Sample records for large-scale plasma processes

  1. Development of manufacturing methods for the production of superconductive devices. Final technical documentary report, 28 Jun 1965--27 Jun 1969. [Plasma arc process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haid, D.A.; Fietz, W.A.

    1969-06-01

    The effort to scale-up the plasma-arc process to produce large solenoids and saddle coils is described. Large coils (up to 16-/sup 3///sub 4/ in. and 41-in. length) of three different configurations, helical, ''pancake'' and ''saddle,'' were fabricated using the plasma arc process.

  2. Plasma surface figuring of large optical components

    NASA Astrophysics Data System (ADS)

    Jourdain, R.; Castelli, M.; Morantz, P.; Shore, P.

    2012-04-01

    Fast figuring of large optical components is well known as a highly challenging manufacturing issue. Different manufacturing technologies including: magnetorheological finishing, loose abrasive polishing, ion beam figuring are presently employed. Yet, these technologies are slow and lead to expensive optics. This explains why plasma-based processes operating at atmospheric pressure have been researched as a cost effective means for figure correction of metre scale optical surfaces. In this paper, fast figure correction of a large optical surface is reported using the Reactive Atom Plasma (RAP) process. Achievements are shown following the scaling-up of the RAP figuring process to a 400 mm diameter area of a substrate made of Corning ULE®. The pre-processing spherical surface is characterized by a 3 metres radius of curvature, 2.3 μm PVr (373nm RMS), and 1.2 nm Sq nanometre roughness. The nanometre scale correction figuring system used for this research work is named the HELIOS 1200, and it is equipped with a unique plasma torch which is driven by a dedicated tool path algorithm. Topography map measurements were carried out using a vertical work station instrumented by a Zygo DynaFiz interferometer. Figuring results, together with the processing times, convergence levels and number of iterations, are reported. The results illustrate the significant potential and advantage of plasma processing for figuring correction of large silicon based optical components.

  3. Large Scale Synthesis of Colloidal Si Nanocrystals and their Helium Plasma Processing into Spin-On, Carbon-Free Nanocrystalline Si Films.

    PubMed

    Mohapatra, Pratyasha; Mendivelso-Perez, Deyny; Bobbitt, Jonathan M; Shaw, Santosh; Yuan, Bin; Tian, Xinchun; Smith, Emily A; Cademartiri, Ludovico

    2018-05-30

    This paper describes a simple approach to the large scale synthesis of colloidal Si nanocrystals and their processing by He plasma into spin-on carbon-free nanocrystalline Si films. We further show that the RIE etching rate in these films is 1.87 times faster than for single crystalline Si, consistent with a simple geometric argument that accounts for the nanoscale roughness caused by the nanoparticle shape.

  4. The scientific targets of the SCOPE mission

    NASA Astrophysics Data System (ADS)

    Fujimoto, M.; Saito, Y.; Tsuda, Y.; Shinohara, I.; Kojima, H.

    Future Japanese magnetospheric mission "SCOPE" is now under study (planned to be launched in 2012). The main purpose of this mission is to investigate the dynamic behaviors of plasmas in the Earth's magnetosphere from the view-point of cross-scale coupling. Dynamical collisionless space plasma phenomena, be they large scale as a whole, are chracterized by coupling over various time and spatial scales. The best example would be the magnetic reconnection process, which is a large scale energy conversion process but has a small key region at the heart of its engine. Inside the key region, electron scale dynamics plays the key role in liberating the frozen-in constraint, by which reconnection is allowed to proceed. The SCOPE mission is composed of one large mother satellite and four small daughter satellites. The mother spacecraft will be equiped with the electron detector that has 10 msec time resolution so that scales down to the electron's will be resolved. Three of the four daughter satellites surround the mother satellite 3-dimensionally with the mutual distances between several km and several thousand km, which are varied during the mission. Plasma measurements on these spacecrafts will have 1 sec resolution and will provide information on meso-scale plasma structure. The fourth daughter satellite stays near the mother satellite with the distance less than 100km. By correlation between the two plasma wave instruments on the daughter and the mother spacecrafts, propagation of the waves and the information on the electron scale dynamics will be obtained. By this strategy, both meso- and micro-scale information on dynamics are obtained, that will enable us to investigate the physics of the space plasma from the cross-scale coupling point of view.

  5. Ionospheric chemical releases

    NASA Technical Reports Server (NTRS)

    Bernhardt, Paul A.; Scales, W. A.

    1990-01-01

    Ionospheric plasma density irregularities can be produced by chemical releases into the upper atmosphere. F-region plasma modification occurs by: (1) chemically enhancing the electron number density; (2) chemically reducing the electron population; or (3) physically convecting the plasma from one region to another. The three processes (production, loss, and transport) determine the effectiveness of ionospheric chemical releases in subtle and surprising ways. Initially, a chemical release produces a localized change in plasma density. Subsequent processes, however, can lead to enhanced transport in chemically modified regions. Ionospheric modifications by chemical releases excites artificial enhancements in airglow intensities by exothermic chemical reactions between the newly created plasma species. Numerical models were developed to describe the creation and evolution of large scale density irregularities and airglow clouds generated by artificial means. Experimental data compares favorably with theses models. It was found that chemical releases produce transient, large amplitude perturbations in electron density which can evolve into fine scale irregularities via nonlinear transport properties.

  6. Towards large-scale plasma-assisted synthesis of nanowires

    NASA Astrophysics Data System (ADS)

    Cvelbar, U.

    2011-05-01

    Large quantities of nanomaterials, e.g. nanowires (NWs), are needed to overcome the high market price of nanomaterials and make nanotechnology widely available for general public use and applications to numerous devices. Therefore, there is an enormous need for new methods or routes for synthesis of those nanostructures. Here plasma technologies for synthesis of NWs, nanotubes, nanoparticles or other nanostructures might play a key role in the near future. This paper presents a three-dimensional problem of large-scale synthesis connected with the time, quantity and quality of nanostructures. Herein, four different plasma methods for NW synthesis are presented in contrast to other methods, e.g. thermal processes, chemical vapour deposition or wet chemical processes. The pros and cons are discussed in detail for the case of two metal oxides: iron oxide and zinc oxide NWs, which are important for many applications.

  7. Secure web-based invocation of large-scale plasma simulation codes

    NASA Astrophysics Data System (ADS)

    Dimitrov, D. A.; Busby, R.; Exby, J.; Bruhwiler, D. L.; Cary, J. R.

    2004-12-01

    We present our design and initial implementation of a web-based system for running, both in parallel and serial, Particle-In-Cell (PIC) codes for plasma simulations with automatic post processing and generation of visual diagnostics.

  8. Plasma jets in the near-Earth's magnetotail (Julius Bartels Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Nakamura, Rumi

    2014-05-01

    The Earth's magnetosphere is formed as a consequence of the interaction between the magnetized solar wind and the terrestrial magnetic field. While the large-scale and average (>hours) properties of the Earth's magnetotail current sheet can be well described by overall solar wind-magnetosphere interaction, the most dramatic energy conversion process takes place in an explosive manner involving transient (up to several minutes) and localized (up to a few RE) phenomena in the plasma sheet/current sheet regions. One of the most clear observables of such processes are the localized and transient plasma jets called Bursty bulk flows (BBF), embedding velocity peaks of 1-min duration, which are called flow bursts. This talk is a review of the current understanding of these plasma jets by highlighting the results from multi-spacecraft observations by the Cluster and THEMIS spacecraft. The first four-spacecraft mission Cluster crossed the near-Earth plasma sheet with inter-spacecraft distance of about 250 km to 10000 km, ideal for studying local structures of the flow bursts. The five-spacecraft THEMIS mission , separated by larger distances , succeeded to monitor the large-scale evolution of the fast flows from the mid-tail to the inner magnetosphere. Multi-point observations of BBFS have established the importance of measuring local gradients of the fields and the plasma to understand the BBF structures such as the spatial scales and 3D structure of localized Earthward convecting flux tubes. Among others the magnetic field disturbance forming at the front of BBF, called dipolarization front (DF), has been intensively studied. From the propagation properties of DF relative to the flows and by comparing with ionospheric data, the evolution of the fast flows in terms of magnetosphere-ionospheric coupling through field-aligned currents are established. An important aspect of BBF is the interaction of the Earthward plasma jets and the Earth's dipole field. Multi-point observations combined with ground-based observations enabled to resolve how the BBFs are braked , diverted, or bounced back at the high-pressure gradient region. The multi-point capabilities in space enabled to study the BBF structure as well as large-scale evolution of BBFs. These processes are also universal processes in space plasmas and are, for example, associated with the reconnection process during the solar flares or leading to auroral phenomena at different planets.

  9. A transportable Paul-trap for levitation and accurate positioning of micron-scale particles in vacuum for laser-plasma experiments

    NASA Astrophysics Data System (ADS)

    Ostermayr, T. M.; Gebhard, J.; Haffa, D.; Kiefer, D.; Kreuzer, C.; Allinger, K.; Bömer, C.; Braenzel, J.; Schnürer, M.; Cermak, I.; Schreiber, J.; Hilz, P.

    2018-01-01

    We report on a Paul-trap system with large access angles that allows positioning of fully isolated micrometer-scale particles with micrometer precision as targets in high-intensity laser-plasma interactions. This paper summarizes theoretical and experimental concepts of the apparatus as well as supporting measurements that were performed for the trapping process of single particles.

  10. Numerical studies from quantum to macroscopic scales of carbon nanoparticules in hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Lombardi, Guillaume; Ngandjong, Alain; Mezei, Zsolt; Mougenot, Jonathan; Michau, Armelle; Hassouni, Khaled; Seydou, Mahamadou; Maurel, François

    2016-09-01

    Dusty plasmas take part in large scientific domains from Universe Science to nanomaterial synthesis processes. They are often generated by growth from molecular precursor. This growth leads to the formation of larger clusters which induce solid germs nucleation. Particle formed are described by an aerosol dynamic taking into account coagulation, molecular deposition and transport processes. These processes are controlled by the elementary particle. So there is a strong coupling between particle dynamics and plasma discharge equilibrium. This study is focused on the development of a multiscale physic and numeric model of hydrogen plasmas and carbon particles around three essential coupled axes to describe the various physical phenomena: (i) Macro/mesoscopic fluid modeling describing in an auto-coherent way, characteristics of the plasma, molecular clusters and aerosol behavior; (ii) the classic molecular dynamics offering a description to the scale molecular of the chains of chemical reactions and the phenomena of aggregation; (iii) the quantum chemistry to establish the activation barriers of the different processes driving the nanopoarticule formation.

  11. Sub-grid-scale description of turbulent magnetic reconnection in magnetohydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widmer, F., E-mail: widmer@mps.mpg.de; Institut für Astrophysik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen; Büchner, J.

    Magnetic reconnection requires, at least locally, a non-ideal plasma response. In collisionless space and astrophysical plasmas, turbulence could transport energy from large to small scales where binary particle collisions are rare. We have investigated the influence of small scale magnetohydrodynamics (MHD) turbulence on the reconnection rate in the framework of a compressible MHD approach including sub-grid-scale (SGS) turbulence. For this sake, we considered Harris-type and force-free current sheets with finite guide magnetic fields directed out of the reconnection plane. The goal is to find out whether unresolved by conventional simulations MHD turbulence can enhance the reconnection process in high-Reynolds-number astrophysicalmore » plasmas. Together with the MHD equations, we solve evolution equations for the SGS energy and cross-helicity due to turbulence according to a Reynolds-averaged turbulence model. The SGS turbulence is self-generated and -sustained through the inhomogeneities of the mean fields. By this way, the feedback of the unresolved turbulence into the MHD reconnection process is taken into account. It is shown that the turbulence controls the regimes of reconnection by its characteristic timescale τ{sub t}. The dependence on resistivity was investigated for large-Reynolds-number plasmas for Harris-type as well as force-free current sheets with guide field. We found that magnetic reconnection depends on the relation between the molecular and apparent effective turbulent resistivity. We found that the turbulence timescale τ{sub t} decides whether fast reconnection takes place or whether the stored energy is just diffused away to small scale turbulence. If the amount of energy transferred from large to small scales is enhanced, fast reconnection can take place. Energy spectra allowed us to characterize the different regimes of reconnection. It was found that reconnection is even faster for larger Reynolds numbers controlled by the molecular resistivity η, as long as the initial level of turbulence is not too large. This implies that turbulence plays an important role to reach the limit of fast reconnection in large Reynolds number plasmas even for smaller amounts of turbulence.« less

  12. Plasma physics of extreme astrophysical environments.

    PubMed

    Uzdensky, Dmitri A; Rightley, Shane

    2014-03-01

    Among the incredibly diverse variety of astrophysical objects, there are some that are characterized by very extreme physical conditions not encountered anywhere else in the Universe. Of special interest are ultra-magnetized systems that possess magnetic fields exceeding the critical quantum field of about 44 TG. There are basically only two classes of such objects: magnetars, whose magnetic activity is manifested, e.g., via their very short but intense gamma-ray flares, and central engines of supernovae (SNe) and gamma-ray bursts (GRBs)--the most powerful explosions in the modern Universe. Figuring out how these complex systems work necessarily requires understanding various plasma processes, both small-scale kinetic and large-scale magnetohydrodynamic (MHD), that govern their behavior. However, the presence of an ultra-strong magnetic field modifies the underlying basic physics to such a great extent that relying on conventional, classical plasma physics is often not justified. Instead, plasma-physical problems relevant to these extreme astrophysical environments call for constructing relativistic quantum plasma (RQP) physics based on quantum electrodynamics (QED). In this review, after briefly describing the astrophysical systems of interest and identifying some of the key plasma-physical problems important to them, we survey the recent progress in the development of such a theory. We first discuss the ways in which the presence of a super-critical field modifies the properties of vacuum and matter and then outline the basic theoretical framework for describing both non-relativistic and RQPs. We then turn to some specific astrophysical applications of relativistic QED plasma physics relevant to magnetar magnetospheres and to central engines of core-collapse SNe and long GRBs. Specifically, we discuss the propagation of light through a magnetar magnetosphere; large-scale MHD processes driving magnetar activity and responsible for jet launching and propagation in GRBs; energy-transport processes governing the thermodynamics of extreme plasma environments; micro-scale kinetic plasma processes important in the interaction of intense electric currents flowing through a magnetar magnetosphere with the neutron star surface; and magnetic reconnection of ultra-strong magnetic fields. Finally, we point out that future progress in applying RQP physics to real astrophysical problems will require the development of suitable numerical modeling capabilities.

  13. Density and temperature characterization of long-scale length, near-critical density controlled plasma produced from ultra-low density plastic foam

    PubMed Central

    Chen, S. N.; Iwawaki, T.; Morita, K.; Antici, P.; Baton, S. D.; Filippi, F.; Habara, H.; Nakatsutsumi, M.; Nicolaï , P.; Nazarov, W.; Rousseaux, C.; Starodubstev, M.; Tanaka, K. A.; Fuchs, J.

    2016-01-01

    The ability to produce long-scale length (i.e. millimeter scale-length), homogeneous plasmas is of interest in studying a wide range of fundamental plasma processes. We present here a validated experimental platform to create and diagnose uniform plasmas with a density close or above the critical density. The target consists of a polyimide tube filled with an ultra low-density plastic foam where it was heated by x-rays, produced by a long pulse laser irradiating a copper foil placed at one end of the tube. The density and temperature of the ionized foam was retrieved by using x-ray radiography and proton radiography was used to verify the uniformity of the plasma. Plasma temperatures of 5–10 eV and densities around 1021 cm−3 are measured. This well-characterized platform of uniform density and temperature plasma is of interest for experiments using large-scale laser platforms conducting High Energy Density Physics investigations. PMID:26923471

  14. Diamond deposition using a planar radio frequency inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Bozeman, S. P.; Tucker, D. A.; Stoner, B. R.; Glass, J. T.; Hooke, W. M.

    1995-06-01

    A planar radio frequency inductively coupled plasma has been used to deposit diamond onto scratched silicon. This plasma source has been developed recently for use in large area semiconductor processing and holds promise as a method for scale up of diamond growth reactors. Deposition occurs in an annulus which coincides with the area of most intense optical emission from the plasma. Well-faceted diamond particles are produced when the substrate is immersed in the plasma.

  15. Open-air direct current plasma jet: Scaling up, uniformity, and cellular control

    NASA Astrophysics Data System (ADS)

    Wu, S.; Wang, Z.; Huang, Q.; Lu, X.; Ostrikov, K.

    2012-10-01

    Atmospheric-pressure plasma jets are commonly used in many fields from medicine to nanotechnology, yet the issue of scaling the discharges up to larger areas without compromising the plasma uniformity remains a major challenge. In this paper, we demonstrate a homogenous cold air plasma glow with a large cross-section generated by a direct current power supply. There is no risk of glow-to-arc transitions, and the plasma glow appears uniform regardless of the gap between the nozzle and the surface being processed. Detailed studies show that both the position of the quartz tube and the gas flow rate can be used to control the plasma properties. Further investigation indicates that the residual charges trapped on the inner surface of the quartz tube may be responsible for the generation of the air plasma plume with a large cross-section. The spatially resolved optical emission spectroscopy reveals that the air plasma plume is uniform as it propagates out of the nozzle. The remarkable improvement of the plasma uniformity is used to improve the bio-compatibility of a glass coverslip over a reasonably large area. This improvement is demonstrated by a much more uniform and effective attachment and proliferation of human embryonic kidney 293 (HEK 293) cells on the plasma-treated surface.

  16. Coupling of RF antennas to large volume helicon plasma

    NASA Astrophysics Data System (ADS)

    Chang, Lei; Hu, Xinyue; Gao, Lei; Chen, Wei; Wu, Xianming; Sun, Xinfeng; Hu, Ning; Huang, Chongxiang

    2018-04-01

    Large volume helicon plasma sources are of particular interest for large scale semiconductor processing, high power plasma propulsion and recently plasma-material interaction under fusion conditions. This work is devoted to studying the coupling of four typical RF antennas to helicon plasma with infinite length and diameter of 0.5 m, and exploring its frequency dependence in the range of 13.56-70 MHz for coupling optimization. It is found that loop antenna is more efficient than half helix, Boswell and Nagoya III antennas for power absorption; radially parabolic density profile overwhelms Gaussian density profile in terms of antenna coupling for low-density plasma, but the superiority reverses for high-density plasma. Increasing the driving frequency results in power absorption more near plasma edge, but the overall power absorption increases with frequency. Perpendicular stream plots of wave magnetic field, wave electric field and perturbed current are also presented. This work can serve as an important reference for the experimental design of large volume helicon plasma source with high RF power.

  17. On the physics of electron ejection from laser-irradiated overdense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thévenet, M.; Vincenti, H.; Faure, J.

    2016-06-15

    Using 1D and 2D PIC simulations, we describe and model the backward ejection of electron bunches when a laser pulse reflects off an overdense plasma with a short density gradient on its front side. The dependence on the laser intensity and gradient scale length is studied. It is found that during each laser period, the incident laser pulse generates a large charge-separation field, or plasma capacitor, which accelerates an attosecond bunch of electrons toward vacuum. This process is maximized for short gradient scale lengths and collapses when the gradient scale length is comparable to the laser wavelength. We develop amore » model that reproduces the electron dynamics and the dependence on laser intensity and gradient scale length. This process is shown to be strongly linked with high harmonic generation via the Relativistic Oscillating Mirror mechanism.« less

  18. Investigation of large-area multicoil inductively coupled plasma sources using three-dimensional fluid model

    NASA Astrophysics Data System (ADS)

    Brcka, Jozef

    2016-07-01

    A multi inductively coupled plasma (ICP) system can be used to maintain the plasma uniformity and increase the area processed by a high-density plasma. This article presents a source in two different configurations. The distributed planar multi ICP (DM-ICP) source comprises individual ICP sources that are not overlapped and produce plasma independently. Mutual coupling of the ICPs may affect the distribution of the produced plasma. The integrated multicoil ICP (IMC-ICP) source consists of four low-inductance ICP antennas that are superimposed in an azimuthal manner. The identical geometry of the ICP coils was assumed in this work. Both configurations have highly asymmetric components. A three-dimensional (3D) plasma model of the multicoil ICP configurations with asymmetric features is used to investigate the plasma characteristics in a large chamber and the operation of the sources in inert and reactive gases. The feasibility of the computational calculation, the speed, and the computational resources of the coupled multiphysics solver are investigated in the framework of a large realistic geometry and complex reaction processes. It was determined that additional variables can be used to control large-area plasmas. Both configurations can form a plasma, that azimuthally moves in a controlled manner, the so-called “sweeping mode” (SM) or “polyphase mode” (PPM), and thus they have the potential for large-area and high-density plasma applications. The operation in the azimuthal mode has the potential to adjust the plasma distribution, the reaction chemistry, and increase or modulate the production of the radicals. The intrinsic asymmetry of the individual coils and their combined operation were investigated within a source assembly primarily in argon and CO gases. Limited investigations were also performed on operation in CH4 gas. The plasma parameters and the resulting chemistry are affected by the geometrical relation between individual antennas. The aim of this work is to incorporate the technological, computational, dimensional scaling, and reaction chemistry aspects of the plasma under one computational framework. The 3D simulation is utilized to geometrically scale up the reactive plasma that is produced by multiple ICP sources.

  19. FLARE (Facility for Laboratory Reconnection Experiments): A Major Next-Step for Laboratory Studies of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Prager, S.; Daughton, W. S.; Bale, S. D.; Carter, T. A.; Crocker, N.; Drake, J. F.; Egedal, J.; Sarff, J.; Wallace, J.; Belova, E.; Ellis, R.; Fox, W. R., II; Heitzenroeder, P.; Kalish, M.; Jara-Almonte, J.; Myers, C. E.; Que, W.; Ren, Y.; Titus, P.; Yamada, M.; Yoo, J.

    2014-12-01

    A new intermediate-scale plasma experiment, called the Facility for Laboratory Reconnection Experiments or FLARE, is under construction at Princeton as a joint project by five universities and two national labs to study magnetic reconnection in regimes directly relevant to space, solar and astrophysical plasmas. The currently existing small-scale experiments have been focusing on the single X-line reconnection process in plasmas either with small effective sizes or at low Lundquist numbers, both of which are typically very large in natural plasmas. These new regimes involve multiple X-lines as guided by a reconnection "phase diagram", in which different coupling mechanisms from the global system scale to the local dissipation scale are classified into different reconnection phases [H. Ji & W. Daughton, Phys. Plasmas 18, 111207 (2011)]. The design of the FLARE device is based on the existing Magnetic Reconnection Experiment (MRX) at Princeton (http://mrx.pppl.gov) and is to provide experimental access to the new phases involving multiple X-lines at large effective sizes and high Lundquist numbers, directly relevant to space and solar plasmas. The motivating major physics questions, the construction status, and the planned collaborative research especially with space and solar research communities will be discussed.

  20. FLARE (Facility for Laboratory Reconnection Experiments): A Major Next-Step for Laboratory Studies of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Ji, Hantao; Bhattacharjee, A.; Prager, S.; Daughton, W.; Bale, Stuart D.; Carter, T.; Crocker, N.; Drake, J.; Egedal, J.; Sarff, J.; Fox, W.; Jara-Almonte, J.; Myers, C.; Ren, Y.; Yamada, M.; Yoo, J.

    2015-04-01

    A new intermediate-scale plasma experiment, called the Facility for Laboratory Reconnection Experiments or FLARE (flare.pppl.gov), is under construction at Princeton as a joint project by five universities and two national labs to study magnetic reconnection in regimes directly relevant to heliophysical and astrophysical plasmas. The currently existing small-scale experiments have been focusing on the single X-line reconnection process in plasmas either with small effective sizes or at low Lundquist numbers, both of which are typically very large in natural plasmas. These new regimes involve multiple X-lines as guided by a reconnection "phase diagram", in which different coupling mechanisms from the global system scale to the local dissipation scale are classified into different reconnection phases [H. Ji & W. Daughton, Phys. Plasmas 18, 111207 (2011)]. The design of the FLARE device is based on the existing Magnetic Reconnection Experiment (MRX) (mrx.pppl.gov) and is to provide experimental access to the new phases involving multiple X-lines at large effective sizes and high Lundquist numbers, directly relevant to magnetospheric, solar wind, and solar coronal plasmas. After a brief summary of recent laboratory results on the topic of magnetic reconnection, the motivating major physics questions, the construction status, and the planned collaborative research especially with heliophysics communities will be discussed.

  1. Scalable graphene production: perspectives and challenges of plasma applications

    NASA Astrophysics Data System (ADS)

    Levchenko, Igor; Ostrikov, Kostya (Ken); Zheng, Jie; Li, Xingguo; Keidar, Michael; B. K. Teo, Kenneth

    2016-05-01

    Graphene, a newly discovered and extensively investigated material, has many unique and extraordinary properties which promise major technological advances in fields ranging from electronics to mechanical engineering and food production. Unfortunately, complex techniques and high production costs hinder commonplace applications. Scaling of existing graphene production techniques to the industrial level without compromising its properties is a current challenge. This article focuses on the perspectives and challenges of scalability, equipment, and technological perspectives of the plasma-based techniques which offer many unique possibilities for the synthesis of graphene and graphene-containing products. The plasma-based processes are amenable for scaling and could also be useful to enhance the controllability of the conventional chemical vapour deposition method and some other techniques, and to ensure a good quality of the produced graphene. We examine the unique features of the plasma-enhanced graphene production approaches, including the techniques based on inductively-coupled and arc discharges, in the context of their potential scaling to mass production following the generic scaling approaches applicable to the existing processes and systems. This work analyses a large amount of the recent literature on graphene production by various techniques and summarizes the results in a tabular form to provide a simple and convenient comparison of several available techniques. Our analysis reveals a significant potential of scalability for plasma-based technologies, based on the scaling-related process characteristics. Among other processes, a greater yield of 1 g × h-1 m-2 was reached for the arc discharge technology, whereas the other plasma-based techniques show process yields comparable to the neutral-gas based methods. Selected plasma-based techniques show lower energy consumption than in thermal CVD processes, and the ability to produce graphene flakes of various sizes reaching hundreds of square millimetres, and the thickness varying from a monolayer to 10-20 layers. Additional factors such as electrical voltage and current, not available in thermal CVD processes could potentially lead to better scalability, flexibility and control of the plasma-based processes. Advantages and disadvantages of various systems are also considered.

  2. Scalable graphene production: perspectives and challenges of plasma applications.

    PubMed

    Levchenko, Igor; Ostrikov, Kostya Ken; Zheng, Jie; Li, Xingguo; Keidar, Michael; B K Teo, Kenneth

    2016-05-19

    Graphene, a newly discovered and extensively investigated material, has many unique and extraordinary properties which promise major technological advances in fields ranging from electronics to mechanical engineering and food production. Unfortunately, complex techniques and high production costs hinder commonplace applications. Scaling of existing graphene production techniques to the industrial level without compromising its properties is a current challenge. This article focuses on the perspectives and challenges of scalability, equipment, and technological perspectives of the plasma-based techniques which offer many unique possibilities for the synthesis of graphene and graphene-containing products. The plasma-based processes are amenable for scaling and could also be useful to enhance the controllability of the conventional chemical vapour deposition method and some other techniques, and to ensure a good quality of the produced graphene. We examine the unique features of the plasma-enhanced graphene production approaches, including the techniques based on inductively-coupled and arc discharges, in the context of their potential scaling to mass production following the generic scaling approaches applicable to the existing processes and systems. This work analyses a large amount of the recent literature on graphene production by various techniques and summarizes the results in a tabular form to provide a simple and convenient comparison of several available techniques. Our analysis reveals a significant potential of scalability for plasma-based technologies, based on the scaling-related process characteristics. Among other processes, a greater yield of 1 g × h(-1) m(-2) was reached for the arc discharge technology, whereas the other plasma-based techniques show process yields comparable to the neutral-gas based methods. Selected plasma-based techniques show lower energy consumption than in thermal CVD processes, and the ability to produce graphene flakes of various sizes reaching hundreds of square millimetres, and the thickness varying from a monolayer to 10-20 layers. Additional factors such as electrical voltage and current, not available in thermal CVD processes could potentially lead to better scalability, flexibility and control of the plasma-based processes. Advantages and disadvantages of various systems are also considered.

  3. Energy Dissipation and Phase-Space Dynamics in Eulerian Vlasov-Maxwell Turbulence

    NASA Astrophysics Data System (ADS)

    Tenbarge, Jason; Juno, James; Hakim, Ammar

    2017-10-01

    Turbulence in a magnetized plasma is a primary mechanism responsible for transforming energy at large injection scales into small-scale motions, which are ultimately dissipated as heat in systems such as the solar corona, wind, and other astrophysical objects. At large scales, the turbulence is well described by fluid models of the plasma; however, understanding the processes responsible for heating a weakly collisional plasma such as the solar wind requires a kinetic description. We present a fully kinetic Eulerian Vlasov-Maxwell study of turbulence using the Gkeyll simulation framework, including studies of the cascade of energy in phase space and formation and dissipation of coherent structures. We also leverage the recently developed field-particle correlations to diagnose the dominant sources of dissipation and compare the results of the field-particle correlation to other dissipation measures. NSF SHINE AGS-1622306 and DOE DE-AC02-09CH11466.

  4. The cold and atmospheric-pressure air surface barrier discharge plasma for large-area sterilization applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Dacheng; Department of Aeronautics, Fujian Key Laboratory for Plasma and Magnetic Resonance, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005; Zhao Di

    2011-04-18

    This letter reports a stable air surface barrier discharge device for large-area sterilization applications at room temperature. This design may result in visually uniform plasmas with the electrode area scaled up (or down) to the required size. A comparison for the survival rates of Escherichia coli from air, N{sub 2} and O{sub 2} surface barrier discharge plasmas is presented, and the air surface plasma consisting of strong filamentary discharges can efficiently kill Escherichia coli. Optical emission measurements indicate that reactive species such as O and OH generated in the room temperature air plasmas play a significant role in the sterilizationmore » process.« less

  5. The Nonlinear Magnetosphere: Expressions in MHD and in Kinetic Models

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Birn, Joachim

    2011-01-01

    Like most plasma systems, the magnetosphere of the Earth is governed by nonlinear dynamic evolution equations. The impact of nonlinearities ranges from large scales, where overall dynamics features are exhibiting nonlinear behavior, to small scale, kinetic, processes, where nonlinear behavior governs, among others, energy conversion and dissipation. In this talk we present a select set of examples of such behavior, with a specific emphasis on how nonlinear effects manifest themselves in MHD and in kinetic models of magnetospheric plasma dynamics.

  6. Plasma Turbulence in Earth's Magnetotail Observed by the Magnetospheric Multiscale Mission

    NASA Astrophysics Data System (ADS)

    Mackler, D. A.; Avanov, L. A.; Boardsen, S. A.; Pollock, C. J.

    2017-12-01

    Magnetic reconnection, a process in which the magnetic topology undergoes multi-scale changes, is a significant mechanism for particle energization as well as energy dissipation. Reconnection is observed to occur in thin current sheets generated between two regions of magnetized plasma merging with a non-zero shear angle. Within a thinning current sheet, the dominant scale size approaches first the ion and then electron kinetic scale. The plasma becomes demagnetized, field lines transform, then once again the plasma becomes frozen-in. The reconnection process accelerates particles, leading to heated jets of plasma. Turbulence is another fundamental process in collision less plasmas. Despite decades of turbulence studies, an essential science question remains as to how turbulent energy dissipates at small scales by heating and accelerating particles. Turbulence in both plasmas and fluids has a fundamental property in that it follows an energy cascade into smaller scales. Energy introduced into a fluid or plasma can cause large scale motion, introducing vorticity, which merge and interact to make increasingly smaller eddies. It has been hypothesized that turbulent energy in magnetized plasmas may be dissipated by magnetic reconnection, just as viscosity dissipates energy in neutral fluid turbulence. The focus of this study is to use the new high temporal resolution suite of instruments on board the Magnetospheric MultiScale (MMS) mission to explore this hypothesis. An observable feature of the energy cascade in a turbulent magnetized plasma is its similarity to classical hydrodynamics in that the Power Spectral Density (PSD) of turbulent fluctuations follows a Kolmogorov-like power law (Image-5/3). We use highly accurate (0.1 nT) Flux Gate Magnetometer (FGM) data to derive the PSD as a function of frequency in the magnetic fluctuations. Given that we are able to confirm the turbulent nature of the flow field; we apply the method of Partial Variance of Increments (PVI) to search for localized gradient steepening where turbulent dissipation may be occurring. Additionally, we take advantage of multi-spacecraft observations to compute the current density in the turbulent region. This analysis is done over 15 contiguous burst periods on the afternoon of 6 July 2017, allowing a wide spectral range from 0.01-64 Hz.

  7. Plasma Turbulence in Earth's Magnetosheath Observed by the Magnetospheric Multiscale Mission over the First Sub-Solar Apogee Pass

    NASA Astrophysics Data System (ADS)

    Mackler, D. A.; Avanov, L. A.; Boardsen, S. A.; Giles, B. L.; Pollock, C.; Smith, S. E.; Uritsky, V. M.

    2016-12-01

    Magnetic reconnection, a process in which the magnetic topology undergoes multi-scale changes, is a significant mechanism for particle energization as well as energy dissipation. Reconnection is observed to occur in thin current sheets generated between two regions of magnetized plasma merging with a non-zero shear angle. Within a thinning current sheet, the dominant scale size approaches first the ion and then electron kinetic scale. The plasma becomes demagnetized, field lines transform, then once again the plasma becomes frozen-in. The reconnection process accelerates particles, leading to heated jets of plasma. Turbulence is another fundamental process in collisionless plasmas. Despite decades of turbulence studies, an essential science question remains as to how turbulent energy dissipates at small scales by heating and accelerating particles. Turbulence in both plasmas and fluids has a fundamental property in that it follows an energy cascade into smaller scales. Energy introduced into a fluid or plasma can cause large scale motion, introducing vorticity, which merge and interact to make increasingly smaller eddies. It has been hypothesized that turbulent energy in magnetized plasmas may be dissipated by magnetic reconnection, just as viscosity dissipates energy in neutral fluid turbulence. The focus of this study is to use the new high temporal resolution suite of instruments on board the Magnetospheric MultiScale (MMS) mission to explore this hypothesis. An observable feature of the energy cascade in a turbulent magnetized plasma is its similarity to classical hydrodynamics in that the Power Spectral Density (PSD) of turbulent fluctuations follows a Kolmogorov-like power law (f -5/3). We use highly accurate (0.1 nT) Flux Gate Magnetometer (FGM) data to derive the PSD as a function of frequency in the magnetic fluctuations. Given that we are able to confirm the turbulent nature of the flow field; we apply the method of Partial Variance of Increments (PVI) to search for localized gradient steepening where turbulent dissipation may be occurring. Additionally, we take advantage of multi-spacecraft observations to compute the current density in the turbulent region. This analysis is done over multiple burst periods during MMS' first sub-solar apogee pass from November 2015 to January 2016.

  8. Large-scale production and properties of human plasma-derived activated Factor VII concentrate.

    PubMed

    Tomokiyo, K; Yano, H; Imamura, M; Nakano, Y; Nakagaki, T; Ogata, Y; Terano, T; Miyamoto, S; Funatsu, A

    2003-01-01

    An activated Factor VII (FVIIa) concentrate, prepared from human plasma on a large scale, has to date not been available for clinical use for haemophiliacs with antibodies against FVIII and FIX. In the present study, we attempted to establish a large-scale manufacturing process to obtain plasma-derived FVIIa concentrate with high recovery and safety, and to characterize its biochemical and biological properties. FVII was purified from human cryoprecipitate-poor plasma, by a combination of anion exchange and immunoaffinity chromatography, using Ca2+-dependent anti-FVII monoclonal antibody. To activate FVII, a FVII preparation that was nanofiltered using a Bemberg Microporous Membrane-15 nm was partially converted to FVIIa by autoactivation on an anion-exchange resin. The residual FVII in the FVII and FVIIa mixture was completely activated by further incubating the mixture in the presence of Ca2+ for 18 h at 10 degrees C, without any additional activators. For preparation of the FVIIa concentrate, after dialysis of FVIIa against 20 mm citrate, pH 6.9, containing 13 mm glycine and 240 mm NaCl, the FVIIa preparation was supplemented with 2.5% human albumin (which was first pasteurized at 60 degrees C for 10 h) and lyophilized in vials. To inactivate viruses contaminating the FVIIa concentrate, the lyophilized product was further heated at 65 degrees C for 96 h in a water bath. Total recovery of FVII from 15 000 l of plasma was approximately 40%, and the FVII preparation was fully converted to FVIIa with trace amounts of degraded products (FVIIabeta and FVIIagamma). The specific activity of the FVIIa was approximately 40 U/ micro g. Furthermore, virus-spiking tests demonstrated that immunoaffinity chromatography, nanofiltration and dry-heating effectively removed and inactivated the spiked viruses in the FVIIa. These results indicated that the FVIIa concentrate had both high specific activity and safety. We established a large-scale manufacturing process of human plasma-derived FVIIa concentrate with a high yield, making it possible to provide sufficient FVIIa concentrate for use in haemophiliacs with inhibitory antibodies.

  9. Influence of the normal modes on the plasma uniformity in large scale CCP reactors

    NASA Astrophysics Data System (ADS)

    Eremin, Denis; Brinkmann, Ralf Peter; Mussenbrock, Thomas; Lane, Barton; Matsukuma, Masaaki; Ventzek, Peter

    2016-09-01

    Large scale capacitively coupled plasmas (CCP) driven by sources with high frequency components often exhibit phenomena which are absent in relatively well understood small scale CCPs driven at low frequencies. Of particular interest are such phenomena which affect discharge parameters of direct relevance to the plasma processing applications. One of such parameters is plasma uniformity. By using a self-consistent 2d3v Particle-in-cell/Monte-Carlo (PIC/MCC) code parallelized on GPU we have been able to show that uniformity of the plasma generated is influenced predominantly by two factors, the ionization pattern caused by high-energy electrons and the average temperature of low-energy plasma electrons. The heating mechanisms for these two groups of electrons appear to be different leading to different transversal (radial) profiles of the corresponding factors, which is well captured by the kinetic PIC/MCC code. We find that the heating mechanisms are intrinsically connected with excitation of normal modes inherent to a plasma-filled CCP reactor. In this work we study the wave nature of these phenomena, such as their excitation, propagation, and interaction with electrons. Supported by SFB-TR 87 project of the German Research Foundation and by the ``Experimental and numerical analysis of very high frequency capacitively coupled plasma discharges'' mutual research project between RUB and Tokyo Electron Ltd.

  10. A new approach to plasmasphere refilling: Anomalous plasma effects

    NASA Technical Reports Server (NTRS)

    Singh, N.

    1991-01-01

    During the last 10 months of the grant, both laminar and anomalous plasma processes occurring during the refilling of the outer plasmasphere after magnetic storms are investigated. Theoretical investigations were based on two types of models: (1) two-stream hydrodynamic model in which plasma flows from the conjugate ionospheres are treated as separate fluids and the ion temperature anisotropies are treated self-consistently; and (2) large-scale particle-in-cell code.

  11. Engaging high school students as plasma science outreach ambassadors

    NASA Astrophysics Data System (ADS)

    Wendt, Amy; Boffard, John

    2017-10-01

    Exposure to plasma science among future scientists and engineers is haphazard. In the U.S., plasma science is rare (or absent) in mainstream high school and introductory college physics curricula. As a result, talented students may be drawn to other careers simply due to a lack of awareness of the stimulating science and wide array of fulfilling career opportunities involving plasmas. In the interest of enabling informed decisions about career options, we have initiated an outreach collaboration with the Madison West High School Rocket Club. Rocket Club members regularly exhibit their activities at public venues, including large-scale expos that draw large audiences of all ages. Building on their historical emphasis on small scale rockets with chemical motors, we worked with the group to add a new feature to their exhibit that highlights plasma-based spacecraft propulsion for interplanetary probes. This new exhibit includes a model satellite with a working (low power) plasma thruster. The participating high school students led the development process, to be described, and enthusiastically learned to articulate concepts related to plasma thruster operation and to compare the relative advantages of chemical vs. plasma/electrical propulsion systems for different scenarios. Supported by NSF Grant PHY-1617602.

  12. X6.9-CLASS FLARE-INDUCED VERTICAL KINK OSCILLATIONS IN A LARGE-SCALE PLASMA CURTAIN AS OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY/ATMOSPHERIC IMAGING ASSEMBLY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, A. K.; Goossens, M.

    2013-11-01

    We present rare observational evidence of vertical kink oscillations in a laminar and diffused large-scale plasma curtain as observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. The X6.9-class flare in active region 11263 on 2011 August 9 induces a global large-scale disturbance that propagates in a narrow lane above the plasma curtain and creates a low density region that appears as a dimming in the observational image data. This large-scale propagating disturbance acts as a non-periodic driver that interacts asymmetrically and obliquely with the top of the plasma curtain and triggers the observed oscillations. In themore » deeper layers of the curtain, we find evidence of vertical kink oscillations with two periods (795 s and 530 s). On the magnetic surface of the curtain where the density is inhomogeneous due to coronal dimming, non-decaying vertical oscillations are also observed (period ≈ 763-896 s). We infer that the global large-scale disturbance triggers vertical kink oscillations in the deeper layers as well as on the surface of the large-scale plasma curtain. The properties of the excited waves strongly depend on the local plasma and magnetic field conditions.« less

  13. Kinetic Simulations of the Interruption of Large-Amplitude Shear-Alfvén Waves in a High- β Plasma

    DOE PAGES

    Squire, J.; Kunz, M. W.; Quataert, E.; ...

    2017-10-12

    Using two-dimensional hybrid-kinetic simulations, we explore the nonlinear “interruption” of standing and traveling shear-Alfvén waves in collisionless plasmas. Interruption involves a self-generated pressure anisotropy removing the restoring force of a linearly polarized Alfvénic perturbation, and occurs for wave amplitudes δB ⊥/B 0≳β –1/2 (where β is the ratio of thermal to magnetic pressure). We use highly elongated domains to obtain maximal scale separation between the wave and the ion gyroscale. For standing waves above the amplitude limit, we find that the large-scale magnetic field of the wave decays rapidly. The dynamics are strongly affected by the excitation of oblique firehosemore » modes, which transition into long-lived parallel fluctuations at the ion gyroscale and cause significant particle scattering. Traveling waves are damped more slowly, but are also influenced by small-scale parallel fluctuations created by the decay of firehose modes. Our results demonstrate that collisionless plasmas cannot support linearly polarized Alfvén waves above δB ⊥/B 0~β –1/2. Here, they also provide a vivid illustration of two key aspects of low-collisionality plasma dynamics: (i) the importance of velocity-space instabilities in regulating plasma dynamics at high β, and (ii) how nonlinear collisionless processes can transfer mechanical energy directly from the largest scales into thermal energy and microscale fluctuations, without the need for a scale-by-scale turbulent cascade.« less

  14. Kinetic Simulations of the Interruption of Large-Amplitude Shear-Alfvén Waves in a High- β Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Squire, J.; Kunz, M. W.; Quataert, E.

    Using two-dimensional hybrid-kinetic simulations, we explore the nonlinear “interruption” of standing and traveling shear-Alfvén waves in collisionless plasmas. Interruption involves a self-generated pressure anisotropy removing the restoring force of a linearly polarized Alfvénic perturbation, and occurs for wave amplitudes δB ⊥/B 0≳β –1/2 (where β is the ratio of thermal to magnetic pressure). We use highly elongated domains to obtain maximal scale separation between the wave and the ion gyroscale. For standing waves above the amplitude limit, we find that the large-scale magnetic field of the wave decays rapidly. The dynamics are strongly affected by the excitation of oblique firehosemore » modes, which transition into long-lived parallel fluctuations at the ion gyroscale and cause significant particle scattering. Traveling waves are damped more slowly, but are also influenced by small-scale parallel fluctuations created by the decay of firehose modes. Our results demonstrate that collisionless plasmas cannot support linearly polarized Alfvén waves above δB ⊥/B 0~β –1/2. Here, they also provide a vivid illustration of two key aspects of low-collisionality plasma dynamics: (i) the importance of velocity-space instabilities in regulating plasma dynamics at high β, and (ii) how nonlinear collisionless processes can transfer mechanical energy directly from the largest scales into thermal energy and microscale fluctuations, without the need for a scale-by-scale turbulent cascade.« less

  15. Evolution of auroral acceleration region field-aligned current systems, plasma, and potentials observed by Cluster during substorms

    NASA Astrophysics Data System (ADS)

    Hull, A. J.; Chaston, C. C.; Fillingim, M. O.; Frey, H. U.; Goldstein, M. L.; Bonnell, J. W.; Mozer, F.

    2015-12-01

    The auroral acceleration region is an integral link in the chain of events that transpire during substorms, and the currents, plasma and electric fields undergo significant changes driven by complex dynamical processes deep in the magnetotail. The acceleration processes that occur therein accelerate and heat the plasma that ultimately leads to some of the most intense global substorm auroral displays. Though this region has garnered considerable attention, the temporal evolution of field-aligned current systems, associated acceleration processes, and resultant changes in the plasma constituents that occur during key stages of substorm development remain unclear. In this study we present a survey of Cluster traversals within and just above the auroral acceleration region (≤3 Re altitude) during substorms. Particular emphasis is on the spatial morphology and developmental sequence of auroral acceleration current systems, potentials and plasma constituents, with the aim of identifying controlling factors, and assessing auroral emmission consequences. Exploiting multi-point measurements from Cluster in combination with auroral imaging, we reveal the injection powered, Alfvenic nature of both the substorm onset and expansion of auroral particle acceleration. We show evidence that indicates substorm onsets are characterized by the gross-intensification and filamentation/striation of pre-existing large-scale current systems to smaller/dispersive scale Alfven waves. Such an evolutionary sequence has been suggested in theoretical models or single spacecraft data, but has not been demonstrated or characterized in multispacecraft observations until now. It is also shown how the Alfvenic variations over time may dissipate to form large-scale inverted-V structures characteristic of the quasi-static aurora. These findings suggest that, in addition to playing active roles in driving substorm aurora, inverted-V and Alfvenic acceleration processes are causally linked. Key elements of substorm current spatial structure and temporal development, relationship to electric fields/potentials, plasma moment and distribution features, causal linkages to auroral emission features, and other properties will be discussed.

  16. Thermal runaway of metal nano-tips during intense electron emission

    NASA Astrophysics Data System (ADS)

    Kyritsakis, A.; Veske, M.; Eimre, K.; Zadin, V.; Djurabekova, F.

    2018-06-01

    When an electron emitting tip is subjected to very high electric fields, plasma forms even under ultra high vacuum conditions. This phenomenon, known as vacuum arc, causes catastrophic surface modifications and constitutes a major limiting factor not only for modern electron sources, but also for many large-scale applications such as particle accelerators, fusion reactors etc. Although vacuum arcs have been studied thoroughly, the physical mechanisms that lead from intense electron emission to plasma ignition are still unclear. In this article, we give insights to the atomic scale processes taking place in metal nanotips under intense field emission conditions. We use multi-scale atomistic simulations that concurrently include field-induced forces, electron emission with finite-size and space-charge effects, Nottingham and Joule heating. We find that when a sufficiently high electric field is applied to the tip, the emission-generated heat partially melts it and the field-induced force elongates and sharpens it. This initiates a positive feedback thermal runaway process, which eventually causes evaporation of large fractions of the tip. The reported mechanism can explain the origin of neutral atoms necessary to initiate plasma, a missing key process required to explain the ignition of a vacuum arc. Our simulations provide a quantitative description of in the conditions leading to runaway, which shall be valuable for both field emission applications and vacuum arc studies.

  17. Unifying Theory of Low-Energy Nuclear Reaction and Transmutation Processes in Deuterated/hydrogenated Metals, Acoustic Cavitation, Glow Discharge, and Deuteron Beam Experiments

    NASA Astrophysics Data System (ADS)

    Kim, Yeong E.; Zubarev, Alexander L.

    The most basic theoretical challenge for understanding low-energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which the large Coulomb barrier between fusing nuclei can be overcome. A unifying theory of LENR and LETR has been developed to provide possible mechanisms for the LENR and LETR processes in matters based on high-density nano-scale and micro-scale quantum plasmas. It is shown that recently developed theoretical models based on Bose-Einstein Fusion (BEF) mechanism and Quantum Plasma Nuclear Fusion (QPNF) mechanism are applicable to the results of many different types of LENR and LETR experiments.

  18. High voltage system: Plasma interaction summary

    NASA Technical Reports Server (NTRS)

    Stevens, N. John

    1986-01-01

    The possible interactions that could exist between a high voltage system and the space plasma environment are reviewed. A solar array is used as an example of such a system. The emphasis in this review is on the discrepancies that exist in this technology in both flight and ground experiment data. It has been found that, in ground testing, there are facility effects, cell size effects and area scaling uncertainties. For space applications there are area scaling and discharge concerns for an array as well as the influence of the large space structures on the collection process. There are still considerable uncertainties in the high voltage-space plasma interaction technology even after several years of effort.

  19. The Center for Multiscale Plasma Dynamics, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gombosi, Tamas I.

    The University of Michigan participated in the joint UCLA/Maryland fusion science center focused on plasma physics problems for which the traditional separation of the dynamics into microscale and macroscale processes breaks down. These processes involve large scale flows and magnetic fields tightly coupled to the small scale, kinetic dynamics of turbulence, particle acceleration and energy cascade. The interaction between these vastly disparate scales controls the evolution of the system. The enormous range of temporal and spatial scales associated with these problems renders direct simulation intractable even in computations that use the largest existing parallel computers. Our efforts focused on twomore » main problems: the development of Hall MHD solvers on solution adaptive grids and the development of solution adaptive grids using generalized coordinates so that the proper geometry of inertial confinement can be taken into account and efficient refinement strategies can be obtained.« less

  20. Preface: MHD wave phenomena in the solar interior and atmosphere

    NASA Astrophysics Data System (ADS)

    Fedun, Viktor; Srivastava, A. K.

    2018-01-01

    The Sun is our nearest star and this star produces various plasma wave processes and energetic events. These phenomena strongly influence interplanetary plasma dynamics and contribute to space-weather. The understanding of solar atmospheric dynamics requires hi-resolution modern observations which, in turn, further advances theoretical models of physical processes in the solar interior and atmosphere. In particular, it is essential to connect the magnetohydrodynamic (MHD) wave processes with the small and large-scale solar phenomena vis-a-vis transport of energy and mass. With the advent of currently available and upcoming high-resolution space (e.g., IRIS, SDO, Hinode, Aditya-L1, Solar-C, Solar Orbiter), and ground-based (e.g., SST, ROSA, NLST, Hi-C, DKIST, EST, COSMO) observations, solar physicists are able to explore exclusive wave processes in various solar magnetic structures at different spatio-temporal scales.

  1. Nonlinear excitation of long-wavelength modes in Hall plasmas

    NASA Astrophysics Data System (ADS)

    Lakhin, V. P.; Ilgisonis, V. I.; Smolyakov, A. I.; Sorokina, E. A.

    2016-10-01

    Hall plasmas with magnetized electrons and unmagnetized ions exhibit a wide range of small scale fluctuations in the lower-hybrid frequency range as well as low-frequency large scale modes. Modulational instability of lower-hybrid frequency modes is investigated in this work for typical conditions in Hall plasma devices such as magnetrons and Hall thrusters. In these conditions, the dispersion of the waves in the lower-hybrid frequency range propagating perpendicular to the external magnetic field is due to the gradients of the magnetic field and the plasma density. It is shown that such lower-hybrid modes are unstable with respect to the secondary instability of the large scale quasimode perturbations. It is suggested that the large scale slow coherent modes observed in a number of Hall plasma devices may be explained as a result of such secondary instabilities.

  2. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    NASA Astrophysics Data System (ADS)

    Li, Lee; Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-01

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  3. Large-scale inference of protein tissue origin in gram-positive sepsis plasma using quantitative targeted proteomics

    PubMed Central

    Malmström, Erik; Kilsgård, Ola; Hauri, Simon; Smeds, Emanuel; Herwald, Heiko; Malmström, Lars; Malmström, Johan

    2016-01-01

    The plasma proteome is highly dynamic and variable, composed of proteins derived from surrounding tissues and cells. To investigate the complex processes that control the composition of the plasma proteome, we developed a mass spectrometry-based proteomics strategy to infer the origin of proteins detected in murine plasma. The strategy relies on the construction of a comprehensive protein tissue atlas from cells and highly vascularized organs using shotgun mass spectrometry. The protein tissue atlas was transformed to a spectral library for highly reproducible quantification of tissue-specific proteins directly in plasma using SWATH-like data-independent mass spectrometry analysis. We show that the method can determine drastic changes of tissue-specific protein profiles in blood plasma from mouse animal models with sepsis. The strategy can be extended to several other species advancing our understanding of the complex processes that contribute to the plasma proteome dynamics. PMID:26732734

  4. Streamers and their applications

    NASA Astrophysics Data System (ADS)

    Pemen, A. J. M.

    2011-10-01

    In this invited lecture we give an overview of our 15 years of experience on streamer plasma research. Efforts are directed to integrating the competence areas of plasma physics, pulsed power technology and chemical processing. The current status is the development of a large scale pulsed corona system for gas treatment. Applications on biogas conditioning, VOC removal, odor abatement and control of traffic emissions have been demonstrated. Detailed research on electrical and chemical processes resulted in a boost of efficiencies. Energy transfer efficiency to the plasma was raised to above 90%. Simultaneous improvement of the plasma chemistry resulted in a highly efficient radical generation: O-radical production up to 50% of the theoretical maximum has been achieved. A major challenge in pulsed power driven streamers is to unravel, understand and ultimately control the complex interactions between the transient plasma, electrical circuits, and process. Even more a challenge is to yield electron energies that fit activation energies of the process. We will discuss our ideas on adjusting pulsed power waveforms and plasma reactor settings to obtain more controlled catalytic processing: the ``Chemical Transistor'' concept.

  5. Hydrogen Plasma Processing of Iron Ore

    NASA Astrophysics Data System (ADS)

    Sabat, Kali Charan; Murphy, Anthony B.

    2017-06-01

    Iron is currently produced by carbothermic reduction of oxide ores. This is a multiple-stage process that requires large-scale equipment and high capital investment, and produces large amounts of CO2. An alternative to carbothermic reduction is reduction using a hydrogen plasma, which comprises vibrationally excited molecular, atomic, and ionic states of hydrogen, all of which can reduce iron oxides, even at low temperatures. Besides the thermodynamic and kinetic advantages of a hydrogen plasma, the byproduct of the reaction is water, which does not pose any environmental problems. A review of the theory and practice of iron ore reduction using a hydrogen plasma is presented. The thermodynamic and kinetic aspects are considered, with molecular, atomic and ionic hydrogen considered separately. The importance of vibrationally excited hydrogen molecules in overcoming the activation energy barriers, and in transferring energy to the iron oxide, is emphasized. Both thermal and nonthermal plasmas are considered. The thermophysical properties of hydrogen and argon-hydrogen plasmas are discussed, and their influence on the constriction and flow in the of arc plasmas is considered. The published R&D on hydrogen plasma reduction of iron oxide is reviewed, with both the reduction of molten iron ore and in-flight reduction of iron ore particles being considered. Finally, the technical and economic feasibility of the process are discussed. It is shown that hydrogen plasma processing requires less energy than carbothermic reduction, mainly because pelletization, sintering, and cokemaking are not required. Moreover, the formation of the greenhouse gas CO2 as a byproduct is avoided. In-flight reduction has the potential for a throughput at least equivalent to the blast furnace process. It is concluded that hydrogen plasma reduction of iron ore is a potentially attractive alternative to standard methods.

  6. Simulations of Dynamo and Magnetorotational Instability in Madison Plasma Experiments and Astrophysical Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebrahimi, Fatima

    Magnetic fields are observed to exist on all scales in many astrophysical sources such as stars, galaxies, and accretion discs. Understanding the origin of large scale magnetic fields, whereby the field emerges on spatial scales large compared to the fluctuations, has been a particularly long standing challenge. Our physics objective are: 1) what are the minimum ingredients for large-scale dynamo growth? 2) could a large-scale magnetic field grow out of turbulence and sustained despite the presence of dissipation? These questions are fundamental for understanding the large-scale dynamo in both laboratory and astrophysical plasmas. Here, we report major new findings inmore » the area of Large-Scale Dynamo (magnetic field generation).« less

  7. Transport induced by large scale convective structures in a dipole-confined plasma.

    PubMed

    Grierson, B A; Mauel, M E; Worstell, M W; Klassen, M

    2010-11-12

    Convective structures characterized by E×B motion are observed in a dipole-confined plasma. Particle transport rates are calculated from density dynamics obtained from multipoint measurements and the reconstructed electrostatic potential. The calculated transport rates determined from the large-scale dynamics and local probe measurements agree in magnitude, show intermittency, and indicate that the particle transport is dominated by large-scale convective structures.

  8. The mosaic structure of plasma bulk flows in the Earth's magnetotail

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M.; Richard, R. L.; Zelenyi, L. M.; Peroomian, V.; Bosqued, J. M.

    1995-01-01

    Moments of plasma distributions observed in the magnetotail vary with different time scales. In this paper we attempt to explain the observed variability on intermediate timescales of approximately 10-20 min that result from the simultaneous energization and spatial structuring of solar wind plasma in the distant magnetotail. These processes stimulate the formation of a system of spatially disjointed. highly accelerated filaments (beamlets) in the tail. We use the results from large-scale kinetic modeling of magnetotail formation from a plasma mantle source to calculate moments of ion distribution functions throughout the tail. Statistical restrictions related to the limited number of particles in our system naturally reduce the spatial resolution of our results, but we show that our model is valid on intermediate spatial scales Delta(x) x Delta(z) equal to approximately 1 R(sub E) x 1000 km. For these spatial scales the resulting pattern, which resembles a mosaic, appears to be quite variable. The complexity of the pattern is related to the spatial interference between beamlets accelerated at various locations within the distant tail which mirror in the strong near-Earth magnetic field. Global motion of the magnetotail results in the displacement of spacecraft with respect to this mosaic pattern and can produce variations in all of the moments (especially the x-component of the bulk velocity) on intermediate timescales. The results obtained enable us to view the magnetotail plasma as consisting of two different populations: a tailward-Earthward system of highly accelerated beamlets interfering with each other, and an energized quasithermal population which gradually builds as the Earth is approached. In the near-Earth tail, these populations merge into a hot quasi-isotropic ion population typical of the near-Earth plasma sheet. The transformation of plasma sheet boundary layer (PSBL) beam energy into central plasma sheet (CPS) quasi-thermal energy occurs in the absence of collisions or noise. This paper also clarifies the relationship between the global scale where an MHD description might be appropriate and the lower intermediate scales where MHD fails and large-scale kinetic theory should be used.

  9. A link between nonlinear self-organization and dissipation in drift-wave turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manz, P.; Birkenmeier, G.; Stroth, U.

    Structure formation and self-organization in two-dimensional drift-wave turbulence show up in many different faces. Fluctuation data from a magnetized plasma are analyzed and three mechanisms transferring kinetic energy to large-scale structures are identified. Beside the common vortex merger, clustering of vortices constituting a large-scale strain field and vortex thinning, where due to the interactions of vortices of different scales larger vortices are amplified by the smaller ones, are observed. The vortex thinning mechanism appears to be the most efficient one to generate large scale structures in drift-wave turbulence. Vortex merging as well as vortex clustering are accompanied by strong energymore » transfer to small-scale noncoherent fluctuations (dissipation) balancing the negative entropy generation due to the self-organization process.« less

  10. Non-Potential Magnetic Fields and Magnetic Reconnection In Low Collisional Plasmas-Discovery of Solar EUV Mini-Sigmoids and Development of Novel In-Space Propulsion Systems

    NASA Astrophysics Data System (ADS)

    Chesny, David

    Magnetic reconnection is the source of many of the most powerful explosions of astrophysical plasmas in the universe. Blazars, magnetars, stellar atmospheres, and planetary magnetic fields have all been shown to be primary sites of strong reconnection events. For studying the fundamental physics behind this process, the solar atmosphere is our most accessible laboratory setting. Magnetic reconnection resulting from non-potential fields leads to plasma heating and particle acceleration, often in the form of explosive activity, contributing to coronal heating and the solar wind. Large-scale non-potential (sigmoid) fields in the solar atmosphere are poorly understood due to their crowded neighborhoods. For the first time, small-scale, non-potential loop structures have been observed in quiet Sun EUV observations. Fourteen unique mini-sigmoid events and three diffuse non-potential loops have been discovered, suggesting a multi-scaled self-similarity in the sigmoid formation process. These events are on the order of 10 arcseconds in length and do not appear in X-ray emissions, where large-scale sigmoids are well documented. We have discovered the first evidence of sigmoidal structuring in EUV bright point phenomena, which are prolific events in the solar atmosphere. Observations of these mini-sigmoids suggest that they are being formed via tether-cutting reconnection, a process observed to occur at active region scales. Thus, tether-cutting is suggested to be ubiquitous throughout the solar atmosphere. These dynamics are shown to be a function of the free magnetic energy in the quiet Sun network. Recently, the reconnection process has been reproduced in Earth-based laboratory tokamaks. Easily achievable magnetic field configurations can induce reconnection and result in ion acceleration. Here, magnetic reconnection is utilized as the plasma acceleration mechanism for a theoretical propulsion system. The theory of torsional spine reconnection is shown to result in ion velocities of > 3000 km s-1 and thrusts on the order of 3-15 N. As current in-use ion propulsion technology can only achieve ˜ 30 km s-1, the proposed design can substantially increase thrust on a spacecraft and provide for fast manned interplanetary travel.

  11. Collective backscattering of gyrotron radiation by small-scale plasma density fluctuations in large helical device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharchev, Nikolay; Batanov, German; Petrov, Alexandr

    2008-10-15

    A version of the collective backscattering diagnostic using gyrotron radiation for small-scale turbulence is described. The diagnostic is used to measure small-scale (k{sub s}{approx_equal}34 cm{sup -1}) plasma density fluctuations in large helical device experiments on the electron cyclotron heating of plasma with the use of 200 kW 82.7 GHz heating gyrotron. A good signal to noise ratio during plasma production phase was obtained, while contamination of stray light increased during plasma build-up phase. The effect of the stray radiation was investigated. The available quasioptical system of the heating system was utilized for this purpose.

  12. Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath

    NASA Astrophysics Data System (ADS)

    Phan, T. D.; Eastwood, J. P.; Shay, M. A.; Drake, J. F.; Sonnerup, B. U. Ö.; Fujimoto, M.; Cassak, P. A.; Øieroset, M.; Burch, J. L.; Torbert, R. B.; Rager, A. C.; Dorelli, J. C.; Gershman, D. J.; Pollock, C.; Pyakurel, P. S.; Haggerty, C. C.; Khotyaintsev, Y.; Lavraud, B.; Saito, Y.; Oka, M.; Ergun, R. E.; Retino, A.; Le Contel, O.; Argall, M. R.; Giles, B. L.; Moore, T. E.; Wilder, F. D.; Strangeway, R. J.; Russell, C. T.; Lindqvist, P. A.; Magnes, W.

    2018-05-01

    Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region1,2. On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed3-5. Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region6. In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales7-11. However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.

  13. Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath.

    PubMed

    Phan, T D; Eastwood, J P; Shay, M A; Drake, J F; Sonnerup, B U Ö; Fujimoto, M; Cassak, P A; Øieroset, M; Burch, J L; Torbert, R B; Rager, A C; Dorelli, J C; Gershman, D J; Pollock, C; Pyakurel, P S; Haggerty, C C; Khotyaintsev, Y; Lavraud, B; Saito, Y; Oka, M; Ergun, R E; Retino, A; Le Contel, O; Argall, M R; Giles, B L; Moore, T E; Wilder, F D; Strangeway, R J; Russell, C T; Lindqvist, P A; Magnes, W

    2018-05-01

    Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region 1,2 . On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed 3-5 . Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region 6 . In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales 7-11 . However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.

  14. The plasma separation process as a pre-cursor for large scale radioisotope production

    NASA Astrophysics Data System (ADS)

    Stevenson, Nigel R.

