. vavilovii Grossh. seemed, in contrast, to share the same gene pool as S. cereale and their genetic clustering was more dependent on geographical origin than taxonomic classification. S. vavilovii was found to be the most likely wild ancestor of cultivated rye. Among cultivated rye landraces from Europe, Asia and North Africa five geographically discrete genetic clusters were identified. These had only limited overlap with major agro-climatic zones. Slash-and-burn rye from the Finnmark area in Scandinavia formed a distinct cluster with little similarity to other landrace ryes. Regional studies of Northern and South-West Europe demonstrate different genetic distribution patterns as a result of varying cultivation intensity. With the exception of S. strictum and S. africanum different rye taxa share the majority of the genetic variation. Due to the vast sharing of genetic diversity within the S. cereale clade, ascertainment bias seems to be a lesser problem in rye than in predominantly selfing species. By exploiting within accession diversity geographic structure can be shown on a much finer scale than previously reported.

  20. Massive dispersal of Coxiella burnetii among cattle across the United States

    PubMed Central

    Olivas, Sonora; Hornstra, Heidie; Priestley, Rachael A.; Kaufman, Emily; Hepp, Crystal; Sonderegger, Derek L.; Handady, Karthik; Massung, Robert F.; Keim, Paul; Kersh, Gilbert J.

    2016-01-01

    Q-fever is an underreported disease caused by the bacterium Coxiella burnetii, which is highly infectious and has the ability to disperse great distances. It is a completely clonal pathogen with low genetic diversity and requires whole-genome analysis to identify discriminating features among closely related isolates. C. burnetii, and in particular one genotype (ST20), is commonly found in cow’s milk across the entire dairy industry of the USA. This single genotype dominance is suggestive of host-specific adaptation, rapid dispersal and persistence within cattle. We used a comparative genomic approach to identify SNPs for high-resolution and high-throughput genotyping assays to better describe the dispersal of ST20 across the USA. We genotyped 507 ST20 cow milk samples and discovered three subgenotypes, all of which were present across the entire country and over the complete time period studied. Only one of these sub-genotypes was observed in a single dairy herd. The temporal and geographic distribution of these sub-genotypes is consistent with a model of large-scale, rapid, frequent and continuous dissemination on a continental scale. The distribution of subgenotypes is not consistent with wind-based dispersal alone, and it is likely that animal husbandry and transportation practices, including pooling of milk from multiple herds, have also shaped the patterns. On the scale of an entire country, there appear to be few barriers to rapid, frequent and large-scale dissemination of the ST20 subgenotypes. PMID:28348863

  1. Continental-scale quantification of landscape values using social media data.

    PubMed

    van Zanten, Boris T; Van Berkel, Derek B; Meentemeyer, Ross K; Smith, Jordan W; Tieskens, Koen F; Verburg, Peter H

    2016-11-15

    Individuals, communities, and societies ascribe a diverse array of values to landscapes. These values are shaped by the aesthetic, cultural, and recreational benefits and services provided by those landscapes. However, across the globe, processes such as urbanization, agricultural intensification, and abandonment are threatening landscape integrity, altering the personally meaningful connections people have toward specific places. Existing methods used to study landscape values, such as social surveys, are poorly suited to capture dynamic landscape-scale processes across large geographic extents. Social media data, by comparison, can be used to indirectly measure and identify valuable features of landscapes at a regional, continental, and perhaps even worldwide scale. We evaluate the usefulness of different social media platforms-Panoramio, Flickr, and Instagram-and quantify landscape values at a continental scale. We find Panoramio, Flickr, and Instagram data can be used to quantify landscape values, with features of Instagram being especially suitable due to its relatively large population of users and its functional ability of allowing users to attach personally meaningful comments and hashtags to their uploaded images. Although Panoramio, Flickr, and Instagram have different user profiles, our analysis revealed similar patterns of landscape values across Europe across the three platforms. We also found variables describing accessibility, population density, income, mountainous terrain, or proximity to water explained a significant portion of observed variation across data from the different platforms. Social media data can be used to extend our understanding of how and where individuals ascribe value to landscapes across diverse social, political, and ecological boundaries.

  2. Continental-scale quantification of landscape values using social media data

    PubMed Central

    van Zanten, Boris T.; Van Berkel, Derek B.; Meentemeyer, Ross K.; Smith, Jordan W.; Tieskens, Koen F.

    2016-01-01

    Individuals, communities, and societies ascribe a diverse array of values to landscapes. These values are shaped by the aesthetic, cultural, and recreational benefits and services provided by those landscapes. However, across the globe, processes such as urbanization, agricultural intensification, and abandonment are threatening landscape integrity, altering the personally meaningful connections people have toward specific places. Existing methods used to study landscape values, such as social surveys, are poorly suited to capture dynamic landscape-scale processes across large geographic extents. Social media data, by comparison, can be used to indirectly measure and identify valuable features of landscapes at a regional, continental, and perhaps even worldwide scale. We evaluate the usefulness of different social media platforms—Panoramio, Flickr, and Instagram—and quantify landscape values at a continental scale. We find Panoramio, Flickr, and Instagram data can be used to quantify landscape values, with features of Instagram being especially suitable due to its relatively large population of users and its functional ability of allowing users to attach personally meaningful comments and hashtags to their uploaded images. Although Panoramio, Flickr, and Instagram have different user profiles, our analysis revealed similar patterns of landscape values across Europe across the three platforms. We also found variables describing accessibility, population density, income, mountainous terrain, or proximity to water explained a significant portion of observed variation across data from the different platforms. Social media data can be used to extend our understanding of how and where individuals ascribe value to landscapes across diverse social, political, and ecological boundaries. PMID:27799537

  3. Patterns of Geographic Expansion of Aedes aegypti in the Peruvian Amazon

    PubMed Central

    Guagliardo, Sarah Anne; Barboza, José Luis; Morrison, Amy C.; Astete, Helvio; Vazquez-Prokopec, Gonzalo; Kitron, Uriel

    2014-01-01

    Background and Objectives In the Peruvian Amazon, the dengue vector Aedes aegypti is abundant in large urban centers such as Iquitos. In recent years, it has also been found in a number of neighboring rural communities with similar climatic and socioeconomic conditions. To better understand Ae. aegypti spread, we compared characteristics of communities, houses, and containers in infested and uninfested communities. Methods We conducted pupal-demographic surveys and deployed ovitraps in 34 communities surrounding the city of Iquitos. Communities surveyed were located along two transects: the Amazon River and a 95km highway. We calculated entomological indices, mapped Ae. aegypti presence, and developed univariable and multivariable logistic regression models to predict Ae. aegypti presence at the community, household, or container level. Results Large communities closer to Iquitos were more likely to be infested with Ae. aegypti. Within infested communities, houses with Ae. aegypti had more passively-filled containers and were more often infested with other mosquito genera than houses without Ae. aegypti. For containers, large water tanks/drums and containers with solar exposure were more likely to be infested with Ae. aegypti. Maps of Ae. aegypti presence revealed a linear pattern of infestation along the highway, and a scattered pattern along the Amazon River. We also identified the geographical limit of Ae. aegypti expansion along the highway at 19.3 km south of Iquitos. Conclusion In the Peruvian Amazon, Ae. aegypti geographic spread is driven by human transportation networks along rivers and highways. Our results suggest that urban development and oviposition site availability drive Ae. aegypti colonization along roads. Along rivers, boat traffic is likely to drive long-distance dispersal via unintentional transport of mosquitoes on boats. PMID:25101786

  4. Patterns of geographic expansion of Aedes aegypti in the Peruvian Amazon.

    PubMed

    Guagliardo, Sarah Anne; Barboza, José Luis; Morrison, Amy C; Astete, Helvio; Vazquez-Prokopec, Gonzalo; Kitron, Uriel

    2014-08-01

    In the Peruvian Amazon, the dengue vector Aedes aegypti is abundant in large urban centers such as Iquitos. In recent years, it has also been found in a number of neighboring rural communities with similar climatic and socioeconomic conditions. To better understand Ae. aegypti spread, we compared characteristics of communities, houses, and containers in infested and uninfested communities. We conducted pupal-demographic surveys and deployed ovitraps in 34 communities surrounding the city of Iquitos. Communities surveyed were located along two transects: the Amazon River and a 95 km highway. We calculated entomological indices, mapped Ae. aegypti presence, and developed univariable and multivariable logistic regression models to predict Ae. aegypti presence at the community, household, or container level. Large communities closer to Iquitos were more likely to be infested with Ae. aegypti. Within infested communities, houses with Ae. aegypti had more passively-filled containers and were more often infested with other mosquito genera than houses without Ae. aegypti. For containers, large water tanks/drums and containers with solar exposure were more likely to be infested with Ae. aegypti. Maps of Ae. aegypti presence revealed a linear pattern of infestation along the highway, and a scattered pattern along the Amazon River. We also identified the geographical limit of Ae. aegypti expansion along the highway at 19.3 km south of Iquitos. In the Peruvian Amazon, Ae. aegypti geographic spread is driven by human transportation networks along rivers and highways. Our results suggest that urban development and oviposition site availability drive Ae. aegypti colonization along roads. Along rivers, boat traffic is likely to drive long-distance dispersal via unintentional transport of mosquitoes on boats.

  5. Energy, water and large-scale patterns of reptile and amphibian species richness in Europe

    NASA Astrophysics Data System (ADS)

    Rodríguez, Miguel Á.; Belmontes, Juan Alfonso; Hawkins, Bradford A.

    2005-07-01

    We used regression analyses to examine the relationships between reptile and amphibian species richness in Europe and 11 environmental variables related to five hypotheses for geographical patterns of species richness: (1) productivity; (2) ambient energy; (3) water-energy balance, (4) habitat heterogeneity; and (5) climatic variability. For reptiles, annual potential evapotranspiration (PET), a measure of the amount of atmospheric energy, explained 71% of the variance, with variability in log elevation explaining an additional 6%. For amphibians, annual actual evapotranspiration (AET), a measure of the joint availability of energy and water in the environment, and the global vegetation index, an estimate of plant biomass generated through satellite remote sensing, both described similar proportions of the variance (61% and 60%, respectively) and had partially independent effects on richness as indicated by multiple regression. The two-factor environmental models successfully removed most of the statistically detectable spatial autocorrelation in the richness data of both groups. Our results are consistent with reptile and amphibian environmental requirements, where the former depend strongly on solar energy and the latter require both warmth and moisture for reproduction. We conclude that ambient energy explains the reptile richness pattern, whereas for amphibians a combination of water-energy balance and productivity best explain the pattern.

  6. Geographical patterns of the standing and active human gut microbiome in health and IBD.

    PubMed

    Rehman, Ateequr; Rausch, Philipp; Wang, Jun; Skieceviciene, Jurgita; Kiudelis, Gediminas; Bhagalia, Ketan; Amarapurkar, Deepak; Kupcinskas, Limas; Schreiber, Stefan; Rosenstiel, Philip; Baines, John F; Ott, Stephan

    2016-02-01

    A global increase of IBD has been reported, especially in countries that previously had low incidence rates. Also, the knowledge of the human gut microbiome is steadily increasing, however, limited information regarding its variation on a global scale is available. In the light of the microbial involvement in IBDs, we aimed to (1) identify shared and distinct IBD-associated mucosal microbiota patterns from different geographical regions including Europe (Germany, Lithuania) and South Asia (India) and (2) determine whether profiling based on 16S rRNA transcripts provides additional resolution, both of which may hold important clinical relevance. In this study, we analyse a set of 89 mucosal biopsies sampled from individuals of German, Lithuanian and Indian origins, using bacterial community profiling of a roughly equal number of healthy controls, patients with Crohn's disease and UC from each location, and analyse 16S rDNA and rRNA as proxies for standing and active microbial community structure, respectively. We find pronounced population-specific as well as general disease patterns in the major phyla and patterns of diversity, which differ between the standing and active communities. The geographical origin of samples dominates the patterns of β diversity with locally restricted disease clusters and more pronounced effects in the active microbial communities. However, two genera belonging to the Clostridium leptum subgroup, Faecalibacteria and Papillibacter, display consistent patterns with respect to disease status and may thus serve as reliable 'microbiomarkers'. These analyses reveal important interactions of patients' geographical origin and disease in the interpretation of disease-associated changes in microbial communities and highlight the added value of analysing communities on both the 16S rRNA gene (DNA) and transcript (RNA) level. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  7. Continental-scale variation in controls of summer CO2 in United States lakes

    NASA Astrophysics Data System (ADS)

    Lapierre, Jean-Francois; Seekell, David A.; Filstrup, Christopher T.; Collins, Sarah M.; Emi Fergus, C.; Soranno, Patricia A.; Cheruvelil, Kendra S.

    2017-04-01

    Understanding the broad-scale response of lake CO2 dynamics to global change is challenging because the relative importance of different controls of surface water CO2 is not known across broad geographic extents. Using geostatistical analyses of 1080 lakes in the conterminous United States, we found that lake partial pressure of CO2 (pCO2) was controlled by different chemical and biological factors related to inputs and losses of CO2 along climate, topography, geomorphology, and land use gradients. Despite weak spatial patterns in pCO2 across the study extent, there were strong regional patterns in the pCO2 driver-response relationships, i.e., in pCO2 "regulation." Because relationships between lake CO2 and its predictors varied spatially, global models performed poorly in explaining the variability in CO2 for U.S. lakes. The geographically varying driver-response relationships of lake pCO2 reflected major landscape gradients across the study extent and pointed to the importance of regional-scale variation in pCO2 regulation. These results indicate a higher level of organization for these physically disconnected systems than previously thought and suggest that changes in climate and land use could induce shifts in the main pathways that determine the role of lakes as sources and sinks of atmospheric CO2.

  8. The morphing of geographical features by Fourier transformation

    PubMed Central

    Liu, Pengcheng; Yu, Wenhao; Cheng, Xiaoqiang

    2018-01-01

    This paper presents a morphing model of vector geographical data based on Fourier transformation. This model involves three main steps. They are conversion from vector data to Fourier series, generation of intermediate function by combination of the two Fourier series concerning a large scale and a small scale, and reverse conversion from combination function to vector data. By mirror processing, the model can also be used for morphing of linear features. Experimental results show that this method is sensitive to scale variations and it can be used for vector map features’ continuous scale transformation. The efficiency of this model is linearly related to the point number of shape boundary and the interceptive value n of Fourier expansion. The effect of morphing by Fourier transformation is plausible and the efficiency of the algorithm is acceptable. PMID:29351344

  9. Large-area forest inventory regression modeling: spatial scale considerations

    Treesearch

    James A. Westfall

    2015-01-01

    In many forest inventories, statistical models are employed to predict values for attributes that are difficult and/or time-consuming to measure. In some applications, models are applied across a large geographic area, which assumes the relationship between the response variable and predictors is ubiquitously invariable within the area. The extent to which this...

  10. Spatio-temporal variability of dry and wet periods in mainland Portugal and its relationships with teleconnection patterns

    NASA Astrophysics Data System (ADS)

    Espírito Santo, Fátima; de Lima, Isabel P.; Silva, Álvaro; Pires, Vanda; de Lima, João L. M. P.

    2014-05-01

    Large-scale atmospheric circulation patterns and their persistence are known to drive inter-annual variability of precipitation in Europe, although depending on geographical location; this includes precipitation extremes and their trends. The vast range of time and space scales involved leads sometimes to precipitation deficits and surpluses which might affect in a different way the society, the environment and the economy at the local and regional scales, depending on specific conditions. In addition, changes in the climate are expected to affect the occurrence of extreme weather and climate events that might influence significantly the distribution, availability and sustainability of regional water resources. The location of mainland Portugal on the Northeast Atlantic region, in South-western Europe, together with other geographical features, makes this territory vulnerable to extreme dry/wet hydro-meteorological events, driven by the strong variability in precipitation. In our study we discuss, for this territory, the relation between the spatio-temporal variability in those events, including their persistence at different scales, and the variability in several modes of low frequency variability; special attention is dedicated to the North Atlantic Oscillation (NAO) and Scandinavian pattern (SCAND). Some of these dry/wet episodes affect different aspects of the hydrologic cycle and are likely to lead to drought and soil wetness/saturation conditions that can enhance flood events. Such episodes were categorized here using the Standardized Precipitation Index (SPI), which was calculated at short (3 and 6-month) and long (12 and 24-month) time scales from monthly precipitation data recorded in the 1941-2012 period (72 years) at 50 precipitation stations scattered across the study area. Moreover, because SPI is a normalized index, it is also suitable to provide spatial representations of these conditions, allowing the comparison between areas within the same region. Thus, indices were interpolated for the whole territory using deterministic and geostatistical methods, and the zonal statistics results were mapped; the spatial interpolation, analysis and mapping were implemented in ArcGIS. Results confirm that the precipitation in this region is strongly influenced by the NAO and SCAND, in particular in the wettest months. Moreover, the annual SPI shows a significant increase in the extent of dry extremes and a non-significant decrease in the extent of wet extremes. For shorter time scales, the behaviour depends on the season. We discuss the observed SPI trends and the uncertainties for the precipitation regime in the southern and western parts of the Iberian Peninsula, which includes mainland Portugal. Results underline potential applications of SPI for water resources management, which is discussed in the context of the regional hydrological conditions and increasing demand for water for different uses.

  11. Up and down the blind alley: population divergence with scant gene flow in an endangered tropical lineage of Andean palms (Ceroxylon quindiuense clade: Ceroxyloideae).

    PubMed

    Sanín, María José; Zapata, Patricia; Pintaud, Jean-Christophe; Galeano, Gloria; Bohórquez, Adriana; Tohme, Joseph; Hansen, Michael Møller

    2017-02-10

    Given the geographical complexity of the Andes, species distributions hold interesting information regarding the history of isolation and gene flow across geographic barriers and ecological gradients. Moreover, current threats to the region’s enormous plant diversity pose an additional challenge to the understanding of these patterns. We explored the geographic structure of genetic diversity within the Ceroxylon quindiuense species complex (wax palms) at a regional scale, using a model-based approach to disentangle the historical mechanisms by which these species have dispersed over a range encompassing 17° of latitude in the tropical Andes. A total of 10 microsatellite loci were cross-amplified in 8 populations of the 3 species comprising the C. quindiuense complex. Analyses performed include estimates of molecular diversity and genetic structure, testing for genetic bottlenecks and an evaluation of the colonization scenario under approximate Bayesian computation. We showed that there was a geographical diversity gradient reflecting the orogenetic pattern of the northern Andes and its end at the cordilleras facing the Caribbean Sea. A general pattern of diversity suggests that the cordilleras of Colombia have served as historical recipients of gene flow occurring only scantly along the northern Andes. We provided evidence of important isolation between the largest populations of this complex, suggesting that both historical constraints to dispersal but also current anthropogenic effects might explain the high levels of population structuring. We provide a list of advisable measures for conservation stakeholders.

  12. How Many Parasites Species a Frog Might Have? Determinants of Parasite Diversity in South American Anurans

    PubMed Central

    Campião, Karla Magalhães; Ribas, Augusto Cesar de Aquino; Morais, Drausio Honorio; da Silva, Reinaldo José; Tavares, Luiz Eduardo Roland

    2015-01-01

    There is an increasing interest in unveiling the dynamics of parasite infection. Understanding the interaction patterns, and determinants of host-parasite association contributes to filling knowledge gaps in both community and disease ecology. Despite being targeted as a relevant group for conservation efforts, determinants of the association of amphibians and their parasites in broad scales are poorly understood. Here we describe parasite biodiversity in South American amphibians, testing the influence of host body size and geographic range in helminth parasites species richness (PSR). We also test whether parasite diversity is related to hosts’ phylogenetic diversity. Results showed that nematodes are the most common anuran parasites. Host-parasite network has a nested pattern, with specialist helminth taxa generally associated with hosts that harbour the richest parasite faunas. Host size is positively correlated with helminth fauna richness, but we found no support for the association of host geographic range and PSR. These results remained consistent after correcting for uneven study effort and hosts’ phylogenic correlation. However, we found no association between host and parasite diversity, indicating that more diversified anuran clades not necessarily support higher parasite diversity. Overall, considering both the structure and the determinants of PRS in anurans, we conclude that specialist parasites are more likely to be associated with large anurans, which are the ones harbouring higher PSR, and that the lack of association of PSR with hosts’ clade diversification suggests it is strongly influenced by ecological and contemporary constrains. PMID:26473593

  13. Large-scale distribution of microbial and viral populations in the South Atlantic Ocean.

    PubMed

    De Corte, Daniele; Sintes, Eva; Yokokawa, Taichi; Lekunberri, Itziar; Herndl, Gerhard J

    2016-04-01

    Viruses are abundant, diverse and dynamic components of the marine environments and play a significant role in the ocean biogeochemical cycles. To assess potential variations in the relation between viruses and microbes in different geographic regions and depths, viral and microbial abundance and production were determined throughout the water column along a latitudinal transect in the South Atlantic Ocean. Path analysis was used to examine the relationships between several abiotic and biotic parameters and the different microbial and viral populations distinguished by flow cytometry. The depth-integrated contribution of microbial and viral abundance to the total microbial and viral biomass differed significantly among the different provinces. Additionally, the virus-to-microbe ratio increased with depth and decreased laterally towards the more productive regions. Our data revealed that the abundance of phytoplankton and microbes is the main controlling factor of the viral populations in the euphotic and mesopelagic layers, whereas in the bathypelagic realm, viral abundance was only weakly related to the biotic and abiotic variables. The relative contribution of the three viral populations distinguished by flow cytometry showed a clear geographical pattern throughout the water column, suggesting that these populations are composed of distinct taxa able to infect specific hosts. Overall, our data indicate the presence of distinct microbial patterns along the latitudinal transect. This variability is not limited to the euphotic layer but also detectable in the meso- and bathypelagic layers. © 2016 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. How Many Parasites Species a Frog Might Have? Determinants of Parasite Diversity in South American Anurans.

    PubMed

    Campião, Karla Magalhães; Ribas, Augusto Cesar de Aquino; Morais, Drausio Honorio; da Silva, Reinaldo José; Tavares, Luiz Eduardo Roland

    2015-01-01

    There is an increasing interest in unveiling the dynamics of parasite infection. Understanding the interaction patterns, and determinants of host-parasite association contributes to filling knowledge gaps in both community and disease ecology. Despite being targeted as a relevant group for conservation efforts, determinants of the association of amphibians and their parasites in broad scales are poorly understood. Here we describe parasite biodiversity in South American amphibians, testing the influence of host body size and geographic range in helminth parasites species richness (PSR). We also test whether parasite diversity is related to hosts' phylogenetic diversity. Results showed that nematodes are the most common anuran parasites. Host-parasite network has a nested pattern, with specialist helminth taxa generally associated with hosts that harbour the richest parasite faunas. Host size is positively correlated with helminth fauna richness, but we found no support for the association of host geographic range and PSR. These results remained consistent after correcting for uneven study effort and hosts' phylogenic correlation. However, we found no association between host and parasite diversity, indicating that more diversified anuran clades not necessarily support higher parasite diversity. Overall, considering both the structure and the determinants of PRS in anurans, we conclude that specialist parasites are more likely to be associated with large anurans, which are the ones harbouring higher PSR, and that the lack of association of PSR with hosts' clade diversification suggests it is strongly influenced by ecological and contemporary constrains.