    2001-07-01

    Radioisotope production generally employs either accelerators or reactors to convert stable (usually enriched) isotopes into the desired product species. Radioisotopes have applications in industry, environmental sciences, and most significantly in medicine. The production of many potentially useful radioisotopes is significantly hindered by the lack of availability or by the high cost of key enriched stable isotopes. To try and meet this demand, certain niche enrichment processes have been developed and commercialized. Calutrons, centrifuges, and laser separation processes are some of the devices and techniques being employed to produce large quantities of selective enriched stable isotopes. Nevertheless, the list of enriched stable isotopes in sufficient quantities remains rather limited and this continues to restrict the availability of many radioisotopes that otherwise could have a significant impact on society. The Plasma Separation Process is a newly available commercial technique for producing large quantities of a wide range of enriched isotopes and thereby holds promise of being able to open the door to producing new and exciting applications of radioisotopes in the future.

  15. EIDOSCOPE: particle acceleration at plasma boundaries

    NASA Astrophysics Data System (ADS)

    Vaivads, A.; Andersson, G.; Bale, S. D.; Cully, C. M.; De Keyser, J.; Fujimoto, M.; Grahn, S.; Haaland, S.; Ji, H.; Khotyaintsev, Yu. V.; Lazarian, A.; Lavraud, B.; Mann, I. R.; Nakamura, R.; Nakamura, T. K. M.; Narita, Y.; Retinò, A.; Sahraoui, F.; Schekochihin, A.; Schwartz, S. J.; Shinohara, I.; Sorriso-Valvo, L.

    2012-04-01

    We describe the mission concept of how ESA can make a major contribution to the Japanese Canadian multi-spacecraft mission SCOPE by adding one cost-effective spacecraft EIDO (Electron and Ion Dynamics Observatory), which has a comprehensive and optimized plasma payload to address the physics of particle acceleration. The combined mission EIDOSCOPE will distinguish amongst and quantify the governing processes of particle acceleration at several important plasma boundaries and their associated boundary layers: collisionless shocks, plasma jet fronts, thin current sheets and turbulent boundary layers. Particle acceleration and associated cross-scale coupling is one of the key outstanding topics to be addressed in the Plasma Universe. The very important science questions that only the combined EIDOSCOPE mission will be able to tackle are: 1) Quantitatively, what are the processes and efficiencies with which both electrons and ions are selectively injected and subsequently accelerated by collisionless shocks? 2) How does small-scale electron and ion acceleration at jet fronts due to kinetic processes couple simultaneously to large scale acceleration due to fluid (MHD) mechanisms? 3) How does multi-scale coupling govern acceleration mechanisms at electron, ion and fluid scales in thin current sheets? 4) How do particle acceleration processes inside turbulent boundary layers depend on turbulence properties at ion/electron scales? EIDO particle instruments are capable of resolving full 3D particle distribution functions in both thermal and suprathermal regimes and at high enough temporal resolution to resolve the relevant scales even in very dynamic plasma processes. The EIDO spin axis is designed to be sun-pointing, allowing EIDO to carry out the most sensitive electric field measurements ever accomplished in the outer magnetosphere. Combined with a nearby SCOPE Far Daughter satellite, EIDO will form a second pair (in addition to SCOPE Mother-Near Daughter) of closely separated satellites that provides the unique capability to measure the 3D electric field with high accuracy and sensitivity. All EIDO instrumentation are state-of-the-art technology with heritage from many recent missions. The EIDOSCOPE orbit will be close to equatorial with apogee 25-30 RE and perigee 8-10 RE. In the course of one year the orbit will cross all the major plasma boundaries in the outer magnetosphere; bow shock, magnetopause and magnetotail current sheets, jet fronts and turbulent boundary layers. EIDO offers excellent cost/benefits for ESA, as for only a fraction of an M-class mission cost ESA can become an integral part of a major multi-agency L-class level mission that addresses outstanding science questions for the benefit of the European science community.

  16. Micro-Macro Coupling in Plasma Self-Organization Processes during Island Coalescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan Weigang; Lapenta, Giovanni; Centrum voor Plasma-Astrofysica, Departement Wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven

    The collisionless island coalescence process is studied with particle-in-cell simulations, as an internal-driven magnetic self-organization scenario. The macroscopic relaxation time, corresponding to the total time required for the coalescence to complete, is found to depend crucially on the scale of the system. For small-scale systems, where the macroscopic scales and the dissipation scales are more tightly coupled, the relaxation time is independent of the strength of the internal driving force: the small-scale processes of magnetic reconnection adjust to the amount of the initial magnetic flux to be reconnected, indicating that at the microscopic scales reconnection is enslaved by the macroscopicmore » drive. However, for large-scale systems, where the micro-macro scale separation is larger, the relaxation time becomes dependent on the driving force.« less

  17. Single step, phase controlled, large scale synthesis of ferrimagnetic iron oxide polymorph nanoparticles by thermal plasma route and their rheological properties

    NASA Astrophysics Data System (ADS)

    Raut, Suyog A.; Mutadak, Pallavi R.; Kumar, Shiv; Kanhe, Nilesh S.; Huprikar, Sameer; Pol, Harshawardhan V.; Phase, Deodatta M.; Bhoraskar, Sudha V.; Mathe, Vikas L.

    2018-03-01

    In this paper we report single step large scale synthesis of highly crystalline iron oxide nanoparticles viz. magnetite (Fe3O4) and maghemite (γ-Fe2O3) via gas phase condensation process, where micron sized iron metal powder was used as a precursor. Selective phases of iron oxide were obtained by variation of gas flow rate of oxygen and hence partial pressure of oxygen inside the plasma reactor. Most of the particles were found to possesses average crystallite size of about 20-30 nm. The DC magnetization curves recorded indicate almost super-paramagnetic nature of the iron oxide magnetic nanoparticles. Further, iron oxide nanoparticles were analyzed using Raman spectroscopy, X-ray photoelectron spectroscopy and Mossbauer spectroscopy. In order to explore the feasibility of these nanoparticles for magnetic damper application, rheological studies have been carried out and compared with commercially available Carbonyl Iron (CI) particles. The nanoparticles obtained by thermal plasma route show improved dispersion which is useful for rheological applications.

  18. Runaway electrons as a source of impurity and reduced fusion yield in the dense plasma focus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerner, Eric J.; Yousefi, Hamid R.

    2014-10-15

    Impurities produced by the vaporization of metals in the electrodes may be a major cause of reduced fusion yields in high-current dense plasma focus devices. We propose here that a major, but hitherto-overlooked, cause of such impurities is vaporization by runaway electrons during the breakdown process at the beginning of the current pulse. This process is sufficient to account for the large amount of erosion observed in many dense plasma focus devices on the anode very near to the insulator. The erosion is expected to become worse with lower pressures, typical of machines with large electrode radii, and would explainmore » the plateauing of fusion yield observed in such machines at higher peak currents. Such runaway electron vaporization can be eliminated by the proper choice of electrode material, by reducing electrode radii and thus increasing fill gas pressure, or by using pre-ionization to eliminate the large fields that create runaway electrons. If these steps are combined with monolithic electrodes to eliminate arcing erosion, large reductions in impurities and large increases in fusion yield may be obtained, as the I{sup 4} scaling is extended to higher currents.« less

  19. Study of Multiple Scale Physics of Magnetic Reconnection on the FLARE (Facility for Laboratory Reconnection Experiments)

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Prager, S.; Daughton, W. S.; Bale, S. D.; Carter, T. A.; Crocker, N.; Drake, J. F.; Egedal, J.; Sarff, J.; Wallace, J.; Chen, Y.; Cutler, R.; Fox, W. R., II; Heitzenroeder, P.; Kalish, M.; Jara-Almonte, J.; Myers, C. E.; Ren, Y.; Yamada, M.; Yoo, J.

    2015-12-01

    The FLARE device (flare.pppl.gov) is a new intermediate-scale plasma experiment under construction at Princeton to study magnetic reconnection in regimes directly relevant to space, solar and astrophysical plasmas. The existing small-scale experiments have been focusing on the single X-line reconnection process either with small effective sizes or at low Lundquist numbers, but both of which are typically very large in natural plasmas. The configuration of the FLARE device is designed to provide experimental access to the new regimes involving multiple X-lines, as guided by a reconnection "phase diagram" [Ji & Daughton, PoP (2011)]. Most of major components of the FLARE device have been designed and are under construction. The device will be assembled and installed in 2016, followed by commissioning and operation in 2017. The planned research on FLARE as a user facility will be discussed on topics including the multiple scale nature of magnetic reconnection from global fluid scales to ion and electron kinetic scales. Results from scoping simulations based on particle and fluid codes and possible comparative research with space measurements will be presented.

  20. Channel optimization of high-intensity laser beams in millimeter-scale plasmas.

    PubMed

    Ceurvorst, L; Savin, A; Ratan, N; Kasim, M F; Sadler, J; Norreys, P A; Habara, H; Tanaka, K A; Zhang, S; Wei, M S; Ivancic, S; Froula, D H; Theobald, W

    2018-04-01

    Channeling experiments were performed at the OMEGA EP facility using relativistic intensity (>10^{18}W/cm^{2}) kilojoule laser pulses through large density scale length (∼390-570 μm) laser-produced plasmas, demonstrating the effects of the pulse's focal location and intensity as well as the plasma's temperature on the resulting channel formation. The results show deeper channeling when focused into hot plasmas and at lower densities, as expected. However, contrary to previous large-scale particle-in-cell studies, the results also indicate deeper penetration by short (10 ps), intense pulses compared to their longer-duration equivalents. This new observation has many implications for future laser-plasma research in the relativistic regime.

  1. Channel optimization of high-intensity laser beams in millimeter-scale plasmas

    NASA Astrophysics Data System (ADS)

    Ceurvorst, L.; Savin, A.; Ratan, N.; Kasim, M. F.; Sadler, J.; Norreys, P. A.; Habara, H.; Tanaka, K. A.; Zhang, S.; Wei, M. S.; Ivancic, S.; Froula, D. H.; Theobald, W.

    2018-04-01

    Channeling experiments were performed at the OMEGA EP facility using relativistic intensity (>1018W/cm 2 ) kilojoule laser pulses through large density scale length (˜390 -570 μ m ) laser-produced plasmas, demonstrating the effects of the pulse's focal location and intensity as well as the plasma's temperature on the resulting channel formation. The results show deeper channeling when focused into hot plasmas and at lower densities, as expected. However, contrary to previous large-scale particle-in-cell studies, the results also indicate deeper penetration by short (10 ps), intense pulses compared to their longer-duration equivalents. This new observation has many implications for future laser-plasma research in the relativistic regime.

  2. Stimulated Parametric Decay of Large Amplitude Alfv'en waves in the Large Plasma Device (LaPD)

    NASA Astrophysics Data System (ADS)

    Dorfman, S.; Carter, T.; Pribyl, P.; Tripathi, S. K. P.; van Compernolle, B.; Vincena, S.

    2012-10-01

    Alfv'en waves, the fundamental mode of magnetized plasmas, are ubiquitous in lab and space. While the linear behaviour of these waves has been extensively studied, non-linear effects are important in many real systems. In particular, a parametric decay process in which a large amplitude Alfv'en wave decays into an ion acoustic wave and backward propagating Alfv'en wave may be key to the spectrum of solar wind turbulence. The present laboratory experiments aim to stimulate this process by launching counter-propagating Alfv'en waves from antennas placed at either end of the Large Plasma Device (LaPD). The resulting beat response has many properties consistent with an ion acoustic wave including: 1) The beat amplitude peaks when the frequency difference between the two Alfv'en waves is near the value predicted by Alfv'en-ion acoustic wave coupling. 2) This peak beat frequency scales with antenna and plasma parameters as predicted by three wave matching. 3) The beat amplitude peaks at the same location as the magnetic field from the Alfv'en waves. 4) The beat wave is carried by the ions and propagates in the direction of the higher-frequency Alfv'en wave. Strong damping observed after the pump Alfv'en waves are turned off is under investigation.

  3. Suppression of phase mixing in drift-kinetic plasma turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, J. T., E-mail: joseph.parker@stfc.ac.uk; OCIAM, Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG; Brasenose College, Radcliffe Square, Oxford OX1 4AJ

    2016-07-15

    Transfer of free energy from large to small velocity-space scales by phase mixing leads to Landau damping in a linear plasma. In a turbulent drift-kinetic plasma, this transfer is statistically nearly canceled by an inverse transfer from small to large velocity-space scales due to “anti-phase-mixing” modes excited by a stochastic form of plasma echo. Fluid moments (density, velocity, and temperature) are thus approximately energetically isolated from the higher moments of the distribution function, so phase mixing is ineffective as a dissipation mechanism when the plasma collisionality is small.

  4. Stimulated Parametric Decay of Large Amplitude Alfvén waves in the Large Plasma Device (LaPD)

    NASA Astrophysics Data System (ADS)

    Dorfman, S. E.; Carter, T.; Pribyl, P.; Tripathi, S.; Van Compernolle, B.; Vincena, S. T.

    2012-12-01

    Alfvén waves, a fundamental mode of magnetized plasmas, are ubiquitous in lab and space. While the linear behaviour of these waves has been extensively studied [1], non-linear effects are important in many real systems, including the solar wind and solar corona. In particular, a parametric decay process in which a large amplitude Alfvén wave decays into an ion acoustic wave and backward propagating Alfvén wave may be key to the spectrum of solar wind turbulence. Ion acoustic waves have been observed in the heliosphere, but their origin and role have not yet been determined [2]. Such waves produced by parametric decay in the corona could contribute to coronal heating [3]. Parametric decay has also been suggested as an intermediate instability mediating the observed turbulent cascade of Alfvén waves to small spatial scales [4]. The present laboratory experiments aim to stimulate the parametric decay process by launching counter-propagating Alfvén waves from antennas placed at either end of the Large Plasma Device (LaPD). The resulting beat response has a dispersion relation consistent with an ion acoustic wave. Also consistent with a stimulated decay process: 1) The beat amplitude peaks when the frequency difference between the two Alfvén waves is near the value predicted by Alfvén-ion acoustic wave coupling. 2) This peak beat frequency scales with antenna and plasma parameters as predicted by three wave matching. 3) The beat amplitude peaks at the same location as the magnetic field from the Alfvén waves. 4) The beat wave is carried by the ions and propagates in the direction of the higher-frequency Alfvén wave. Strong damping observed after the pump Alfvén waves are turned off and observed heating of the plasma by the Alfvén waves are under investigation. [1] W. Gekelman, J. Geophys. Res., 104:14417-14436, July 1999. [2] A. Mangeney,et. al., Annales Geophysicae, Volume 17, Number 3 (1999). [3] F. Pruneti, F and M. Velli, ESA Spec. Pub. 404, 623 (1997). [4] P. Yoon and T. Fang, Plasma Phys. Control. Fusion 50 (2008). This work was performed at UCLA's Basic Plasma Science Facility, which is jointly supported by the U.S. DoE and NSF.

  5. Renormalization-group theory of plasma microturbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carati, D.; Chriaa, K.; Balescu, R.

    1994-08-01

    The dynamical renormalization-group methods are applied to the gyrokinetic equation describing drift-wave turbulence in plasmas. As in both magnetohydrodynamic and neutral turbulence, small-scale fluctuations appear to act as effective dissipative processes on large-scale phenomena. A linear renormalized gyrokinetic equation is derived. No artificial forcing is introduced into the equations and all the renormalized corrections are expressed in terms of the fluctuating electric potential. The link with the quasilinear limit and the direct interaction approximation is investigated. Simple analytical expressions for the anomalous transport coefficients are derived by using the linear renormalized gyrokinetic equation. Examples show that both quasilinear and Bohmmore » scalings can be recovered depending on the spectral amplitude of the electric potential fluctuations.« less

  6. Numerical simulation of filling a magnetic flux tube with a cold plasma: Anomalous plasma effects

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Leung, W. C.

    1995-01-01

    Large-scale models of plasmaspheric refilling have revealed that during the early stage of the refilling counterstreaming ion beams are a common feature. However, the instability of such ion beams and its effect on refilling remain unexplored. In order to learn the basic effects of ion beam instabilities on refilling, we have performed numerical simulations of the refilling of an artificial magnetic flux tube. (The shape and size of the tube are assumed so that the essential features of the refilling problem are kept in the simulation and at the same time the small scale processes driven by the ion beams are sufficiently resolved.) We have also studied the effect of commonly found equatorially trapped warm and/or hot plasma on the filling of a flux tube with a cold plasma. Three types of simulation runs have been performed.

  7. A novel bonding method for large scale poly(methyl methacrylate) micro- and nanofluidic chip fabrication

    NASA Astrophysics Data System (ADS)

    Qu, Xingtian; Li, Jinlai; Yin, Zhifu

    2018-04-01

    Micro- and nanofluidic chips are becoming increasing significance for biological and medical applications. Future advances in micro- and nanofluidics and its utilization in commercial applications depend on the development and fabrication of low cost and high fidelity large scale plastic micro- and nanofluidic chips. However, the majority of the present fabrication methods suffer from a low bonding rate of the chip during thermal bonding process due to air trapping between the substrate and the cover plate. In the present work, a novel bonding technique based on Ar plasma and water treatment was proposed to fully bond the large scale micro- and nanofluidic chips. The influence of Ar plasma parameters on the water contact angle and the effect of bonding conditions on the bonding rate and the bonding strength of the chip were studied. The fluorescence tests demonstrate that the 5 × 5 cm2 poly(methyl methacrylate) chip with 180 nm wide and 180 nm deep nanochannels can be fabricated without any block and leakage by our newly developed method.

  8. LARGE—A Plasma Torch for Surface Chemistry Applications and CVD Processes—A Status Report

    NASA Astrophysics Data System (ADS)

    Zimmermann, Stephan; Theophile, Eckart; Landes, Klaus; Schein, Jochen

    2008-12-01

    The LARGE ( LONG ARG GENERATOR) is a new generation DC-plasma torch featuring an extended arc which is operated with a perpendicular gas flow to create a wide (up to 45 cm) plasma jet well suited for large area plasma processing. Using plasma diagnostic systems like high speed imaging, enthalpy probe, emission spectroscopy, and tomography, the LARGE produced plasma jet characteristics have been measured and sources of instability have been identified. With a simple model/simulation of the system LARGE III-150 and numerous experimental results, a new nozzle configuration and geometry (LARGE IV-150) has been designed, which produces a more homogenous plasma jet. These improvements enable the standard applications of the LARGE plasma torch (CVD coating process and surface activation process) to operate with higher efficiency.

  9. Dusty Plasmas on the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Horanyi, M.; Andersson, L.; Colwell, J.; Ergun, R.; Gruen, E.; McClintock, B.; Peterson, W. K.; Robertson, S.; Sternovsky, Z.; Wang, X.

    2006-12-01

    The electrostatic levitation and transport of lunar dust remains one of the most interesting and controversial science issues from the Apollo era. This issue is also of great engineering importance in designing human habitats and protecting optical and mechanical devices. As function of time and location, the lunar surface is exposed to solar wind plasma, UV radiation, and/or the plasma environment of our magnetosphere. Dust grains on the lunar surface collect an electrostatic charge; alter the large-scale surface charge density distribution, ?and subsequently develop an interface region to the background plasma and radiation. There are several in situ and remote sensing observations that indicate that dusty plasma processes are likely to be responsible for the mobilization and transport of lunar soil. These processes are relevant to: a) understanding the lunar surface environment; b) develop dust mitigation strategies; c) to understand the basic physical processes involved in the birth and collapse of dust loaded plasma sheaths. This talk will focus on the dusty plasma processes on the lunar surface. We will review the existing body of observations, and will also consider future opportunities for the combination of in situ and remote sensing observations. Our goals are to characterize: a) the temporal variation of the spatial and size distributions of the levitated/transported dust; and b) the surface plasma environment

  10. Low-Frequency Waves in HF Heating of the Ionosphere

    NASA Astrophysics Data System (ADS)

    Sharma, A. S.; Eliasson, B.; Milikh, G. M.; Najmi, A.; Papadopoulos, K.; Shao, X.; Vartanyan, A.

    2016-02-01

    Ionospheric heating experiments have enabled an exploration of the ionosphere as a large-scale natural laboratory for the study of many plasma processes. These experiments inject high-frequency (HF) radio waves using high-power transmitters and an array of ground- and space-based diagnostics. This chapter discusses the excitation and propagation of low-frequency waves in HF heating of the ionosphere. The theoretical aspects and the associated models and simulations, and the results from experiments, mostly from the HAARP facility, are presented together to provide a comprehensive interpretation of the relevant plasma processes. The chapter presents the plasma model of the ionosphere for describing the physical processes during HF heating, the numerical code, and the simulations of the excitation of low-frequency waves by HF heating. It then gives the simulations of the high-latitude ionosphere and mid-latitude ionosphere. The chapter also briefly discusses the role of kinetic processes associated with wave generation.

  11. Crystallization process of a three-dimensional complex plasma

    NASA Astrophysics Data System (ADS)

    Steinmüller, Benjamin; Dietz, Christopher; Kretschmer, Michael; Thoma, Markus H.

    2018-05-01

    Characteristic timescales and length scales for phase transitions of real materials are in ranges where a direct visualization is unfeasible. Therefore, model systems can be useful. Here, the crystallization process of a three-dimensional complex plasma under gravity conditions is considered where the system ranges up to a large extent into the bulk plasma. Time-resolved measurements exhibit the process down to a single-particle level. Primary clusters, consisting of particles in the solid state, grow vertically and, secondarily, horizontally. The box-counting method shows a fractal dimension of df≈2.72 for the clusters. This value gives a hint that the formation process is a combination of local epitaxial and diffusion-limited growth. The particle density and the interparticle distance to the nearest neighbor remain constant within the clusters during crystallization. All results are in good agreement with former observations of a single-particle layer.

  12. Universal pooled plasma (Uniplas(®)) does not induce complement-mediated hemolysis of human red blood cells in vitro.

    PubMed

    Heger, Andrea; Brandstätter, Hubert; Prager, Bettina; Brainovic, Janja; Cortes, Rhoda; Römisch, Jürgen

    2015-02-01

    Pooling of plasma of different blood groups before large scale manufacturing of Uniplas(®) results in the formation of low levels of soluble immune complexes (CIC). The aim of this study was to investigate the level and removal of CIC during Uniplas(®) manufacturing. In addition, an in vitro hemolysis assay should be developed and investigate if Uniplas(®) does induce complement-mediated hemolysis of human red blood cells (RBC). In-process samples from Uniplas(®) (universal plasma) and Octaplas(LG)(®) (blood group specific plasma) routine manufacturing batches were tested on CIC using commercially available ELISA test kits. In addition, CIC was produced by admixing heat-aggregated immunoglobulins or monoclonal anti-A/anti-B antibodies to plasma and removal of CIC was followed in studies of the Uniplas(®) manufacturing process under down-scale conditions. The extent of RBC lysis was investigated in plasma samples using the in-house hemolysis assay. Levels of CIC in Uniplas(®) are within the normal ranges for plasma and comparable to that found in Octaplas(LG)(®). Down-scale experiments showed that both IgG/IgM-CIC levels are significantly removed on average by 40-50% during Uniplas(®) manufacturing. Uniplas(®) does not induce hemolysis of RBCs in vitro. Hemolysis occurs only after spiking with high titers of anti-A/anti-B antibodies and depends on the antibody specificity (i.e. titer) in the plasma sample. The results of this study confirm the safety of Uniplas(®) regarding transfusion to patients of all ABO blood groups. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Large-scale studies of ion acceleration in laser-generated plasma at intensities from 1010 W/cm2 to 1019 W/cm2

    NASA Astrophysics Data System (ADS)

    Torrisi, L.

    2018-02-01

    A large-scale study of ion acceleration in laser-generated plasma, extended to intensities from 1010 W/cm2 up to 1019 W/cm2, is presented. Aluminium thick and thin foils were irradiated in high vacuum using different infrared lasers and pulse durations from ns up to fs scale. Plasma was monitored mainly using SiC detectors employed in time-of-flight configuration. Protons and aluminium ions, at different energies and yields, were measured as a function of the laser intensity. The discontinuity region between particle acceleration from both the backward plasma (BPA) in thick targets and the forward plasma in thin foils in the target normal sheath acceleration (TNSA) regimes were investigated.

  14. Self-Consistent Magnetosphere-Ionosphere Coupling and Associated Plasma Energization Processes

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Magnetosphere-Ionosphere (MI) coupling and associated with this process electron and ion energization processes have interested scientists for decades and, in spite of experimental and theoretical research efforts, are still ones of the least well known dynamic processes in space plasma physics. The reason for this is that the numerous physical processes associated with MI coupling occur over multiple spatial lengths and temporal scales. One typical example of MI coupling is large scale ring current (RC) electrodynamic coupling that includes calculation of the magnetospheric electric field that is consistent with the ring current (RC) distribution. A general scheme for numerical simulation of such large-scale magnetosphere-ionosphere coupling processes has been presented earlier in many works. The mathematical formulation of these models are based on "modified frozen-in flux theorem" for an ensemble of adiabatically drifting particles in the magnetosphere. By tracking the flow of particles through the inner magnetosphere, the bounce-averaged phase space density of the hot ions and electrons can be reconstructed and the magnetospheric electric field can be calculated such that it is consistent with the particle distribution in the magnetosphere. The new a self-consistent ring current model has been developed that couples electron and ion magnetospheric dynamics with calculation of electric field. Two new features were taken into account in addition to the RC ions, we solve an electron kinetic equation in our model, self-consistently including these results in the solution. Second, using different analytical relationships, we calculate the height integrated ionospheric conductances as the function of precipitated high energy magnetospheric electrons and ions as produced by our model. This results in fundamental changes to the electric potential pattern in the inner magnetosphere, with a smaller Alfven boundary than previous potential formulations would predict but one consistent with recent satellite observations. This leads to deeper penetration of the plasma sheet ions and electrons into the inner magnetosphere and more effective ring current ions and electron energization.

  15. The peripheral blood proteome signature of idiopathic pulmonary fibrosis is distinct from normal and is associated with novel immunological processes.

    PubMed

    O'Dwyer, David N; Norman, Katy C; Xia, Meng; Huang, Yong; Gurczynski, Stephen J; Ashley, Shanna L; White, Eric S; Flaherty, Kevin R; Martinez, Fernando J; Murray, Susan; Noth, Imre; Arnold, Kelly B; Moore, Bethany B

    2017-04-25

    Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial pneumonia. The disease pathophysiology is poorly understood and the etiology remains unclear. Recent advances have generated new therapies and improved knowledge of the natural history of IPF. These gains have been brokered by advances in technology and improved insight into the role of various genes in mediating disease, but gene expression and protein levels do not always correlate. Thus, in this paper we apply a novel large scale high throughput aptamer approach to identify more than 1100 proteins in the peripheral blood of well-characterized IPF patients and normal volunteers. We use systems biology approaches to identify a unique IPF proteome signature and give insight into biological processes driving IPF. We found IPF plasma to be altered and enriched for proteins involved in defense response, wound healing and protein phosphorylation when compared to normal human plasma. Analysis also revealed a minimal protein signature that differentiated IPF patients from normal controls, which may allow for accurate diagnosis of IPF based on easily-accessible peripheral blood. This report introduces large scale unbiased protein discovery analysis to IPF and describes distinct biological processes that further inform disease biology.

  16. Plasma Irregularity Production in the Polar Cap F-Region Ionosphere

    NASA Astrophysics Data System (ADS)

    Lamarche, Leslie

    Plasma in the Earth's ionosphere is highly irregular on scales ranging between a few centimeters and hundreds of kilometers. Small-scale irregularities or plasma waves can scatter radio waves resulting in a loss of signal for navigation and communication networks. The polar region is particularly susceptible to strong disturbances due to its direct connection with the Sun's magnetic field and energetic particles. In this thesis, factors that contribute to the production of decameter-scale plasma irregularities in the polar F region ionosphere are investigated. Both global and local control of irregularity production are studied, i.e. we consider global solar control through solar illumination and solar wind as well as much more local control by plasma density gradients and convection electric field. In the first experimental study, solar control of irregularity production is investigated using the Super Dual Auroral Radar Network (SuperDARN) radar at McMurdo, Antarctica. The occurrence trends for irregularities are analyzed statistically and a model is developed that describes the location of radar echoes within the radar's field-of-view. The trends are explained through variations in background plasma density with solar illumination affecting radar beam propagation. However, it is found that the irregularity occurrence during the night is higher than expected from ray tracing simulations based on a standard ionospheric density model. The high occurrence at night implies an additional source of plasma density and it is proposed that large-scale density enhancements called polar patches may be the source of this density. Additionally, occurrence maximizes around the terminator due to different competing irregularity production processes that favor a more or less sunlit ionosphere. The second study is concerned with modeling irregularity characteristics near a large-scale density gradient reversal, such as those expected near polar patches, with a particular focus on the asymmetry of the irregularity growth rate across the gradient reversal. Directional dependencies on the plasma density gradient, plasma drift, and wavevector are analyzed in the context of the recently developed general fluid theory of the gradient-drift instability. In the ionospheric F region, the strongest asymmetry is found when an elongated structure is oriented along the radar's boresight and moving perpendicular to its direction of elongation. These results have important implications for finding optimal configurations for oblique-scanning ionospheric radars such as SuperDARN to observe gradient reversals. To test the predictions of the developed model and the general theory of the gradient-drift instability, an experimental investigation is presented focusing on decameter-scale irregularities near a polar patch and the previously uninvestigated directional dependence of irregularity characteristics. Backscatter power and occurrence of irregularities are analyzed using measurements from the SuperDARN radar at Rankin Inlet, Canada, while background density gradients and convection electric fields are found from the north face of the Resolute Bay Incoherent Scatter Radar. It is shown that irregularity occurrence tends to follow the expected trends better than irregularity power, suggesting that while the gradient-drift instability may be a dominant process in generating small-scale irregularities, other mechanisms such as a shear-driven instability or nonlinear process may exert greater control over their intensity. It is concluded from this body of work that the production of small-scale plasma irregularities in the polar F-region ionosphere is controlled both by global factors such as solar illumination as well as local plasma density gradients and electric fields. In general, linear gradient-drift instability theory describes small-scale irregularity production well, particularly for low-amplitude perturbations. The production of irregularities is complex, and while ground-based radars are invaluable tools to study the ionosphere, care must be taken to interpret results correctly.

  17. Scalable graphene production from ethanol decomposition by microwave argon plasma torch

    NASA Astrophysics Data System (ADS)

    Melero, C.; Rincón, R.; Muñoz, J.; Zhang, G.; Sun, S.; Perez, A.; Royuela, O.; González-Gago, C.; Calzada, M. D.

    2018-01-01

    A fast, efficient and simple method is presented for the production of high quality graphene on a large scale by using an atmospheric pressure plasma-based technique. This technique allows to obtain high quality graphene in powder in just one step, without the use of neither metal catalysts and nor specific substrate during the process. Moreover, the cost for graphene production is significantly reduced since the ethanol used as carbon source can be obtained from the fermentation of agricultural industries. The process provides an additional benefit contributing to the revalorization of waste in the production of a high-value added product like graphene. Thus, this work demonstrates the features of plasma technology as a low cost, efficient, clean and environmentally friendly route for production of high-quality graphene.

  18. Effect of NTP Pretreatment on Thermal Resistance and Fouling Components of Oilfield Wastewater

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Li, Wenli; Zou, Longsheng; Fu, Honghun

    2018-01-01

    In order to prevent scaling in the process of oilfield wastewater evaporation, low temperature plasma is used for pretreatment of heavy oil wastewater. It reacts with the ions and radicals produced by the low-temperature plasma and then is send into the evaporator. The changes of various indexes of the distilled water and the distribution of fouling in the evaporation process of heavy oil wastewater after plasma pretreatment were studied. The results showed that the content and hardness of silica in wastewater were decreased after plasma pretreatment, which was more suitable for evaporation treatment. At the same time, the content of salt and oil in distilled water is reduced, and the quality is improved. In addition, when the steam concentration was 30∼40 times, the suspended solids in the concentrated solution of the wastewater increased significantly after the plasma treatment. Correspondingly, the fouling at the bottom of evaporator is greatly reduced. Comparing the various indexes of distilled water and the feed water index of gas injection boiler, it can be seen that the excessive oil content in distilled water is the biggest obstacle to the recovery of distilled water to boiler feed water. Low temperature plasma pretreatment can provide a quick and new way to solve the scaling problems and water quality problems in the recovery of distilled water from a large number of heavy oil wastewater.

  19. Channel optimization of high-intensity laser beams in millimeter-scale plasmas

    DOE PAGES

    Ceurvorst, L.; Savin, A.; Ratan, N.; ...

    2018-04-20

    Channeling experiments were performed at the OMEGA EP facility using relativistic intensity (> 10 18 W/cm 2) kilojoule laser pulses through large density scale length (~ 390-570 μm) laser-produced plasmas, demonstrating the effects of the pulse’s focal location and intensity as well as the plasma’s temperature on the resulting channel formation. The results show deeper channeling when focused into hot plasmas and at lower densities as expected. However, contrary to previous large scale particle-in-cell studies, the results also indicate deeper penetration by short (10 ps), intense pulses compared to their longer duration equivalents. To conclude, this new observation has manymore » implications for future laser-plasma research in the relativistic regime.« less

  20. Channel optimization of high-intensity laser beams in millimeter-scale plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ceurvorst, L.; Savin, A.; Ratan, N.

    Channeling experiments were performed at the OMEGA EP facility using relativistic intensity (> 10 18 W/cm 2) kilojoule laser pulses through large density scale length (~ 390-570 μm) laser-produced plasmas, demonstrating the effects of the pulse’s focal location and intensity as well as the plasma’s temperature on the resulting channel formation. The results show deeper channeling when focused into hot plasmas and at lower densities as expected. However, contrary to previous large scale particle-in-cell studies, the results also indicate deeper penetration by short (10 ps), intense pulses compared to their longer duration equivalents. To conclude, this new observation has manymore » implications for future laser-plasma research in the relativistic regime.« less

  1. The Dynamics of Very High Alfvén Mach Number Shocks in Space Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundberg, Torbjörn; Burgess, David; Scholer, Manfred

    2017-02-10

    Astrophysical shocks, such as planetary bow shocks or supernova remnant shocks, are often in the high or very-high Mach number regime, and the structure of such shocks is crucial for understanding particle acceleration and plasma heating, as well inherently interesting. Recent magnetic field observations at Saturn’s bow shock, for Alfvén Mach numbers greater than about 25, have provided evidence for periodic non-stationarity, although the details of the ion- and electron-scale processes remain unclear due to limited plasma data. High-resolution, multi-spacecraft data are available for the terrestrial bow shock, but here the very high Mach number regime is only attained onmore » extremely rare occasions. Here we present magnetic field and particle data from three such quasi-perpendicular shock crossings observed by the four-spacecraft Cluster mission. Although both ion reflection and the shock profile are modulated at the upstream ion gyroperiod timescale, the dominant wave growth in the foot takes place at sub-proton length scales and is consistent with being driven by the ion Weibel instability. The observed large-scale behavior depends strongly on cross-scale coupling between ion and electron processes, with ion reflection never fully suppressed, and this suggests a model of the shock dynamics that is in conflict with previous models of non-stationarity. Thus, the observations offer insight into the conditions prevalent in many inaccessible astrophysical environments, and provide important constraints for acceleration processes at such shocks.« less

  2. The Dynamics of Very High Alfvén Mach Number Shocks in Space Plasmas

    NASA Astrophysics Data System (ADS)

    Sundberg, Torbjörn; Burgess, David; Scholer, Manfred; Masters, Adam; Sulaiman, Ali H.

    2017-02-01

    Astrophysical shocks, such as planetary bow shocks or supernova remnant shocks, are often in the high or very-high Mach number regime, and the structure of such shocks is crucial for understanding particle acceleration and plasma heating, as well inherently interesting. Recent magnetic field observations at Saturn’s bow shock, for Alfvén Mach numbers greater than about 25, have provided evidence for periodic non-stationarity, although the details of the ion- and electron-scale processes remain unclear due to limited plasma data. High-resolution, multi-spacecraft data are available for the terrestrial bow shock, but here the very high Mach number regime is only attained on extremely rare occasions. Here we present magnetic field and particle data from three such quasi-perpendicular shock crossings observed by the four-spacecraft Cluster mission. Although both ion reflection and the shock profile are modulated at the upstream ion gyroperiod timescale, the dominant wave growth in the foot takes place at sub-proton length scales and is consistent with being driven by the ion Weibel instability. The observed large-scale behavior depends strongly on cross-scale coupling between ion and electron processes, with ion reflection never fully suppressed, and this suggests a model of the shock dynamics that is in conflict with previous models of non-stationarity. Thus, the observations offer insight into the conditions prevalent in many inaccessible astrophysical environments, and provide important constraints for acceleration processes at such shocks.

  3. Cold plasma decontamination of foods.

    PubMed

    Niemira, Brendan A

    2012-01-01

    Cold plasma is a novel nonthermal food processing technology that uses energetic, reactive gases to inactivate contaminating microbes on meats, poultry, fruits, and vegetables. This flexible sanitizing method uses electricity and a carrier gas, such as air, oxygen, nitrogen, or helium; antimicrobial chemical agents are not required. The primary modes of action are due to UV light and reactive chemical products of the cold plasma ionization process. A wide array of cold plasma systems that operate at atmospheric pressures or in low pressure treatment chambers are under development. Reductions of greater than 5 logs can be obtained for pathogens such as Salmonella, Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus. Effective treatment times can range from 120 s to as little as 3 s, depending on the food treated and the processing conditions. Key limitations for cold plasma are the relatively early state of technology development, the variety and complexity of the necessary equipment, and the largely unexplored impacts of cold plasma treatment on the sensory and nutritional qualities of treated foods. Also, the antimicrobial modes of action for various cold plasma systems vary depending on the type of cold plasma generated. Optimization and scale up to commercial treatment levels require a more complete understanding of these chemical processes. Nevertheless, this area of technology shows promise and is the subject of active research to enhance efficacy.

  4. Magnetic islands produced by reconnection in large current layers: A statistical approach to modeling at global scales

    NASA Astrophysics Data System (ADS)

    Fermo, Raymond Luis Lachica

    2011-12-01

    Magnetic reconnection is a process responsible for the conversion of magnetic energy into plasma flows in laboratory, space, and astrophysical plasmas. A product of reconnection, magnetic islands have been observed in long current layers for various space plasmas, including the magnetopause, the magnetotail, and the solar corona. In this thesis, a statistical model is developed for the dynamics of magnetic islands in very large current layers, for which conventional plasma simulations prove inadequate. An island distribution function f characterizes islands by the flux they contain psi and the area they enclose A. An integro-differential evolution equation for f describes their creation at small scales, growth due to quasi-steady reconnection, convection along the current sheet, and their coalescence with one another. The steady-state solution of the evolution equation predicts a distribution of islands in which the signature of island merging is an asymmetry in psi-- r phase space. A Hall MHD (magnetohydrodynamic) simulation of a very long current sheet with large numbers of magnetic islands is used to explore their dynamics, specifically their growth via two distinct mechanisms: quasi-steady reconnection and merging. The results of the simulation enable validation of the statistical model and benchmarking of its parameters. A PIC (particle-in-cell) simulation investigates how secondary islands form in guide field reconnection, revealing that they are born at electron skin depth scales not as islands from the tearing instability but as vortices from a flow instability. A database of 1,098 flux transfer events (FTEs) observed by Cluster between 2001 and 2003 compares favorably with the model's predictions, and also suggests island merging plays a significant role in the magnetopause. Consequently, the magnetopause is likely populated by many FTEs too small to be recognized by spacecraft instrumentation. The results of this research suggest that a complete theory of reconnection in large current sheets should account for the disparate separation of scales---from the kinetic scales at which islands are produced to the macroscale objects observed in the systems in question.

  5. Multiple-Scale Physics During Magnetic Reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jara-Almonte, Jonathan

    Magnetic reconnection is a key fundamental process in magnetized plasmas wherein the global magnetic topology is modified and stored energy is transferred from fields to particles. Reconnection is an inherently local process, and mechanisms to couple global-scale dynamics are not well understood. This dissertation explores two different mechanisms for cross-scale coupling during magnetic reconnection. As one example, we theoretically examine reconnection in a collisionless plasma using particle-in-cell simulations and demonstrate that large scale reconnection physics can couple to and drive microscopic instabilities, even in two-dimensional systems if significant scale separation exists between the Debye length and the electron skin depth.more » The physics underlying these instabilities is explained using simple theoretical models, and their potential connection to existing discrepancies between laboratory experiments and numerical simulations is explored. In three-dimensional systems, these instabilities are shown to generate anomalous resistivity that balances a substantial fraction of the electric field. In contrast, we also use experiments to investigate cross-scale couplings during reconnection in a collisional plasma. A leading candidate for coupling global and local scales is the hierarchical breakdown of elongated, reconnecting current sheets into numerous smaller current sheets -– the plasmoid instability. In the Magnetic Reconnection Experiment (MRX), recent hardware improvements have extended the accessible parameter space allowing for the study of long-lived, elongated current sheets. Moreover, by using Argon, reproducible and collisional plasmas are produced, which allow for a detailed statistical study of collisional reconnection. As a result, we have conclusively measured the onset of sub-ion-scale plasmoids during resistive, anti-parallel reconnection for the first time. The current sheet thickness is intermediate between ion and electron kinetic scales such that the plasma is in the Hall-MHD regime. Surprisingly, plasmoids are observed at Lundquist numbers < 100 well below theoretical predictions (> 10,000). The number of plasmoids scales with both Lundquist number and current sheet aspect ratio. The Hall quadrupolar fields are shown to suppress plasmoids. Finally, plasmoids are shown to couple local and global physics by enhancing the reconnection rate. These results are compared with prior studies of tearing and plasmoid instability, and implications for astrophysical plasmas, laboratory experiments, and theoretical studies of reconnection are discussed.« less

  6. Fully Implict Magneto-hydrodynamics Simulations of Coaxial Plasma Accelerators

    DOE PAGES

    Subramaniam, Vivek; Raja, Laxminarayan L.

    2017-01-05

    The resistive Magneto-Hydrodynamic (MHD) model describes the behavior of a strongly ionized plasma in the presence of external electric and magnetic fields. We developed a fully implicit MHD simulation tool to solve the resistive MHD governing equations in the context of a cell-centered finite-volume scheme. The primary objective of this study is to use the fully-implicit algorithm to obtain insights into the plasma acceleration and jet formation processes in Coaxial Plasma accelerators; electromagnetic acceleration devices that utilize self-induced magnetic fields to accelerate thermal plasmas to large velocities. We also carry out plasma-surface simulations in order to study the impact interactionsmore » when these high velocity plasma jets impinge on target material surfaces. Scaling studies are carried out to establish some basic functional relationships between the target-stagnation conditions and the current discharged between the coaxial electrodes.« less

  7. Incoherent Scatter Plasma Lines: Observations and Applications

    NASA Astrophysics Data System (ADS)

    Akbari, Hassanali; Bhatt, Asti; La Hoz, Cesar; Semeter, Joshua L.

    2017-10-01

    Space plasmas are host to the electrostatic Langmuir waves and a rich range of processes associated with them. Many of such processes that are of interest in micro-scale plasma physics and magnetosphere-ionosphere physics are open to investigation via incoherent scatter plasma lines—i.e., a pair of resonant peaks in the incoherent scatter radar (ISR) spectrum, symmetrically displaced from the radar transmitting frequency by about the plasma frequency, as the signature of Langmuir waves in the ISR spectrum. There now exists a large body of literature devoted to the investigation of a number of topics in ionospheric physics via plasma line theory and observation. It is the goal of this work to provide a comprehensive review of this literature, from the early theoretical works on oscillations in magnetized plasma to the recent advances in plasma line measurements and applications. This review includes detailed theoretical discussions on the intensity and frequency displacement of plasma lines. It reviews the experimental observations of plasma lines enhanced by various sources of energy and discusses the implications of the observations in the context of ionospheric physics. The review also covers the practical aspects of plasma line measurements, from measurement techniques to the applications of plasma lines in estimating the bulk parameters of the ionosphere.

  8. Status and Plans for the FLARE (Facility for Laboratory Reconnection Experiments) Project

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Prager, S.; Daughton, W.; Bale, S.; Carter, T.; Crocker, N.; Drake, J.; Egedal, J.; Sarff, J.; Wallace, J.; Chen, Y.; Cutler, R.; Fox, W.; Heitzenroeder, P.; Kalish, M.; Jara-Almonte, J.; Myers, C.; Ren, Y.; Yamada, M.; Yoo, J.

    2015-11-01

    The FLARE device (flare.pppl.gov) is a new intermediate-scale plasma experiment under construction at Princeton to study magnetic reconnection in regimes directly relevant to space, solar, astrophysical, and fusion plasmas. The existing small-scale experiments have been focusing on the single X-line reconnection process either with small effective sizes or at low Lundquist numbers, but both of which are typically very large in natural and fusion plasmas. The design of the FLARE device is motivated to provide experimental access to the new regimes involving multiple X-lines, as guided by a reconnection ``phase diagram'' [Ji & Daughton, PoP (2011)]. Most of major components of the FLARE device have been designed and are under construction. The device will be assembled and installed in 2016, followed by commissioning and operation in 2017. The planned research on FLARE as a user facility will be discussed. Supported by NSF.

  9. ROY—A multiscale magnetospheric mission

    NASA Astrophysics Data System (ADS)

    Savin, S.; Zelenyi, L.; Amata, E.; Budaev, V.; Buechner, J.; Blecki, J.; Balikhin, M.; Klimov, S.; Korepanov, V. E.; Kozak, L.; Kudryashov, V.; Kunitsyn, V.; Lezhen, L.; Milovanov, A. V.; Nemecek, Z.; Nesterov, I.; Novikov, D.; Panov, E.; Rauch, J. L.; Rothkaehl, H.; Romanov, S.; Safrankova, J.; Skalsky, A.; Veselov, M.

    2011-05-01

    The scientific rationale of the ROY multi-satellite mission addresses multiscale investigations of plasma processes in the key magnetospheric regions with strong plasma gradients, turbulence and magnetic field annihilation in the range from electron inertial length to MHD scales. The main scientific aims of ROY mission include explorations of: turbulence on a non-uniform background as a keystone for transport processes; structures and jets in plasma flows associated with anomalously large concentration of kinetic energy; their impact on the energy balance and boundary formation; transport barriers: plasma separation and mixing, Alfvenic collapse of magnetic field lines and turbulent dissipation of kinetic energy; self-organized versus forced reconnection of magnetic field lines; collisionless shocks, plasma discontinuities and associated particle acceleration processes. In the case of autonomous operation, 4 mobile spacecrafts of about 200 kg mass with 60 kg payload equipped with electro-reactive plasma engines will provide 3D measurements at the scales of 100-10000 km and simultaneous 1D measurements at the scales 10-1000 km. The latter smaller scales will be scanned with the use of radio-tomography (phase-shift density measurements within the cone composed of 1 emitting and 3 receiving spacecrafts). We also discuss different opportunities for extra measurement points inside the ROY mission for simultaneous measurements at up to 3 scales for the common international fleet. Combined influence of intermittent turbulence and reconnection on the geomagnetic tail and on the nonlinear dynamics of boundary layers will be explored in situ with fast techniques including particle devices under development, providing plasma moments down to 30 ms resolution. We propose different options for joint measurements in conjunction with the SCOPE and other missions: simultaneous sampling of low- and high-latitudes magnetopause, bow shock and geomagnetic tail at the same local time; tracing of magnetosheath streamlines from the bow shock to near-Earth geomagnetic tail; passing "through" the SCOPE on the inbound orbit leg; common measurements (with SCOPE and other equatorial spacecraft) at distances of ˜ few thousand km for durations of ˜several hours per orbit. The orbit options and scientific payload of possible common interest are discussed in this work, including FREGAT cargo opportunities for extra payload launching and the "Swarm" campaigns with ejection of nano- and pico-satellites.

  10. Features of behavior of the plasma area formed by explosion spent in range of heights of 100-1000 km

    NASA Astrophysics Data System (ADS)

    Vasilev, Mikhail; Kholodov, Alexander; Stupitsky, Evgeny; Repin, Andrew

    Explosive plasma experiments remain the important means of research of geophysical effects in the top ionosphere and magnetosphere. In particular their results can be useful for development of full model of powerful geomagnetic storms. Scientific and applied value of such experiments depends on our ability to simulate them numerically and to understand the physical processes. Complexity of mathematical modelling of such experiments is caused by two circumstances - complexity and variety of physical processes, and large-scale three-dimensional current of plasma. It's important to note that not all features of the processes under consideration are well known and well modelled. And plasma parameters in the indignant area can vary up to 5-7 orders. During last several years we have developed universal enough 3D algorithm for the simulation of large-scale movement of the plasma, based on MHD approach. Diffusion of a magnetic field and the ionization structure of plasma and air is considered. The full algorithm includes the most initial the radiation-gas dynamic stage, a stage of inertial scattering when the charging structure of plasma is formed, a stage of braking of plasma a geomagnetic field and the rarefied ionosphere and later (down to 100-500 s) the stage of convective movements of plasma in a geomagnetic field and the rarefied ionosphere. The algorithm is based on special updating of a monotonous conservative variant of grid-characteristic method 2-3 orders of the approximation, including splitting on spatial variables. Calculations of explosion of energy about 1015 J are executed for some heights from a range of 100-1000 km. Character of development of current essentially varies depending on height. For 100-120 km current is close to bi-dimensional, in an initial stage the shock wave is formed, and for the period of 40-60 seconds the plasma area rises up to 300 km. At heights more than 150 km current, for a while more than 5 seconds are got with character of a powerful ascending jet. The wave comes off plasma the magneto sonic wave and quickly extends along a surface of globe. With increase in height of explosion (400-700 km) the jet gets flat character with primary distribution of weight in a plane of a magnetic meridian. It is gradually developed on a magnetic field, saving the certain inclination in relation to it. At explosions at heights more than 400 km scales current of plasma make more than 1000 km. It is shown, that the plasma area is a source of global low-frequency electromagnetic disturbance. Their parameters are estimated. At energy more than certain size, becomes possible having dug magnetosphere and global infringements in its structure, which depends on height and breadth of explosion. The developed numerical method allows to investigate a relaxation magnetosphere after such artificial indignations and at powerful magnetic storms.

  11. THE EFFECTS OF KINETIC INSTABILITIES ON SMALL-SCALE TURBULENCE IN EARTH’S MAGNETOSHEATH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breuillard, H.; Yordanova, E.; Vaivads, A.

    2016-09-20

    The Earth's magnetosheath is the region delimited by the bow shock and the magnetopause. It is characterized by highly turbulent fluctuations covering all scales from MHD down to kinetic scales. Turbulence is thought to play a fundamental role in key processes such as energy transport and dissipation in plasma. In addition to turbulence, different plasma instabilities are generated in the magnetosheath because of the large anisotropies in plasma temperature introduced by its boundaries. In this study we use high-quality magnetic field measurements from Cluster spacecraft to investigate the effects of such instabilities on the small-scale turbulence (from ion down tomore » electron scales). We show that the steepening of the power spectrum of magnetic field fluctuations in the magnetosheath occurs at the largest characteristic ion scale. However, the spectrum can be modified by the presence of waves/structures at ion scales, shifting the onset of the small-scale turbulent cascade toward the smallest ion scale. This cascade is therefore highly dependent on the presence of kinetic instabilities, waves, and local plasma parameters. Here we show that in the absence of strong waves the small-scale turbulence is quasi-isotropic and has a spectral index α ≈ −2.8. When transverse or compressive waves are present, we observe an anisotropy in the magnetic field components and a decrease in the absolute value of α . Slab/2D turbulence also develops in the presence of transverse/compressive waves, resulting in gyrotropy/non-gyrotropy of small-scale fluctuations. The presence of both types of waves reduces the anisotropy in the amplitude of fluctuations in the small-scale range.« less

  12. Dispersion Measure Variation of Repeating Fast Radio Burst Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yuan-Pei; Zhang, Bing, E-mail: yypspore@gmail.com, E-mail: zhang@physics.unlv.edu

    The repeating fast radio burst (FRB) 121102 was recently localized in a dwarf galaxy at a cosmological distance. The dispersion measure (DM) derived for each burst from FRB 121102 so far has not shown significant evolution, even though an apparent increase was recently seen with newly detected VLA bursts. It is expected that more repeating FRB sources may be detected in the future. In this work, we investigate a list of possible astrophysical processes that might cause DM variation of a particular FRB source. The processes include (1) cosmological scale effects such as Hubble expansion and large-scale structure fluctuations; (2)more » FRB local effects such as gas density fluctuation, expansion of a supernova remnant (SNR), a pulsar wind nebula, and an H ii region; and (3) the propagation effect due to plasma lensing. We find that the DM variations contributed by the large-scale structure are extremely small, and any observable DM variation is likely caused by the plasma local to the FRB source. In addition to mechanisms that decrease DM over time, we suggest that an FRB source in an expanding SNR around a nearly neutral ambient medium during the deceleration (Sedov–Taylor and snowplow) phases or in a growing H ii region can increase DM. Some effects (e.g., an FRB source moving in an H ii region or plasma lensing) can produce either positive or negative DM variations. Future observations of DM variations of FRB 121102 and other repeating FRB sources can provide important clues regarding the physical origin of these sources.« less

  13. A Systematic Evaluation of Blood Serum and Plasma Pre-Analytics for Metabolomics Cohort Studies

    PubMed Central

    Jobard, Elodie; Trédan, Olivier; Postoly, Déborah; André, Fabrice; Martin, Anne-Laure; Elena-Herrmann, Bénédicte; Boyault, Sandrine

    2016-01-01

    The recent thriving development of biobanks and associated high-throughput phenotyping studies requires the elaboration of large-scale approaches for monitoring biological sample quality and compliance with standard protocols. We present a metabolomic investigation of human blood samples that delineates pitfalls and guidelines for the collection, storage and handling procedures for serum and plasma. A series of eight pre-processing technical parameters is systematically investigated along variable ranges commonly encountered across clinical studies. While metabolic fingerprints, as assessed by nuclear magnetic resonance, are not significantly affected by altered centrifugation parameters or delays between sample pre-processing (blood centrifugation) and storage, our metabolomic investigation highlights that both the delay and storage temperature between blood draw and centrifugation are the primary parameters impacting serum and plasma metabolic profiles. Storing the blood drawn at 4 °C is shown to be a reliable routine to confine variability associated with idle time prior to sample pre-processing. Based on their fine sensitivity to pre-analytical parameters and protocol variations, metabolic fingerprints could be exploited as valuable ways to determine compliance with standard procedures and quality assessment of blood samples within large multi-omic clinical and translational cohort studies. PMID:27929400

  14. Investigation of the spatial structure and developmental dynamics of near-Earth plasma perturbations under the action of powerful HF radio waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belov, A. S., E-mail: alexis-belov@yandex.ru

    2015-10-15

    Results of numerical simulations of the near-Earth plasma perturbations induced by powerful HF radio waves from the SURA heating facility are presented. The simulations were performed using a modified version of the SAMI2 ionospheric model for the input parameters corresponding to the series of in-situ SURA–DEMETER experiments. The spatial structure and developmental dynamics of large-scale plasma temperature and density perturbations have been investigated. The characteristic formation and relaxation times of the induced large-scale plasma perturbations at the altitudes of the Earth’s outer ionosphere have been determined.

  15. Observation of instability-induced current redistribution in a spherical-torus plasma.

    PubMed

    Menard, J E; Bell, R E; Gates, D A; Kaye, S M; LeBlanc, B P; Levinton, F M; Medley, S S; Sabbagh, S A; Stutman, D; Tritz, K; Yuh, H

    2006-09-01

    A motional Stark effect diagnostic has been utilized to reconstruct the parallel current density profile in a spherical-torus plasma for the first time. The measured current profile compares favorably with neoclassical theory when no large-scale magnetohydrodynamic instabilities are present in the plasma. However, a current profile anomaly is observed during saturated interchange-type instability activity. This apparent anomaly can be explained by redistribution of neutral beam injection current drive and represents the first observation of interchange-type instabilities causing such redistribution. The associated current profile modifications contribute to sustaining the central safety factor above unity for over five resistive diffusion times, and similar processes may contribute to improved operational scenarios proposed for ITER.

  16. Key Elements of a Low Voltage, Ultracompact Plasma Spectrometer

    NASA Technical Reports Server (NTRS)

    Scime, E. E.; Barrie, A.; Dugas, M.; Elliott, D.; Ellison, S.; Keesee, A. M.; Pollock, C. J.; Rager, A.; Tersteeg, J.

    2016-01-01

    Taking advantage of technological developments in wafer-scale processing over the past two decades, such as deep etching, 3-D chip stacking, and double-sided lithography, we have designed and fabricated the key elements of an ultracompact 1.5cm (exp 3)plasma spectrometer that requires only low-voltage power supplies, has no microchannel plates, and has a high aperture area to instrument volume ratio. The initial design of the instrument targets the measurement of charged particles in the 3-20keV range with a highly directional field of view and a 100 duty cycle; i.e., the entire energy range Is continuously measured. In addition to reducing mass, size, and voltage requirements, the new design will affect the manufacturing process of plasma spectrometers, enabling large quantities of identical instruments to be manufactured at low individual unit cost. Such a plasma spectrometer is ideal for heliophysics plasma investigations, particularly for small satellite and multispacecraft missions. Two key elements of the instrument have been fabricated: the collimator and the energy analyzer. An initial collimator transparency of 20 with 3deg x 3deg angular resolution was achieved. The targeted 40 collimator transparency appears readily achievable. The targeted energy analyzer scaling factor of 1875 was achieved; i.e.20 keV electrons were selected for only a 10.7V bias voltage in the energy analyzer.

  17. Magnetospheric turbulence and substorm expansion phase onset

    NASA Astrophysics Data System (ADS)

    Antonova, Elizaveta; Stepanova, Marina; Kirpichev, Igor; Pulinets, Maria; Znatkova, Svetlana; Ovchinnikov, Ilya; Kornilov, Ilya; Kornilova, Tatyana

    Magnetosphere of the Earth is formed in the process of turbulent solar wind flow around the obstacle -magnetic field of the Earth. The level of turbulence in the magnetosheath and geo-magnetic tail is very high even during periods of comparatively stable solar wind parameters. Such situation requires checking of the most popular concepts of the nature of magnetospheric activity. Properties of magnetosheath and magnetospheric turbulence are analyzed in connec-tion with the problem of the nature of substorms and localization of substorm onset. The large-scale picture of the plasma velocity fluctuations obtained using data of INTERBALL and Geotail observations is analyzed. It is shown that it is possible to select surrounding the Earth at geocentric distances from 7Re till 10Re plasma ring with comparatively low level of fluctuations. Results of observations demonstrating isolated substorm onset inside this ring are summarized. It is shown that the non-contradictory picture of large-scale magnetospheric convection and substorm dynamics can be obtained taking into account high level of magne-tosheath and magnetospheric turbulence.

  18. Cross-scale: multi-scale coupling in space plasmas

    NASA Astrophysics Data System (ADS)

    Schwartz, Steven J.; Horbury, Timothy; Owen, Christopher; Baumjohann, Wolfgang; Nakamura, Rumi; Canu, Patrick; Roux, Alain; Sahraoui, Fouad; Louarn, Philippe; Sauvaud, Jean-André; Pinçon, Jean-Louis; Vaivads, Andris; Marcucci, Maria Federica; Anastasiadis, Anastasios; Fujimoto, Masaki; Escoubet, Philippe; Taylor, Matt; Eckersley, Steven; Allouis, Elie; Perkinson, Marie-Claire

    2009-03-01

    Most of the visible universe is in the highly ionised plasma state, and most of that plasma is collision-free. Three physical phenomena are responsible for nearly all of the processes that accelerate particles, transport material and energy, and mediate flows in systems as diverse as radio galaxy jets and supernovae explosions through to solar flares and planetary magnetospheres. These processes in turn result from the coupling amongst phenomena at macroscopic fluid scales, smaller ion scales, and down to electron scales. Cross-Scale, in concert with its sister mission SCOPE (to be provided by the Japan Aerospace Exploration Agency—JAXA), is dedicated to quantifying that nonlinear, time-varying coupling via the simultaneous in-situ observations of space plasmas performed by a fleet of 12 spacecraft in near-Earth orbit. Cross-Scale has been selected for the Assessment Phase of Cosmic Vision by the European Space Agency.

  19. Cross-Scale: multi-scale coupling in space plasmas

    NASA Astrophysics Data System (ADS)

    Vaivads, A.; Taylor, M. G.

    2009-12-01

    Most of the visible universe is in the highly ionised plasma state, and most of that plasma is collision-free. Three physical phenomena are responsible for nearly all of the processes that accelerate particles, transport material and energy, and mediate flows in systems as diverse as radio galaxy jets and supernovae explosions through to solar flares and planetary magnetospheres. These processes in turn result from the coupling amongst phenomena at macroscopic fluid scales, smaller ion scales, and down to electron scales. Cross-Scale, in concert with its sister mission SCOPE (to be provided by the Japan Aerospace Exploration Agency—JAXA in collaboration with the Canadian Space Agency), is dedicated to quantifying that nonlinear, time-varying coupling via the simultaneous in-situ observations of space plasmas performed by a fleet of 12 spacecraft in near-Earth orbit. Cross-Scale is currently in the Assessment Phase of ESA's Cosmic Vision.

  20. Fabrication of a 3D micro/nano dual-scale carbon array and its demonstration as the microelectrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Jiang, Shulan; Shi, Tielin; Gao, Yang; Long, Hu; Xi, Shuang; Tang, Zirong

    2014-04-01

    An easily accessible method is proposed for the fabrication of a 3D micro/nano dual-scale carbon array with a large surface area. The process mainly consists of three critical steps. Firstly, a hemispherical photoresist micro-array was obtained by the cost-effective nanoimprint lithography process. Then the micro-array was transformed into hierarchical structures with longitudinal nanowires on the microstructure surface by oxygen plasma etching. Finally, the micro/nano dual-scale carbon array was fabricated by carbonizing these hierarchical photoresist structures. It has also been demonstrated that the micro/nano dual-scale carbon array can be used as the microelectrodes for supercapacitors by the electrodeposition of a manganese dioxide (MnO2) film onto the hierarchical carbon structures with greatly enhanced electrochemical performance. The specific gravimetric capacitance of the deposited micro/nano dual-scale microelectrodes is estimated to be 337 F g-1 at the scan rate of 5 mV s-1. This proposed approach of fabricating a micro/nano dual-scale carbon array provides a facile way in large-scale microstructures’ manufacturing for a wide variety of applications, including sensors and on-chip energy storage devices.

  1. A small-scale plasmoid formed during the May 13, 1985, AMPTE magnetotail barium release

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Fritz, T. A.; Bernhardt, P. A.

    1989-01-01

    Plasmoids are closed magnetic-loop structures with entrained hot plasma which are inferred to occur on large spatial scales in space plasma systems. A model is proposed here to explain the brightening and rapid tailward movement of the barium cloud released by the AMPTE IRM spacecraft on May 13, 1985. The model suggests that a small-scale plasmoid was formed due to a predicted development of heavy-ion-induced tearing in the thinned near-tail plasma sheet. Thus, a plasmoid may actually have been imaged due to the emissions of the entrained plasma ions within the plasma bubble.

  2. Spatial Structure of Large-Scale Plasma Density Perturbations HF-Induced in the Ionospheric F 2 Region

    NASA Astrophysics Data System (ADS)

    Frolov, V. L.; Komrakov, G. P.; Glukhov, Ya. V.; Andreeva, E. S.; Kunitsyn, V. E.; Kurbatov, G. A.

    2016-07-01

    We consider the experimental results obtained by studying the large-scale structure of the HF-disturbed ionospheric region. The experiments were performed using the SURA heating facility. The disturbed ionospheric region was sounded by signals radiated by GPS navigation satellite beacons as well as by signals of low-orbit satellites (radio tomography). The results of the experiments show that large-scale plasma density perturbations induced at altitudes higher than the F2 layer maximum can contribute significantly to the measured variations of the total electron density and can, with a certain arrangement of the reception points, be measured by the GPS sounding method.