  15. Bird migratory flyways influence the phylogeography of the invasive brine shrimp Artemia franciscana in its native American range

    PubMed Central

    Muñoz, Joaquín; Amat, Francisco; Green, Andy J.; Figuerola, Jordi

    2013-01-01

    Since Darwin’s time, waterbirds have been considered an important vector for the dispersal of continental aquatic invertebrates. Bird movements have facilitated the worldwide invasion of the American brine shrimp Artemia franciscana, transporting cysts (diapausing eggs), and favouring rapid range expansions from introduction sites. Here we address the impact of bird migratory flyways on the population genetic structure and phylogeography of A. franciscana in its native range in the Americas. We examined sequence variation for two mitochondrial gene fragments (COI and 16S for a subset of the data) in a large set of population samples representing the entire native range of A. franciscana. Furthermore, we performed Mantel tests and redundancy analyses (RDA) to test the role of flyways, geography and human introductions on the phylogeography and population genetic structure at a continental scale. A. franciscana mitochondrial DNA was very diverse, with two main clades, largely corresponding to Pacific and Atlantic populations, mirroring American bird flyways. There was a high degree of regional endemism, with populations subdivided into at least 12 divergent, geographically restricted and largely allopatric mitochondrial lineages, and high levels of population structure (ΦST of 0.92), indicating low ongoing gene flow. We found evidence of human-mediated introductions in nine out of 39 populations analysed. Once these populations were removed, Mantel tests revealed a strong association between genetic variation and geographic distance (i.e., isolation-by-distance pattern). RDA showed that shared bird flyways explained around 20% of the variance in genetic distance between populations and this was highly significant, once geographic distance was controlled for. The variance explained increased to 30% when the factor human introduction was included in the model. Our findings suggest that bird-mediated transport of brine shrimp propagules does not result in substantial ongoing gene flow; instead, it had a significant historical role on the current species phylogeography, facilitating the colonisation of new aquatic environments as they become available along their main migratory flyways. PMID:24255814

  16. Large-scale geographic variation in distribution and abundance of Australian deep-water kelp forests.

    PubMed

    Marzinelli, Ezequiel M; Williams, Stefan B; Babcock, Russell C; Barrett, Neville S; Johnson, Craig R; Jordan, Alan; Kendrick, Gary A; Pizarro, Oscar R; Smale, Dan A; Steinberg, Peter D

    2015-01-01

    Despite the significance of marine habitat-forming organisms, little is known about their large-scale distribution and abundance in deeper waters, where they are difficult to access. Such information is necessary to develop sound conservation and management strategies. Kelps are main habitat-formers in temperate reefs worldwide; however, these habitats are highly sensitive to environmental change. The kelp Ecklonia radiate is the major habitat-forming organism on subtidal reefs in temperate Australia. Here, we provide large-scale ecological data encompassing the latitudinal distribution along the continent of these kelp forests, which is a necessary first step towards quantitative inferences about the effects of climatic change and other stressors on these valuable habitats. We used the Autonomous Underwater Vehicle (AUV) facility of Australia's Integrated Marine Observing System (IMOS) to survey 157,000 m2 of seabed, of which ca 13,000 m2 were used to quantify kelp covers at multiple spatial scales (10-100 m to 100-1,000 km) and depths (15-60 m) across several regions ca 2-6° latitude apart along the East and West coast of Australia. We investigated the large-scale geographic variation in distribution and abundance of deep-water kelp (>15 m depth) and their relationships with physical variables. Kelp cover generally increased with latitude despite great variability at smaller spatial scales. Maximum depth of kelp occurrence was 40-50 m. Kelp latitudinal distribution along the continent was most strongly related to water temperature and substratum availability. This extensive survey data, coupled with ongoing AUV missions, will allow for the detection of long-term shifts in the distribution and abundance of habitat-forming kelp and the organisms they support on a continental scale, and provide information necessary for successful implementation and management of conservation reserves.

  17. Phylogeography and alpha taxonomy of the common dolphin (Delphinus sp.).

    PubMed

    Natoli, A; Cañadas, A; Peddemors, V M; Aguilar, A; Vaquero, C; Fernández-Piqueras, P; Hoelzel, A R

    2006-05-01

    The resolution of taxonomic classifications for delphinid cetaceans has been problematic, especially for species in the genera Delphinus, Tursiops and Stenella. The frequent lack of correspondence between morphological and genetic differentiation in these species raises questions about the mechanisms responsible for their evolution. In this study we focus on the genus Delphinus, and use molecular markers to address questions about speciation and the evolution of population structure. Delphinus species have a worldwide distribution and show a high degree of morphological variation. Two distinct morphotypes, long-beaked and short-beaked, have been considered different species named D. capensis and D. delphis, respectively. However, genetic differentiation between these two forms has only been demonstrated in the Pacific. We analysed samples from eight different geographical regions, including two morphologically defined long-beaked form populations, and compared these with the eastern North Pacific populations. We found high differentiation among the populations described as long-beaked instead of the expected monophyly, suggesting that these populations may have evolved from independent events converging on the same morphotype. We observed low genetic differentiation among the short-beaked populations across a large geographical scale. We interpret these phylogeographical patterns in the context of life history and population structure in related species.

  18. Ecosystem extent and fragmentation

    USGS Publications Warehouse

    Sayre, Roger; Hansen, Matt

    2017-01-01

    One of the candidate essential biodiversity variable (EBV) groups described in the seminal paper by Pereira et al. (2014) concerns Ecosystem Structure. This EBV group is distinguished from another EBV group which encompasses aspects of Ecosystem Function. While the Ecosystem Function EBV treats ecosystem processes like nutrient cycling, primary production, trophic interactions, etc., the Ecosystem Structure EBV relates to the set of biophysical properties of ecosystems that create biophysical environmental context, confer biophysical structure, and occur geographically. The Ecosystem Extent and Fragmentation EBV is one of the EBVs in the Ecosystem Structure EBV group.Ecosystems are understood to exist at multiple scales, from very large areas (macro-ecosystems) like the Arctic tundra, for example, to something as small as a tree in an Amazonian rain forest. As such, ecosystems occupy space and therefore can be mapped across any geography of interest, whether that area of interest be a site, a nation, a region, a continent, or the planet. One of the most obvious and seemingly straightforward EBVs is Ecosystem Extent and Fragmentation. Ecosystem extent refers to the location and geographic distribution of ecosystems across landscapes or in the oceans, while ecosystem fragmentation refers to the spatial pattern and connectivity of ecosystem occurrences on the landscape.

  19. Element concentrations in soils and other surficial materials of Alaska

    USGS Publications Warehouse

    Gough, L.P.; Severson, R.C.; Shacklette, H.T.

    1988-01-01

    Mean concentrations of 35 elements, ash yields, and pH have been estimated for samples of sils and other unconsolidated surficial materials from 266 collection locations throughout Alaska. These background values can be applied to studies of environmental geochemistry and health, wildlife management, and soil-forming processes in cold climates and to computation of element abundances on a regional or worldwide scale. Limited data for an additoinal eight elements are also presented. Materials were collected using a one-way, three-level, analysis-of-variance samplling design in which collecting procedures were simplified for the convenience of the many volunteer field workers. The sample collectors were asked to avoid locations of known mineral deposits and obvious contamination, to take samples at a depth of about 20 cm where possible, and to take a replicate sample about 100 m distant from the first sample collected. With more than 60 percent of the samples replicated and 14 percent of the samples split for duplicate laboratory analyses, reliable estimates were made of the variability in element concentrations at two geographic scales and of the error associated with sample handling and laboratory procedures. Mean concentrations of most elements in surficial materials from the state of alaska correspond well with those reported in similar materials from the conterminous United STatess. Most element concentrations and ranges in samples of stream and lake sediments from Alaska, however, as reported in the literature, do not correspond well with those found in surficial materials of this study. This lack of correspondence is attributed to (1) a merger of two kinds ofsediments (stream and lake) for calculating means; (2) elimination from the sediment mean calculations of values below the limit of quantitative determination; (3) analytical methods different from those of the surficial materials study; and (4) most importantly, the inherent differences in chemistry of the materials. The distribution of variability in element concentrations o Alaskan surficial-material samples was, for most elements, largely among sampling locations, with only a samll part of the variability occurring between replicate samples at a location. The geochemical uniformity within sampling locations in Alaska is an expression of uniform geochemical cycling processes within small geographic areas. The concentration values for 35 elements in 266 samples were plotted on maps by symbols representing classes of concentration frequency distributions. These plotted symbols form patterns that may or may not be possible to interpret but nevertheless show differences that are observable at several geographical scales. The largest pattern is one generally low concentrations of many elements in materials from arctic and oceanic tundra regions, as contrasted to their often high concentrations in samples from interior and southeastern Alaska. The patttern for sodium isespecially pronounced. Intermediate-sized patterns are shown, for example, by the generally high values for magnesium and low values for silicon in the coastal forest region of southeastern Alaska. Many elements occur at low concentratoins in samples from the Alaskan peninsula and the Aleutian Islands. The degree of confidence in patterns of element abundance is expected to be in direct proportion to the number of samples included in the area. As the patterns become smaller, the probability increases that the patterns are not reproducible.

  20. Distribution patterns of mercury in Lakes and Rivers of northeastern North America

    USGS Publications Warehouse

    Dennis, Ian F.; Clair, Thomas A.; Driscoll, Charles T.; Kamman, Neil; Chalmers, Ann T.; Shanley, Jamie; Norton, Stephen A.; Kahl, Steve

    2005-01-01

    We assembled 831 data points for total mercury (Hgt) and 277 overlapping points for methyl mercury (CH3Hg+) in surface waters from Massachussetts, USA to the Island of Newfoundland, Canada from State, Provincial, and Federal government databases. These geographically indexed values were used to determine: (a) if large-scale spatial distribution patterns existed and (b) whether there were significant relationships between the two main forms of aquatic Hg as well as with total organic carbon (TOC), a well know complexer of metals. We analyzed the catchments where samples were collected using a Geographical Information System (GIS) approach, calculating catchment sizes, mean slope, and mean wetness index. Our results show two main spatial distribution patterns. We detected loci of high Hgt values near urbanized regions of Boston MA and Portland ME. However, except for one unexplained exception, the highest Hgt and CH3Hg+ concentrations were located in regions far from obvious point sources. These correlated to topographically flat (and thus wet) areas that we relate to wetland abundances. We show that aquatic Hgt and CH3Hg+ concentrations are generally well correlated with TOC and with each other. Over the region, CH3Hg+ concentrations are typically approximately 15% of Hgt. There is an exception in the Boston region where CH3Hg+ is low compared to the high Hgt values. This is probably due to the proximity of point sources of inorganic Hg and a lack of wetlands. We also attempted to predict Hg concentrations in water with statistical models using catchment features as variables. We were only able to produce statistically significant predictive models in some parts of regions due to the lack of suitable digital information, and because data ranges in some regions were too narrow for meaningful regression analyses.

  1. Genetic characterization of Bombyx mori (Lepidoptera: Bombycidae) breeding and hybrid lines with different geographic origins.

    PubMed

    Furdui, Emilia M; Mărghitaş, Liviu A; Dezmirean, Daniel S; Paşca, Ioan; Pop, Iulia F; Erler, Silvio; Schlüns, Ellen A

    2014-01-01

    The domesticated silkworm Bombyx mori L. comprises a large number of geographical breeds and hybrid lines. Knowing the genetic structure of those may provide information to improve the conservation of commercial lines by estimating inbreeding over generations and the consequences of excessive use of those lineages. Here, we analyzed the genetic diversity of seven breeds and eight hybrid lines from Eastern Europe and Asia using highly polymorphic microsatellites markers to determine its genetical impact on their use in global breeding programs. No consistent pattern of deviation from Hardy-Weinberg equilibrium was found for most breed and hybrids; and the absence of a linkage disequilibrium also suggests that the strains are in equilibrium. A principal coordinate analysis revealed a clear separation of two silkworm breeds from the rest: one (IBV) originated from India and the other one (RG90) from Romania/Japan. The tendency of the other breeds from different geographic origins to cluster together in a general mix might be due to similar selection pressures (climate and anthropogenic factors) in different geographic locations. Phylogenetic analyses grouped the different silkworm breeds but not the hybrids according to their geographic origin and confirmed the pattern found in the principal coordinate analysis. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  2. Genetic Characterization of Bombyx mori (Lepidoptera: Bombycidae) Breeding and Hybrid Lines With Different Geographic Origins

    PubMed Central

    Furdui, Emilia M.; Mărghitaş, Liviu A.; Dezmirean, Daniel S.; Paşca, Ioan; Pop, Iulia F.; Erler, Silvio; Schlüns, Ellen A.

    2014-01-01

    Abstract The domesticated silkworm Bombyx mori L. comprises a large number of geographical breeds and hybrid lines. Knowing the genetic structure of those may provide information to improve the conservation of commercial lines by estimating inbreeding over generations and the consequences of excessive use of those lineages. Here, we analyzed the genetic diversity of seven breeds and eight hybrid lines from Eastern Europe and Asia using highly polymorphic microsatellites markers to determine its genetical impact on their use in global breeding programs. No consistent pattern of deviation from Hardy–Weinberg equilibrium was found for most breed and hybrids; and the absence of a linkage disequilibrium also suggests that the strains are in equilibrium. A principal coordinate analysis revealed a clear separation of two silkworm breeds from the rest: one (IBV) originated from India and the other one (RG 90 ) from Romania/Japan. The tendency of the other breeds from different geographic origins to cluster together in a general mix might be due to similar selection pressures (climate and anthropogenic factors) in different geographic locations. Phylogenetic analyses grouped the different silkworm breeds but not the hybrids according to their geographic origin and confirmed the pattern found in the principal coordinate analysis. PMID:25502023

  3. A climate-change adaptation framework to reduce continental-scale vulnerability across conservation reserves

    Treesearch

    D.R. Magness; J.M. Morton; F. Huettmann; F.S. Chapin; A.D. McGuire

    2011-01-01

    Rapid climate change, in conjunction with other anthropogenic drivers, has the potential to cause mass species extinction. To minimize this risk, conservation reserves need to be coordinated at multiple spatial scales because the climate envelopes of many species may shift rapidly across large geographic areas. In addition, novel species assemblages and ecological...

  4. Effects of individual, community and landscape drivers on the dynamics of a wildland forest epidemic

    Treesearch

    Sarah E. Haas; J. Hall Cushman; Whalen W. Dillon; Nathan E. Rank; David M. Rizzo; Ross K. Meentemeyer

    2016-01-01

    The challenges posed by observing host-pathogen-environment interactions across large geographic extents and over meaningful time scales limit our ability to understand and manage wildland epidemics. We conducted a landscape-scale, longitudinal study designed to analyze the dynamics of sudden oak death (an emerging forest disease caused by Phytophthora...

  5. Identification of genetically and oceanographically distinct blooms of jellyfish

    PubMed Central

    Lee, Patricia L. M.; Dawson, Michael N; Neill, Simon P.; Robins, Peter E.; Houghton, Jonathan D. R.; Doyle, Thomas K.; Hays, Graeme C.

    2013-01-01

    Reports of nuisance jellyfish blooms have increased worldwide during the last half-century, but the possible causes remain unclear. A persistent difficulty lies in identifying whether blooms occur owing to local or regional processes. This issue can be resolved, in part, by establishing the geographical scales of connectivity among locations, which may be addressed using genetic analyses and oceanographic modelling. We used landscape genetics and Lagrangian modelling of oceanographic dispersal to explore patterns of connectivity in the scyphozoan jellyfish Rhizostoma octopus, which occurs en masse at locations in the Irish Sea and northeastern Atlantic. We found significant genetic structure distinguishing three populations, with both consistencies and inconsistencies with prevailing physical oceanographic patterns. Our analyses identify locations where blooms occur in apparently geographically isolated populations, locations where blooms may be the source or result of migrants, and a location where blooms do not occur consistently and jellyfish are mostly immigrant. Our interdisciplinary approach thus provides a means to ascertain the geographical origins of jellyfish in outbreaks, which may have wide utility as increased international efforts investigate jellyfish blooms. PMID:23287405

  6. Eyjafjallajökull and 9/11: The Impact of Large-Scale Disasters on Worldwide Mobility

    PubMed Central

    Woolley-Meza, Olivia; Grady, Daniel; Thiemann, Christian; Bagrow, James P.; Brockmann, Dirk

    2013-01-01

    Large-scale disasters that interfere with globalized socio-technical infrastructure, such as mobility and transportation networks, trigger high socio-economic costs. Although the origin of such events is often geographically confined, their impact reverberates through entire networks in ways that are poorly understood, difficult to assess, and even more difficult to predict. We investigate how the eruption of volcano Eyjafjallajökull, the September 11th terrorist attacks, and geographical disruptions in general interfere with worldwide mobility. To do this we track changes in effective distance in the worldwide air transportation network from the perspective of individual airports. We find that universal features exist across these events: airport susceptibilities to regional disruptions follow similar, strongly heterogeneous distributions that lack a scale. On the other hand, airports are more uniformly susceptible to attacks that target the most important hubs in the network, exhibiting a well-defined scale. The statistical behavior of susceptibility can be characterized by a single scaling exponent. Using scaling arguments that capture the interplay between individual airport characteristics and the structural properties of routes we can recover the exponent for all types of disruption. We find that the same mechanisms responsible for efficient passenger flow may also keep the system in a vulnerable state. Our approach can be applied to understand the impact of large, correlated disruptions in financial systems, ecosystems and other systems with a complex interaction structure between heterogeneous components. PMID:23950904

  7. The use and application of phylogeography for invertebrate conservation research and planning

    Treesearch

    Ryan C. Garrick; Chester J. Sands; Paul Sunnucks

    2006-01-01

    To conserve evolutionary processes within taxa as well as local co-evolutionary associations among taxa, habitat reservation and production forestry management needs to take account of natural genetic-geographic patterns. While vertebrates tend to have at least moderate dispersal and gene flow on a landscape-scale, there are good reasons to expect many small,...

  8. Dual impacts of climate change: forest migration and turnover through life history

    Treesearch

    Kai Zhu; Christopher W. Woodall; Souparno Ghosh; Alan E. Gelfand; James S. Clark

    2014-01-01

    Tree species are predicted to track future climate by shifting their geographic distributions, but climate-mediated migrations are not apparent in a recent continental-scale analysis. To better understand the mechanisms of a possible migration lag, we analyzed relative recruitment patterns by comparing juvenile and adult tree abundances in climate space. One would...

  9. Spatial variation in the climatic predictors of species compositional turnover and endemism.

    PubMed

    Di Virgilio, Giovanni; Laffan, Shawn W; Ebach, Malte C; Chapple, David G

    2014-08-01

    Previous research focusing on broad-scale or geographically invariant species-environment dependencies suggest that temperature-related variables explain more of the variation in reptile distributions than precipitation. However, species-environment relationships may exhibit considerable spatial variation contingent upon the geographic nuances that vary between locations. Broad-scale, geographically invariant analyses may mask this local variation and their findings may not generalize to different locations at local scales. We assess how reptile-climatic relationships change with varying spatial scale, location, and direction. Since the spatial distributions of diversity and endemism hotspots differ for other species groups, we also assess whether reptile species turnover and endemism hotspots are influenced differently by climatic predictors. Using New Zealand reptiles as an example, the variation in species turnover, endemism and turnover in climatic variables was measured using directional moving window analyses, rotated through 360°. Correlations between the species turnover, endemism and climatic turnover results generated by each rotation of the moving window were analysed using multivariate generalized linear models applied at national, regional, and local scales. At national-scale, temperature turnover consistently exhibited the greatest influence on species turnover and endemism, but model predictive capacity was low (typically r (2) = 0.05, P < 0.001). At regional scales the relative influence of temperature and precipitation turnover varied between regions, although model predictive capacity was also generally low. Climatic turnover was considerably more predictive of species turnover and endemism at local scales (e.g., r (2) = 0.65, P < 0.001). While temperature turnover had the greatest effect in one locale (the northern North Island), there was substantial variation in the relative influence of temperature and precipitation predictors in the remaining four locales. Species turnover and endemism hotspots often occurred in different locations. Climatic predictors had a smaller influence on endemism. Our results caution against assuming that variability in temperature will always be most predictive of reptile biodiversity across different spatial scales, locations and directions. The influence of climatic turnover on the species turnover and endemism of other taxa may exhibit similar patterns of spatial variation. Such intricate variation might be discerned more readily if studies at broad scales are complemented by geographically variant, local-scale analyses.

  10. Macroecological patterns of sexual size dimorphism in turtles of the world

    USGS Publications Warehouse

    Agha, Mickey; Ennen, Joshua R.; Nowakowski, A. Justin; Lovich, Jeffrey E.; Sweat, Sarah C.; Todd, Brian D.

    2018-01-01

    Sexual size dimorphism (SSD) is a well-documented phenomenon in both plants and animals; however, the ecological and evolutionary mechanisms that drive and maintain SSD patterns across geographic space at regional and global scales are understudied, especially for reptiles. Our goal was to examine geographic variation of turtle SSD and to explore ecological and environmental correlates using phylogenetic comparative methods. We use published body size data on 135 species from nine turtle families to examine how geographic patterns and the evolution of SSD are influenced by habitat specialization, climate (annual mean temperature and annual precipitation) and climate variability, latitude, or a combination of these predictor variables. We found that geographic variation, magnitude and direction of turtle SSD are best explained by habitat association, annual temperature variance and annual precipitation. Use of semi-aquatic and terrestrial habitats was associated with male-biased SSD, whereas use of aquatic habitat was associated with female-biased SSD. Our results also suggest that greater temperature variability is associated with female-biased SSD. In contrast, wetter climates are associated with male-biased SSD compared with arid climates that are associated with female-biased SSD. We also show support for a global latitudinal trend in SSD, with females being larger than males towards the poles, especially in the families Emydidae and Geoemydidae. Estimates of phylogenetic signal for both SSD and habitat type indicate that closely related species occupy similar habitats and exhibit similar direction and magnitude of SSD. These global patterns of SSD may arise from sex-specific reproductive behaviour, fecundity and sex-specific responses to environmental factors that differ among habitats and vary systematically across latitude. Thus, this study adds to our current understanding that while SSD can vary dramatically across and within turtle species under phylogenetic constraints, it may be driven, maintained and exaggerated by habitat type, climate and geographic location.

  11. Life-History Patterns of Lizards of the World.

    PubMed

    Mesquita, Daniel O; Costa, Gabriel C; Colli, Guarino R; Costa, Taís B; Shepard, Donald B; Vitt, Laurie J; Pianka, Eric R

    2016-06-01

    Identification of mechanisms that promote variation in life-history traits is critical to understand the evolution of divergent reproductive strategies. Here we compiled a large life-history data set (674 lizard populations, representing 297 species from 263 sites globally) to test a number of hypotheses regarding the evolution of life-history traits in lizards. We found significant phylogenetic signal in most life-history traits, although phylogenetic signal was not particularly high. Climatic variables influenced the evolution of many traits, with clutch frequency being positively related to precipitation and clutches of tropical lizards being smaller than those of temperate species. This result supports the hypothesis that in tropical and less seasonal climates, many lizards tend to reproduce repeatedly throughout the season, producing smaller clutches during each reproductive episode. Our analysis also supported the hypothesis that viviparity has evolved in lizards as a response to cooler climates. Finally, we also found that variation in trait values explained by clade membership is unevenly distributed among lizard clades, with basal clades and a few younger clades showing the most variation. Our global analyses are largely consistent with life-history theory and previous results based on smaller and scattered data sets, suggesting that these patterns are remarkably consistent across geographic and taxonomic scales.

  12. Diversity and distribution of Archaea in global estuarine ecosystems.

    PubMed

    Liu, Xiaobo; Pan, Jie; Liu, Yang; Li, Meng; Gu, Ji-Dong

    2018-05-09

    Estuarine ecosystem is a unique geographical transitional zone between freshwater and seawater, harboring a wide range of microbial communities including Archaea. Although a large number of Archaea have been detected in such ecosystem, the global patterns in archaeal diversity and distribution are extremely scarce. To bridge this gap, we carried out a comprehensive survey of archaeal communities using ca. 4000 publicly available archaeal 16S rRNA gene sequences (>300 bp) collected from 24 estuaries in different latitude regions. These sequences were divided into 1450 operational taxonomic units (OTUs) at 97% identity, suggesting a high biodiversity that increased gradually from the high- to low-latitude estuaries. Phylogenetic analysis showed that estuarine ecosystem was a large biodiversity pool of Archaea that was mainly composed of 12 phyla. Among them, the predominant groups were Bathyarchaeota, Euryarchaeota and Thaumarchaeota. Interestingly, archaeal distribution demonstrated a geographical differentiation in that Thaumarchaeota was dominated in the low-latitude estuaries, Bathyarchaeota in the mid-latitude estuaries, and Euryarchaeota in the high-latitude estuaries, respectively. Furthermore, the majority of the most abundant 20 OTUs demonstrated an overrepresented or underrepresented distribution pattern in some specific estuaries or latitude regions while a few were evenly distributed throughout the estuaries. This pattern indicates a potential selectivity of geographical distribution. In addition, the analysis of environmental parameters suggested that latitude would be one of the major factors driving the distribution of archaeal communities in estuarine ecosystem. This study profiles a clear framework on the diversity and distribution of Archaea in the global estuarine ecosystem and explores the general environmental factors that influence these patterns. Our findings constitute an important part of the exploration of the global ecology of Archaea. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Spatial and geographical changes in the mesozooplankton community in the Bering and Chukchi Seas during the summers of 2007 and 2008

    NASA Astrophysics Data System (ADS)

    Matsuno, Kohei; Landeira Sanchez, Jose M.; Yamaguchi, Atsushi; Hirawake, Toru; Kikuchi, Takashi

    2016-09-01

    From July to August 2007 and June to July 2008, the horizontal/geographical changes in the zooplankton community in the Bering and Chukchi Seas were studied. The geographical patterns, which were common for these two years, were observed for salinity, chlorophyll a (Chl. a), zooplankton chaetognaths, hydrozoans and the whole zooplankton community. Among them, the patterns of salinity and Chl. a were related with the horizontal distribution of the water masses. The distributions of the two carnivorous taxa were correlated with their prey (copepods or barnacle larvae). The analysis of the structural equation model (SEM) revealed that the horizontal distribution of the zooplankton abundance and biomass were governed by the different taxa. Thus, the zooplankton abundance was governed by the numerically dominant but smaller-bodied taxa, such as the barnacle larvae and copepod Pseudocalanus spp., while the zooplankton biomass was determined by the large-bodied copepods, such as Calanus glacialis/marshallae and Eucalanus bungii.

  14. Suitability of elemental fingerprinting for assessing the geographic origin of pumpkin (Cucurbita pepo var. styriaca) seed oil.

    PubMed

    Bandoniene, Donata; Zettl, Daniela; Meisel, Thomas; Maneiko, Marija

    2013-02-15

    An analytical method was developed and validated for the classification of the geographical origin of pumpkin seeds and oil from Austria, China and Russia. The distribution of element traces in pumpkin seed and pumpkin seed oils in relation to the geographical origin of soils of several agricultural farms in Austria was studied in detail. Samples from several geographic origins were taken from parts of the pumpkin, pumpkin flesh, seeds, the oil extracted from the seeds and the oil-extraction cake as well as the topsoil on which the plants were grown. Plants from different geographical origin show variations of the elemental patterns that are significantly large, reproducible over the years and ripeness period and show no significant influence of oil production procedure, to allow to a discrimination of geographical origin. A successful differentiation of oils from different regions in Austria, China and Russia classified with multivariate data analysis is demonstrated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Generation of Earth's First-Order Biodiversity Pattern

    NASA Astrophysics Data System (ADS)

    Krug, Andrew Z.; Jablonski, David; Valentine, James W.; Roy, Kaustuv

    2009-02-01

    The first-order biodiversity pattern on Earth today and at least as far back as the Paleozoic is the latitudinal diversity gradient (LDG), a decrease in richness of species and higher taxa from the equator to the poles. LDGs are produced by geographic trends in origination, extinction, and dispersal over evolutionary timescales, so that analyses of static patterns will be insufficient to reveal underlying processes. The fossil record of marine bivalve genera, a model system for the analysis of biodiversity dynamics over large temporal and spatial scales, shows that an origination and range-expansion gradient plays a major role in generating the LDG. Peak origination rates and peak diversities fall within the tropics, with range expansion out of the tropics the predominant spatial dynamic thereafter. The origination-diversity link occurs even in a "contrarian" group whose diversity peaks at midlatitudes, an exception proving the rule that spatial variations in origination are key to latitudinal diversity patterns. Extinction rates are lower in polar latitudes (≥60°) than in temperate zones and thus cannot create the observed gradient alone. They may, however, help to explain why origination and immigration are evidently damped in higher latitudes. We suggest that species require more resources in higher latitudes, for the seasonality of primary productivity increases by more than an order of magnitude from equatorial to polar regions. Higher-latitude species are generalists that, unlike potential immigrants, are adapted to garner the large share of resources required for incumbency in those regions. When resources are opened up by extinctions, lineages spread chiefly poleward and chiefly through speciation.

  16. Generation of Earth's first-order biodiversity pattern.

    PubMed

    Krug, Andrew Z; Jablonski, David; Valentine, James W; Roy, Kaustuv

    2009-01-01

    The first-order biodiversity pattern on Earth today and at least as far back as the Paleozoic is the latitudinal diversity gradient (LDG), a decrease in richness of species and higher taxa from the equator to the poles. LDGs are produced by geographic trends in origination, extinction, and dispersal over evolutionary timescales, so that analyses of static patterns will be insufficient to reveal underlying processes. The fossil record of marine bivalve genera, a model system for the analysis of biodiversity dynamics over large temporal and spatial scales, shows that an origination and range-expansion gradient plays a major role in generating the LDG. Peak origination rates and peak diversities fall within the tropics, with range expansion out of the tropics the predominant spatial dynamic thereafter. The origination-diversity link occurs even in a "contrarian" group whose diversity peaks at midlatitudes, an exception proving the rule that spatial variations in origination are key to latitudinal diversity patterns. Extinction rates are lower in polar latitudes (> or =60 degrees ) than in temperate zones and thus cannot create the observed gradient alone. They may, however, help to explain why origination and immigration are evidently damped in higher latitudes. We suggest that species require more resources in higher latitudes, for the seasonality of primary productivity increases by more than an order of magnitude from equatorial to polar regions. Higher-latitude species are generalists that, unlike potential immigrants, are adapted to garner the large share of resources required for incumbency in those regions. When resources are opened up by extinctions, lineages spread chiefly poleward and chiefly through speciation.

  17. Larval retention and connectivity among populations of corals and reef fishes: history, advances and challenges

    NASA Astrophysics Data System (ADS)

    Jones, G. P.; Almany, G. R.; Russ, G. R.; Sale, P. F.; Steneck, R. S.; van Oppen, M. J. H.; Willis, B. L.

    2009-06-01

    The extent of larval dispersal on coral reefs has important implications for the persistence of coral reef metapopulations, their resilience and recovery from an increasing array of threats, and the success of protective measures. This article highlights a recent dramatic increase in research effort and a growing diversity of approaches to the study of larval retention within (self-recruitment) and dispersal among (connectivity) isolated coral reef populations. Historically, researchers were motivated by alternative hypotheses concerning the processes limiting populations and structuring coral reef assemblages, whereas the recent impetus has come largely from the need to incorporate dispersal information into the design of no-take marine protected area (MPA) networks. Although the majority of studies continue to rely on population genetic approaches to make inferences about dispersal, a wide range of techniques are now being employed, from small-scale larval tagging and paternity analyses, to large-scale biophysical circulation models. Multiple approaches are increasingly being applied to cross-validate and provide more realistic estimates of larval dispersal. The vast majority of empirical studies have focused on corals and fishes, where evidence for both extremely local scale patterns of self-recruitment and ecologically significant connectivity among reefs at scales of tens of kilometers (and in some cases hundreds of kilometers) is accumulating. Levels of larval retention and the spatial extent of connectivity in both corals and fishes appear to be largely independent of larval duration or reef size, but may be strongly influenced by geographic setting. It is argued that high levels of both self-recruitment and larval import can contribute to the resilience of reef populations and MPA networks, but these benefits will erode in degrading reef environments.

  18. Open Land-Use Map: A Regional Land-Use Mapping Strategy for Incorporating OpenStreetMap with Earth Observations

    NASA Astrophysics Data System (ADS)

    Yang, D.; Fu, C. S.; Binford, M. W.

    2017-12-01

    The southeastern United States has high landscape heterogeneity, withheavily managed forestlands, highly developed agriculture lands, and multiple metropolitan areas. Human activities are transforming and altering land patterns and structures in both negative and positive manners. A land-use map for at the greater scale is a heavy computation task but is critical to most landowners, researchers, and decision makers, enabling them to make informed decisions for varying objectives. There are two major difficulties in generating the classification maps at the regional scale: the necessity of large training point sets and the expensive computation cost-in terms of both money and time-in classifier modeling. Volunteered Geographic Information (VGI) opens a new era in mapping and visualizing our world, where the platform is open for collecting valuable georeferenced information by volunteer citizens, and the data is freely available to the public. As one of the most well-known VGI initiatives, OpenStreetMap (OSM) contributes not only road network distribution, but also the potential for using this data to justify land cover and land use classifications. Google Earth Engine (GEE) is a platform designed for cloud-based mapping with a robust and fast computing power. Most large scale and national mapping approaches confuse "land cover" and "land-use", or build up the land-use database based on modeled land cover datasets. Unlike most other large-scale approaches, we distinguish and differentiate land-use from land cover. By focusing our prime objective of mapping land-use and management practices, a robust regional land-use mapping approach is developed by incorporating the OpenstreepMap dataset into Earth observation remote sensing imageries instead of the often-used land cover base maps.

  19. Phylogenetic fields through time: temporal dynamics of geographical co-occurrence and phylogenetic structure within species ranges

    PubMed Central

    Carotenuto, Francesco; Diniz-Filho, José Alexandre F.

    2016-01-01

    Species co-occur with different sets of other species across their geographical distribution, which can be either closely or distantly related. Such co-occurrence patterns and their phylogenetic structure within individual species ranges represent what we call the species phylogenetic fields (PFs). These PFs allow investigation of the role of historical processes—speciation, extinction and dispersal—in shaping species co-occurrence patterns, in both extinct and extant species. Here, we investigate PFs of large mammalian species during the last 3 Myr, and how these correlate with trends in diversification rates. Using the fossil record, we evaluate species' distributional and co-occurrence patterns along with their phylogenetic structure. We apply a novel Bayesian framework on fossil occurrences to estimate diversification rates through time. Our findings highlight the effect of evolutionary processes and past climatic changes on species' distributions and co-occurrences. From the Late Pliocene to the Recent, mammal species seem to have responded in an individualistic manner to climate changes and diversification dynamics, co-occurring with different sets of species from different lineages across their geographical ranges. These findings stress the difficulty of forecasting potential effects of future climate changes on biodiversity. PMID:26977061

  20. Phylogenetic fields through time: temporal dynamics of geographical co-occurrence and phylogenetic structure within species ranges.

    PubMed

    Villalobos, Fabricio; Carotenuto, Francesco; Raia, Pasquale; Diniz-Filho, José Alexandre F

    2016-04-05

    Species co-occur with different sets of other species across their geographical distribution, which can be either closely or distantly related. Such co-occurrence patterns and their phylogenetic structure within individual species ranges represent what we call the species phylogenetic fields (PFs). These PFs allow investigation of the role of historical processes--speciation, extinction and dispersal--in shaping species co-occurrence patterns, in both extinct and extant species. Here, we investigate PFs of large mammalian species during the last 3 Myr, and how these correlate with trends in diversification rates. Using the fossil record, we evaluate species' distributional and co-occurrence patterns along with their phylogenetic structure. We apply a novel Bayesian framework on fossil occurrences to estimate diversification rates through time. Our findings highlight the effect of evolutionary processes and past climatic changes on species' distributions and co-occurrences. From the Late Pliocene to the Recent, mammal species seem to have responded in an individualistic manner to climate changes and diversification dynamics, co-occurring with different sets of species from different lineages across their geographical ranges. These findings stress the difficulty of forecasting potential effects of future climate changes on biodiversity. © 2016 The Author(s).

  1. Phylodynamics of the HIV-1 CRF02_AG clade in Cameroon

    PubMed Central

    Faria, Nuno Rodrigues; Suchard, Marc A; Abecasis, Ana; Sousa, J. D.; Ndembi, Nicaise; Camacho, R.J.; Vandamme, Anne-Mieke; Peeters, Martine; Lemey, Philippe

    2015-01-01

    Evolutionary analyses have revealed an origin of pandemic HIV-1 group M in the Congo River basin in the first part of the XXth century, but the patterns of historical viral spread in or around its epicentre remain largely unexplored. Here, we combine epidemiologic and molecular sequence data to investigate the spatiotemporal patterns of the CRF02_AG clade. By explicitly integrating prevalence counts and genetic population size estimates we date the epidemic emergence of CRF02_AG at 1973.1 (1972.1, 1975.3 95% CI). To infer their phylogeographic signature at a regional scale, we analyze pol and env time-stamped sequence data from 8 countries using a Bayesian phylogeographic approach based on a discrete asymmetric model. Our data confirms a spatial origin of this clade in the Democratic Republic of Congo (DRC) and suggests that viral dissemination to Cameroon occurred at an early stage of the evolutionary history of CRF02_AG. We find considerable support for epidemiological linkage between neighbour countries. Compilation of ethnographic data suggests that well-supported viral migration was related with chance exportation events rather than by sustained human migratory flows. Finally, using sequence data from 15 locations in Cameroon, we use relaxed random walk models to explore the spatiotemporal dynamics of CRF02_AG at a finer geographical detail. Phylogeographic dispersal in continuous space reveals that at least two distinct CRF02_AG lineages are circulating in overlapping regions that are evolving at different evolutionary and diffusion rates. Altogether, by combining molecular and epidemiological data, our results provide a time scale for CRF02_AG, place its spatial root within the putative root of group-M diversity and propose a scenario for the spatiotemporal patterns of a successful HIV-1 lineage both at a regional and country-scale. PMID:21565285

  2. Simulating topographic controls on the abundance of larch forest in eastern Siberia, and its consequences under changing climate

    NASA Astrophysics Data System (ADS)

    Sato, H.; Kobayashi, H.

    2017-12-01

    In eastern Siberia, larches (Larix spp.) often exist in pure stands, constructing the world's largest coniferous forest, of which changes can significantly affect the earth's albedo and the global carbon balance. Our previous studies tried to reconstruct this vegetation, aiming to forecast its structures and functions under changing climate (1, 2). In previous studies of simulating vegetation at large geographical scales, the examining area is divided into coarse grid cells such as 0.5 × 0.5 degree resolution, and topographical heterogeneities within each grid cell are just ignored. However, in Siberian larch area, which is located on the environmental edge of existence of forest ecosystem, abundance of larch trees largely depends on topographic condition at the scale of tens to hundreds meters. In our preliminary analysis, we found a quantitative pattern that topographic properties controls the abundance of larch forest via both drought and flooding stresses in eastern Siberia. We, therefore, refined the hydrological sub-model of our dynamic vegetation model SEIB-DGVM, and validated whether the modified model can reconstruct the pattern, examined its impact on the estimation of biomass and vegetation productivity under the current and forecasted future climatic conditions. -- References --1. Sato, H., et al. (2010). "Simulation study of the vegetation structure and function in eastern Siberian larch forests using the individual-based vegetation model SEIB-DGVM." Forest Ecology and Management 259(3): 301-311. 2. Sato, H., et al. (2016). "Endurance of larch forest ecosystems in eastern Siberia under warming trends." Ecology and Evolution

  3. Long Term Population, City Size and Climate Trends in the Fertile Crescent: A First Approximation.

    PubMed

    Lawrence, Dan; Philip, Graham; Hunt, Hannah; Snape-Kennedy, Lisa; Wilkinson, T J

    2016-01-01

    Over the last 8000 years the Fertile Crescent of the Near East has seen the emergence of urban agglomerations, small scale polities and large territorial empires, all of which had profound effects on settlement patterns. Computational approaches, including the use of remote sensing data, allow us to analyse these changes at unprecedented geographical and temporal scales. Here we employ these techniques to examine and compare long term trends in urbanisation, population and climate records. Maximum city size is used as a proxy for the intensity of urbanisation, whilst population trends are modelled from settlement densities in nine archaeological surveys conducted over the last 30 years across the region. These two measures are then compared with atmospheric moisture levels derived from multiple proxy analyses from two locations close to the study area, Soreq Cave in Israel and Lake Van in south-eastern Turkey, as well as wider literature. The earliest urban sites emerged during a period of relatively high atmospheric moisture levels and conform to a series of size thresholds. However, after the Early Bronze Age maximum urban size and population levels increase rapidly whilst atmospheric moisture declines. We argue that although the initial phase of urbanization may have been linked to climate conditions, we can see a definitive decoupling of climate and settlement patterns after 2000 BC. We relate this phenomenon to changes in socio-economic organisation and integration in large territorial empires. The complex relationships sustaining urban growth during this later period resulted in an increase in system fragility and ultimately impacted on the sustainability of cities in the long term.

  4. Long Term Population, City Size and Climate Trends in the Fertile Crescent: A First Approximation

    PubMed Central

    Lawrence, Dan; Philip, Graham; Hunt, Hannah; Snape-Kennedy, Lisa; Wilkinson, T. J.

    2016-01-01

    Over the last 8000 years the Fertile Crescent of the Near East has seen the emergence of urban agglomerations, small scale polities and large territorial empires, all of which had profound effects on settlement patterns. Computational approaches, including the use of remote sensing data, allow us to analyse these changes at unprecedented geographical and temporal scales. Here we employ these techniques to examine and compare long term trends in urbanisation, population and climate records. Maximum city size is used as a proxy for the intensity of urbanisation, whilst population trends are modelled from settlement densities in nine archaeological surveys conducted over the last 30 years across the region. These two measures are then compared with atmospheric moisture levels derived from multiple proxy analyses from two locations close to the study area, Soreq Cave in Israel and Lake Van in south-eastern Turkey, as well as wider literature. The earliest urban sites emerged during a period of relatively high atmospheric moisture levels and conform to a series of size thresholds. However, after the Early Bronze Age maximum urban size and population levels increase rapidly whilst atmospheric moisture declines. We argue that although the initial phase of urbanization may have been linked to climate conditions, we can see a definitive decoupling of climate and settlement patterns after 2000 BC. We relate this phenomenon to changes in socio-economic organisation and integration in large territorial empires. The complex relationships sustaining urban growth during this later period resulted in an increase in system fragility and ultimately impacted on the sustainability of cities in the long term. PMID:27018998

  5. Patterns of Irregular Burials in Western Europe (1st-5th Century A.D.)

    PubMed Central

    Milella, Marco; Mariotti, Valentina; Belcastro, Maria Giovanna; Knüsel, Christopher J.

    2015-01-01

    Background Irregular burials (IB—burials showing features that contrast with the majority of others in their geographic and chronological context) have been the focus of archaeological study because of their relative rarity and enigmatic appearance. Interpretations of IB often refer to supposed fear of the dead or to social processes taking place in time-specific contexts. However, a comprehensive and quantitative analysis of IB for various geographical contexts is still lacking, a fact that hampers any discussion of these burials on a larger scale. Methods Here, we collected a bibliographic dataset of 375 IB from both Britain and Continental Europe, altogether spanning a time period from the 1st to the 5th century AD. Each burial has been coded according to ten dichotomous variables, further analyzed by means of chi-squared tests on absolute frequencies, non-metric multidimensional scaling, and cluster analysis. Results Even acknowledging the limits of this study, and in particular the bias represented by the available literature, our results point to interesting patterns. Geographically, IB show a contrast between Britain and Continental Europe, possibly related to historical processes specific to these regions. Different types of IB (especially prone depositions and depositions with the cephalic extremity displaced) present a series of characteristics and associations between features that permit a more detailed conceptualization of these occurrences from a socio-cultural perspective that aids to elucidate their funerary meaning. Conclusions and Significance Altogether, the present work stresses the variability of IB, and the need to contextualize them in a proper archaeological and historical context. It contributes to the discussion of IB by providing a specific geographic and chronological frame of reference that supports a series of hypotheses about the cultural processes possibly underlying their occurrence. PMID:26115408

  6. Patterns of Irregular Burials in Western Europe (1st-5th Century A.D.).

    PubMed

    Milella, Marco; Mariotti, Valentina; Belcastro, Maria Giovanna; Knüsel, Christopher J

    2015-01-01

    Irregular burials (IB--burials showing features that contrast with the majority of others in their geographic and chronological context) have been the focus of archaeological study because of their relative rarity and enigmatic appearance. Interpretations of IB often refer to supposed fear of the dead or to social processes taking place in time-specific contexts. However, a comprehensive and quantitative analysis of IB for various geographical contexts is still lacking, a fact that hampers any discussion of these burials on a larger scale. Here, we collected a bibliographic dataset of 375 IB from both Britain and Continental Europe, altogether spanning a time period from the 1st to the 5th century AD. Each burial has been coded according to ten dichotomous variables, further analyzed by means of chi-squared tests on absolute frequencies, non-metric multidimensional scaling, and cluster analysis. Even acknowledging the limits of this study, and in particular the bias represented by the available literature, our results point to interesting patterns. Geographically, IB show a contrast between Britain and Continental Europe, possibly related to historical processes specific to these regions. Different types of IB (especially prone depositions and depositions with the cephalic extremity displaced) present a series of characteristics and associations between features that permit a more detailed conceptualization of these occurrences from a socio-cultural perspective that aids to elucidate their funerary meaning. Altogether, the present work stresses the variability of IB, and the need to contextualize them in a proper archaeological and historical context. It contributes to the discussion of IB by providing a specific geographic and chronological frame of reference that supports a series of hypotheses about the cultural processes possibly underlying their occurrence.

  7. Large-Scale Meteorological Patterns Associated with Extreme Precipitation in the US Northeast

    NASA Astrophysics Data System (ADS)

    Agel, L. A.; Barlow, M. A.

    2016-12-01

    Patterns of daily large-scale circulation associated with Northeast US extreme precipitation are identified using both k-means clustering (KMC) and Self-Organizing Maps (SOM) applied to tropopause height. Tropopause height provides a compact representation of large-scale circulation patterns, as it is linked to mid-level circulation, low-level thermal contrasts and low-level diabatic heating. Extreme precipitation is defined as the top 1% of daily wet-day observations at 35 Northeast stations, 1979-2008. KMC is applied on extreme precipitation days only, while the SOM algorithm is applied to all days in order to place the extreme results into a larger context. Six tropopause patterns are identified on extreme days: a summertime tropopause ridge, a summertime shallow trough/ridge, a summertime shallow eastern US trough, a deeper wintertime eastern US trough, and two versions of a deep cold-weather trough located across the east-central US. Thirty SOM patterns for all days are identified. Results for all days show that 6 SOM patterns account for almost half of the extreme days, although extreme precipitation occurs in all SOM patterns. The same SOM patterns associated with extreme precipitation also routinely produce non-extreme precipitation; however, on extreme precipitation days the troughs, on average, are deeper and the downstream ridges more pronounced. Analysis of other fields associated with the large-scale patterns show various degrees of anomalously strong upward motion during, and moisture transport preceding, extreme precipitation events.