  3. Design and fabrication of a glovebox for the Plasma Hearth Process radioactive bench-scale system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahlquist, D.R.

    This paper presents some of the design considerations and fabrication techniques for building a glovebox for the Plasma Hearth Process (PHP) radioactive bench-scale system. The PHP radioactive bench-scale system uses a plasma torch to process a variety of radioactive materials into a final vitrified waste form. The processed waste will contain plutonium and trace amounts of other radioactive materials. The glovebox used in this system is located directly below the plasma chamber and is called the Hearth Handling Enclosure (HHE). The HHE is designed to maintain a confinement boundary between the processed waste and the operator. Operations that take placemore » inside the HHE include raising and lowering the hearth using a hydraulic lift table, transporting the hearth within the HHE using an overhead monorail and hoist system, sampling and disassembly of the processed waste and hearth, weighing the hearth, rebuilding a hearth, and sampling HEPA filters. The PHP radioactive bench-scale system is located at the TREAT facility at Argonne National Laboratory-West in Idaho Falls, Idaho.« less

  4. Development of atmospheric pressure large area plasma jet for sterilisation and investigation of molecule and plasma interaction

    NASA Astrophysics Data System (ADS)

    Zerbe, Kristina; Iberler, Marcus; Jacoby, Joachim; Wagner, Christopher

    2016-09-01

    The intention of the project is the development and improvement of an atmospheric plasma jet based on various discharge forms (e.g. DBD, RF, micro-array) for sterilisation of biomedical equipment and investigation of biomolecules under the influence of plasma stress. The major objective is to design a plasma jet with a large area and an extended length. Due to the success on small scale plasma sterilisation the request of large area plasma has increased. Many applications of chemical disinfection in environmental and medical cleaning could thereby be complemented. Subsequently, the interaction between plasma and biomolecules should be investigated to improve plasma strerilisation. Special interest will be on non equilibrium plasma electrons affecting the chemical bindings of organic molecules.

  5. Multiscale modeling and general theory of non-equilibrium plasma-assisted ignition and combustion

    NASA Astrophysics Data System (ADS)

    Yang, Suo; Nagaraja, Sharath; Sun, Wenting; Yang, Vigor

    2017-11-01

    A self-consistent framework for modeling and simulations of plasma-assisted ignition and combustion is established. In this framework, a ‘frozen electric field’ modeling approach is applied to take advantage of the quasi-periodic behaviors of the electrical characteristics to avoid the re-calculation of electric field for each pulse. The correlated dynamic adaptive chemistry (CO-DAC) method is employed to accelerate the calculation of large and stiff chemical mechanisms. The time-step is dynamically updated during the simulation through a three-stage multi-time scale modeling strategy, which utilizes the large separation of time scales in nanosecond pulsed plasma discharges. A general theory of plasma-assisted ignition and combustion is then proposed. Nanosecond pulsed plasma discharges for ignition and combustion can be divided into four stages. Stage I is the discharge pulse, with time scales of O (1-10 ns). In this stage, input energy is coupled into electron impact excitation and dissociation reactions to generate charged/excited species and radicals. Stage II is the afterglow during the gap between two adjacent pulses, with time scales of O (1 0 0 ns). In this stage, quenching of excited species dissociates O2 and fuel molecules, and provides fast gas heating. Stage III is the remaining gap between pulses, with time scales of O (1-100 µs). The radicals generated during Stages I and II significantly enhance exothermic reactions in this stage. The cumulative effects of multiple pulses is seen in Stage IV, with time scales of O (1-1000 ms), which include preheated gas temperatures and a large pool of radicals and fuel fragments to trigger ignition. For flames, plasma could significantly enhance the radical generation and gas heating in the pre-heat zone, thereby enhancing the flame establishment.

  6. Near-Earth plasma sheet boundary dynamics during substorm dipolarization

    NASA Astrophysics Data System (ADS)

    Nakamura, Rumi; Nagai, Tsugunobu; Birn, Joachim; Sergeev, Victor A.; Le Contel, Olivier; Varsani, Ali; Baumjohann, Wolfgang; Nakamura, Takuma; Apatenkov, Sergey; Artemyev, Anton; Ergun, Robert E.; Fuselier, Stephen A.; Gershman, Daniel J.; Giles, Barbara J.; Khotyaintsev, Yuri V.; Lindqvist, Per-Arne; Magnes, Werner; Mauk, Barry; Russell, Christopher T.; Singer, Howard J.; Stawarz, Julia; Strangeway, Robert J.; Anderson, Brian; Bromund, Ken R.; Fischer, David; Kepko, Laurence; Le, Guan; Plaschke, Ferdinand; Slavin, James A.; Cohen, Ian; Jaynes, Allison; Turner, Drew L.

    2017-09-01

    We report on the large-scale evolution of dipolarization in the near-Earth plasma sheet during an intense (AL -1000 nT) substorm on August 10, 2016, when multiple spacecraft at radial distances between 4 and 15 R E were present in the night-side magnetosphere. This global dipolarization consisted of multiple short-timescale (a couple of minutes) B z disturbances detected by spacecraft distributed over 9 MLT, consistent with the large-scale substorm current wedge observed by ground-based magnetometers. The four spacecraft of the Magnetospheric Multiscale were located in the southern hemisphere plasma sheet and observed fast flow disturbances associated with this dipolarization. The high-time-resolution measurements from MMS enable us to detect the rapid motion of the field structures and flow disturbances separately. A distinct pattern of the flow and field disturbance near the plasma boundaries was found. We suggest that a vortex motion created around the localized flows resulted in another field-aligned current system at the off-equatorial side of the BBF-associated R1/R2 systems, as was predicted by the MHD simulation of a localized reconnection jet. The observations by GOES and Geotail, which were located in the opposite hemisphere and local time, support this view. We demonstrate that the processes of both Earthward flow braking and of accumulated magnetic flux evolving tailward also control the dynamics in the boundary region of the near-Earth plasma sheet.[Figure not available: see fulltext.

  7. A Model for Plasma Transport in a Corotation-Dominated Magnetosphere.

    NASA Astrophysics Data System (ADS)

    Pontius, Duane Henry, Jr.

    1988-06-01

    The gross structures of the magnetospheres of the outer planets are decided by processes quite different from those predominant in that of the earth. The terrestrial plasmapause, the boundary beyond which plasma motion is principally determined by magnetospheric interaction with the solar wind, is typically inside geosynchronous orbit. Within the plasmasphere, rotational effects are present, but gravity exceeds the centrifugal force of corotation. In contrast, the Jovian plasmasphere extends to a distance at least twenty times farther than synchronous orbit, affording a large region where rotational effects are expected to he clearly manifest (Brice and Ioannidis, 1970). The goal of this thesis is to develop an appropriate theoretical model for treating the problem of plasma transport in a corotation dominated plasmasphere. The model presented here is intended to describe the radial transport of relatively cold plasma having an azimuthally uniform distribution in a dipolar magnetic field. The approach is conceptually similar to that of the radial diffusion model in that small scale motions are examined to infer global consequences, but the physical understanding of those small scale motions is quite different. In particular, discrete flux tubes of small cross section are assumed to move over distances large compared to their widths. The present model also differs from the corotating convection model by introducing a mechanism whereby the conservation of flux tube content along flowlines is violated. However, it is quite possible that a global convection pattern co -exists with the motions described here, leading to longitudinal asymmetries in the plasma distribution.

  8. SUPERPOSITION OF POLYTROPES IN THE INNER HELIOSHEATH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livadiotis, G., E-mail: glivadiotis@swri.edu

    2016-03-15

    This paper presents a possible generalization of the equation of state and Bernoulli's integral when a superposition of polytropic processes applies in space and astrophysical plasmas. The theory of polytropic thermodynamic processes for a fixed polytropic index is extended for a superposition of polytropic indices. In general, the superposition may be described by any distribution of polytropic indices, but emphasis is placed on a Gaussian distribution. The polytropic density–temperature relation has been used in numerous analyses of space plasma data. This linear relation on a log–log scale is now generalized to a concave-downward parabola that is able to describe themore » observations better. The model of the Gaussian superposition of polytropes is successfully applied in the proton plasma of the inner heliosheath. The estimated mean polytropic index is near zero, indicating the dominance of isobaric thermodynamic processes in the sheath, similar to other previously published analyses. By computing Bernoulli's integral and applying its conservation along the equator of the inner heliosheath, the magnetic field in the inner heliosheath is estimated, B ∼ 2.29 ± 0.16 μG. The constructed normalized histogram of the values of the magnetic field is similar to that derived from a different method that uses the concept of large-scale quantization, bringing incredible insights to this novel theory.« less

  9. Superposition of Polytropes in the Inner Heliosheath

    NASA Astrophysics Data System (ADS)

    Livadiotis, G.

    2016-03-01

    This paper presents a possible generalization of the equation of state and Bernoulli's integral when a superposition of polytropic processes applies in space and astrophysical plasmas. The theory of polytropic thermodynamic processes for a fixed polytropic index is extended for a superposition of polytropic indices. In general, the superposition may be described by any distribution of polytropic indices, but emphasis is placed on a Gaussian distribution. The polytropic density-temperature relation has been used in numerous analyses of space plasma data. This linear relation on a log-log scale is now generalized to a concave-downward parabola that is able to describe the observations better. The model of the Gaussian superposition of polytropes is successfully applied in the proton plasma of the inner heliosheath. The estimated mean polytropic index is near zero, indicating the dominance of isobaric thermodynamic processes in the sheath, similar to other previously published analyses. By computing Bernoulli's integral and applying its conservation along the equator of the inner heliosheath, the magnetic field in the inner heliosheath is estimated, B ˜ 2.29 ± 0.16 μG. The constructed normalized histogram of the values of the magnetic field is similar to that derived from a different method that uses the concept of large-scale quantization, bringing incredible insights to this novel theory.

  10. Large Scale Triboelectric Nanogenerator and Self-Powered Pressure Sensor Array Using Low Cost Roll-to-Roll UV Embossing

    PubMed Central

    Dhakar, Lokesh; Gudla, Sudeep; Shan, Xuechuan; Wang, Zhiping; Tay, Francis Eng Hock; Heng, Chun-Huat; Lee, Chengkuo

    2016-01-01

    Triboelectric nanogenerators (TENGs) have emerged as a potential solution for mechanical energy harvesting over conventional mechanisms such as piezoelectric and electromagnetic, due to easy fabrication, high efficiency and wider choice of materials. Traditional fabrication techniques used to realize TENGs involve plasma etching, soft lithography and nanoparticle deposition for higher performance. But lack of truly scalable fabrication processes still remains a critical challenge and bottleneck in the path of bringing TENGs to commercial production. In this paper, we demonstrate fabrication of large scale triboelectric nanogenerator (LS-TENG) using roll-to-roll ultraviolet embossing to pattern polyethylene terephthalate sheets. These LS-TENGs can be used to harvest energy from human motion and vehicle motion from embedded devices in floors and roads, respectively. LS-TENG generated a power density of 62.5 mW m−2. Using roll-to-roll processing technique, we also demonstrate a large scale triboelectric pressure sensor array with pressure detection sensitivity of 1.33 V kPa−1. The large scale pressure sensor array has applications in self-powered motion tracking, posture monitoring and electronic skin applications. This work demonstrates scalable fabrication of TENGs and self-powered pressure sensor arrays, which will lead to extremely low cost and bring them closer to commercial production. PMID:26905285

  11. Nonlinear mechanism for the generation of electromagnetic fields in a magnetized plasma by the beatings of waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aburjania, G. D.; Machabeli, G. Z.; Kharshiladze, O. A.

    2006-07-15

    The modulational instability in a plasma in a strong constant external magnetic field is considered. The plasmon condensate is modulated not by conventional low-frequency ion sound but by the beatings of two high-frequency transverse electromagnetic waves propagating along the magnetic field. The instability reduces the spatial scales of Langmuir turbulence along the external magnetic field and generates electromagnetic fields. It is shown that, for a pump wave with a sufficiently large amplitude, the effect described in the present paper can be a dominant nonlinear process.

  12. Nanoscale control of energy and matter in plasma-surface interactions: towards energy-efficient nanotech

    NASA Astrophysics Data System (ADS)

    Ostrikov, Kostya

    2010-11-01

    This presentation focuses on the plasma issues related to the solution of the grand challenge of directing energy and matter at nanoscales. This ability is critical for the renewable energy and energy-efficient technologies for sustainable future development. It will be discussed how to use environmentally and human health benign non-equilibrium plasma-solid systems and control the elementary processes of plasma-surface interactions to direct the fluxes of energy and matter at multiple temporal and spatial scales. In turn, this makes it possible to achieve the deterministic synthesis of self- organised arrays of metastable nanostructures in the size range beyond the reach of the present-day nanofabrication. Such structures have tantalising prospects to enhance performance of nanomaterials in virtually any area of human activity yet remain almost inaccessible because the Nature's energy minimisation rules allow only a small number of stable equilibrium states. By using precisely controlled and kinetically fast nanoscale transfer of energy and matter under non-equilibrium conditions and harnessing numerous plasma- specific controls of species creation, delivery to the surface, nucleation and large-scale self-organisation of nuclei and nanostructures, the arrays of metastable nanostructures can be created, arranged, stabilised, and further processed to meet the specific requirements of the envisaged applications. These approaches will eventually lead to faster, unprecedentedly- clean, human-health-friendly, and energy-efficient nanoscale synthesis and processing technologies for the next-generation renewable energy and light sources, biomedical devices, information and communication systems, as well as advanced functional materials for applications ranging from basic food, water, health and clean environment needs to national security and space missions.

  13. Influence of a large-scale field on energy dissipation in magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Zhdankin, Vladimir; Boldyrev, Stanislav; Mason, Joanne

    2017-07-01

    In magnetohydrodynamic (MHD) turbulence, the large-scale magnetic field sets a preferred local direction for the small-scale dynamics, altering the statistics of turbulence from the isotropic case. This happens even in the absence of a total magnetic flux, since MHD turbulence forms randomly oriented large-scale domains of strong magnetic field. It is therefore customary to study small-scale magnetic plasma turbulence by assuming a strong background magnetic field relative to the turbulent fluctuations. This is done, for example, in reduced models of plasmas, such as reduced MHD, reduced-dimension kinetic models, gyrokinetics, etc., which make theoretical calculations easier and numerical computations cheaper. Recently, however, it has become clear that the turbulent energy dissipation is concentrated in the regions of strong magnetic field variations. A significant fraction of the energy dissipation may be localized in very small volumes corresponding to the boundaries between strongly magnetized domains. In these regions, the reduced models are not applicable. This has important implications for studies of particle heating and acceleration in magnetic plasma turbulence. The goal of this work is to systematically investigate the relationship between local magnetic field variations and magnetic energy dissipation, and to understand its implications for modelling energy dissipation in realistic turbulent plasmas.

  14. Scaling of Turbulence and Transport with ρ* in LAPD

    NASA Astrophysics Data System (ADS)

    Guice, Daniel; Carter, Troy; Rossi, Giovanni

    2014-10-01

    The plasma column size of the Large Plasma Device (LAPD) is varied in order to investigate the variation of turbulence and transport with ρ* =ρs / a . The data set includes plasmas produced by the standard BaO plasma source (straight field plasma radius a 30 cm) as well as the new higher density, higher temperature LaB6 plasma source (straight field plasma radius a 10 cm). The size of the plasma column is scaled in order to observe a Bohm to Gyro-Bohm diffusion transition. The main plasma column magnetic field is held fixed while the field in the cathode region is changed in order to map the cathode to different plasma column scales in the main chamber. Past experiments in the LAPD have shown a change in the observed diffusion but no transition to Gyro-Bohm diffusion. Results will be presented from an ongoing campaign to push the LAPD into the Gyro-Bohm diffusion regime.

  15. Controlled alignment of carbon nanofibers in a large-scale synthesis process

    NASA Astrophysics Data System (ADS)

    Merkulov, Vladimir I.; Melechko, A. V.; Guillorn, M. A.; Simpson, M. L.; Lowndes, D. H.; Whealton, J. H.; Raridon, R. J.

    2002-06-01

    Controlled alignment of catalytically grown carbon nanofibers (CNFs) at a variable angle to the substrate during a plasma-enhanced chemical vapor deposition process is achieved. The CNF alignment is controlled by the direction of the electric field lines during the synthesis process. Off normal CNF orientations are achieved by positioning the sample in the vicinity of geometrical features of the sample holder, where bending of the electric field lines occurs. The controlled growth of kinked CNFs that consist of two parts aligned at different angles to the substrate normal also is demonstrated.

  16. Recent Theoretical Studies On Excitation and Recombination

    NASA Technical Reports Server (NTRS)

    Pradhan, Anil K.

    2000-01-01

    New advances in the theoretical treatment of atomic processes in plasmas are described. These enable not only an integrated, unified, and self-consistent treatment of important radiative and collisional processes, but also large-scale computation of atomic data with high accuracy. An extension of the R-matrix work, from excitation and photoionization to electron-ion recombination, includes a unified method that subsumes both the radiative and the di-electronic recombination processes in an ab initio manner. The extensive collisional calculations for iron and iron-peak elements under the Iron Project are also discussed.

  17. Current status and future perspectives of electron interactions with molecules, clusters, surfaces, and interfaces [Workshop on Fundamental challenges in electron-driven chemistry; Workshop on Electron-driven processes: Scientific challenges and technological opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, Kurt H.; McCurdy, C. William; Orlando, Thomas M.

    2000-09-01

    This report is based largely on presentations and discussions at two workshops and contributions from workshop participants. The workshop on Fundamental Challenges in Electron-Driven Chemistry was held in Berkeley, October 9-10, 1998, and addressed questions regarding theory, computation, and simulation. The workshop on Electron-Driven Processes: Scientific Challenges and Technological Opportunities was held at Stevens Institute of Technology, March 16-17, 2000, and focused largely on experiments. Electron-molecule and electron-atom collisions initiate and drive almost all the relevant chemical processes associated with radiation chemistry, environmental chemistry, stability of waste repositories, plasma-enhanced chemical vapor deposition, plasma processing of materials for microelectronic devices andmore » other applications, and novel light sources for research purposes (e.g. excimer lamps in the extreme ultraviolet) and in everyday lighting applications. The life sciences are a rapidly advancing field where the important role of electron-driven processes is only now beginning to be recognized. Many of the applications of electron-initiated chemical processes require results in the near term. A large-scale, multidisciplinary and collaborative effort should be mounted to solve these problems in a timely way so that their solution will have the needed impact on the urgent questions of understanding the physico-chemical processes initiated and driven by electron interactions.« less

  18. Hydromagnetic waves, turbulence, and collisionless processes in the interplanetary medium

    NASA Technical Reports Server (NTRS)

    Barnes, A.

    1983-01-01

    An extended discussion is conducted concerning the origin and evolution of interplanetary hydromagnetic waves and turbulence, and their influence on the large scale dynamics of the solar wind. The solar wind is at present the preeminent medium for the study of hydromagnetic waves and turbulence, providing an opportunity for advancement of understanding of the most fundamental processes of the astrophysical plasmas. All interplanetary fluctuations whose time scale is observed to be greater than 1 sec can be regarded as hydromagnetic fluctuations. It has been found to be simplest, and generally very satisfactory, to model interplanetary variations as fluctuations in an MHD fluid. Attention is given to the classification of wave modes, geometrical hydromagnetics, Alfven wave pressure, rugged invariants, and the kinetic theory of collisionless processes.

  19. Magnetic Reconnection and Associated Transient Phenomena Within the Magnetospheres of Jupiter and Saturn

    NASA Astrophysics Data System (ADS)

    Louarn, Philippe; Andre, Nicolas; Jackman, Caitriona M.; Kasahara, Satoshi; Kronberg, Elena A.; Vogt, Marissa F.

    2015-04-01

    We review in situ observations made in Jupiter and Saturn's magnetosphere that illustrate the possible roles of magnetic reconnection in rapidly-rotating magnetospheres. In the Earth's solar wind-driven magnetosphere, the magnetospheric convection is classically described as a cycle of dayside opening and tail closing reconnection (the Dungey cycle). For the rapidly-rotating Jovian and Kronian magnetospheres, heavily populated by internal plasma sources, the classical concept (the Vasyliunas cycle) is that the magnetic reconnection plays a key role in the final stage of the radial plasma transport across the disk. By cutting and closing flux tubes that have been elongated by the rotational stress, the reconnection process would lead to the formation of plasmoids that propagate down the tail, contributing to the final evacuation of the internally produced plasma and allowing the return of the magnetic flux toward the planet. This process has been studied by inspecting possible `local' signatures of the reconnection, as magnetic field reversals, plasma flow anisotropies, energetic particle bursts, and more global consequences on the magnetospheric activity. The investigations made at Jupiter support the concept of an `average' X-line, extended in the dawn/dusk direction and located at 90-120 Jovian radius (RJ) on the night side. The existence of a similar average X-line has not yet been established at Saturn, perhaps by lack of statistics. Both at Jupiter and Saturn, the reconfiguration signatures are consistent with magnetospheric dipolarizations and formation of plasmoids and flux ropes. In several cases, the reconfigurations also appear to be closely associated with large scale activations of the magnetosphere, seen from the radio and auroral emissions. Nevertheless, the statistical study also suggests that the reconnection events and the associated plasmoids are not frequent enough to explain a plasma evacuation that matches the mass input rate from the satellites and the rings. Different forms of transport should thus act together to evacuate the plasma, which still needs to be established. Investigations of reconnection signatures at the magnetopause and other processes as the Kelvin-Helmholtz instability are also reviewed. A provisional conclusion would be that the dayside reconnection is unlikely a crucial process in the overall dynamics. On the small scales, the detailed analysis of one reconnection event at Jupiter shows that the local plasma signatures (field-aligned flows, energetic particle bursts…) are very similar to those observed at Earth, with likely a similar scaling with respect to characteristic kinetic lengths (Larmor radius and inertial scales).

  20. Magnetic energy storage and conversion in the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Spicer, D. S.; Mariska, J. T.; Boris, J. P.

    1986-01-01

    According to the approach employed in this investigation, particularly important simple configurations of magnetic field and plasma are identified, and it is attempted to achieve an understanding of the large-scale dynamic processes and transformations which these systems can undergo. Fundamental concepts are discussed, taking into account aspects of magnetic energy generation, ideal MHD theory, non-MHD properties, the concept of 'anomalous' resistivity, and global electrodynamic coupling. Questions of magnetically controlled energy conversion are examined, giving attention to magnetic modifications of plasma transport, the transition region structure and flows, channeling and acceleration of plasma, channeling and dissipation of MHD waves, and anomalous dissipation of field-aligned currents. A description of the characteristics of magnetohydrodynamic energy conversion is also provided, and outstanding questions are discussed.

  1. Multifluid MHD Simulations of the Plasma Environment of Comet Churyumov-Gerasimenko at Different Heliocentric Distances

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Jia, X.; Rubin, M.; Fougere, N.; Gombosi, T. I.; Tenishev, V.; Combi, M. R.; Bieler, A. M.; Toth, G.; Hansen, K. C.; Shou, Y.

    2014-12-01

    We study the plasma environment of the comet Churyumov-Gerasimenko, which is the target of the Rosetta mission, by performing large scale numerical simulations. Our model is based on BATS-R-US within the Space Weather Modeling Framework that solves the governing multifluid MHD equations, which describe the behavior of the cometary heavy ions, the solar wind protons, and electrons. The model includes various mass loading processes, including ionization, charge exchange, dissociative ion-electron recombination, as well as collisional interactions between different fluids. The neutral background used in our MHD simulations is provided by a kinetic Direct Simulation Monte Carlo (DSMC) model. We will simulate how the cometary plasma environment changes at different heliocentric distances.

  2. A model for straight and helical solar jets: II. Parametric study of the plasma beta.

    PubMed

    Pariat, E; Dalmasse, K; DeVore, C R; Antiochos, S K; Karpen, J T

    2016-12-01

    Jets are dynamic, impulsive, well-collimated plasma events that develop at many different scales and in different layers of the solar atmosphere. Jets are believed to be induced by magnetic reconnection, a process central to many astrophysical phenomena. Within the solar atmosphere, jet-like events develop in many different environments, e.g., in the vicinity of active regions as well as in coronal holes, and at various scales, from small photospheric spicules to large coronal jets. In all these events, signatures of helical structure and/or twisting/rotating motions are regularly observed. The present study aims to establish that a single model can generally reproduce the observed properties of these jet-like events. In this study, using our state-of-the-art numerical solver ARMS, we present a parametric study of a numerical tridimensional magnetohydrodynamic (MHD) model of solar jet-like events. Within the MHD paradigm, we study the impact of varying the atmospheric plasma β on the generation and properties of solar-like jets. The parametric study validates our model of jets for plasma β ranging from 10 -3 to 1, typical of the different layers and magnetic environments of the solar atmosphere. Our model of jets can robustly explain the generation of helical solar jet-like events at various β ≤ 1. This study introduces the new original result that the plasma β modifies the morphology of the helical jet, explaining the different observed shapes of jets at different scales and in different layers of the solar atmosphere. Our results allow us to understand the energisation, triggering, and driving processes of jet-like events. Our model allows us to make predictions of the impulsiveness and energetics of jets as determined by the surrounding environment, as well as the morphological properties of the resulting jets.

  3. A table top experiment to study plasma confined by a dipole magnet

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sudeep; Baitha, Anuj Ram

    2016-10-01

    There has been a long quest to understand charged particle generation, confinement and underlying complex processes in a plasma confined by a dipole magnet. Our earth's magnetosphere is an example of such a naturally occurring system. A few laboratory experiments have been designed for such investigations, such as the Levitated Dipole Experiment (LDX) at MIT, the Terella experiment at Columbia university, and the Ring Trap-1 (RT-1) experiment at the University of Tokyo. However, these are large scale experiments, where the dipole magnetic field is created with superconducting coils, thereby, necessitating power supplies and stringent cryogenic requirements. We report a table top experiment to investigate important physical processes in a dipole plasma. A strong cylindrical permanent magnet, is employed to create the dipole field inside a vacuum chamber. The magnet is suspended and cooled by circulating chilled water. The plasma is heated by electromagnetic waves of 2.45 GHz and a second frequency in the range 6 - 11 GHz. Some of the initial results of measurements and numerical simulation of magnetic field, visual observations of the first plasma, and spatial measurements of plasma parameters will be presented.

  4. Nonlinear plasma wave models in 3D fluid simulations of laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Chapman, Thomas; Berger, Richard; Arrighi, Bill; Langer, Steve; Banks, Jeffrey; Brunner, Stephan

    2017-10-01

    Simulations of laser-plasma interaction (LPI) in inertial confinement fusion (ICF) conditions require multi-mm spatial scales due to the typical laser beam size and durations of order 100 ps in order for numerical laser reflectivities to converge. To be computationally achievable, these scales necessitate a fluid-like treatment of light and plasma waves with a spatial grid size on the order of the light wave length. Plasma waves experience many nonlinear phenomena not naturally described by a fluid treatment, such as frequency shifts induced by trapping, a nonlinear (typically suppressed) Landau damping, and mode couplings leading to instabilities that can cause the plasma wave to decay rapidly. These processes affect the onset and saturation of stimulated Raman and Brillouin scattering, and are of direct interest to the modeling and prediction of deleterious LPI in ICF. It is not currently computationally feasible to simulate these Debye length-scale phenomena in 3D across experimental scales. Analytically-derived and/or numerically benchmarked models of processes occurring at scales finer than the fluid simulation grid offer a path forward. We demonstrate the impact of a range of kinetic processes on plasma reflectivity via models included in the LPI simulation code pF3D. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Freeze-drying process monitoring using a cold plasma ionization device.

    PubMed

    Mayeresse, Y; Veillon, R; Sibille, P H; Nomine, C

    2007-01-01

    A cold plasma ionization device has been designed to monitor freeze-drying processes in situ by monitoring lyophilization chamber moisture content. This plasma device, which consists of a probe that can be mounted directly on the lyophilization chamber, depends upon the ionization of nitrogen and water molecules using a radiofrequency generator and spectrometric signal collection. The study performed on this probe shows that it is steam sterilizable, simple to integrate, reproducible, and sensitive. The limitations include suitable positioning in the lyophilization chamber, calibration, and signal integration. Sensitivity was evaluated in relation to the quantity of vials and the probe positioning, and correlation with existing methods, such as microbalance, was established. These tests verified signal reproducibility through three freeze-drying cycles. Scaling-up studies demonstrated a similar product signature for the same product using pilot-scale and larger-scale equipment. On an industrial scale, the method efficiently monitored the freeze-drying cycle, but in a larger industrial freeze-dryer the signal was slightly modified. This was mainly due to the positioning of the plasma device, in relation to the vapor flow pathway, which is not necessarily homogeneous within the freeze-drying chamber. The plasma tool is a relevant method for monitoring freeze-drying processes and may in the future allow the verification of current thermodynamic freeze-drying models. This plasma technique may ultimately represent a process analytical technology (PAT) approach for the freeze-drying process.

  6. The simulation of the geosynchronous Earth orbit plasma environment in Chamber A: An assessment of possible experimental investigations

    NASA Technical Reports Server (NTRS)

    Bernstein, W.

    1981-01-01

    The possible use of Chamber A for the replication or simulation of space plasma physics processes which occur in the geosynchronous Earth orbit (GEO) environment is considered. It is shown that replication is not possible and that scaling of the environmental conditions is required for study of the important instability processes. Rules for such experimental scaling are given. At the present time, it does not appear technologically feasible to satisfy these requirements in Chamber A. It is, however, possible to study and qualitatively evaluate the problem of vehicle charging at GEO. In particular, Chamber A is sufficiently large that a complete operational spacecraft could be irradiated by beams and charged to high potentials. Such testing would contribute to the assessment of the operational malfunctions expected at GEO and their possible correction. However, because of the many tabulated limitations in such a testing programs, its direct relevance to conditions expected in the geo environment remains questionable.

  7. Suppressed ion-scale turbulence in a hot high-β plasma

    NASA Astrophysics Data System (ADS)

    Schmitz, L.; Fulton, D. P.; Ruskov, E.; Lau, C.; Deng, B. H.; Tajima, T.; Binderbauer, M. W.; Holod, I.; Lin, Z.; Gota, H.; Tuszewski, M.; Dettrick, S. A.; Steinhauer, L. C.

    2016-12-01

    An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field. Field-reversed configuration (FRC) plasmas are potentially attractive as a reactor concept, achieving high plasma pressure in a simple axisymmetric geometry. Here, we show that FRC plasmas have unique, beneficial microstability properties that differ from typical regimes in toroidal confinement devices. Ion-scale fluctuations are found to be absent or strongly suppressed in the plasma core, mainly due to the large FRC ion orbits, resulting in near-classical thermal ion confinement. In the surrounding boundary layer plasma, ion- and electron-scale turbulence is observed once a critical pressure gradient is exceeded. The critical gradient increases in the presence of sheared plasma flow induced via electrostatic biasing, opening the prospect of active boundary and transport control in view of reactor requirements.

  8. Suppressed ion-scale turbulence in a hot high-β plasma

    PubMed Central

    Schmitz, L.; Fulton, D. P.; Ruskov, E.; Lau, C.; Deng, B. H.; Tajima, T.; Binderbauer, M. W.; Holod, I.; Lin, Z.; Gota, H.; Tuszewski, M.; Dettrick, S. A.; Steinhauer, L. C.

    2016-01-01

    An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field. Field-reversed configuration (FRC) plasmas are potentially attractive as a reactor concept, achieving high plasma pressure in a simple axisymmetric geometry. Here, we show that FRC plasmas have unique, beneficial microstability properties that differ from typical regimes in toroidal confinement devices. Ion-scale fluctuations are found to be absent or strongly suppressed in the plasma core, mainly due to the large FRC ion orbits, resulting in near-classical thermal ion confinement. In the surrounding boundary layer plasma, ion- and electron-scale turbulence is observed once a critical pressure gradient is exceeded. The critical gradient increases in the presence of sheared plasma flow induced via electrostatic biasing, opening the prospect of active boundary and transport control in view of reactor requirements. PMID:28000675

  9. Electrical and morphological characterization of transfer-printed Au/Ti/TiO{sub x}/p{sup +}-Si nano- and microstructures with plasma-grown titanium oxide layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiler, Benedikt, E-mail: benedikt.weiler@nano.ei.tum.de; Nagel, Robin; Albes, Tim

    2016-04-14

    Highly-ordered, sub-70 nm-MOS-junctions of Au/Ti/TiO{sub x}/p{sup +}-Si were efficiently and reliably fabricated by nanotransfer-printing (nTP) over large areas and their functionality was investigated with respect to their application as MOS-devices. First, we used a temperature-enhanced nTP process and integrated the plasma-oxidation of a nm-thin titanium film being e-beam evaporated directly on the stamp before the printing step without affecting the p{sup +}-Si substrate. Second, morphological investigations (scanning electron microscopy) of the nanostructures confirm the reliable transfer of Au/Ti/TiO{sub x}-pillars of 50 nm, 75 nm, and 100 nm size of superior quality on p{sup +}-Si by our transfer protocol. Third, the fabricated nanodevices are alsomore » characterized electrically by conductive AFM. Fourth, the results are compared to probe station measurements on identically processed, i.e., transfer-printed μm-MOS-structures including a systematic investigation of the oxide formation. The jV-characteristics of these MOS-junctions demonstrate the electrical functionality as plasma-grown tunneling oxides and the effectivity of the transfer-printing process for their large-scale fabrication. Next, our findings are supported by fits to the jV-curves of the plasma-grown titanium oxide by kinetic-Monte-Carlo simulations. These fits allowed us to determine the dominant conduction mechanisms, the material parameters of the oxides and, in particular, a calibration of the thickness depending on applied plasma time and power. Finally, also a relative dielectric permittivity of 12 was found for such plasma-grown TiO{sub x}-layers.« less

  10. Progress in long scale length laser plasma interactions

    NASA Astrophysics Data System (ADS)

    Glenzer, S. H.; Arnold, P.; Bardsley, G.; Berger, R. L.; Bonanno, G.; Borger, T.; Bower, D. E.; Bowers, M.; Bryant, R.; Buckman, S.; Burkhart, S. C.; Campbell, K.; Chrisp, M. P.; Cohen, B. I.; Constantin, C.; Cooper, F.; Cox, J.; Dewald, E.; Divol, L.; Dixit, S.; Duncan, J.; Eder, D.; Edwards, J.; Erbert, G.; Felker, B.; Fornes, J.; Frieders, G.; Froula, D. H.; Gardner, S. D.; Gates, C.; Gonzalez, M.; Grace, S.; Gregori, G.; Greenwood, A.; Griffith, R.; Hall, T.; Hammel, B. A.; Haynam, C.; Heestand, G.; Henesian, M.; Hermes, G.; Hinkel, D.; Holder, J.; Holdner, F.; Holtmeier, G.; Hsing, W.; Huber, S.; James, T.; Johnson, S.; Jones, O. S.; Kalantar, D.; Kamperschroer, J. H.; Kauffman, R.; Kelleher, T.; Knight, J.; Kirkwood, R. K.; Kruer, W. L.; Labiak, W.; Landen, O. L.; Langdon, A. B.; Langer, S.; Latray, D.; Lee, A.; Lee, F. D.; Lund, D.; MacGowan, B.; Marshall, S.; McBride, J.; McCarville, T.; McGrew, L.; Mackinnon, A. J.; Mahavandi, S.; Manes, K.; Marshall, C.; Menapace, J.; Mertens, E.; Meezan, N.; Miller, G.; Montelongo, S.; Moody, J. D.; Moses, E.; Munro, D.; Murray, J.; Neumann, J.; Newton, M.; Ng, E.; Niemann, C.; Nikitin, A.; Opsahl, P.; Padilla, E.; Parham, T.; Parrish, G.; Petty, C.; Polk, M.; Powell, C.; Reinbachs, I.; Rekow, V.; Rinnert, R.; Riordan, B.; Rhodes, M.; Roberts, V.; Robey, H.; Ross, G.; Sailors, S.; Saunders, R.; Schmitt, M.; Schneider, M. B.; Shiromizu, S.; Spaeth, M.; Stephens, A.; Still, B.; Suter, L. J.; Tietbohl, G.; Tobin, M.; Tuck, J.; Van Wonterghem, B. M.; Vidal, R.; Voloshin, D.; Wallace, R.; Wegner, P.; Whitman, P.; Williams, E. A.; Williams, K.; Winward, K.; Work, K.; Young, B.; Young, P. E.; Zapata, P.; Bahr, R. E.; Seka, W.; Fernandez, J.; Montgomery, D.; Rose, H.

    2004-12-01

    The first experiments on the National Ignition Facility (NIF) have employed the first four beams to measure propagation and laser backscattering losses in large ignition-size plasmas. Gas-filled targets between 2 and 7 mm length have been heated from one side by overlapping the focal spots of the four beams from one quad operated at 351 nm (3ω) with a total intensity of 2 × 1015 W cm-2. The targets were filled with 1 atm of CO2 producing up to 7 mm long homogeneously heated plasmas with densities of ne = 6 × 1020 cm-3 and temperatures of Te = 2 keV. The high energy in an NIF quad of beams of 16 kJ, illuminating the target from one direction, creates unique conditions for the study of laser-plasma interactions at scale lengths not previously accessible. The propagation through the large-scale plasma was measured with a gated x-ray imager that was filtered for 3.5 keV x-rays. These data indicate that the beams interact with the full length of this ignition-scale plasma during the last ~1 ns of the experiment. During that time, the full aperture measurements of the stimulated Brillouin scattering and stimulated Raman scattering show scattering into the four focusing lenses of 3% for the smallest length (~2 mm), increasing to 10-12% for ~7 mm. These results demonstrate the NIF experimental capabilities and further provide a benchmark for three-dimensional modelling of the laser-plasma interactions at ignition-size scale lengths.

  11. Atmospheric-pressure glow plasma synthesis of plasmonic and photoluminescent zinc oxide nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilik, N., E-mail: bilik006@umn.edu, E-mail: kortshagen@umn.edu; Greenberg, B. L.; Yang, J.

    In this paper, we present a large-volume (non-micro) atmospheric pressure glow plasma capable of rapid, large-scale zinc oxide nanocrystal synthesis and deposition (up to 400 μg/min), whereas in the majority of the literature, nanoparticles are synthesized using micro-scale or filamentary plasmas. The reactor is an RF dielectric barrier discharge with a non-uniform gap spacing. This design encourages pre-ionization during the plasma breakdown, making the discharge uniform over a large volume. The produced zinc oxide nanocrystals typically have diameters ranging from 4 to 15 nm and exhibit photoluminescence at ≈550 nm and localized surface plasmon resonance at ≈1900 cm{sup −1} due to oxygen vacancies. Themore » particle size can be tuned to a degree by varying the gas temperature and the precursor mixing ratio.« less

  12. Off-great-circle paths in transequatorial propagation: 1. Discrete and diffuse types

    NASA Astrophysics Data System (ADS)

    Tsunoda, Roland T.; Maruyama, Takashi; Tsugawa, Takuya; Yokoyama, Tatsuhiro; Ishii, Mamoru; Nguyen, Trang T.; Ogawa, Tadahiko; Nishioka, Michi

    2016-11-01

    There is mounting evidence that plasma structure in nighttime equatorial F layer evolves from large-scale wave structure (LSWS) in the bottomside F layer. This process cannot be ignored because equatorial plasma bubbles (EPBs) arise from large-amplitude LSWS; and, because intense radiowave scintillations are associated with EPBs, understanding the LSWS-to-EPB process is a crucial step toward reliable Space Weather Forecasting. In this regard, the transequatorial propagation (TEP) experiment appears to be the most useful among available research instruments. After a lapse of 30 years, the TEP experiment has been resurrected; a goal of this research is to understand TEP measurements well enough so that they can be used to diagnose the LSWS-to-EPB process. Toward this end, new results are presented in two companion papers. Herein (P1), off-great-circle (OGC) propagation paths are shown to consist of two types, discrete and diffuse. The new findings include the following: (1) a generalized multireflection model that can explain most of the observed properties; (2) the discrete type is supported by multireflections from an unstructured upwelling, (3) the diffuse type is supported by reflections from plasma structure in EPBs; and (4) the observed east-west (EW) asymmetry can be explained in terms of a distorted upwelling or plasma structure along the west wall of an upwelling. In Paper 2 (P2), a second form of observed EW asymmetry is explained in terms of plasma structure, which is not aligned with the geomagnetic field. The findings strongly confirm a close relationship between upwellings, ESF patches, and OGC paths.

  13. Effects of eletron heating on the current driven electrostatic ion cyclotron instability and plasma transport processes along auroral field lines

    NASA Technical Reports Server (NTRS)

    Ganguli, Supriya B.; Mitchell, Horace G.; Palmadesso, Peter J.

    1988-01-01

    Fluid simulations of the plasma along auroral field lines in the return current region have been performed. It is shown that the onset of electrostatic ion cyclotron (EIC) related anomalous resistivity and the consequent heating of electrons leads to a transverse ion temperature that is much higher than that produced by the current driven EIC instability (CDICI) alone. Two processes are presented for the enhancement of ion heating by anomalous resistivity. The anomalous resistivity associated with the turbulence is limited by electron heating, so that CDICI saturates at transverse temperature that is substantially higher than in the absence of resistivity. It is suggested that this process demonstrates a positive feedback loop in the interaction between CDICI, anomalous resistivity, and parallel large-scale dynamics in the topside ionosphere.

  14. Cost-effective large-scale fabrication of diffractive optical elements by using conventional semiconducting processes.

    PubMed

    Yoo, Seunghwan; Song, Ho Young; Lee, Junghoon; Jang, Cheol-Yong; Jeong, Hakgeun

    2012-11-20

    In this article, we introduce a simple fabrication method for SiO(2)-based thin diffractive optical elements (DOEs) that uses the conventional processes widely used in the semiconductor industry. Photolithography and an inductively coupled plasma etching technique are easy and cost-effective methods for fabricating subnanometer-scale and thin DOEs with a refractive index of 1.45, based on SiO(2). After fabricating DOEs, we confirmed the shape of the output light emitted from the laser diode light source and applied to a light-emitting diode (LED) module. The results represent a new approach to mass-produce DOEs and realize a high-brightness LED module.

  15. Isotope Mass Scaling of Turbulence and Transport

    NASA Astrophysics Data System (ADS)

    McKee, George; Yan, Zheng; Gohil, Punit; Luce, Tim; Rhodes, Terry

    2017-10-01

    The dependence of turbulence characteristics and transport scaling on the fuel ion mass has been investigated in a set of hydrogen (A = 1) and deuterium (A = 2) plasmas on DIII-D. Normalized energy confinement time (B *τE) is two times lower in hydrogen (H) plasmas compare to similar deuterium (D) plasmas. Dimensionless parameters other than ion mass (A) , including ρ*, q95, Te /Ti , βN, ν*, and Mach number were maintained nearly fixed. Matched profiles of electron density, electron and ion temperature, and toroidal rotation were well matched. The normalized turbulence amplitude (ñ / n) is approximately twice as large in H as in D, which may partially explain the increased transport and reduced energy confinement time. Radial correlation lengths of low-wavenumber density turbulence in hydrogen are similar to or slightly larger than correlation lengths in the deuterium plasmas and generally scale with the ion gyroradius, which were maintained nearly fixed in this dimensionless scan. Predicting energy confinement in D-T burning plasmas requires an understanding of the large and beneficial isotope scaling of transport. Supported by USDOE under DE-FG02-08ER54999 and DE-FC02-04ER54698.

  16. Laboratory development and testing of spacecraft diagnostics

    NASA Astrophysics Data System (ADS)

    Amatucci, William; Tejero, Erik; Blackwell, Dave; Walker, Dave; Gatling, George; Enloe, Lon; Gillman, Eric

    2017-10-01

    The Naval Research Laboratory's Space Chamber experiment is a large-scale laboratory device dedicated to the creation of large-volume plasmas with parameters scaled to realistic space plasmas. Such devices make valuable contributions to the investigation of space plasma phenomena under controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. However, in addition to investigations such as plasma wave and instability studies, such devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this talk, we will describe how the laboratory simulation of space plasmas made this development path possible. Work sponsored by the US Naval Research Laboratory Base Program.

  17. Test of an argon cusp plasma for tin LPP power scaling

    NASA Astrophysics Data System (ADS)

    McGeoch, Malcolm W.

    2015-03-01

    Scaling the power of the tin droplet laser-produced-plasma (LPP) extreme ultraviolet (EUV) source to 500W has eluded the industry after a decade of effort. In 2014 we proposed [2] a solution: placing the laser-plasma interaction region within an argon plasma in a magnetic cusp. This would serve to ionize tin atoms and guide them to a large area annular beam dump. We have since demonstrated the feasibility of this approach. We present first results from a full-scale test plasma at power levels relevant to the generation of at least 200W, showing both that the argon cusp plasma is very stable, and that its geometrical properties are ideal for the transport of exhaust power and tin to the beam dump.

  18. Yong-Ki Kim — His Life and Recent Work

    NASA Astrophysics Data System (ADS)

    Stone, Philip M.

    2007-08-01

    Dr. Kim made internationally recognized contributions in many areas of atomic physics research and applications, and was still very active when he was killed in an automobile accident. He joined NIST in 1983 after 17 years at the Argonne National Laboratory following his Ph.D. work at the University of Chicago. Much of his early work at Argonne and especially at NIST was the elucidation and detailed analysis of the structure of highly charged ions. He developed a sophisticated, fully relativistic atomic structure theory that accurately predicts atomic energy levels, transition wavelengths, lifetimes, and transition probabilities for a large number of ions. This information has been vital to model the properties of the hot interior of fusion research plasmas, where atomic ions must be described with relativistic atomic structure calculations. In recent years, Dr. Kim worked on the precise calculation of ionization and excitation cross sections of numerous atoms, ions, and molecules that are important in fusion research and in plasma processing for manufacturing semiconductor chips. Dr. Kim greatly advanced the state-of-the-art of calculations for these cross sections through development and implementation of highly innovative methods, including his Binary-Encounter-Bethe (BEB) theory and a scaled plane wave Born (scaled PWB) theory. His methods, using closed quantum mechanical formulas and no adjustable parameters, avoid tedious large-scale computations with main-frame computers. His calculations closely reproduce the results of benchmark experiments as well as large-scale calculations requiring hours of computer time. This recent work on BEB and scaled PWB is reviewed and examples of its capabilities are shown.

  19. Quantitation of 87 Proteins by nLC-MRM/MS in Human Plasma: Workflow for Large-Scale Analysis of Biobank Samples.

    PubMed

    Rezeli, Melinda; Sjödin, Karin; Lindberg, Henrik; Gidlöf, Olof; Lindahl, Bertil; Jernberg, Tomas; Spaak, Jonas; Erlinge, David; Marko-Varga, György

    2017-09-01

    A multiple reaction monitoring (MRM) assay was developed for precise quantitation of 87 plasma proteins including the three isoforms of apolipoprotein E (APOE) associated with cardiovascular diseases using nanoscale liquid chromatography separation and stable isotope dilution strategy. The analytical performance of the assay was evaluated and we found an average technical variation of 4.7% in 4-5 orders of magnitude dynamic range (≈0.2 mg/L to 4.5 g/L) from whole plasma digest. Here, we report a complete workflow, including sample processing adapted to 96-well plate format and normalization strategy for large-scale studies. To further investigate the MS-based quantitation the amount of six selected proteins was measured by routinely used clinical chemistry assays as well and the two methods showed excellent correlation with high significance (p-value < 10e-5) for the six proteins, in addition for the cardiovascular predictor factor, APOB: APOA1 ratio (r = 0.969, p-value < 10e-5). Moreover, we utilized the developed assay for screening of biobank samples from patients with myocardial infarction and performed the comparative analysis of patient groups with STEMI (ST- segment elevation myocardial infarction), NSTEMI (non ST- segment elevation myocardial infarction) and type-2 AMI (type-2 myocardial infarction) patients.

  20. Large-scale particle acceleration by magnetic reconnection during solar flares

    NASA Astrophysics Data System (ADS)

    Li, X.; Guo, F.; Li, H.; Li, G.; Li, S.

    2017-12-01

    Magnetic reconnection that triggers explosive magnetic energy release has been widely invoked to explain the large-scale particle acceleration during solar flares. While great efforts have been spent in studying the acceleration mechanism in small-scale kinetic simulations, there have been rare studies that make predictions to acceleration in the large scale comparable to the flare reconnection region. Here we present a new arrangement to study this problem. We solve the large-scale energetic-particle transport equation in the fluid velocity and magnetic fields from high-Lundquist-number MHD simulations of reconnection layers. This approach is based on examining the dominant acceleration mechanism and pitch-angle scattering in kinetic simulations. Due to the fluid compression in reconnection outflows and merging magnetic islands, particles are accelerated to high energies and develop power-law energy distributions. We find that the acceleration efficiency and power-law index depend critically on upstream plasma beta and the magnitude of guide field (the magnetic field component perpendicular to the reconnecting component) as they influence the compressibility of the reconnection layer. We also find that the accelerated high-energy particles are mostly concentrated in large magnetic islands, making the islands a source of energetic particles and high-energy emissions. These findings may provide explanations for acceleration process in large-scale magnetic reconnection during solar flares and the temporal and spatial emission properties observed in different flare events.

  1. Taking Venus models to new dimensions.

    NASA Astrophysics Data System (ADS)

    Murawski, K.

    1997-11-01

    Space plasma physicists in Poland and Japan have gained new insights into the interaction between the solar wind and Venus. Computer simulations of this 3D global interaction between the solar wind and nonmagnetized bodies have enabled greater understanding of the large-scale processes involved in such phenomena. A model that offers improved understanding of the solar wind interaction with Venus (as well as other nonmagnetized bodies impacted by the solar wind) has been developed. In this model, the interaction of the solar wind with the ionosphere of Venus is studied by calculating numerical solutions of the 3D MHD equations for two-component, chemically reactive plasma. The author describes the innovative model.

  2. Deposition of hard elastic hydrogenated fullerenelike carbon films

    NASA Astrophysics Data System (ADS)

    Wang, Zhou; Zhang, Junyan

    2011-05-01

    Hydrogenated fullerenelike carbon (H-FLC) films, with high hardness of 41.7 ± 1.4 GPa and elastic recovery of ˜75.1%, have been uniformly deposited at low temperature by pulse direct current plasma enhanced chemical vapor deposition (pulse DC PECVD). The superior mechanical properties of the H-FLC films are attributed to the unique curvature and interconnection of graphitic basal planes. We propose the fullerenelike structures are formed in the far nonequilibrium pulse plasma environment and stabilized in the sequential fast quenching process. It is expected that the facile deposition of H-FLC films will promote the large-scale low-temperature preparation of engineering protective films for industrial applications.

  3. Optical emission from a small scale model electric arc furnace in 250-600 nm region.

    PubMed

    Mäkinen, A; Niskanen, J; Tikkala, H; Aksela, H

    2013-04-01

    Optical emission spectroscopy has been for long proposed for monitoring and studying industrial steel making processes. Whereas the radiative decay of thermal excitations is always taking place in high temperatures needed in steel production, one of the most promising environment for such studies are electric arc furnaces, creating plasma in excited electronic states that relax with intense characteristic emission in the optical regime. Unfortunately, large industrial scale electric arc furnaces also present a challenging environment for optical emission studies and application of the method is not straightforward. To study the usability of optical emission spectroscopy in real electric arc furnaces, we have developed a laboratory scale DC electric arc furnace presented in this paper. With the setup, optical emission spectra of Fe, Cr, Cr2O3, Ni, SiO2, Al2O3, CaO, and MgO were recorded in the wavelength range 250-600 nm and the results were analyzed with the help of reference data. The work demonstrates that using characteristic optical emission, obtaining in situ chemical information from oscillating plasma of electric arc furnaces is indeed possible. In spite of complications, the method could possibly be applied to industrial scale steel making process in order to improve its efficiency.

  4. Soft X-ray Emission from Large-Scale Galactic Outflows in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.; Baum, S.; O'Dea, C.; Veilleux, S.

    1998-01-01

    Kiloparsec-scale soft X-ray nebulae extend along the galaxy minor axes in several Seyfert galaxies, including NGC 2992, NGC 4388 and NGC 5506. In these three galaxies, the extended X-ray emission observed in ROSAT HRI images has 0.2-2.4 keV X-ray luminosities of 0.4-3.5 x 10(40) erg s(-1) . The X-ray nebulae are roughly co-spatial with the large-scale radio emission, suggesting that both are produced by large-scale galactic outflows. Assuming pressure balance between the radio and X-ray plasmas, the X-ray filling factor is >~ 10(4) times as large as the radio plasma filling factor, suggesting that large-scale outflows in Seyfert galaxies are predominantly winds of thermal X-ray emitting gas. We favor an interpretation in which large-scale outflows originate as AGN-driven jets that entrain and heat gas on kpc scales as they make their way out of the galaxy. AGN- and starburst-driven winds are also possible explanations if the winds are oriented along the rotation axis of the galaxy disk. Since large-scale outflows are present in at least 50 percent of Seyfert galaxies, the soft X-ray emission from the outflowing gas may, in many cases, explain the ``soft excess" X-ray feature observed below 2 keV in X-ray spectra of many Seyfert 2 galaxies.

  5. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    NASA Astrophysics Data System (ADS)

    Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.; Röpcke, J.

    2015-12-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.

  6. Very Large Area/Volume Microwave ECR Plasma and Ion Source

    NASA Technical Reports Server (NTRS)

    Foster, John E. (Inventor); Patterson, Michael J. (Inventor)

    2009-01-01

    The present invention is an apparatus and method for producing very large area and large volume plasmas. The invention utilizes electron cyclotron resonances in conjunction with permanent magnets to produce dense, uniform plasmas for long life ion thruster applications or for plasma processing applications such as etching, deposition, ion milling and ion implantation. The large area source is at least five times larger than the 12-inch wafers being processed to date. Its rectangular shape makes it easier to accommodate to materials processing than sources that are circular in shape. The source itself represents the largest ECR ion source built to date. It is electrodeless and does not utilize electromagnets to generate the ECR magnetic circuit, nor does it make use of windows.

  7. Synthesis of large scale graphene oxide using plasma enhanced chemical vapor deposition method and its application in humidity sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yang; Chen, Yuming, E-mail: yumingchen@fudan.edu.cn; Engineering Research Center of Advanced Lighting Technology, Ministry of Education, 220 Handan Road, Shanghai 00433

    2016-03-14

    Large scale graphene oxide (GO) is directly synthesized on copper (Cu) foil by plasma enhanced chemical vapor deposition method under 500 °C and even lower temperature. Compared to the modified Hummer's method, the obtained GO sheet in this article is large, and it is scalable according to the Cu foil size. The oxygen-contained groups in the GO are introduced through the residual gas of methane (99.9% purity). To prevent the Cu surface from the bombardment of the ions in the plasma, we use low intensity discharge. Our experiment reveals that growth temperature has important influence on the carbon to oxygen ratiomore » (C/O ratio) in the GO; and it also affects the amount of π-π* bonds between carbon atoms. Preliminary experiments on a 6 mm × 12 mm GO based humidity sensor prove that the synthesized GO reacts well to the humidity change. Our GO synthesis method may provide another channel for obtaining large scale GO in gas sensing or other applications.« less

  8. Self-Consistent Large-Scale Magnetosphere-Ionosphere Coupling: Computational Aspects and Experiments

    NASA Technical Reports Server (NTRS)

    Newman, Timothy S.

    2003-01-01

    Both external and internal phenomena impact the terrestrial magnetosphere. For example, solar wind and particle precipitation effect the distribution of hot plasma in the magnetosphere. Numerous models exist to describe different aspects of magnetosphere characteristics. For example, Tsyganenko has developed a series of models (e.g., [TSYG89]) that describe the magnetic field, and Stern [STER75] and Volland [VOLL73] have developed an analytical model that describes the convection electric field. Over the past several years, NASA colleague Khazanov, working with Fok and others, has developed a large-scale coupled model that tracks particle flow to determine hot ion and electron phase space densities in the magnetosphere. This model utilizes external data such as solar wind densities and velocities and geomagnetic indices (e.g., Kp) to drive computational processes that evaluate magnetic, electric field, and plasma sheet models at any time point. These models are coupled such that energetic ion and electron fluxes are produced, with those fluxes capable of interacting with the electric field model. A diagrammatic representation of the coupled model is shown.

  9. First Observations of a Foreshock Bubble at Earth: Implications for Magnetospheric Activity and Energetic Particle Acceleration

    NASA Technical Reports Server (NTRS)

    Turner, D. L.; Omidi, N.; Sibeck, D. G.; Angelopoulos, V.

    2011-01-01

    Earth?s foreshock, which is the quasi-parallel region upstream of the bow shock, is a unique plasma region capable of generating several kinds of large-scale phenomena, each of which can impact the magnetosphere resulting in global effects. Interestingly, such phenomena have also been observed at planetary foreshocks throughout our solar system. Recently, a new type of foreshock phenomena has been predicted: foreshock bubbles, which are large-scale disruptions of both the foreshock and incident solar wind plasmas that can result in global magnetospheric disturbances. Here we present unprecedented, multi-point observations of foreshock bubbles at Earth using a combination of spacecraft and ground observations primarily from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission, and we include detailed analysis of the events? global effects on the magnetosphere and the energetic ions and electrons accelerated by them, potentially by a combination of first and second order Fermi and shock drift acceleration processes. This new phenomena should play a role in energetic particle acceleration at collisionless, quasi-parallel shocks throughout the Universe.

  10. UCLA IGPP Space Plasma Simulation Group

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During the past 10 years the UCLA IGPP Space Plasma Simulation Group has pursued its theoretical effort to develop a Mission Oriented Theory (MOT) for the International Solar Terrestrial Physics (ISTP) program. This effort has been based on a combination of approaches: analytical theory, large scale kinetic (LSK) calculations, global magnetohydrodynamic (MHD) simulations and self-consistent plasma kinetic (SCK) simulations. These models have been used to formulate a global interpretation of local measurements made by the ISTP spacecraft. The regions of applications of the MOT cover most of the magnetosphere: the solar wind, the low- and high-latitude magnetospheric boundary, the near-Earth and distant magnetotail, and the auroral region. Most recent investigations include: plasma processes in the electron foreshock, response of the magnetospheric cusp, particle entry in the magnetosphere, sources of observed distribution functions in the magnetotail, transport of oxygen ions, self-consistent evolution of the magnetotail, substorm studies, effects of explosive reconnection, and auroral acceleration simulations.

  11. Synthesis of N-graphene using microwave plasma-based methods

    NASA Astrophysics Data System (ADS)

    Dias, Ana; Tatarova, Elena; Henriques, Julio; Dias, Francisco; Felizardo, Edgar; Abrashev, Miroslav; Bundaleski, Nenad; Cvelbar, Uros

    2016-09-01

    In this work a microwave atmospheric plasma driven by surface waves is used to produce free-standing graphene sheets (FSG). Carbonaceous precursors are injected into a microwave plasma environment, where decomposition processes take place. The transport of plasma generated gas-phase carbon atoms and molecules into colder zones of plasma reactor results in carbon nuclei formation. The main part of the solid carbon is gradually carried from the ``hot'' plasma zone into the outlet plasma stream where carbon nanostructures assemble and grow. Subsequently, the graphene sheets have been N-doped using a N2-Ar large-scale remote plasma treatment, which consists on placing the FSG on a substrate in a remote zone of the N2-Ar plasma. The samples were treated with different compositions of N2-Ar gas mixtures, while maintaining 1 mbar pressure in the chamber and a power applied of 600 W. The N-doped graphene sheets were characterized by scanning and by high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. Plasma characterization was also performed by optical emission spectroscopy. Work partially funded by Portuguese FCT - Fundacao para a Ciencia e a Tecnologia, under grant SFRH/BD/52413/2013 (PD-F APPLAuSE).

  12. Small-scale plasma turbulence and intermittency in the high latitude F region based on the ICI-2 sounding rocket experiment

    NASA Astrophysics Data System (ADS)

    Spicher, A.; Miloch, W.; Moen, J. I.; Clausen, L. B. N.

    2015-12-01

    Small-scale plasma irregularities and turbulence are common phenomena in the F layer of the ionosphere, both in the equatorial and polar regions. A common approach in analyzing data from experiments on space and ionospheric plasma irregularities are power spectra. Power spectra give no information about the phases of the waveforms, and thus do not allow to determine whether some of the phases are correlated or whether they exhibit a random character. The former case would imply the presence of nonlinear wave-wave interactions, while the latter suggests a more turbulent-like process. Discerning between these mechanisms is crucial for understanding high latitude plasma irregularities and can be addressed with bispectral analysis and higher order statistics. In this study, we use higher order spectra and statistics to analyze electron density data observed with the ICI-2 sounding rocket experiment at a meter-scale resolution. The main objective of ICI-2 was to investigate plasma irregularities in the cusp in the F layer ionosphere. We study in detail two regions intersected during the rocket flight and which are characterized by large density fluctuations: a trailing edge of a cold polar cap patch, and a density enhancement subject to cusp auroral particle precipitation. While these two regions exhibit similar power spectra, our analysis reveals that their internal structure is different. The structures on the edge of the polar cap patch are characterized by significant coherent mode coupling and intermittency, while the plasma enhancement associated with precipitation exhibits stronger random characteristics. This indicates that particle precipitation may play a fundamental role in ionospheric plasma structuring by creating turbulent-like structures.

  13. High-density plasma etching of III-nitrides: Process development, device applications and damage remediation

    NASA Astrophysics Data System (ADS)

    Singh, Rajwinder

    Plasma-assisted etching is a key technology for III-nitride device fabrication. The inevitable etch damage resulting from energetic pattern transfer is a challenge that needs to be addressed in order to optimize device performance and reliability. This dissertation focuses on the development of a high-density inductively-coupled plasma (ICP) etch process for III-nitrides, the demonstration of its applicability to practical device fabrication using a custom built ICP reactor, and development of techniques for remediation of etch damage. A chlorine-based standard dry etch process has been developed and utilized in fabrication of a number of electronic and optoelectronic III-nitride devices. Annealing studies carried out at 700°C have yielded the important insight that the annealing time necessary for making good-quality metal contacts to etch processed n-GaN is very short (<30 sec), comparable with the annealing times necessary for dopant activation of p-GaN films and provides an opportunity for streamlining process flow. Plasma etching degrades contact quality on n-GaN films and this degradation has been found to increase with the rf bias levels (ion energies) used, most notably in films with higher doping levels. Immersion in 1:1 mixture of hydrochloric acid and de-ionized water, prior to metallization, removes some of the etch damage and is helpful in recovering contact quality. In-situ treatment consisting of a slow ramp-down of rf bias at the end of the etch is found to achieve the same effect as the ex-situ treatment. This insitu technique is significantly advantageous in a large-scale production environment because it eliminates a process step, particularly one involving treatment in hydrochloric acid. ICP equipment customization for scaling up the process to full 2-inch wafer size is described. Results on etching of state of the art 256 x 256 AlGaN focal plane arrays of ultraviolet photodetectors are reported, with excellent etch uniformity over the wafer area.

  14. Effect of external plasma flows on the interaction between turbulence and convective cells

    NASA Astrophysics Data System (ADS)

    Uzawa, Ken; Li, Jiquan

    2005-10-01

    It is widely recognized that large scale structures, such as zonal flows, streamers and also long wavelength Kelvin-Helmholtz modes are nonlinearly generated from maternal turbulence through modulational instability process and play a crucial role in regulating the transport in tokamaks. In order to control the transport, it is desirable to control such structures and/or modulational process. One of control parameters may be mean flow which intrinsically exists in tokamak plasmas. Besides the direct influence on the transport through vortex decorrelation, the mean flow may indirectly change the zonal flow generation by acting on the modulational process itself. In this work, we theoretically investigate the characteristics of zonal flow generation due to the electron temperature gradient (ETG) turbulence in the presence of long wavelength ITG driven zonal flow. This was done by extending our previous modulational analyses[1]. We have numerically analyzed the influence of mean flow on zonal flow generation. The main result is that the zonal flow generation is suppressed by the presence of the mean flow. [1]J. Li, Y. Kishimoto, Physics of Plasmas, 9, 1241 (2002)

  15. A simulation study of interactions of space-shuttle generated electron beams with ambient plasma and neutral gas

    NASA Technical Reports Server (NTRS)

    Winglee, Robert M.