  8. Seasonality and phenology alter functional leaf traits.

    PubMed

    McKown, Athena D; Guy, Robert D; Azam, M Shofiul; Drewes, Eric C; Quamme, Linda K

    2013-07-01

    In plant ecophysiology, functional leaf traits are generally not assessed in relation to phenological phase of the canopy. Leaf traits measured in deciduous perennial species are known to vary between spring and summer seasons, but there is a knowledge gap relating to the late-summer phase marked by growth cessation and bud set occurring well before fall leaf senescence. The effects of phenology on canopy physiology were tested using a common garden of over 2,000 black cottonwood (Populus trichocarpa) individuals originating from a wide geographical range (44-60ºN). Annual phenological events and 12 leaf-based functional trait measurements were collected spanning the entire summer season prior to, and following, bud set. Patterns of seasonal trait change emerged by synchronizing trees using their date of bud set. In particular, photosynthetic, mass, and N-based traits increased substantially following bud set. Most traits were significantly different between pre-bud set and post-bud set phase trees, with many traits showing at least 25% alteration in mean value. Post-bud set, both the significance and direction of trait-trait relationships could be modified, with many relating directly to changes in leaf mass. In Populus, these dynamics in leaf traits throughout the summer season reflected a shift in whole plant physiology, but occurred long before the onset of leaf senescence. The marked shifts in measured trait values following bud set underscores the necessity to include phenology in trait-based ecological studies or large-scale phenotyping efforts, both at the local level and larger geographical scale.

  9. Spatial abundance models and seasonal distribution for guanaco (Lama guanicoe) in central Tierra del Fuego, Argentina.

    PubMed

    Flores, Celina E; Deferrari, Guillermo; Collado, Leonardo; Escobar, Julio; Schiavini, Adrián

    2018-01-01

    Spatially explicit modelling allows to estimate population abundance and predict species' distribution in relation to environmental factors. Abiotic factors are the main determinants of a herbivore´s response to environmental heterogeneity on large spatiotemporal scales. We assessed the influence of elevation, geographic location and distance to the coast on the seasonal abundance and distribution of guanaco (Lama guanicoe) in central Tierra del Fuego, by means of spatially explicit modelling. The estimated abundance was 23,690 individuals for the non-breeding season and 33,928 individuals for the breeding season. The factors influencing distribution and abundance revealed to be the elevation for the non-breeding season, and the distance to the coast and geographic location for the breeding season. The southwest of the study area presented seasonal abundance variation and the southeast and northeast presented high abundance during both seasons. The elevation would be the driving factor of guanaco distribution, as individuals move to lower areas during the non-breeding season and ascend to high areas during the breeding season. Our results confirm that part of the guanaco population performs seasonal migratory movements and that the main valleys present important wintering habitats for guanacos as well as up-hill zones during summer. This type of study would help to avoid problems of scale mismatch and achieve better results in management actions and is an example of how to assess important seasonal habitats from evaluations of abundance and distribution patterns.

  10. Spatial abundance models and seasonal distribution for guanaco (Lama guanicoe) in central Tierra del Fuego, Argentina

    PubMed Central

    Deferrari, Guillermo; Collado, Leonardo; Escobar, Julio; Schiavini, Adrián

    2018-01-01

    Spatially explicit modelling allows to estimate population abundance and predict species’ distribution in relation to environmental factors. Abiotic factors are the main determinants of a herbivore´s response to environmental heterogeneity on large spatiotemporal scales. We assessed the influence of elevation, geographic location and distance to the coast on the seasonal abundance and distribution of guanaco (Lama guanicoe) in central Tierra del Fuego, by means of spatially explicit modelling. The estimated abundance was 23,690 individuals for the non-breeding season and 33,928 individuals for the breeding season. The factors influencing distribution and abundance revealed to be the elevation for the non-breeding season, and the distance to the coast and geographic location for the breeding season. The southwest of the study area presented seasonal abundance variation and the southeast and northeast presented high abundance during both seasons. The elevation would be the driving factor of guanaco distribution, as individuals move to lower areas during the non-breeding season and ascend to high areas during the breeding season. Our results confirm that part of the guanaco population performs seasonal migratory movements and that the main valleys present important wintering habitats for guanacos as well as up-hill zones during summer. This type of study would help to avoid problems of scale mismatch and achieve better results in management actions and is an example of how to assess important seasonal habitats from evaluations of abundance and distribution patterns. PMID:29782523

  11. Dynamic oceanography determines fine scale foraging behavior of Masked Boobies in the Gulf of Mexico

    PubMed Central

    Harrison, Autumn-Lynn; Vallarino, Adriana; Gerard, Patrick D.; Jodice, Patrick G. R.

    2017-01-01

    During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra), in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m—35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level), the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance understanding of seabird sensing of the environment and serve as a baseline for anthropogenic based threats such as development, pollution, and commercial fisheries. PMID:28575078

  12. Dynamic oceanography determines fine scale foraging behavior of Masked Boobies in the Gulf of Mexico.

    PubMed

    Poli, Caroline L; Harrison, Autumn-Lynn; Vallarino, Adriana; Gerard, Patrick D; Jodice, Patrick G R

    2017-01-01

    During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra), in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m-35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level), the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance understanding of seabird sensing of the environment and serve as a baseline for anthropogenic based threats such as development, pollution, and commercial fisheries.

  13. Dynamic oceanography determines fine scale foraging behavior of Masked Boobies in the Gulf of Mexico

    USGS Publications Warehouse

    Poli, Caroline L.; Harrison, Autumn-Lynn; Vallarino, Adriana; Gerard, Patrick D.; Jodice, Patrick G.R.

    2017-01-01

    During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra), in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m—35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level), the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance understanding of seabird sensing of the environment and serve as a baseline for anthropogenic based threats such as development, pollution, and commercial fisheries.

  14. Microbial eukaryote plankton communities of high-mountain lakes from three continents exhibit strong biogeographic patterns.

    PubMed

    Filker, Sabine; Sommaruga, Ruben; Vila, Irma; Stoeck, Thorsten

    2016-05-01

    Microbial eukaryotes hold a key role in aquatic ecosystem functioning. Yet, their diversity in freshwater lakes, particularly in high-mountain lakes, is relatively unknown compared with the marine environment. Low nutrient availability, low water temperature and high ultraviolet radiation make most high-mountain lakes extremely challenging habitats for life and require specific molecular and physiological adaptations. We therefore expected that these ecosystems support a plankton diversity that differs notably from other freshwater lakes. In addition, we hypothesized that the communities under study exhibit geographic structuring. Our rationale was that geographic dispersal of small-sized eukaryotes in high-mountain lakes over continental distances seems difficult. We analysed hypervariable V4 fragments of the SSU rRNA gene to compare the genetic microbial eukaryote diversity in high-mountain lakes located in the European Alps, the Chilean Altiplano and the Ethiopian Bale Mountains. Microbial eukaryotes were not globally distributed corroborating patterns found for bacteria, multicellular animals and plants. Instead, the plankton community composition emerged as a highly specific fingerprint of a geographic region even on higher taxonomic levels. The intraregional heterogeneity of the investigated lakes was mirrored in shifts in microbial eukaryote community structure, which, however, was much less pronounced compared with interregional beta-diversity. Statistical analyses revealed that on a regional scale, environmental factors are strong predictors for plankton community structures in high-mountain lakes. While on long-distance scales (>10 000 km), isolation by distance is the most plausible scenario, on intermediate scales (up to 6000 km), both contemporary environmental factors and historical contingencies interact to shift plankton community structures. © 2016 John Wiley & Sons Ltd.

  15. Kinematic dynamo action in square and hexagonal patterns.

    PubMed

    Favier, B; Proctor, M R E

    2013-11-01

    We consider kinematic dynamo action in rapidly rotating Boussinesq convection just above onset. The velocity is constrained to have either a square or a hexagonal pattern. For the square pattern, large-scale dynamo action is observed at onset, with most of the magnetic energy being contained in the horizontally averaged component. As the magnetic Reynolds number increases, small-scale dynamo action becomes possible, reducing the overall growth rate of the dynamo. For the hexagonal pattern, the breaking of symmetry between up and down flows results in an effective pumping velocity. For intermediate rotation rates, this additional effect can prevent the growth of any mean-field dynamo, so that only a small-scale dynamo is eventually possible at large enough magnetic Reynolds number. For very large rotation rates, this pumping term becomes negligible, and the dynamo properties of square and hexagonal patterns are qualitatively similar. These results hold for both perfectly conducting and infinite magnetic permeability boundary conditions.

  16. Regional Similarities and Consistent Patterns of Local Variation in Beach Sand Bacterial Communities throughout the Northern Hemisphere

    PubMed Central

    Staley, Christopher

    2016-01-01

    ABSTRACT Recent characterization of the bacterial community structure in beach sands has revealed patterns of biogeography similar to those observed in aquatic environments. Studies to date, however, have mainly focused on subtidal sediments from marine beaches. Here, we investigate the bacterial diversity, using Illumina-based sequencing of the V5-V6 region of the 16S rRNA gene, at 11 beaches representing those next to the Great Lakes, Florida, and the Pacific Ocean. The alpha diversity differed significantly among regions (P < 0.0001), while the within-region diversity was more similar. The beta diversity also differed by region (P < 0.001), where freshwater sands had significantly higher abundances of taxa within the Actinobacteria, Betaproteobacteria, and Verrucomicrobia than marine environments. In contrast, marine sands harbored greater abundances of Gammaproteobacteria and Planctomycetes, and those from Florida had more Deltaproteobacteria and Firmicutes. Marine beaches had significantly different phylogenetic community structures (P ≤ 0.018), but freshwater and Florida beaches showed fewer within-region phylogenetic differences. Furthermore, regionally distinct patterns in taxonomic variation were observed in backshore sands, which had communities distinct from those in nearshore sands (P < 0.001). Sample depth minimally influenced the community composition. The results of this study reveal distinct bacterial community structures in sand on a broad geographic scale but moderate regional similarity and suggest that local variation is primarily related to the distance from the shoreline. This study offers a novel comparison of the bacterial communities in freshwater and marine beach sands and provides an important basis for future comparisons and analyses to elucidate factors affecting microbial ecology in this underexplored environment. IMPORTANCE This study presents a large-scale geographic characterization of the bacterial communities present in beach sands. While previous studies have evaluated how environmental factors influence bacterial community composition, few have evaluated bacterial communities in freshwater sands. Furthermore, the use of a consistent methodology to characterize bacterial communities here allowed a novel comparison of communities across geographic regions. We reveal that while the community composition in sands at individual beaches is distinct, beach sands within the same region harbor similar assemblages of bacteria and these assemblages differ greatly between regions. In addition, moisture, associated with distance from the shoreline, strongly influences the bacteria present in sands and more strongly influences the bacteria present than sample depth does. Thus, the data presented here offer an important basis for a broader characterization of the ecology of bacteria in sands, which may also be relevant to public health and resource management initiatives. PMID:26921429

  17. a Model Study of Small-Scale World Map Generalization

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Yin, Y.; Li, C. M.; Wu, W.; Guo, P. P.; Ma, X. L.; Hu, F. M.

    2018-04-01

    With the globalization and rapid development every filed is taking an increasing interest in physical geography and human economics. There is a surging demand for small scale world map in large formats all over the world. Further study of automated mapping technology, especially the realization of small scale production on a large scale global map, is the key of the cartographic field need to solve. In light of this, this paper adopts the improved model (with the map and data separated) in the field of the mapmaking generalization, which can separate geographic data from mapping data from maps, mainly including cross-platform symbols and automatic map-making knowledge engine. With respect to the cross-platform symbol library, the symbol and the physical symbol in the geographic information are configured at all scale levels. With respect to automatic map-making knowledge engine consists 97 types, 1086 subtypes, 21845 basic algorithm and over 2500 relevant functional modules.In order to evaluate the accuracy and visual effect of our model towards topographic maps and thematic maps, we take the world map generalization in small scale as an example. After mapping generalization process, combining and simplifying the scattered islands make the map more explicit at 1 : 2.1 billion scale, and the map features more complete and accurate. Not only it enhance the map generalization of various scales significantly, but achieve the integration among map-makings of various scales, suggesting that this model provide a reference in cartographic generalization for various scales.

  18. Megabase-Scale Inversion Polymorphism in the Wild Ancestor of Maize

    PubMed Central

    Fang, Zhou; Pyhäjärvi, Tanja; Weber, Allison L.; Dawe, R. Kelly; Glaubitz, Jeffrey C.; González, José de Jesus Sánchez; Ross-Ibarra, Claudia; Doebley, John; Morrell, Peter L.; Ross-Ibarra, Jeffrey

    2012-01-01

    Chromosomal inversions are thought to play a special role in local adaptation, through dramatic suppression of recombination, which favors the maintenance of locally adapted alleles. However, relatively few inversions have been characterized in population genomic data. On the basis of single-nucleotide polymorphism (SNP) genotyping across a large panel of Zea mays, we have identified an ∼50-Mb region on the short arm of chromosome 1 where patterns of polymorphism are highly consistent with a polymorphic paracentric inversion that captures >700 genes. Comparison to other taxa in Zea and Tripsacum suggests that the derived, inverted state is present only in the wild Z. mays subspecies parviglumis and mexicana and is completely absent in domesticated maize. Patterns of polymorphism suggest that the inversion is ancient and geographically widespread in parviglumis. Cytological screens find little evidence for inversion loops, suggesting that inversion heterozygotes may suffer few crossover-induced fitness consequences. The inversion polymorphism shows evidence of adaptive evolution, including a strong altitudinal cline, a statistical association with environmental variables and phenotypic traits, and a skewed haplotype frequency spectrum for inverted alleles. PMID:22542971

  19. Variation and genetic structure of Melipona quadrifasciata Lepeletier (Hymenoptera, Apidae) populations based on ISSR pattern

    PubMed Central

    2010-01-01

    For a study of diversity and genetic structuring in Melipona quadrifasciata, 61 colonies were collected in eight locations in the state of Minas Gerais, Brazil. By means of PCR analysis, 119 ISSR bands were obtained, 80 (68%) being polymorphic. He and H B were 0.20 and 0.16, respectively. Two large groups were obtained by the UPGMA method, one formed by individuals from Januária, Urucuia, Rio Vermelho and Caeté and the other by individuals from São João Del Rei, Barbacena, Ressaquinha and Cristiano Otoni. The Φst and θB values were 0.65 and 0.58, respectively, thereby indicating high population structuring. UPGMA grouping did not reveal genetic structuring of M. quadrifasciata in function of the tergite stripe pattern. The significant correlation between dissimilarity values and geographic distances (r = 0.3998; p < 0.05) implies possible geographic isolation. The genetic differentiation in population grouping was probably the result of an interruption in gene flow, brought about by geographic barriers between mutually close geographical locations. Our results also demonstrate the potential of ISSR markers in the study of Melipona quadrifasciata population structuring, possibly applicable to the studies of other bee species. PMID:21637500

  20. Variation and genetic structure of Melipona quadrifasciata Lepeletier (Hymenoptera, Apidae) populations based on ISSR pattern.

    PubMed

    Nascimento, Marcília A; Batalha-Filho, Henrique; Waldschmidt, Ana M; Tavares, Mara G; Campos, Lucio A O; Salomão, Tânia M F

    2010-04-01

    For a study of diversity and genetic structuring in Melipona quadrifasciata, 61 colonies were collected in eight locations in the state of Minas Gerais, Brazil. By means of PCR analysis, 119 ISSR bands were obtained, 80 (68%) being polymorphic. H(e) and H (B) were 0.20 and 0.16, respectively. Two large groups were obtained by the UPGMA method, one formed by individuals from Januária, Urucuia, Rio Vermelho and Caeté and the other by individuals from São João Del Rei, Barbacena, Ressaquinha and Cristiano Otoni. The Φst and θ(B) values were 0.65 and 0.58, respectively, thereby indicating high population structuring. UPGMA grouping did not reveal genetic structuring of M. quadrifasciata in function of the tergite stripe pattern. The significant correlation between dissimilarity values and geographic distances (r = 0.3998; p < 0.05) implies possible geographic isolation. The genetic differentiation in population grouping was probably the result of an interruption in gene flow, brought about by geographic barriers between mutually close geographical locations. Our results also demonstrate the potential of ISSR markers in the study of Melipona quadrifasciata population structuring, possibly applicable to the studies of other bee species.

  1. Measuring Geographic Migration Patterns Using Matrículas Consulares.

    PubMed

    Caballero, Maria Esther; Cadena, Brian C; Kovak, Brian K

    2018-05-14

    In this article, we show how to use administrative data from the Matrícula Consular de Alta Seguridad (MCAS) identification card program to measure the joint distribution of sending and receiving locations for migrants from Mexico to the United States. Whereas other data sources cover only a small fraction of source or destination locations or include only very coarse geographic information, the MCAS data provide complete geographic coverage of both countries, detailed information on migrants' sources and destinations, and a very large sample size. We first confirm the quality and representativeness of the MCAS data by comparing them with well-known household surveys in Mexico and the United States, finding strong agreement on the migrant location distributions available across data sets. We then document substantial differences in the mix of destinations for migrants from different places within the same source state, demonstrating the importance of detailed substate geographical information. We conclude with an example of how these detailed data can be used to study the effects of destination-specific conditions on migration patterns. We find that an Arizona law reducing employment opportunities for unauthorized migrants decreased emigration from and increased return migration to Mexican source regions with strong initial ties to Arizona.

  2. Phylogenetic and Functional Structure of Wintering Waterbird Communities Associated with Ecological Differences.

    PubMed

    Che, Xianli; Zhang, Min; Zhao, Yanyan; Zhang, Qiang; Quan, Qing; Møller, Anders; Zou, Fasheng

    2018-01-19

    Ecological differences may be related to community component divisions between Oriental (west) and Sino-Japanese (east) realms, and such differences may result in weak geographical breaks in migratory species that are highly mobile. Here, we conducted comparative phylogenetic and functional structure analyses of wintering waterbird communities in southern China across two realms and subsequently examined possible climate drivers of the observed patterns. An analysis based on such highly migratory species is particularly telling because migration is bound to reduce or completely eliminate any divergence between communities. Phylogenetic and functional structure of eastern communities showed over-dispersion while western communities were clustered. Basal phylogenetic and functional turnover of western communities was significant lower than that of eastern communities. The break between eastern and western communities was masked by these two realms. Geographic patterns were related to mean temperature changes and temperature fluctuations, suggesting that temperature may filter waterbird lineages and traits, thus underlying geographical community divisions. These results suggest phylogenetic and functional divisions in southern China, coinciding with biogeography. This study shows that temperature fluctuations constitute an essential mechanism shaping geographical divisions that have largely gone undetected previously, even under climate change.

  3. A Composite Network Approach for Assessing Multi-Species Connectivity: An Application to Road Defragmentation Prioritisation

    PubMed Central

    Saura, Santiago; Rondinini, Carlo

    2016-01-01

    One of the biggest challenges in large-scale conservation is quantifying connectivity at broad geographic scales and for a large set of species. Because connectivity analyses can be computationally intensive, and the planning process quite complex when multiple taxa are involved, assessing connectivity at large spatial extents for many species turns to be often intractable. Such limitation results in that conducted assessments are often partial by focusing on a few key species only, or are generic by considering a range of dispersal distances and a fixed set of areas to connect that are not directly linked to the actual spatial distribution or mobility of particular species. By using a graph theory framework, here we propose an approach to reduce computational effort and effectively consider large assemblages of species in obtaining multi-species connectivity priorities. We demonstrate the potential of the approach by identifying defragmentation priorities in the Italian road network focusing on medium and large terrestrial mammals. We show that by combining probabilistic species graphs prior to conducting the network analysis (i) it is possible to analyse connectivity once for all species simultaneously, obtaining conservation or restoration priorities that apply for the entire species assemblage; and that (ii) those priorities are well aligned with the ones that would be obtained by aggregating the results of separate connectivity analysis for each of the individual species. This approach offers great opportunities to extend connectivity assessments to large assemblages of species and broad geographic scales. PMID:27768718

  4. Evaluation of interpolation techniques for the creation of gridded daily precipitation (1 × 1 km2); Cyprus, 1980-2010

    NASA Astrophysics Data System (ADS)

    Camera, Corrado; Bruggeman, Adriana; Hadjinicolaou, Panos; Pashiardis, Stelios; Lange, Manfred A.

    2014-01-01

    High-resolution gridded daily data sets are essential for natural resource management and the analyses of climate changes and their effects. This study aims to evaluate the performance of 15 simple or complex interpolation techniques in reproducing daily precipitation at a resolution of 1 km2 over topographically complex areas. Methods are tested considering two different sets of observation densities and different rainfall amounts. We used rainfall data that were recorded at 74 and 145 observational stations, respectively, spread over the 5760 km2 of the Republic of Cyprus, in the Eastern Mediterranean. Regression analyses utilizing geographical copredictors and neighboring interpolation techniques were evaluated both in isolation and combined. Linear multiple regression (LMR) and geographically weighted regression methods (GWR) were tested. These included a step-wise selection of covariables, as well as inverse distance weighting (IDW), kriging, and 3D-thin plate splines (TPS). The relative rank of the different techniques changes with different station density and rainfall amounts. Our results indicate that TPS performs well for low station density and large-scale events and also when coupled with regression models. It performs poorly for high station density. The opposite is observed when using IDW. Simple IDW performs best for local events, while a combination of step-wise GWR and IDW proves to be the best method for large-scale events and high station density. This study indicates that the use of step-wise regression with a variable set of geographic parameters can improve the interpolation of large-scale events because it facilitates the representation of local climate dynamics.

  5. The potential of volunteered geographic information to investigate peri-urbanization in the conservation zone of Mexico City.

    PubMed

    Heider, Katharina; Lopez, Juan Miguel Rodriguez; Scheffran, Jürgen

    2018-03-14

    Due to the availability of Web 2.0 technologies, volunteered geographic information (VGI) is on the rise. This new type of data is available on many topics and on different scales. Thus, it has become interesting for research. This article deals with the collective potential of VGI and remote sensing to detect peri-urbanization in the conservation zone of Mexico City. On the one hand, remote sensing identifies horizontal urban expansion, and on the other hand, VGI of ecological complaints provides data about informal settlements. This enables the combination of top-down approaches (remote sensing) and bottom-up approaches (ecological complaints). Within the analysis, we identify areas of high urbanization as well as complaint densities and bring them together in a multi-scale analysis using Geographic Information Systems (GIS). Furthermore, we investigate the influence of settlement patterns and main roads on the peri-urbanization process in Mexico City using OpenStreetMap. Peri-urbanization is detected especially in the transition zone between the urban and rural (conservation) area and near main roads as well as settlements.

  6. Geographic Mosaic of Plant Evolution: Extrafloral Nectary Variation Mediated by Ant and Herbivore Assemblages

    PubMed Central

    Nogueira, Anselmo; Rey, Pedro J.; Alcántara, Julio M.; Feitosa, Rodrigo M.; Lohmann, Lúcia G.

    2015-01-01

    Herbivory is an ecological process that is known to generate different patterns of selection on defensive plant traits across populations. Studies on this topic could greatly benefit from the general framework of the Geographic Mosaic Theory of Coevolution (GMT). Here, we hypothesize that herbivory represents a strong pressure for extrafloral nectary (EFN) bearing plants, with differences in herbivore and ant visitor assemblages leading to different evolutionary pressures among localities and ultimately to differences in EFN abundance and function. In this study, we investigate this hypothesis by analyzing 10 populations of Anemopaegma album (30 individuals per population) distributed through ca. 600 km of Neotropical savanna and covering most of the geographic range of this plant species. A common garden experiment revealed a phenotypic differentiation in EFN abundance, in which field and experimental plants showed a similar pattern of EFN variation among populations. We also did not find significant correlations between EFN traits and ant abundance, herbivory and plant performance across localities. Instead, a more complex pattern of ant–EFN variation, a geographic mosaic, emerged throughout the geographical range of A. album. We modeled the functional relationship between EFNs and ant traits across ant species and extended this phenotypic interface to characterize local situations of phenotypic matching and mismatching at the population level. Two distinct types of phenotypic matching emerged throughout populations: (1) a population with smaller ants (Crematogaster crinosa) matched with low abundance of EFNs; and (2) seven populations with bigger ants (Camponotus species) matched with higher EFN abundances. Three matched populations showed the highest plant performance and narrower variance of EFN abundance, representing potential plant evolutionary hotspots. Cases of mismatched and matched populations with the lowest performance were associated with abundant and highly detrimental herbivores. Our findings provide insights on the ecology and evolution of plant–ant guarding systems, and suggest new directions to research on facultative mutualistic interactions at wide geographic scales. PMID:25885221

  7. Diversity patterns and activity of uncultured marine heterotrophic flagellates unveiled with pyrosequencing

    PubMed Central

    Logares, Ramiro; Audic, Stephane; Santini, Sebastien; Pernice, Massimo C; de Vargas, Colomban; Massana, Ramon

    2012-01-01

    Flagellated heterotrophic microeukaryotes have key roles for the functioning of marine ecosystems as they channel large amounts of organic carbon to the upper trophic levels and control the population sizes of bacteria and archaea. Still, we know very little on the diversity patterns of most groups constituting this evolutionary heterogeneous assemblage. Here, we investigate 11 groups of uncultured flagellates known as MArine STramenopiles (MASTs). MASTs are ecologically very important and branch at the base of stramenopiles. We explored the diversity patterns of MASTs using pyrosequencing (18S rDNA) in coastal European waters. We found that MAST groups range from highly to lowly diversified. Pyrosequencing (hereafter ‘454') allowed us to approach to the limits of taxonomic diversity for all MAST groups, which varied in one order of magnitude (tens to hundreds) in terms of operational taxonomic units (98% similarity). We did not evidence large differences in activity, as indicated by ratios of DNA:RNA-reads. Most groups were strictly planktonic, although we found some groups that were active in sediments and even in anoxic waters. The proportion of reads per size fraction indicated that most groups were composed of very small cells (∼2–5 μm). In addition, phylogenetically different assemblages appeared to be present in different size fractions, depths and geographic zones. Thus, MAST diversity seems to be highly partitioned in spatial scales. Altogether, our results shed light on these ecologically very important but poorly known groups of uncultured marine flagellates. PMID:22534609

  8. [Spatial scale effect of urban land use landscape pattern in Shanghai City].

    PubMed

    Xu, Li-Hua; Yue, Wen Ze; Cao, Yu

    2007-12-01

    Based on geographic information system (GIS) and remote sensing (RS) techniques, the landscape classes of urban land use in Shanghai City were extracted from SPOT images with 5 m spatial resolution in 2002, and then, the classified data were applied to quantitatively explore the change patterns of several basic landscape metrics at different scales. The results indicated that landscape metrics were sensitive to grain- and extent variance. Urban landscape pattern was spatially dependent. In other words, different landscape metrics showed different responses to scale. The resolution of 40 m was an intrinsic observing scale for urban landscape in Shanghai City since landscape metrics showed random characteristics while the grain was less than 40 m. The extent of 24 km was a symbol scale in a series of extents, which was consistent with the boundary between urban built-up area and suburban area in Shanghai City. As a result, the extent of 12 km away from urban center would be an intrinsic handle scale for urban landscape in Shanghai City. However, due to the complexity of urban structure and asymmetry of urban spatial expansion, the intrinsic handle scale was not regular extent, and the square with size of 24 km was just an approximate intrinsic extent for Shanghai City.

  9. Barrier island morphodynamic classification based on lidar metrics for north Assateague Island, Maryland

    USGS Publications Warehouse

    Brock, John C.; Krabill, William; Sallenger, Asbury H.

    2004-01-01

    In order to reap the potential of airborne lidar surveys to provide geological information useful in understanding coastal sedimentary processes acting on various time scales, a new set of analysis methods are needed. This paper presents a multi-temporal lidar analysis of north Assateague Island, Maryland, and demonstrates the calculation of lidar metrics that condense barrier island morphology and morphological change into attributed linear features that may be used to analyze trends in coastal evolution. The new methods proposed in this paper are also of significant practical value, because lidar metric analysis reduces large volumes of point elevations into linear features attributed with essential morphological variables that are ideally suited for inclusion in Geographic Information Systems. A morphodynamic classification of north Assategue Island for a recent 10 month time period that is based on the recognition of simple patterns described by lidar change metrics is presented. Such morphodynamic classification reveals the relative magnitude and the fine scale alongshore variation in the importance of coastal changes over the study area during a defined time period. More generally, through the presentation of this morphodynamic classification of north Assateague Island, the value of lidar metrics in both examining large lidar data sets for coherent trends and in building hypotheses regarding processes driving barrier evolution is demonstrated

  10. The dimensions of land use change in rural landscapes: lessons learnt from the GB Countryside Surveys.

    PubMed

    Petit, Sandrine

    2009-07-01

    Rural landscapes are highly dynamic and their change impacts on a number of ecological processes such as the dynamics of biodiversity. Although a substantial amount of research has focused on quantifying these changes and their impact on biodiversity, most studies have focused on single dimensions of land use change. This lack of integration in land use change studies can be explained by the fact that data on the spatial, temporal, and ecological dimensions of land use are seldom available for the same geographical location. In this paper, the benefits of taking into account these three dimensions are illustrated with results derived from the Great Britain Countryside Surveys (CS), a large-scale monitoring programme designed to assess change in the extent and ecological condition of British habitats. The overview of CS results presented in this paper shows that (1) changes in land use composition will translate into a variety of spatial patterns; (2) the temporal stability of land use is often lower than can be expected; and (3) there can be large-scale shifts in the ecological condition of the land use types that form our rural landscapes. The benefits of integrated rural landscape studies are discussed in the context of other national monitoring programmes.

  11. A global classification of coastal flood hazard climates associated with large-scale oceanographic forcing.

    PubMed

    Rueda, Ana; Vitousek, Sean; Camus, Paula; Tomás, Antonio; Espejo, Antonio; Losada, Inigo J; Barnard, Patrick L; Erikson, Li H; Ruggiero, Peter; Reguero, Borja G; Mendez, Fernando J

    2017-07-11

    Coastal communities throughout the world are exposed to numerous and increasing threats, such as coastal flooding and erosion, saltwater intrusion and wetland degradation. Here, we present the first global-scale analysis of the main drivers of coastal flooding due to large-scale oceanographic factors. Given the large dimensionality of the problem (e.g. spatiotemporal variability in flood magnitude and the relative influence of waves, tides and surge levels), we have performed a computer-based classification to identify geographical areas with homogeneous climates. Results show that 75% of coastal regions around the globe have the potential for very large flooding events with low probabilities (unbounded tails), 82% are tide-dominated, and almost 49% are highly susceptible to increases in flooding frequency due to sea-level rise.

  12. Genetic Diversity and Ecological Niche Modelling of Wild Barley: Refugia, Large-Scale Post-LGM Range Expansion and Limited Mid-Future Climate Threats?

    PubMed Central

    Russell, Joanne; van Zonneveld, Maarten; Dawson, Ian K.; Booth, Allan; Waugh, Robbie; Steffenson, Brian

    2014-01-01

    Describing genetic diversity in wild barley (Hordeum vulgare ssp. spontaneum) in geographic and environmental space in the context of current, past and potential future climates is important for conservation and for breeding the domesticated crop (Hordeum vulgare ssp. vulgare). Spatial genetic diversity in wild barley was revealed by both nuclear- (2,505 SNP, 24 nSSR) and chloroplast-derived (5 cpSSR) markers in 256 widely-sampled geo-referenced accessions. Results were compared with MaxEnt-modelled geographic distributions under current, past (Last Glacial Maximum, LGM) and mid-term future (anthropogenic scenario A2, the 2080s) climates. Comparisons suggest large-scale post-LGM range expansion in Central Asia and relatively small, but statistically significant, reductions in range-wide genetic diversity under future climate. Our analyses support the utility of ecological niche modelling for locating genetic diversity hotspots and determine priority geographic areas for wild barley conservation under anthropogenic climate change. Similar research on other cereal crop progenitors could play an important role in tailoring conservation and crop improvement strategies to support future human food security. PMID:24505252

  13. Coherence among climate signals, precipitation, and groundwater.

    PubMed

    Ghanbari, Reza Namdar; Bravo, Hector R

    2011-01-01

    Climate signals may affect groundwater level at different time scales in different geographical regions, and those patterns or time scales can be estimated using coherence analysis. This study shows that the synthesis effort required to search for patterns at the physical geography scale is possible, and this approach should be applicable in other regions of the world. The relations between climate signals, Southern Oscillation Index, Pacific Decadal Oscillation, North Atlantic Oscillation, North Pacific Pattern (SOI, PDO, NAO, and NP), precipitation, and groundwater level in three geographical areas of Wisconsin are examined using a three-tiered coherence analysis. In the high frequency band (<4(-1) cycles/year), there is a significant coherence between four climate signals and groundwater level in all three areas. In the low frequency band (>8(-1) to ≤23(-1) cycles/year), we found significant coherence between the SOI and NP signals and groundwater level in the forested area, characterized by shallow wells constructed in sand and gravel aquifers. In the high frequency band, there is significant coherence between the four climate signals and precipitation in all three areas. In the low frequency band, the four climate signals have effect on precipitation in the agricultural area, and SOI and NP have effect on precipitation in the forested and driftless areas. Precipitation affects groundwater level in all three areas, and in high, low and intermediate frequency bands. In the agricultural area, deeper aquifers and a more complex hydrostratigraphy and land use dilute the effect of precipitation on groundwater level for interdecadal frequencies. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.

  14. Poly-Pattern Compressive Segmentation of ASTER Data for GIS

    NASA Technical Reports Server (NTRS)

    Myers, Wayne; Warner, Eric; Tutwiler, Richard

    2007-01-01

    Pattern-based segmentation of multi-band image data, such as ASTER, produces one-byte and two-byte approximate compressions. This is a dual segmentation consisting of nested coarser and finer level pattern mappings called poly-patterns. The coarser A-level version is structured for direct incorporation into geographic information systems in the manner of a raster map. GIs renderings of this A-level approximation are called pattern pictures which have the appearance of color enhanced images. The two-byte version consisting of thousands of B-level segments provides a capability for approximate restoration of the multi-band data in selected areas or entire scenes. Poly-patterns are especially useful for purposes of change detection and landscape analysis at multiple scales. The primary author has implemented the segmentation methodology in a public domain software suite.

  15. Frequent inter-species transmission and geographic subdivision in avian influenza viruses from wild birds.

    PubMed

    Chen, Rubing; Holmes, Edward C

    2009-01-05

    Revealing the factors that shape the genetic structure of avian influenza viruses (AIVs) in wild bird populations is essential to understanding their evolution. However, the relationship between epidemiological dynamics and patterns of genetic diversity in AIV is not well understood, especially at the continental scale. To address this question, we undertook a phylogeographic analysis of complete genome sequences of AIV sampled from wild birds in North America. In particular, we asked whether host species, geographic location or sampling time played the major role in shaping patterns of viral genetic diversity. Strikingly, our analysis revealed no strong species effect, yet a significant viral clustering by time and place of sampling, as well as the circulation of multiple viral lineages in single locations. These results suggest that AIVs can readily infect many of the bird species that share breeding/feeding areas.

  16. The spatial epidemiology of trauma: the potential of geographic information science to organize data and reveal patterns of injury and services

    PubMed Central

    Schuurman, Nadine; Hameed, S. Morad; Fiedler, Robert; Bell, Nathaniel; Simons, Richard K.

    2008-01-01

    Despite important advances in the prevention and treatment of trauma, preventable injuries continue to impact the lives of millions of people. Motor vehicle collisions and violence claim close to 3 million lives each year worldwide. Public health agencies have promoted the need for systematic and ongoing surveillance as a foundation for successful injury control. Surveillance has been used to quantify the incidence of injury for the prioritization of further research, monitor trends over time, identify new injury patterns, and plan and evaluate prevention and intervention efforts. Advances in capability to handle spatial data and substantial increases in computing power have positioned geographic information science (GIS) as a potentially important tool for health surveillance and the spatial organization of health care, and for informing prevention and acute care interventions. Two themes emerge in the trauma literature with respect to GIS theory and techniques: identifying determinants associated with the risk of trauma to guide injury prevention efforts and evaluating the spatial organization and accessibility of acute trauma care systems. We review the current literature on trauma and GIS research and provide examples of the importance of accounting for spatial scale when using spatial analysis for surveillance. The examples illustrate the effect of scale on incident analysis, the geographic variation of major injury across British Columbia's health service delivery areas (HSDAs) and the rates of variation of injury within individual HSDAs. PMID:18841227

  17. Global diversity and distribution of macrofungi

    Treesearch

    Gregory M. Mueller; John P. Schmit; Patrick R. Leacock; Bart Buyck; Joaquin Cifuentes; Dennis E. Desjardin; Roy E. Halling; Kurt Hjortstam; Teresa Iturriaga; Karl-Henrik Larsson; D. Jean Lodge; Tom W. May; David Minter; Mario Rajchenberg; Scott A. Redhead; Leif Ryvarden; James M. Trappe; Roy Watling; Qiuxin Wu

    2007-01-01

    Data on macrofungal diversity and distribution patterns were compiled for major geographical regions of the world. Macrofungi are defined here to include ascomycetes and basidiomycetes with large, easily observed spore-bearing structures that form above or below ground. Each coauthor either provided data on a particular taxonomic group of macrofungi or information on...

  18. Visual analytics of geo-social interaction patterns for epidemic control.

    PubMed

    Luo, Wei

    2016-08-10

    Human interaction and population mobility determine the spatio-temporal course of the spread of an airborne disease. This research views such spreads as geo-social interaction problems, because population mobility connects different groups of people over geographical locations via which the viruses transmit. Previous research argued that geo-social interaction patterns identified from population movement data can provide great potential in designing effective pandemic mitigation. However, little work has been done to examine the effectiveness of designing control strategies taking into account geo-social interaction patterns. To address this gap, this research proposes a new framework for effective disease control; specifically this framework proposes that disease control strategies should start from identifying geo-social interaction patterns, designing effective control measures accordingly, and evaluating the efficacy of different control measures. This framework is used to structure design of a new visual analytic tool that consists of three components: a reorderable matrix for geo-social mixing patterns, agent-based epidemic models, and combined visualization methods. With real world human interaction data in a French primary school as a proof of concept, this research compares the efficacy of vaccination strategies between the spatial-social interaction patterns and the whole areas. The simulation results show that locally targeted vaccination has the potential to keep infection to a small number and prevent spread to other regions. At some small probability, the local control strategies will fail; in these cases other control strategies will be needed. This research further explores the impact of varying spatial-social scales on the success of local vaccination strategies. The results show that a proper spatial-social scale can help achieve the best control efficacy with a limited number of vaccines. The case study shows how GS-EpiViz does support the design and testing of advanced control scenarios in airborne disease (e.g., influenza). The geo-social patterns identified through exploring human interaction data can help target critical individuals, locations, and clusters of locations for disease control purposes. The varying spatial-social scales can help geographically and socially prioritize limited resources (e.g., vaccines).

  19. Geographic variation in body size and its relationship with environmental gradients in the Oriental Garden Lizard, Calotes versicolor.

    PubMed

    Wei, Xiaomei; Yan, Linmiao; Zhao, Chengjian; Zhang, Yueyun; Xu, Yongli; Cai, Bo; Jiang, Ni; Huang, Yong

    2018-05-01

    Patterns of geographic variation in body size are predicted to evolve as adaptations to local environmental gradients. However, many of these clinal patterns in body size, such as Bergmann's rule, are controversial and require further investigation into ectotherms such as reptiles on a regional scale. To examine the environmental variables (temperature, precipitation, topography and primary productivity) that shaped patterns of geographic variation in body size in the reptile Calotes versicolor , we sampled 180 adult specimens (91 males and 89 females) at 40 locations across the species range in China. The MANOVA results suggest significant sexual size dimorphism in C. versicolor ( F 23,124  = 11.32, p  < .001). Our results showed that C. versicolor failed to fit the Bergmann's rule. We found that the most important predictors of variation in body size of C. versicolor differed for males and females, but mechanisms related to heat balance and water availability hypotheses were involved in both sexes. Temperature seasonality, precipitation of the driest month, precipitation seasonality, and precipitation of the driest quarter were the most important predictors of variation in body size in males, whereas mean precipitation of the warmest quarter, mean temperature of the wettest quarter, precipitation seasonality, and precipitation of the wettest month were most important for body size variation in females. The discrepancy between patterns of association between the sexes suggested that different selection pressures may be acting in males and females.

  20. On the relationship between large-scale climate modes and regional synoptic patterns that drive Victorian rainfall

    NASA Astrophysics Data System (ADS)

    Verdon-Kidd, D. C.; Kiem, A. S.

    2009-04-01

    In this paper regional (synoptic) and large-scale climate drivers of rainfall are investigated for Victoria, Australia. A non-linear classification methodology known as self-organizing maps (SOM) is used to identify 20 key regional synoptic patterns, which are shown to capture a range of significant synoptic features known to influence the climate of the region. Rainfall distributions are assigned to each of the 20 patterns for nine rainfall stations located across Victoria, resulting in a clear distinction between wet and dry synoptic types at each station. The influence of large-scale climate modes on the frequency and timing of the regional synoptic patterns is also investigated. This analysis revealed that phase changes in the El Niño Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD) and/or the Southern Annular Mode (SAM) are associated with a shift in the relative frequency of wet and dry synoptic types on an annual to inter-annual timescale. In addition, the relative frequency of synoptic types is shown to vary on a multi-decadal timescale, associated with changes in the Inter-decadal Pacific Oscillation (IPO). Importantly, these results highlight the potential to utilise the link between the regional synoptic patterns derived in this study and large-scale climate modes to improve rainfall forecasting for Victoria, both in the short- (i.e. seasonal) and long-term (i.e. decadal/multi-decadal scale). In addition, the regional and large-scale climate drivers identified in this study provide a benchmark by which the performance of Global Climate Models (GCMs) may be assessed.

  1. Environmental Complexity and Biodiversity: The Multi-Layered Evolutionary History of a Log-Dwelling Velvet Worm in Montane Temperate Australia

    PubMed Central

    Garrick, Ryan C.; Gardner, Michael G.; Tait, Noel N.; Briscoe, David A.; Rowell, David M.; Sunnucks, Paul

    2013-01-01

    Phylogeographic studies provide a framework for understanding the importance of intrinsic versus extrinsic factors in shaping patterns of biodiversity through identifying past and present microevolutionary processes that contributed to lineage divergence. Here we investigate population structure and diversity of the Onychophoran (velvet worm) Euperipatoides rowelli in southeastern Australian montane forests that were not subject to Pleistocene glaciations, and thus likely retained more forest cover than systems under glaciation. Over a ~100 km transect of structurally-connected forest, we found marked nuclear and mitochondrial (mt) DNA genetic structuring, with spatially-localised groups. Patterns from mtDNA and nuclear data broadly corresponded with previously defined geographic regions, consistent with repeated isolation in refuges during Pleistocene climatic cycling. Nevertheless, some E. rowelli genetic contact zones were displaced relative to hypothesized influential landscape structures, implying more recent processes overlying impacts of past environmental history. Major impacts at different timescales were seen in the phylogenetic relationships among mtDNA sequences, which matched geographic relationships and nuclear data only at recent timescales, indicating historical gene flow and/or incomplete lineage sorting. Five major E. rowelli phylogeographic groups were identified, showing substantial but incomplete reproductive isolation despite continuous habitat. Regional distinctiveness, in the face of lineages abutting within forest habitat, could indicate pre- and/or postzygotic gene flow limitation. A potentially functional phenotypic character, colour pattern variation, reflected the geographic patterns in the molecular data. Spatial-genetic patterns broadly match those in previously-studied, co-occurring low-mobility organisms, despite a variety of life histories. We suggest that for E. rowelli, the complex topography and history of the region has led to interplay among limited dispersal ability, historical responses to environmental change, local adaptation, and some resistance to free admixture at geographic secondary contact, leading to strong genetic structuring at fine spatial scale. PMID:24358365

  2. Linkages between large-scale climate patterns and the dynamics of Alaskan caribou populations

    Treesearch

    Kyle Joly; David R. Klein; David L. Verbyla; T. Scott Rupp; F. Stuart Chapin

    2011-01-01

    Recent research has linked climate warming to global declines in caribou and reindeer (both Rangifer tarandus) populations. We hypothesize large-scale climate patterns are a contributing factor explaining why these declines are not universal. To test our hypothesis for such relationships among Alaska caribou herds, we calculated the population growth...

  3. Topographic influences on vegetation mosaics and tree diversity in the Chihuahuan Desert Borderlands.

    PubMed

    Poulos, Helen M; Camp, Ann E

    2010-04-01

    The abundance and distribution of species reflect how the niche requirements of species and the dynamics of populations interact with spatial and temporal variation in the environment. This study investigated the influence of geographical variation in environmental site conditions on tree dominance and diversity patterns in three topographically dissected mountain ranges in west Texas, USA, and northern Mexico. We measured tree abundance and basal area using a systematic sampling design across the forested areas of three mountain ranges and related these data to a suite of environmental parameters derived from field and digital elevation model data. We employed cluster analysis, classification and regression trees (CART), and rarefaction to identify (1) the dominant forest cover types across the three study sites and (2) environmental influences on tree distribution and diversity patterns. Elevation, topographic position, and incident solar radiation were the major influences on tree dominance and diversity. Mesic valley bottoms hosted high-diversity vegetation types, while hotter and drier mid-slopes and ridgetops supported lower tree diversity. Valley bottoms and other topographic positions shared few species, indicating high species turnover at the landscape scale. Mountain ranges with high topographic complexity also had higher species richness, suggesting that geographical variability in environmental conditions was a major influence on tree diversity. This study stressed the importance of landscape- and regional-scale topographic variability as a key factor controlling vegetation pattern and diversity in southwestern North America.

  4. Pattern-based, multi-scale segmentation and regionalization of EOSD land cover

    NASA Astrophysics Data System (ADS)

    Niesterowicz, Jacek; Stepinski, Tomasz F.

    2017-10-01

    The Earth Observation for Sustainable Development of Forests (EOSD) map is a 25 m resolution thematic map of Canadian forests. Because of its large spatial extent and relatively high resolution the EOSD is difficult to analyze using standard GIS methods. In this paper we propose multi-scale segmentation and regionalization of EOSD as new methods for analyzing EOSD on large spatial scales. Segments, which we refer to as forest land units (FLUs), are delineated as tracts of forest characterized by cohesive patterns of EOSD categories; we delineated from 727 to 91,885 FLUs within the spatial extent of EOSD depending on the selected scale of a pattern. Pattern of EOSD's categories within each FLU is described by 1037 landscape metrics. A shapefile containing boundaries of all FLUs together with an attribute table listing landscape metrics make up an SQL-searchable spatial database providing detailed information on composition and pattern of land cover types in Canadian forest. Shapefile format and extensive attribute table pertaining to the entire legend of EOSD are designed to facilitate broad range of investigations in which assessment of composition and pattern of forest over large areas is needed. We calculated four such databases using different spatial scales of pattern. We illustrate the use of FLU database for producing forest regionalization maps of two Canadian provinces, Quebec and Ontario. Such maps capture the broad scale variability of forest at the spatial scale of the entire province. We also demonstrate how FLU database can be used to map variability of landscape metrics, and thus the character of landscape, over the entire Canada.