    1991-01-01

    The objective was to conduct large scale simulations of electron beams injected into space. The study of the active injection of electron beams from spacecraft is important, as it provides valuable insight into the plasma beam interactions and the development of current systems in the ionosphere. However, the beam injection itself is not simple, being constrained by the ability of the spacecraft to draw current from the ambient plasma. The generation of these return currents is dependent on several factors, including the density of the ambient plasma relative to the beam density, the presence of neutrals around the spacecraft, the configuration of the spacecraft, and the motion of the spacecraft through the plasma. Two dimensional (three velocity) particle simulations with collisional processes included are used to show how these different and often coupled processes can be used to enhance beam propagation from the spacecraft. To understand the radial expansion mechanism of an electron beam injected from a highly charged spacecraft, two dimensional particle-in-cell simulations were conducted for a high density electron beam injected parallel to magnetic fields from an isolated equipotential conductor into a cold background plasma. The simulations indicate that charge build-up at the beam stagnation point causes the beam to expand radially to the beam electron gyroradius.

  16. A simulation study of interactions of Space-Shuttle generated electron beams with ambient plasma and neutral gas

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The object was to conduct large scale simulations of electron beams injected into space. The study of active injection of electron beams from spacecraft is important since it provides valuable insight into beam-plasma interactions and the development of current systems in the ionosphere. However, the beam injection itself is not simple, being constrained by the ability of the spacecraft to draw return current from the ambient plasma. The generation of these return currents is dependent on several factors, including the density of the ambient plasma relative to the beam density, the presence of neutrals around the spacecraft, the configuration of the spacecraft, and the motion of the spacecraft through the plasma. Two dimensional particle simulations with collisional processes included are used to show how these different and often coupled processes can be utilized to enhance beam propagation from the spacecraft. To understand the radical expansion of mechanism of an electron beam from a highly charged spacecraft, two dimensional particle in cell simulations were conducted for a high density electron beam injected parallel to magnetic fields from an isolated equipotential conductor into a cold background plasma. The simulations indicate that charge buildup at the beam stagnation point causes the beam to expand radially to the beam electron gyroradius.

  17. On the dynamo generation of flux ropes in the Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Luhmann, J. G.; Elphic, R. C.

    1985-01-01

    Small scale magnetic field structures or 'flux ropes' observed in the ionosphere of Venus can be interpreted as the result of a kinematic dynamo process acting on weak seed fields. The seed fields result from the prevailing downward convection of magnetic flux from the vicinity of the ionopause, while small scale fluctuations in the velocity of the ionospheric plasma, which can be caused by collisional coupling to gravity waves in the neutral atmosphere, provide the mechanism by which the field is twisted and redistributed into features of similar scale. This mechanism naturally explains some of the average properties of flux ropes such as the variation of their characteristics with altitude and solar zenith angle. It also elucidates the relationship between the large scale and small scale ionospheric magnetic fields.

  18. Atmospheric pressure plasma-assisted femtosecond laser engraving of aluminium

    NASA Astrophysics Data System (ADS)

    Gerhard, Christoph; Gimpel, Thomas; Tasche, Daniel; Koch née Hoffmeister, Jennifer; Brückner, Stephan; Flachenecker, Günter; Wieneke, Stephan; Schade, Wolfgang; Viöl, Wolfgang

    2018-05-01

    In this contribution, we report on the impact of direct dielectric barrier discharge argon plasma at atmospheric pressure on femtosecond laser engraving of aluminium. It is shown that the assisting plasma strongly affects the surface geometry and formation of spikes of both laser-engraved single lines and patterns of adjacent lines with an appropriate overlap. Further, it was observed that the overall ablation depth is significantly increased in case of large-scale patterning whereas no notable differences in ablation depth are found for single lines. Several possible mechanisms and underlying effects of this behaviour are suggested. The increase in ablation depth is supposed to be due to a plasma-induced removal of debris particles from the cutting point via charging and oxidation as supported by EDX analysis of the re-solidified debris. Furthermore, the impact of a higher degree of surface wrinkling as well as direct interactions of plasma species with the aluminium surface on the ablation process are discussed.

  19. Spontaneous magnetic reconnection. Collisionless reconnection and its potential astrophysical relevance

    NASA Astrophysics Data System (ADS)

    Treumann, R. A.; Baumjohann, W.

    2015-10-01

    The present review concerns the relevance of collisionless reconnection in the astrophysical context. Emphasis is put on recent developments in theory obtained from collisionless numerical simulations in two and three dimensions. It is stressed that magnetic reconnection is a universal process of particular importance under collisionless conditions, when both collisional and anomalous dissipation are irrelevant. While collisional (resistive) reconnection is a slow, diffusive process, collisionless reconnection is spontaneous. On any astrophysical time scale, it is explosive. It sets on when electric current widths become comparable to the leptonic inertial length in the so-called lepton (electron/positron) "diffusion region", where leptons de-magnetise. Here, the magnetic field contacts its oppositely directed partner and annihilates. Spontaneous reconnection breaks the original magnetic symmetry, violently releases the stored free energy of the electric current, and causes plasma heating and particle acceleration. Ultimately, the released energy is provided by mechanical motion of either the two colliding magnetised plasmas that generate the current sheet or the internal turbulence cascading down to lepton-scale current filaments. Spontaneous reconnection in such extended current sheets that separate two colliding plasmas results in the generation of many reconnection sites (tearing modes) distributed over the current surface, each consisting of lepton exhausts and jets which are separated by plasmoids. Volume-filling factors of reconnection sites are estimated to be as large as {<}10^{-5} per current sheet. Lepton currents inside exhausts may be strong enough to excite Buneman and, for large thermal pressure anisotropy, also Weibel instabilities. They bifurcate and break off into many small-scale current filaments and magnetic flux ropes exhibiting turbulent magnetic power spectra of very flat power-law shape W_b∝ k^{-α } in wavenumber k with power becoming as low as α ≈ 2. Spontaneous reconnection generates small-scale turbulence. Imposed external turbulence tends to temporarily increase the reconnection rate. Reconnecting ultra-relativistic current sheets decay into large numbers of magnetic flux ropes composed of chains of plasmoids and lepton exhausts. They form highly structured current surfaces, "current carpets". By including synchrotron radiation losses, one favours tearing-mode reconnection over the drift-kink deformation of the current sheet. Lepton acceleration occurs in the reconnection-electric field in multiple encounters with the exhausts and plasmoids. This is a Fermi-like process. It results in power-law tails on the lepton energy distribution. This effect becomes pronounced in ultra-relativistic reconnection where it yields extremely hard lepton power-law energy spectra approaching F(γ )∝ γ ^{-1}, with γ the lepton energy. The synchrotron radiation limit becomes substantially exceeded. Relativistic reconnection is a probable generator of current and magnetic turbulence, and a mechanism that produces high-energy radiation. It is also identified as the ultimate dissipation mechanism of the mechanical energy in collisionless magnetohydrodynamic turbulent cascades via lepton-inertial-scale turbulent current filaments. In this case, the volume-filling factor is large. Magnetic turbulence causes strong plasma heating of the entire turbulent volume and violent acceleration via spontaneous lepton-scale reconnection. This may lead to high-energy particle populations filling the whole volume. In this case, it causes non-thermal radiation spectra that span the entire interval from radio waves to gamma rays.

  20. On the possibility of the multiple inductively coupled plasma and helicon plasma sources for large-area processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jin-Won; Lee, Yun-Seong, E-mail: leeeeys@kaist.ac.kr; Chang, Hong-Young

    2014-08-15

    In this study, we attempted to determine the possibility of multiple inductively coupled plasma (ICP) and helicon plasma sources for large-area processes. Experiments were performed with the one and two coils to measure plasma and electrical parameters, and a circuit simulation was performed to measure the current at each coil in the 2-coil experiment. Based on the result, we could determine the possibility of multiple ICP sources due to a direct change of impedance due to current and saturation of impedance due to the skin-depth effect. However, a helicon plasma source is difficult to adapt to the multiple sources duemore » to the consistent change of real impedance due to mode transition and the low uniformity of the B-field confinement. As a result, it is expected that ICP can be adapted to multiple sources for large-area processes.« less

  1. Reliability of plasma polar metabolite concentrations in a large-scale cohort study using capillary electrophoresis-mass spectrometry.

    PubMed

    Harada, Sei; Hirayama, Akiyoshi; Chan, Queenie; Kurihara, Ayako; Fukai, Kota; Iida, Miho; Kato, Suzuka; Sugiyama, Daisuke; Kuwabara, Kazuyo; Takeuchi, Ayano; Akiyama, Miki; Okamura, Tomonori; Ebbels, Timothy M D; Elliott, Paul; Tomita, Masaru; Sato, Asako; Suzuki, Chizuru; Sugimoto, Masahiro; Soga, Tomoyoshi; Takebayashi, Toru

    2018-01-01

    Cohort studies with metabolomics data are becoming more widespread, however, large-scale studies involving 10,000s of participants are still limited, especially in Asian populations. Therefore, we started the Tsuruoka Metabolomics Cohort Study enrolling 11,002 community-dwelling adults in Japan, and using capillary electrophoresis-mass spectrometry (CE-MS) and liquid chromatography-mass spectrometry. The CE-MS method is highly amenable to absolute quantification of polar metabolites, however, its reliability for large-scale measurement is unclear. The aim of this study is to examine reproducibility and validity of large-scale CE-MS measurements. In addition, the study presents absolute concentrations of polar metabolites in human plasma, which can be used in future as reference ranges in a Japanese population. Metabolomic profiling of 8,413 fasting plasma samples were completed using CE-MS, and 94 polar metabolites were structurally identified and quantified. Quality control (QC) samples were injected every ten samples and assessed throughout the analysis. Inter- and intra-batch coefficients of variation of QC and participant samples, and technical intraclass correlation coefficients were estimated. Passing-Bablok regression of plasma concentrations by CE-MS on serum concentrations by standard clinical chemistry assays was conducted for creatinine and uric acid. In QC samples, coefficient of variation was less than 20% for 64 metabolites, and less than 30% for 80 metabolites out of the 94 metabolites. Inter-batch coefficient of variation was less than 20% for 81 metabolites. Estimated technical intraclass correlation coefficient was above 0.75 for 67 metabolites. The slope of Passing-Bablok regression was estimated as 0.97 (95% confidence interval: 0.95, 0.98) for creatinine and 0.95 (0.92, 0.96) for uric acid. Compared to published data from other large cohort measurement platforms, reproducibility of metabolites common to the platforms was similar to or better than in the other studies. These results show that our CE-MS platform is suitable for conducting large-scale epidemiological studies.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Passot, T.; Sulem, P. L., E-mail: passot@oca.eu, E-mail: sulem@oca.eu

    A phenomenological turbulence model for kinetic Alfvén waves in a magnetized collisionless plasma that is able to reproduce the non-universal power-law spectra observed at the sub-ion scales in the solar wind and the terrestrial magnetosphere is presented. The process of temperature homogenization along distorted magnetic field lines, induced by Landau damping, affects the turbulence transfer time and results in a steepening of the sub-ion power-law spectrum of critically balanced turbulence, whose exponent is sensitive to the ratio between the Alfvén wave period and the nonlinear timescale. Transition from large-scale weak turbulence to smaller scale strong turbulence is captured and nonlocalmore » interactions, relevant in the case of steep spectra, are accounted for.« less

  3. Meson thermalization by baryon injection in D4/D6 model

    NASA Astrophysics Data System (ADS)

    Rezaei, Z.

    2016-12-01

    We study meson thermalization in a strongly coupled plasma of quarks and gluons using AdS/CFT duality technique. Four dimensional large-Nc QCD is considered as a theory governing this quark-gluon plasma (QGP) and D4/D6-brane model is chosen to be its holographic dual theory. In order to investigate meson thermalization, we consider a time-dependent change of baryon number chemical potential. Thermalization in gauge theory side corresponds to horizon formation on the probe flavor brane in the gravity side. The gravitational dual theory is compactified on a circle that the inverse of its radius is proportional to energy scale of dual gauge theory. It is seen that increase of this energy scale results in thermalization time dilation. In addition we study the effect of magnetic field on meson thermalization. It will be seen that magnetic field also prolongs thermalization process by making mesons more stable.

  4. Dynamo generation of a magnetic field by decaying Lehnert waves in a highly conducting plasma

    NASA Astrophysics Data System (ADS)

    Mizerski, Krzysztof A.; Moffatt, H. K.

    2018-03-01

    Random waves in a uniformly rotating plasma in the presence of a locally uniform seed magnetic field and subject to weak kinematic viscosity ? and resistivity ? are considered. These "Lehnert" waves may have either positive or negative helicity, and it is supposed that waves of a single sign of helicity are preferentially excited by a symmetry-breaking mechanism. A mean electromotive force proportional to ? is derived, demonstrating the conflicting effects of the two diffusive processes. Attention is then focussed on the situation ?, relevant to conditions in the universe before and during galaxy formation. An ?-effect, axisymmetric about the rotation vector, is derived, decaying on a time-scale proportional to ?; this amplifies a large-scale seed magnetic field to a level independent of ?, this field being subsequently steady and having the character of a "fossil field". Subsequent evolution of this fossil field is briefly discussed.

  5. TRANSITION FROM KINETIC TO MHD BEHAVIOR IN A COLLISIONLESS PLASMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parashar, Tulasi N.; Matthaeus, William H.; Shay, Michael A.

    The study of kinetic effects in heliospheric plasmas requires representation of dynamics at sub-proton scales, but in most cases the system is driven by magnetohydrodynamic (MHD) activity at larger scales. The latter requirement challenges available computational resources, which raises the question of how large such a system must be to exhibit MHD traits at large scales while kinetic behavior is accurately represented at small scales. Here we study this implied transition from kinetic to MHD-like behavior using particle-in-cell (PIC) simulations, initialized using an Orszag–Tang Vortex. The PIC code treats protons, as well as electrons, kinetically, and we address the questionmore » of interest by examining several different indicators of MHD-like behavior.« less

  6. Ion Acceleration at Earth, Saturn and Jupiter and its Global Impact on Magnetospheric Structure

    NASA Astrophysics Data System (ADS)

    Brandt, Pontus

    2016-07-01

    The ion plasma pressures at Earth, Saturn and Jupiter are significant players in the electrodynamic force-balance that governs the structure and dynamics of these magnetospheres. There are many similarities between the physical mechanisms that are thought to heat the ion plasma to temperatures that even exceed those of the solar corona. In this presentation we compare the ion acceleration mechanisms at the three planetary magnetospheres and discuss their global impacts on magnetopsheric structure. At Earth, bursty-bulk flows, or "bubbles", have been shown to accelerate protons and O+ to high energies by the earthward moving magnetic dipolarization fronts. O+ ions display a more non-adiabatic energization in response to these fronts than protons do as they are energized and transported in to the ring-current region where they reach energies of several 100's keV. We present both in-situ measurements from the NASA Van Allen Probes Mission and global Energetic Neutral (ENA) images from the High-Energy Neutral Atom (HENA) Camera on board the IMAGE Mission, that illustrate these processes. The global impact on the magnetospheric structure is explored by comparing the empirical magnetic field model TS07d for given driving conditions with global plasma pressure distributions derived from the HENA images. At Saturn, quasi-periodic energization events, or large-scale injections, occur beyond about 9 RS around the post-midnight sector, clearly shown by the Ion and Neutral Atom Camera (INCA) on board the Cassini mission. In contrast to Earth, the corotational drift dominates even the energetic ion distributions. The large-scale injections display similar dipolarization front features can be found and there are indications that like at Earth the O+ responds more non-adiabatically than protons do. However, at Saturn there are also differences in that there appears to be energization events deep in the inner magnetosphere (6-9 RS) preferentially occurring in the pre-midnight sector that seem to be related to centrifugal interchange. We will show how the plasma pressure resulting from the large-scale injections perturb the magnetic field and give rise the periodic oscillations as measured by Cassini. At Jupiter, quasi-periodic, large-scale injections also occur in the post-midnight sector, but at much larger distances. Analysis of Galileo measurements have shown that there are also features with similarities to the effects of planetward moving dipolarization fronts, and that the protons, O+ and S+ have different spectral signatures. Although the magnetodisc structure is partly a result of centrifugal forces exerted by the cold plasma, the anisotropies of the hot plasma have been found to account for a very significant part of the force-balance responsible for the disc structure. We will briefly also discuss our science planning and development of the plasma, energetic particle and ENA instrumentation on board the ESA Jupiter Icy moon Explorer and how we plan to address these intriguing science topics.

  7. Effect of double layers on magnetosphere-ionosphere coupling

    NASA Technical Reports Server (NTRS)

    Lysak, Robert L.; Hudson, Mary K.

    1987-01-01

    The Earth's auroral zone contains dynamic processes occurring on scales from the length of an auroral zone field line which characterizes Alfven wave propagation to the scale of microscopic processes which occur over a few Debye lengths. These processes interact in a time-dependent fashion since the current carried by the Alfven waves can excite microscopic turbulence which can in turn provide dissipation of the Alfven wave energy. This review will first describe the dynamic aspects of auroral current structures with emphasis on consequences for models of microscopic turbulence. A number of models of microscopic turbulence will be introduced into a large-scale model of Alfven wave propagation to determine the effect of various models on the overall structure of auroral currents. In particular, the effects of a double layer electric field which scales with the plasma temperature and Debye length is compared with the effect of anomalous resistivity due to electrostatic ion cyclotron turbulence in which the electric field scales with the magnetic field strength. It is found that the double layer model is less diffusive than in the resistive model leading to the possibility of narrow, intense current structures.

  8. Structured DC Electric Fields With and Without Associated Plasma Density Gradients Observed with the C/NOFS Satellite

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Rowland, D.; Klenzing, J.; Freudenreich, H.; Bromund, K.; Liebrecht, C.; Roddy, P.; Hunton, D.

    2009-01-01

    DC electric field observations and associated plasma drifts gathered with the Vector Electric Field Investigation on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite typically reveal considerable variation at large scales (approximately 100's of km), in both daytime and nighttime cases, with enhanced structures usually confined to the nightside. Although such electric field structures are typically associated with plasma density depletions and structures, as observed by the Planar Langmuir Probe on C/NOFS, what is surprising is the number of cases in which large amplitude, structured DC electric fields are observed without a significant plasma density counterpart structure, including their appearance at times when the ambient plasma density appears relatively quiescent. We investigate the relationship of such structured DC electric fields and the ambient plasma density in the C/NOFS satellite measurements observed thus far, taking into account both plasma density depletions and enhancements. We investigate the mapping of the electric fields along magnetic field lines from distant altitudes and latitudes to locations where the density structures, which presumably formed the original seat of the electric fields, are no longer discernible in the observations. In some cases, the electric field structures and spectral characteristics appear to mimic those associated with equatorial spread-F processes, providing important clues to their origins. We examine altitude, seasonal, and longitudinal effects in an effort to establish the origin of such structured DC electric fields observed both with, and without, associated plasma density gradients

  9. Studies of small scale irregularities in the cusp ionosphere using sounding rockets: recent results

    NASA Astrophysics Data System (ADS)

    Spicher, A.; Ilyasov, A. A.; Miloch, W. J.; Chernyshov, A. A.; Moen, J.; Clausen, L. B. N.; Saito, Y.

    2017-12-01

    Plasma irregularities occurring over many scale sizes are common in the ionosphere. Understanding and characterizing the phenomena responsible for these irregularities is not only important from a theoretical point of view, but also in the context of space weather, as the irregularities can disturb HF communication and Global Navigation Satellite Systems signals. Overall, research about the small-scale turbulence has not progressed as fast for polar regions as for the equatorial ones, and for the high latitude ionosphere there is still no agreement nor detailed explanation regarding the formation of irregularities. To investigate plasma structuring at small scales in the cusp ionosphere, we use high resolution measurements from the Investigation of Cusp Irregularities (ICI) sounding rockets, and investigate a region associated with density enhancements and a region characterized by flow shears. Using the ICI-2 electron density data, we give further evidence of the importance of the gradient drift instability for plasma structuring inside the polar cap. In particular, using higher-order statistics, we provide new insights into the nature of the resulting plasma structures and show that they are characterized by intermittency. Using the ICI-3 data, we show that the entire region associated with a reversed flow event (RFE), with the presence of meter-scale irregularities, several flow shears and particle precipitation, is highly structured. By performing a numerical stability analysis, we show that the inhomogeneous-energy-density-driven instability (IEDDI) may be active in relation to RFEs at the rocket's altitude. In particular, we show that the presence of particle precipitation decreases the growth rates of IEDDI and, using a Local Intermittency Measure, we observe a correlation between IEDDI growth rates and electric field fluctuations over several scales. These findings support the view that large-scale inhomogeneities may provide a background for the development of micro-scale instabilities. Such interplay between macro- and micro-processes might be an important mechanism for the development of small-scale plasma gradients, and as a source for ion heating in the cusp ionosphere.

  10. The Ethics of Paid Plasma Donation: A Plea for Patient Centeredness.

    PubMed

    Farrugia, Albert; Penrod, Joshua; Bult, Jan M

    2015-12-01

    Plasma protein therapies (PPTs) are a group of essential medicines extracted from human plasma through processes of industrial scale fractionation. They are used primarily to treat a number of rare, chronic disorders ensuing from inherited or acquired deficiencies of a number of physiologically essential proteins. These disorders include hemophilia A and B, different immunodeficiencies and alpha 1-antitrypsin deficiency. In addition, acute blood loss, burns and sepsis are treated by PPTs. Hence, a population of vulnerable and very sick individuals is dependent on these products. In addition, the continued well-being of large sections of the community, including pregnant women and their children, travelers and workers exposed to infectious risk is also subject to the availability of these therapies. Their manufacture to adequate amounts requires large volumes of human plasma as the starting material of a complex purification process. Mainstream blood transfusion services run primarily by the not-for-profit sector have attempted to provide this plasma through the separation of blood donations, but have failed to provide sufficient amounts to meet the clinical demand. The collection of plasma from donors willing to commit to the process of plasmapheresis, which is not only time consuming but requires a long term, continuing commitment, generates much higher amounts of plasma and has been an activity historically separate from the blood transfusion sector and run by commercial companies. These companies now supply two-thirds of the growing global need for these therapies, while the mainstream government-run blood sector continues to supply a shrinking proportion. The private sector plasmapheresis activity which provides the bulk of treatment products has been compensating the donors in order to recognize the time and effort required. Recent activities have reignited the debate regarding the ethical and medical aspects of such compensation. In this work, we review the landscape; assess the contributions made by the compensated and non-compensated sectors and synthesize the outcomes on the relevant patient communities of perturbing the current paradigm of compensated plasma donation. We conclude that the current era of "Patient Centeredness" in health care demands the continuation and extension of paid plasma donation.

  11. Global properties of the plasma in the outer heliosphere. I - Large-scale structure and evolution

    NASA Technical Reports Server (NTRS)

    Barnes, A.; Mihalov, J. D.; Gazis, P. R.; Lazarus, A. J.; Belcher, J. W.; Gordon, G. S., Jr.; Mcnutt, R. L., Jr.

    1992-01-01

    Pioneers 10 and 11, and Voyager 2, have active plasma analyzers as they proceed through heliocentric distances of the order of 30-50 AU, facilitating comparative studies of the global character of the outer solar wind and its variation over the solar cycle. Careful study of these data show that wind ion temperature remains constant beyond 15 AU, and that there may be large-scale variations of temperature with celestial longitude and heliographic latitude. There has thus far been no indication of a heliospheric terminal shock.

  12. Laboratory simulation of space plasma phenomena*

    NASA Astrophysics Data System (ADS)

    Amatucci, B.; Tejero, E. M.; Ganguli, G.; Blackwell, D.; Enloe, C. L.; Gillman, E.; Walker, D.; Gatling, G.

    2017-12-01

    Laboratory devices, such as the Naval Research Laboratory's Space Physics Simulation Chamber, are large-scale experiments dedicated to the creation of large-volume plasmas with parameters realistically scaled to those found in various regions of the near-Earth space plasma environment. Such devices make valuable contributions to the understanding of space plasmas by investigating phenomena under carefully controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. By working in collaboration with in situ experimentalists to create realistic conditions scaled to those found during the observations of interest, the microphysics responsible for the observed events can be investigated in detail not possible in space. To date, numerous investigations of phenomena such as plasma waves, wave-particle interactions, and particle energization have been successfully performed in the laboratory. In addition to investigations such as plasma wave and instability studies, the laboratory devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this presentation, we will describe several examples of the laboratory investigation of space plasma waves and instabilities and diagnostic development. *This work supported by the NRL Base Program.

  13. Amplification of large scale magnetic fields in a decaying MHD system

    NASA Astrophysics Data System (ADS)

    Park, Kiwan

    2017-10-01

    Dynamo theory explains the amplification of magnetic fields in the conducting fluids (plasmas) driven by the continuous external energy. It is known that the nonhelical continuous kinetic or magnetic energy amplifies the small scale magnetic field; and the helical energy, the instability, or the shear with rotation effect amplifies the large scale magnetic field. However, recently it was reported that the decaying magnetic energy independent of helicity or instability could generate the large scale magnetic field. This phenomenon may look somewhat contradictory to the conventional dynamo theory. But it gives us some clues to the fundamental mechanism of energy transfer in the magnetized conducting fluids. It also implies that an ephemeral astrophysical event emitting the magnetic and kinetic energy can be a direct cause of the large scale magnetic field observed in space. As of now the exact physical mechanism is not yet understood in spite of several numerical results. The plasma motion coupled with a nearly conserved vector potential in the magnetohydrodynamic (MHD) system may transfer magnetic energy to the large scale. Also the intrinsic property of the scaling invariant MHD equation may decide the direction of energy transfer. In this paper we present the simulation results of inversely transferred helical and nonhelical energy in a decaying MHD system. We introduce a field structure model based on the MHD equation to show that the transfer of magnetic energy is essentially bidirectional depending on the plasma motion and initial energy distribution. And then we derive α coefficient algebraically in line with the field structure model to explain how the large scale magnetic field is induced by the helical energy in the system regardless of an external forcing source. And for the algebraic analysis of nonhelical magnetic energy, we use the eddy damped quasinormalized Markovian approximation to show the inverse transfer of magnetic energy.

  14. The SMART Theory and Modeling Team: An Integrated Element of Mission Development and Science Analysis

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Birn, J.; Denton, Richard E.; Drake, J.; Gombosi, T.; Hoshino, M.; Matthaeus, B.; Sibeck, D.

    2005-01-01

    When targeting physical understanding of space plasmas, our focus is gradually shifting away from discovery-type investigations to missions and studies that address our basic understanding of processes we know to be important. For these studies, theory and models provide physical predictions that need to be verified or falsified by empirical evidence. Within this paradigm, a tight integration between theory, modeling, and space flight mission design and execution is essential. NASA's Magnetospheric MultiScale (MMS) mission is a pathfinder in this new era of space research. The prime objective of MMS is to understand magnetic reconnection, arguably the most fundamental of plasma processes. In particular, MMS targets the microphysical processes, which permit magnetic reconnection to operate in the collisionless plasmas that permeate space and astrophysical systems. More specifically, MMS will provide closure to such elemental questions as how particles become demagnetized in the reconnection diffusion region, which effects determine the reconnection rate, and how reconnection is coupled to environmental conditions such as magnetic shear angles. Solutions to these problems have remained elusive in past and present spacecraft missions primarily due to instrumental limitations - yet they are fundamental to the large-scale dynamics of collisionless plasmas. Owing to the lack of measurements, most of our present knowledge of these processes is based on results from modern theory and modeling studies of the reconnection process. Proper design and execution of a mission targeting magnetic reconnection should include this knowledge and have to ensure that all relevant scales and effects can be resolved by mission measurements. The SMART mission has responded to this need through a tight integration between instrument and theory and modeling teams. Input from theory and modeling is fed into all aspects of science mission design, and theory and modeling activities are tailored to SMART needs during mission development and science analysis. In this presentation, we will present an overview of SMART theory and modeling team activities. In particular, we will provide examples of science objectives derived from state-of-the art models, and of recent research results that continue to be utilized in SMART mission development.

  15. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamann, S., E-mail: hamann@inp-greifswald.de; Röpcke, J.; Börner, K.

    2015-12-15

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steelmore » samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH{sub 4}, C{sub 2}H{sub 2}, HCN, and NH{sub 3}). With the help of OES, the rotational temperature of the screen plasma could be determined.« less

  16. Cosmological Ohm's law and dynamics of non-minimal electromagnetism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollenstein, Lukas; Jain, Rajeev Kumar; Urban, Federico R., E-mail: lukas.hollenstein@cea.fr, E-mail: jain@cp3.dias.sdu.dk, E-mail: furban@ulb.ac.be

    2013-01-01

    The origin of large-scale magnetic fields in cosmic structures and the intergalactic medium is still poorly understood. We explore the effects of non-minimal couplings of electromagnetism on the cosmological evolution of currents and magnetic fields. In this context, we revisit the mildly non-linear plasma dynamics around recombination that are known to generate weak magnetic fields. We use the covariant approach to obtain a fully general and non-linear evolution equation for the plasma currents and derive a generalised Ohm law valid on large scales as well as in the presence of non-minimal couplings to cosmological (pseudo-)scalar fields. Due to the sizeablemore » conductivity of the plasma and the stringent observational bounds on such couplings, we conclude that modifications of the standard (adiabatic) evolution of magnetic fields are severely limited in these scenarios. Even at scales well beyond a Mpc, any departure from flux freezing behaviour is inhibited.« less

  17. Global Simulations of Dynamo and Magnetorotational Instability in Madison Plasma Experiments and Astrophysical Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebrahimi, Fatima

    2014-07-31

    Large-scale magnetic fields have been observed in widely different types of astrophysical objects. These magnetic fields are believed to be caused by the so-called dynamo effect. Could a large-scale magnetic field grow out of turbulence (i.e. the alpha dynamo effect)? How could the topological properties and the complexity of magnetic field as a global quantity, the so called magnetic helicity, be important in the dynamo effect? In addition to understanding the dynamo mechanism in astrophysical accretion disks, anomalous angular momentum transport has also been a longstanding problem in accretion disks and laboratory plasmas. To investigate both dynamo and momentum transport,more » we have performed both numerical modeling of laboratory experiments that are intended to simulate nature and modeling of configurations with direct relevance to astrophysical disks. Our simulations use fluid approximations (Magnetohydrodynamics - MHD model), where plasma is treated as a single fluid, or two fluids, in the presence of electromagnetic forces. Our major physics objective is to study the possibility of magnetic field generation (so called MRI small-scale and large-scale dynamos) and its role in Magneto-rotational Instability (MRI) saturation through nonlinear simulations in both MHD and Hall regimes.« less

  18. PLASMA TURBULENCE AND KINETIC INSTABILITIES AT ION SCALES IN THE EXPANDING SOLAR WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellinger, Petr; Trávnícek, Pavel M.; Matteini, Lorenzo

    The relationship between a decaying strong turbulence and kinetic instabilities in a slowly expanding plasma is investigated using two-dimensional (2D) hybrid expanding box simulations. We impose an initial ambient magnetic field perpendicular to the simulation box, and we start with a spectrum of large-scale, linearly polarized, random-phase Alfvénic fluctuations that have energy equipartition between kinetic and magnetic fluctuations and vanishing correlation between the two fields. A turbulent cascade rapidly develops; magnetic field fluctuations exhibit a power-law spectrum at large scales and a steeper spectrum at ion scales. The turbulent cascade leads to an overall anisotropic proton heating, protons are heatedmore » in the perpendicular direction, and, initially, also in the parallel direction. The imposed expansion leads to generation of a large parallel proton temperature anisotropy which is at later stages partly reduced by turbulence. The turbulent heating is not sufficient to overcome the expansion-driven perpendicular cooling and the system eventually drives the oblique firehose instability in a form of localized nonlinear wave packets which efficiently reduce the parallel temperature anisotropy. This work demonstrates that kinetic instabilities may coexist with strong plasma turbulence even in a constrained 2D regime.« less

  19. Fluorine and oxygen plasma influence on nanoparticle formation and aggregation in metal oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    MÄ dzik, Mateusz; Elamurugu, Elangovan; Viegas, Jaime

    2017-03-01

    Despite recent advances in metal oxide thin-film transistor technology, there are no foundry processes available yet for large-scale deployment of metal oxide electronics and photonics, in a similar way as found for silicon based electronics and photonics. One of the biggest challenges of the metal oxide platform is the stability of the fabricated devices. Also, there is wide dispersion on the measured specifications of fabricated TFT, from lot-to-lot and from different research groups. This can be partially explained by the importance of the deposition method and its parameters, which determine thin film microstructure and thus its electrical properties. Furthermore, substrate pretreatment is an important factor, as it may act as a template for material growth. Not so often mentioned, plasma processes can also affect the morphology of deposited films on further deposition steps, such as inducing nanoparticle formation, which strongly impact the conduction mechanism in the channel layer of the TFT. In this study, molybdenum doped indium oxide is sputtered onto ALD deposited HfO2 with or without pattering, and etched by RIE chlorine based processing. Nanoparticle formation is observed when photoresist is removed by oxygen plasma ashing. HfO2 etching in CF4/Ar plasma prior to resist stripping in oxygen plasma promotes the aggregation of nanoparticles into nanosized branched structures. Such nanostructuring is absent when oxygen plasma steps are replaced by chemical wet processing with acetone. Finally, in order to understand the electronic transport effect of the nanoparticles on metal oxide thin film transistors, TFT have been fabricated and electrically characterized.

  20. ANALYSIS OF CORONAL RAIN OBSERVED BY IRIS , HINODE /SOT, AND SDO /AIA: TRANSVERSE OSCILLATIONS, KINEMATICS, AND THERMAL EVOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohutova, P.; Verwichte, E., E-mail: p.kohutova@warwick.ac.uk

    Coronal rain composed of cool plasma condensations falling from coronal heights along magnetic field lines is a phenomenon occurring mainly in active region coronal loops. Recent high-resolution observations have shown that coronal rain is much more common than previously thought, suggesting its important role in the chromosphere-corona mass cycle. We present the analysis of MHD oscillations and kinematics of the coronal rain observed in chromospheric and transition region lines by the Interface Region Imaging Spectrograph (IRIS) , the Hinode Solar Optical Telescope (SOT), and the Solar Dynamics Observatory ( SDO) Atmospheric Imaging Assembly (AIA). Two different regimes of transverse oscillationsmore » traced by the rain are detected: small-scale persistent oscillations driven by a continuously operating process and localized large-scale oscillations excited by a transient mechanism. The plasma condensations are found to move with speeds ranging from few km s{sup −1} up to 180 km s{sup −1} and with accelerations largely below the free-fall rate, likely explained by pressure effects and the ponderomotive force resulting from the loop oscillations. The observed evolution of the emission in individual SDO /AIA bandpasses is found to exhibit clear signatures of a gradual cooling of the plasma at the loop top. We determine the temperature evolution of the coronal loop plasma using regularized inversion to recover the differential emission measure (DEM) and by forward modeling the emission intensities in the SDO /AIA bandpasses using a two-component synthetic DEM model. The inferred evolution of the temperature and density of the plasma near the apex is consistent with the limit cycle model and suggests the loop is going through a sequence of periodically repeating heating-condensation cycles.« less

  1. Dynamics of flows, fluctuations, and global instability under electrode biasing in a linear plasma device

    NASA Astrophysics Data System (ADS)

    Desjardins, T. R.; Gilmore, M.

    2016-05-01

    Grid biasing is utilized in a large-scale helicon plasma to modify an existing instability. It is shown both experimentally and with a linear stability analysis to be a hybrid drift-Kelvin-Helmholtz mode. At low magnetic field strengths, coherent fluctuations are present, while at high magnetic field strengths, the plasma is broad-band turbulent. Grid biasing is used to drive the once-coherent fluctuations to a broad-band turbulent state, as well as to suppress them. There is a corresponding change in the flow shear. When a high positive bias (10Te) is applied to the grid electrode, a large-scale ( n ˜/n ≈50 % ) is excited. This mode has been identified as the potential relaxation instability.

  2. On the interplay between neoclassical tearing modes and nonlocal transport in toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Ji, X. Q.; Xu, Y.; Hidalgo, C.; Diamond, P. H.; Liu, Yi; Pan, O.; Shi, Z. B.; Yu, D. L.

    2016-09-01

    This Letter presents the first observation on the interplay between nonlocal transport and neoclassical tearing modes (NTMs) during transient nonlocal heat transport events in the HL-2A tokamak. The nonlocality is triggered by edge cooling and large-scale, inward propagating avalanches. These lead to a locally enhanced pressure gradient at the q = 3/2 (or 2/1) rational surface and hence the onset of the NTM in relatively low β plasmas (βN < 1). The NTM, in return, regulates the nonlocal transport by truncation of avalanches by local sheared toroidal flows which develop near the magnetic island. These findings have direct implications for understanding the dynamic interaction between turbulence and large-scale mode structures in fusion plasmas.

  3. Dust Charging in Saturn's Rings: Observations and Theory

    NASA Astrophysics Data System (ADS)

    Horanyi, M.

    2008-12-01

    Saturn's rings show a variety of dusty plasma processes. The electrostatic charging and subsequent orbital dynamics of small grains can establish their size and spatial distributions, for example. Simultaneously, dust can alter the composition, density and temperature of the plasma surrounding it. The dynamics of charged dust particles can be surprisingly complex and fundamentally different from the well understood limits of gravitationally dominated motions of neutral particles or the adiabatic motion of electrons and ions in electromagnetic fields that dominate gravity. This talk will focus on recent Cassini observations at Saturn that are best explained by theories describing the effects of the magnetospheric fields and plasmas on the rings. As our best examples, we will discuss the physics describing the large-scale structure of the E-ring, and the formation of 'spokes' over the dense rings of Saturn.

  4. Global-scale Ionospheric Outflow: Major Processes and Unresolved Problems

    NASA Astrophysics Data System (ADS)

    Liemohn, M. W.; Welling, D. T.; Ilie, R.; Khazanov, G. V.; Jahn, J. M.; Zou, S.; Ganushkina, N. Y.; Valek, P. W.; Elliott, H. A.; Gilchrist, B. E.; Hoegy, W. R.; Glocer, A.

    2016-12-01

    Outflow from the ionosphere is a major source of plasma to the magnetosphere. Its presence, especially that of ions heavier than He+, mass loads the magnetosphere and changes reconnection rates, current system configurations, plasma wave excitation and wave-particle interactions. It even impacts the propagation of information. We present a brief overview of the major processes and scientific history of this field. There are still major gaps, however, in our understanding of the global-scale nature of ionospheric outflow. We discuss these unresolved problems highlighting the leading questions still outstanding on this topic. First and foremost, since the measurements of ionospheric outflow have largely come from individual satellites and sounding rockets, the processes are best known on the local level, while the spatial distribution of outflow has never been simultaneously measured on more global scales. The spatial coherence and correlation of outflow across time and space have not been quantified. Furthermore, the composition of the outflow is often only measured at a coarse level of H+, He+, and O+, neglecting other species such as N+ or moleculars. However, resolving O+ from N+, as is customary in planetary research, aids in revealing the physics and altitude dependence of the energization processes in the ionosphere. Similarly, fine-resolution velocity space measurements of ionospheric outflow have been limited, yet such observations can also reveal energization processes driving the outflow. A final unresolved issue to mention is magnetically conjugate outflow and the full extent of hemispherically asymmetric outflow fluxes or fluence. Each of these open questions have substantial ramifications for magnetospheric physics; their resolution could yield sweeping changes in our understanding of nonlinear feedback and cross-scale physical interactions, magnetosphere-ionosphere coupling, and geospace system-level science.

  5. Formation of Electrostatic Potential Drops in the Auroral Zone

    NASA Technical Reports Server (NTRS)

    Schriver, D.; Ashour-Abdalla, M.; Richard, R. L.

    2001-01-01

    In order to examine the self-consistent formation of large-scale quasi-static parallel electric fields in the auroral zone on a micro/meso scale, a particle in cell simulation has been developed. The code resolves electron Debye length scales so that electron micro-processes are included and a variable grid scheme is used such that the overall length scale of the simulation is of the order of an Earth radii along the magnetic field. The simulation is electrostatic and includes the magnetic mirror force, as well as two types of plasmas, a cold dense ionospheric plasma and a warm tenuous magnetospheric plasma. In order to study the formation of parallel electric fields in the auroral zone, different magnetospheric ion and electron inflow boundary conditions are used to drive the system. It has been found that for conditions in the primary (upward) current region an upward directed quasi-static electric field can form across the system due to magnetic mirroring of the magnetospheric ions and electrons at different altitudes. For conditions in the return (downward) current region it is shown that a quasi-static parallel electric field in the opposite sense of that in the primary current region is formed, i.e., the parallel electric field is directed earthward. The conditions for how these different electric fields can be formed are discussed using satellite observations and numerical simulations.

  6. Allometric scaling for predicting human clearance of bisphenol A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collet, Séverine H., E-mail: s.collet@envt.fr; Picard-Hagen, Nicole, E-mail: n.hagen-picard@envt.fr; Lacroix, Marlène Z., E-mail: m.lacroix@envt.fr

    The investigation of interspecies differences in bisphenol A (BPA) pharmacokinetics (PK) may be useful for translating findings from animal studies to humans, identifying major processes involved in BPA clearance mechanisms, and predicting BPA PK parameters in man. For the first time, a large range of species in terms of body weight, from 0.02 kg (mice) to 495 kg (horses) was used to predict BPA clearance in man by an allometric approach. BPA PK was evaluated after intravenous administration of BPA in horses, sheep, pigs, dogs, rats and mice. A non-compartmental analysis was used to estimate plasma clearance and steady statemore » volume of distribution and predict BPA PK parameters in humans from allometric scaling. In all the species investigated, BPA plasma clearance was high and of the same order of magnitude as their respective hepatic blood flow. By an allometric scaling, the human clearance was estimated to be 1.79 L/min (equivalent to 25.6 mL/kg.min) with a 95% prediction interval of 0.36 to 8.83 L/min. Our results support the hypothesis that there are highly efficient and hepatic mechanisms of BPA clearance in man. - Highlights: • Allometric scaling was used to predict BPA pharmacokinetic parameters in humans. • In all species, BPA plasma clearance approached hepatic blood flow. • Human BPA clearance was estimated to be 1.79 L/min.« less

  7. Controlled Electron Injection into Plasma Accelerators and SpaceCharge Estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fubiani, Gwenael G.J.

    2005-09-01

    Plasma based accelerators are capable of producing electron sources which are ultra-compact (a few microns) and high energies (up to hundreds of MeVs) in much shorter distances than conventional accelerators. This is due to the large longitudinal electric field that can be excited without the limitation of breakdown as in RF structures.The characteristic scale length of the accelerating field is the plasma wavelength and for typical densities ranging from 10 18 - 10 19 cm -3, the accelerating fields and scale length can hence be on the order of 10-100GV/m and 10-40 μm, respectively. The production of quasimonoenergetic beams wasmore » recently obtained in a regime relying on self-trapping of background plasma electrons, using a single laser pulse for wakefield generation. In this dissertation, we study the controlled injection via the beating of two lasers (the pump laser pulse creating the plasma wave and a second beam being propagated in opposite direction) which induce a localized injection of background plasma electrons. The aim of this dissertation is to describe in detail the physics of optical injection using two lasers, the characteristics of the electron beams produced (the micrometer scale plasma wavelength can result in femtosecond and even attosecond bunches) as well as a concise estimate of the effects of space charge on the dynamics of an ultra-dense electron bunch with a large energy spread.« less

  8. Interplanetary field and plasma during initial phase of geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Patel, V. L.; Wiskerchen, M. J.

    1975-01-01

    A study has been conducted of a large number of geomagnetic storms occurring during the period from 1966 to 1970. Questions of data selection are discussed and the large-scale interplanetary magnetic field during the initial phase is examined. Small-scale interplanetary fields during the initial phase are also considered, taking into account important features of small-scale variations in the interplanetary field and plasma for three storms. Details concerning 23 geomagnetic storms and the interplanetary magnetic field are presented in a table. A study of the initial phase of these storms indicates that in most of these events, the solar-ecliptic Z component of the interplanetary magnetic field turns southward when the main phase decrease begins.

  9. Complex (dusty) plasmas-kinetic studies of strong coupling phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morfill, Gregor E.; Ivlev, Alexei V.; Thomas, Hubertus M.

    2012-05-15

    'Dusty plasmas' can be found almost everywhere-in the interstellar medium, in star and planet formation, in the solar system in the Earth's atmosphere, and in the laboratory. In astrophysical plasmas, the dust component accounts for only about 1% of the mass, nevertheless this component has a profound influence on the thermodynamics, the chemistry, and the dynamics. Important physical processes are charging, sputtering, cooling, light absorption, and radiation pressure, connecting electromagnetic forces to gravity. Surface chemistry is another important aspect. In the laboratory, there is great interest in industrial processes (e.g., etching, vapor deposition) and-at the fundamental level-in the physics ofmore » strong coupling phenomena. Here, the dust (or microparticles) are the dominant component of the multi-species plasma. The particles can be observed in real time and space, individually resolved at all relevant length and time scales. This provides an unprecedented means for studying self-organisation processes in many-particle systems, including the onset of cooperative phenomena. Due to the comparatively large mass of the microparticles (10{sup -12}to10{sup -9}g), precision experiments are performed on the ISS. The following topics will be discussed: Phase transitions, phase separation, electrorheology, flow phenomena including the onset of turbulence at the kinetic level.« less

  10. A Model for Straight and Helical Solar Jets: II. Parametric Study of the Plasma Beta

    NASA Technical Reports Server (NTRS)

    Pariat, E.; Dalmasse, K.; DeVore, C. R.; Antiochos, S. K.; Karpen, J. T.

    2016-01-01

    Context. Jets are dynamic, impulsive, well-collimated plasma events that develop at many different scales and in different layers of the solar atmosphere. Aims. Jets are believed to be induced by magnetic reconnection, a process central to many astrophysical phenomena. Within the solar atmosphere, jet-like events develop in many different environments, e.g. in the vicinity of active regions as well as in coronal holes, and at various scales, from small photospheric spicules to large coronal jets. In all these events, signatures of helical structure and/or twisting/rotating motions are regularly observed. The present study aims to establish that a single model can generally reproduce the observed properties of these jet-like events. Methods. In this study, using our state-of-the-art numerical solver ARMS, we present a parametric study of a numerical tridimensional magnetohydrodynamic (MHD) model of solar jet-like events. Within the MHD paradigm, we study the impact of varying the atmospheric plasma beta on the generation and properties of solar-like jets. Results. The parametric study validates our model of jets for plasma beta ranging from 10(sup 3) to 1, typical of the different layers and magnetic environments of the solar atmosphere. Our model of jets can robustly explain the generation of helical solar jet-like events at various beta less than or equal to 1. We show that the plasma beta modifies the morphology of the helical jet, explaining the different observed shapes of jets at different scales and in different layers of the solar atmosphere. Conclusions. Our results allow us to understand the energisation, triggering, and driving processes of jet-like events. Our model allows us to make predictions of the impulsiveness and energetics of jets as determined by the surrounding environment, as well as the morphological properties of the resulting jets.

  11. Low and Midlatitude Ionospheric Plasma Density Irregularities and Their Effects on Geomagnetic Field

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tatsuhiro; Stolle, Claudia

    2017-03-01

    Earth's magnetic field results from various internal and external sources. The electric currents in the ionosphere are major external sources of the magnetic field in the daytime. High-resolution magnetometers onboard low-Earth-orbit satellites such as CHAMP and Swarm can detect small-scale currents in the nighttime ionosphere, where plasma density gradients often become unstable and form irregular density structures. The magnetic field variations caused by the ionospheric irregularities are comparable to that of the lithospheric contribution. Two phenomena in the nighttime ionosphere that contribute to the magnetic field variation are presented: equatorial plasma bubble (EPB) and medium-scale traveling ionospheric disturbance (MSTID). EPB is formed by the generalized Rayleigh-Taylor instability over the dip equator and grows nonlinearly to as high as 2000 km apex altitude. It is characterized by deep plasma density depletions along magnetic flux tubes, where the diamagnetic effect produced by a pressure-gradient-driven current enhances the main field intensity. MSTID is a few hundred kilometer-scale disturbance in the midlatitude ionosphere generated by the coupled electrodynamics between the ionospheric E and F regions. The field-aligned currents associated with EPBs and MSTIDs also have significant signatures in the magnetic field perpendicular to the main field direction. The empirical discovery of the variations in the magnetic field due to plasma irregularities has motivated the inclusion of electrodynamics in the physical modeling of these irregularities. Through an effective comparison between the model results and observations, the physical process involved has been largely understood. The prediction of magnetic signatures due to plasma irregularities has been advanced by modeling studies, and will be helpful in interpreting magnetic field observations from satellites.

  12. Superhydrophobic ceramic coating: Fabrication by solution precursor plasma spray and investigation of wetting behavior.

    PubMed

    Xu, Pengyun; Coyle, Thomas W; Pershin, Larry; Mostaghimi, Javad

    2018-08-01

    Superhydrophobic surfaces are often created by fabricating suitable surface structures from low-surface-energy organic materials using processes that are not suitable for large-scale fabrication. Rare earth oxides (REO) exhibit hydrophobic behavior that is unusual among oxides. Solution precursor plasma spray (SPPS) deposition is a rapid, one-step process that can produce ceramic coatings with fine scale columnar structures. Manipulation of the structure of REO coatings through variation in deposition conditions may allow the wetting behavior to be controlled. Yb 2 O 3 coatings were fabricated via SPPS. Coating structure was investigated by scanning electron microscopy, digital optical microscopy, and x-ray diffraction. The static water contact angle and roll-off angle were measured, and the dynamic impact of water droplets on the coating surface recorded. Superhydrophobic behavior was observed; the best coating exhibited a water contact angle of ∼163°, a roll-off angle of ∼6°, and complete droplet rebound behavior. All coatings were crystalline Yb 2 O 3 , with a nano-scale roughness superimposed on a micron-scale columnar structure. The wetting behaviors of coatings deposited at different standoff distances were correlated with the coating microstructures and surface topographies. The self-cleaning, water flushing and water jetting tests were conducted and further demonstrated the excellent and durable hydrophobicity of the coatings. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Tools for phospho- and glycoproteomics of plasma membranes.

    PubMed

    Wiśniewski, Jacek R

    2011-07-01

    Analysis of plasma membrane proteins and their posttranslational modifications is considered as important for identification of disease markers and targets for drug treatment. Due to their insolubility in water, studying of plasma membrane proteins using mass spectrometry has been difficult for a long time. Recent technological developments in sample preparation together with important improvements in mass spectrometric analysis have facilitated analysis of these proteins and their posttranslational modifications. Now, large scale proteomic analyses allow identification of thousands of membrane proteins from minute amounts of sample. Optimized protocols for affinity enrichment of phosphorylated and glycosylated peptides have set new dimensions in the depth of characterization of these posttranslational modifications of plasma membrane proteins. Here, I summarize recent advances in proteomic technology for the characterization of the cell surface proteins and their modifications. In the focus are approaches allowing large scale mapping rather than analytical methods suitable for studying individual proteins or non-complex mixtures.

  14. Cross-Scale: a multi-spacecraft mission to study cross-scale coupling in space plasmas

    NASA Astrophysics Data System (ADS)

    Fujimoto, M.; Schwartz, S.; Horbury, T.; Louarn, P.; Baumjohann, W.

    Collisionless astrophysical plasmas exhibit complexity on many scales if we are to understand their properties and effects we must measure this complexity We can identify a small number of processes and phenomena one of which is dominant in almost every space plasma region of interest shocks reconnection turbulence and boundaries These processes act to transfer energy between locations scales and modes However this transfer is characterised by variability and 3D structures on at least three scales electron kinetic ion kinetic and fluid It is the interaction between physical processes at these scales that is the key to understanding these phenomena and predicting their effects However current and planned multi-spacecraft missions such as Cluster and MMS only study variations on one scale in 3D at any given time We must measure the three scales simultaneously completely to understand the energy transfer processes ESA fs Cosmic Vision 2015-2025 exercise revealed a broad consensus for a mission to study these issues commonly known as M3 In parallel Japanese scientists have been studying a similar mission concept SCOPE We have taken ideas from both of these mission proposals and produced a concept called Cross-Scale Cross-Scale would comprise three nested groups each consisting of four spacecraft with similar instrumentation Each group would have a different spacecraft separation at approximately the electron and ion gyroradii and a larger MHD scale We would therefore be able to measure variations on all three important physical scales

  15. State-of-the-art for large area high resolution gray scale and full color AC plasma flat panel displays

    NASA Technical Reports Server (NTRS)

    Stoller, Ray A.; Wedding, Donald K.; Friedman, Peter S.

    1993-01-01

    A development status evaluation is presented for gas plasma display technology, noting how tradeoffs among the parameters of size, resolution, speed, portability, color, and image quality can yield cost-effective solutions for medical imaging, CAD, teleconferencing, multimedia, and both civil and military applications. Attention is given to plasma-based large-area displays' suitability for radar, sonar, and IR, due to their lack of EM susceptibility. Both monochrome and color displays are available.

  16. Effect of atmospheric-pressure plasma treatment on the adhesion properties of a thin adhesive layer in a selective transfer process

    NASA Astrophysics Data System (ADS)

    Yoon, Min-Ah; Kim, Chan; Hur, Min; Kang, Woo Seok; Kim, Jaegu; Kim, Jae-Hyun; Lee, Hak-Joo; Kim, Kwang-Seop

    2018-01-01

    The adhesion between a stamp and thin film devices is crucial for their transfer on a flexible substrate. In this paper, a thin adhesive silicone layer on the stamp was treated by atmospheric pressure plasma to locally control the adhesion strength for the selective transfer. The adhesion strength of the silicone layer was significantly reduced after the plasma treatment, while its surface energy was increased. To understand the inconsistency between the adhesion strength and surface energy changes, the surface properties of the silicone layer were characterized using nanoindentation and X-ray photoelectron spectroscopy. These techniques revealed that a thin, hard, silica-like layer had formed on the surface from plasma-enhanced oxidation. This layer played an important role in decreasing the contact area and increasing the interfacial slippage, resulting in decreased adhesion. As a practical application, the transfer process was demonstrated on GaN LEDs that had been previously delaminated by a laser lift-off (LLO) process. Although the LEDs were not transferred onto the treated adhesive layer due to the reduced adhesion, the untreated adhesive layer could readily pick up the LEDs. It is expected that this simple method of controlling the adhesion of a stamp with a thin adhesive layer would enable a continuous, selective and large-scale roll-to-roll selective transfer process and thereby advance the development of flexible, stretchable and wearable electronics.

  17. Nanocarbon materials fabricated using plasmas

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Rikizo

    2017-12-01

    Since the discovery of fullerenes more than three decades ago, new kinds of nanoscale materials of carbon allotropes called "nanocarbons" have so far been discovered or synthesized at successive intervals as cases such as carbon nanotubes, carbon nanohorns, graphene, carbon nanowalls, and a carbon nanobelt, while nanodiamonds were actually discovered before then. Their attractively excellent mechanical, physical, and chemical properties have driven researchers to continuously create one of the hottest frontiers in materials science and technology. While plasma states have often been involved in their discovery, on the other hand, plasma-based approaches to this exciting field originally hold promising and enormous potentials for advancing and expanding industrial/biomedical applications of nanocarbons of great diversity. This article provides an extensive overview on plasma-fabricated nanocarbon materials, where the term "fabrication" is defined as synthesis, functionalization, and assembly of devices to cover a wide range of issues associated with the step-by-step plasma processes. Specific attention has been paid to the comparative examination between plasma-based and non-plasma methods for fabricating the nanocarobons with an emphasis on the advantages of plasma processing, such as low-temperature/large-scale fabrication and diversity-carrying structure controllability. The review ends with current challenges and prospects including a ripple effect of the nanocarbon studies on the development of related novel nanomaterials such as transition metal dichalcogenides. It contains not only the latest progress in the field for cutting-edge scientists and engineers, but also the introductory guidance to non-specialists such as lower-class graduate students.

  18. Multiscale Processes in Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Surjalal Sharma, A.; Jain, Neeraj

    The characteristic scales of the plasma processes in magnetic reconnection range from the elec-tron skin-depth to the magnetohydrodynamic (MHD) scale, and cross-scale coupling among them play a key role. Modeling these processes requires different physical models, viz. kinetic, electron-magnetohydrodynamics (EMHD), Hall-MHD, and MHD. The shortest scale processes are at the electron scale and these are modeled using an EMHD code, which provides many features of the multiscale behavior. In simulations using initial conditions consisting of pertur-bations with many scale sizes the reconnection takes place at many sites and the plasma flows from these interact with each other. This leads to thin current sheets with length less than 10 electron skin depths. The plasma flows also generate current sheets with multiple peaks, as observed by Cluster. The quadrupole structure of the magnetic field during reconnection starts on the electron scale and the interaction of inflow to the secondary sites and outflow from the dominant site generates a nested structure. In the outflow regions, the interaction of the electron outflows generated at the neighboring sites lead to the development of electron vortices. A signature of the nested structure of the Hall field is seen in Cluster observations, and more details of these features are expected from MMS.

  19. Lower hybrid to whistler mode conversion on a density striation

    NASA Astrophysics Data System (ADS)

    Camporeale, E.; Delzanno, G. L.; Colestock, P.

    2012-10-01

    When a wave packet composed of short wavelength lower hybrid modes traveling in an homogeneous plasma region encounters an inhomogeneity, it can resonantly excite long wavelength whistler waves via a linear mechanism known as mode conversion. An enhancement of lower hybrid/whistler activity has been often observed by sounding rockets and satellites in the presence of density depletions (striations) in the upper ionosphere. We address here the process of linear mode conversion of lower hybrid to whistler waves, mediated by a density striation, using a scalar-field formalism (in the limit of cold plasma linear theory) which we solve numerically. We show that the mode conversion can effectively transfer a large amount of energy from the short to the long wavelength modes. We also study how the efficiency scales by changing the properties (width and amplitude) of the density striation. We present a general criterion for the width of the striation that, if fulfilled, maximizes the conversion efficiency. Such a criterion could provide an interpretation of recent laboratory experiments carried out on the Large Plasma Device at UCLA.

  20. Nanoparticle formation in a low pressure argon/aniline RF plasma

    NASA Astrophysics Data System (ADS)

    Pattyn, C.; Kovacevic, E.; Hussain, S.; Dias, A.; Lecas, T.; Berndt, J.

    2018-01-01

    The formation of nanoparticles in low temperature plasmas is of high importance for different fields: from astrophysics to microelectronics. The plasma based synthesis of nanoparticles is a complex multi-scale process that involves a great variety of different species and comprises timescales ranging from milliseconds to several minutes. This contribution focuses on the synthesis of nanoparticles in a low temperature, low pressure capacitively coupled plasma containing mixtures of argon and aniline. Aniline is commonly used for the production of polyaniline, a material that belongs to the family of conductive polymers, which has attracted increasing interest in the last few years due to the large number of potential applications. The nanoparticles which are formed in the plasma volume and levitate there due to the collection of negative charges are investigated in this contribution by means of in-situ FTIR spectroscopy. In addition, the plasma is analyzed by means of plasma (ion) mass spectroscopy. The experiments reveal the possibility to synthesize nanoparticles both in continuous wave and in pulsed discharges. The formation of particles in the plasma volume can be suppressed by pulsing the plasma in a specific frequency range. The in-situ FTIR analysis also reveals the influence of the argon plasma on the characteristics of the nanoparticles.

  1. Cyclic powder formation during pulsed injection of hexamethyldisiloxane in an axially asymmetric radiofrequency argon discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Despax, B.; Makasheva, K.; CNRS, LAPLACE, F-31062 Toulouse cedex 09

    2012-11-01

    A new approach of periodic production of dusty plasma consisting of pulsed injection of hexamethyldisiloxane (HMDSO) in argon axially asymmetric radiofrequency (RF) discharge was investigated in this work. The range of plasma operating conditions in which this dusty plasma can exist was closely examined. The obtained results clearly show that a net periodicity in the formation/disappearance of dust particles in the plasma can be maintained on a very large scale of discharge duration. The significance of discharge axial asymmetry to the dust particles behaviour in the plasma is revealed by the development of an asymmetric in shape void shifted towardsmore » the powered RF electrode. The key role of the reactive gas and its pulsed injection on each stage of the oscillating process of formation/disappearance of dust particles is disclosed by optical and electrical measurements. It is shown that the period of dusty plasma formation/disappearance is inversely related to the HMDSO injection time. Moreover, the impact of time injection over short period (5 s) is examined. It indicates the conflicting role played by the HMDSO on the reduction of dusty plasma during the reactive gas injection and the reappearance of particles in the plasma during the time off. The electronegative behavior of the plasma in the presence of negatively charged particles seems to explain the energetic modifications in the discharge. A frequency analysis of the floating potential reveals all these cyclic processes. Particularly, in the 10-200 Hz frequency range, the presence and the evolution of dust particles in the plasma over one generation can be observed.« less

  2. Plasma generating apparatus for large area plasma processing

    DOEpatents

    Tsai, C.C.; Gorbatkin, S.M.; Berry, L.A.

    1991-07-16

    A plasma generating apparatus for plasma processing applications is based on a permanent magnet line-cusp plasma confinement chamber coupled to a compact single-coil microwave waveguide launcher. The device creates an electron cyclotron resonance (ECR) plasma in the launcher and a second ECR plasma is created in the line cusps due to a 0.0875 tesla magnetic field in that region. Additional special magnetic field configuring reduces the magnetic field at the substrate to below 0.001 tesla. The resulting plasma source is capable of producing large-area (20-cm diam), highly uniform (.+-.5%) ion beams with current densities above 5 mA/cm[sup 2]. The source has been used to etch photoresist on 5-inch diam silicon wafers with good uniformity. 3 figures.

  3. Plasma generating apparatus for large area plasma processing

    DOEpatents

    Tsai, Chin-Chi; Gorbatkin, Steven M.; Berry, Lee A.

    1991-01-01

    A plasma generating apparatus for plasma processing applications is based on a permanent magnet line-cusp plasma confinement chamber coupled to a compact single-coil microwave waveguide launcher. The device creates an electron cyclotron resonance (ECR) plasma in the launcher and a second ECR plasma is created in the line cusps due to a 0.0875 tesla magnetic field in that region. Additional special magnetic field configuring reduces the magnetic field at the substrate to below 0.001 tesla. The resulting plasma source is capable of producing large-area (20-cm diam), highly uniform (.+-.5%) ion beams with current densities above 5 mA/cm.sup.2. The source has been used to etch photoresist on 5-inch diam silicon wafers with good uniformity.

  4. Plasma Discharge Initiation of Explosives in Rock Blasting Application: A Case Study

    NASA Astrophysics Data System (ADS)

    Jae-Ou, Chae; Young-Jun, Jeong; V, M. Shmelev; A, A. Denicaev; V, M. Poutchkov; V, Ravi

    2006-07-01

    A plasma discharge initiation system for the explosive volumetric combustion charge was designed, investigated and developed for practical application. Laboratory scale experiments were carried out before conducting the large scale field tests. The resultant explosions gave rise to less noise, insignificant seismic vibrations and good specific explosive consumption for rock blasting. Importantly, the technique was found to be safe and environmentally friendly.

  5. Advanced plasma etch technologies for nanopatterning

    NASA Astrophysics Data System (ADS)

    Wise, Rich

    2013-10-01

    Advances in patterning techniques have enabled the extension of immersion lithography from 65/45 nm through 14/10 nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques, such as litho-etch-litho-etch, sidewall image transfer, line/cut mask, and self-aligned structures, have been implemented to solution required device scaling. Advances in dry plasma etch process control across wafer uniformity and etch selectivity to both masking materials have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes, such as trilayer etches, aggressive critical dimension shrink techniques, and the extension of resist trim processes, have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across-design variation, defectivity, profile stability within wafer, within lot, and across tools has been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated total patterning solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. We will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.