  5. Attribution of Large-Scale Climate Patterns to Seasonal Peak-Flow and Prospects for Prediction Globally

    NASA Astrophysics Data System (ADS)

    Lee, Donghoon; Ward, Philip; Block, Paul

    2018-02-01

    Flood-related fatalities and impacts on society surpass those from all other natural disasters globally. While the inclusion of large-scale climate drivers in streamflow (or high-flow) prediction has been widely studied, an explicit link to global-scale long-lead prediction is lacking, which can lead to an improved understanding of potential flood propensity. Here we attribute seasonal peak-flow to large-scale climate patterns, including the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), and Atlantic Multidecadal Oscillation (AMO), using streamflow station observations and simulations from PCR-GLOBWB, a global-scale hydrologic model. Statistically significantly correlated climate patterns and streamflow autocorrelation are subsequently applied as predictors to build a global-scale season-ahead prediction model, with prediction performance evaluated by the mean squared error skill score (MSESS) and the categorical Gerrity skill score (GSS). Globally, fair-to-good prediction skill (20% ≤ MSESS and 0.2 ≤ GSS) is evident for a number of locations (28% of stations and 29% of land area), most notably in data-poor regions (e.g., West and Central Africa). The persistence of such relevant climate patterns can improve understanding of the propensity for floods at the seasonal scale. The prediction approach developed here lays the groundwork for further improving local-scale seasonal peak-flow prediction by identifying relevant global-scale climate patterns. This is especially attractive for regions with limited observations and or little capacity to develop flood early warning systems.

  6. Genetic Variation in the Acorn Barnacle from Allozymes to Population Genomics

    PubMed Central

    Flight, Patrick A.; Rand, David M.

    2012-01-01

    Understanding the patterns of genetic variation within and among populations is a central problem in population and evolutionary genetics. We examine this question in the acorn barnacle, Semibalanus balanoides, in which the allozyme loci Mpi and Gpi have been implicated in balancing selection due to varying selective pressures at different spatial scales. We review the patterns of genetic variation at the Mpi locus, compare this to levels of population differentiation at mtDNA and microsatellites, and place these data in the context of genome-wide variation from high-throughput sequencing of population samples spanning the North Atlantic. Despite considerable geographic variation in the patterns of selection at the Mpi allozyme, this locus shows rather low levels of population differentiation at ecological and trans-oceanic scales (FST ∼ 5%). Pooled population sequencing was performed on samples from Rhode Island (RI), Maine (ME), and Southwold, England (UK). Analysis of more than 650 million reads identified approximately 335,000 high-quality SNPs in 19 million base pairs of the S. balanoides genome. Much variation is shared across the Atlantic, but there are significant examples of strong population differentiation among samples from RI, ME, and UK. An FST outlier screen of more than 22,000 contigs provided a genome-wide context for interpretation of earlier studies on allozymes, mtDNA, and microsatellites. FST values for allozymes, mtDNA and microsatellites are close to the genome-wide average for random SNPs, with the exception of the trans-Atlantic FST for mtDNA. The majority of FST outliers were unique between individual pairs of populations, but some genes show shared patterns of excess differentiation. These data indicate that gene flow is high, that selection is strong on a subset of genes, and that a variety of genes are experiencing diversifying selection at large spatial scales. This survey of polymorphism in S. balanoides provides a number of genomic tools that promise to make this a powerful model for ecological genomics of the rocky intertidal. PMID:22767487

  7. A representation of place attachment: A study of spatial cognition in Latvia

    NASA Astrophysics Data System (ADS)

    Skilters, Jurgis; Zarina, Liga; Raita, Liva

    2017-04-01

    Perception of geographical space is reflected in place attachment, i.e., a multidimensional cognitive-affective link between humans and their spatial environment. Place attachment balances emotions, conception of proximity. It is both social and spatial cognitive structure. Place attachment has an impact on people's actions, which in turn reversibly affect the environment in which people live. Place attachment provides emotional regulation for humans linking local - neighborhood-scale and country and world-scale environments. In Latvia a large-scale spatial cognition study has been conducted within participatory research project „Telpas pavasaris" ("Spatial Spring") by foundation Viegli. In the study 1523 respondents reported their associations characterizing certain type of places (e.g., safe place, dangerous place, far place, close place, dear place). The answers were analyzed according to several cognitive-affective categories including modes of experience, emotional valence, geographical distance, and perceptual modality. The current results indicate that socio-cognitive and affective information are primary in respect to purely spatial information (referring to spatial objects or regions and their relations). However, different types of geographical places and spatial objects (natural or artefactual) have to be distinguished and are significant to a different degree. Our results are important for environmental and urban planning because they show the ways how socio-cognitive and affective knowledge shapes the spatial cognition of geographic environment.

  8. Modeling Fire Occurrence at the City Scale: A Comparison between Geographically Weighted Regression and Global Linear Regression.

    PubMed

    Song, Chao; Kwan, Mei-Po; Zhu, Jiping

    2017-04-08

    An increasing number of fires are occurring with the rapid development of cities, resulting in increased risk for human beings and the environment. This study compares geographically weighted regression-based models, including geographically weighted regression (GWR) and geographically and temporally weighted regression (GTWR), which integrates spatial and temporal effects and global linear regression models (LM) for modeling fire risk at the city scale. The results show that the road density and the spatial distribution of enterprises have the strongest influences on fire risk, which implies that we should focus on areas where roads and enterprises are densely clustered. In addition, locations with a large number of enterprises have fewer fire ignition records, probably because of strict management and prevention measures. A changing number of significant variables across space indicate that heterogeneity mainly exists in the northern and eastern rural and suburban areas of Hefei city, where human-related facilities or road construction are only clustered in the city sub-centers. GTWR can capture small changes in the spatiotemporal heterogeneity of the variables while GWR and LM cannot. An approach that integrates space and time enables us to better understand the dynamic changes in fire risk. Thus governments can use the results to manage fire safety at the city scale.

  9. Modeling Fire Occurrence at the City Scale: A Comparison between Geographically Weighted Regression and Global Linear Regression

    PubMed Central

    Song, Chao; Kwan, Mei-Po; Zhu, Jiping

    2017-01-01

    An increasing number of fires are occurring with the rapid development of cities, resulting in increased risk for human beings and the environment. This study compares geographically weighted regression-based models, including geographically weighted regression (GWR) and geographically and temporally weighted regression (GTWR), which integrates spatial and temporal effects and global linear regression models (LM) for modeling fire risk at the city scale. The results show that the road density and the spatial distribution of enterprises have the strongest influences on fire risk, which implies that we should focus on areas where roads and enterprises are densely clustered. In addition, locations with a large number of enterprises have fewer fire ignition records, probably because of strict management and prevention measures. A changing number of significant variables across space indicate that heterogeneity mainly exists in the northern and eastern rural and suburban areas of Hefei city, where human-related facilities or road construction are only clustered in the city sub-centers. GTWR can capture small changes in the spatiotemporal heterogeneity of the variables while GWR and LM cannot. An approach that integrates space and time enables us to better understand the dynamic changes in fire risk. Thus governments can use the results to manage fire safety at the city scale. PMID:28397745

  10. Population Explosion in the Yellow-Spined Bamboo Locust Ceracris kiangsu and Inferences for the Impact of Human Activity

    PubMed Central

    Fan, Zhou; Jiang, Guo-Fang; Liu, Yu-Xiang; He, Qi-Xin; Blanchard, Benjamin

    2014-01-01

    Geographic distance and geographical barriers likely play a considerable role in structuring genetic variation in species, although some migratory species may have less phylogeographic structure on a smaller spatial scale. Here, genetic diversity and the phylogenetic structure among geographical populations of the yellow-spined bamboo locust, Ceracris kiangsu, were examined with 16S rDNA and amplified fragment length polymorphisms (AFLPs). In this study, no conspicuous phylogeographical structure was discovered from either Maximum parsimony (MP) and Neighbor-joining (NJ) phylogenetic analyses. The effect of geographical isolation was not conspicuous on a large spatial scale.At smaller spatial scales local diversity of some populations within mountainous areas were detected using Nei's genetic distance and AMOVA. There is a high level of genetic diversity and a low genetic differentiation among populations in the C. kiangsu of South and Southeast China. Our analyses indicate that C. kiangsu is a monophyletic group. Our results also support the hypothesis that the C. kiangsu population is in a primary differentiation stage. Given the mismatch distribution, it is likely that a population expansion in C. kiangsu occurred about 0.242 Ma during the Quaternary interglaciation. Based on historical reports, we conjecture that human activities had significant impacts on the C. kiangsu gene flow. PMID:24603526

  11. Biodiversity of Costa Rican salamanders: Implications of high levels of genetic differentiation and phylogeographic structure for species formation

    PubMed Central

    García-París, Mario; Good, David A.; Parra-Olea, Gabriela; Wake, David B.

    2000-01-01

    Although salamanders are characteristic amphibians in Holarctic temperate habitats, in tropical regions they have diversified evolutionarily only in tropical America. An adaptive radiation centered in Middle America occurred late in the history of a single clade, the supergenus Bolitoglossa (Plethodontidae), and large numbers of species now occur in diverse habitats. Sublineages within this clade decrease in number from the northern to southern parts of Middle America, and in Costa Rica, there are but three. Despite this phylogenetic constraint, Costa Rica has many species; the number of salamander species on one local elevational transect in the Cordillera de Talamanca may be the largest for any such transect in the world. Extraordinary variation in sequences of the mitochondrial gene cytochrome b within a clade of the genus Bolitoglossa in Costa Rica reveals strong phylogeographic structure within a single species, Bolitoglossa pesrubra. Allozymic variation in 19 proteins reveals a pattern largely concordant with the mitochondrial DNA phylogeography. More species exist than are currently recognized. Diversification occurs in restricted geographic areas and involves sharp geographic and elevational differentiation and zonation. In their degree of genetic differentiation at a local scale, these species of the deep tropics exceed the known variation of extratropical salamanders, which also differ in being less restricted in elevational range. Salamanders display “tropicality” in that although speciose, they are usually local in distribution and rare. They display strong ecological and physiological differentiation that may contribute importantly to morphological divergence and species formation. PMID:10677512

  12. Water balance model for mean annual hydrogen and oxygen isotope distributions in surface waters of the contiguous United States

    NASA Astrophysics Data System (ADS)

    Bowen, Gabriel J.; Kennedy, Casey D.; Liu, Zhongfang; Stalker, Jeremy

    2011-12-01

    The stable H and O isotope composition of river and stream water records information on runoff sources and land-atmosphere water fluxes within the catchment and is a potentially powerful tool for network-based monitoring of ecohydrological systems. Process-based hydrological models, however, have thus far shown limited power to replicate observed large-scale variation in U.S. surface water isotope ratios. Here we develop a geographic information system-based model to predict long-term annual average surface water isotope ratios across the contiguous United States. We use elevation-explicit, gridded precipitation isotope maps as model input and data from a U.S. Geological Survey monitoring program for validation. We find that models incorporating monthly variation in precipitation-evapotranspiration (P-E) amounts account for the majority (>89%) of isotopic variation and have reduced regional bias relative to models that do not consider intra-annual P-E effects on catchment water balance. Residuals from the water balance model exhibit strong spatial patterning and correlations that suggest model residuals isolate additional hydrological signal. We use interpolated model residuals to generate optimized prediction maps for U.S. surface water δ2H and δ18O values. We show that the modeled surface water values represent a relatively accurate and unbiased proxy for drinking water isotope ratios across the United States, making these data products useful in ecological and criminal forensics applications that require estimates of the local environmental water isotope variation across large geographic regions.

  13. Self-fertilization, long-distance flash invasion and biogeography shape the population structure of Pseudosuccinea columella at the worldwide scale.

    PubMed

    Lounnas, M; Correa, A C; Vázquez, A A; Dia, A; Escobar, J S; Nicot, A; Arenas, J; Ayaqui, R; Dubois, M P; Gimenez, T; Gutiérrez, A; González-Ramírez, C; Noya, O; Prepelitchi, L; Uribe, N; Wisnivesky-Colli, C; Yong, M; David, P; Loker, E S; Jarne, P; Pointier, J P; Hurtrez-Boussès, S

    2017-02-01

    Population genetic studies are efficient for inferring the invasion history based on a comparison of native and invasive populations, especially when conducted at species scale. An expected outcome in invasive populations is variability loss, and this is especially true in self-fertilizing species. We here focus on the self-fertilizing Pseudosuccinea columella, an invasive hermaphroditic freshwater snail that has greatly expanded its geographic distribution and that acts as intermediate host of Fasciola hepatica, the causative agent of human and veterinary fasciolosis. We evaluated the distribution of genetic diversity at the largest geographic scale analysed to date in this species by surveying 80 populations collected during 16 years from 14 countries, using eight nuclear microsatellites and two mitochondrial genes. As expected, populations from North America, the putative origin area, were strongly structured by selfing and history and harboured much more genetic variability than invasive populations. We found high selfing rates (when it was possible to infer it), none-to-low genetic variability and strong population structure in most invasive populations. Strikingly, we found a unique genotype/haplotype in populations from eight invaded regions sampled all over the world. Moreover, snail populations resistant to infection by the parasite are genetically distinct from susceptible populations. Our results are compatible with repeated introductions in South America and flash worldwide invasion by this unique genotype/haplotype. Our study illustrates the population genetic consequences of biological invasion in a highly selfing species at very large geographic scale. We discuss how such a large-scale flash invasion may affect the spread of fasciolosis. © 2016 John Wiley & Sons Ltd.

  14. Large-Scale Constraint-Based Pattern Mining

    ERIC Educational Resources Information Center

    Zhu, Feida

    2009-01-01

    We studied the problem of constraint-based pattern mining for three different data formats, item-set, sequence and graph, and focused on mining patterns of large sizes. Colossal patterns in each data formats are studied to discover pruning properties that are useful for direct mining of these patterns. For item-set data, we observed robustness of…

  15. SCALE PROBLEMS IN REPORTING LANDSCAPE PATTERN AT THE REGIONAL SCALE

    EPA Science Inventory

    Remotely sensed data for Southeastern United States (Standard Federal Region 4) are used to examine the scale problems involved in reporting landscape pattern for a large, heterogeneous region. Frequency distributions of landscape indices illustrate problems associated with the g...

  16. FARM TO COLLEGE: REDUCING FOOD MILES THROUGH DIRECT PURCHASING

    EPA Science Inventory

    Food systems geared toward a global economy concentrate agricultural production into specific geographic areas. Mechanized, large scale agriculture leads to soil exhaustion, loss of crop diversity, contamination of water bodies by pesticide and fertilizer run-off and excessive f...

  17. Interactions of multi-scale heterogeneity in the lithosphere: Australia

    NASA Astrophysics Data System (ADS)

    Kennett, B. L. N.; Yoshizawa, K.; Furumura, T.

    2017-10-01

    Understanding the complex heterogeneity of the continental lithosphere involves a wide variety of spatial scales and the synthesis of multiple classes of information. Seismic surface waves and multiply reflected body waves provide the main constraints on broad-scale structure, and bounds on the extent of the lithosphere-asthenosphere transition (LAT) can be found from the vertical gradients of S wavespeed. Information on finer-scale structures comes through body wave studies, including detailed seismic tomography and P-wave reflectivity extracted from stacked autocorrelograms of continuous component records. With the inclusion of deterministic large-scale structure and realistic medium-scale stochastic features fine-scale variations are subdued. The resulting multi-scale heterogeneity model for the Australian region gives a good representation of the character of observed seismograms and their geographic variations and matches the observations of P-wave reflectivity. P reflections in the 0.5-3.0 Hz band in the uppermost mantle suggest variations on vertical scales of a few hundred metres with amplitudes of the order of 1%. Interference of waves reflected or converted at sequences of such modest variations in physical properties produce relatively simple behaviour for lower frequencies, which can suggest simpler structures than are actually present. Vertical changes in the character of fine-scale heterogeneity can produce apparent discontinuities. In Central Australia a 'mid-lithospheric discontinuity' can be tracked via changes in frequency content of station reflectivity, with links to the broad-scale pattern of wavespeed gradients and, in particular, the gradients of radial anisotropy. Comparisons with xenolith results from southeastern Australia indicate a strong tie between geochemical stratification and P-wave reflectivity.

  18. Model-Derived Dispersal Pathways from Multiple Source Populations Explain Variability of Invertebrate Larval Supply

    PubMed Central

    Domingues, Carla P.; Nolasco, Rita; Dubert, Jesus; Queiroga, Henrique

    2012-01-01

    Background Predicting the spatial and temporal patterns of marine larval dispersal and supply is a challenging task due to the small size of the larvae and the variability of oceanographic processes. Addressing this problem requires the use of novel approaches capable of capturing the inherent variability in the mechanisms involved. Methodology/Principal Findings In this study we test whether dispersal and connectivity patterns generated from a bio-physical model of larval dispersal of the crab Carcinus maenas, along the west coast of the Iberian Peninsula, can predict the highly variable daily pattern of wind-driven larval supply to an estuary observed during the peak reproductive season (March–June) in 2006 and 2007. Cross-correlations between observed and predicted supply were significant (p<0.05) and strong, ranging from 0.34 to 0.81 at time lags of −6 to +5 d. Importantly, the model correctly predicted observed cross-shelf distributions (Pearson r = 0.82, p<0.001, and r = 0.79, p<0.01, in 2006 and 2007) and indicated that all supply events were comprised of larvae that had been retained within the inner shelf; larvae transported to the outer shelf and beyond never recruited. Estimated average dispersal distances ranged from 57 to 198 km and were only marginally affected by mortality. Conclusions/Significance The high degree of predicted demographic connectivity over relatively large geographic scales is consistent with the lack of genetic structuring in C. maenas along the Iberian Peninsula. These findings indicate that the dynamic nature of larval dispersal can be captured by mechanistic biophysical models, which can be used to provide meaningful predictions of the patterns and causes of fine-scale variability in larval supply to marine populations. PMID:22558225

  19. Rivers influence the population genetic structure of bonobos (Pan paniscus).

    PubMed

    Eriksson, J; Hohmann, G; Boesch, C; Vigilant, L

    2004-11-01

    Bonobos are large, highly mobile primates living in the relatively undisturbed, contiguous forest south of the Congo River. Accordingly, gene flow among populations is assumed to be extensive, but may be impeded by large, impassable rivers. We examined mitochondrial DNA control region sequence variation in individuals from five distinct localities separated by rivers in order to estimate relative levels of genetic diversity and assess the extent and pattern of population genetic structure in the bonobo. Diversity estimates for the bonobo exceed those for humans, but are less than those found for the chimpanzee. All regions sampled are significantly differentiated from one another, according to genetic distances estimated as pairwise FSTs, with the greatest differentiation existing between region East and each of the two Northern populations (N and NE) and the least differentiation between regions Central and South. The distribution of nucleotide diversity shows a clear signal of population structure, with some 30% of the variance occurring among geographical regions. However, a geographical patterning of the population structure is not obvious. Namely, mitochondrial haplotypes were shared among all regions excepting the most eastern locality and the phylogenetic analysis revealed a tree in which haplotypes were intermixed with little regard to geographical origin, with the notable exception of the close relationships among the haplotypes found in the east. Nonetheless, genetic distances correlated with geographical distances when the intervening distances were measured around rivers presenting effective current-day barriers, but not when straight-line distances were used, suggesting that rivers are indeed a hindrance to gene flow in this species.

  20. Design Issues in Small-Area Studies of Environment and Health

    PubMed Central

    Elliott, Paul; Savitz, David A.

    2008-01-01

    Background Small-area studies are part of the tradition of spatial epidemiology, which is concerned with the analysis of geographic patterns of disease with respect to environmental, demographic, socioeconomic, and other factors. We focus on etiologic research, where the aim is to make inferences about spatially varying environmental factors influencing the risk of disease. Methods and results We illustrate the approach through three exemplars: a) magnetic fields from overhead electric power lines and the occurrence of childhood leukemia, which illustrates the use of geographic information systems to focus on areas with high exposure prevalence; b) drinking-water disinfection by-products and reproductive outcomes, taking advantage of large between- to within-area variability in exposures from the water supply; and c) chronic exposure to air pollutants and cardiorespiratory health, where issues of socioeconomic confounding are particularly important. Discussion The small-area epidemiologic approach assigns exposure estimates to individuals based on location of residence or other geographic variables such as workplace or school. In this way, large populations can be studied, increasing the ability to investigate rare exposures or rare diseases. The approach is most effective when there is well-defined exposure variation across geographic units, limited within-area variation, and good control for potential confounding across areas. Conclusions In conjunction with traditional individual-based approaches, small-area studies offer a valuable addition to the armamentarium of the environmental epidemiologist. Modeling of exposure patterns coupled with collection of individual-level data on subsamples of the population should lead to improved risk estimates (i.e., less potential for bias) and help strengthen etiologic inference. PMID:18709174

  1. DNA sequence variation of wild barley Hordeum spontaneum (L.) across environmental gradients in Israel

    PubMed Central

    Bedada, G; Westerbergh, A; Nevo, E; Korol, A; Schmid, K J

    2014-01-01

    Wild barley Hordeum spontaneum (L.) shows a wide geographic distribution and ecological diversity. A key question concerns the spatial scale at which genetic differentiation occurs and to what extent it is driven by natural selection. The Levant region exhibits a strong ecological gradient along the North–South axis, with numerous small canyons in an East–West direction and with small-scale environmental gradients on the opposing North- and South-facing slopes. We sequenced 34 short genomic regions in 54 accessions of wild barley collected throughout Israel and from the opposing slopes of two canyons. The nucleotide diversity of the total sample is 0.0042, which is about two-thirds of a sample from the whole species range (0.0060). Thirty accessions collected at ‘Evolution Canyon' (EC) at Nahal Oren, close to Haifa, have a nucleotide diversity of 0.0036, and therefore harbor a large proportion of the genetic diversity. There is a high level of genetic clustering throughout Israel and within EC, which roughly differentiates the slopes. Accessions from the hot and dry South-facing slope have significantly reduced genetic diversity and are genetically more distinct from accessions from the North-facing slope, which are more similar to accessions from other regions in Northern Israel. Statistical population models indicate that wild barley within the EC consist of three separate genetic clusters with substantial gene flow. The data indicate a high level of population structure at large and small geographic scales that shows isolation-by-distance, and is also consistent with ongoing natural selection contributing to genetic differentiation at a small geographic scale. PMID:24619177

  2. Density dependence, spatial scale and patterning in sessile biota.

    PubMed

    Gascoigne, Joanna C; Beadman, Helen A; Saurel, Camille; Kaiser, Michel J

    2005-09-01

    Sessile biota can compete with or facilitate each other, and the interaction of facilitation and competition at different spatial scales is key to developing spatial patchiness and patterning. We examined density and scale dependence in a patterned, soft sediment mussel bed. We followed mussel growth and density at two spatial scales separated by four orders of magnitude. In summer, competition was important at both scales. In winter, there was net facilitation at the small scale with no evidence of density dependence at the large scale. The mechanism for facilitation is probably density dependent protection from wave dislodgement. Intraspecific interactions in soft sediment mussel beds thus vary both temporally and spatially. Our data support the idea that pattern formation in ecological systems arises from competition at large scales and facilitation at smaller scales, so far only shown in vegetation systems. The data, and a simple, heuristic model, also suggest that facilitative interactions in sessile biota are mediated by physical stress, and that interactions change in strength and sign along a spatial or temporal gradient of physical stress.

  3. Socioeconomic, demographic, and geographic variables affecting the diverse degrees of consanguineous marriages in Spain.