  6. Advanced plasma etch technologies for nanopatterning

    NASA Astrophysics Data System (ADS)

    Wise, Rich

    2012-03-01

    Advances in patterning techniques have enabled the extension of immersion lithography from 65/45nm through 14/10nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques such as litho-etch-litho-etch, sidewall image transfer, line/cut mask and self-aligned structures have been implemented to solution required device scaling. Advances in dry plasma etch process control, across wafer uniformity and etch selectivity to both masking materials and have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes such as trilayer etches, aggressive CD shrink techniques, and the extension of resist trim processes have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across design variation, defectivity, profile stability within wafer, within lot, and across tools have been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated Total Patterning Solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. This paper will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.

  7. Development of Electric Field and Plasma Wave Investigations for Future Space Weather Missions: ERG, SCOPE, and beyond

    NASA Astrophysics Data System (ADS)

    Kasaba, Y.; Kumamoto, A.; Ono, T.; Misawa, H.; Kojima, H.; Yagitani, S.; Kasahara, Y.; Ishisaka, K.

    2009-04-01

    The electric field and plasma wave investigation is important for the clarification of global plasma dynamics and energetic processes in the planetary Magnetospheric studies. We have several missions which will contribute those objectives. the small-sized radiation belt mission, ERG (Energization and Radiation in Geospace), the cross-scale formation flight mission, SCOPE, the BepiColombo mission to Mercury, and the small-sized and full-scale Jovian mission in future. Those will prevail the universal plasma mechanism and processes in the space laboratory. The main purposes of electric field and plasma wave observation for those missions are: (1) Examination of the theories of high-energy particle acceleration by plasma waves, (2) identification of the origin of electric fields in the magnetosphere associated with cross-scale coupling processes, (3) diagnosis of plasma density, temperature and composition, and (4) investigation of wave-particle interaction and mode conversion processes. Simultaneous observation of plasma waves and energetic particles with high resolution will enable us to investigate the wave-particle interaction based on quasi-linear theory and non-linear models. In this paper, we will summarize the current plan and efforts for those future activities. In order to achieve those objectives, the instrument including sensitive sensors (the long wire / stem antennae, the search-coil / loop antennae) and integrated receiver systems are now in development, including the direct identification of nonlinear wave-particle interactions associated will be tried by Wave-particle Correlator. And, as applications of those development, we will mention to the space interferometer and the radar sounder technologies.

  8. Universal attractor in a highly occupied non-Abelian plasma

    NASA Astrophysics Data System (ADS)

    Berges, J.; Boguslavski, K.; Schlichting, S.; Venugopalan, R.

    2014-06-01

    We study the thermalization process in highly occupied non-Abelian plasmas at weak coupling. The nonequilibrium dynamics of such systems is classical in nature and can be simulated with real-time lattice gauge theory techniques. We provide a detailed discussion of this framework and elaborate on the results reported in J. Berges, K. Boguslavski, S. Schlichting, and R. Venugopalan, Phys. Rev. D 89, 074011 (2014), 10.1103/PhysRevD.89.074011 along with novel findings. We demonstrate the emergence of universal attractor solutions, which govern the nonequilibrium evolution on large time scales both for nonexpanding and expanding non-Abelian plasmas. The turbulent attractor for a nonexpanding plasma drives the system close to thermal equilibrium on a time scale t ˜Q-1αs-7/4. The attractor solution for an expanding non-Abelian plasma leads to a strongly interacting albeit highly anisotropic system at the transition to the low-occupancy or quantum regime. This evolution in the classical regime is, within the uncertainties of our simulations, consistent with the "bottom up" thermalization scenario [R. Baier, A. H. Mueller, D. Schiff, and D. T. Son, Phys. Lett. B 502, 51 (2001), 10.1016/S0370-2693(01)00191-5]. While the focus of this paper is to understand the nonequilibrium dynamics in weak coupling asymptotics, we also discuss the relevance of our results for larger couplings in the early time dynamics of heavy ion collision experiments.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahlburg, Jill; Corones, James; Batchelor, Donald

    Fusion is potentially an inexhaustible energy source whose exploitation requires a basic understanding of high-temperature plasmas. The development of a science-based predictive capability for fusion-relevant plasmas is a challenge central to fusion energy science, in which numerical modeling has played a vital role for more than four decades. A combination of the very wide range in temporal and spatial scales, extreme anisotropy, the importance of geometric detail, and the requirement of causality which makes it impossible to parallelize over time, makes this problem one of the most challenging in computational physics. Sophisticated computational models are under development for many individualmore » features of magnetically confined plasmas and increases in the scope and reliability of feasible simulations have been enabled by increased scientific understanding and improvements in computer technology. However, full predictive modeling of fusion plasmas will require qualitative improvements and innovations to enable cross coupling of a wider variety of physical processes and to allow solution over a larger range of space and time scales. The exponential growth of computer speed, coupled with the high cost of large-scale experimental facilities, makes an integrated fusion simulation initiative a timely and cost-effective opportunity. Worldwide progress in laboratory fusion experiments provides the basis for a recent FESAC recommendation to proceed with a burning plasma experiment (see FESAC Review of Burning Plasma Physics Report, September 2001). Such an experiment, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world’s energy security. An integrated simulation capability would dramatically enhance the utilization of such a facility and lead to optimization of toroidal fusion plasmas in general. This science-based predictive capability, which was cited in the FESAC integrated planning document (IPPA, 2000), represents a significant opportunity for the DOE Office of Science to further the understanding of fusion plasmas to a level unparalleled worldwide.« less

  10. Mass ablation and magnetic flux losses through a magnetized plasma-liner wall interface

    NASA Astrophysics Data System (ADS)

    García-Rubio, F.; Sanz, J.

    2017-07-01

    The understanding of energy and magnetic flux losses in a magnetized plasma medium confined by a cold wall is of great interest in the success of magnetized liner inertial fusion (MagLIF). In a MagLIF scheme, the fuel is magnetized and subsonically compressed by a cylindrical liner. Magnetic flux conservation is degraded by the presence of gradient-driven transport processes such as thermoelectric effects (Nernst) and magnetic field diffusion. In previous publications [Velikovich et al., Phys. Plasmas 22, 042702 (2015)], the evolution of a hot magnetized plasma in contact with a cold solid wall (liner) was studied using the classical collisional Braginskii's plasma transport equations in one dimension. The Nernst term degraded the magnetic flux conservation, while both thermal energy and magnetic flux losses were reduced with the electron Hall parameter ωeτe with a power-law asymptotic scaling (ωeτe)-1/2. In the analysis made in the present paper, we consider a similar situation, but with the liner being treated differently. Instead of a cold solid wall acting as a heat sink, we model the liner as a cold dense plasma with low thermal conduction (that could represent the cryogenic fuel layer added on the inner surface of the liner in a high-gain MagLIF configuration). Mass ablation comes into play, which adds notably differences to the previous analysis. The direction of the plasma motion is inverted, but the Nernst term still convects the magnetic field towards the liner. Magnetization suppresses the Nernst velocity and improves the magnetic flux conservation. Thermal energy in the hot plasma is lost in heating the ablated material. When the electron Hall parameter is large, mass ablation scales as (ωeτe)-3/10, while both the energy and magnetic flux losses are reduced with a power-law asymptotic scaling (ωeτe)-7/10.

  11. Mechanisms for dose retention in conformal arsenic doping using a radial line slot antenna microwave plasma source

    NASA Astrophysics Data System (ADS)

    Ueda, Hirokazu; Ventzek, Peter L. G.; Oka, Masahiro; Kobayashi, Yuuki; Sugimoto, Yasuhiro

    2015-06-01

    Topographic structures such as Fin FETs and silicon nanowires for advanced gate fabrication require ultra-shallow high dose infusion of dopants into the silicon subsurface. Plasma doping meets this requirement by supplying a flux of inert ions and dopant radicals to the surface. However, the helium ion bombardment needed to infuse dopants into the fin surface can cause poor dose retention. This is due to the interaction between substrate damage and post doping process wet cleaning solutions required in the front end of line large-scale integration fabrication. We present findings from surface microscopy experiments that reveal the mechanism for dose retention in arsenic doped silicon fin samples using a microwave RLSA™ plasma source. Dilute aqueous hydrofluoric acid (DHF) cleans by themselves are incompatible with plasma doping processes because the films deposited over the dosed silicon and ion bombardment damaged silicon are readily removed. Oxidizing wet cleaning chemistries help retain the dose as silica rich over-layers are not significantly degraded. Furthermore, the dosed retention after a DHF clean following an oxidizing wet clean is unchanged. Still, the initial ion bombardment energy and flux are important. Large ion fluxes at energies below the sputter threshold and above the silicon damage threshold, before the silicon surface is covered by an amorphous mixed phase layer, allow for enhanced uptake of dopant into the silicon. The resulting dopant concentration is beyond the saturation limit of crystalline silicon.

  12. Local Helioseismology of Emerging Active Regions: A Case Study

    NASA Astrophysics Data System (ADS)

    Kosovichev, Alexander G.; Zhao, Junwei; Ilonidis, Stathis

    2018-04-01

    Local helioseismology provides a unique opportunity to investigate the subsurface structure and dynamics of active regions and their effect on the large-scale flows and global circulation of the Sun. We use measurements of plasma flows in the upper convection zone, provided by the Time-Distance Helioseismology Pipeline developed for analysis of solar oscillation data obtained by Helioseismic and Magnetic Imager (HMI) on Solar Dynamics Observatory (SDO), to investigate the subsurface dynamics of emerging active region NOAA 11726. The active region emergence was detected in deep layers of the convection zone about 12 hours before the first bipolar magnetic structure appeared on the surface, and 2 days before the emergence of most of the magnetic flux. The speed of emergence determined by tracking the flow divergence with depth is about 1.4 km/s, very close to the emergence speed in the deep layers. As the emerging magnetic flux becomes concentrated in sunspots local converging flows are observed beneath the forming sunspots. These flows are most prominent in the depth range 1-3 Mm, and remain converging after the formation process is completed. On the larger scale converging flows around active region appear as a diversion of the zonal shearing flows towards the active region, accompanied by formation of a large-scale vortex structure. This process occurs when a substantial amount of the magnetic flux emerged on the surface, and the converging flow pattern remains stable during the following evolution of the active region. The Carrington synoptic flow maps show that the large-scale subsurface inflows are typical for active regions. In the deeper layers (10-13 Mm) the flows become diverging, and surprisingly strong beneath some active regions. In addition, the synoptic maps reveal a complex evolving pattern of large-scale flows on the scale much larger than supergranulation

  13. Bi-stage time evolution of nano-morphology on inductively coupled plasma etched fused silica surface caused by surface morphological transformation

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaolong; Zhang, Lijuan; Bai, Yang; Liu, Ying; Liu, Zhengkun; Qiu, Keqiang; Liao, Wei; Zhang, Chuanchao; Yang, Ke; Chen, Jing; Jiang, Yilan; Yuan, Xiaodong

    2017-07-01

    In this work, we experimentally investigate the surface nano-roughness during the inductively coupled plasma etching of fused silica, and discover a novel bi-stage time evolution of surface nano-morphology. At the beginning, the rms roughness, correlation length and nano-mound dimensions increase linearly and rapidly with etching time. At the second stage, the roughening process slows down dramatically. The switch of evolution stage synchronizes with the morphological change from dual-scale roughness comprising long wavelength underlying surface and superimposed nano-mounds to one scale of nano-mounds. A theoretical model based on surface morphological change is proposed. The key idea is that at the beginning, etched surface is dual-scale, and both larger deposition rate of etch inhibitors and better plasma etching resistance at the surface peaks than surface valleys contribute to the roughness development. After surface morphology transforming into one-scale, the difference of plasma resistance between surface peaks and valleys vanishes, thus the roughening process slows down.

  14. The scaling of oblique plasma double layers

    NASA Technical Reports Server (NTRS)

    Borovsky, J. E.

    1983-01-01

    Strong oblique plasma double layers are investigated using three methods, i.e., electrostatic particle-in-cell simulations, numerical solutions to the Poisson-Vlasov equations, and analytical approximations to the Poisson-Vlasov equations. The solutions to the Poisson-Vlasov equations and numerical simulations show that strong oblique double layers scale in terms of Debye lengths. For very large potential jumps, theory and numerical solutions indicate that all effects of the magnetic field vanish and the oblique double layers follow the same scaling relation as the field-aligned double layers.

  15. Magnetospheric convection during quiet or moderately disturbed times

    NASA Technical Reports Server (NTRS)

    Caudal, G.; Blanc, M.

    1988-01-01

    The processes which contribute to the large-scale plasma circulation in the earth's environment during quiet times, or during reasonable stable magnetic conditions are reviewed. The various sources of field-aligned current generation in the solar wind and the magnetosphere are presented. The generation of field-aligned currents on open field lines connected to either polar cap and the generation of closed field lines of the inner magnetosphere are examined. Consideration is given to the hypothesis of Caudal (1987) that loss processes of trapped particles are competing with adiabatic motions in the generation of field-aligned currents in the inner magnetosphere.

  16. Experimental Characterization of Plasma Detachment from Magnetic Nozzles

    NASA Astrophysics Data System (ADS)

    Olsen, Christopher Scott

    Magnetic nozzles, like Laval nozzles, are observed in several natural systems and have application in areas such as electric propulsion and plasma processing. Plasma flowing through these nozzles is inherently tied to the field lines and must separate for momentum redirection or particle transport to occur. Plasma detachment and associated mechanisms from a magnetic nozzle are investigated. Experimental results are presented from the plume of the VASIMRRTM VX-200 device flowing along an axisymmetric magnetic nozzle and operated at two ion energies to explore momentum dependent detachment. The argon plume expanded into a 150m3 vacuum chamber where the background pressure was low enough that charge-exchange mean-free-paths were longer than experiment scale lengths. This magnetic nozzle system is demonstrated to hydrodynamically scale up to astrophysical plasmas, particularly the solar chromosphere, implying general relevance to many systems. Plasma parameters were mapped over a large spatial range using measurements from multiple plasma diagnostics. The data show that the plume does not follow the magnetic field lines. A mapped integration of the ion flux shows the plume may be divided into three regions where 1) the plume briefly follows the magnetic flux, 2) diverges quadratically before 3) expanding with linear trajectories. Transitioning from region 1→2, the ion flux departs from the magnetic flux suggesting ion detachment. An instability forms in region 2 driving an oscillating electric field that causes ions to expand before enhancing electron cross-field transport through anomalous resistivity. Transitioning from region 2→3 the electric field dissipates, the trajectories linearize, and the plume effectively detaches. A delineation of sub-to-super Alfvenic flow aligns well with the inflection points of the linearization without a change in magnetic topology. The detachment process is best described as a two part process: First, ions detach by a breakdown of the magnetic moment when the quantity |v/fcLB| becomes of order unity. Second, the turbulent electric field enhances electron transport up to a factor of 4+/-1 above collisional diffusion; electron cross-field velocities approximate that of the ions and depart on more centralized field lines. Electrons are believed to detach by breakdown of magnetic moment further downstream in the weaker magnetic field.

  17. Surface conversion techniques for low energy neutral atom imagers

    NASA Technical Reports Server (NTRS)

    Quinn, J. M.

    1995-01-01

    This investigation has focused on development of key technology elements for low energy neutral atom imaging. More specifically, we have investigated the conversion of low energy neutral atoms to negatively charged ions upon reflection from specially prepared surfaces. This 'surface conversion' technique appears to offer a unique capability of detecting, and thus imaging, neutral atoms at energies of 0.01 - 1 keV with high enough efficiencies to make practical its application to low energy neutral atom imaging in space. Such imaging offers the opportunity to obtain the first instantaneous global maps of macroscopic plasma features and their temporal variation. Through previous in situ plasma measurements, we have a statistical picture of large scale morphology and local measurements of dynamic processes. However, with in situ techniques it is impossible to characterize or understand many of the global plasma transport and energization processes. A series of global plasma images would greatly advance our understanding of these processes and would provide the context for interpreting previous and future in situ measurements. Fast neutral atoms, created from ions that are neutralized in collisions with exospheric neutrals, offer the means for remotely imaging plasma populations. Energy and mass analysis of these neutrals provides critical information about the source plasma distribution. The flux of neutral atoms available for imaging depends upon a convolution of the ambient plasma distribution with the charge exchange cross section for the background neutral population. Some of the highest signals are at relatively low energies (well below 1 keV). This energy range also includes some of the most important plasma populations to be imaged, for example the base of the cleft ion fountain.

  18. Generation of large-scale magnetic fields by small-scale dynamo in shear flows

    DOE PAGES

    Squire, J.; Bhattacharjee, A.

    2015-10-20

    We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Furthermore, given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic naturemore » of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects.« less

  19. Generation of Large-Scale Magnetic Fields by Small-Scale Dynamo in Shear Flows.

    PubMed

    Squire, J; Bhattacharjee, A

    2015-10-23

    We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic nature of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects.

  20. Scaling of plasma-body interactions in low Earth orbit

    NASA Astrophysics Data System (ADS)

    Capon, C. J.; Brown, M.; Boyce, R. R.

    2017-04-01

    This paper derives the generalised set of dimensionless parameters that scale the interaction of an unmagnetised multi-species plasma with an arbitrarily charged object - the application in this work being to the interaction of the ionosphere with Low Earth Orbiting (LEO) objects. We find that a plasma with K ion species can be described by 1 + 4 K independent dimensionless parameters. These parameters govern the deflection and coupling of ion species k , the relative electrical shielding of the body, electron energy, and scaling of temporal effects. The general shielding length λ ϕ is introduced, which reduces to the Debye length in the high-temperature (weakly coupled) limit. The ability of the scaling parameters to predict the self-similar transformations of single and multi-species plasma interactions is demonstrated numerically using pdFOAM, an electrostatic Particle-in-Cell—Direct Simulation Monte Carlo code. The presented scaling relationships represent a significant generalisation of past work, linking low and high voltage plasma phenomena. Further, the presented parameters capture the scaling of multi-species plasmas with multiply charged ions, demonstrating previously unreported scaling relationship transformations. The implications of this work are not limited to LEO plasma-body interactions but apply to processes governed by the Vlasov-Maxwell equations and represent a framework upon which to incorporate the scaling of additional phenomena, e.g., magnetism and charging.

  1. Physics of Magnetospheric Variability

    NASA Astrophysics Data System (ADS)

    Vasyliūnas, Vytenis M.

    2011-01-01

    Many widely used methods for describing and understanding the magnetosphere are based on balance conditions for quasi-static equilibrium (this is particularly true of the classical theory of magnetosphere/ionosphere coupling, which in addition presupposes the equilibrium to be stable); they may therefore be of limited applicability for dealing with time-variable phenomena as well as for determining cause-effect relations. The large-scale variability of the magnetosphere can be produced both by changing external (solar-wind) conditions and by non-equilibrium internal dynamics. Its developments are governed by the basic equations of physics, especially Maxwell's equations combined with the unique constraints of large-scale plasma; the requirement of charge quasi-neutrality constrains the electric field to be determined by plasma dynamics (generalized Ohm's law) and the electric current to match the existing curl of the magnetic field. The structure and dynamics of the ionosphere/magnetosphere/solar-wind system can then be described in terms of three interrelated processes: (1) stress equilibrium and disequilibrium, (2) magnetic flux transport, (3) energy conversion and dissipation. This provides a framework for a unified formulation of settled as well as of controversial issues concerning, e.g., magnetospheric substorms and magnetic storms.

  2. Thermoelectric properties of in-situ plasma spray synthesized sub-stoichiometry TiO 2-x

    DOE PAGES

    Lee, Hwasoo; Han, Su Jung; Seshadri, Ramachandran Chidambaram; ...

    2016-11-04

    The thermoelectric properties of sub-stoichiometric TiO 2-x deposits produced by cascaded-plasma spray process are investigated from room-temperature to 750 K. Sub-stoichiometric TiO 2-x deposits are formed through in-situ reaction of the TiO 1.9 within the high temperature plasma flame and manipulated through introduction of varying amounts of hydrogen in the plasma. Although the TiO 2-x particles experience reduction within plasma, it can also re-oxidize through interaction with the surrounding ambient atmosphere, resulting in a complex interplay between process conditions and stoichiometry. The deposits predominantly contain rutile phase with presence of Magneli phases especially under significantly reducing plasma conditions. The resultantmore » deposits show sensitivity to thermoelectric properties and under certain optimal conditions repeatedly show Seebeck coefficients reaching values of -230 μV K -1 at temperatures of 750 K while providing an electrical conductivity of 5.48 × 10 3 S m -1, relatively low thermal conductivity in the range of 1.5 to 2 W m -1 K -1 resulting in power factor of 2.9 μW cm -1 K -2. The resultant maximum thermoelectric figure of merit value reached 0.132 under these optimal conditions. Lastly, the results point to a potential pathway for a large-scale fabrication of low-cost oxide based thermoelectric with potential applicability at moderate to high temperatures.« less

  3. Thermoelectric properties of in-situ plasma spray synthesized sub-stoichiometry TiO 2-x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hwasoo; Han, Su Jung; Seshadri, Ramachandran Chidambaram

    The thermoelectric properties of sub-stoichiometric TiO 2-x deposits produced by cascaded-plasma spray process are investigated from room-temperature to 750 K. Sub-stoichiometric TiO 2-x deposits are formed through in-situ reaction of the TiO 1.9 within the high temperature plasma flame and manipulated through introduction of varying amounts of hydrogen in the plasma. Although the TiO 2-x particles experience reduction within plasma, it can also re-oxidize through interaction with the surrounding ambient atmosphere, resulting in a complex interplay between process conditions and stoichiometry. The deposits predominantly contain rutile phase with presence of Magneli phases especially under significantly reducing plasma conditions. The resultantmore » deposits show sensitivity to thermoelectric properties and under certain optimal conditions repeatedly show Seebeck coefficients reaching values of -230 μV K -1 at temperatures of 750 K while providing an electrical conductivity of 5.48 × 10 3 S m -1, relatively low thermal conductivity in the range of 1.5 to 2 W m -1 K -1 resulting in power factor of 2.9 μW cm -1 K -2. The resultant maximum thermoelectric figure of merit value reached 0.132 under these optimal conditions. Lastly, the results point to a potential pathway for a large-scale fabrication of low-cost oxide based thermoelectric with potential applicability at moderate to high temperatures.« less

  4. Observational evidence of predawn plasma bubble and its irregularity scales in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Watthanasangmechai, K.; Tsunoda, R. T.; Yokoyama, T.; Ishii, M.; Tsugawa, T.

    2016-12-01

    This paper describes an event of deep plasma depletion simultaneously detected with GPS, GNU Radio Beacon Receiver (GRBR) and in situ satellite measurement from DMFPF15. The event is on March 7, 2012 at 4:30 LT with geomagnetic quiet condition. Such a sharp depletion at plasma bubble wall detected at predawn is interesting but apparently rare event. Only one event is found from all dataset in March 2012. The inside structure of the predawn plasma bubble was clearly captured by DMSPF15 and the ground-based GRBR. The envelop structure seen from the precessed GPS-TEC appeares as a cluster. The observed cluster is concluded as the structure at the westwall of an upwelling of the large-scale wave structure, that accompanies the fifty- and thousand-km scales. This event is consistent with the plasma bubble structure simulated from the high-resolution bubble (HIRB) model.

  5. Edge of polar cap patches

    NASA Astrophysics Data System (ADS)

    Hosokawa, K.; Taguchi, S.; Ogawa, Y.

    2016-04-01

    On the night of 4 December 2013, a sequence of polar cap patches was captured by an all-sky airglow imager (ASI) in Longyearbyen, Norway (78.1°N, 15.5°E). The 630.0 nm airglow images from the ASI of 4 second exposure time, oversampled the emission of natural lifetime (with quenching) of at least ˜30 sec, introduce no observational blurring effects. By using such high-quality ASI images, we succeeded in visualizing an asymmetry in the gradients between the leading/trailing edges of the patches in a 2-D fashion. The gradient in the leading edge was found to be 2-3 times steeper than that in the trailing edge. We also identified fingerlike structures, appearing only along the trailing edge of the patches, whose horizontal scale size ranged from 55 to 210 km. These fingers are considered to be manifestations of plasma structuring through the gradient-drift instability (GDI), which is known to occur only along the trailing edge of patches. That is, the current 2-D observations visualized, for the first time, how GDI stirs the patch plasma and such a mixing process makes the trailing edge more gradual. This result strongly implies a close connection between the GDI-driven plasma stirring and the asymmetry in the large-scale shape of patches and then suggests that the fingerlike structures can be used as markers to estimate the fine-scale structure in the plasma flow within patches.

  6. Characteristics of cometary picked-up ions in a global model of Giacobini-Zinner

    NASA Astrophysics Data System (ADS)

    Kimmel, C. D.; Luhmann, J. G.; Phillips, J. L.; Fedder, J. A.

    1987-08-01

    Energetic ions observed during the International Cometary Explorer (ICE) spacecraft flyby of comet Giacobini-Zinner provide information about both the constitution of comets and the plasma physical processes associated with their interaction with the solar wind. In this investigation the details of ion 'pickup,' in the limit where small-scale fluctuations in the plasma and magnetic field are neglected, are modeled by following the motion of a large number of initially cold, heavy (mass 18) ions in a global magnetohydrodynamic model of the local plasma and magnetic field. The results indicate how the background or macroscopic velocity and magnetic field structure of the comet can affect the average spatial and spectral characteristics of the observed cometary ions. These effects, which occur by virtue of forces associated with the compression and the curvature of the magnetic field in the presence of the stagnating plasma flow, can explain the double maxima in the time series of the energetic ion flux observed along the ICE trajectory.

  7. Ultrahigh-order Maxwell solver with extreme scalability for electromagnetic PIC simulations of plasmas

    NASA Astrophysics Data System (ADS)

    Vincenti, Henri; Vay, Jean-Luc

    2018-07-01

    The advent of massively parallel supercomputers, with their distributed-memory technology using many processing units, has favored the development of highly-scalable local low-order solvers at the expense of harder-to-scale global very high-order spectral methods. Indeed, FFT-based methods, which were very popular on shared memory computers, have been largely replaced by finite-difference (FD) methods for the solution of many problems, including plasmas simulations with electromagnetic Particle-In-Cell methods. For some problems, such as the modeling of so-called "plasma mirrors" for the generation of high-energy particles and ultra-short radiations, we have shown that the inaccuracies of standard FD-based PIC methods prevent the modeling on present supercomputers at sufficient accuracy. We demonstrate here that a new method, based on the use of local FFTs, enables ultrahigh-order accuracy with unprecedented scalability, and thus for the first time the accurate modeling of plasma mirrors in 3D.

  8. Characteristics of cometary picked-up ions in a global model of Giacobini-Zinner

    NASA Technical Reports Server (NTRS)

    Kimmel, C. D.; Luhmann, J. G.; Phillips, J. L.; Fedder, J. A.

    1987-01-01

    Energetic ions observed during the International Cometary Explorer (ICE) spacecraft flyby of comet Giacobini-Zinner provide information about both the constitution of comets and the plasma physical processes associated with their interaction with the solar wind. In this investigation the details of ion 'pickup,' in the limit where small-scale fluctuations in the plasma and magnetic field are neglected, are modeled by following the motion of a large number of initially cold, heavy (mass 18) ions in a global magnetohydrodynamic model of the local plasma and magnetic field. The results indicate how the background or macroscopic velocity and magnetic field structure of the comet can affect the average spatial and spectral characteristics of the observed cometary ions. These effects, which occur by virtue of forces associated with the compression and the curvature of the magnetic field in the presence of the stagnating plasma flow, can explain the double maxima in the time series of the energetic ion flux observed along the ICE trajectory.

  9. Magnetospheric plasma interactions

    NASA Astrophysics Data System (ADS)

    Faelthammar, Carl-Gunne

    1994-04-01

    The Earth's magnetosphere (including the ionosphere) is our nearest cosmical plasma system and the only one accessible to mankind for extensive empirical study by in situ measurements. As virtually all matter in the universe is in the plasma state, the magnetosphere provides an invaluable sample of cosmical plasma from which we can learn to better understand the behavior of matter in this state, which is so much more complex than that of unionized matter. It is therefore fortunate that the magnetosphere contains a wide range of different plasma populations, which vary in density over more than six powers of ten and even more in equivalent temperature. Still more important is the fact that its dual interaction with the solar wind above and the atmosphere below make the magnetopshere the site of a large number of plasma phenomena that are of fundamental interest in plasma physics as well as in astrophysics and cosmology. The interaction of the rapidly streaming solar wind plasma with the magnetosphere feeds energy and momentum, as well as matter, into the magnetosphere. Injection from the solar wind is a source of plasma populations in the outer magnetosphere, although much less dominating than previously thought. We now know that the Earth's own atmosphere is the ultimate source of much of the plasma in large regions of the magnetosphere. The input of energy and momentum drives large scale convection of magnetospheric plasma and establishes a magnetospheric electric field and large scale electric current systems that car ry millions of ampere between the ionosphere and outer space. These electric fields and currents play a crucial role in generating one of the the most spectacular among natural phenomena, the aurora, as well as magnetic storms that can disturb man-made systems on ground and in orbit. The remarkable capability of accelerating charged particles, which is so typical of cosmical plasmas, is well represented in the magnetosphere, where mechanisms of such acceleration can be studied in detail. In situ measurements in the magnetosphere have revealed an unexpected tendency of cosmical plasmas to form cellular structure, and shown that the magnetospheric plasma sustains previously unexpected, and still not fully explained, chemical separation mechanisms, which are likely to operate in other cosmical plasmas as well.

  10. Development challenges for Low Temperature Plasma Sources ``from Idea to Prototype''

    NASA Astrophysics Data System (ADS)

    Gerling, T.; Baudler, J.-S.; Horn, S.; Schmidt, M.; Weltmann, K.-D.

    2015-09-01

    While plasma medicine is a well-motivated and intensively investigated topic, the requirements on the plasma sources change for individual applications. For example in dermatology, a large scale treatment is favored, while in dentistry, a localized application of plasma sources is required. Meanwhile, plasma source development is based on feasibility and not on the application. When a source is developed, it is usually motivated towards an application instead of considering an application and designing a plasma source to fit its needs. Each approach has its advantage and can lead to an advance in the field. With this contribution, we will present an approach from idea to prototype and show challenges in the plasma source development. For example, the consideration of legal regulations, adaption of the plasma source for a specific field of application and the interplay of gas flow dynamics with electrical field distribution. The solution was developed within several iterations to optimize it for different requirements. The obstacles that occurred during the development process will be highlighted and discussed. Afterwards the final source is characterized for a potential medical application and compared directly with a plasma source certified as a medical product. Acknowledging grants: AU 11 038; ESF/IV-BM-B35-0010/13.

  11. Formation and metrology of dual scale nano-morphology on SF(6) plasma etched silicon surfaces.

    PubMed

    Boulousis, G; Constantoudis, V; Kokkoris, G; Gogolides, E

    2008-06-25

    Surface roughness and nano-morphology in SF(6) plasma etched silicon substrates are investigated in a helicon type plasma reactor as a function of etching time and process parameters. The plasma etched surfaces are analyzed by atomic force microscopy. It is found that dual scale nano-roughness is formatted on the silicon surface comprising an underlying nano-roughness and superimposed nano-mounds. Detailed metrological quantification is proposed for the characterization of dual scale surface morphology. As etching proceeds, the mounds become higher, fewer and wider, and the underlying nano-roughness also increases. Increase in wafer temperature leads to smoother surfaces with lower, fewer and wider nano-mounds. A mechanism based on the deposition of etch inhibiting particles during the etching process is proposed for the explanation of the experimental behavior. In addition, appropriately designed experiments are conducted, and they confirm the presence of this mechanism.

  12. Anticipated Electrical Environment Within Permanently Shadowed Lunar Craters

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Stubbs, T. J.; Halekas, J. S.; Killen, R. M.; Delory, G. T.; Collier, M. R.; Vondrak, R. R.

    2010-01-01

    Shadowed locations ncar the lunar poles arc almost certainly electrically complex regions. At these locations near the terminator, the local solar wind flows nearly tangential to the surface and interacts with large-scale topographic features such as mountains and deep large craters, In this work, we study the solar wind orographic effects from topographic obstructions along a rough lunar surface, On the leeward side of large obstructions, plasma voids are formed in the solar wind because of the absorption of plasma on the upstream surface of these obstacles, Solar wind plasma expands into such voids) producing an ambipolar potential that diverts ion flow into the void region. A surface potential is established on these leeward surfaces in order to balance the currents from the expansion-limited electron and ion populations, Wc find that there arc regions ncar the leeward wall of the craters and leeward mountain faces where solar wind ions cannot access the surface, leaving an electron-rich plasma previously identified as an "electron cloud." In this case, some new current is required to complete the closure for current balance at the surface, and we propose herein that lofted negatively charged dust is one possible (nonunique) compensating current source. Given models for both ambipolar and surface plasma processes, we consider the electrical environment around the large topographic features of the south pole (including Shoemaker crater and the highly varied terrain near Nobile crater), as derived from Goldstone radar data, We also apply our model to moving and stationary objects of differing compositions located on the surface and consider the impact of the deflected ion flow on possible hydrogen resources within the craters

  13. Ten Years of ENA Imaging from Cassini

    NASA Astrophysics Data System (ADS)

    Brandt, Pontus; Mitchell, Donald; Westlake, Joseph; Carbary, James; Paranicas, Christopher; Mauk, Barry; Krimigis, Stamatios

    2014-05-01

    In this presentation we will provide a detailed review of the science highlights of the ENA observations obtained by The Ion Neutral Camera (INCA) on board Cassini. Since the launch of Cassini, INCA has unveiled an invisible world of hot plasma and neutral gas of the two biggest objects of our solar system: the giant magnetosphere of Jupiter and Saturn. Although more than ten years ago, INCA captured the first ENA images of the Jovian system revealing magnetospheric dynamics and an asymmetric Europa neutral gas torus. Approaching Saturn, INCA observed variability of Saturn's magnetospheric activity in response to changes in solar wind dynamic pressure, which was contrary to expectations and current theories. In orbit around Saturn, INCA continued the surprises including the first imaging and global characterization of Titan's exosphere extended out to its gravitational Hill sphere; recurring injections correlating with periodic Saturn Kilometric Radiation (SKR) bursts and magnetic field perturbations; and the discovery of energetic ionospheric outflow. Perhaps most significant, and the focal point of this presentation, is INCA's contribution to the understanding of global magnetospheric particle acceleration and transport, where the combination between ENA imaging and in-situ measurements have demonstrated that transport and acceleration of plasma is likely to occur in a two-step process. First, large-scale injections in the post-midnight sector accelerate and transport plasma in to about 12 RS up to energies of several hundreds of keV. Second, centrifugal interchange acts on the plasma inside of this region and provides further heating and transport in to about 6RS. We discuss this finding in the context of the two fundamental types of injections (or ENA intensifications) that INCA has revealed during its ten years of imaging. The first type is large-scale injections appearing beyond 12 RS in the post-midnight sector that have in many cases had an inward component of propagation. The second type is apparently local injections inside of about 12 RS and as far in as 6RS in the pre-midnight sector with a recurrence period around 11h that, interestingly, appear to precede the larges-scale injections.

  14. Full PIC simulations of solar radio emission

    NASA Astrophysics Data System (ADS)

    Sgattoni, A.; Henri, P.; Briand, C.; Amiranoff, F.; Riconda, C.

    2017-12-01

    Solar radio emissions are electromagnetic (EM) waves emitted in the solar wind plasma as a consequence of electron beams accelerated during solar flares or interplanetary shocks such as ICMEs. To describe their origin, a multi-stage model has been proposed in the 60s which considers a succession of non-linear three-wave interaction processes. A good understanding of the process would allow to infer the kinetic energy transfered from the electron beam to EM waves, so that the radio waves recorded by spacecraft can be used as a diagnostic for the electron beam.Even if the electrostatic problem has been extensively studied, full electromagnetic simulations were attempted only recently. Our large scale 2D-3V electromagnetic PIC simulations allow to identify the generation of both electrostatic and EM waves originated by the succession of plasma instabilities. We tested several configurations varying the electron beam density and velocity considering a background plasma of uniform density. For all the tested configurations approximately 105 of the electron-beam kinetic energy is transfered into EM waves emitted in all direction nearly isotropically. With this work we aim to design experiments of laboratory astrophysics to reproduce the electromagnetic emission process and test its efficiency.

  15. Spatial Transport of Magnetic Flux Surfaces in Strongly Anisotropic Turbulence

    NASA Astrophysics Data System (ADS)

    Matthaeus, W. H.; Servidio, S.; Wan, M.; Ruffolo, D. J.; Rappazzo, A. F.; Oughton, S.

    2013-12-01

    Magnetic flux surfaces afford familiar descriptions of spatial structure, dynamics, and connectivity of magnetic fields, with particular relevance in contexts such as solar coronal flux tubes, magnetic field connectivity in the interplanetary and interstellar medium, as well as in laboratory plasmas and dynamo problems [1-4]. Typical models assume that field-lines are orderly, and flux tubes remain identifiable over macroscopic distances; however, a previous study has shown that flux tubes shred in the presence of fluctuations, typically losing identity after several correlation scales [5]. Here, the structure of magnetic flux surfaces is numerically investigated in a reduced magnetohydrodynamic (RMHD) model of homogeneous turbulence. Short and long-wavelength behavior is studied statistically by propagating magnetic surfaces along the mean field. At small scales magnetic surfaces become complex, experiencing an exponential thinning. At large scales, instead, the magnetic flux undergoes a diffusive behavior. The link between the diffusion of the coarse-grained flux and field-line random walk is established by means of a multiple scale analysis. Both large and small scales limits are controlled by the Kubo number. These results have consequences for understanding and interpreting processes such as magnetic reconnection and field-line diffusion in plasmas [6]. [1] E. N. Parker, Cosmical Magnetic Fields (Oxford Univ. Press, New York, 1979). [2] J. R. Jokipii and E. N. Parker, Phys. Rev. Lett. 21, 44 (1968). [3] R. Bruno et al., Planet. Space Sci. 49, 1201 (2001). [4] M. N. Rosenbluth et al., Nuclear Fusion 6, 297 (1966). [5] W. H. Matthaeus et al., Phys. Rev. Lett. 75, 2136 (1995). [6] S. Servidio et al., submitted (2013).

  16. Rapid plasma quenching for the production of ultrafine metal and ceramic powders

    NASA Astrophysics Data System (ADS)

    Donaldson, Alan; Cordes, Ronald A.

    2005-04-01

    The rapid plasma quench concept used to produce ultrafine titanium hydride, magnesium, and aluminum powders involves the thermal dissociation of liquid reactants into gaseous components followed by rapid quenching of the products of the subject reaction to prevent back reactions. For example, in the case of titanium hydride powder production, titanium tetrachloride dissociates into titanium and chlorine atoms at 5,000 K. Expansion through a Delaval nozzle accelerates the gas to supersonic speed, cooling it very rapidly at rates as high as 710 K/s. Injected hydrogen reacts with condensed titanium particles to form titanium hydride and with the chlorine to form hydrogen chloride. Titanium powder has been produced at 20 kg/h in a continuous reactor. Costs are projected to be lower than the Kroll process at a sufficiently large scale. Magnesium and aluminum production based upon the rapid plasma quench concept are also discussed.

  17. Images of Bottomside Irregularities Observed at Topside Altitudes

    NASA Technical Reports Server (NTRS)

    Burke, William J.; Gentile, Louise C.; Shomo, Shannon R.; Roddy, Patrick A.; Pfaff, Robert F.

    2012-01-01

    We analyzed plasma and field measurements acquired by the Communication/ Navigation Outage Forecasting System (C/NOFS) satellite during an eight-hour period on 13-14 January 2010 when strong to moderate 250 MHz scintillation activity was observed at nearby Scintillation Network Decision Aid (SCINDA) ground stations. C/NOFS consistently detected relatively small-scale density and electric field irregularities embedded within large-scale (approx 100 km) structures at topside altitudes. Significant spectral power measured at the Fresnel (approx 1 km) scale size suggests that C/NOFS was magnetically conjugate to bottomside irregularities similar to those directly responsible for the observed scintillations. Simultaneous ion drift and plasma density measurements indicate three distinct types of large-scale irregularities: (1) upward moving depletions, (2) downward moving depletions, and (3) upward moving density enhancements. The first type has the characteristics of equatorial plasma bubbles; the second and third do not. The data suggest that both downward moving depletions and upward moving density enhancements and the embedded small-scale irregularities may be regarded as Alfvenic images of bottomside irregularities. This interpretation is consistent with predictions of previously reported theoretical modeling and with satellite observations of upward-directed Poynting flux in the low-latitude ionosphere.

  18. On Spatial Structuring of the F2 Layer Studied by the Satellite Radio Sounding of the Ionosphere Disturbed by High-Power HF Radio Waves

    NASA Astrophysics Data System (ADS)

    Tereshchenko, E. D.; Turyansky, V. A.; Khudukon, B. Z.; Yurik, R. Yu.; Frolov, V. L.

    2018-01-01

    We present the results of studying the characteristics of the artificial plasma structures excited in the ionospheric F2 region modified by high-power HF radio waves. The experiments were carried out at the Sura heating facility using satellite radio sounding of the ionosphere. The plasma density profile was reconstructed with the highest possible spatial resolution for today, about 4 km. In a direction close to the magnetic zenith of the pump wave, the following phenomena were observed: the formation of a cavity with a 15% lower plasma density at the altitudes of the F2 layer and below; the formation of an area with plasma density increased by 12% at altitudes greater than 400 km. With a long-term quasiperiodic impact of the pump wave on the ionosphere, wavy large-scale electron-density perturbations (the meridional scale λx ≈ 130 km and the vertical scale λz ≈ 440 km) are also formed above the Sura facility. These perturbations can be due to the plasma density modulation by an artificial acoustic-gravity wave with a period of 10.6 m, which was formed by the heat source inside a large-scale cavity with low plasma density; there is generation of the electron density irregularities for the electrons with ΔNe/Ne ≈ 3% in the form of layers having the sizes 10-12 km along and about 24 km across the geomagnetic field, which are found both below and above the F2-layer maximum. The mechanisms of the formation of these plasma structures are discussed.

  19. Channeling of multikilojoule high-intensity laser beams in an inhomogeneous plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivancic, S.; Haberberger, D.; Habara, H.

    Channeling experiments were performed that demonstrate the transport of high-intensity (>10¹⁸ W/cm²), multikilojoule laser light through a millimeter-sized, inhomogeneous (~300-μm density scale length) laser produced plasma up to overcritical density, which is an important step forward for the fast-ignition concept. The background plasma density and the density depression inside the channel were characterized with a novel optical probe system. The channel progression velocity was measured, which agrees well with theoretical predictions based on large scale particle-in-cell simulations, confirming scaling laws for the required channeling laser energy and laser pulse duration, which are important parameters for future integrated fast-ignition channeling experiments.

  20. The National Shipbuilding Research Program: Solid Waste Segregation and Recycling

    DTIC Science & Technology

    1998-03-01

    Shields , Recycling Coordinator D.C. Department of Public Works 65 K Street, NE Washington, DC 20002 202-727-5887 Task Three, Tab Three Page 42 George...SHEAR X FRONT END LOADERS = CONVEYORS X FORKLIFTS O WEIGHT SCALES X PROCESSING DROP-BALL BREAKAGE X CUTTING TORCHES GAS = PLASMA = POWDER = WATER-JET...Loaders Conveyors Forklifts Weight Scales Processing Drop-ball Breakage Cutting Torches Gas Plasma Powder Laser Water-jet Abrasive disk Shears Ferrous

  1. Multi-cathode unbalanced magnetron sputtering systems

    NASA Technical Reports Server (NTRS)

    Sproul, William D.

    1991-01-01

    Ion bombardment of a growing film during deposition is necessary in many instances to ensure a fully dense coating, particularly for hard coatings. Until the recent advent of unbalanced magnetron (UBM) cathodes, reactive sputtering had not been able to achieve the same degree of ion bombardment as other physical vapor deposition processes. The amount of ion bombardment of the substrate depends on the plasma density at the substrate, and in a UBM system the amount of bombardment will depend on the degree of unbalance of the cathode. In multi-cathode systems, the magnetic fields between the cathodes must be linked to confine the fast electrons that collide with the gas atoms. Any break in this linkage results in electrons being lost and a low plasma density. Modeling of the magnetic fields in a UBM cathode using a finite element analysis program has provided great insight into the interaction between the magnetic fields in multi-cathode systems. Large multi-cathode systems will require very strong magnets or many cathodes in order to maintain the magnetic field strength needed to achieve a high plasma density. Electromagnets offer the possibility of independent control of the plasma density. Such a system would be a large-scale version of an ion beam enhanced deposition (IBED) system, but, for the UBM system where the plasma would completely surround the substrate, the acronym IBED might now stand for Ion Blanket Enhanced Deposition.

  2. Penetration of Large Scale Electric Field to Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Chen, S. H.; Fok, M. C. H.; Sibeck, D. G.; Wygant, J. R.; Spence, H. E.; Larsen, B.; Reeves, G. D.; Funsten, H. O.

    2015-12-01

    The direct penetration of large scale global electric field to the inner magnetosphere is a critical element in controlling how the background thermal plasma populates within the radiation belts. These plasma populations provide the source of particles and free energy needed for the generation and growth of various plasma waves that, at critical points of resonances in time and phase space, can scatter or energize radiation belt particles to regulate the flux level of the relativistic electrons in the system. At high geomagnetic activity levels, the distribution of large scale electric fields serves as an important indicator of how prevalence of strong wave-particle interactions extend over local times and radial distances. To understand the complex relationship between the global electric fields and thermal plasmas, particularly due to the ionospheric dynamo and the magnetospheric convection effects, and their relations to the geomagnetic activities, we analyze the electric field and cold plasma measurements from Van Allen Probes over more than two years period and simulate a geomagnetic storm event using Coupled Inner Magnetosphere-Ionosphere Model (CIMI). Our statistical analysis of the measurements from Van Allan Probes and CIMI simulations of the March 17, 2013 storm event indicate that: (1) Global dawn-dusk electric field can penetrate the inner magnetosphere inside the inner belt below L~2. (2) Stronger convections occurred in the dusk and midnight sectors than those in the noon and dawn sectors. (3) Strong convections at multiple locations exist at all activity levels but more complex at higher activity levels. (4) At the high activity levels, strongest convections occur in the midnight sectors at larger distances from the Earth and in the dusk sector at closer distances. (5) Two plasma populations of distinct ion temperature isotropies divided at L-Shell ~2, indicating distinct heating mechanisms between inner and outer radiation belts. (6) CIMI simulations reveal alternating penetration and shielding electric fields during the main phase of the geomagnetic storm, indicating an impulsive nature of the large scale penetrating electric field in regulating the gain and loss of radiation belt particles. We will present the statistical analysis and simulations results.

  3. How much does a tokamak reactor cost?

    NASA Astrophysics Data System (ADS)

    Freidberg, J.; Cerfon, A.; Ballinger, S.; Barber, J.; Dogra, A.; McCarthy, W.; Milanese, L.; Mouratidis, T.; Redman, W.; Sandberg, A.; Segal, D.; Simpson, R.; Sorensen, C.; Zhou, M.

    2017-10-01

    The cost of a fusion reactor is of critical importance to its ultimate acceptability as a commercial source of electricity. While there are general rules of thumb for scaling both overnight cost and levelized cost of electricity the corresponding relations are not very accurate or universally agreed upon. We have carried out a series of scaling studies of tokamak reactor costs based on reasonably sophisticated plasma and engineering models. The analysis is largely analytic, requiring only a simple numerical code, thus allowing a very large number of designs. Importantly, the studies are aimed at plasma physicists rather than fusion engineers. The goals are to assess the pros and cons of steady state burning plasma experiments and reactors. One specific set of results discusses the benefits of higher magnetic fields, now possible because of the recent development of high T rare earth superconductors (REBCO); with this goal in mind, we calculate quantitative expressions, including both scaling and multiplicative constants, for cost and major radius as a function of central magnetic field.

  4. Overcoming the bottleneck of platelet lysate supply in large-scale clinical expansion of adipose-derived stem cells: A comparison of fresh versus three types of platelet lysates from outdated buffy coat-derived platelet concentrates.

    PubMed

    Glovinski, Peter V; Herly, Mikkel; Mathiasen, Anders B; Svalgaard, Jesper D; Borup, Rehannah; Talman, Maj-Lis M; Elberg, Jens J; Kølle, Stig-Frederik T; Drzewiecki, Krzysztof T; Fischer-Nielsen, Anne

    2017-02-01

    Platelet lysates (PL) represent a promising replacement for xenogenic growth supplement for adipose-derived stem cell (ASC) expansions. However, fresh platelets from human blood donors are not clinically feasible for large-scale cell expansion based on their limited supply. Therefore, we tested PLs prepared via three methods from outdated buffy coat-derived platelet concentrates (PCs) to establish an efficient and feasible expansion of ASCs for clinical use. PLs were prepared by the freeze-thaw method from freshly drawn platelets or from outdated buffy coat-derived PCs stored in the platelet additive solution, InterSol. Three types of PLs were prepared from outdated PCs with platelets suspended in either (1) InterSol (not manipulated), (2) InterSol + supplemented with plasma or (3) plasma alone (InterSol removed). Using these PLs, we compared ASC population doubling time, cell yield, differentiation potential and cell surface markers. Gene expression profiles were analyzed using microarray assays, and growth factor concentrations in the cell culture medium were measured using enzyme-linked immunosorbent assay (ELISA). Of the three PL compositions produced from outdated PCs, removal of Intersol and resuspension in plasma prior to the first freezing process was overall the best. This specific outdated PL induced ASC growth kinetics, surface markers, plastic adherence and differentiation potentials comparable with PL from fresh platelets. ASCs expanded in PL from fresh versus outdated PCs exhibited different expressions of 17 overlapping genes, of which 10 were involved in cellular proliferation, although not significantly reflected by cell growth. Only minor differences in growth factor turnover were observed. PLs from outdated platelets may be an efficient and reliable source of human growth supplement allowing for large-scale ASC expansion for clinical use. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  5. Computational Modeling in Plasma Processing for 300 mm Wafers

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    Migration toward 300 mm wafer size has been initiated recently due to process economics and to meet future demands for integrated circuits. A major issue facing the semiconductor community at this juncture is development of suitable processing equipment, for example, plasma processing reactors that can accomodate 300 mm wafers. In this Invited Talk, scaling of reactors will be discussed with the aid of computational fluid dynamics results. We have undertaken reactor simulations using CFD with reactor geometry, pressure, and precursor flow rates as parameters in a systematic investigation. These simulations provide guidelines for scaling up in reactor design.

  6. Rate of radial transport of plasma in Saturn’s inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Hill, T. W.

    2009-12-01

    The Cassini Plasma Spectrometer (CAPS) and the Cassini Magnetospheric Imaging Instrument (MIMI) frequently observe longitudinally localized injection and drift dispersion of hot plasma in Saturn’s magnetosphere. These signatures provide direct evidence for the major convective process in the inner magnetosphere of a rapidly rotating planet, in which the radial transport of plasma comprises hot, tenuous plasma moving inward and cooler, denser plasma moving outward. These injection events have been found to occupy only a small fraction of the total available longitudinal space, indicating that the inflow speed is probably much larger than the outflow speed. We set the local corotation speed as the upper limit of inflow velocities, and deduce the corresponding radial velocities of the outflowing flux tubes by analyzing the width of injection structures and assuming that the total potential drop around a given L-shell is zero. We then estimate an upper limit to the plasma outward mass transport rate, which turns out to be somewhat larger than previous estimates of the Enceladus source rate (e.g., Pontius and Hill, 2006). An important assumption in this study is that the plasma is largely confined to a thin equatorial sheet, and we have applied a centrifugal scale height model developed by Hill and Michel [1976].

  7. Investigation of the role of plasma wave cascading processes in the formation of midlatitude irregularities utilizing GPS and radar observations

    NASA Astrophysics Data System (ADS)

    Eltrass, A.; Scales, W. A.; Erickson, P. J.; Ruohoniemi, J. M.; Baker, J. B. H.

    2016-06-01

    Recent studies reveal that midlatitude ionospheric irregularities are less understood due to lack of models and observations that can explain the characteristics of the observed wave structures. In this paper, the cascading processes of both the temperature gradient instability (TGI) and the gradient drift instability (GDI) are investigated as the cause of these irregularities. Based on observations obtained during a coordinated experiment between the Millstone Hill incoherent scatter radar and the Blackstone Super Dual Auroral Radar Network radar, a time series for the growth rate of both TGI and GDI is calculated for observations in the subauroral ionosphere under both quiet and disturbed geomagnetic conditions. Recorded GPS scintillation data are analyzed to monitor the amplitude scintillations and to obtain the spectral characteristics of irregularities producing ionospheric scintillations. Spatial power spectra of the density fluctuations associated with the TGI from nonlinear plasma simulations are compared with both the GPS scintillation spectral characteristics and previous in situ satellite spectral measurements. The spectral comparisons suggest that initially, TGI or/and GDI irregularities are generated at large-scale size (kilometer scale), and the dissipation of the energy associated with these irregularities occurs by generating smaller and smaller (decameter scale) irregularities. The alignment between experimental, theoretical, and computational results of this study suggests that in spite of expectations from linear growth rate calculations, cascading processes involving TGI and GDI are likely responsible for the midlatitude ionospheric irregularities associated with GPS scintillations during disturbed times.

  8. Benchmarking sheath subgrid boundary conditions for macroscopic-scale simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, T. G.; Smithe, D. N.

    2015-02-01

    The formation of sheaths near metallic or dielectric-coated wall materials in contact with a plasma is ubiquitous, often giving rise to physical phenomena (sputtering, secondary electron emission, etc) which influence plasma properties and dynamics both near and far from the material interface. In this paper, we use first-principles PIC simulations of such interfaces to formulate a subgrid sheath boundary condition which encapsulates fundamental aspects of the sheath behavior at the interface. Such a boundary condition, based on the capacitive behavior of the sheath, is shown to be useful in fluid simulations wherein sheath scale lengths are substantially smaller than scale lengths for other relevant physical processes (e.g. radiofrequency wavelengths), in that it enables kinetic processes associated with the presence of the sheath to be numerically modeled without explicit resolution of spatial and temporal sheath scales such as electron Debye length or plasma frequency.

  9. Suppression of Phase Mixing in Drift-Kinetic Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Parker, J. T.; Dellar, P. J.; Schekochihin, A. A.; Highcock, E. G.

    2017-12-01

    The solar wind and interstellar medium are examples of strongly magnetised, weakly collisional, astrophysical plasmas. Their turbulent fluctuations are strongly anisotropic, with small amplitudes, and frequencies much lower than the Larmor frequency. This regime is described by gyrokinetic theory, a reduced five-dimensional kinetic system describing averages over Larmor orbits. A turbulent plasma may transfer free energy, a measure of fluctuation amplitudes, from injection at large scales, typically by an instability, to dissipation at small physical scales like a turbulent fluid. Alternatively, a turbulent plasma may form fine scale structures in velocity space via phase-mixing, the mechanism that leads to Landau damping in linear plasma theory. Macroscopic plasma properties like heat and momentum transport are affected by both mechanisms. While each is understood in isolation, their interaction is not. We study this interaction using a Hankel-Hermite velocity space representation of gyrokinetic theory. The Hankel transform interacts neatly with the Bessel functions that arise from averaging over Larmor orbits, so the perpendicular velocity space is decoupled for linearized problems. The Hermite transform expresses phase mixing as nearest-neighbor coupling between parallel velocity space scales represented by Hermite mode numbers. We use this representation to study transfer mechanisms in drift-kinetic plasma turbulence, the long wavelength limit of gyrokinetic theory. We show that phase space is divided into two regions, with one transfer mechanism dominating in each. Most energy is contained in the region where the fluid-like nonlinear cascade dominates. Moreover, in that region the nonlinear cascade interferes with phase mixing by exciting an "anti phase mixing" transfer of free energy from small to large velocity space scales. This cancels out the usual phase mixing, and renders the overall behavior fluid-like. These results profoundly change our understanding of free energy flow in drift-kinetic turbulence, and, moreover, explain previously observed spectra.

  10. A modeling analysis program for the JPL table mountain Io sodium cloud data

    NASA Technical Reports Server (NTRS)

    Smyth, William H.; Goldberg, Bruce A.

    1988-01-01

    Research in the third and final year of this project is divided into three main areas: (1) completion of data processing and calibration for 34 of the 1981 Region B/C images, selected from the massive JPL sodium cloud data set; (2) identification and examination of the basic features and observed changes in the morphological characteristics of the sodium cloud images; and (3) successful physical interpretation of these basic features and observed changes using the highly developed numerical sodium cloud model at AER. The modeling analysis has led to a number of definite conclusions regarding the local structure of Io's atmosphere, the gas escape mechanism at Io, and the presence of an east-west electric field and a System III longitudinal asymmetry in the plasma torus. Large scale stability, as well as some smaller scale time variability for both the sodium cloud and the structure of the plasma torus over a several year time period are also discussed.

  11. Wave generation by contaminant ions near a large spacecraft

    NASA Technical Reports Server (NTRS)

    Singh, N.

    1993-01-01

    Measurements from the space shuttle flights have revealed that a large spacecraft in a low earth orbit is accompanied by an extensive gas cloud which is primarily made up of water. The charge exchange between the water molecule and the ionospheric O(+) ions produces a water ion beam traversing downstream of the spacecraft. In this report we present results from a study on the generation of plasma waves by the interaction of the water ion beams with the ionospheric plasma. Since velocity distribution function is key to the understanding of the wave generation process, we have performed a test particle simulation to determine the nature of H2O(+) ions velocity distribution function. The simulations show that at the time scales shorter than the ion cyclotron period tau(sub c), the distribution function can be described by a beam. On the other hand, when the time scales are larger than tau(sub c), a ring distribution forms. A brief description of the linear instabilities driven by an ion beam streaming across a magnetic field in a plasma is presented. We have identified two types of instabilities occurring in low and high frequency bands; the low-frequency instability occurs over the frequency band from zero to about the lower hybrid frequency for a sufficiently low beam density. As the beam density increases, the linear instability occurs at decreasing frequencies below the lower-hybrid frequency. The high frequency instability occurs near the electron cyclotron frequency and its harmonics.

  12. Large-scale photospheric motions determined from granule tracking and helioseismology from SDO/HMI data

    NASA Astrophysics Data System (ADS)

    Roudier, Th.; Švanda, M.; Ballot, J.; Malherbe, J. M.; Rieutord, M.

    2018-04-01

    Context. Large-scale flows in the Sun play an important role in the dynamo process linked to the solar cycle. The important large-scale flows are the differential rotation and the meridional circulation with an amplitude of km s-1 and few m s-1, respectively. These flows also have a cycle-related components, namely the torsional oscillations. Aim. Our attempt is to determine large-scale plasma flows on the solar surface by deriving horizontal flow velocities using the techniques of solar granule tracking, dopplergrams, and time-distance helioseismology. Methods: Coherent structure tracking (CST) and time-distance helioseismology were used to investigate the solar differential rotation and meridional circulation at the solar surface on a 30-day HMI/SDO sequence. The influence of a large sunspot on these large-scale flows with a specific 7-day HMI/SDO sequence has been also studied. Results: The large-scale flows measured by the CST on the solar surface and the same flow determined from the same data with the helioseismology in the first 1 Mm below the surface are in good agreement in amplitude and direction. The torsional waves are also located at the same latitudes with amplitude of the same order. We are able to measure the meridional circulation correctly using the CST method with only 3 days of data and after averaging between ± 15° in longitude. Conclusions: We conclude that the combination of CST and Doppler velocities allows us to detect properly the differential solar rotation and also smaller amplitude flows such as the meridional circulation and torsional waves. The results of our methods are in good agreement with helioseismic measurements.

  13. The use of plasma technology for the treatment of noxious waste

    NASA Astrophysics Data System (ADS)

    Wilman, Jonathan James

    This thesis begins by describing the common types of air pollution and the main effects of these pollutants. Natural and man-made sources are discussed as well as the current types of technology used for reduction of common pollutants. The use of atmospheric pressure non-thermal plasma reactors for the control of pollutants is introduced at this stage. The second chapter describes the different types of atmospheric pressure non-thermal reactor designs and their modes of operation. The fundamental processes behind the production of plasmas are discussed and the chemistry of some simple discharges is also presented. The third chapter begins the experimental and modelling work done at Manchester on the destruction of volatile organic compounds (VOCs) using packed bed reactors and pulsed corona reactors. This chapter is concerned with the destruction of toluene and its behaviour as the oxygen content of the carrier gas, flowing through the reactor, is changed. Work using a pulsed corona reactor is also presented showing the destruction of toluene as a function of the applied specific energy. A model is constructed using mainly atmospheric reactions and the predictions are compared with experimental values. The fourth chapter discusses the destruction of dichloromethane (DCM) as a function of the oxygen content of the carrier gas. A model is constructed, again from mainly atmospheric reactions, and the predictions compared with the experimental data obtained. Methane is chosen as a molecule to study in the fifth chapter. A model is constructed and compared with experimental findings, showing that the chemistry of non-thermal plasmas can be effectively represented using neutral gas phase chemistry. Finally chapter six is concerned with the use of a large scale pulsed corona system for the reduction of NO[x] in industrial flue gas. This system has been tested on a modem incinerator, showing encouraging results. The workings of a modem incinerator are described together with those of the corona facility and any instruments used in these tests. Some experimental results are discussed. The aim of this chapter is to show that plasma reactors can be scaled up for industrial use. This section also discusses the difficulty of analysing and working with industrial gases and large scale apparatus as opposed to laboratory scale experiments.

  14. Research Activities at Plasma Research Laboratory at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Sharma, S. P.; Rao, M. V. V. S.; Meyyappan, Meyya

    2000-01-01

    In order to meet NASA's requirements for the rapid development and validation of future generation electronic devices as well as associated materials and processes, enabling technologies are being developed at NASA-Ames Research Center using a multi-discipline approach. The first step is to understand the basic physics of the chemical reactions in the area of plasma reactors and processes. Low pressure glow discharges are indispensable in the fabrication of microelectronic circuits. These plasmas are used to deposit materials and also etch fine features in device fabrication. However, many plasma-based processes suffer from stability and reliability problems leading to a compromise in performance and a potentially increased cost for the semiconductor manufacturing industry. Although a great deal of laboratory-scale research has been performed on many of these processing plasmas, little is known about the gas-phase and surface chemical reactions that are critical in many etch and deposition processes, and how these reactions are influenced by the variation in operating conditions. Such a lack of understanding has hindered the development of process models that can aid in the scaling and improvement of plasma etch and deposition systems. Our present research involves the study of such plasmas. An inductively-coupled plasma (ICP) source in place of the standard upper electrode assembly of the Gaseous Electronics Conference (GEC) radio-frequency (RF) Reference Cell is used to investigate the discharge characteristics. This ICP source generates plasmas with higher electron densities and lower operating pressures than obtainable with the original parallel-plate version of the GEC Cell. This expanded operating regime is more relevant to new generations of industrial plasma systems being used by the microelectronics industry. The research goal is to develop an understanding of the physical phenomena involved in plasma processing and to measure much needed fundamental parameters, such as gas phase and surface reaction rates, species concentration, temperature, ion energy distribution, and electron number density.

  15. Coronal and Prominence Plasmas

    NASA Technical Reports Server (NTRS)

    Poland, Arthur I. (Editor)

    1986-01-01

    Various aspects of solar prominences and the solar corona are discussed. The formation of prominences, prominence diagnostics and structure, prominence dissappearance, large scale coronal structure, coronal diagnostics, small scale coronal structure, and non-equilibrium/coronal heating are among the topics covered.