    PubMed

    Fuster, V; Colantonio, S E

    2004-02-01

    In a population the inbreeding coefficient alpha is determined by the relative incidence of the various degrees of consanguineous marriages--uncle-niece or aunt-nephew (C12), first cousin (C22), first cousin once removed (C23), second cousin (C33)--which may be related to temporal, geographic, demographic, and economic factors. Using published information from Spain corresponding to urban and rural areas, in this article we seek to establish how each specific relationship behaves with respect to geographic, demographic, and socioeconomic factors, to determine differential urban-rural patterns, and to study whether the diverse types of consanguineous matings relate homogeneously to these factors. For this purpose we performed multiple regressions in which the dependent variables were the different degrees of consanguinity previously selected and the independent variables were geographic, demographic, and economic factors. Our results indicate that the various types of consanguineous marriages in Spain are more conditioned by geographic, demographic, and economic variables than by the inbreeding level alpha (the coefficient of determination was between 0.22 and 0.72; the maximum for alpha was 0.35). A regional pattern exists in Spain and corresponds to close and to remote kinship, which may be mainly related to economic and family factors. Close relationships appear to be more associated with economic variables, whereas second-cousin marriages correspond largely to rural areas of the Spanish Central Plateau.

  4. People's perceptions about the importance of forests on Borneo.

    PubMed

    Meijaard, Erik; Abram, Nicola K; Wells, Jessie A; Pellier, Anne-Sophie; Ancrenaz, Marc; Gaveau, David L A; Runting, Rebecca K; Mengersen, Kerrie

    2013-01-01

    We ascertained villagers' perceptions about the importance of forests for their livelihoods and health through 1,837 reliably answered interviews of mostly male respondents from 185 villages in Indonesian and Malaysian Borneo. Variation in these perceptions related to several environmental and social variables, as shown in classification and regression analyses. Overall patterns indicated that forest use and cultural values are highest among people on Borneo who live close to remaining forest, and especially among older Christian residents. Support for forest clearing depended strongly on the scale at which deforestation occurs. Deforestation for small-scale agriculture was generally considered to be positive because it directly benefits people's welfare. Large-scale deforestation (e.g., for industrial oil palm or acacia plantations), on the other hand, appeared to be more context-dependent, with most respondents considering it to have overall negative impacts on them, but with people in some areas considering the benefits to outweigh the costs. The interviews indicated high awareness of negative environmental impacts of deforestation, with high levels of concern over higher temperatures, air pollution and loss of clean water sources. Our study is unique in its geographic and trans-national scale. Our findings enable the development of maps of forest use and perceptions that could inform land use planning at a range of scales. Incorporating perspectives such as these could significantly reduce conflict over forest resources and ultimately result in more equitable development processes.

  5. Spatial scaling of bacterial community diversity at shallow hydrothermal vents: a global comparison

    NASA Astrophysics Data System (ADS)

    Pop Ristova, P.; Hassenrueck, C.; Molari, M.; Fink, A.; Bühring, S. I.

    2016-02-01

    Marine shallow hydrothermal vents are extreme environments, often characterized by discharge of fluids with e.g. high temperatures, low pH, and laden with elements toxic to higher organisms. They occur at continental margins around the world's oceans, but represent fragmented, isolated habitats of locally small areal coverage. Microorganisms contribute the main biomass at shallow hydrothermal vent ecosystems and build the basis of the food chain by autotrophic fixation of carbon both via chemosynthesis and photosynthesis, occurring simultaneously. Despite their importance and unique capacity to adapt to these extreme environments, little is known about the spatial scales on which the alpha- and beta-diversity of microbial communities vary at shallow vents, and how the geochemical habitat heterogeneity influences shallow vent biodiversity. Here for the first time we investigated the spatial scaling of microbial biodiversity patterns and their interconnectivity at geochemically diverse shallow vents on a global scale. This study presents data on the comparison of bacterial community structures on large (> 1000 km) and small (0.1 - 100 m) spatial scales as derived from ARISA and Illumina sequencing. Despite the fragmented global distribution of shallow hydrothermal vents, similarity of vent bacterial communities decreased with geographic distance, confirming the ubiquity of distance-decay relationship. Moreover, at all investigated vents, pH was the main factor locally structuring these communities, while temperature influenced both the alpha- and beta-diversity.

  6. Dispersal and population structure at different spatial scales in the subterranean rodent Ctenomys australis

    PubMed Central

    2010-01-01

    Background The population genetic structure of subterranean rodent species is strongly affected by demographic (e.g. rates of dispersal and social structure) and stochastic factors (e.g. random genetic drift among subpopulations and habitat fragmentation). In particular, gene flow estimates at different spatial scales are essential to understand genetic differentiation among populations of a species living in a highly fragmented landscape. Ctenomys australis (the sand dune tuco-tuco) is a territorial subterranean rodent that inhabits a relatively secure, permanently sealed burrow system, occurring in sand dune habitats on the coastal landscape in the south-east of Buenos Aires province, Argentina. Currently, this habitat is threatened by urban development and forestry and, therefore, the survival of this endemic species is at risk. Here, we assess population genetic structure and patterns of dispersal among individuals of this species at different spatial scales using 8 polymorphic microsatellite loci. Furthermore, we evaluate the relative importance of sex and habitat configuration in modulating the dispersal patterns at these geographical scales. Results Our results show that dispersal in C. australis is not restricted at regional spatial scales (~ 4 km). Assignment tests revealed significant population substructure within the study area, providing support for the presence of two subpopulations from three original sampling sites. Finally, male-biased dispersal was found in the Western side of our study area, but in the Eastern side no apparent philopatric pattern was found, suggesting that in a more continuous habitat males might move longer distances than females. Conclusions Overall, the assignment-based approaches were able to detect population substructure at fine geographical scales. Additionally, the maintenance of a significant genetic structure at regional (~ 4 km) and small (less than 1 km) spatial scales despite apparently moderate to high levels of gene flow between local sampling sites could not be explained simply by the linear distance among them. On the whole, our results support the hypothesis that males disperse more frequently than females; however they do not provide support for strict philopatry within females. PMID:20109219

  7. Predicting the effect of fire on large-scale vegetation patterns in North America.

    Treesearch

    Donald McKenzie; David L. Peterson; Ernesto. Alvarado

    1996-01-01

    Changes in fire regimes are expected across North America in response to anticipated global climatic changes. Potential changes in large-scale vegetation patterns are predicted as a result of altered fire frequencies. A new vegetation classification was developed by condensing Kuchler potential natural vegetation types into aggregated types that are relatively...

  8. Large-scale solar magnetic fields and H-alpha patterns

    NASA Technical Reports Server (NTRS)

    Mcintosh, P. S.

    1972-01-01

    Coronal and interplanetary magnetic fields computed from measurements of large-scale photospheric magnetic fields suffer from interruptions in day-to-day observations and the limitation of using only measurements made near the solar central meridian. Procedures were devised for inferring the lines of polarity reversal from H-alpha solar patrol photographs that map the same large-scale features found on Mt. Wilson magnetograms. These features may be monitored without interruption by combining observations from the global network of observatories associated with NOAA's Space Environment Services Center. The patterns of inferred magnetic fields may be followed accurately as far as 60 deg from central meridian. Such patterns will be used to improve predictions of coronal features during the next solar eclipse.

  9. Genetic patterns of habitat fragmentation and past climate-change effects in the Mediterranean high-mountain plant Armeria caespitosa (Plumbaginaceae).

    PubMed

    García-Fernández, Alfredo; Iriondo, Jose M; Escudero, Adrián; Aguilar, Javier Fuertes; Feliner, Gonzalo Nieto

    2013-08-01

    Mountain plants are among the species most vulnerable to global warming, because of their isolation, narrow geographic distribution, and limited geographic range shifts. Stochastic and selective processes can act on the genome, modulating genetic structure and diversity. Fragmentation and historical processes also have a great influence on current genetic patterns, but the spatial and temporal contexts of these processes are poorly known. We aimed to evaluate the microevolutionary processes that may have taken place in Mediterranean high-mountain plants in response to changing historical environmental conditions. Genetic structure, diversity, and loci under selection were analyzed using AFLP markers in 17 populations distributed over the whole geographic range of Armeria caespitosa, an endemic plant that inhabits isolated mountains (Sierra de Guadarrama, Spain). Differences in altitude, geographic location, and climate conditions were considered in the analyses, because they may play an important role in selective and stochastic processes. Bayesian clustering approaches identified nine genetic groups, although some discrepancies in assignment were found between alternative analyses. Spatially explicit analyses showed a weak relationship between genetic parameters and spatial or environmental distances. However, a large proportion of outlier loci were detected, and some outliers were related to environmental variables. A. caespitosa populations exhibit spatial patterns of genetic structure that cannot be explained by the isolation-by-distance model. Shifts along the altitude gradient in response to Pleistocene climatic oscillations and environmentally mediated selective forces might explain the resulting structure and genetic diversity values found.

  10. ORBiT: Oak Ridge biosurveillance toolkit for public health dynamics.

    PubMed

    Ramanathan, Arvind; Pullum, Laura L; Hobson, Tanner C; Steed, Chad A; Quinn, Shannon P; Chennubhotla, Chakra S; Valkova, Silvia

    2015-01-01

    The digitization of health-related information through electronic health records (EHR) and electronic healthcare reimbursement claims and the continued growth of self-reported health information through social media provides both tremendous opportunities and challenges in developing effective biosurveillance tools. With novel emerging infectious diseases being reported across different parts of the world, there is a need to build systems that can track, monitor and report such events in a timely manner. Further, it is also important to identify susceptible geographic regions and populations where emerging diseases may have a significant impact. In this paper, we present an overview of Oak Ridge Biosurveillance Toolkit (ORBiT), which we have developed specifically to address data analytic challenges in the realm of public health surveillance. In particular, ORBiT provides an extensible environment to pull together diverse, large-scale datasets and analyze them to identify spatial and temporal patterns for various biosurveillance-related tasks. We demonstrate the utility of ORBiT in automatically extracting a small number of spatial and temporal patterns during the 2009-2010 pandemic H1N1 flu season using claims data. These patterns provide quantitative insights into the dynamics of how the pandemic flu spread across different parts of the country. We discovered that the claims data exhibits multi-scale patterns from which we could identify a small number of states in the United States (US) that act as "bridge regions" contributing to one or more specific influenza spread patterns. Similar to previous studies, the patterns show that the south-eastern regions of the US were widely affected by the H1N1 flu pandemic. Several of these south-eastern states act as bridge regions, which connect the north-east and central US in terms of flu occurrences. These quantitative insights show how the claims data combined with novel analytical techniques can provide important information to decision makers when an epidemic spreads throughout the country. Taken together ORBiT provides a scalable and extensible platform for public health surveillance.

  11. Impact of the hydrological cycle on past climate changes: three illustrations at different time scales

    NASA Astrophysics Data System (ADS)

    Ramstein, Gilles; Khodri, Myriam; Donnadieu, Yannick; Fluteau, Frédéric; Goddéris, Yves

    2005-02-01

    We investigate in the paper the impact of the hydrologic cycle on climate at different periods. The aim is to illustrate how the changes in moisture transport, precipitation pattern, and weathering may alter, at regional or global scales, the CO 2 and climate equilibriums. We choose three climate periods to pinpoint intricate relationships between water cycle and climate. The illustrations are the following. ( i) The onset of ice-sheet build-up, 115 kyr BP. We show that the increased thermal meridian gradient of SST allows large moisture advection over the North American continent and provides appropriate conditions for perennial snow on the Canadian Archipelago. ( ii) The onset of Indian Monsoon at the end of the Tertiary. We demonstrate that superimposed to the Tibetan Plateau, the shrinkage of the Tethys, since Oligocene, plays a major role to explain changes in the geographical pattern of the southeastern Asian Monsoon. ( iii) The onset of Global Glaciation (750 Ma). We show that the break-up of Rodinia occurring at low latitudes is an important feature to explain how the important precipitation increase leads to weathering and carbon burial, which contribute to decrease atmospheric CO 2 enough to produce a snows ball Earth. All these periods have been simulated with a hierarchy of models appropriate to quantify the water cycle impact on climate. To cite this article: G. Ramstein et al., C. R. Geoscience 337 (2005).

  12. Relative contributions of neutral and non-neutral genetic differentiation to inform conservation of steelhead trout across highly variable landscapes

    PubMed Central

    Matala, Andrew P; Ackerman, Michael W; Campbell, Matthew R; Narum, Shawn R

    2014-01-01

    Mounting evidence of climatic effects on riverine environments and adaptive responses of fishes have elicited growing conservation concerns. Measures to rectify population declines include assessment of local extinction risk, population ecology, viability, and genetic differentiation. While conservation planning has been largely informed by neutral genetic structure, there has been a dearth of critical information regarding the role of non-neutral or functional genetic variation. We evaluated genetic variation among steelhead trout of the Columbia River Basin, which supports diverse populations distributed among dynamic landscapes. We categorized 188 SNP loci as either putatively neutral or candidates for divergent selection (non-neutral) using a multitest association approach. Neutral variation distinguished lineages and defined broad-scale population structure consistent with previous studies, but fine-scale resolution was also detected at levels not previously observed. Within distinct coastal and inland lineages, we identified nine and 22 candidate loci commonly associated with precipitation or temperature variables and putatively under divergent selection. Observed patterns of non-neutral variation suggest overall climate is likely to shape local adaptation (e.g., potential rapid evolution) of steelhead trout in the Columbia River region. Broad geographic patterns of neutral and non-neutral variation demonstrated here can be used to accommodate priorities for regional management and inform long-term conservation of this species. PMID:25067950

  13. ESRI applications of GIS technology: Mineral resource development

    NASA Technical Reports Server (NTRS)

    Derrenbacher, W.

    1981-01-01

    The application of geographic information systems technology to large scale regional assessment related to mineral resource development, identifying candidate sites for related industry, and evaluating sites for waste disposal is discussed. Efforts to develop data bases were conducted at scales ranging from 1:3,000,000 to 1:25,000. In several instances, broad screening was conducted for large areas at a very general scale with more detailed studies subsequently undertaken in promising areas windowed out of the generalized data base. Increasingly, the systems which are developed are structured as the spatial framework for the long-term collection, storage, referencing, and retrieval of vast amounts of data about large regions. Typically, the reconnaissance data base for a large region is structured at 1:250,000 scale, data bases for smaller areas being structured at 1:25,000, 1:50,000 or 1:63,360. An integrated data base for the coterminous US was implemented at a scale of 1:3,000,000 for two separate efforts.

  14. Comparative Population Genomics Analysis of the Mammalian Fungal Pathogen Pneumocystis

    PubMed Central

    Ma, Liang; Wei Huang, Da; Khil, Pavel P.; Dekker, John P.; Kutty, Geetha; Bishop, Lisa; Liu, Yueqin; Deng, Xilong; Pagni, Marco; Hirsch, Vanessa; Lempicki, Richard A.

    2018-01-01

    ABSTRACT Pneumocystis species are opportunistic mammalian pathogens that cause severe pneumonia in immunocompromised individuals. These fungi are highly host specific and uncultivable in vitro. Human Pneumocystis infections present major challenges because of a limited therapeutic arsenal and the rise of drug resistance. To investigate the diversity and demographic history of natural populations of Pneumocystis infecting humans, rats, and mice, we performed whole-genome and large-scale multilocus sequencing of infected tissues collected in various geographic locations. Here, we detected reduced levels of recombination and variations in historical demography, which shape the global population structures. We report estimates of evolutionary rates, levels of genetic diversity, and population sizes. Molecular clock estimates indicate that Pneumocystis species diverged before their hosts, while the asynchronous timing of population declines suggests host shifts. Our results have uncovered complex patterns of genetic variation influenced by multiple factors that shaped the adaptation of Pneumocystis populations during their spread across mammals. PMID:29739910

  15. Dinosaur morphological diversity and the end-Cretaceous extinction.

    PubMed

    Brusatte, Stephen L; Butler, Richard J; Prieto-Márquez, Albert; Norell, Mark A

    2012-05-01

    The extinction of non-avian dinosaurs 65 million years ago is a perpetual topic of fascination, and lasting debate has focused on whether dinosaur biodiversity was in decline before end-Cretaceous volcanism and bolide impact. Here we calculate the morphological disparity (anatomical variability) exhibited by seven major dinosaur subgroups during the latest Cretaceous, at both global and regional scales. Our results demonstrate both geographic and clade-specific heterogeneity. Large-bodied bulk-feeding herbivores (ceratopsids and hadrosauroids) and some North American taxa declined in disparity during the final two stages of the Cretaceous, whereas carnivorous dinosaurs, mid-sized herbivores, and some Asian taxa did not. Late Cretaceous dinosaur evolution, therefore, was complex: there was no universal biodiversity trend and the intensively studied North American record may reveal primarily local patterns. At least some dinosaur groups, however, did endure long-term declines in morphological variability before their extinction.

  16. Transformation of social networks in the late pre-Hispanic US Southwest.

    PubMed

    Mills, Barbara J; Clark, Jeffery J; Peeples, Matthew A; Haas, W R; Roberts, John M; Hill, J Brett; Huntley, Deborah L; Borck, Lewis; Breiger, Ronald L; Clauset, Aaron; Shackley, M Steven

    2013-04-09

    The late pre-Hispanic period in the US Southwest (A.D. 1200-1450) was characterized by large-scale demographic changes, including long-distance migration and population aggregation. To reconstruct how these processes reshaped social networks, we compiled a comprehensive artifact database from major sites dating to this interval in the western Southwest. We combine social network analysis with geographic information systems approaches to reconstruct network dynamics over 250 y. We show how social networks were transformed across the region at previously undocumented spatial, temporal, and social scales. Using well-dated decorated ceramics, we track changes in network topology at 50-y intervals to show a dramatic shift in network density and settlement centrality from the northern to the southern Southwest after A.D. 1300. Both obsidian sourcing and ceramic data demonstrate that long-distance network relationships also shifted from north to south after migration. Surprisingly, social distance does not always correlate with spatial distance because of the presence of network relationships spanning long geographic distances. Our research shows how a large network in the southern Southwest grew and then collapsed, whereas networks became more fragmented in the northern Southwest but persisted. The study also illustrates how formal social network analysis may be applied to large-scale databases of material culture to illustrate multigenerational changes in network structure.

  17. Large-scale geographical variation in eggshell metal and calcium content in a passerine bird (Ficedula hypoleuca).

    PubMed

    Ruuskanen, Suvi; Laaksonen, Toni; Morales, Judith; Moreno, Juan; Mateo, Rafael; Belskii, Eugen; Bushuev, Andrey; Järvinen, Antero; Kerimov, Anvar; Krams, Indrikis; Morosinotto, Chiara; Mänd, Raivo; Orell, Markku; Qvarnström, Anna; Slate, Fred; Tilgar, Vallo; Visser, Marcel E; Winkel, Wolfgang; Zang, Herwig; Eeva, Tapio

    2014-03-01

    Birds have been used as bioindicators of pollution, such as toxic metals. Levels of pollutants in eggs are especially interesting, as developing birds are more sensitive to detrimental effects of pollutants than adults. Only very few studies have monitored intraspecific, large-scale variation in metal pollution across a species' breeding range. We studied large-scale geographic variation in metal levels in the eggs of a small passerine, the pied flycatcher (Ficedula hypoleuca), sampled from 15 populations across Europe. We measured 10 eggshell elements (As, Cd, Cr, Cu, Ni, Pb, Zn, Se, Sr, and Ca) and several shell characteristics (mass, thickness, porosity, and color). We found significant variation among populations in eggshell metal levels for all metals except copper. Eggshell lead, zinc, and chromium levels decreased from central Europe to the north, in line with the gradient in pollution levels over Europe, thus suggesting that eggshell can be used as an indicator of pollution levels. Eggshell lead levels were also correlated with soil lead levels and pH. Most of the metals were not correlated with eggshell characteristics, with the exception of shell mass, or with breeding success, which may suggest that birds can cope well with the current background exposure levels across Europe.

  18. Transformation of social networks in the late pre-Hispanic US Southwest

    PubMed Central

    Mills, Barbara J.; Clark, Jeffery J.; Peeples, Matthew A.; Haas, W. R.; Roberts, John M.; Hill, J. Brett; Huntley, Deborah L.; Borck, Lewis; Breiger, Ronald L.; Clauset, Aaron; Shackley, M. Steven

    2013-01-01

    The late pre-Hispanic period in the US Southwest (A.D. 1200–1450) was characterized by large-scale demographic changes, including long-distance migration and population aggregation. To reconstruct how these processes reshaped social networks, we compiled a comprehensive artifact database from major sites dating to this interval in the western Southwest. We combine social network analysis with geographic information systems approaches to reconstruct network dynamics over 250 y. We show how social networks were transformed across the region at previously undocumented spatial, temporal, and social scales. Using well-dated decorated ceramics, we track changes in network topology at 50-y intervals to show a dramatic shift in network density and settlement centrality from the northern to the southern Southwest after A.D. 1300. Both obsidian sourcing and ceramic data demonstrate that long-distance network relationships also shifted from north to south after migration. Surprisingly, social distance does not always correlate with spatial distance because of the presence of network relationships spanning long geographic distances. Our research shows how a large network in the southern Southwest grew and then collapsed, whereas networks became more fragmented in the northern Southwest but persisted. The study also illustrates how formal social network analysis may be applied to large-scale databases of material culture to illustrate multigenerational changes in network structure. PMID:23530201

  19. Assessing the Impact of Urbanization on Direct Runoff Using Improved Composite CN Method in a Large Urban Area.

    PubMed

    Li, Chunlin; Liu, Miao; Hu, Yuanman; Shi, Tuo; Zong, Min; Walter, M Todd

    2018-04-17

    Urbanization is one of the most widespread anthropogenic activities, which brings a range of physical and biochemical changes to hydrological system and processes. Increasing direct runoff caused by land use change has become a major challenge for urban ecological security. Reliable prediction of the quantity and rate of surface runoff is an inherently difficult and time-consuming task for large ungauged urban areas. In this study, we combined Geographic Information System and remote sensing technology with an improved Soil Conservation Service curve number model to evaluate the effects of land use change on direct runoff volume of the four-ring area in Shenyang, China, and analyzed trends of direct runoff at different scales. Through analyzing trends of direct runoff from 1984 to 2015 at different scales, we explored how urbanization and other potential factors affect direct runoff changes. Total direct runoff volume increased over time, and trends varied from the inner urban area to suburban area. Zones 1 and 2 had a tendency toward decreasing direct runoff volume and risks, while Zones 3 and 4 showed gradual increases at both regional and pixel scales. The most important influence on direct runoff change was urban surface change caused by urbanization. This study presents a framework for identifying hotspots of runoff increase, which can provide important guidance to urban managers in future green infrastructure planning, in the hopes of improving the security of urban water ecological patterns.

  20. Assessing the Impact of Urbanization on Direct Runoff Using Improved Composite CN Method in a Large Urban Area

    PubMed Central

    Li, Chunlin; Liu, Miao; Hu, Yuanman; Shi, Tuo; Zong, Min; Walter, M. Todd

    2018-01-01

    Urbanization is one of the most widespread anthropogenic activities, which brings a range of physical and biochemical changes to hydrological system and processes. Increasing direct runoff caused by land use change has become a major challenge for urban ecological security. Reliable prediction of the quantity and rate of surface runoff is an inherently difficult and time-consuming task for large ungauged urban areas. In this study, we combined Geographic Information System and remote sensing technology with an improved Soil Conservation Service curve number model to evaluate the effects of land use change on direct runoff volume of the four-ring area in Shenyang, China, and analyzed trends of direct runoff at different scales. Through analyzing trends of direct runoff from 1984 to 2015 at different scales, we explored how urbanization and other potential factors affect direct runoff changes. Total direct runoff volume increased over time, and trends varied from the inner urban area to suburban area. Zones 1 and 2 had a tendency toward decreasing direct runoff volume and risks, while Zones 3 and 4 showed gradual increases at both regional and pixel scales. The most important influence on direct runoff change was urban surface change caused by urbanization. This study presents a framework for identifying hotspots of runoff increase, which can provide important guidance to urban managers in future green infrastructure planning, in the hopes of improving the security of urban water ecological patterns. PMID:29673182

  1. Negative Symptom Dimensions of the Positive and Negative Syndrome Scale Across Geographical Regions

    PubMed Central

    Liharska, Lora; Harvey, Philip D.; Atkins, Alexandra; Ulshen, Daniel; Keefe, Richard S.E.

    2017-01-01

    Objective: Recognizing the discrete dimensions that underlie negative symptoms in schizophrenia and how these dimensions are understood across localities might result in better understanding and treatment of these symptoms. To this end, the objectives of this study were to 1) identify the Positive and Negative Syndrome Scale negative symptom dimensions of expressive deficits and experiential deficits and 2) analyze performance on these dimensions over 15 geographical regions to determine whether the items defining them manifest similar reliability across these regions. Design: Data were obtained for the baseline Positive and Negative Syndrome Scale visits of 6,889 subjects across 15 geographical regions. Using confirmatory factor analysis, we examined whether a two-factor negative symptom structure that is found in schizophrenia (experiential deficits and expressive deficits) would be replicated in our sample, and using differential item functioning, we tested the degree to which specific items from each negative symptom subfactor performed across geographical regions in comparison with the United States. Results: The two-factor negative symptom solution was replicated in this sample. Most geographical regions showed moderate-to-large differential item functioning for Positive and Negative Syndrome Scale expressive deficit items, especially N3 Poor Rapport, as compared with Positive and Negative Syndrome Scale experiential deficit items, showing that these items might be interpreted or scored differently in different regions. Across countries, except for India, the differential item functioning values did not favor raters in the United States. Conclusion: These results suggest that the Positive and Negative Syndrome Scale negative symptom factor can be better represented by a two-factor model than by a single-factor model. Additionally, the results show significant differences in responses to items representing the Positive and Negative Syndrome Scale expressive factors, but not the experiential factors, across regions. This could be due to a lack of equivalence between the original and translated versions, cultural differences with the interpretation of items, dissimilarities in rater training, or diversity in the understanding of scoring anchors. Knowing which items are challenging for raters across regions can help to guide Positive and Negative Syndrome Scale training and improve the results of international clinical trials aimed at negative symptoms. PMID:29410935

  2. Geography and major host evolutionary transitions shape the resource use of plant parasites

    PubMed Central

    Calatayud, Joaquín; Hórreo, José Luis; Madrigal-González, Jaime; Migeon, Alain; Rodríguez, Miguel Á.; Magalhães, Sara; Hortal, Joaquín

    2016-01-01

    The evolution of resource use in herbivores has been conceptualized as an analog of the theory of island biogeography, assuming that plant species are islands separated by phylogenetic distances. Despite its usefulness, this analogy has paradoxically led to neglecting real biogeographical processes in the study of macroevolutionary patterns of herbivore–plant interactions. Here we show that host use is mostly determined by the geographical cooccurrence of hosts and parasites in spider mites (Tetranychidae), a globally distributed group of plant parasites. Strikingly, geography accounts for most of the phylogenetic signal in host use by these parasites. Beyond geography, only evolutionary transitions among major plant lineages (i.e., gymnosperms, commelinids, and eudicots) shape resource use patterns in these herbivores. Still, even these barriers have been repeatedly overcome in evolutionary time, resulting in phylogenetically diverse parasite communities feeding on similar hosts. Therefore, our results imply that patterns of apparent evolutionary conservatism may largely be a byproduct of the geographic cooccurrence of hosts and parasites. PMID:27535932

  3. Geography and major host evolutionary transitions shape the resource use of plant parasites.

    PubMed

    Calatayud, Joaquín; Hórreo, José Luis; Madrigal-González, Jaime; Migeon, Alain; Rodríguez, Miguel Á; Magalhães, Sara; Hortal, Joaquín

    2016-08-30

    The evolution of resource use in herbivores has been conceptualized as an analog of the theory of island biogeography, assuming that plant species are islands separated by phylogenetic distances. Despite its usefulness, this analogy has paradoxically led to neglecting real biogeographical processes in the study of macroevolutionary patterns of herbivore-plant interactions. Here we show that host use is mostly determined by the geographical cooccurrence of hosts and parasites in spider mites (Tetranychidae), a globally distributed group of plant parasites. Strikingly, geography accounts for most of the phylogenetic signal in host use by these parasites. Beyond geography, only evolutionary transitions among major plant lineages (i.e., gymnosperms, commelinids, and eudicots) shape resource use patterns in these herbivores. Still, even these barriers have been repeatedly overcome in evolutionary time, resulting in phylogenetically diverse parasite communities feeding on similar hosts. Therefore, our results imply that patterns of apparent evolutionary conservatism may largely be a byproduct of the geographic cooccurrence of hosts and parasites.

  4. PESTICIDE LEACHING ANALYTICAL MODEL AND GIS-BASED APPLICATION IN AGRICULTURAL WATERSHEDS

    EPA Science Inventory

    Groundwater contamination by pesticides and other organic pollutants has been detected across agricultural areas and is on the increase. Because groundwater monitoring is too costly to define the geographic extent of contamination at such large scales, indirect methods are needed...

  5. SPATIALLY RESOLVED SPECTROSCOPY OF EUROPA’S LARGE-SCALE COMPOSITIONAL UNITS AT 3–4 μ m WITH KECK NIRSPEC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, P. D.; Brown, M. E.; Trumbo, S. K.

    2017-01-01

    We present spatially resolved spectroscopic observations of Europa’s surface at 3–4 μ m obtained with the near-infrared spectrograph and adaptive optics system on the Keck II telescope. These are the highest quality spatially resolved reflectance spectra of Europa’s surface at 3–4 μ m. The observations spatially resolve Europa’s large-scale compositional units at a resolution of several hundred kilometers. The spectra show distinct features and geographic variations associated with known compositional units; in particular, large-scale leading hemisphere chaos shows a characteristic longward shift in peak reflectance near 3.7 μ m compared to icy regions. These observations complement previous spectra of large-scalemore » chaos, and can aid efforts to identify the endogenous non-ice species.« less

  6. The underestimated role of temperature-oxygen relationship in large-scale studies on size-to-temperature response.

    PubMed

    Walczyńska, Aleksandra; Sobczyk, Łukasz

    2017-09-01

    The observation that ectotherm size decreases with increasing temperature (temperature-size rule; TSR) has been widely supported. This phenomenon intrigues researchers because neither its adaptive role nor the conditions under which it is realized are well defined. In light of recent theoretical and empirical studies, oxygen availability is an important candidate for understanding the adaptive role behind TSR. However, this hypothesis is still undervalued in TSR studies at the geographical level. We reanalyzed previously published data about the TSR pattern in diatoms sampled from Icelandic geothermal streams, which concluded that diatoms were an exception to the TSR. Our goal was to incorporate oxygen as a factor in the analysis and to examine whether this approach would change the results. Specifically, we expected that the strength of size response to cold temperatures would be different than the strength of response to hot temperatures, where the oxygen limitation is strongest. By conducting a regression analysis for size response at the community level, we found that diatoms from cold, well-oxygenated streams showed no size-to-temperature response, those from intermediate temperature and oxygen conditions showed reverse TSR, and diatoms from warm, poorly oxygenated streams showed significant TSR. We also distinguished the roles of oxygen and nutrition in TSR. Oxygen is a driving factor, while nutrition is an important factor that should be controlled for. Our results show that if the geographical or global patterns of TSR are to be understood, oxygen should be included in the studies. This argument is important especially for predicting the size response of ectotherms facing climate warming.

  7. The niche, biogeography and species interactions

    PubMed Central

    Wiens, John J.

    2011-01-01

    In this paper, I review the relevance of the niche to biogeography, and what biogeography may tell us about the niche. The niche is defined as the combination of abiotic and biotic conditions where a species can persist. I argue that most biogeographic patterns are created by niche differences over space, and that even ‘geographic barriers’ must have an ecological basis. However, we know little about specific ecological factors underlying most biogeographic patterns. Some evidence supports the importance of abiotic factors, whereas few examples exist of large-scale patterns created by biotic interactions. I also show how incorporating biogeography may offer new perspectives on resource-related niches and species interactions. Several examples demonstrate that even after a major evolutionary radiation within a region, the region can still be invaded by ecologically similar species from another clade, countering the long-standing idea that communities and regions are generally ‘saturated’ with species. I also describe the somewhat paradoxical situation where competition seems to limit trait evolution in a group, but does not prevent co-occurrence of species with similar values for that trait (called here the ‘competition–divergence–co-occurrence conundrum’). In general, the interface of biogeography and ecology could be a major area for research in both fields. PMID:21768150

  8. Comparative ecology of lynx in North America [Chapter 14

    Treesearch

    Steven W. Buskirk; Leonard F. Ruggiero; Keith B. Aubry; Dean E. Pearson; John R. Squires; Kevin S. McKelvey

    2000-01-01

    : Lynx occur across a large geographic area, but have only been studied in a few locations, and this has led to extrapolation of understandings into areas with very divergent ecologies. We discuss ecological differences across the range of lynx, contrasting the patterns of climate, vegetation, disturbance dynamics and succession, and predator/prey...

  9. Population Growth in the 1990s: Patterns within the United States.

    ERIC Educational Resources Information Center

    Perry, Marc

    2002-01-01

    Examines population growth during the 1990s for a variety of geographic levels including regions, divisions, states, metropolitan areas, counties, and large cities. Compares growth rates for the 1990s with earlier decades to provide an historical context for present-day trends in population growth and decline. Discusses how differential population…

  10. Is there a role for termite alates in colony expansion in Wisconsin?

    Treesearch

    Frederick Green III; Rachel A. Arango; Glenn R. Esenther; Thomas G. Shelton

    2014-01-01

    Termite colonies in Wisconsin tend to be large and widely spread out geographically, and separated by distances up to 1342km. We recently completed a study to determine the genetic diversity and population substructure of thirteen existing colonies of Reticulitermes flavipes using amplified fragment length polymorphism to determine patterns of...

  11. City-Specific Spatiotemporal Infant and Neonatal Mortality Clusters: Links with Socioeconomic and Air Pollution Spatial Patterns in France.

    PubMed

    Padilla, Cindy M; Kihal-Talantikit, Wahida; Vieira, Verónica M; Deguen, Séverine

    2016-06-22

    Infant and neonatal mortality indicators are known to vary geographically, possibly as a result of socioeconomic and environmental inequalities. To better understand how these factors contribute to spatial and temporal patterns, we conducted a French ecological study comparing two time periods between 2002 and 2009 for three (purposefully distinct) Metropolitan Areas (MAs) and the city of Paris, using the French census block of parental residence as the geographic unit of analysis. We identified areas of excess risk and assessed the role of neighborhood deprivation and average nitrogen dioxide concentrations using generalized additive models to generate maps smoothed on longitude and latitude. Comparison of the two time periods indicated that statistically significant areas of elevated infant and neonatal mortality shifted northwards for the city of Paris, are present only in the earlier time period for Lille MA, only in the later time period for Lyon MA, and decrease over time for Marseille MA. These city-specific geographic patterns in neonatal and infant mortality are largely explained by socioeconomic and environmental inequalities. Spatial analysis can be a useful tool for understanding how risk factors contribute to disparities in health outcomes ranging from infant mortality to infectious disease-a leading cause of infant mortality.

  12. City-Specific Spatiotemporal Infant and Neonatal Mortality Clusters: Links with Socioeconomic and Air Pollution Spatial Patterns in France

    PubMed Central

    Padilla, Cindy M.; Kihal-Talantikit, Wahida; Vieira, Verónica M.; Deguen, Séverine

    2016-01-01

    Infant and neonatal mortality indicators are known to vary geographically, possibly as a result of socioeconomic and environmental inequalities. To better understand how these factors contribute to spatial and temporal patterns, we conducted a French ecological study comparing two time periods between 2002 and 2009 for three (purposefully distinct) Metropolitan Areas (MAs) and the city of Paris, using the French census block of parental residence as the geographic unit of analysis. We identified areas of excess risk and assessed the role of neighborhood deprivation and average nitrogen dioxide concentrations using generalized additive models to generate maps smoothed on longitude and latitude. Comparison of the two time periods indicated that statistically significant areas of elevated infant and neonatal mortality shifted northwards for the city of Paris, are present only in the earlier time period for Lille MA, only in the later time period for Lyon MA, and decrease over time for Marseille MA. These city-specific geographic patterns in neonatal and infant mortality are largely explained by socioeconomic and environmental inequalities. Spatial analysis can be a useful tool for understanding how risk factors contribute to disparities in health outcomes ranging from infant mortality to infectious disease—a leading cause of infant mortality. PMID:27338439

  13. Preliminary GIS analysis of the agricultural landscape of Cuyo Cuyo, Department of Puno, Peru

    NASA Technical Reports Server (NTRS)

    Winterhalder, Bruce; Evans, Tom

    1991-01-01

    Computerized analysis of a geographic database (GIS) for Cuyo Cuyo, (Dept. Puno, Peru) is used to correlate the agricultural production zones of two adjacent communities to altitude, slope, aspect, and other geomorphological features of the high-altitude eastern escarpment landscape. The techniques exemplified will allow ecological anthropologists to analyze spatial patterns at regional scales with much greater control over the data.

  14. Gene genealogies in geographically structured populations

    Treesearch

    Bryan K. Epperson

    1999-01-01

    Population genetics theory has dealt only with the spatial or geographic pattern of degrees of relatedness or genetic similarity separately for each point in time. However, a frequent goal of experimental studies is to infer migration patterns that occurred in the past or over extended periods of time. To fully understand how a present geographic pattern of genetic...

  15. Effects of local and large-scale climate patterns on estuarine resident fishes: The example of Pomatoschistus microps and Pomatoschistus minutus

    NASA Astrophysics Data System (ADS)

    Nyitrai, Daniel; Martinho, Filipe; Dolbeth, Marina; Rito, João; Pardal, Miguel A.

    2013-12-01

    Large-scale and local climate patterns are known to influence several aspects of the life cycle of marine fish. In this paper, we used a 9-year database (2003-2011) to analyse the populations of two estuarine resident fishes, Pomatoschistus microps and Pomatoschistus minutus, in order to determine their relationships with varying environmental stressors operating over local and large scales. This study was performed in the Mondego estuary, Portugal. Firstly, the variations in abundance, growth, population structure and secondary production were evaluated. These species appeared in high densities in the beginning of the study period, with subsequent occasional high annual density peaks, while their secondary production was lower in dry years. The relationships between yearly fish abundance and the environmental variables were evaluated separately for both species using Spearman correlation analysis, considering the yearly abundance peaks for the whole population, juveniles and adults. Among the local climate patterns, precipitation, river runoff, salinity and temperature were used in the analyses, and North Atlantic Oscillation (NAO) index and sea surface temperature (SST) were tested as large-scale factors. For P. microps, precipitation and NAO were the significant factors explaining abundance of the whole population, the adults and the juveniles as well. Regarding P. minutus, for the whole population, juveniles and adults river runoff was the significant predictor. The results for both species suggest a differential influence of climate patterns on the various life cycle stages, confirming also the importance of estuarine resident fishes as indicators of changes in local and large-scale climate patterns, related to global climate change.

  16. Spatial variation in the climatic predictors of species compositional turnover and endemism

    PubMed Central

    Di Virgilio, Giovanni; Laffan, Shawn W; Ebach, Malte C; Chapple, David G

    2014-01-01

    Previous research focusing on broad-scale or geographically invariant species-environment dependencies suggest that temperature-related variables explain more of the variation in reptile distributions than precipitation. However, species–environment relationships may exhibit considerable spatial variation contingent upon the geographic nuances that vary between locations. Broad-scale, geographically invariant analyses may mask this local variation and their findings may not generalize to different locations at local scales. We assess how reptile–climatic relationships change with varying spatial scale, location, and direction. Since the spatial distributions of diversity and endemism hotspots differ for other species groups, we also assess whether reptile species turnover and endemism hotspots are influenced differently by climatic predictors. Using New Zealand reptiles as an example, the variation in species turnover, endemism and turnover in climatic variables was measured using directional moving window analyses, rotated through 360°. Correlations between the species turnover, endemism and climatic turnover results generated by each rotation of the moving window were analysed using multivariate generalized linear models applied at national, regional, and local scales. At national-scale, temperature turnover consistently exhibited the greatest influence on species turnover and endemism, but model predictive capacity was low (typically r2 = 0.05, P < 0.001). At regional scales the relative influence of temperature and precipitation turnover varied between regions, although model predictive capacity was also generally low. Climatic turnover was considerably more predictive of species turnover and endemism at local scales (e.g., r2 = 0.65, P < 0.001). While temperature turnover had the greatest effect in one locale (the northern North Island), there was substantial variation in the relative influence of temperature and precipitation predictors in the remaining four locales. Species turnover and endemism hotspots often occurred in different locations. Climatic predictors had a smaller influence on endemism. Our results caution against assuming that variability in temperature will always be most predictive of reptile biodiversity across different spatial scales, locations and directions. The influence of climatic turnover on the species turnover and endemism of other taxa may exhibit similar patterns of spatial variation. Such intricate variation might be discerned more readily if studies at broad scales are complemented by geographically variant, local-scale analyses. PMID:25473479

  17. Conserved and narrow temperature limits in alpine insects: Thermal tolerance and supercooling points of the ice-crawlers, Grylloblatta (Insecta: Grylloblattodea: Grylloblattidae).

    PubMed

    Schoville, Sean D; Slatyer, Rachel A; Bergdahl, James C; Valdez, Glenda A

    2015-07-01

    For many terrestrial species, habitat associations and range size are dependent on physiological limits, which in turn may influence large-scale patterns of species diversity. The temperature range experienced by individuals is considered to shape the breadth of the thermal niche, with species occupying temporally and/or geographically stable climates tolerating a narrow temperature range. High-elevation environments experience large temperature fluctuations, with frequent periods below 0 °C, but Grylloblatta (Grylloblattodea: Grylloblattidae) occupy climatically stable microhabitats within this region. Here we test critical thermal limits and supercooling points for five Grylloblatta populations from across a large geographic area, to examine whether the stable microhabitats of this group are associated with a narrow thermal niche and assess their capacity to tolerate cold conditions. Thermal limits are highly conserved in Grylloblatta, despite substantial genetic divergence among populations spanning 1500 m elevation and being separated by over 500 km. Further, Grylloblatta show exceptionally narrow thermal limits compared to other insect taxa with little capacity to improve cold tolerance via plasticity. In contrast, upper thermal limits were significantly depressed by cold acclimation. Grylloblatta maintain coordinated movement until they freeze, and they die upon freezing. Convergence of the critical thermal minima, supercooling point and lower lethal limits point to adaptation to a cold but, importantly, constant thermal environment. These physiological data provide an explanation for the high endemism and patchy distribution of Grylloblatta, which relies on subterranean retreats to accommodate narrow thermal limits. These retreats are currently buffered from temperature fluctuations by snow cover, and a declining snowpack thus places Grylloblatta at risk of exposure to temperatures beyond its tolerance capacity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Investigating potential transferability of place-based research in land system science

    NASA Astrophysics Data System (ADS)

    Václavík, Tomáš; Langerwisch, Fanny; Cotter, Marc; Fick, Johanna; Häuser, Inga; Hotes, Stefan; Kamp, Johannes; Settele, Josef; Spangenberg, Joachim H.; Seppelt, Ralf

    2016-09-01

    Much of our knowledge about land use and ecosystem services in interrelated social-ecological systems is derived from place-based research. While local and regional case studies provide valuable insights, it is often unclear how relevant this research is beyond the study areas. Drawing generalized conclusions about practical solutions to land management from local observations and formulating hypotheses applicable to other places in the world requires that we identify patterns of land systems that are similar to those represented by the case study. Here, we utilize the previously developed concept of land system archetypes to investigate potential transferability of research from twelve regional projects implemented in a large joint research framework that focus on issues of sustainable land management across four continents. For each project, we characterize its project archetype, i.e. the unique land system based on a synthesis of more than 30 datasets of land-use intensity, environmental conditions and socioeconomic indicators. We estimate the transferability potential of project research by calculating the statistical similarity of locations across the world to the project archetype, assuming higher transferability potentials in locations with similar land system characteristics. Results show that areas with high transferability potentials are typically clustered around project sites but for some case studies can be found in regions that are geographically distant, especially when values of considered variables are close to the global mean or where the project archetype is driven by large-scale environmental or socioeconomic conditions. Using specific examples from the local case studies, we highlight the merit of our approach and discuss the differences between local realities and information captured in global datasets. The proposed method provides a blueprint for large research programs to assess potential transferability of place-based studies to other geographical areas and to indicate possible gaps in research efforts.

  19. Design of ecoregional monitoring in conservation areas of high-latitude ecosystems under contemporary climate change

    USGS Publications Warehouse

    Beever, Erik A.; Woodward, Andrea

    2011-01-01

    Land ownership in Alaska includes a mosaic of federally managed units. Within its agency’s context, each unit has its own management strategy, authority, and resources of conservation concern, many of which are migratory animals. Though some units are geographically isolated, many are nevertheless linked by paths of abiotic and biotic flows, such as rivers, air masses, flyways, and terrestrial and aquatic migration routes. Furthermore, individual land units exist within the context of a larger landscape pattern of shifting conditions, requiring managers to understand at larger spatial scales the status and trends in the synchrony and spatial concurrence of species and associated suitable habitats. Results of these changes will determine the ability of Alaska lands to continue to: provide habitat for local and migratory species; absorb species whose ranges are shifting northward; and experience mitigation or exacerbation of climate change through positive and negative atmospheric feedbacks. We discuss the geographic and statutory contexts that influence development of ecological monitoring; argue for the inclusion of significant amounts of broad-scale monitoring; discuss the importance of defining clear programmatic and monitoring objectives; and draw from lessons learned from existing long-term, broad-scale monitoring programs to apply to the specific contexts relevant to high-latitude protected areas such as those in Alaska. Such areas are distinguished by their: marked seasonality; relatively large magnitudes of contemporary change in climatic parameters; and relative inaccessibility due to broad spatial extent, very low (or zero) road density, and steep and glaciated areas. For ecological monitoring to effectively support management decisions in high-latitude areas such as Alaska, a monitoring program ideally would be structured to address the actual spatial and temporal scales of relevant processes, rather than the artificial boundaries of individual land-management units. Heuristic models provide a means by which to integrate understanding of ecosystem structure, composition, and function, in the midst of numerous ecosystem drivers.

  20. The population genomic signature of environmental selection in the widespread insect-pollinated tree species Frangula alnus at different geographical scales

    PubMed Central

    De Kort, H; Vandepitte, K; Mergeay, J; Mijnsbrugge, K V; Honnay, O

    2015-01-01

    The evaluation of the molecular signatures of selection in species lacking an available closely related reference genome remains challenging, yet it may provide valuable fundamental insights into the capacity of populations to respond to environmental cues. We screened 25 native populations of the tree species Frangula alnus subsp. alnus (Rhamnaceae), covering three different geographical scales, for 183 annotated single-nucleotide polymorphisms (SNPs). Standard population genomic outlier screens were combined with individual-based and multivariate landscape genomic approaches to examine the strength of selection relative to neutral processes in shaping genomic variation, and to identify the main environmental agents driving selection. Our results demonstrate a more distinct signature of selection with increasing geographical distance, as indicated by the proportion of SNPs (i) showing exceptional patterns of genetic diversity and differentiation (outliers) and (ii) associated with climate. Both temperature and precipitation have an important role as selective agents in shaping adaptive genomic differentiation in F. alnus subsp. alnus, although their relative importance differed among spatial scales. At the ‘intermediate' and ‘regional' scales, where limited genetic clustering and high population diversity were observed, some indications of natural selection may suggest a major role for gene flow in safeguarding adaptability. High genetic diversity at loci under selection in particular, indicated considerable adaptive potential, which may nevertheless be compromised by the combined effects of climate change and habitat fragmentation. PMID:25944466

Top