  16. Electrically driving large magnetic Reynolds number flows on the Madison plasma dynamo experiment

    NASA Astrophysics Data System (ADS)

    Weisberg, David; Wallace, John; Peterson, Ethan; Endrezzi, Douglass; Forest, Cary B.; Desangles, Victor

    2015-11-01

    Electrically-driven plasma flows, predicted to excite a large-scale dynamo instability, have been generated in the Madison plasma dynamo experiment (MPDX), at the Wisconsin Plasma Astrophysics Laboratory. Numerical simulations show that certain topologies of these simply-connected flows may be optimal for creating a plasma dynamo and predict critical thresholds as low as Rmcrit =μ0 σLV = 250 . MPDX plasmas are shown to exceed this critical Rm , generating large (L = 1 . 4 m), warm (Te > 10 eV), unmagnetized (MA > 1) plasmas where Rm < 600 . Plasma flow is driven using ten thermally emissive LaB6 cathodes which generate a J × B torque in Helium plasmas. Detailed Mach probe measurements of plasma velocity for two flow topologies will be presented: edge-localized drive using the multi-cusp boundary field, and volumetric drive using an axial Helmholtz field. Radial velocity profiles show that edge-driven flow is established via ion viscosity but is limited by a volumetric neutral drag force (χ ~ 1 / (ντin)), and measurements of velocity shear compare favorably to Braginskii transport theory. Volumetric flow drive is shown to produce stronger velocity shear, and is characterized by the radial potential gradient as determined by global charge balance.

  17. LARGE-SCALE CONTRACTION AND SUBSEQUENT DISRUPTION OF CORONAL LOOPS DURING VARIOUS PHASES OF THE M6.2 FLARE ASSOCIATED WITH THE CONFINED FLUX ROPE ERUPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kushwaha, Upendra; Joshi, Bhuwan; Moon, Yong-Jae

    We investigate evolutionary phases of an M6.2 flare and the associated confined eruption of a prominence. The pre-flare phase exhibits spectacular large-scale contraction of overlying extreme ultraviolet (EUV) coronal loops during which the loop system was subjected to an altitude decrease of ∼20 Mm (40% of the initial height) for an extended span of ∼30 minutes. This contraction phase is accompanied by sequential EUV brightenings associated with hard X-ray (HXR; up to 25 keV) and microwave (MW) sources from low-lying loops in the core region which together with X-ray spectra indicate strong localized heating in the source region before themore » filament activation. With the onset of the flare’s impulsive phase, we detect HXR and MW sources that exhibit intricate temporal and spatial evolution in relation to the fast rise of the prominence. Following the flare maximum, the filament eruption slowed down and subsequently became confined within the large overlying active region loops. During the confinement process of the erupting prominence, we detect MW emission from the extended coronal region with multiple emission centroids, which likely represent emission from hot blobs of plasma formed after the collapse of the expanding flux rope and entailing prominence material. RHESSI spectroscopy reveals high plasma temperature (∼30 MK) and substantial non-thermal characteristics (δ ∼ 5) during the impulsive phase of the flare. The time evolution of thermal energy exhibits a good correspondence with the variations in cumulative non-thermal energy, which suggests that the energy of accelerated particles is efficiently converted to hot flare plasma, implying an effective validation of the Neupert effect.« less

  18. Data integration in physiology using Bayes’ rule and minimum Bayes’ factors: deubiquitylating enzymes in the renal collecting duct

    PubMed Central

    Xue, Zhe; Chen, Jia-Xu; Zhao, Yue; Medvar, Barbara

    2017-01-01

    A major challenge in physiology is to exploit the many large-scale data sets available from “-omic” studies to seek answers to key physiological questions. In previous studies, Bayes’ theorem has been used for this purpose. This approach requires a means to map continuously distributed experimental data to probabilities (likelihood values) to derive posterior probabilities from the combination of prior probabilities and new data. Here, we introduce the use of minimum Bayes’ factors for this purpose and illustrate the approach by addressing a physiological question, “Which deubiquitylating enzymes (DUBs) encoded by mammalian genomes are most likely to regulate plasma membrane transport processes in renal cortical collecting duct principal cells?” To do this, we have created a comprehensive online database of 110 DUBs present in the mammalian genome (https://hpcwebapps.cit.nih.gov/ESBL/Database/DUBs/). We used Bayes’ theorem to integrate available information from large-scale data sets derived from proteomic and transcriptomic studies of renal collecting duct cells to rank the 110 known DUBs with regard to likelihood of interacting with and regulating transport processes. The top-ranked DUBs were OTUB1, USP14, PSMD7, PSMD14, USP7, USP9X, OTUD4, USP10, and UCHL5. Among these USP7, USP9X, OTUD4, and USP10 are known to be involved in endosomal trafficking and have potential roles in endosomal recycling of plasma membrane proteins in the mammalian cortical collecting duct. PMID:28039431

  19. Data integration in physiology using Bayes' rule and minimum Bayes' factors: deubiquitylating enzymes in the renal collecting duct.

    PubMed

    Xue, Zhe; Chen, Jia-Xu; Zhao, Yue; Medvar, Barbara; Knepper, Mark A

    2017-03-01

    A major challenge in physiology is to exploit the many large-scale data sets available from "-omic" studies to seek answers to key physiological questions. In previous studies, Bayes' theorem has been used for this purpose. This approach requires a means to map continuously distributed experimental data to probabilities (likelihood values) to derive posterior probabilities from the combination of prior probabilities and new data. Here, we introduce the use of minimum Bayes' factors for this purpose and illustrate the approach by addressing a physiological question, "Which deubiquitylating enzymes (DUBs) encoded by mammalian genomes are most likely to regulate plasma membrane transport processes in renal cortical collecting duct principal cells?" To do this, we have created a comprehensive online database of 110 DUBs present in the mammalian genome (https://hpcwebapps.cit.nih.gov/ESBL/Database/DUBs/). We used Bayes' theorem to integrate available information from large-scale data sets derived from proteomic and transcriptomic studies of renal collecting duct cells to rank the 110 known DUBs with regard to likelihood of interacting with and regulating transport processes. The top-ranked DUBs were OTUB1, USP14, PSMD7, PSMD14, USP7, USP9X, OTUD4, USP10, and UCHL5. Among these USP7, USP9X, OTUD4, and USP10 are known to be involved in endosomal trafficking and have potential roles in endosomal recycling of plasma membrane proteins in the mammalian cortical collecting duct. Copyright © 2017 the American Physiological Society.

  20. 3-D plasma boundary and plasma wall interaction research at UW-Madison

    NASA Astrophysics Data System (ADS)

    Schmitz, Oliver; Akerson, Adrian; Bader, Aaron; Barbui, Tullio; Effenberg, Florian; Flesch, Kurt; Frerichs, Heinke; Green, Jonathan; Hinson, Edward; Kremeyer, Thierry; Norval, Ryan; Stephey, Laurie; Waters, Ian; Winters, Victoria

    2016-10-01

    The necessity of considering 3-D effects on the plasma boundary and plasma wall interaction (PWI) in tokamaks, stellarators and reversed field pinches has been highlighted by abundant experimental and numerical results in the recent past. Prominent examples with 3-D boundary situations are numerous: ELM controlled H-modes by RMP fields in tokamaks, research on boundary plasmas and PWI in stellarators in general, quasi-helical states in RFPs, asymmetric fueling situations, and structural and wall elements which are not aligned with the magnetic guiding fields. A systematic approach is being taken at UW-Madison to establish a targeted experimental basis for identifying the most significant effects for plasma edge transport and resulting PWI in such 3-D plasma boundary situations. We deploy advanced 3-D modeling using the EMC3-EIRENE, ERO and MCI codes in combination with laboratory experiments at UW-Madison to investigate the relevance of 3-D effects in large scale devices with a concerted approach on DIII-D, NSTX-U, and Wendelstein 7-X. Highlights of experimental results from the on-site laboratory activities at UW-Madison and the large scale facilities are presented and interlinks will be discussed. This work was supported by US DOE DE-SC0013911, DE-SC00012315 and DE-SC00014210.

  1. Anomalous Ion Heating, Intrinsic and Induced Rotation in the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Redd, A. J.; Thome, K. E.

    2014-10-01

    Pegasus plasmas are initiated through either standard, MHD stable, inductive current drive or non-solenoidal local helicity injection (LHI) current drive with strong reconnection activity, providing a rich environment to study ion dynamics. During LHI discharges, a large amount of anomalous impurity ion heating has been observed, with Ti ~ 800 eV but Te < 100 eV. The ion heating is hypothesized to be a result of large-scale magnetic reconnection activity, as the amount of heating scales with increasing fluctuation amplitude of the dominant, edge localized, n = 1 MHD mode. Chordal Ti spatial profiles indicate centrally peaked temperatures, suggesting a region of good confinement near the plasma core surrounded by a stochastic region. LHI plasmas are observed to rotate, perhaps due to an inward radial current generated by the stochastization of the plasma edge by the injected current streams. H-mode plasmas are initiated using a combination of high-field side fueling and Ohmic current drive. This regime shows a significant increase in rotation shear compared to L-mode plasmas. In addition, these plasmas have been observed to rotate in the counter-Ip direction without any external momentum sources. The intrinsic rotation direction is consistent with predictions from the saturated Ohmic confinement regime. Work supported by US DOE Grant DE-FG02-96ER54375.

  2. Functionalization of nanomaterials by non-thermal large area atmospheric pressure plasmas: application to flexible dye-sensitized solar cells.

    PubMed

    Jung, Heesoo; Park, Jaeyoung; Yoo, Eun Sang; Han, Gill-Sang; Jung, Hyun Suk; Ko, Min Jae; Park, Sanghoo; Choe, Wonho

    2013-09-07

    A key challenge to the industrial application of nanotechnology is the development of fabrication processes for functional devices based on nanomaterials which can be scaled up for mass production. In this report, we disclose the results of non-thermal radio-frequency (rf) atmospheric pressure plasma (APP) based deposition of TiO2 nanoparticles on a flexible substrate for the fabrication of dye-sensitized solar cells (DSSCs). Operating at 190 °C without a vacuum enclosure, the APP method can avoid thermal damage and vacuum compatibility restrictions and utilize roll-to-roll processing over a large area. The various analyses of the TiO2 films demonstrate that superior film properties can be obtained by the non-thermal APP method when compared with the thermal sintering process operating at 450 °C. The crystallinity of the anatase TiO2 nanoparticles is significantly improved without thermal agglomeration, while the surface defects such as Ti(3+) ions are eliminated, thus providing efficient charge collecting properties for solar cells. Finally, we successfully fabricated a flexible DSSC with an energy conversion efficiency of 4.2% using a transparent plastic substrate. This work demonstrates the potential of non-thermal APP technology in the area of device-level, nano-enabled material manufacturing.

  3. New SuperDARN Radar Capabilities for Observing Ionospheric Plasma Convection and ITM Coupling in the Mid-Latitude Ionosphere

    NASA Astrophysics Data System (ADS)

    Ruohoniemi, J. M.; Baker, J. B.; Greenwald, R. A.; Clausen, L. B.; Shepherd, S. G.; Bristow, W. A.; Talaat, E. R.; Barnes, R. J.

    2010-12-01

    Within the past year the first pair of SuperDARN radars funded under the NSF MSI program has become operational at a site near Hays, Kansas. The fields of view of the co-located radars are oriented to provide common-volume observations with two existing radars in Virginia (Wallops, Blackstone) and two MSI radars under construction in Oregon (Christmas Valley). The emerging mid-latitude radar chain will complement the existing SuperDARN coverage at polar cap and auroral latitudes within North America. The mid-latitude radars observe the expansion of auroral effects during disturbed periods, subauroral polarization streams, and small-scale ionospheric irregularities on the nightside that open a window on the plasma drifts and electric fields of the quiet-time subauroral ionosphere. They also measure neutral winds at mesospheric heights and the propagation of ionospheric disturbances due to the passage of atmospheric gravity waves. The new radar capabilities provide unprecedented views of ITM processes in the subauroral ionosphere with applications to studies of ionospheric electric fields, ion-neutral coupling, atmospheric tides and planetary waves, ionospheric plasma structuring and plasma instability. In this talk we describe the new capabilities and the potential for providing large-scale context for related ITM measurements over North America. We present the first high-resolution two-dimensional maps of ionospheric plasma convection at mid-latitudes as generated from common-volume observations with the Hays and Blackstone radars.

  4. Particle acceleration, transport and turbulence in cosmic and heliospheric physics

    NASA Technical Reports Server (NTRS)

    Matthaeus, W.

    1992-01-01

    In this progress report, the long term goals, recent scientific progress, and organizational activities are described. The scientific focus of this annual report is in three areas: first, the physics of particle acceleration and transport, including heliospheric modulation and transport, shock acceleration and galactic propagation and reacceleration of cosmic rays; second, the development of theories of the interaction of turbulence and large scale plasma and magnetic field structures, as in winds and shocks; third, the elucidation of the nature of magnetohydrodynamic turbulence processes and the role such turbulence processes might play in heliospheric, galactic, cosmic ray physics, and other space physics applications.

  5. Laboratory study of collisionless coupling between explosive debris plasma and magnetized ambient plasma

    NASA Astrophysics Data System (ADS)

    Bondarenko, A. S.; Schaeffer, D. B.; Everson, E. T.; Clark, S. E.; Lee, B. R.; Constantin, C. G.; Vincena, S.; Van Compernolle, B.; Tripathi, S. K. P.; Winske, D.; Niemann, C.

    2017-08-01

    The explosive expansion of a localized plasma cloud into a relatively tenuous, magnetized, ambient plasma characterizes a variety of astrophysical and space phenomena. In these rarified environments, collisionless electromagnetic processes rather than Coulomb collisions typically mediate the transfer of momentum and energy from the expanding "debris" plasma to the surrounding ambient plasma. In an effort to better understand the detailed physics of collisionless coupling mechanisms, compliment in situ measurements of space phenomena, and provide validation of previous computational and theoretical work, the present research jointly utilizes the Large Plasma Device and the Raptor laser facility at the University of California, Los Angeles to study the super-Alfvénic, quasi-perpendicular expansion of laser-produced carbon (C) and hydrogen (H) debris plasma through preformed, magnetized helium (He) ambient plasma via a variety of diagnostics, including emission spectroscopy, wavelength-filtered imaging, and a magnetic flux probe. Doppler shifts detected in a He1+ ion spectral line indicate that the ambient ions initially accelerate transverse to both the debris plasma flow and the background magnetic field. A qualitative analysis in the framework of a "hybrid" plasma model (kinetic ions and inertia-less fluid electrons) demonstrates that the ambient ion trajectories are consistent with the large-scale laminar electric field expected to develop due to the expanding debris. In particular, the transverse ambient ion motion provides direct evidence of Larmor coupling, a collisionless momentum exchange mechanism that has received extensive theoretical and numerical investigation. In order to quantitatively evaluate the observed Doppler shifts, a custom simulation utilizing a detailed model of the laser-produced debris plasma evolution calculates the laminar electric field and computes the initial response of a distribution of ambient test ions. A synthetic Doppler-shifted spectrum constructed from the simulated test ion velocities excellently reproduces the experimental measurements, verifying that the observed ambient ion motion corresponds to collisionless coupling through the laminar electric field.

  6. Multi-scale multi-point observation of dipolarization in the near-Earth's magnetotail

    NASA Astrophysics Data System (ADS)

    Nakamura, R.; Varsani, A.; Genestreti, K.; Nakamura, T.; Baumjohann, W.; Birn, J.; Le Contel, O.; Nagai, T.

    2017-12-01

    We report on evolution of the dipolarization in the near-Earth plasma sheet during two intense substorms based on observations when the four spacecraft of the Magnetospheric Multiscale (MMS) together with GOES and Geotail were located in the near Earth magnetotail. These multiple spacecraft together with the ground-based magnetogram enabled to obtain the location of the large- scale substorm current wedge (SCW) and overall changes in the plasma sheet configuration. MMS was located in the southern hemisphere at the outer plasma sheet and observed fast flow disturbances associated with dipolarizations. The high time-resolution measurements from MMS enable us to detect the rapid motion of the field structures and the flow disturbances separately and to resolve signatures below the ion-scales. We found small-scale transient field-aligned current sheets associated with upward streaming cold plasmas and Hall-current layers in the fast flow shear region. Observations of these current structures are compared with simulations of reconnection jets.

  7. Large-scale gene-centric meta-analysis across 32 studies identifies multiple lipid loci

    USDA-ARS?s Scientific Manuscript database

    Genome-wide association studies (GWASs) have identified many SNPs underlying variations in plasma-lipid levels. We explore whether additional loci associated with plasma-lipid phenotypes, such as high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholest...

  8. Two-dimensional numerical simulation of O-mode to Z-mode conversion in the ionosphere

    NASA Astrophysics Data System (ADS)

    Cannon, P. D.; Honary, F.; Borisov, N.

    2016-03-01

    Experiments in the illumination of the F region of the ionosphere via radio frequency waves polarized in the ordinary mode (O-mode) have revealed that the magnitude of artificial heating-induced effects depends strongly on the inclination angle of the pump beam, with a greater modification to the plasma observed when the heating beam is directed close to or along the magnetic zenith direction. Numerical simulations performed using a recently developed finite-difference time-domain (FDTD) code are used to investigate the contribution of the O-mode to Z-mode conversion process to this effect. The aspect angle dependence and angular size of the radio window for which conversion of an O-mode pump wave to the Z-mode occurs is simulated for a variety of plasma density profiles including 2-D linear gradients representative of large-scale plasma depletions, density-depleted plasma ducts, and periodic field-aligned irregularities. The angular shape of the conversion window is found to be strongly influenced by the background plasma profile. If the Z-mode wave is reflected, it can propagate back toward the O-mode reflection region leading to resonant enhancement of the electric field in this region. Simulation results presented in this paper demonstrate that this process can make a significant contribution to the magnitude of electron density depletion and temperature enhancement around the resonance height and contributes to a strong dependence of the magnitude of plasma perturbation with the direction of the pump wave.

  9. Thermoelectric properties of in-situ plasma spray synthesized sub-stoichiometry TiO2-x.

    PubMed

    Lee, Hwasoo; Han, Su Jung; Chidambaram Seshadri, Ramachandran; Sampath, Sanjay

    2016-11-04

    The thermoelectric properties of sub-stoichiometric TiO 2-x deposits produced by cascaded-plasma spray process are investigated from room-temperature to 750 K. Sub-stoichiometric TiO 2-x deposits are formed through in-situ reaction of the TiO 1.9 within the high temperature plasma flame and manipulated through introduction of varying amounts of hydrogen in the plasma. Although the TiO 2-x particles experience reduction within plasma, it can also re-oxidize through interaction with the surrounding ambient atmosphere, resulting in a complex interplay between process conditions and stoichiometry. The deposits predominantly contain rutile phase with presence of Magneli phases especially under significantly reducing plasma conditions. The resultant deposits show sensitivity to thermoelectric properties and under certain optimal conditions repeatedly show Seebeck coefficients reaching values of -230 μV K -1 at temperatures of 750 K while providing an electrical conductivity of 5.48 × 10 3  S m -1 , relatively low thermal conductivity in the range of 1.5 to 2 W m -1 K -1 resulting in power factor of 2.9 μW cm -1 K -2 . The resultant maximum thermoelectric figure of merit value reached 0.132 under these optimal conditions. The results point to a potential pathway for a large-scale fabrication of low-cost oxide based thermoelectric with potential applicability at moderate to high temperatures.

  10. Thermoelectric properties of in-situ plasma spray synthesized sub-stoichiometry TiO2−x

    PubMed Central

    Lee, Hwasoo; Han, Su Jung; Chidambaram Seshadri, Ramachandran; Sampath, Sanjay

    2016-01-01

    The thermoelectric properties of sub-stoichiometric TiO2−x deposits produced by cascaded-plasma spray process are investigated from room-temperature to 750 K. Sub-stoichiometric TiO2−x deposits are formed through in-situ reaction of the TiO1.9 within the high temperature plasma flame and manipulated through introduction of varying amounts of hydrogen in the plasma. Although the TiO2−x particles experience reduction within plasma, it can also re-oxidize through interaction with the surrounding ambient atmosphere, resulting in a complex interplay between process conditions and stoichiometry. The deposits predominantly contain rutile phase with presence of Magneli phases especially under significantly reducing plasma conditions. The resultant deposits show sensitivity to thermoelectric properties and under certain optimal conditions repeatedly show Seebeck coefficients reaching values of −230 μV K−1 at temperatures of 750 K while providing an electrical conductivity of 5.48 × 103 S m−1, relatively low thermal conductivity in the range of 1.5 to 2 W m−1 K−1 resulting in power factor of 2.9 μW cm−1 K−2. The resultant maximum thermoelectric figure of merit value reached 0.132 under these optimal conditions. The results point to a potential pathway for a large-scale fabrication of low-cost oxide based thermoelectric with potential applicability at moderate to high temperatures. PMID:27811954

  11. FIP BIAS EVOLUTION IN A DECAYING ACTIVE REGION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, D.; Yardley, S. L.; Driel-Gesztelyi, L. van

    Solar coronal plasma composition is typically characterized by first ionization potential (FIP) bias. Using spectra obtained by Hinode’s EUV Imaging Spectrometer instrument, we present a series of large-scale, spatially resolved composition maps of active region (AR)11389. The composition maps show how FIP bias evolves within the decaying AR during the period 2012 January 4–6. Globally, FIP bias decreases throughout the AR. We analyzed areas of significant plasma composition changes within the decaying AR and found that small-scale evolution in the photospheric magnetic field is closely linked to the FIP bias evolution observed in the corona. During the AR’s decay phase,more » small bipoles emerging within supergranular cells reconnect with the pre-existing AR field, creating a pathway along which photospheric and coronal plasmas can mix. The mixing timescales are shorter than those of plasma enrichment processes. Eruptive activity also results in shifting the FIP bias closer to photospheric in the affected areas. Finally, the FIP bias still remains dominantly coronal only in a part of the AR’s high-flux density core. We conclude that in the decay phase of an AR’s lifetime, the FIP bias is becoming increasingly modulated by episodes of small-scale flux emergence, i.e., decreasing the AR’s overall FIP bias. Our results show that magnetic field evolution plays an important role in compositional changes during AR development, revealing a more complex relationship than expected from previous well-known Skylab results showing that FIP bias increases almost linearly with age in young ARs.« less

  12. Large-Scale Dynamics of the Magnetospheric Boundary: Comparisons between Global MHD Simulation Results and ISTP Observations

    NASA Technical Reports Server (NTRS)

    Berchem, J.; Raeder, J.; Ashour-Abdalla, M.; Frank, L. A.; Paterson, W. R.; Ackerson, K. L.; Kokubun, S.; Yamamoto, T.; Lepping, R. P.

    1998-01-01

    Understanding the large-scale dynamics of the magnetospheric boundary is an important step towards achieving the ISTP mission's broad objective of assessing the global transport of plasma and energy through the geospace environment. Our approach is based on three-dimensional global magnetohydrodynamic (MHD) simulations of the solar wind-magnetosphere- ionosphere system, and consists of using interplanetary magnetic field (IMF) and plasma parameters measured by solar wind monitors upstream of the bow shock as input to the simulations for predicting the large-scale dynamics of the magnetospheric boundary. The validity of these predictions is tested by comparing local data streams with time series measured by downstream spacecraft crossing the magnetospheric boundary. In this paper, we review results from several case studies which confirm that our MHD model reproduces very well the large-scale motion of the magnetospheric boundary. The first case illustrates the complexity of the magnetic field topology that can occur at the dayside magnetospheric boundary for periods of northward IMF with strong Bx and By components. The second comparison reviewed combines dynamic and topological aspects in an investigation of the evolution of the distant tail at 200 R(sub E) from the Earth.

  13. Ion Heating During Local Helicity Injection Plasma Startup in the Pegasus ST

    NASA Astrophysics Data System (ADS)

    Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Reusch, J. A.

    2015-11-01

    Plasmas in the Pegasus ST are initiated either through standard, MHD stable, inductive current drive or non-solenoidal local helicity injection (LHI) current drive with strong reconnection activity, providing a rich environment to study ion dynamics. During LHI discharges, a large amount of impurity ion heating has been observed, with the passively measured impurity Ti as high as 800 eV compared to Ti ~ 60 eV and Te ~ 175 eV during standard inductive current drive discharges. In addition, non-thermal ion velocity distributions are observed and appear to be strongest near the helicity injectors. The ion heating is hypothesized to be a result of large-scale magnetic reconnection activity, as the amount of heating scales with increasing fluctuation amplitude of the dominant, edge localized, n =1 MHD mode. An approximate temporal scaling of the heating with the amplitude of higher frequency magnetic fluctuations has also been observed, with large amounts of power spectral density present at several impurity ion cyclotron frequencies. Recent experiments have focused on investigating the impurity ion heating scaling with the ion charge to mass ratio as well as the reconnecting field strength. The ion charge to mass ratio was modified by observing different impurity charge states in similar LHI plasmas while the reconnecting field strength was modified by changing the amount of injected edge current. Work supported by US DOE grant DE-FG02-96ER54375.

  14. Calibration of high-dynamic-range, finite-resolution x-ray pulse-height spectrometers for extracting electron energy distribution data from the PFRC-2 device

    NASA Astrophysics Data System (ADS)

    Swanson, C.; Jandovitz, P.; Cohen, S. A.

    2017-10-01

    Knowledge of the full x-ray energy distribution function (XEDF) emitted from a plasma over a large dynamic range of energies can yield valuable insights about the electron energy distribution function (EEDF) of that plasma and the dynamic processes that create them. X-ray pulse height detectors such as Amptek's X-123 Fast SDD with Silicon Nitride window can detect x-rays in the range of 200eV to 100s of keV. However, extracting EEDF from this measurement requires precise knowledge of the detector's response function. This response function, including the energy scale calibration, the window transmission function, and the resolution function, can be measured directly. We describe measurements of this function from x-rays from a mono-energetic electron beam in a purpose-built gas-target x-ray tube. Large-Z effects such as line radiation, nuclear charge screening, and polarizational Bremsstrahlung are discussed.

  15. Methods and apparatus of analyzing electrical power grid data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hafen, Ryan P.; Critchlow, Terence J.; Gibson, Tara D.

    Apparatus and methods of processing large-scale data regarding an electrical power grid are described. According to one aspect, a method of processing large-scale data regarding an electrical power grid includes accessing a large-scale data set comprising information regarding an electrical power grid; processing data of the large-scale data set to identify a filter which is configured to remove erroneous data from the large-scale data set; using the filter, removing erroneous data from the large-scale data set; and after the removing, processing data of the large-scale data set to identify an event detector which is configured to identify events of interestmore » in the large-scale data set.« less

  16. Applications of High Etendue Line-Profile Spectro-Polarimetry to the Study of the Atmospheric and Magnetospheric Environments of the Jovian Icy Moons

    NASA Technical Reports Server (NTRS)

    Harris, Walter M.; Roesler, Fred L.; Jaffel, Lotfi Ben; Ballester, Gilda E.; Oliversen, Ronald J.; Morgenthaler, Jeffrey P.; Mierkiewicz, Edwin

    2003-01-01

    Electrodynamic effects play a significant, global role in the state and energization of the Earth's ionosphere/magnetosphere, but even more so on Jupiter, where the auroral energy input is four orders of magnitude greater than on Earth. The Jovian magnetosphere is distinguished from Earth's by its rapid rotation rate and contributions from satellite atmospheres and internal plasma sources. The electrodynamic effects of these factors have a key role in the state and energization of the ionosphere-corona- plasmasphere system of the planet and its interaction with Io and the icy satellites. Several large scale interacting processes determine conditions near the icy moons beginning with their tenuous atmospheres produced from sputtering, evaporative, and tectonic/volcanic sources, extending out to exospheres that merge with ions and neutrals in the Jovian magnetosphere. This dynamic environment is dependent on a complex network of magnetospheric currents that act on global scales. Field aligned currents connect the satellites and the middle and tail magnetospheric regions to the Jupiter's poles via flux tubes that produce as bright auroral and satellite footprint emissions in the upper atmosphere. This large scale transfer of mass, momentum, and energy (e.g. waves, currents) means that a combination of complementary diagnostics of the plasma, neutral, and and field network must be obtained near simultaneously to correctly interpret the results. This presentation discusses the applicability of UV spatial heterodyne spectroscopy (SHS) to the broad study of this system on scales from satellite surfaces to Jupiter's aurora and corona.

  17. Tunable synthesis and in situ growth of silicon-carbon mesostructures using impermeable plasma.

    PubMed

    Yaghoubi, Alireza; Mélinon, Patrice

    2013-01-01

    In recent years, plasma-assisted synthesis has been extensively used in large scale production of functional nano- and micro-scale materials for numerous applications in optoelectronics, photonics, plasmonics, magnetism and drug delivery, however systematic formation of these minuscule structures has remained a challenge. Here we demonstrate a new method to closely manipulate mesostructures in terms of size, composition and morphology by controlling permeability at the boundaries of an impermeable plasma surrounded by a blanket of neutrals. In situ and rapid growth of thin films in the core region due to ion screening is among other benefits of our method. Similarly we can take advantage of exceptional properties of plasma to control the morphology of the as deposited nanostructures. Probing the plasma at boundaries by means of observing the nanostructures, further provides interesting insights into the behaviour of gas-insulated plasmas with possible implications on efficacy of viscous heating and non-magnetic confinement.

  18. Tunable synthesis and in situ growth of silicon-carbon mesostructures using impermeable plasma

    PubMed Central

    Yaghoubi, Alireza; Mélinon, Patrice

    2013-01-01

    In recent years, plasma-assisted synthesis has been extensively used in large scale production of functional nano- and micro-scale materials for numerous applications in optoelectronics, photonics, plasmonics, magnetism and drug delivery, however systematic formation of these minuscule structures has remained a challenge. Here we demonstrate a new method to closely manipulate mesostructures in terms of size, composition and morphology by controlling permeability at the boundaries of an impermeable plasma surrounded by a blanket of neutrals. In situ and rapid growth of thin films in the core region due to ion screening is among other benefits of our method. Similarly we can take advantage of exceptional properties of plasma to control the morphology of the as deposited nanostructures. Probing the plasma at boundaries by means of observing the nanostructures, further provides interesting insights into the behaviour of gas-insulated plasmas with possible implications on efficacy of viscous heating and non-magnetic confinement. PMID:23330064

  19. Progress on the Development of the hPIC Particle-in-Cell Code

    NASA Astrophysics Data System (ADS)

    Dart, Cameron; Hayes, Alyssa; Khaziev, Rinat; Marcinko, Stephen; Curreli, Davide; Laboratory of Computational Plasma Physics Team

    2017-10-01

    Advancements were made in the development of the kinetic-kinetic electrostatic Particle-in-Cell code, hPIC, designed for large-scale simulation of the Plasma-Material Interface. hPIC achieved a weak scaling efficiency of 87% using the Algebraic Multigrid Solver BoomerAMG from the PETSc library on more than 64,000 cores of the Blue Waters supercomputer at the University of Illinois at Urbana-Champaign. The code successfully simulates two-stream instability and a volume of plasma over several square centimeters of surface extending out to the presheath in kinetic-kinetic mode. Results from a parametric study of the plasma sheath in strongly magnetized conditions will be presented, as well as a detailed analysis of the plasma sheath structure at grazing magnetic angles. The distribution function and its moments will be reported for plasma species in the simulation domain and at the material surface for plasma sheath simulations. Membership Pending.

  20. The thermal X-ray flare plasma. [on sun

    NASA Technical Reports Server (NTRS)

    Moore, R.; Mckenzie, D. L.; Svestka, Z.; Widing, K. G.; Dere, K. P.; Antiochos, S. K.; Dodson-Prince, H. W.; Hiei, E.; Krall, K. R.; Krieger, A. S.

    1980-01-01

    Following a review of current observational and theoretical knowledge of the approximately 10 to the 7th K plasma emitting the thermal soft X-ray bursts accompanying every H alpha solar flare, the fundamental physical problem of the plasma, namely the formation and evolution of the observed X-ray arches, is examined. Extensive Skylab observations of the thermal X-ray plasmas in two large flares, a large subflare and several compact subflares are analyzed to determine plasma physical properties, deduce the dominant physical processes governing the plasma and compare large and small flare characteristics. Results indicate the density of the thermal X-ray plasma to be higher than previously thought (from 10 to the 10th to 10 to the 12th/cu cm for large to small flares), cooling to occur radiatively as much as conductively, heating to continue into the decay phase of large flares, and the mass of the thermal X-ray plasma to be supplied primarily through chromospheric evaporation. Implications of the results for the basic flare mechanism are indicated.

  1. Optical fiber characteristics and standards; Proceedings of the Meeting, Cannes, France, November 25-27, 1985

    NASA Technical Reports Server (NTRS)

    Bouillie, Remy (Editor)

    1986-01-01

    Papers are presented on outside vapor deposition, the plasma activated CVD process for large scale production of telecommunication fibers, axial lateral plasma deposition technology from plastic clad silica, coatings for optical fibers, primary coating characterization, and radiation-induced time dependent attenuation in a fiber. Topics discussed include fibers with high tensile strength, the characteristics and specifications of airborne fiber optic components, the baseband frequency response of multimode fibers, and fibers for local and broadband networks. Consideration is given to industrial measurements for single mode and multimode fibers, the characterization of source power distribution in a multimode fiber by a splice offset technique, the measurement of chromatic dispersion in a single mode optical, and the effect of temperature on the refracted near-field optical fiber profiling technique.

  2. Handheld low-temperature plasma probe for portable "point-and-shoot" ambient ionization mass spectrometry.

    PubMed

    Wiley, Joshua S; Shelley, Jacob T; Cooks, R Graham

    2013-07-16

    We describe a handheld, wireless low-temperature plasma (LTP) ambient ionization source and its performance on a benchtop and a miniature mass spectrometer. The source, which is inexpensive to build and operate, is battery-powered and utilizes miniature helium cylinders or air as the discharge gas. Comparison of a conventional, large-scale LTP source against the handheld LTP source, which uses less helium and power than the large-scale version, revealed that the handheld source had similar or slightly better analytical performance. Another advantage of the handheld LTP source is the ability to quickly interrogate a gaseous, liquid, or solid sample without requiring any setup time. A small, 7.4-V Li-polymer battery is able to sustain plasma for 2 h continuously, while the miniature helium cylinder supplies gas flow for approximately 8 continuous hours. Long-distance ion transfer was achieved for distances up to 1 m.

  3. Implementation of atomic layer etching of silicon: Scaling parameters, feasibility, and profile control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranjan, Alok, E-mail: alok.ranjan@us.tel.com; Wang, Mingmei; Sherpa, Sonam D.

    2016-05-15

    Atomic or layer by layer etching of silicon exploits temporally segregated self-limiting adsorption and material removal steps to mitigate the problems associated with continuous or quasicontinuous (pulsed) plasma processes: selectivity loss, damage, and profile control. Successful implementation of atomic layer etching requires careful choice of the plasma parameters for adsorption and desorption steps. This paper illustrates how process parameters can be arrived at through basic scaling exercises, modeling and simulation, and fundamental experimental tests of their predictions. Using chlorine and argon plasma in a radial line slot antenna plasma source as a platform, the authors illustrate how cycle time, ionmore » energy, and radical to ion ratio can be manipulated to manage the deviation from ideality when cycle times are shortened or purges are incomplete. Cell based Monte Carlo feature scale modeling is used to illustrate profile outcomes. Experimental results of atomic layer etching processes are illustrated on silicon line and space structures such that iso-dense bias and aspect ratio dependent free profiles are produced. Experimental results also illustrate the profile control margin as processes move from atomic layer to multilayer by layer etching. The consequence of not controlling contamination (e.g., oxygen) is shown to result in deposition and roughness generation.« less

  4. Lifecycle of a large-scale polar coronal pseudostreamer/cavity system

    NASA Astrophysics Data System (ADS)

    Guennou, Chloé; Auchere, Frederic; Seaton, Daniel; Rachmeler, Laurel

    2016-07-01

    Coronal cavities, tunnel-like areas of rarefied density, provide important information about the magnetic structures that support prominences. The magnetic energy is stored through the twisted or shared magnetic field, ultimately released through Coronal Mass Ejections (CME). To be able to forecast these energetic releases of material and prevent potential terrestrial consequences, the understanding of the cavity 3D morphology, magnetic and thermal properties are essential. The prominences embedded in the cavity only trace a small part of the magnetic field, whereas the much larger cavity provides more information about the magnetic field morphology. As a result, a clear understanding of the coronal volume of the cavity significantly advances our understanding of both the pre-eruption equilibrium and the triggers of such eruptions. Determining both morphological and thermodynamical coronal structures is difficult due to the optically thin nature of the plasma. Observations are subject to integration along the line-of-sight (LOS). This effect can strongly complicate both the derivation and the interpretation of important physical quantities. One way to deduce the 3D structure is with Solar Rotational Tomography (SRT). The 3D plasma emissivity is estimated from EUV/white light images taken from different viewpoints. Physical properties can be then derived using Differential Emission Measure analysis from multi-wavelength 3D reconstructions. We applied this technique to an exceptional large-scale coronal pseudostreamer/cavity system in the southern polar region of the solar corona that was visible for approximately a year starting in February 2014. It is unusual to see such a large closed-field structure embedded within the open polar coronal hole. We investigate this structure to document its formation, evolution and eventually its shrinking process using data from both the PROBA2/SWAP and SDO/AIA EUV imagers. We found that the cavity temperature is extremely stable with time and is essentially at a similar or slightly hotter temperature than the surrounding pseudostreamer. Two regimes in cavity thermal properties were observed: during the first 5 months of observation, we found lower density depletion and highly multi-thermal plasma, while after the pseudostreamer became stable and slowly shrank, the depletion was more pronounced and the plasma was less multithermal. As the thermodynamic properties are strongly correlated with the magnetic structure, these results provide constraints on both the trigger of CMEs and the processes that maintain cavities stability for such a long lifetime.

  5. Suppression of AGN-Driven G-Mode Turbulence by Magnetic Fields in a Magnetohydrodynamic Model of the Intracluster Medium

    NASA Astrophysics Data System (ADS)

    Bambic, Christopher J.; Morsony, Brian J.; Reynolds, Christopher S.

    2017-08-01

    We investigate the role of AGN feedback in turbulent heating of galaxy clusters. X-ray measurements of the Perseus Cluster intracluster medium (ICM) by the Hitomi Mission found a velocity dispersion measure of σ ˜ 164 km/s, indicating a large-scale turbulent energy of approximately 4% of the thermal energy. If this energy is transferred to small scales via a turbulent cascade and dissipated as heat, radiative cooling can be offset and the cluster can remain in the observed thermal equilibrium. Using 3D ideal MHD simulations and a plane-parallel model of the ICM, we analyze the production of turbulence by g-modes generated by the supersonic expansion and buoyant rise of AGN-driven bubbles. Previous work has shown that this process is inefficient, with less than 1% of the injected energy ending up in turbulence. Hydrodynamic instabilities shred the bubbles apart before they can excite sufficiently strong g-modes. We examine the role of a large-scale magnetic field which is able to drape around these rising bubbles, preserving them from instabilities. We show that a helical magnetic field geometry is able to better preserve bubbles, driving stronger g-modes; however, the production of turbulence is still inefficient. Magnetic tension acts to stabilize g-modes, preventing the nonlinear transition to turbulence. In addition, the magnetic tension force acts along the field lines to suppress the formation of small-scale vortices. These two effects halt the turbulent cascade. Our work shows that ideal MHD is an insufficient description for the cluster feedback process, and we discuss future work such as the inclusion of anisotropic viscosity as a means of simulating high β plasma kinetic effects. In addition, other mechanisms of heating the ICM plasma such as sound waves or cosmic rays may be responsible to account for observed feedback in galaxy clusters.

  6. Advanced Accelerators: Particle, Photon and Plasma Wave Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Ronald L.

    2017-06-29

    The overall objective of this project was to study the acceleration of electrons to very high energies over very short distances based on trapping slowly moving electrons in the fast moving potential wells of large amplitude plasma waves, which have relativistic phase velocities. These relativistic plasma waves, or wakefields, are the basis of table-top accelerators that have been shown to accelerate electrons to the same high energies as kilometer-length linear particle colliders operating using traditional decades-old acceleration techniques. The accelerating electrostatic fields of the relativistic plasma wave accelerators can be as large as GigaVolts/meter, and our goal was to studymore » techniques for remotely measuring these large fields by injecting low energy probe electron beams across the plasma wave and measuring the beam’s deflection. Our method of study was via computer simulations, and these results suggested that the deflection of the probe electron beam was directly proportional to the amplitude of the plasma wave. This is the basis of a proposed diagnostic technique, and numerous studies were performed to determine the effects of changing the electron beam, plasma wave and laser beam parameters. Further simulation studies included copropagating laser beams with the relativistic plasma waves. New interesting results came out of these studies including the prediction that very small scale electron beam bunching occurs, and an anomalous line focusing of the electron beam occurs under certain conditions. These studies were summarized in the dissertation of a graduate student who obtained the Ph.D. in physics. This past research program has motivated ideas for further research to corroborate these results using particle-in-cell simulation tools which will help design a test-of-concept experiment in our laboratory and a scaled up version for testing at a major wakefield accelerator facility.« less

  7. The flow of a dust particle by highly collisional drifting plasma

    NASA Astrophysics Data System (ADS)

    Grach, Veronika; Semenov, Vladimir; Trakhtengerts, Victor

    We present the study of the flow of a dust particle by a weakly ionized highly collisional drifting plasma. The charging of a conductive sphere and wake formation downstream and upstream of it is analyzed in the case of a strong external field l0 = E0 /(4πen0 ) λD a (E0 is the magnitude of the external field, n0 is plasma density, λD is Debye length and a is a radius of the sphere). Under such conditions, the effects of the space charge field and ionization-recombination processes play crucial role. The sphere charge and the spatial distributions of plasma ions and electrons are calculated nu-merically; analytical expressions are obtained for some limiting cases. We obtain that the size of the wake is determined by the external field and the recombination rate. At low recombination rates (α/(4πµ+,- ) 1, where α is the recombination coefficient, µ+,- are mobilities of positive and negative plasma particles) the longitudinal scale of wake is about 20l0 , at high recombina-tion rates the longitudinal scale is about l0 . The transverse scale of the wake is determined by the ratio of the mobilities and can reach several dust particle radii. It was also shown that the absolute value of the dust particle charge decreases with increasing recombination rate. The total electric charge (the sphere charge plus the plasma space charge) is shown to be zero in accordance with predictions of the theory of static currents in a conducting medium. On the basis of the obtained spatial distributions of charged plasma particles, the electrostatic potential around the sphere is calculated numerically. The interaction potential between two systems "particle+wake" is analyzed for arbitrary locations of such systems. We obtain that the potential can be attractive at moderate and large distances, if the particles are not aligned in the direction perpendicular to the external electric field. The results can be important in understanding intergrain interactions in weakly ionized highly collisional anisotropic dusty plasmas.

  8. Design and Analysis of a Formation Flying System for the Cross-Scale Mission Concept

    NASA Technical Reports Server (NTRS)

    Cornara, Stefania; Bastante, Juan C.; Jubineau, Franck

    2007-01-01

    The ESA-funded "Cross-Scale Technology Reference Study has been carried out with the primary aim to identify and analyse a mission concept for the investigation of fundamental space plasma processes that involve dynamical non-linear coupling across multiple length scales. To fulfill this scientific mission goal, a constellation of spacecraft is required, flying in loose formations around the Earth and sampling three characteristic plasma scale distances simultaneously, with at least two satellites per scale: electron kinetic (10 km), ion kinetic (100-2000 km), magnetospheric fluid (3000-15000 km). The key Cross-Scale mission drivers identified are the number of S/C, the space segment configuration, the reference orbit design, the transfer and deployment strategy, the inter-satellite localization and synchronization process and the mission operations. This paper presents a comprehensive overview of the mission design and analysis for the Cross-Scale concept and outlines a technically feasible mission architecture for a multi-dimensional investigation of space plasma phenomena. The main effort has been devoted to apply a thorough mission-level trade-off approach and to accomplish an exhaustive analysis, so as to allow the characterization of a wide range of mission requirements and design solutions.

  9. The development of magnetic field line wander in gyrokinetic plasma turbulence: dependence on amplitude of turbulence

    NASA Astrophysics Data System (ADS)

    Bourouaine, Sofiane; Howes, Gregory G.

    2017-06-01

    The dynamics of a turbulent plasma not only manifests the transport of energy from large to small scales, but also can lead to a tangling of the magnetic field that threads through the plasma. The resulting magnetic field line wander can have a large impact on a number of other important processes, such as the propagation of energetic particles through the turbulent plasma. Here we explore the saturation of the turbulent cascade, the development of stochasticity due to turbulent tangling of the magnetic field lines and the separation of field lines through the turbulent dynamics using nonlinear gyrokinetic simulations of weakly collisional plasma turbulence, relevant to many turbulent space and astrophysical plasma environments. We determine the characteristic time 2$ for the saturation of the turbulent perpendicular magnetic energy spectrum. We find that the turbulent magnetic field becomes completely stochastic at time 2$ for strong turbulence, and at 2$ for weak turbulence. However, when the nonlinearity parameter of the turbulence, a dimensionless measure of the amplitude of the turbulence, reaches a threshold value (within the regime of weak turbulence) the magnetic field stochasticity does not fully develop, at least within the evolution time interval 22$ . Finally, we quantify the mean square displacement of magnetic field lines in the turbulent magnetic field with a functional form 2\\rangle =A(z/L\\Vert )p$ ( \\Vert $ is the correlation length parallel to the magnetic background field \\mathbf{0}$ , is the distance along \\mathbf{0}$ direction), providing functional forms of the amplitude coefficient and power-law exponent as a function of the nonlinearity parameter.

  10. Correlation buildup during recrystallization in three-dimensional dusty plasma clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schella, André; Mulsow, Matthias; Melzer, André

    2014-05-15

    The recrystallization process of finite three-dimensional dust clouds after laser heating is studied experimentally. The time-dependent Coulomb coupling parameter is presented, showing that the recrystallization starts with an exponential cooling phase where cooling is slower than damping by the neutral gas friction. At later times, the coupling parameter oscillates into equilibrium. It is found that a large fraction of cluster states after recrystallization experiments is in metastable states. The temporal evolution of the correlation buildup shows that correlation occurs on even slower time scale than cooling.

  11. Porous Architecture of SPS Thick YSZ Coatings Structured at the Nanometer Scale (~50 nm)

    NASA Astrophysics Data System (ADS)

    Bacciochini, Antoine; Montavon, Ghislain; Ilavsky, Jan; Denoirjean, Alain; Fauchais, Pierre

    2010-01-01

    Suspension plasma spraying (SPS) is a fairly recent technology that is able to process sub-micrometer-sized or nanometer-sized feedstock particles and permits the deposition of coatings thinner (from 20 to 100 μm) than those resulting from conventional atmospheric plasma spraying (APS). SPS consists of mechanically injecting within the plasma flow a liquid suspension of particles of average diameter varying between 0.02 and 1 μm. Due to the large volume fraction of the internal interfaces and reduced size of stacking defects, thick nanometer- or sub-micrometer-sized coatings exhibit better properties than conventional micrometer-sized ones (e.g., higher coefficients of thermal expansion, lower thermal diffusivity, higher hardness and toughness, better wear resistance, among other coating characteristics and functional properties). They could hence offer pertinent solutions to numerous emerging applications, particularly for energy production, energy saving, etc. Coatings structured at the nanometer scale exhibit nanometer-sized voids. Depending upon the selection of operating parameters, among which plasma power parameters (operating mode, enthalpy, spray distance, etc.), suspension properties (particle size distribution, powder mass percentage, viscosity, etc.), and substrate characteristics (topology, temperature, etc.), different coating architectures can be manufactured, from dense to porous layers, from connected to non-connected network. Nevertheless, the discrimination of porosity in different classes of criteria such as size, shape, orientation, specific surface area, etc., is essential to describe the coating architecture. Moreover, the primary steps of the coating manufacturing process affect significantly the coating porous architecture. These steps need to be further understood. Different types of imaging experiments were performed to understand, describe and quantify the pore level of thick finely structured ceramics coatings.

  12. Interchange Instability and Transport in Matter-Antimatter Plasmas

    NASA Astrophysics Data System (ADS)

    Kendl, Alexander; Danler, Gregor; Wiesenberger, Matthias; Held, Markus

    2017-06-01

    Symmetric electron-positron plasmas in inhomogeneous magnetic fields are intrinsically subject to interchange instability and transport. Scaling relations for the propagation velocity of density perturbations relevant to transport in isothermal magnetically confined electron-positron plasmas are deduced, including damping effects when Debye lengths are large compared to Larmor radii. The relations are verified by nonlinear full-F gyrofluid computations. Results are analyzed with respect to planned magnetically confined electron-positron plasma experiments. The model is generalized to other matter-antimatter plasmas. Magnetized electron-positron-proton-antiproton plasmas are susceptible to interchange-driven local matter-antimatter separation, which can impede sustained laboratory magnetic confinement.

  13. Interchange Instability and Transport in Matter-Antimatter Plasmas.

    PubMed

    Kendl, Alexander; Danler, Gregor; Wiesenberger, Matthias; Held, Markus

    2017-06-09

    Symmetric electron-positron plasmas in inhomogeneous magnetic fields are intrinsically subject to interchange instability and transport. Scaling relations for the propagation velocity of density perturbations relevant to transport in isothermal magnetically confined electron-positron plasmas are deduced, including damping effects when Debye lengths are large compared to Larmor radii. The relations are verified by nonlinear full-F gyrofluid computations. Results are analyzed with respect to planned magnetically confined electron-positron plasma experiments. The model is generalized to other matter-antimatter plasmas. Magnetized electron-positron-proton-antiproton plasmas are susceptible to interchange-driven local matter-antimatter separation, which can impede sustained laboratory magnetic confinement.

  14. Plasma Accelerators Race to 10 GeV and Beyond

    NASA Astrophysics Data System (ADS)

    Katsouleas, Tom

    2005-10-01

    This paper reviews the concepts, recent progress and current challenges for realizing the tremendous electric fields in relativistic plasma waves for applications ranging from tabletop particle accelerators to high-energy physics. Experiments in the 90's on laser-driven plasma wakefield accelerators at several laboratories around the world demonstrated the potential for plasma wakefields to accelerate intense bunches of self-trapped particles at rates as high as 100 GeV/m in mm-scale gas jets. These early experiments offered impressive gradients but large energy spread (100%) and short interaction lengths. Major breakthroughs have recently occurred on both fronts. Three groups (LBL-US, LOA-France and RAL-UK) have now entered a new regime of laser wakefield acceleration resulting in 100 MeV mono-energetic beams with up to nanoCoulombs of charge and very small angular spread. Simulations suggest that current lasers are just entering this new regime, and the scaling to higher energies appears attractive. In parallel with the progress in laser-driven wakefields, particle-beam driven wakefield accelerators are making large strides. A series of experiments using the 30 GeV beam of the Stanford Linear Accelerator Center (SLAC) has demonstrated high-gradient acceleration of electrons and positrons in meter-scale plasmas. The UCLA/USC/SLAC collaboration has accelerated electrons beyond 1 GeV and is aiming at 10 GeV in 30 cm as the next step toward a ``plasma afterburner,'' a concept for doubling the energy of a high-energy collider in a few tens of meters of plasma. In addition to wakefield acceleration, these and other experiments have demonstrated the rich physics bounty to be reaped from relativistic beam-plasma interactions. This includes plasma lenses capable of focusing particle beams to the highest density ever produced, collective radiation mechanisms capable of generating high-brightness x-ray beams, collective refraction of particles at a plasma interface, and acceleration of intense proton beams from laser-irradiated foils.

  15. Crustal evolution inferred from Apollo magnetic measurements

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Daily, W. D.; Vanyan, L. L.

    1978-01-01

    Magnetic field and solar wind plasma density measurements were analyzed to determine the scale size characteristics of remanent fields at the Apollo 12, 15, and 16 landing sites. Theoretical model calculations of the field-plasma interaction, involving diffusion of the remanent field into the solar plasma, were compared to the data. The information provided by all these experiments shows that remanent fields over most of the lunar surface are characterized by spatial variations as small as a few kilometers. Large regions (50 to 100 km) of the lunar crust were probably uniformly magnetized during early crustal evolution. Bombardment and subsequent gardening of the upper layers of these magnetized regions left randomly oriented, smaller scale (5 to 10 km) magnetic sources close to the surface. The larger scale size fields of magnitude approximately 0.1 gammas are measured by the orbiting subsatellite experiments and the small scale sized remanent fields of magnitude approximately 100 gammas are measured by the surface experiments.

  16. The basis for cosmic ray feedback: Written on the wind

    PubMed Central

    Zweibel, Ellen G.

    2017-01-01

    Star formation and supermassive black hole growth in galaxies appear to be self-limiting. The mechanisms for self-regulation are known as feedback. Cosmic rays, the relativistic particle component of interstellar and intergalactic plasma, are among the agents of feedback. Because cosmic rays are virtually collisionless in the plasma environments of interest, their interaction with the ambient medium is primarily mediated by large scale magnetic fields and kinetic scale plasma waves. Because kinetic scales are much smaller than global scales, this interaction is most conveniently described by fluid models. In this paper, I discuss the kinetic theory and the classical theory of cosmic ray hydrodynamics (CCRH) which follows from assuming cosmic rays interact only with self-excited waves. I generalize CCRH to generalized cosmic ray hydrodynamics, which accommodates interactions with extrinsic turbulence, present examples of cosmic ray feedback, and assess where progress is needed. PMID:28579734

  17. The basis for cosmic ray feedback: Written on the wind

    NASA Astrophysics Data System (ADS)

    Zweibel, Ellen G.

    2017-05-01

    Star formation and supermassive black hole growth in galaxies appear to be self-limiting. The mechanisms for self-regulation are known as feedback. Cosmic rays, the relativistic particle component of interstellar and intergalactic plasma, are among the agents of feedback. Because cosmic rays are virtually collisionless in the plasma environments of interest, their interaction with the ambient medium is primarily mediated by large scale magnetic fields and kinetic scale plasma waves. Because kinetic scales are much smaller than global scales, this interaction is most conveniently described by fluid models. In this paper, I discuss the kinetic theory and the classical theory of cosmic ray hydrodynamics (CCRH) which follows from assuming cosmic rays interact only with self-excited waves. I generalize CCRH to generalized cosmic ray hydrodynamics, which accommodates interactions with extrinsic turbulence, present examples of cosmic ray feedback, and assess where progress is needed.

  18. The basis for cosmic ray feedback: Written on the wind.

    PubMed

    Zweibel, Ellen G

    2017-05-01

    Star formation and supermassive black hole growth in galaxies appear to be self-limiting. The mechanisms for self-regulation are known as feedback . Cosmic rays, the relativistic particle component of interstellar and intergalactic plasma, are among the agents of feedback. Because cosmic rays are virtually collisionless in the plasma environments of interest, their interaction with the ambient medium is primarily mediated by large scale magnetic fields and kinetic scale plasma waves. Because kinetic scales are much smaller than global scales, this interaction is most conveniently described by fluid models. In this paper, I discuss the kinetic theory and the classical theory of cosmic ray hydrodynamics (CCRH) which follows from assuming cosmic rays interact only with self-excited waves. I generalize CCRH to generalized cosmic ray hydrodynamics, which accommodates interactions with extrinsic turbulence, present examples of cosmic ray feedback, and assess where progress is needed.

  19. Turbulent cascade in a two-ion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Xin; Faculty of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000; Liu, San-Qiu, E-mail: sqlgroup@ncu.edu.cn

    2014-11-15

    It is shown that small but finite-amplitude drift wave turbulence in a two-ion-species plasma can be modeled by a Hasegawa-Mima equation. The mode cascade process and resulting turbulent spectrum are investigated. The spectrum is found to be similar to that of a two-component plasma, but the space and time scales of the turbulent cascade process can be quite different since they are rescaled by the presence of the second ion species.

  20. Identifying the source of super-high energetic electrons in the presence of pre-plasma in laser–matter interaction at relativistic intensities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, D.; Krasheninnikov, S. I.; Luan, S. X.

    The generation of super-high energetic electrons influenced by pre-plasma in relativistic intensity laser–matter interaction is studied in a one-dimensional slab approximation with particle-in-cell simulations. Different pre-plasma scale lengths and laser intensities are considered, showing an increase in both particle number and cut-off kinetic energy of electrons with the increase of pre-plasma scale length and laser intensity, the cut-off kinetic energy greatly exceeding the corresponding laser ponderomotive energy. A two-stage electron acceleration model is proposed to explain the underlying physics. The first stage is attributed to the synergetic acceleration by longitudinal electric field and counter-propagating laser pulses, and a scaling lawmore » is obtained with efficiency depending on the pre-plasma scale length and laser intensity. These electrons pre-accelerated in the first stage could build up an intense electrostatic potential barrier with maximal value several times as large as the initial electron kinetic energy. Some of the energetic electrons could be further accelerated by reflection off the electrostatic potential barrier, with their finial kinetic energies significantly higher than the values pre-accelerated in the first stage.« less

  1. Identifying the source of super-high energetic electrons in the presence of pre-plasma in laser–matter interaction at relativistic intensities

    DOE PAGES

    Wu, D.; Krasheninnikov, S. I.; Luan, S. X.; ...

    2016-10-03

    The generation of super-high energetic electrons influenced by pre-plasma in relativistic intensity laser–matter interaction is studied in a one-dimensional slab approximation with particle-in-cell simulations. Different pre-plasma scale lengths and laser intensities are considered, showing an increase in both particle number and cut-off kinetic energy of electrons with the increase of pre-plasma scale length and laser intensity, the cut-off kinetic energy greatly exceeding the corresponding laser ponderomotive energy. A two-stage electron acceleration model is proposed to explain the underlying physics. The first stage is attributed to the synergetic acceleration by longitudinal electric field and counter-propagating laser pulses, and a scaling lawmore » is obtained with efficiency depending on the pre-plasma scale length and laser intensity. These electrons pre-accelerated in the first stage could build up an intense electrostatic potential barrier with maximal value several times as large as the initial electron kinetic energy. Some of the energetic electrons could be further accelerated by reflection off the electrostatic potential barrier, with their finial kinetic energies significantly higher than the values pre-accelerated in the first stage.« less

  2. Anomalous transport theory for the reversed field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terry, P.W.; Hegna, C.C; Sovinec, C.R.

    1996-09-01

    Physically motivated transport models with predictive capabilities and significance beyond the reversed field pinch (RFP) are presented. It is shown that the ambipolar constrained electron heat loss observed in MST can be quantitatively modeled by taking account of the clumping in parallel streaming electrons and the resultant self-consistent interaction with collective modes; that the discrete dynamo process is a relaxation oscillation whose dependence on the tearing instability and profile relaxation physics leads to amplitude and period scaling predictions consistent with experiment; that the Lundquist number scaling in relaxed plasmas driven by magnetic turbulence has a weak S{sup {minus}1/4} scaling; andmore » that radial E{times}B shear flow can lead to large reductions in the edge particle flux with little change in the heat flux, as observed in the RFP and tokamak. 24 refs.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dayeh, M. A.; Fuselier, S. A.; Funsten, H. O.

    We present remote, continuous observations from the Interstellar Boundary Explorer of the terrestrial plasma sheet location back to -16 Earth radii (R E) in the magnetospheric tail using energetic neutral atom emissions. The time period studied includes two orbits near the winter and summer solstices, thus associated with large negative and positive dipole tilt, respectively. Continuous side-view images reveal a complex shape that is dominated mainly by large-scale warping due to the diurnal motion of the dipole axis. Superposed on the global warped geometry are short-time fluctuations in plasma sheet location that appear to be consistent with plasma sheet flappingmore » and possibly twisting due to changes in the interplanetary conditions. We conclude that the plasma sheet warping due to the diurnal motion dominates the average shape of the plasma sheet. Over short times, the position of the plasma sheet can be dominated by twisting and flapping.« less

  4. Mixing of the Interstellar and Solar Plasmas at the Heliospheric Interface

    DOE PAGES

    Pogorelov, N. V.; Borovikov, S. N.

    2015-10-12

    From the ideal MHD perspective, the heliopause is a tangential discontinuity that separates the solar wind plasma from the local interstellar medium plasma. There are physical processes, however, that make the heliopause permeable. They can be subdivided into kinetic and MHD categories. Kinetic processes occur on small length and time scales, and cannot be resolved with MHD equations. On the other hand, MHD instabilities of the heliopause have much larger scales and can be easily observed by spacecraft. The heliopause may also be a subject of magnetic reconnection. In this paper, we discuss mechanisms of plasma mixing at the heliopausemore » in the context of Voyager 1 observations. Numerical results are obtained with a Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS), which is a package of numerical codes capable of performing adaptive mesh refinement simulations of complex plasma flows in the presence of discontinuities and charge exchange between ions and neutral atoms. The flow of the ionized component is described with the ideal MHD equations, while the transport of atoms is governed either by the Boltzmann equation or multiple Euler gas dynamics equations. The code can also treat nonthermal ions and turbulence produced by them.« less

  5. The Physical Processes of CME/ICME Evolution

    NASA Astrophysics Data System (ADS)

    Manchester, Ward; Kilpua, Emilia K. J.; Liu, Ying D.; Lugaz, Noé; Riley, Pete; Török, Tibor; Vršnak, Bojan

    2017-11-01

    As observed in Thomson-scattered white light, coronal mass ejections (CMEs) are manifest as large-scale expulsions of plasma magnetically driven from the corona in the most energetic eruptions from the Sun. It remains a tantalizing mystery as to how these erupting magnetic fields evolve to form the complex structures we observe in the solar wind at Earth. Here, we strive to provide a fresh perspective on the post-eruption and interplanetary evolution of CMEs, focusing on the physical processes that define the many complex interactions of the ejected plasma with its surroundings as it departs the corona and propagates through the heliosphere. We summarize the ways CMEs and their interplanetary CMEs (ICMEs) are rotated, reconfigured, deformed, deflected, decelerated and disguised during their journey through the solar wind. This study then leads to consideration of how structures originating in coronal eruptions can be connected to their far removed interplanetary counterparts. Given that ICMEs are the drivers of most geomagnetic storms (and the sole driver of extreme storms), this work provides a guide to the processes that must be considered in making space weather forecasts from remote observations of the corona.

  6. Energy transfer, pressure tensor, and heating of kinetic plasma

    NASA Astrophysics Data System (ADS)

    Yang, Yan; Matthaeus, William H.; Parashar, Tulasi N.; Haggerty, Colby C.; Roytershteyn, Vadim; Daughton, William; Wan, Minping; Shi, Yipeng; Chen, Shiyi

    2017-07-01

    Kinetic plasma turbulence cascade spans multiple scales ranging from macroscopic fluid flow to sub-electron scales. Mechanisms that dissipate large scale energy, terminate the inertial range cascade, and convert kinetic energy into heat are hotly debated. Here, we revisit these puzzles using fully kinetic simulation. By performing scale-dependent spatial filtering on the Vlasov equation, we extract information at prescribed scales and introduce several energy transfer functions. This approach allows highly inhomogeneous energy cascade to be quantified as it proceeds down to kinetic scales. The pressure work, - ( P . ∇ ) . u , can trigger a channel of the energy conversion between fluid flow and random motions, which contains a collision-free generalization of the viscous dissipation in collisional fluid. Both the energy transfer and the pressure work are strongly correlated with velocity gradients.

  7. A Loss in the Plasma Membrane ATPase Activity and Its Recovery Coincides with Incipient Freeze-Thaw Injury and Postthaw Recovery in Onion Bulb Scale Tissue 1

    PubMed Central

    Arora, Rajeev; Palta, Jiwan P.

    1991-01-01

    Plasma membrane ATPase has been proposed to be functionally altered during early stages of injury caused by a freeze-thaw stress. Complete recovery from freezing injury in onion cells during the postthaw period provided evidence in support of this proposal. During recovery, a simultaneous decrease in ion leakage and disappearance of water soaking (symptoms of freeze-thaw injury) has been noted. Since reabsorption of ions during recovery must be an active process, recovery of plasma membrane ATPase (active transport system) functions has been implicated. In the present study, onion (Allium cepa L. cv Downing Yellow Globe) bulbs were subjected to a freeze-thaw stress which resulted in a reversible (recoverable) injury. Plasma membrane ATPase activity in the microsomes (isolated from the bulb scales) and ion leakage rate (efflux/hour) from the same scale tissue were measured immediately following thawing and after complete recovery. In injured tissue (30-40% water soaking), plasma membrane ATPase activity was reduced by about 30% and this was paralleled by about 25% higher ion leakage rate. As water soaking disappeared during recovery, the plasma membrane ATPase activity and the ion leakage rate returned to about the same level as the respective controls. Treatment of freeze-thaw injured tissue with vanadate, a specific inhibitor of plasma membrane ATPase, during postthaw prevented the recovery process. These results indicate that recovery of freeze-injured tissue depends on the functional activity of plasma membrane ATPase. PMID:16668063

  8. Metals Recovery from Artificial Ore in Case of Printed Circuit Boards, Using Plasmatron Plasma Reactor

    PubMed Central

    Szałatkiewicz, Jakub

    2016-01-01

    This paper presents the investigation of metals production form artificial ore, which consists of printed circuit board (PCB) waste, processed in plasmatron plasma reactor. A test setup was designed and built that enabled research of plasma processing of PCB waste of more than 700 kg/day scale. The designed plasma process is presented and discussed. The process in tests consumed 2 kWh/kg of processed waste. Investigation of the process products is presented with their elemental analyses of metals and slag. The average recovery of metals in presented experiments is 76%. Metals recovered include: Ag, Au, Pd, Cu, Sn, Pb, and others. The chosen process parameters are presented: energy consumption, throughput, process temperatures, and air consumption. Presented technology allows processing of variable and hard-to-process printed circuit board waste that can reach up to 100% of the input mass. PMID:28773804

  9. Metals Recovery from Artificial Ore in Case of Printed Circuit Boards, Using Plasmatron Plasma Reactor.

    PubMed

    Szałatkiewicz, Jakub

    2016-08-10

    This paper presents the investigation of metals production form artificial ore, which consists of printed circuit board (PCB) waste, processed in plasmatron plasma reactor. A test setup was designed and built that enabled research of plasma processing of PCB waste of more than 700 kg/day scale. The designed plasma process is presented and discussed. The process in tests consumed 2 kWh/kg of processed waste. Investigation of the process products is presented with their elemental analyses of metals and slag. The average recovery of metals in presented experiments is 76%. Metals recovered include: Ag, Au, Pd, Cu, Sn, Pb, and others. The chosen process parameters are presented: energy consumption, throughput, process temperatures, and air consumption. Presented technology allows processing of variable and hard-to-process printed circuit board waste that can reach up to 100% of the input mass.

  10. Diagnostic for Plasma Enhanced Chemical Vapor Deposition and Etch Systems

    NASA Technical Reports Server (NTRS)

    Cappelli, Mark A.

    1999-01-01

    In order to meet NASA's requirements for the rapid development and validation of future generation electronic devices as well as associated materials and processes, enabling technologies ion the processing of semiconductor materials arising from understanding etch chemistries are being developed through a research collaboration between Stanford University and NASA-Ames Research Center, Although a great deal of laboratory-scale research has been performed on many of materials processing plasmas, little is known about the gas-phase and surface chemical reactions that are critical in many etch and deposition processes, and how these reactions are influenced by the variation in operating conditions. In addition, many plasma-based processes suffer from stability and reliability problems leading to a compromise in performance and a potentially increased cost for the semiconductor manufacturing industry. Such a lack of understanding has hindered the development of process models that can aid in the scaling and improvement of plasma etch and deposition systems. The research described involves the study of plasmas used in semiconductor processes. An inductively coupled plasma (ICP) source in place of the standard upper electrode assembly of the Gaseous Electronics Conference (GEC) radio-frequency (RF) Reference Cell is used to investigate the discharge characteristics and chemistries. This ICP source generates plasmas with higher electron densities (approximately 10(exp 12)/cu cm) and lower operating pressures (approximately 7 mTorr) than obtainable with the original parallel-plate version of the GEC Cell. This expanded operating regime is more relevant to new generations of industrial plasma systems being used by the microelectronics industry. The motivation for this study is to develop an understanding of the physical phenomena involved in plasma processing and to measure much needed fundamental parameters, such as gas-phase and surface reaction rates. species concentration, temperature, ion energy distribution, and electron number density. A wide variety of diagnostic techniques are under development through this consortium grant to measure these parameters. including molecular beam mass spectrometry (MBMS). Fourier transform infrared (FTIR) spectroscopy, broadband ultraviolet (UV) absorption spectroscopy, a compensated Langmuir probe. Additional diagnostics. Such as microwave interferometry and microwave absorption for measurements of plasma density and radical concentrations are also planned.

  11. Preliminary results on the plasma environment of saturn from the pioneer 11 plasma analyzer experiment.

    PubMed

    Wolfe, J H; Mihalov, J D; Collard, H R; McKibbin, D D; Frank, L A; Intriligator, D S

    1980-01-25

    The Ames Research Center Pioneer 11 plasma analyzer experiment provided measurements of the solar wind interaction with Saturn and the character of the plasma environment within Saturn's magnetosphere. It is shown that Saturn has a detached bow shock wave and magnetopause quite similar to those at Earth and Jupiter. The scale size of the interaction region for Saturn is roughly one-third that at Jupiter, but Saturn's magnetosphere is equally responsive to changes in the solar wind dynamic pressure. Saturn's outer magnetosphere is inflated, as evidenced by the observation of large fluxes of corotating plasma. It is postulated that Saturn's magnetosphere may undergo a large expansion when the solar wind pressure is greatly diminished by the presence of Jupiter's extended magnetospheric tail when the two planets are approximately aligned along the same solar radial vector.

  12. Multi-scale simulations of space problems with iPIC3D

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Bettarini, Lapo; Markidis, Stefano

    The implicit Particle-in-Cell method for the computer simulation of space plasma, and its im-plementation in a three-dimensional parallel code, called iPIC3D, are presented. The implicit integration in time of the Vlasov-Maxwell system removes the numerical stability constraints and enables kinetic plasma simulations at magnetohydrodynamics scales. Simulations of mag-netic reconnection in plasma are presented to show the effectiveness of the algorithm. In particular we will show a number of simulations done for large scale 3D systems using the physical mass ratio for Hydrogen. Most notably one simulation treats kinetically a box of tens of Earth radii in each direction and was conducted using about 16000 processors of the Pleiades NASA computer. The work is conducted in collaboration with the MMS-IDS theory team from University of Colorado (M. Goldman, D. Newman and L. Andersson). Reference: Stefano Markidis, Giovanni Lapenta, Rizwan-uddin Multi-scale simulations of plasma with iPIC3D Mathematics and Computers in Simulation, Available online 17 October 2009, http://dx.doi.org/10.1016/j.matcom.2009.08.038

  13. Long-wavelength microinstabilities in toroidal plasmas*

    NASA Astrophysics Data System (ADS)

    Tang, W. M.; Rewoldt, G.

    1993-07-01

    Realistic kinetic toroidal eigenmode calculations have been carried out to support a proper assessment of the influence of long-wavelength microturbulence on transport in tokamak plasmas. In order to efficiently evaluate large-scale kinetic behavior extending over many rational surfaces, significant improvements have been made to a toroidal finite element code used to analyze the fully two-dimensional (r,θ) mode structures of trapped-ion and toroidal ion temperature gradient (ITG) instabilities. It is found that even at very long wavelengths, these eigenmodes exhibit a strong ballooning character with the associated radial structure relatively insensitive to ion Landau damping at the rational surfaces. In contrast to the long-accepted picture that the radial extent of trapped-ion instabilities is characterized by the ion-gyroradius-scale associated with strong localization between adjacent rational surfaces, present results demonstrate that under realistic conditions, the actual scale is governed by the large-scale variations in the equilibrium gradients. Applications to recent measurements of fluctuation properties in Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Nucl. Fusion Res. (International Atomic Energy Agency, Vienna, 1985), Vol. 1, p. 29] L-mode plasmas indicate that the theoretical trends appear consistent with spectral characteristics as well as rough heuristic estimates of the transport level. Benchmarking calculations in support of the development of a three-dimensional toroidal gyrokinetic code indicate reasonable agreement with respect to both the properties of the eigenfunctions and the magnitude of the eigenvalues during the linear phase of the simulations of toroidal ITG instabilities.

  14. Self-organizing Large-scale Structures in Earth's Foreshock Waves

    NASA Astrophysics Data System (ADS)

    Ganse, U.; Pfau-Kempf, Y.; Turc, L.; Hoilijoki, S.; von Alfthan, S.; Vainio, R. O.; Palmroth, M.

    2017-12-01

    Earth's foreshock is populated by plasma waves in the ULF regime, assumed to be caused by wave instabilities of shock-reflected particle beams. While in-situ observation of these waves has provided plentiful data of their amplitudes, frequencies, obliquities and relation to local plasma conditions, global-scale structures are hard to grasp from observation data alone. The hybrid-Vlasov simulation system Vlasiator, designed for kinetic modeling of the Earth's magnetosphere, has been employed to study foreshock formation under radial and near-radial IMF conditions on global scales. Structures arising in the foreshock can be comprehensively studied and directly compared to observation results. Our modeling results show that foreshock waves present emergent large-scale structures, in which regions of waves with similar phase exist. At the interfaces of these regions ("spines") we observe high wave obliquity, higher beam densities and lower beam velocities than inside them. We characterize these apparently self-organizing structures through the interplay between wave- and beam properties and present the microphysical mechanisms involved in their creation.

  15. Statistical properties of edge plasma turbulence in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Dewhurst, J. M.; Hnat, B.; Ohno, N.; Dendy, R. O.; Masuzaki, S.; Morisaki, T.; Komori, A.

    2008-09-01

    Ion saturation current (Isat) measurements made by three tips of a Langmuir probe array in the Large Helical Device are analysed for two plasma discharges. Absolute moment analysis is used to quantify properties on different temporal scales of the measured signals, which are bursty and intermittent. Strong coherent modes in some datasets are found to distort this analysis and are consequently removed from the time series by applying bandstop filters. Absolute moment analysis of the filtered data reveals two regions of power-law scaling, with the temporal scale τ ≈ 40 µs separating the two regimes. A comparison is made with similar results from the Mega-Amp Spherical Tokamak. The probability density function is studied and a monotonic relationship between connection length and skewness is found. Conditional averaging is used to characterize the average temporal shape of the largest intermittent bursts.

  16. Relativistic jets without large-scale magnetic fields

    NASA Astrophysics Data System (ADS)

    Parfrey, K.; Giannios, D.; Beloborodov, A.

    2014-07-01

    The canonical model of relativistic jets from black holes requires a large-scale ordered magnetic field to provide a significant magnetic flux through the ergosphere--in the Blandford-Znajek process, the jet power scales with the square of the magnetic flux. In many jet systems the presence of the required flux in the environment of the central engine is questionable. I will describe an alternative scenario, in which jets are produced by the continuous sequential accretion of small magnetic loops. The magnetic energy stored in these coronal flux systems is amplified by the differential rotation of the accretion disc and by the rotating spacetime of the black hole, leading to runaway field line inflation, magnetic reconnection in thin current layers, and the ejection of discrete bubbles of Poynting-flux-dominated plasma. For illustration I will show the results of general-relativistic force-free electrodynamic simulations of rotating black hole coronae, performed using a new resistivity model. The dissipation of magnetic energy by coronal reconnection events, as demonstrated in these simulations, is a potential source of the observed high-energy emission from accreting compact objects.

  17. Applications of Pulsed Power in Advanced Oxidation and Reduction Processes for Pollution Control

    DTIC Science & Technology

    1993-06-01

    electrical driver pulse width and rise time, electrical drive circuit coupling to plasma cells, and the role of UV light in the plasma chemistry and...will permit industrial service. Basic understanding of the plasma chemistry has evolved to the point where trends and equipment scaling can be

  18. Generation of large-scale magnetic fields by small-scale dynamo in shear flows

    NASA Astrophysics Data System (ADS)

    Squire, Jonathan; Bhattacharjee, Amitava

    2015-11-01

    A new mechanism for turbulent mean-field dynamo is proposed, in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the ``shear-current'' effect. The dynamo is studied using a variety of computational and analytic techniques, both when the magnetic fluctuations arise self-consistently through the small-scale dynamo and in lower Reynolds number regimes. Given the inevitable existence of non-helical small-scale magnetic fields in turbulent plasmas, as well as the generic nature of velocity shear, the suggested mechanism may help to explain generation of large-scale magnetic fields across a wide range of astrophysical objects. This work was supported by a Procter Fellowship at Princeton University, and the US Department of Energy Grant DE-AC02-09-CH11466.

  19. Microstructural Evolution of Nanocrystalline Diamond Films Due to CH4/Ar/H2 Plasma Post-Treatment Process.

    PubMed

    Lin, Sheng-Chang; Yeh, Chien-Jui; Manoharan, Divinah; Leou, Keh-Chyang; Lin, I-Nan

    2015-10-07

    Plasma post-treatment process was observed to markedly enhance the electron field emission (EFE) properties of ultrananocrystalline diamond (UNCD) films. TEM examinations reveal that the prime factor which improves the EFE properties of these films is the coalescence of ultrasmall diamond grains (∼5 nm) forming large diamond grains about hundreds of nanometers accompanied by the formation of nanographitic clusters along the grain boundaries due to the plasma post-treatment process. OES studies reveal the presence of large proportion of atomic hydrogen and C2 (or CH) species, which are the main ingredients that altered the granular structure of the UNCD films. In the post-treatment process, the plasma interacts with the diamond films by a diffusion process. The recrystallization of diamond grains started at the surface region of the material, and the interaction zone increased with the post-treatment period. The entire diamond film can be converted into a nanocrystalline granular structure when post-treated for a sufficient length of time.

  20. AGN jet feedback on a moving mesh: cocoon inflation, gas flows and turbulence

    NASA Astrophysics Data System (ADS)

    Bourne, Martin A.; Sijacki, Debora

    2017-12-01

    In many observed galaxy clusters, jets launched by the accretion process on to supermassive black holes, inflate large-scale cavities filled with energetic, relativistic plasma. This process is thought to be responsible for regulating cooling losses, thus moderating the inflow of gas on to the central galaxy, quenching further star formation and maintaining the galaxy in a red and dead state. In this paper, we implement a new jet feedback scheme into the moving mesh-code AREPO, contrast different jet injection techniques and demonstrate the validity of our implementation by comparing against simple analytical models. We find that jets can significantly affect the intracluster medium (ICM), offset the overcooling through a number of heating mechanisms, as well as drive turbulence, albeit within the jet lobes only. Jet-driven turbulence is, however, a largely ineffective heating source and is unlikely to dominate the ICM heating budget even if the jet lobes efficiently fill the cooling region, as it contains at most only a few per cent of the total injected energy. We instead show that the ICM gas motions, generated by orbiting substructures, while inefficient at heating the ICM, drive large-scale turbulence and when combined with jet feedback, result in line-of-sight velocities and velocity dispersions consistent with the Hitomi observations of the Perseus cluster.

  1. Atomic Precision Plasma Processing - Modeling Investigations

    NASA Astrophysics Data System (ADS)

    Rauf, Shahid

    2016-09-01

    Sub-nanometer precision is increasingly being required of many critical plasma processes in the semiconductor industry. Some of these critical processes include atomic layer etch and plasma enhanced atomic layer deposition. Accurate control over ion energy and ion / radical composition is needed during plasma processing to meet the demanding atomic-precision requirements. While improvements in mainstream inductively and capacitively coupled plasmas can help achieve some of these goals, newer plasma technologies can expand the breadth of problems addressable by plasma processing. Computational modeling is used to examine issues relevant to atomic precision plasma processing in this paper. First, a molecular dynamics model is used to investigate atomic layer etch of Si and SiO2 in Cl2 and fluorocarbon plasmas. Both planar surfaces and nanoscale structures are considered. It is shown that accurate control of ion energy in the sub-50 eV range is necessary for atomic scale precision. In particular, if the ion energy is greater than 10 eV during plasma processing, several atomic layers get damaged near the surface. Low electron temperature (Te) plasmas are particularly attractive for atomic precision plasma processing due to their low plasma potential. One of the most attractive options in this regard is energetic-electron beam generated plasma, where Te <0.5 eV has been achieved in plasmas of molecular gases. These low Te plasmas are computationally examined in this paper using a hybrid fluid-kinetic model. It is shown that such plasmas not only allow for sub-5 eV ion energies, but also enable wider range of ion / radical composition. Coauthors: Jun-Chieh Wang, Jason Kenney, Ankur Agarwal, Leonid Dorf, and Ken Collins.

  2. Preliminary feasibility study of pallet-only mode for magnetospheric and plasmas in space payloads, volume 4

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Results of studies performed on the magnetospheric and plasma portion of the AMPS are presented. Magnetospheric and plasma in space experiments and instruments are described along with packaging (palletization) concepts. The described magnetospheric and plasma experiments were considered as separate entities. Instrumentation ospheric and plasma experiments were considered as separate entities. Instrumentation requirements and operations were formulated to provide sufficient data for unambiguous interpretation of results without relying upon other experiments of the series. Where ground observations are specified, an assumption was made that large-scale additions or modifications to existing facilities were not required.

  3. Magnetic islands in the near geomagnetic tail and its implications for the mechanism of 1054 UT CDAW 6 substorm

    NASA Technical Reports Server (NTRS)

    Lin, N.; Walker, R. J.; Mcpherron, R. L.; Kivelson, M. G.

    1990-01-01

    During the 1054 UT CDAW 6 substorm event, two ISEE spacecraft observed dynamic changes in the magnetic field and in the flux of energetic particles in the near-earth plasma sheet. In the substorm growth phase, the magnetic field at both ISEE spacecraft became tail-like. Following expansion phase onset, two small scale magnetic islands were observed moving tailward at a velocity of about 580 km/s. The passage of these two magnetic islands was coincident with bursts of tailward streaming energetic particles. The length of the magnetic loops was estimated to have been about 2 to 3 earth radii while the height of the loops was less than 0.5 earth radii. The magnetic islands were produced by multipoint reconnection processes in the near tail plasma sheet which may have been associated with the formation of the near-earth neutral line and the subsequent formation of a large scale plasmoid. The near-earth neutral line retreated tailward later in the expansion phase, as suggested by the reversal of the streaming of energetic particles.

  4. Influence of surface defects on the tensile strength of carbon fibers

    NASA Astrophysics Data System (ADS)

    Vautard, F.; Dentzer, J.; Nardin, M.; Schultz, J.; Defoort, B.

    2014-12-01

    The mechanical properties of carbon fibers, especially their tensile properties, are affected by internal and surface defects. In order to asses in what extent the generation of surface defects can result in a loss of the mechanical properties, non-surface treated carbon fibers were oxidized with three different surface treatment processes: electro-chemical oxidation, oxidation in nitric acid, and oxidation in oxygen plasma. Different surface topographies and surface chemistries were obtained, as well as different types and densities of surface defects. The density of surface defects was measured with both a physical approach (Raman spectroscopy) and a chemical approach (Active Surface Area). The tensile properties were evaluated by determining the Weibull modulus and the scale parameter of each reference, after measuring the tensile strength for four different gauge lengths. A relationship between the tensile properties and the nature and density of surface defects was noticed, as large defects largely control the value of the tensile strength. When optimized, some oxidation surface treatment processes can generate surface functional groups as well as an increase of the mechanical properties of the fibers, because of the removal of the contamination layer of pyrolytic carbon generated during the carbonization of the polyacrylonitrile precursor. Oxidation in oxygen plasma revealed to be a promising technology for alternative surface treatment processes, as high levels of functionalization were achieved and a slight improvement of the mechanical properties was obtained too.

  5. Reproducing continuous radio blackout using glow discharge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Kai; Li, Xiaoping; Liu, Donglin

    2013-10-15

    A novel plasma generator is described that offers large-scale, continuous, non-magnetized plasma with a 30-cm-diameter hollow structure, which provides a path for an electromagnetic wave. The plasma is excited by a low-pressure glow discharge, with varying electron densities ranging from 10{sup 9} to 2.5 × 10{sup 11} cm{sup −3}. An electromagnetic wave propagation experiment reproduced a continuous radio blackout in UHF-, L-, and S-bands. The results are consistent with theoretical expectations. The proposed method is suitable in simulating a plasma sheath, and in researching communications, navigation, electromagnetic mitigations, and antenna compensation in plasma sheaths.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Hong; Liu, Jian; Xiao, Jianyuan

    Particle-in-cell (PIC) simulation is the most important numerical tool in plasma physics. However, its long-term accuracy has not been established. To overcome this difficulty, we developed a canonical symplectic PIC method for the Vlasov-Maxwell system by discretising its canonical Poisson bracket. A fast local algorithm to solve the symplectic implicit time advance is discovered without root searching or global matrix inversion, enabling applications of the proposed method to very large-scale plasma simulations with many, e.g. 10(9), degrees of freedom. The long-term accuracy and fidelity of the algorithm enables us to numerically confirm Mouhot and Villani's theory and conjecture on nonlinearmore » Landau damping over several orders of magnitude using the PIC method, and to calculate the nonlinear evolution of the reflectivity during the mode conversion process from extraordinary waves to Bernstein waves.« less

  7. Shape of the terrestrial plasma sheet in the near-Earth magnetospheric tail as imaged by the Interstellar Boundary Explorer

    DOE PAGES

    Dayeh, M. A.; Fuselier, S. A.; Funsten, H. O.; ...

    2015-04-11

    We present remote, continuous observations from the Interstellar Boundary Explorer of the terrestrial plasma sheet location back to -16 Earth radii (R E) in the magnetospheric tail using energetic neutral atom emissions. The time period studied includes two orbits near the winter and summer solstices, thus associated with large negative and positive dipole tilt, respectively. Continuous side-view images reveal a complex shape that is dominated mainly by large-scale warping due to the diurnal motion of the dipole axis. Superposed on the global warped geometry are short-time fluctuations in plasma sheet location that appear to be consistent with plasma sheet flappingmore » and possibly twisting due to changes in the interplanetary conditions. We conclude that the plasma sheet warping due to the diurnal motion dominates the average shape of the plasma sheet. Over short times, the position of the plasma sheet can be dominated by twisting and flapping.« less

  8. Exact Turbulence Law in Collisionless Plasmas: Hybrid Simulations

    NASA Astrophysics Data System (ADS)

    Hellinger, P.; Verdini, A.; Landi, S.; Franci, L.; Matteini, L.

    2017-12-01

    An exact vectorial law for turbulence in homogeneous incompressible Hall-MHD is derived and tested in two-dimensional hybrid simulations of plasma turbulence. The simulations confirm the validity of the MHD exact law in the kinetic regime, the simulated turbulence exhibits a clear inertial range on large scales where the MHD cascade flux dominates. The simulation results also indicate that in the sub-ion range the cascade continues via the Hall term and that the total cascade rate tends to decrease at around the ion scales, especially in high-beta plasmas. This decrease is like owing to formation of non-thermal features, such as collisionless ion energization, that can not be retained in the Hall MHD approximation.

  9. Tungsten dust impact on ITER-like plasma edge

    DOE PAGES

    Smirnov, R. D.; Krasheninnikov, S. I.; Pigarov, A. Yu.; ...

    2015-01-12

    The impact of tungsten dust originating from divertor plates on the performance of edge plasma in ITER-like discharge is evaluated using computer modeling with the coupled dust-plasma transport code DUSTT-UEDGE. Different dust injection parameters, including dust size and mass injection rates, are surveyed. It is found that tungsten dust injection with rates as low as a few mg/s can lead to dangerously high tungsten impurity concentrations in the plasma core. Dust injections with rates of a few tens of mg/s are shown to have a significant effect on edge plasma parameters and dynamics in ITER scale tokamaks. The large impactmore » of certain phenomena, such as dust shielding by an ablation cloud and the thermal force on tungsten ions, on dust/impurity transport in edge plasma and consequently on core tungsten contamination level is demonstrated. Lastly, it is also found that high-Z impurities provided by dust can induce macroscopic self-sustained plasma oscillations in plasma edge leading to large temporal variations of edge plasma parameters and heat load to divertor target plates.« less

  10. Analysis of Helium Segregation on Surfaces of Plasma-Exposed Tungsten

    NASA Astrophysics Data System (ADS)

    Maroudas, Dimitrios; Hu, Lin; Hammond, Karl; Wirth, Brian

    2015-11-01

    We report a systematic theoretical and atomic-scale computational study of implanted helium segregation on surfaces of tungsten, which is considered as a plasma facing component in nuclear fusion reactors. We employ a hierarchy of atomic-scale simulations, including molecular statics to understand the origin of helium surface segregation, targeted molecular-dynamics (MD) simulations of near-surface cluster reactions, and large-scale MD simulations of implanted helium evolution in plasma-exposed tungsten. We find that small, mobile helium clusters (of 1-7 He atoms) in the near-surface region are attracted to the surface due to an elastic interaction force. This thermodynamic driving force induces drift fluxes of these mobile clusters toward the surface, facilitating helium segregation. Moreover, the clusters' drift toward the surface enables cluster reactions, most importantly trap mutation, at rates much higher than in the bulk material. This cluster dynamics has significant effects on the surface morphology, near-surface defect structures, and the amount of helium retained in the material upon plasma exposure.

  11. Ionospheric Research with Miniaturized Plasma Sensors Aboard FalconSAT-3

    NASA Astrophysics Data System (ADS)

    Habash Krause, L.; Herrero, F. A.; Chun, F. K.; McHarg, M. G.

    2003-12-01

    Investigations into a novel technique to measure ionosphere-thermosphere parameters have culminated in the Flat Plasma Spectrometer (FLAPS) experiment, presently under development through a collaboration between NASA Goddard Space Flight Center (GSFC) and the U. S. Air Force Academy (USAFA). FLAPS is capable of providing measurements of the full neutral wind vector, full ion-drift velocity vector, neutral and ion temperatures, and deviations from thermalization. In addition, coarse mass spectroscopy is possible using an energy analysis technique. The suite of instruments is comprised of a set of 16 individual neutral and ion analyzers, each of which is designed to perform a specific function. Advances in miniaturization technology have enabled a design in which the 16-sensor suite resides on a circular microchannel plate with an effective area of 25 cm2. The FLAPS electronics package, consisting of low voltage and high voltage power supplies, a microprocessor, and Application Specific Integrated Circuit (ASIC) amplifiers, requires a volume of 290 cm3, power of 1.5 W, and a mass of 500 g. The suite requires a +5V regulated power line from the spacecraft, and the telemetry interface is a 5.0 V TTL-compatible serial connection. Data collection rates vary from 1 to 1000 (192 Byte) spectra per second. The motivation for the FLAPS experiment is driven by objectives that fall into both basic science and technology demonstration categories. Scientifically, there is strong interest in the effects of ionosphere-thermosphere coupling and non-thermalized plasma on the processes associated with equatorial F-region ionospheric plasma bubbles. These bubbles have been known to scintillate transionospheric propagation of radio waves, often resulting in disruptions of space-based communication and navigation systems. FLAPS investigations will assist in quantifying the impact of various processes on the instigation or suppression of plasma bubbles; certain outstanding questions include 1) What is the relevance of meridional winds in suppression of plasma bubble growth? 2) What role does a velocity space instability driven by non-thermalized plasma play in the generation of small scale (<1 km) bubbles? 3) What process is responsible for turbulence in plasma beyond the edges of a bubble structure? Technologically, the need for small yet capable instruments arises from the desire to make multipoint in situ measurements of "microscopic" plasma parameters to provide insight into "macroscopic" phenomena. Examples include coherency of spatial boundaries of large-scale ( ˜100 km) plasma bubbles, three dimensional structure of the equatorial wind and temperature anomaly, and vertical velocity gradients in the low latitude ionosphere. This paper provides an overview of the experiment motivation and instrument design of the FLAPS experiment.

  12. Modeling RF-induced Plasma-Surface Interactions with VSim

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Smithe, David N.; Pankin, Alexei Y.; Roark, Christine M.; Stoltz, Peter H.; Zhou, Sean C.-D.; Kruger, Scott E.

    2014-10-01

    An overview of ongoing enhancements to the Plasma Discharge (PD) module of Tech-X's VSim software tool is presented. A sub-grid kinetic sheath model, developed for the accurate computation of sheath potentials near metal and dielectric-coated walls, enables the physical effects of DC and RF sheath dynamics to be included in macroscopic-scale plasma simulations that need not explicitly resolve sheath scale lengths. Sheath potential evolution, together with particle behavior near the sheath (e.g. sputtering), can thus be simulated in complex, experimentally relevant geometries. Simulations of RF sheath-enhanced impurity production near surfaces of the C-Mod field-aligned ICRF antenna are presented to illustrate the model; impurity mitigation techniques are also explored. Model extensions to capture the physics of secondary electron emission and of multispecies plasmas are summarized, together with a discussion of improved tools for plasma chemistry and IEDF/EEDF visualization and modeling. The latter tools are also highly relevant for commercial plasma processing applications. Ultimately, we aim to establish VSimPD as a robust, efficient computational tool for modeling fusion and industrial plasma processes. Supported by U.S. DoE SBIR Phase I/II Award DE-SC0009501.

  13. Investigation of some process parameters using microwave plasma technology for the treatment of radioactive waste

    NASA Astrophysics Data System (ADS)

    Trnovcevic, J.; Schneider, F.; Scherer, U. W.

    2017-02-01

    The production of nuclear energy and the application of other nuclear technologies produce large volumes of low- and intermediate-level radioactive wastes. To investigate a novel means of treating such wastes, plasma is investigated for its efficacy. Plasma treatment promises to simultaneously treat all waste types without any previous sorting or pre-treatment. Microwave-driven plasma torches have the advantage of high-energy efficiency and low-electrode wear. In small-scale experiments, several design variations of an open plasma oven were assembled in order to investigate constraints caused by the materials and oven geometry. The experimental set-up was modified several times in order to test the design characteristics and the variation of plasma-specific proprieties related to the radioactive waste treatment and in order to find a suitable solution with the minimum complexity that allows a representative reproducibility of the results obtained. A plasma torch controlled by a 2.45 GHz microwave signal of up to 200 W was used, employing air as the primary plasma gas with a flow rate of ∼2 L/min. Different organic and inorganic materials in different shapes and sizes were treated besides a standardized mixture resembling mixed wastes from nuclear plants. The results prove that the chosen microwave plasma torch is suitable for a combined combustion and melting of organic and in-organic materials. Investigation of the specimen size to be treated is influential in this process: the power is still too low to melt larger samples, but the temperature is sufficient to treat all kinds of material. When glass particles are added, materials melt together to form an amorphous substance, proving the possibility to vitrify material with this plasma torch. By optimization of the oven configuration, the time needed to combust 25 g of standard sample was reduced by ∼50%. Typical energy efficiencies were found in the range of 8-20% for melting of metal chipping, and ∼90% for melting of zinc powder.

  14. Investigating the ion-scale spectral break of solar wind turbulence from low to high plasma beta with high-resolution hybrid simulations

    NASA Astrophysics Data System (ADS)

    Franci, Luca; Landi, Simone; Matteini, Lorenzo; Verdini, Andrea; Hellinger, Petr

    2016-04-01

    We investigate the properties of the ion-scale spectral break of solar wind turbulence by means of two-dimensional, large-scale, high-resolution hybrid particle-in-cell simulations. We impose an initial ambient magnetic field perpendicular to the simulation box, and we add a spectrum of in-plane large- scale magnetic and kinetic fluctuations, with energy equipartition and vanishing correlation. We perform a set of ten simulations with different values of the ion plasma beta, β_i. In all cases, we observe the power spectrum of the total magnetic fluctuations following a power law with a spectral index of -5/3 in the inertial range, with a smooth break around ion scales and a steeper power law in the sub-ion range. This spectral break always occurs at spatial scales of the order of the proton gyroradius, ρ_i, and the proton inertial length, di = ρi / √{β_i}. When the plasma beta is of the order of 1, the two scales are very close to each other and determining which is directly related to the steepening of the spectra it's not straightforward at all. In order to overcome this limitation, we extended the range of values of βi over three orders of magnitude, from 0.01 to 10, so that the two ion scales were well separated. This let us observe that the break always seems to occur at the larger of the two scales, i.e., at di for βi 1. The effect of βi on the spectra of the parallel and perpendicular magnetic components separately and of the density fluctuations is also investigated. We compare all our numerical results with solar wind observations and suggest possible explanations for our findings.

  15. Investigation of Recombination Processes In A Magnetized Plasma

    NASA Technical Reports Server (NTRS)

    Chavers, Greg; Chang-Diaz, Franklin; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Interplanetary travel requires propulsion systems that can provide high specific impulse (Isp), while also having sufficient thrust to rapidly accelerate large payloads. One such propulsion system is the Variable Specific Impulse Magneto-plasma Rocket (VASIMR), which creates, heats, and exhausts plasma to provide variable thrust and Isp, optimally meeting the mission requirements. A large fraction of the energy to create the plasma is frozen in the exhaust in the form of ionization energy. This loss mechanism is common to all electromagnetic plasma thrusters and has an impact on their efficiency. When the device operates at high Isp, where the exhaust kinetic energy is high compared to the ionization energy, the frozen flow component is of little consequence; however, at low Isp, the effect of the frozen flow may be important. If some of this energy could be recovered through recombination processes, and re-injected as neutral kinetic energy, the efficiency of VASIMR, in its low Isp/high thrust mode may be improved. In this operating regime, the ionization energy is a large portion of the total plasma energy. An experiment is being conducted to investigate the possibility of recovering some of the energy used to create the plasma. This presentation will cover the progress and status of the experiment involving surface recombination of the plasma.

  16. Topography preserved microwave plasma etching for top-down layer engineering in MoS2 and other van der Waals materials.

    PubMed

    Varghese, Abin; Sharma, Chithra H; Thalakulam, Madhu

    2017-03-17

    A generic and universal layer engineering strategy for van der Waals (vW) materials, scalable and compatible with the current semiconductor technology, is of paramount importance in realizing all-two-dimensional logic circuits and to move beyond the silicon scaling limit. In this letter, we demonstrate a scalable and highly controllable microwave plasma based layer engineering strategy for MoS 2 and other vW materials. Using this technique we etch MoS 2 flakes layer-by-layer starting from an arbitrary thickness and area down to the mono- or the few-layer limit. From Raman spectroscopy, atomic force microscopy, photoluminescence spectroscopy, scanning electron microscopy and transmission electron microscopy, we confirm that the structural and morphological properties of the material have not been compromised. The process preserves the pre-etch layer topography and yields a smooth and pristine-like surface. We explore the electrical properties utilising a field effect transistor geometry and find that the mobility values of our samples are comparable to those of the pristine ones. The layer removal does not involve any reactive gasses or chemical reactions and relies on breaking the weak inter-layer vW interaction making it a generic technique for a wide spectrum of layered materials and heterostructures. We demonstrate the wide applicability of the technique by extending it to other systems such as graphene, h-BN and WSe 2 . In addition, using microwave plasma in combination with standard lithography, we illustrate a lateral patterning scheme making this process a potential candidate for large scale device fabrication in addition to layer engineering.

  17. Alternative modeling methods for plasma-based Rf ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veitzer, Seth A., E-mail: veitzer@txcorp.com; Kundrapu, Madhusudhan, E-mail: madhusnk@txcorp.com; Stoltz, Peter H., E-mail: phstoltz@txcorp.com

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H{sup −} source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. Inmore » particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H{sup −} ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD models for the SNS source and present simulation results demonstrating plasma evolution over many Rf periods for different plasma temperatures. We perform the calculations in parallel, on unstructured meshes, using finite-volume solvers in order to obtain results in reasonable time.« less

  18. Alternative modeling methods for plasma-based Rf ion sources.

    PubMed

    Veitzer, Seth A; Kundrapu, Madhusudhan; Stoltz, Peter H; Beckwith, Kristian R C

    2016-02-01

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H(-) source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H(-) ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD models for the SNS source and present simulation results demonstrating plasma evolution over many Rf periods for different plasma temperatures. We perform the calculations in parallel, on unstructured meshes, using finite-volume solvers in order to obtain results in reasonable time.

  19. The solar wind structure that caused a large-scale disturbance of the plasma tail of comet Austin

    NASA Technical Reports Server (NTRS)

    Kozuka, Yukio; Konno, Ichishiro; Saito, Takao; Numazawa, Shigemi

    1992-01-01

    The plasma tail of Comet Austin (1989c1) showed remarkable disturbances because of the solar maximum periods and its orbit. Figure 1 shows photographs of Comet Austin taken in Shibata, Japan, on 29 Apr. 1990 UT, during about 20 minutes with the exposure times of 90 to 120 s. There are two main features in the disturbance; one is many bowed structures, which seem to move tailwards; and the other is a large-scale wavy structure. The bowed structures can be interpreted as arcade structures brushing the surface of both sides of the cometary plasma surrounding the nucleus. We identified thirteen structures of the arcades from each of the five photographs and calculated the relation between the distance of each structure from the cometary nucleus, chi, and the velocity, upsilon. The result is shown. This indicates that the velocity of the structures increases with distance. This is consistent with the result obtained from the observation at the Kiso Observatory.

  20. Kinetic description of large-scale low pressure glow discharges

    NASA Astrophysics Data System (ADS)

    Kortshagen, Uwe; Heil, Brian

    1997-10-01

    In recent years the so called ``nonlocal approximation'' to the solution of the electron Boltzmann equation has attracted considerable attention as an extremely efficient method for the kinetic modeling of low pressure discharges. However, it appears that modern discharges, which are optimized to provide large-scale plasma uniformity, are explicitly designed to work in a regime, in which the nonlocal approximation is no longer strictly valid. In the presentation we discuss results of a hybrid model, which is based on the natural division of the electron distribution function into a nonlocal body, which is determined by elastic collisions only, and a high energy part which requires a more complete treatment due to the action of inelastic collisions and wall losses of electrons. The method is applied to an inductively coupled low pressure discharge. We discuss the transition from plasma density profiles maximal on the discharge axis to plasma density profiles with off-center maxima, which has been observed in experiments. A positive feedback mechanism involved in this transition is pointed out.

  1. The SCOPE mission

    NASA Astrophysics Data System (ADS)

    Fujimoto, Masaki

    In order to open the new horizon of research in the Plasma Universe, SCOPE will perform simultaneous multi-scale observations that enables data-based study on the key space plasma processes from the cross-scale coupling point of view. The key processes to be studied are magnetic reconnection under various boundary conditions, shocks in space plasma, collisionless plasma mixing at the boundaries, and physics of current sheets embedded in complex magnetic geometries. The orbit is equatorial, 10x25 Re, such that in-situ observations of the above key processes are possible. The SCOPE mission is made up of a pair of mother-daughter spacecraft and a three spacecraft formation. The spacecraft pair will zoom-in to the microphysics while the spacecraft formation will observe macro-scale dynamics surrouding the key region to be studied by the mother-daughter pair. The mother spacecraft is equipped with a full suite of particle detector including ultra-high sampling cycle electron detector. The daughter spacecraft remains near ( 10km) the mother spacecraft and the spacecraft-pair will focus on wave-particle interaction utilizing inter-spacecraft communication. The inter-spacecraft distance of the for-mation varies from below 100km to above 3000km so that surrounding dynamics at various scales (electron, ion and MHD) can be studied. While the core part of the mission is planned to be a CSA-JAXA (Canada-Japan) collaboration, further international collaborations to en-hance the science return of the mission are welcome.

  2. Numerical methods for large-scale, time-dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Turkel, E.

    1979-01-01

    A survey of numerical methods for time dependent partial differential equations is presented. The emphasis is on practical applications to large scale problems. A discussion of new developments in high order methods and moving grids is given. The importance of boundary conditions is stressed for both internal and external flows. A description of implicit methods is presented including generalizations to multidimensions. Shocks, aerodynamics, meteorology, plasma physics and combustion applications are also briefly described.

  3. The role of the large scale convection electric field in erosion of the plasmasphere during moderate and strong storms

    NASA Astrophysics Data System (ADS)

    Thaller, S. A.; Wygant, J. R.; Cattell, C. A.; Breneman, A. W.; Bonnell, J. W.; Kletzing, C.; De Pascuale, S.; Kurth, W. S.; Hospodarsky, G. B.; Bounds, S. R.

    2015-12-01

    The Van Allen Probes offer the first opportunity to investigate the response of the plasmasphere to the enhancement and penetration of the large scale duskward convection electric field in different magnetic local time (MLT) sectors. Using electric field measurements and estimates of the cold plasma density from the Van Allen Probes' Electric Fields and Waves (EFW) instrument, we study erosion of the plasmasphere during moderate and strong geomagnetic storms. We present the electric field and density data both on an orbit by orbit basis and synoptically, showing the behavior of the convection electric field and plasmasphere over a period of months. The data indicate that the large scale duskward electric field penetrates deep (L shell < 3) into the inner magnetosphere on both the dusk and dawn sides, but that the plasmasphere response on the dusk and dawn sides differ. In particular, significant (~2 orders of magnitude) decreases in the cold plasma density occur on the dawn side within hours of the onset of enhanced duskward electric field. In contrast, on the dusk side, the plasmapause is located at higher L shell than it is on the dawn side. In some cases, in the post-noon sector, cold plasma density enhancements accompany duskward electric field enhancements for the first orbit after the electric field enchantment, consistent with a duskside, sunward flowing, drainage plume.

  4. Traveling magnetopause distortion related to a large-scale magnetosheath plasma jet: THEMIS and ground-based observations

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. V.; Suvorova, A. V.

    2012-08-01

    Here, we present a case study of THEMIS and ground-based observations of the perturbed dayside magnetopause and the geomagnetic field in relation to the interaction of an interplanetary directional discontinuity (DD) with the magnetosphere on 16 June 2007. The interaction resulted in a large-scale local magnetopause distortion of an "expansion - compression - expansion" (ECE) sequence that lasted for ˜15 min. The compression was caused by a very dense, cold, and fast high-βmagnetosheath plasma flow, a so-called plasma jet, whose kinetic energy was approximately three times higher than the energy of the incident solar wind. The plasma jet resulted in the effective penetration of magnetosheath plasma inside the magnetosphere. A strong distortion of the Chapman-Ferraro current in the ECE sequence generated a tripolar magnetic pulse "decrease - peak- decrease" (DPD) that was observed at low and middle latitudes by some ground-based magnetometers of the INTERMAGNET network. The characteristics of the ECE sequence and the spatial-temporal dynamics of the DPD pulse were found to be very different from any reported patterns of DD interactions with the magnetosphere. The observed features only partially resembled structures such as FTE, hot flow anomalies, and transient density events. Thus, it is difficult to explain them in the context of existing models.

  5. Investigation of laser pulse length and pre-plasma scale length impact on hot electron generation on OMEGA-EP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peebles, J.; Wei, M. S.; Arefiev, A. V.

    A series of experiments studying pre-plasma’s effect on electron generation and transport due to a high intensity laser were conducted on the OMEGA-EP laser facility. A controlled pre-plasma was produced in front of an aluminum foil target prior to the arrival of the high intensity short pulse beam. Energetic electron spectra were characterized with magnetic and bremsstrahlung spectrometers. Preplasma and pulse length were shown to have a large impact on the temperature of lower energy, ponderomotive scaling electrons. Furthermore, super-ponderomotive electrons, seen in prior pre-plasma experiments with shorter pulses, were observed without any initial pre-plasma in our experiment. 2D particle-in-cellmore » and radiation-hydrodynamic simulations shed light on and validate these experimental results.« less

  6. Investigation of laser pulse length and pre-plasma scale length impact on hot electron generation on OMEGA-EP

    DOE PAGES

    Peebles, J.; Wei, M. S.; Arefiev, A. V.; ...

    2017-02-02

    A series of experiments studying pre-plasma’s effect on electron generation and transport due to a high intensity laser were conducted on the OMEGA-EP laser facility. A controlled pre-plasma was produced in front of an aluminum foil target prior to the arrival of the high intensity short pulse beam. Energetic electron spectra were characterized with magnetic and bremsstrahlung spectrometers. Preplasma and pulse length were shown to have a large impact on the temperature of lower energy, ponderomotive scaling electrons. Furthermore, super-ponderomotive electrons, seen in prior pre-plasma experiments with shorter pulses, were observed without any initial pre-plasma in our experiment. 2D particle-in-cellmore » and radiation-hydrodynamic simulations shed light on and validate these experimental results.« less

  7. Development of Terahertz Rayleigh Scattering Diagnostics for a Solid Rocket Exhaust Plume

    DTIC Science & Technology

    2010-10-28

    experiment. Many of these experiments involve a diagnostic of a plasma which while different from strictly particles, still provides insight into the...investigate the properties of small plasma objects. Their study developed a method that could be used as a diagnostic for small scale plasmas such...as laser sparks, avalanche-streamer transitions, and resonance-enhanced multi- photon ionizations processes. They treated a plasma as a source of

  8. Runaway of energetic test ions in a toroidal plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eilerman, S., E-mail: eilerman@wisc.edu; Anderson, J. K.; Sarff, J. S.

    2015-02-15

    Ion runaway in the presence of a large-scale, reconnection-driven electric field has been conclusively measured in the Madison Symmetric Torus reversed-field pinch (RFP). Measurements of the acceleration of a beam of fast ions agree well with test particle and Fokker-Planck modeling of the runaway process. However, the runaway mechanism does not explain all measured ion heating in the RFP, particularly previous measurements of strong perpendicular heating. It is likely that multiple energization mechanisms occur simultaneously and with differing significance for magnetically coupled thermal ions and magnetically decoupled tail and beam ions.

  9. Identification of scintillation signatures on GPS signals originating from plasma structures detected with EISCAT incoherent scatter radar along the same line of sight

    NASA Astrophysics Data System (ADS)

    Forte, Biagio; Coleman, Chris; Skone, Susan; Häggström, Ingemar; Mitchell, Cathryn; Da Dalt, Federico; Panicciari, Tommaso; Kinrade, Joe; Bust, Gary

    2017-01-01

    Ionospheric scintillation originates from the scattering of electromagnetic waves through spatial gradients in the plasma density distribution, drifting across a given propagation direction. Ionospheric scintillation represents a disruptive manifestation of adverse space weather conditions through degradation of the reliability and continuity of satellite telecommunication and navigation systems and services (e.g., European Geostationary Navigation Overlay Service, EGNOS). The purpose of the experiment presented here was to determine the contribution of auroral ionization structures to GPS scintillation. European Incoherent Scatter (EISCAT) measurements were obtained along the same line of sight of a given GPS satellite observed from Tromso and followed by means of the EISCAT UHF radar to causally identify plasma structures that give rise to scintillation on the co-aligned GPS radio link. Large-scale structures associated with the poleward edge of the ionospheric trough, with auroral arcs in the nightside auroral oval and with particle precipitation at the onset of a substorm were indeed identified as responsible for enhanced phase scintillation at L band. For the first time it was observed that the observed large-scale structures did not cascade into smaller-scale structures, leading to enhanced phase scintillation without amplitude scintillation. More measurements and theory are necessary to understand the mechanism responsible for the inhibition of large-scale to small-scale energy cascade and to reproduce the observations. This aspect is fundamental to model the scattering of radio waves propagating through these ionization structures. New insights from this experiment allow a better characterization of the impact that space weather can have on satellite telecommunications and navigation services.

  10. Identification of scintillation signatures on GPS signals originating from plasma structures detected with EISCAT incoherent scatter radar along the same line of sight.

    PubMed

    Forte, Biagio; Coleman, Chris; Skone, Susan; Häggström, Ingemar; Mitchell, Cathryn; Da Dalt, Federico; Panicciari, Tommaso; Kinrade, Joe; Bust, Gary

    2017-01-01

    Ionospheric scintillation originates from the scattering of electromagnetic waves through spatial gradients in the plasma density distribution, drifting across a given propagation direction. Ionospheric scintillation represents a disruptive manifestation of adverse space weather conditions through degradation of the reliability and continuity of satellite telecommunication and navigation systems and services (e.g., European Geostationary Navigation Overlay Service, EGNOS). The purpose of the experiment presented here was to determine the contribution of auroral ionization structures to GPS scintillation. European Incoherent Scatter (EISCAT) measurements were obtained along the same line of sight of a given GPS satellite observed from Tromso and followed by means of the EISCAT UHF radar to causally identify plasma structures that give rise to scintillation on the co-aligned GPS radio link. Large-scale structures associated with the poleward edge of the ionospheric trough, with auroral arcs in the nightside auroral oval and with particle precipitation at the onset of a substorm were indeed identified as responsible for enhanced phase scintillation at L band. For the first time it was observed that the observed large-scale structures did not cascade into smaller-scale structures, leading to enhanced phase scintillation without amplitude scintillation. More measurements and theory are necessary to understand the mechanism responsible for the inhibition of large-scale to small-scale energy cascade and to reproduce the observations. This aspect is fundamental to model the scattering of radio waves propagating through these ionization structures. New insights from this experiment allow a better characterization of the impact that space weather can have on satellite telecommunications and navigation services.

  11. Collective stimulated Brillouin backscatter

    NASA Astrophysics Data System (ADS)

    Lushnikov, Pavel; Rose, Harvey

    2007-11-01

    We develop the statistical theory of linear collective stimulated Brillouin backscatter (CBSBS) in spatially and temporally incoherent laser beam. Instability is collective because it does not depend on the dynamics of isolated hot spots (speckles) of laser intensity, but rather depends on averaged laser beam intensity, optic f/#, and laser coherence time, Tc. CBSBS has a much larger threshold than a classical coherent beam's in long-scale-length high temperature plasma. It is a novel regime in which Tc is too large for applicability of well-known statistical theories (RPA) but Tc must be small enough to suppress single speckle processes such as self-focusing. Even if laser Tc is too large for a priori applicability of our theory, collective forward SBS^1, perhaps enhanced by high Z dopant, and its resultant self-induced Tc reduction, may regain the CBSBS regime. We identified convective and absolute CBSBS regimes. The threshold of convective instability is inside the typical parameter region of NIF designs. Well above incoherent threshold, the coherent instability growth rate is recovered. ^1 P.M. Lushnikov and H.A. Rose, Plasma Physics and Controlled Fusion, 48, 1501 (2006).

  12. Multidimensional Simulations of Filament Channel Structure and Evolution

    NASA Astrophysics Data System (ADS)

    Karpen, J. T.

    2007-10-01

    Over the past decade, the NRL Solar Theory group has made steady progress toward formulating a comprehensive model of filament-channel structure and evolution, combining the results of our sheared 3D arcade model for the magnetic field with our thermal nonequilibrium model for the cool, dense material suspended in the corona. We have also discovered that, when a sheared arcade is embedded within the global dipolar field, the resulting stressed filament channel can erupt through the mechanism of magnetic breakout. Our progress has been largely enabled by the development and implementation of state-of-the-art 1D hydrodynamic and 3D magnetohydrodynamic (MHD) codes to simulate the field-aligned plasma thermodynamics and large-scale magnetic-field evolution, respectively. Significant questions remain, however, which could be answered with the advanced observations anticipated from Solar-B. In this review, we summarize what we have learned from our simulations about the magnetic and plasma structure, evolution, and eruption of filament channels, and suggest key observational objectives for Solar-B that will test our filament-channel and CME-initiation models and augment our understanding of the underlying physical processes.

  13. Measurement of Two-Plasmon-Decay Dependence on Plasma Density Scale Length

    NASA Astrophysics Data System (ADS)

    Haberberger, D.

    2013-10-01

    An accurate understanding of the plasma scale-length (Lq) conditions near quarter-critical density is important in quantifying the hot electrons generated by the two-plasmon-decay (TPD) instability in long-scale-length plasmas. A novel target platform was developed to vary the density scale length and an innovative diagnostic was implemented to measure the density profiles above 1021 cm-3 where TPD is expected to have the largest growth. A series of experiments was performed using the four UV (351-nm) beams on OMEGA EP that varied the Lq by changing the radius of curvature of the target while maintaining a constant Iq/Tq. The fraction of laser energy converted to hot electrons (fhot) was observed to increase rapidly from 0.005% to 1% by increasing the plasma scale length from 130 μm to 300 μm, corresponding to target diameters of 0.4 mm to 8 mm. A new diagnostic was developed based on refractometry using angular spectral filters to overcome the large phase accumulation in standard interferometric techniques. The angular filter refractometer measures the refraction angles of a 10-ps, 263-nm probe laser after propagating through the plasma. An angular spectral filter is used in the Fourier plane of the probe beam, where the refractive angles of the rays are mapped to space. The edges of the filter are present in the image plane and represent contours of constant refraction angle. These contours are used to infer the phase of the probe beam, which are used to calculate the plasma density profile. In long-scale-length plasmas, the diagnostic currently measures plasma densities from ~1019 cm-3 to ~2 × 1021 cm-3. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944. In collaboration with D. H. Edgell, S. X. Hu, S. Ivancic, R. Boni, C. Dorrer, and D. H. Froula (Laboratory for Laser Energetics, U. of Rochester).

  14. Extreme Scale Plasma Turbulence Simulations on Top Supercomputers Worldwide

    DOE PAGES

    Tang, William; Wang, Bei; Ethier, Stephane; ...

    2016-11-01

    The goal of the extreme scale plasma turbulence studies described in this paper is to expedite the delivery of reliable predictions on confinement physics in large magnetic fusion systems by using world-class supercomputers to carry out simulations with unprecedented resolution and temporal duration. This has involved architecture-dependent optimizations of performance scaling and addressing code portability and energy issues, with the metrics for multi-platform comparisons being 'time-to-solution' and 'energy-to-solution'. Realistic results addressing how confinement losses caused by plasma turbulence scale from present-day devices to the much larger $25 billion international ITER fusion facility have been enabled by innovative advances in themore » GTC-P code including (i) implementation of one-sided communication from MPI 3.0 standard; (ii) creative optimization techniques on Xeon Phi processors; and (iii) development of a novel performance model for the key kernels of the PIC code. Our results show that modeling data movement is sufficient to predict performance on modern supercomputer platforms.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omelchenko, Yuri A.

    Global interactions of energetic ions with magnetoplasmas and neutral gases lie at the core of many space and laboratory plasma phenomena ranging from solar wind entry into and transport within planetary magnetospheres and exospheres to fast-ion driven instabilities in fusion devices to astrophysics-in-lab experiments. The ability of computational models to properly account for physical effects that underlie such interactions, namely ion kinetic, ion cyclotron, Hall, collisional and ionization processes is important for the success and planning of experimental research in plasma physics. Understanding the physics of energetic ions, in particular their nonlinear resonance interactions with Alfvén waves, is central tomore » improving the heating performance of magnetically confined plasmas for future energy generation. Fluid models are not adequate for high-beta plasmas as they cannot fully capture ion kinetic and cyclotron physics (e.g., ion behavior in the presence of magnetic nulls, shock structures, plasma interpenetration, etc.). Recent results from global reconnection simulations show that even in a MHD-like regime there may be significant differences between kinetic and MHD simulations. Therefore, kinetic modeling becomes essential for meeting modern day challenges in plasma physics. The hybrid approximation is an intermediate approximation between the fluid and fully kinetic approximations. It eliminates light waves, removes the electron inertial temporal and spatial scales from the problem and enables full-orbit ion kinetics. As a result, hybrid codes have become effective tools for exploring ion-scale driven phenomena associated with ion beams, shocks, reconnection and turbulence that control the large-scale behavior of laboratory and space magnetoplasmas. A number of numerical issues, however, make three-dimensional (3D) large-scale hybrid simulations of inhomogeneous magnetized plasmas prohibitively expensive or even impossible. To resolve these difficulties we have developed a novel Event-driven Multiscale Asynchronous Parallel Simulation (EMAPS) technology that replaces time stepping with self-adaptive update events. Local calculations are carried out only on an “as needed basis”. EMAPS (i) guarantees accurate and stable processing of physical variables in time accurate simulations, and (ii) eliminates unnecessary computation. Applying EMAPS to the hybrid model has resulted in the development of a unique parallel code, dimension-independent (compile-time-configurable) HYPERS (Hybrid Parallel Event-Resolved Simulator) that scales to hundreds of thousands of parallel processors. HYPERS advances electromagnetic fields and particles asynchronously on time scales determined by local physical laws and mesh properties. To achieve high computational accuracy in complex device geometries, HYPERS employs high-fidelity Cartesian grids with masked conductive cells. The HYPERS model includes multiple ion species, energy and momentum conserving ion-ion collisions, and provides a number of approximations for plasma resistivity and vacuum regions. Both local and periodic boundary conditions are allowed. The HYPERS solver preserves zero divergence of magnetic field. The project has demonstrated HYPERS capabilities on a number of applications of interest to fusion and astrophysical plasma physics applications listed below. 1. Theta-pinch formation of FRCs The formation, spontaneous spin-up, and stability of theta-pinch formed field-reversed configurations have been studied self-consistently in 3D. The end-to-end hybrid simulations reveal poloidal profiles of implosion-driven fast toroidal plasma rotation and demonstrate three discharge regimes as a function of experimental parameters: the decaying stable configuration, the tilt unstable configuration, and the nonlinear evolution of a fast growing tearing mode. 2. FRC collisions with magnetic mirrors Interactions of fast plasma streams and objects with magnetic obstacles (dipoles, mirrors, etc) lie at the core of many space and laboratory plasma phenomena ranging from magnetoshells and solar wind interactions with planetary magnetospheres to compact fusion plasmas. HYPERS simulations are compared with data from the MSX experiment (LANL) that focuses on the physics of magnetized collisionless shocks through the acceleration and subsequent stagnation of FRC plasmoids against a strong magnetic mirrors and flux-conserving boundaries. 3. Exploding magnetoplasmas Results from hybrid simulations of two experiments at the LAPD and Nevada Terawatt Facility are discussed where short-pulse lasers are used to ablate solid targets to produce plasmas that expand across external magnetic fields. The first simulation recreates flutelike density striations observed at the leading edge of a carbon plasma and predicts an early destruction of the magnetic cavity in agreement with experimental evidence. In the second simulation a polyethylene target is ablated into a mixture of protons and carbon ions. A mechanism is demonstrated that allows protons to penetrate the magnetic field in the form of a collimated flow. The results are compared to experimental data and single-fluid MHD simulations. The EMAPS framework has the potential for wide application in many other engineering and scientific fields, such as climate models, biological systems, electronic devices, seismic events, oil reservation simulators that all involve advancing solutions of partial differential equations in time where the rate of activity can be adapted widely over the spatial domain depending on locally space/time phenomena (“events”).« less

  16. Kinetic Interactions Between the Solar Wind and Lunar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Poppe, A. R.; Fatemi, S.; Turner, D. L.; Holmstrom, M.

    2016-12-01

    Despite their relatively weak strength, small scale, and incoherence, lunar magnetic anomalies can affect the incoming solar wind flow. The plasma interaction with lunar magnetic fields drives significant compressions of the solar wind plasma and magnetic field, deflections of the incoming flow, and a host of plasma waves ranging from the ULF to the electrostatic range. Recent work suggests that the large-scale features of the solar wind-magnetic anomaly interactions may be driven by ion-ion instabilities excited by reflected ions, raising the possibility that they are analogous to ion foreshock phenomena. Indeed, despite their small scale, many of the phenomena observed near lunar magnetic anomalies appear to have analogues in the foreshock regions of terrestrial planets. We discuss the charged particle distributions, fields, and waves observed near lunar magnetic anomalies, and place them in a context with the foreshocks of the Earth, Mars, and other solar system objects.

  17. Large-scale investigation of the parameters in response to Eimeria maxima challenge in broilers.

    PubMed

    Hamzic, E; Bed'Hom, B; Juin, H; Hawken, R; Abrahamsen, M S; Elsen, J M; Servin, B; Pinard-van der Laan, M H; Demeure, O

    2015-04-01

    Coccidiosis, a parasitic disease of the intestinal tract caused by members of the genera Eimeria and Isospora, is one of the most common and costly diseases in chicken. The aims of this study were to assess the effect of the challenge and level of variability of measured parameters in chickens during the challenge with Eimeria maxima. Furthermore, this study aimed to investigate which parameters are the most relevant indicators of the health status. Finally, the study also aimed to estimate accuracy of prediction for traits that cannot be measured on large scale (such as intestinal lesion score and fecal oocyst count) using parameters that can easily be measured on all animals. The study was performed in 2 parts: a pilot challenge on 240 animals followed by a large-scale challenge on 2,024 animals. In both experiments, animals were challenged with 50,000 Eimeria maxima oocysts at 16 d of age. In the pilot challenge, all animals were measured for BW gain, plasma coloration, hematocrit, and rectal temperature and, in addition, a subset of 48 animals was measured for oocyst count and the intestinal lesion score. All animals from the second challenge were measured for BW gain, plasma coloration, and hematocrit whereas a subset of 184 animals was measured for intestinal lesion score, fecal oocyst count, blood parameters, and plasma protein content and composition. Most of the parameters measured were significantly affected by the challenge. Lesion scores for duodenum and jejunum (P < 0.001), oocyst count (P < 0.05), plasma coloration for the optical density values between 450 and 490 nm (P < 0.001), albumin (P < 0.001), α1-globulin (P < 0.01), α2-globulin (P < 0.001), α3-globulin (P < 0.01), and β2-globulin (P < 0.001) were the most strongly affected parameters and expressed the greatest levels of variation. Plasma protein profiles proved to be a new, reliable parameter for measuring response to Eimeria maxima. Prediction of intestinal lesion score and fecal oocyst count using the other parameters measured was not very precise (R2 < 0.7). The study was successfully performed in real raising conditions on a large scale. Finally, we observed a high variability in response to the challenge, suggesting that broilers' response to Eimeria maxima has a strong genetic determinism, which may be improved by genetic selection.

  18. New process for purifying high purity α1-antitrypsin from Cohn Fraction IV by chromatography: A promising method for the better utilization of plasma.

    PubMed

    Huangfu, Chaoji; Zhang, Jinchao; Ma, Yuyuan; Jia, Junting; Lv, Maomin; Zhao, Xiong; Zhang, Jingang

    2017-03-01

    α1-antitrypsin (AAT) is a 52kDa serine protease inhibitor that is abundant in plasma. It is synthesized mainly by hepatic cells, and widely used to treat patients with emphysema due to congenital deficiency of AAT. A new isolation method for the purification of AAT from Cohn Fraction IV (Cohn F IV) is described. Cohn F IV is usually discarded as a byproduct from Cohn process. Using Cohn F IV as starting material does not interfere with the production of other plasma proteins and the cost of purification could be reduced greatly. Parameters of each step during purification were optimized, 15% polyethyleneglycol (PEG) concentration and pH 5.2 for PEG precipitation, elution with 0.05M sodium acetate and pH 4.7 for ion-exchange chromatography, and two steps blue sepharose affinity chromatography were chosen for AAT purification. The final protein with purity of 98.17%, specific activity of 3893.29 IU/mg, and yield of 28.35%, was achieved. Western blotting was applied for qualitative identification of final product, which specifically reacted with goat anti-human AAT antibody. LC-ESI-MS/MS was also employed to confirm the final protein. High performance liquid chromatography was used to analyze the composition of purified protein suggesting that pure protein was achieved. The molecular weight of AAT is 51062.77Da which was identified by LC-MS-MS. The manufacturing process described here may make better use of human plasma with Cohn F IV as starting material. The simple process described in this study is simple and inexpensive, it has a potential value for large scale production. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Exfoliation of the tungsten fibreform nanostructure by unipolar arcing in the LHD divertor plasma

    NASA Astrophysics Data System (ADS)

    Tokitani, M.; Kajita, S.; Masuzaki, S.; Hirahata, Y.; Ohno, N.; Tanabe, T.; LHD Experiment Group

    2011-10-01

    The tungsten nanostructure (W-fuzz) created in the linear divertor simulator (NAGDIS) was exposed to the Large Helical Device (LHD) divertor plasma for only 2 s (1 shot) to study exfoliation/erosion and microscopic modifications due to the high heat/particle loading under high magnetic field conditions. Very fine and randomly moved unipolar arc trails were clearly observed on about half of the W-fuzz area (6 × 10 mm2). The fuzzy surface was exfoliated by continuously moving arc spots even for the very short exposure time. This is the first observation of unipolar arcing and exfoliation of some areas of the W-fuzz structure itself in a large plasma confinement device with a high magnetic field. The typical width and depth of each arc trail were about 8 µm and 1 µm, respectively, and the arc spots moved randomly on the micrometre scale. The fractality of the arc trails was analysed using a box-counting method, and the fractal dimension (D) of the arc trails was estimated to be D ≈ 1.922. This value indicated that the arc spots moved in Brownian motion, and were scarcely influenced by the magnetic field. One should note that such a large scale exfoliation due to unipolar arcing may enhance the surface erosion of the tungsten armour and act as a serious impurity source for fusion plasmas.

  20. The contribution of dissociative processes to the production of atomic lines in hydrogen plasmas

    NASA Technical Reports Server (NTRS)

    Kunc, J. A.

    1985-01-01

    The contribution of molecular dissociative processes to the production of atomic lines is considered for a steady-state hydrogen plasma. If the contribution of dissociative processes is dominant, a substantial simplification in plasma diagnostics can be achieved. Numerical calculations have been performed for the production of Balmer alpha, beta, and gamma lines in hydrogen plasmas with medium and large degrees of ionization (x greater than about 0.0001) and for electron temperatures of 5000-45,000 K and electron densities of 10 to the 10th to 10 to the 16th/cu cm.

  1. Effect of the self-pumped limiter concept on the tritium fuel cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finn, P.A.; Sze, D.K.; Hassanein, A.

    1988-01-01

    The self-pumped limiter concept for impurity control of the plasma of a fusion reactor has a major impact on the design of the tritium systems. To achieve a sustained burn, conventional limiters and divertors remove large quantities of unburnt tritium and deuterium from the plasma which must be then recycled using a plasma processing system. The self-pumped limiter which does not remove the hydrogen species, does not require any plasma processing equipment. The blanket system and the coolant processing systems acquire greater importance with the use of this unconventional impurity control system. 3 refs., 2 figs.

  2. Scale size and life time of energy conversion regions observed by Cluster in the plasma sheet

    NASA Astrophysics Data System (ADS)

    Hamrin, M.; Norqvist, P.; Marghitu, O.; Vaivads, A.; Klecker, B.; Kistler, L. M.; Dandouras, I.

    2009-11-01

    In this article, and in a companion paper by Hamrin et al. (2009) [Occurrence and location of concentrated load and generator regions observed by Cluster in the plasma sheet], we investigate localized energy conversion regions (ECRs) in Earth's plasma sheet. From more than 80 Cluster plasma sheet crossings (660 h data) at the altitude of about 15-20 RE in the summer and fall of 2001, we have identified 116 Concentrated Load Regions (CLRs) and 35 Concentrated Generator Regions (CGRs). By examining variations in the power density, E·J, where E is the electric field and J is the current density obtained by Cluster, we have estimated typical values of the scale size and life time of the CLRs and the CGRs. We find that a majority of the observed ECRs are rather stationary in space, but varying in time. Assuming that the ECRs are cylindrically shaped and equal in size, we conclude that the typical scale size of the ECRs is 2 RE≲ΔSECR≲5 RE. The ECRs hence occupy a significant portion of the mid altitude plasma sheet. Moreover, the CLRs appear to be somewhat larger than the CGRs. The life time of the ECRs are of the order of 1-10 min, consistent with the large scale magnetotail MHD simulations of Birn and Hesse (2005). The life time of the CGRs is somewhat shorter than for the CLRs. On time scales of 1-10 min, we believe that ECRs rise and vanish in significant regions of the plasma sheet, possibly oscillating between load and generator character. It is probable that at least some of the observed ECRs oscillate energy back and forth in the plasma sheet instead of channeling it to the ionosphere.

  3. Antimicrobial properties of uncapped silver nanoparticles synthesized by DC arc thermal plasma technique.

    PubMed

    Shinde, Manish; Patil, Rajendra; Karmakar, Soumen; Bhoraskar, Sudha; Rane, Sunit; Gade, Wasudev; Amalnerkar, Dinesh

    2012-02-01

    We, herein, report the antimicrobial properties of uncapped silver nanoparticles for a Gram positive model organism, Bacillus subtilis. Uncapped silver nanoparticles have been prepared using less-explored DC arc thermal plasma technique by considering its large scale generation capability. It is observed that the resultant nanoparticles show size as well as optical property dependent antimicrobial effect.

  4. 3D ion-scale dynamics of BBFs and their associated emissions in Earth's magnetotail using 3D hybrid simulations and MMS multi-spacecraft observations

    NASA Astrophysics Data System (ADS)

    Breuillard, H.; Aunai, N.; Le Contel, O.; Catapano, F.; Alexandrova, A.; Retino, A.; Cozzani, G.; Gershman, D. J.; Giles, B. L.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Ergun, R.; Strangeway, R. J.; Russell, C. T.; Magnes, W.; Plaschke, F.; Nakamura, R.; Fuselier, S. A.; Turner, D. L.; Schwartz, S. J.; Torbert, R. B.; Burch, J.

    2017-12-01

    Transient and localized jets of hot plasma, also known as Bursty Bulk Flows (BBFs), play a crucial role in Earth's magnetotail dynamics because the energy input from the solar wind is partly dissipated in their vicinity, notably in their embedded dipolarization front (DF). This dissipation is in the form of strong low-frequency waves that can heat and accelerate energetic particles up to the high-latitude plasma sheet. The ion-scale dynamics of BBFs have been revealed by the Cluster and THEMIS multi-spacecraft missions. However, the dynamics of BBF propagation in the magnetotail are still under debate due to instrumental limitations and spacecraft separation distances, as well as simulation limitations. The NASA/MMS fleet, which features unprecedented high time resolution instruments and four spacecraft separated by kinetic-scale distances, has also shown recently that the DF normal dynamics and its associated emissions are below the ion gyroradius scale in this region. Large variations in the dawn-dusk direction were also observed. However, most of large-scale simulations are using the MHD approach and are assumed 2D in the XZ plane. Thus, in this study we take advantage of both multi-spacecraft observations by MMS and large-scale 3D hybrid simulations to investigate the 3D dynamics of BBFs and their associated emissions at ion-scale in Earth's magnetotail, and their impact on particle heating and acceleration.

  5. Low-Temperature Plasma Functionalization of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Khare, Bishun; Meyyappan, M.

    2004-01-01

    A low-temperature plasma process has been devised for attaching specified molecular groups to carbon nanotubes in order to impart desired chemical and/or physical properties to the nanotubes for specific applications. Unlike carbon-nanotube- functionalization processes reported heretofore, this process does not involve the use of wet chemicals, does not involve exposure of the nanotubes to high temperatures, and generates very little chemical residue. In addition, this process can be carried out in a relatively simple apparatus and can readily be scaled up to mass production.

  6. Spatial structure of plasma density perturbations, induced in the ionosphere modified by powerful HF radio waves: Review of experimental results

    NASA Astrophysics Data System (ADS)

    Frolov, Vladimir

    2015-06-01

    In the review, the results of experimental studies of spatial structure of small-, middle-, and large scale plasma density perturbations induced in the ionosphere by its pumping by powerful HF O-mode (ordinary) radio waves, are analyzed. It is shown that the region with induced plasma density perturbations occupied all ionosphere body from its E-region up to the topside ionosphere in the height and it has the horizontal length of about of 300-500 km. Peculiarities of generation of artificial ionosphere irregularities of different scale-lengths in the magnetic zenith region are stated. Experimental results obtained under conditions of ionosphere periodical pumping when the generation of travel ionosphere disturbances is revealed are also discussed.

  7. Observation of large-scale density cavities and parametric-decay instabilities in the high-altitude discrete auroral ionosphere under pulsed electromagnetic radiation.

    PubMed

    Wong, A Y; Chen, J; Lee, L C; Liu, L Y

    2009-03-13

    A large density cavity that measured 2000 km across and 500 km in height was observed by DEMETER and Formosat/COSMIC satellites in temporal and spatial relation to a new mode of propagation of electromagnetic (em) pulses between discrete magnetic field-aligned auroral plasmas to high altitudes. Recorded positive plasma potential from satellite probes is consistent with the expulsion of electrons in the creation of density cavities. High-frequency decay spectra support the concept of parametric instabilities fed by free energy sources.

  8. The Role of Fluid Compression in Particle Energization during Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Li, X.; Guo, F.; Li, H.; Li, S.

    2017-12-01

    Theories of particle transport and acceleration have shown that fluid compression is the leading mechanism for particle energization. However, the role of compression in particle energization during magnetic reconnection is unclear. We present a cluster of studies to clarify and show the effect of fluid compression in accelerating particles to high energies during magnetic reconnection. Using fully kinetic reconnection simulations, we show that fluid compression is the leading mechanism for high-energy particle energization. We find that the compressional energization is more important in a low-beta plasma or in a reconnection layer with a weak guide field (the magnetic field component perpendicular to the reconnecting magnetic field), which are relevant to solar flares. Our analysis on 3D kinetic simulations shows that the self-generated turbulence scatters particles and enhances the particle diffusion processes in the acceleration regions. Based on these results, we then study large-scale reconnection acceleration by solving the particle transport equation in a large-scale reconnection layer evolved with MHD simulations. Due to the compressional effect, particles are accelerated to high energies and develop power-law energy distributions. This study clarifies the nature of particle acceleration in reconnection layer and is important to understand particle energization during large-scale acceleration such as solar flares.

  9. Confinement of laser plasma expansion with strong external magnetic field

    NASA Astrophysics Data System (ADS)

    Tang, Hui-bo; Hu, Guang-yue; Liang, Yi-han; Tao, Tao; Wang, Yu-lin; Hu, Peng; Zhao, Bin; Zheng, Jian

    2018-05-01

    The evolutions of laser ablation plasma, expanding in strong (∼10 T) transverse external magnetic field, were investigated in experiments and simulations. The experimental results show that the magnetic field pressure causes the plasma decelerate and accumulate at the plasma-field interface, and then form a low-density plasma bubble. The saturation size of the plasma bubble has a scaling law on laser energy and magnetic field intensity. Magnetohydrodynamic simulation results support the observation and find that the scaling law (V max ∝ E p /B 2, where V max is the maximum volume of the plasma bubble, E p is the absorbed laser energy, and B is the magnetic field intensity) is effective in a broad laser energy range from several joules to kilo-joules, since the plasma is always in the state of magnetic field frozen while expanding. About 15% absorbed laser energy converts into magnetic field energy stored in compressed and curved magnetic field lines. The duration that the plasma bubble comes to maximum size has another scaling law t max ∝ E p 1/2/B 2. The plasma expanding dynamics in external magnetic field have a similar character with that in underdense gas, which indicates that the external magnetic field may be a feasible approach to replace the gas filled in hohlraum to suppress the wall plasma expansion and mitigate the stimulated scattering process in indirect drive ignition.

  10. Simulation study of interactions of Space Shuttle-generated electron beams with ambient plasmas

    NASA Technical Reports Server (NTRS)

    Lin, Chin S.

    1992-01-01

    This report summarizes results obtained through the support of NASA Grant NAGW-1936. The objective of this report is to conduct large scale simulations of electron beams injected into space. The topics covered include the following: (1) simulation of radial expansion of an injected electron beam; (2) simulations of the active injections of electron beams; (3) parameter study of electron beam injection into an ionospheric plasma; and (4) magnetosheath-ionospheric plasma interactions in the cusp.

  11. Turbulence dissipation challenge: particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Roytershteyn, V.; Karimabadi, H.; Omelchenko, Y.; Germaschewski, K.

    2015-12-01

    We discuss application of three particle in cell (PIC) codes to the problems relevant to turbulence dissipation challenge. VPIC is a fully kinetic code extensively used to study a variety of diverse problems ranging from laboratory plasmas to astrophysics. PSC is a flexible fully kinetic code offering a variety of algorithms that can be advantageous to turbulence simulations, including high order particle shapes, dynamic load balancing, and ability to efficiently run on Graphics Processing Units (GPUs). Finally, HYPERS is a novel hybrid (kinetic ions+fluid electrons) code, which utilizes asynchronous time advance and a number of other advanced algorithms. We present examples drawn both from large-scale turbulence simulations and from the test problems outlined by the turbulence dissipation challenge. Special attention is paid to such issues as the small-scale intermittency of inertial range turbulence, mode content of the sub-proton range of scales, the formation of electron-scale current sheets and the role of magnetic reconnection, as well as numerical challenges of applying PIC codes to simulations of astrophysical turbulence.

  12. Intermediate scale plasma density irregularities in the polar ionosphere inferred from radio occultation

    NASA Astrophysics Data System (ADS)

    Shume, E. B.; Komjathy, A.; Langley, R. B.; Verkhoglyadova, O. P.; Butala, M.; Mannucci, A. J.

    2014-12-01

    In this research, we report intermediate scale plasma density irregularities in the high-latitude ionosphere inferred from high-resolution radio occultation (RO) measurements in the CASSIOPE (CAScade Smallsat and IOnospheric Polar Explorer) - GPS (Global Positioning System) satellites radio link. The high inclination of the CASSIOPE satellite and high rate of signal receptionby the occultation antenna of the GPS Attitude, Positioning and Profiling (GAP) instrument on the Enhanced Polar Outflow Probe platform on CASSIOPE enable a high temporal and spatial resolution investigation of the dynamics of the polar ionosphere, magnetosphere-ionospherecoupling, solar wind effects, etc. with unprecedented details compared to that possible in the past. We have carried out high spatial resolution analysis in altitude and geomagnetic latitude of scintillation-producing plasma density irregularities in the polar ionosphere. Intermediate scale, scintillation-producing plasma density irregularities, which corresponds to 2 to 40 km spatial scales were inferred by applying multi-scale spectral analysis on the RO phase delay measurements. Using our multi-scale spectral analysis approach and Polar Operational Environmental Satellites (POES) and Defense Meteorological Satellite Program (DMSP) observations, we infer that the irregularity scales and phase scintillations have distinct features in the auroral oval and polar cap regions. In specific terms, we found that large length scales and and more intense phase scintillations are prevalent in the auroral oval compared to the polar cap region. Hence, the irregularity scales and phase scintillation characteristics are a function of the solar wind and the magnetospheric forcing. Multi-scale analysis may become a powerful diagnostic tool for characterizing how the ionosphere is dynamically driven by these factors.

  13. Plasma metabolomics profiling of maintenance hemodialysis based on capillary electrophoresis - time of flight mass spectrometry.

    PubMed

    Liu, Shuxin; Wang, Lichao; Hu, Chunxiu; Huang, Xin; Liu, Hong; Xuan, Qiuhui; Lin, Xiaohui; Peng, Xiaojun; Lu, Xin; Chang, Ming; Xu, Guowang

    2017-08-15

    Uremia has been a rapidly increasing health problem in China. Hemodialysis (HD) is the main renal replacement therapy for uremia. The results of large-scale clinical trials have shown that the HD pattern is crucial for long-term prognosis of maintenance hemodialysis (MHD) in uremic patients. Plasma metabolism is very important for revealing the biological insights linked to the therapeutic effects of the HD pattern on uremia. Alteration of plasma metabolites in uremic patients in response to HD therapy has been reported. However, HD-pattern-dependent changes in plasma metabolites remain poorly understood. To this end, a capillary electrophoresis-time of flight mass spectrometry (CE-TOF/MS)-based metabolomics method was performed to systemically study the differences between HD and high flux hemodialysis (HFD) on plasma metabolite changes in patients. Three hundred and one plasma samples from three independent human cohorts (i.e., healthy controls, patients with pre-HD/post-HD, and patients with pre-HFD/post-HFD) were used in this study. Metabolites significantly changed (p < 0.05) after a single HD or HFD process. However, 11 uremic retention solutes could be more efficiently removed by HFD. Our findings indicate that a CE-TOF/MS-based metabolomics approach is promising for providing novel insights into understanding the effects of different dialysis methods on metabolite alterations of uremia.

  14. Complex Plasmas under free fall conditions aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Konopka, Uwe; Thomas, Edward, Jr.; Funk, Dylan; Doyle, Brandon; Williams, Jeremiah; Knapek, Christina; Thomas, Hubertus

    2017-10-01

    Complex Plasmas are dynamically dominated by massive, highly negatively charged, micron-sized particles. They are usually strongly coupled and as a result can show fluid-like behavior or undergo phase transitions to form crystalline structures. The dynamical time scale of these systems is easily accessible in experiments because of the relatively high mass/inertia of the particles. However, the high mass also leads to sedimentation effects and as a result prevents the conduction of large scale, fully three dimensional experiments that are necessary to utilize complex plasmas as model systems in the transition to continuous media. To reduce sedimentation influences it becomes necessary to perform experiments in a free-fall (``microgravity'') environment, such as the ISS based experiment facility ``Plasma-Kristall-4'' (``PK-4''). In our paper we will present our recently started research activities to investigate the basic properties of complex plasmas by utilizing the PK-4 experiment facility aboard the ISS. We further give an overview of developments towards the next generation experiment facility ``Ekoplasma'' (formerly named ``PlasmaLab'') and discuss potential additional small-scale space-based experiment scenarios. This work was supported by the JPL/NASA (JPL-RSA 1571699), the US Dept. of Energy (DE-SC0016330) and the NSF (PHY-1613087).

  15. Simulating Coupling Complexity in Space Plasmas: First Results from a new code

    NASA Astrophysics Data System (ADS)

    Kryukov, I.; Zank, G. P.; Pogorelov, N. V.; Raeder, J.; Ciardo, G.; Florinski, V. A.; Heerikhuisen, J.; Li, G.; Petrini, F.; Shematovich, V. I.; Winske, D.; Shaikh, D.; Webb, G. M.; Yee, H. M.

    2005-12-01

    The development of codes that embrace 'coupling complexity' via the self-consistent incorporation of multiple physical scales and multiple physical processes in models has been identified by the NRC Decadal Survey in Solar and Space Physics as a crucial necessary development in simulation/modeling technology for the coming decade. The National Science Foundation, through its Information Technology Research (ITR) Program, is supporting our efforts to develop a new class of computational code for plasmas and neutral gases that integrates multiple scales and multiple physical processes and descriptions. We are developing a highly modular, parallelized, scalable code that incorporates multiple scales by synthesizing 3 simulation technologies: 1) Computational fluid dynamics (hydrodynamics or magneto-hydrodynamics-MHD) for the large-scale plasma; 2) direct Monte Carlo simulation of atoms/neutral gas, and 3) transport code solvers to model highly energetic particle distributions. We are constructing the code so that a fourth simulation technology, hybrid simulations for microscale structures and particle distributions, can be incorporated in future work, but for the present, this aspect will be addressed at a test-particle level. This synthesis we will provide a computational tool that will advance our understanding of the physics of neutral and charged gases enormously. Besides making major advances in basic plasma physics and neutral gas problems, this project will address 3 Grand Challenge space physics problems that reflect our research interests: 1) To develop a temporal global heliospheric model which includes the interaction of solar and interstellar plasma with neutral populations (hydrogen, helium, etc., and dust), test-particle kinetic pickup ion acceleration at the termination shock, anomalous cosmic ray production, interaction with galactic cosmic rays, while incorporating the time variability of the solar wind and the solar cycle. 2) To develop a coronal mass ejection and interplanetary shock propagation model for the inner and outer heliosphere, including, at a test-particle level, wave-particle interactions and particle acceleration at traveling shock waves and compression regions. 3) To develop an advanced Geospace General Circulation Model (GGCM) capable of realistically modeling space weather events, in particular the interaction with CMEs and geomagnetic storms. Furthermore, by implementing scalable run-time supports and sophisticated off- and on-line prediction algorithms, we anticipate important advances in the development of automatic and intelligent system software to optimize a wide variety of 'embedded' computations on parallel computers. Finally, public domain MHD and hydrodynamic codes had a transforming effect on space and astrophysics. We expect that our new generation, open source, public domain multi-scale code will have a similar transformational effect in a variety of disciplines, opening up new classes of problems to physicists and engineers alike.

  16. High intensity, plasma-induced electron emission from large area carbon nanotube array cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao Qingliang; Yang Ya; Qi Junjie

    2010-02-15

    The plasma-induced electron emission properties of large area carbon nanotube (CNT) array cathodes under different pulse electric fields were investigated. The formation and expansion of cathode plasmas were proved; in addition, the cathodes have higher emission current in the double-pulse mode than that in the single-pulse mode due to the expansion of plasma. Under the double-pulse electric field of 8.16 V/mum, the plasma's expansion velocity is about 12.33 cm/mus and the highest emission current density reached 107.72 A/cm{sup 2}. The Cerenkov radiation was used to diagnose the distribution of electron beams, and the electron beams' generating process was plasma-induced emission.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orange, N. Brice; Chesny, David L.; Gendre, Bruce

    Solar variability investigations that include magnetic energy coupling are paramount to solving many key solar/stellar physics problems, particularly for understanding the temporal variability of magnetic energy redistribution and heating processes. Using three years of observations from the Solar Dynamics Observatory ’ s Atmospheric Imaging Assembly and Heliosemic Magnetic Imager, we measured radiative and magnetic fluxes from gross features and at full-disk scales, respectively. Magnetic energy coupling analyses support radiative flux descriptions via the plasma heating connectivity of dominant (magnetic) and diffuse components, specifically of the predominantly closed-field corona. Our work shows that this relationship favors an energetic redistribution efficiency acrossmore » large temperature gradients, and potentially sheds light on the long-standing issue of diffuse unresolved low corona emission. The close connection between magnetic energy redistribution and plasma conditions revealed by this work lends significant insight into the field of stellar physics, as we have provided possible means for probing distant sources in currently limited and/or undetectable radiation distributions.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peratt, A.L.; Mostrom, M.A.

    With the availability of 80--125 MHz microprocessors, the methodology developed for the simulation of problems in pulsed power and plasma physics on modern day supercomputers is now amenable to application on a wide range of platforms including laptops and workstations. While execution speeds with these processors do not match those of large scale computing machines, resources such as computer-aided-design (CAD) and graphical analysis codes are available to automate simulation setup and process data. This paper reports on the adaptation of IVORY, a three-dimensional, fully-electromagnetic, particle-in-cell simulation code, to this platform independent CAD environment. The primary purpose of this talk ismore » to demonstrate how rapidly a pulsed power/plasma problem can be scoped out by an experimenter on a dedicated workstation. Demonstrations include a magnetically insulated transmission line, power flow in a graded insulator stack, a relativistic klystron oscillator, and the dynamics of a coaxial thruster for space applications.« less

  19. Laser deposition and direct-writing of thermoelectric misfit cobaltite thin films

    NASA Astrophysics Data System (ADS)

    Chen, Jikun; Palla-Papavlu, Alexandra; Li, Yulong; Chen, Lidong; Shi, Xun; Döbeli, Max; Stender, Dieter; Populoh, Sascha; Xie, Wenjie; Weidenkaff, Anke; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas

    2014-06-01

    A two-step process combining pulsed laser deposition of calcium cobaltite thin films and a subsequent laser induced forward transfer as micro-pixel is demonstrated as a direct writing approach of micro-scale thin film structures for potential applications in thermoelectric micro-devices. To achieve the desired thermo-electric properties of the cobaltite thin film, the laser induced plasma properties have been characterized utilizing plasma mass spectrometry establishing a direct correlation to the corresponding film composition and structure. The introduction of a platinum sacrificial layer when growing the oxide thin film enables a damage-free laser transfer of calcium cobaltite thereby preserving the film composition and crystallinity as well as the shape integrity of the as-transferred pixels. The demonstrated direct writing approach simplifies the fabrication of micro-devices and provides a large degree of flexibility in designing and fabricating fully functional thermoelectric micro-devices.

  20. Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. I. Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogachevskii, Igor; Kleeorin, Nathan; Ruchayskiy, Oleg

    2017-09-10

    The magnetohydrodynamic (MHD) description of plasmas with relativistic particles necessarily includes an additional new field, the chiral chemical potential associated with the axial charge (i.e., the number difference between right- and left-handed relativistic fermions). This chiral chemical potential gives rise to a contribution to the electric current density of the plasma ( chiral magnetic effect ). We present a self-consistent treatment of the chiral MHD equations , which include the back-reaction of the magnetic field on a chiral chemical potential and its interaction with the plasma velocity field. A number of novel phenomena are exhibited. First, we show that themore » chiral magnetic effect decreases the frequency of the Alfvén wave for incompressible flows, increases the frequencies of the Alfvén wave and of the fast magnetosonic wave for compressible flows, and decreases the frequency of the slow magnetosonic wave. Second, we show that, in addition to the well-known laminar chiral dynamo effect, which is not related to fluid motions, there is a dynamo caused by the joint action of velocity shear and chiral magnetic effect. In the presence of turbulence with vanishing mean kinetic helicity, the derived mean-field chiral MHD equations describe turbulent large-scale dynamos caused by the chiral alpha effect, which is dominant for large fluid and magnetic Reynolds numbers. The chiral alpha effect is due to an interaction of the chiral magnetic effect and fluctuations of the small-scale current produced by tangling magnetic fluctuations (which are generated by tangling of the large-scale magnetic field by sheared velocity fluctuations). These dynamo effects may have interesting consequences in the dynamics of the early universe, neutron stars, and the quark–gluon plasma.« less

  1. Plasma processing of large curved surfaces for superconducting rf cavity modification

    DOE PAGES

    Upadhyay, J.; Im, Do; Popović, S.; ...

    2014-12-15

    In this study, plasma based surface modification of niobium is a promising alternative to wet etching of superconducting radio frequency (SRF) cavities. The development of the technology based on Cl 2/Ar plasma etching has to address several crucial parameters which influence the etching rate and surface roughness, and eventually, determine cavity performance. This includes dependence of the process on the frequency of the RF generator, gas pressure, power level, the driven (inner) electrode configuration, and the chlorine concentration in the gas mixture during plasma processing. To demonstrate surface layer removal in the asymmetric non-planar geometry, we are using a simplemore » cylindrical cavity with 8 ports symmetrically distributed over the cylinder. The ports are used for diagnosing the plasma parameters and as holders for the samples to be etched. The etching rate is highly correlated with the shape of the inner electrode, radio-frequency (RF) circuit elements, chlorine concentration in the Cl 2/Ar gas mixtures, residence time of reactive species and temperature of the cavity. Using cylindrical electrodes with variable radius, large-surface ring-shaped samples and d.c. bias implementation in the external circuit we have demonstrated substantial average etching rates and outlined the possibility to optimize plasma properties with respect to maximum surface processing effect.« less

  2. X-ray emission from high temperature plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1977-01-01

    The physical processes occurring in plasma focus devices were investigated with particular emphasis on X-ray emission. Topics discussed include: trajectories of high energy electrons; detection of ion trajectories; spatial distribution of neutron emission; space and time resolved emission of hard X-rays from a plasma focus; the staged plasma focus as a variation of the hypocloidal pinch; formation of current sheets in a staged plasma focus; and X-ray and neutron emission from a staged plasma focus. The possibility of operating dense plasma-focus type devices in multiple arrays beyond the scaling law for a single gun is discussed.

  3. Recent Advances in Velocity Shear Driven Processes

    NASA Astrophysics Data System (ADS)

    Ganguli, G.

    1996-11-01

    Macroscopic flows are commonly encountered in a wide variety of plasmas and it is becoming increasingly apparent that the presence of shear in such flows can have a pronounced effect on the nonlinear evolution. For instance, in tokamak devices, sheared poloidal flows are thought to play a crucial role in the L--H transition. In laser-produced plasmas, strongly sheared plasma jets are believed to lead to the onset of intense lower-hybrid waves. In the natural plasma environment of the Earth's ionosphere and magnetosphere, observations indicate a correlation between inhomogeneous flows, plasma wave activity, and particle energization. Different physical processes in which shear-driven phenomenon may dominate span a wide range of spatiotemporal scales. Cross-scale coupling between them can play a vital role in determining the ultimate state of a plasma system which, for space plasmas, is an important factor responsible for the definition of ``space weather.'' Hence, the origin of sheared flows and the plasma response to them is a topic of considerable interest. Ongoing studies indicate that the influence of velocity shear can be generally classified into two broad categories, dissipative and reactive. In the dissipative category, low levels of shear can affect wave-particle interactions through resonance detuning which can substantially modify the normal modes and dispersive properties of a homogeneous plasma. A transverse velocity shear reduces the growth rates of the modes with frequencies lower than the ion-cyclotron frequency while it enhances those modes with frequencies around the ion-cyclotron frequency or larger. Sufficiently strong shear can induce a new class of oscillations via a reactive mechanism by creating neighboring regions with wave energy density of opposite sign. In general, depending on the magnitude and scale length, velocity shear can give rise to plasma oscillations in a very broad frequency and wavelength range. These properties and their applications to space and laboratory plasmas will be discussed.

  4. Historical overview of HF ionospheric modification research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, W.E.; Duncan, L.M.

    1990-10-01

    Radio waves have inadvertently modified the Earth's ionosphere since the Luxembourg observations of Tellegen in 1933 and perhaps since Marconi in 1901. The history of ionospheric modification by radio waves is reviewed, beginning with Marconi, describing the Luxembourg effect and its explanations, and its early use to deduce the properties of the lower ionosphere in the 1930s. The measurements became more sophisticated in the 1950s, leading to the call for high-power high-frequency modification experiments in the upper ionosphere. Beginning in 1970, radio facilities became available of sufficient powers to induce changes in the ionospheric plasma detectable by a wide arraymore » of diagnostic instruments and techniques. A summary of these effects is presented based upon work up to 1990. These studies were originally motivated as a means of better understanding the natural ionosphere using a weak perturbational approach. However, a rich spectrum of nonlinear wave-plasma interactions was quickly discovered and ionospheric modification research became strongly motivated by issues in basic plasma physics. The ionosphere and near-Earth space are now exploited as an exceptional plasma laboratory-without-walls for the study of fundamental plasma processes requiring large spatial or temporal scales. Here we present a brief overview of these processes and phenomena, illustrated using results obtained from the Arecibo ionospheric modification facilities. The lessons learned and phenomena explored thus far offer many opportunities for controlling the ionospheric environment critical to many civilian and military telecommunications systems, both to disrupt systems normally operational and to create new propagation paths otherwise unavailable.« less

  5. The Nonlinear Coupling of Alfven and Lower Hybrid Waves in Space Plasma

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.

    2004-01-01

    Space plasmas support a wide variety of waves, and wave-particle interactions as well as wave-wave interactions which are of crucial importance to magnetospheric and ionospheric plasma behavior. The excitation of lower hybrid waves (LHWs) in particular is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven waves may generate LHWs in the auroral zone and ring current region and in some cases (particularly in the inner magnetosphere) this serves as the Alfven wave saturation mechanism. We present several examples of observational data which illustrate that the proposed mechanism is a plausible candidate to explain certain classes of LHW generation events in the ionosphere and magnetosphere and demonstrate electron and ion energization involving these processes. We discuss the morphology dynamics and level of LHW activity generated by electromagnetic ion cyclotron (EMIC) waves during the May 2-7 1998 storm period on the global scale. The LHWs were calculated based on a newly developed self-consistent model (Khazanov et. al. 2002) that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic and another equation describes the evolution of EMIC waves. It is found that the LHWs are excited by helium ions due to their mass dependent drift in the electric field of EMIC waves. The level of LHW activity is calculated assuming that the induced scattering process is the main saturation mechanism for these waves. The calculated LHWs electric fields are consistent with the observational data.

  6. A study of geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Patel, V. L.

    1975-01-01

    Twenty-one geomagnetic storm events during 1966 and 1970 were studied by using simultaneous interplanetary magnetic field and plasma parameters. Explorer 33 and 35 field and plasma data were analyzed on large-scale (hourly) and small-scale (3 min.) during the time interval coincident with initial phase of the geomagnetic storms. The solar-ecliptic Bz component turns southward at the end of the initial phase, thus triggering the main phase decrease in Dst geomagnetic field. When the Bz is already negative, its value becomes further negative. The By component also shows large fluctuations along with Bz. When there are no clear changes in the Bz component, the By shows abrupt changes at the main phase onet. On the small-scale behavior of the magnetic field and electric field (E=-VxB) studied in details for the three events, it is found that the field fluctuations in By, Bz and Ey and Ez are present in the initial phase. These fluctuations become larger just before the main phase of the storm begins. In the largescale behavior field remains quiet because the small scale variations are averaged out.

  7. Evolution of the magnetorotational instability on initially tangled magnetic fields

    NASA Astrophysics Data System (ADS)

    Bhat, Pallavi; Ebrahimi, Fatima; Blackman, Eric G.; Subramanian, Kandaswamy

    2017-12-01

    The initial magnetic field of previous magnetorotational instability (MRI) simulations has always included a significant system-scale component, even if stochastic. However, it is of conceptual and practical interest to assess whether the MRI can grow when the initial field is turbulent. The ubiquitous presence of turbulent or random flows in astrophysical plasmas generically leads to a small-scale dynamo (SSD), which would provide initial seed turbulent velocity and magnetic fields in the plasma that becomes an accretion disc. Can the MRI grow from these more realistic initial conditions? To address this, we supply a standard shearing box with isotropically forced SSD generated magnetic and velocity fields as initial conditions and remove the forcing. We find that if the initially supplied fields are too weak or too incoherent, they decay from the initial turbulent cascade faster than they can grow via the MRI. When the initially supplied fields are sufficient to allow MRI growth and sustenance, the saturated stresses, large-scale fields and power spectra match those of the standard zero net flux MRI simulation with an initial large-scale vertical field.

  8. Ram-pressure scaling and non-uniformity characterization of a spherically imploding liner formed by hypervelocity plasma jets

    NASA Astrophysics Data System (ADS)

    Cassibry, Jason; Dougherty, Jesse; Thompson, Seth; Hsu, Scott; Witherspoon, F. D.; University of AL in Huntsville Team; Los Alamos National Laboratory Team; HyperV Technologies Corp. Team

    2014-10-01

    Three-dimensional modeling of plasma liner formation and implosion is performed using the Smoothed Particle Hydrodynamics Code (SPHC) with radiation, thermal transport, and tabular equations of state (EOS), accounting for ionization, in support of a proposed 60-gun plasma liner formation experiment for plasma-jet driven magneto-inertial fusion (PJMIF). Previous SPHC modeling showed that ideal gas law scaling of peak stagnation pressure increased linearly with density and number of jets, quadratically with jet radius and velocity, and inversely with the initial jet length, while results with tabular EOS, thermal transport, and radiation have greater sensitivity to the initial jet distribution. A series of simulations are conducted to study the effects of initial jet conditions on peak ram pressure and liner non-uniformity during plasma liner implosion. The growth rate of large-amplitude density perturbations introduced by the discrete jets are computed and compared with predictions by the Bell-Plesset equation.

  9. Generation of zonal flows by electrostatic drift waves in electron-positron-ion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaladze, T. D.; I. Vekua Institute of Applied Mathematics, Tbilisi State University, 2 University Str., 0186 Tbilisi; Shad, M.

    2010-02-15

    Generation of large-scale zonal flows by comparatively small-scale electrostatic drift waves in electron-positron-ion plasmas is considered. The generation mechanism is based on the parametric excitation of convective cells by finite amplitude drift waves having arbitrary wavelengths (as compared with the ion Larmor radius of plasma ions at the plasma electron temperature). Temperature inhomogeneity of electrons and positrons is taken into account assuming ions to be cold. To describe the generation of zonal flow generalized Hasegawa-Mima equation containing both vector and two scalar (of different nature) nonlinearities is used. A set of coupled equations describing the nonlinear interaction of drift wavesmore » and zonal flows is deduced. Explicit expressions for the maximum growth rate as well as for the optimal spatial dimensions of the zonal flows are obtained. Enriched possibilities of zonal flow generation with different growth rates are revealed. The present theory can be used for interpretations of drift wave observations in laboratory and astrophysical plasmas.« less

  10. Los Alamos NEP research in advanced plasma thrusters

    NASA Technical Reports Server (NTRS)

    Schoenberg, Kurt; Gerwin, Richard

    1991-01-01

    Research was initiated in advanced plasma thrusters that capitalizes on lab capabilities in plasma science and technology. The goal of the program was to examine the scaling issues of magnetoplasmadynamic (MPD) thruster performance in support of NASA's MPD thruster development program. The objective was to address multi-megawatt, large scale, quasi-steady state MPD thruster performance. Results to date include a new quasi-steady state operating regime which was obtained at space exploration initiative relevant power levels, that enables direct coaxial gun-MPD comparisons of thruster physics and performance. The radiative losses are neglible. Operation with an applied axial magnetic field shows the same operational stability and exhaust plume uniformity benefits seen in MPD thrusters. Observed gun impedance is in close agreement with the magnetic Bernoulli model predictions. Spatial and temporal measurements of magnetic field, electric field, plasma density, electron temperature, and ion/neutral energy distribution are underway. Model applications to advanced mission logistics are also underway.

  11. von Kármán–Howarth Equation for Hall Magnetohydrodynamics: Hybrid Simulations

    NASA Astrophysics Data System (ADS)

    Hellinger, Petr; Verdini, Andrea; Landi, Simone; Franci, Luca; Matteini, Lorenzo

    2018-04-01

    A dynamical vectorial equation for homogeneous incompressible Hall-magnetohydrodynamic (MHD) turbulence together with the exact scaling law for third-order correlation tensors, analogous to that for the incompressible MHD, is rederived and applied to the results of two-dimensional hybrid simulations of plasma turbulence. At large (MHD) scales the simulations exhibit a clear inertial range where the MHD dynamic law is valid. In the sub-ion range the cascade continues via the Hall term, but the dynamic law derived in the framework of incompressible Hall-MHD equations is obtained only in a low plasma beta simulation. For a higher beta plasma the cascade rate decreases in the sub-ion range and the change becomes more pronounced as the plasma beta increases. This break in the cascade flux can be ascribed to nonthermal (kinetic) features or to others terms in the dynamical equation that are not included in the Hall-MHD incompressible approximation.

  12. Slot-Antenna/Permanent-Magnet Device for Generating Plasma

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2007-01-01

    A device that includes a rectangular-waveguide/slot-antenna structure and permanent magnets has been devised as a means of generating a substantially uniform plasma over a relatively large area, using relatively low input power and a low gas flow rate. The device utilizes electron cyclotron resonance (ECR) excited by microwave power to efficiently generate plasma in a manner that is completely electrodeless in the sense that, in principle, there is no electrical contact between the plasma and the antenna. Plasmas generated by devices like this one are suitable for use as sources of ions and/or electrons for diverse material-processing applications (e.g., etching or deposition) and for ion thrusters. The absence of plasma/electrode contact essentially prevents plasma-induced erosion of the antenna, thereby also helping to minimize contamination of the plasma and of objects exposed to the plasma. Consequently, the operational lifetime of the rectangular-waveguide/ slot-antenna structure is long and the lifetime of the plasma source is limited by the lifetime of the associated charged-particle-extraction grid (if used) or the lifetime of the microwave power source. The device includes a series of matched radiating slot pairs that are distributed along the length of a plasma-source discharge chamber (see figure). This arrangement enables the production of plasma in a distributed fashion, thereby giving rise to a uniform plasma profile. A uniform plasma profile is necessary for uniformity in any electron- or ion-extraction electrostatic optics. The slotted configuration of the waveguide/ antenna structure makes the device scalable to larger areas and higher powers. All that is needed for scaling up is the attachment of additional matched radiating slots along the length of the discharge chamber. If it is desired to make the power per slot remain constant in scaling up, then the input microwave power must be increased accordingly. Unlike in prior ECR microwave plasma-generating devices, there is no need for an insulating window on the antenna. Such windows are sources of contamination and gradually become ineffective as they become coated with erosion products over time. These characteristics relegate prior ECR microwave plasma-generating devices to non-ion beam, non-deposition plasma applications. In contrast, the lack of need for an insulating window in the present device makes it possible to use the device in both ion-beam (including deposition) and electron-beam applications. The device is designed so that ECR takes place above each slot and the gradient of the magnetic field at each slot is enough to prevent backflow of plasma.

  13. Membrane Diffusion Occurs by Continuous-Time Random Walk Sustained by Vesicular Trafficking.

    PubMed

    Goiko, Maria; de Bruyn, John R; Heit, Bryan

    2018-06-19

    Diffusion in cellular membranes is regulated by processes that occur over a range of spatial and temporal scales. These processes include membrane fluidity, interprotein and interlipid interactions, interactions with membrane microdomains, interactions with the underlying cytoskeleton, and cellular processes that result in net membrane movement. The complex, non-Brownian diffusion that results from these processes has been difficult to characterize, and moreover, the impact of factors such as membrane recycling on membrane diffusion remains largely unexplored. We have used a careful statistical analysis of single-particle tracking data of the single-pass plasma membrane protein CD93 to show that the diffusion of this protein is well described by a continuous-time random walk in parallel with an aging process mediated by membrane corrals. The overall result is an evolution in the diffusion of CD93: proteins initially diffuse freely on the cell surface but over time become increasingly trapped within diffusion-limiting membrane corrals. Stable populations of freely diffusing and corralled CD93 are maintained by an endocytic/exocytic process in which corralled CD93 is selectively endocytosed, whereas freely diffusing CD93 is replenished by exocytosis of newly synthesized and recycled CD93. This trafficking not only maintained CD93 diffusivity but also maintained the heterogeneous distribution of CD93 in the plasma membrane. These results provide insight into the nature of the biological and biophysical processes that can lead to significantly non-Brownian diffusion of membrane proteins and demonstrate that ongoing membrane recycling is critical to maintaining steady-state diffusion and distribution of proteins in the plasma membrane. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Parameter scaling toward high-energy density in a quasi-steady flow Z-pinch

    NASA Astrophysics Data System (ADS)

    Hughes, M. C.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Claveau, E. L.; Doty, S. A.; Forbes, E. G.; Kim, B.; Ross, M. P.

    2016-10-01

    Sheared axial flows are utilized by the ZaP Flow Z-Pinch Experiment to stabilize MHD instabilities. The pinches formed are 50 cm long with radii ranging from 0.3 to 1.0 cm. The plasma is generated in a coaxial acceleration region, similar to a Marshall gun, which provides a steady supply of plasma for approximately 100 us. The power to the plasma is partially decoupled between the acceleration and pinch assembly regions through the use of separate power supplies. Adiabatic scaling of the Bennett relation gives targets for future devices to reach high-energy density conditions or fusion reactors. The applicability of an adiabatic assumption is explored and work is done experimentally to clarify the plasma compression process, which may be more generally polytropic. The device is capable of a much larger parameter space than previous machine iterations, allowing flexibility in the initial conditions of the compression process to preserve stability. This work is supported by DoE FES and NNSA.

  15. Nonlinear, relativistic Langmuir waves in astrophysical magnetospheres

    NASA Technical Reports Server (NTRS)

    Chian, Abraham C.-L.

    1987-01-01

    Large amplitude, electrostatic plasma waves are relevant to physical processes occurring in the astrophysical magnetospheres wherein charged particles are accelerated to relativistic energies by strong waves emitted by pulsars, quasars, or radio galaxies. The nonlinear, relativistic theory of traveling Langmuir waves in a cold plasma is reviewed. The cases of streaming electron plasma, electronic plasma, and two-streams are discussed.

  16. VPS GRCop-84 Liner Development Efforts

    NASA Technical Reports Server (NTRS)

    Elam, Sandra K.; Holmes, Richard; McKechnie, Tim; Hickman, Robert; Pickens, Tim

    2003-01-01

    For the past several years, NASA's Marshall Space Flight Center (MSFC) has been working with Plasma Processes, Inc. (PPI) to fabricate combustion chamber liners using the Vacuum Plasma Spray (VPS) process. Multiple liners of a variety of shapes and sizes have been created. Each liner has been fabricated with GRCop-84 (a copper alloy with chromium and niobium) and a functional gradient coating (FGC) on the hot wall. While the VPS process offers versatility and a reduced fabrication schedule, the material system created with VPS allows the liners to operate at higher temperatures, with maximum blanch resistance and improved cycle life. A subscal unit (5K lbf thrust class) is being cycle tested in a LOX/Hydrogen thrust chamber assembly at MSFC. To date, over 75 hot-fire tests have been accumulated on this article. Tests include conditions normally detrimental to conventional materials, yet the VPS GRCop-84 liner has yet to show any signs of degradation. A larger chamber (15K lbf thrust class) has also been fabricated and is being prepared for hot-fire testing at MSFC near the end of 2003. Linear liners have been successfully created to further demonstrate the versatility of the process. Finally, scale up issues for the VPS process are being tackled with efforts to fabricate a full size, engine class liner. Specifically, a liner for the SSME's Main Combustion Chamber (MCC) has recently been attempted. The SSME size was chosen for convenience, since its design was readily available and its size was sufficient to tackle specific issues. Efforts to fabricate these large liners have already provided valuable lessons for using this process for engine programs. The material quality for these large units is being evaluated with destructive analysis and these results will be available by the end of 2003.

  17. Membrane-based, sedimentation-assisted plasma separator for point-of-care applications.

    PubMed

    Liu, Changchun; Mauk, Michael; Gross, Robert; Bushman, Frederic D; Edelstein, Paul H; Collman, Ronald G; Bau, Haim H

    2013-11-05

    Often, high-sensitivity, point-of-care (POC) clinical tests, such as HIV viral load, require large volumes of plasma. Although centrifuges are ubiquitously used in clinical laboratories to separate plasma from whole blood, centrifugation is generally inappropriate for on-site testing. Suitable alternatives are not readily available to separate the relatively large volumes of plasma from milliliters of blood that may be needed to meet stringent limit-of-detection specifications for low-abundance target molecules. We report on a simple-to-use, low-cost, pump-free, membrane-based, sedimentation-assisted plasma separator capable of separating a relatively large volume of plasma from undiluted whole blood within minutes. This plasma separator consists of an asymmetric, porous, polysulfone membrane housed in a disposable chamber. The separation process takes advantage of both gravitational sedimentation of blood cells and size exclusion-based filtration. The plasma separator demonstrated a "blood in-plasma out" capability, consistently extracting 275 ± 33.5 μL of plasma from 1.8 mL of undiluted whole blood within less than 7 min. The device was used to separate plasma laden with HIV viruses from HIV virus-spiked whole blood with recovery efficiencies of 95.5% ± 3.5%, 88.0% ± 9.5%, and 81.5% ± 12.1% for viral loads of 35,000, 3500, and 350 copies/mL, respectively. The separation process is self-terminating to prevent excessive hemolysis. The HIV-laden plasma was then injected into our custom-made microfluidic chip for nucleic acid testing and was successfully subjected to reverse-transcriptase loop-mediated isothermal amplification (RT-LAMP), demonstrating that the plasma is sufficiently pure to support high-efficiency nucleic acid amplification.

  18. Membrane-based, sedimentation-assisted plasma separator for point-of-care applications

    PubMed Central

    Liu, Changchun; Mauk, Michael; Gross, Robert; Bushman, Frederic D.; Edelstein, Paul H.; Collman, Ronald G.; Bau, Haim H.

    2014-01-01

    Often, high sensitivity, point of care, clinical tests, such as HIV viral load, require large volumes of plasma. Although centrifuges are ubiquitously used in clinical laboratories to separate plasma from whole blood, centrifugation is generally inappropriate for on-site testing. Suitable alternatives are not readily available to separate the relatively large volumes of plasma from milliliters of blood that may be needed to meet stringent limit-of-detection specifications for low abundance target molecules. We report on a simple to use, low-cost, pump-free, membrane-based, sedimentation-assisted plasma separator capable of separating a relatively large volume of plasma from undiluted whole blood within minutes. This plasma separator consists of an asymmetric, porous, polysulfone membrane housed in a disposable chamber. The separation process takes advantage of both gravitational sedimentation of blood cells and size exclusion-based filtration. The plasma separator demonstrated a “blood in-plasma out” capability, consistently extracting 275 ±33.5 μL of plasma from 1.8 mL of undiluted whole blood in less than 7 min. The device was used to separate plasma laden with HIV viruses from HIV virus-spiked whole blood with recovery efficiencies of 95.5% ± 3.5%, 88.0% ± 9.5%, and 81.5% ± 12.1% for viral loads of 35,000, 3,500 and 350 copies/mL, respectively. The separation process is self-terminating to prevent excessive hemolysis. The HIV-laden plasma was then injected into our custom-made microfluidic chip for nucleic acid Testing And Was Successfully Subjected To Reverse Transcriptase Loop mediated isothermal amplification (RT-LAMP), demonstrating that the plasma is sufficiently pure to support high efficiency nucleic acid amplification. PMID:24099566

  19. Turbulent mass transfer caused by vortex induced reconnection in collisionless magnetospheric plasmas.

    PubMed

    Nakamura, T K M; Hasegawa, H; Daughton, W; Eriksson, S; Li, W Y; Nakamura, R

    2017-11-17

    Magnetic reconnection is believed to be the main driver to transport solar wind into the Earth's magnetosphere when the magnetopause features a large magnetic shear. However, even when the magnetic shear is too small for spontaneous reconnection, the Kelvin-Helmholtz instability driven by a super-Alfvénic velocity shear is expected to facilitate the transport. Although previous kinetic simulations have demonstrated that the non-linear vortex flows from the Kelvin-Helmholtz instability gives rise to vortex-induced reconnection and resulting plasma transport, the system sizes of these simulations were too small to allow the reconnection to evolve much beyond the electron scale as recently observed by the Magnetospheric Multiscale (MMS) spacecraft. Here, based on a large-scale kinetic simulation and its comparison with MMS observations, we show for the first time that ion-scale jets from vortex-induced reconnection rapidly decay through self-generated turbulence, leading to a mass transfer rate nearly one order higher than previous expectations for the Kelvin-Helmholtz instability.

  20. Large-Area Permanent-Magnet ECR Plasma Source

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2007-01-01

    A 40-cm-diameter plasma device has been developed as a source of ions for material-processing and ion-thruster applications. Like the device described in the immediately preceding article, this device utilizes electron cyclotron resonance (ECR) excited by microwave power in a magnetic field to generate a plasma in an electrodeless (noncontact) manner and without need for an electrically insulating, microwave-transmissive window at the source. Hence, this device offers the same advantages of electrodeless, windowless design - low contamination and long operational life. The device generates a uniform, high-density plasma capable of sustaining uniform ion-current densities at its exit plane while operating at low pressure [<10(exp -4) torr (less than about 1.3 10(exp -2) Pa)] and input power <200 W at a frequency of 2.45 GHz. Though the prototype model operates at 2.45 GHz, operation at higher frequencies can be achieved by straightforward modification to the input microwave waveguide. Higher frequency operation may be desirable in those applications that require even higher background plasma densities. In the design of this ECR plasma source, there are no cumbersome, power-hungry electromagnets. The magnetic field in this device is generated by a permanent-magnet circuit that is optimized to generate resonance surfaces. The microwave power is injected on the centerline of the device. The resulting discharge plasma jumps into a "high mode" when the input power rises above 150 W. This mode is associated with elevated plasma density and high uniformity. The large area and uniformity of the plasma and the low operating pressure are well suited for such material-processing applications as etching and deposition on large silicon wafers. The high exit-plane ion-current density makes it possible to attain a high rate of etching or deposition. The plasma potential is <3 V low enough that there is little likelihood of sputtering, which, in plasma processing, is undesired because it is associated with erosion and contamination. The electron temperature is low and does not vary appreciably with power.

  1. Nonextensive Entropy Approach to Space Plasma Fluctuations and Turbulence

    NASA Astrophysics Data System (ADS)

    Leubner, M. P.; Vörös, Z.; Baumjohann, W.

    Spatial intermittency in fully developed turbulence is an established feature of astrophysical plasma fluctuations and in particular apparent in the interplanetary medium by in situ observations. In this situation, the classical Boltzmann— Gibbs extensive thermo-statistics, applicable when microscopic interactions and memory are short ranged and the environment is a continuous and differentiable manifold, fails. Upon generalization of the entropy function to nonextensivity, accounting for long-range interactions and thus for correlations in the system, it is demonstrated that the corresponding probability distribution functions (PDFs) are members of a family of specific power-law distributions. In particular, the resulting theoretical bi-κ functional reproduces accurately the observed global leptokurtic, non-Gaussian shape of the increment PDFs of characteristic solar wind variables on all scales, where nonlocality in turbulence is controlled via a multiscale coupling parameter. Gradual decoupling is obtained by enhancing the spatial separation scale corresponding to increasing κ-values in case of slow solar wind conditions where a Gaussian is approached in the limit of large scales. Contrary, the scaling properties in the high speed solar wind are predominantly governed by the mean energy or variance of the distribution, appearing as second parameter in the theory. The PDFs of solar wind scalar field differences are computed from WIND and ACE data for different time-lags and bulk speeds and analyzed within the nonextensive theory, where also a particular nonlinear dependence of the coupling parameter and variance with scale arises for best fitting theoretical PDFs. Consequently, nonlocality in fluctuations, related to both, turbulence and its large scale driving, should be related to long-range interactions in the context of nonextensive entropy generalization, providing fundamentally the physical background of the observed scale dependence of fluctuations in intermittent space plasmas.

  2. Development and characterization of plasma targets for controlled injection of electrons into laser-driven wakefields

    NASA Astrophysics Data System (ADS)

    Kleinwaechter, Tobias; Goldberg, Lars; Palmer, Charlotte; Schaper, Lucas; Schwinkendorf, Jan-Patrick; Osterhoff, Jens

    2012-10-01

    Laser-driven wakefield acceleration within capillary discharge waveguides has been used to generate high-quality electron bunches with GeV-scale energies. However, owing to fluctuations in laser and plasma conditions in combination with a difficult to control self-injection mechanism in the non-linear wakefield regime these bunches are often not reproducible and can feature large energy spreads. Specialized plasma targets with tailored density profiles offer the possibility to overcome these issues by controlling the injection and acceleration processes. This requires precise manipulation of the longitudinal density profile. Therefore our target concept is based on a capillary structure with multiple gas in- and outlets. Potential target designs are simulated using the fluid code OpenFOAM and those meeting the specified criteria are fabricated using femtosecond-laser machining of structures into sapphire plates. Density profiles are measured over a range of inlet pressures utilizing gas-density profilometry via Raman scattering and pressure calibration with longitudinal interferometry. In combination these allow absolute density mapping. Here we report the preliminary results.

  3. Structure and dynamics of the ionosphere. [Venus atmosphere

    NASA Technical Reports Server (NTRS)

    Nagy, A. F.; Brace, L. H.

    1982-01-01

    The structure of the Venus ionosphere and the major processes occurring within it are summarized. The daytime ionosphere is created by solar EUV radiation incident on the thermosphere; it is in photochemical equilibrium near its peak at about 142 km, where O2(+) is the major ion, and near diffusive equilibrium in its upper regions, where the major ion is O(+). The day-to-night plasma pressure gradient across the terminator drives a nightward ion flow which, together with electron precipitation, contributes to the formation of the nighttime ionosphere. Large-scale radial holes or plasma depletions extending downwards to nearly the ionization peak in the antisolar region are also observed which are associated with regions of strong radial magnetic fields. The ionopause is a highly dynamic and complex surface, extending from an average altitude of 290 km at the subsolar point to about 1000 km at the terminator and from 200 to over 3000 km on the nightside. A variety of solar wind interaction products are observed in the mantle, a transition region between the ionospheric plasma and the flowing shocked solar wind.

  4. Plasma Jet Printing and in Situ Reduction of Highly Acidic Graphene Oxide.

    PubMed

    Dey, Avishek; Krishnamurthy, Satheesh; Bowen, James; Nordlund, Dennis; Meyyappan, M; Gandhiraman, Ram P

    2018-05-23

    Miniaturization of electronic devices and the advancement of Internet of Things pose exciting challenges to develop technologies for patterned deposition of functional nanomaterials. Printed and flexible electronic devices and energy storage devices can be embedded onto clothing or other flexible surfaces. Graphene oxide (GO) has gained much attention in printed electronics due its solution processability, robustness, and high electrical conductivity in the reduced state. Here, we introduce an approach to print GO films from highly acidic suspensions with in situ reduction using an atmospheric pressure plasma jet. Low-temperature plasma of a He and H 2 mixture was used successfully to reduce a highly acidic GO suspension (pH < 2) in situ during deposition. This technique overcomes the multiple intermediate steps required to increase the conductivity of deposited GO. X-ray spectroscopic studies confirmed that the reaction intermediates and the concentration of oxygen functionalities bonded to GO have been reduced significantly by this approach without any additional steps. Moreover, the reduced GO films showed enhanced conductivity. Hence, this technique has a strong potential for printing conducting patterns of GO for a range of large-scale applications.

  5. An Overview of Scientific and Space Weather Results from the Communication/Navigation Outage Forecasting System (C/NOFS) Mission

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; de la Beaujardiere, O.; Hunton, D.; Heelis, R.; Earle, G.; Strauss, P.; Bernhardt, P.

    2012-01-01

    The Communication/Navigation Outage Forecasting System (C/NOFS) Mission of the Air Force Research Laboratory is described. C/NOFS science objectives may be organized into three categories: (1) to understand physical processes active in the background ionosphere and thermosphere in which plasma instabilities grow; (2) to identify mechanisms that trigger or quench the plasma irregularities responsible for signal degradation; and (3) to determine how the plasma irregularities affect the propagation of electromagnetic waves. The satellite was launched in April, 2008 into a low inclination (13 deg), elliptical (400 x 850 km) orbit. The satellite sensors measure the following parameters in situ: ambient and fluctuating electron densities, AC and DC electric and magnetic fields, ion drifts and large scale ion composition, ion and electron temperatures, and neutral winds. C/NOFS is also equipped with a GPS occultation receiver and a radio beacon. In addition to the satellite sensors, complementary ground-based measurements, theory, and advanced modeling techniques are also important parts of the mission. We report scientific and space weather highlights of the mission after nearly four years in orbit

  6. Theoretical Technology Research for the International Solar Terrestrial Physics (ISTP) Program

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, Maha; Curtis, Steve (Technical Monitor)

    2002-01-01

    During the last four years the UCLA (University of California, Los Angeles) IGPP (Institute of Geophysics and Planetary Physics) Space Plasma Simulation Group has continued its theoretical effort to develop a Mission Oriented Theory (MOT) for the International Solar Terrestrial Physics (ISTP) program. This effort has been based on a combination of approaches: analytical theory, large-scale kinetic (LSK) calculations, global magnetohydrodynamic (MHD) simulations and self-consistent plasma kinetic (SCK) simulations. These models have been used to formulate a global interpretation of local measurements made by the ISTP spacecraft. The regions of applications of the MOT cover most of the magnetosphere: solar wind, low- and high- latitude magnetospheric boundary, near-Earth and distant magnetotail, and auroral region. Most recent investigations include: plasma processes in the electron foreshock, response of the magnetospheric cusp, particle entry in the magnetosphere, sources of observed distribution functions in the magnetotail, transport of oxygen ions, self-consistent evolution of the magnetotail, substorm studies, effects of explosive reconnection, and auroral acceleration simulations. A complete list of the activities completed under the grant follow.

  7. Thermal plasma and fast ion transport in electrostatic turbulence in the large plasma devicea)

    NASA Astrophysics Data System (ADS)

    Zhou, Shu; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Carter, T. A.; Vincena, S.; Tripathi, S. K. P.; Van Compernolle, B.

    2012-05-01

    The transport of thermal plasma and fast ions in electrostatic microturbulence is studied. Strong density and potential fluctuations (δn /n˜δφ/kTe ˜ 0.5, f ˜ 5-50 kHz) are observed in the large plasma device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky et al., Rev. Sci. Instrum. 62, 2875 (1991)] in density gradient regions produced by obstacles with slab or cylindrical geometry. Wave characteristics and the associated plasma transport are modified by driving sheared E × B drift through biasing the obstacle and by modification of the axial magnetic fields (Bz) and the plasma species. Cross-field plasma transport is suppressed with small bias and large Bz and is enhanced with large bias and small Bz. The transition in thermal plasma confinement is well explained by the cross-phase between density and potential fluctuations. Large gyroradius lithium fast ion beam (ρfast/ρs ˜ 10) orbits through the turbulent region. Scans with a collimated analyzer give detailed profiles of the fast ion spatial-temporal distribution. Fast-ion transport decreases rapidly with increasing fast-ion energy and gyroradius. Background waves with different scale lengths also alter the fast ion transport. Experimental results agree well with gyro-averaging theory. When the fast ion interacts with the wave for most of a wave period, a transition from super-diffusive to sub-diffusive transport is observed, as predicted by diffusion theory. Besides turbulent-wave-induced fast-ion transport, the static radial electric field (Er) from biasing the obstacle leads to drift of the fast-ion beam centroid. The drift and broadening of the beam due to static Er are evaluated both analytically and numerically. Simulation results indicate that the Er induced transport is predominately convective.

  8. Convection and electrodynamic signatures in the vicinity of a Sun-aligned arc: Results from the Polar Acceleration Regions and Convection Study (Polar ARCS)

    NASA Technical Reports Server (NTRS)

    Weiss, L. A.; Weber, E. J.; Reiff, P. H.; Sharber, J. R.; Winningham, J. D.; Primdahl, F.; Mikkelsen, I. S.; Seifring, C.; Wescott, Eugene M.

    1994-01-01

    An experimental campaign designed to study high-latitude auroral arcs was conducted in Sondre Stromfjord, Greenland, on February 26, 1987. The Polar Acceleration Regions and Convection Study (Polar ARCS) consisted of a coordinated set of ground-based, airborne, and sounding rocket measurements of a weak, sun-aligned arc system within the duskside polar cap. A rocket-borne barium release experiment, two DMSP satellite overflights, all-sky photography, and incoherent scatter radar measurements provided information on the large-scale plasma convection over the polar cap region while a second rocket instrumented with a DC magnetometer, Langmuir and electric field probes, and an electron spectrometer provided measurements of small-scale electrodynamics. The large-scale data indicate that small, sun-aligned precipitation events formed within a region of antisunward convection between the duskside auroral oval and a large sun-aligned arc further poleward. This convection signature, used to assess the relationship of the sun-aligned arc to the large-scale magnetospheric configuration, is found to be consistent with either a model in which the arc formed on open field lines on the dusk side of a bifurcated polar cap or on closed field lines threading an expanded low-latitude boundary layer, but not a model in which the polar cap arc field lines map to an expanded plasma sheet. The antisunward convection signature may also be explained by a model in which the polar cap arc formed on long field lines recently reconnected through a highly skewed plasma sheet. The small-scale measurements indicate the rocket passed through three narrow (less than 20 km) regions of low-energy (less than 100 eV) electron precipitation in which the electric and magnetic field perturbations were well correlated. These precipitation events are shown to be associated with regions of downward Poynting flux and small-scale upward and downward field-aligned currents of 1-2 micro-A/sq m. The paired field-aligned currents are associated with velocity shears (higher and lower speed streams) embedded in the region of antisunward flow.

  9. Optical and Radio Remote Sensing of Space Plasma Turbulence

    DTIC Science & Technology

    2008-03-31

    Helbert, Guilhelm Moreaux, Pierre-Emmanuel Godet (2006), Ground based GPS tomography of ionospheric post-seismic signal., Planet. Space. Science, 54...occurring and radio wave-induced ionospheric plasma turbulence. The intriguing phenomena reported here include large-scale turbulence created by tsunami...in Puerto Rico [Labno et al., J. Geophys. Res., 2007]. Presented are ionospheric measurements using Arecibo 430 MHz radar supported by data from

  10. Large-scale dynamo growth rates from numerical simulations and implications for mean-field theories

    NASA Astrophysics Data System (ADS)

    Park, Kiwan; Blackman, Eric G.; Subramanian, Kandaswamy

    2013-05-01

    Understanding large-scale magnetic field growth in turbulent plasmas in the magnetohydrodynamic limit is a goal of magnetic dynamo theory. In particular, assessing how well large-scale helical field growth and saturation in simulations match those predicted by existing theories is important for progress. Using numerical simulations of isotropically forced turbulence without large-scale shear with its implications, we focus on several additional aspects of this comparison: (1) Leading mean-field dynamo theories which break the field into large and small scales predict that large-scale helical field growth rates are determined by the difference between kinetic helicity and current helicity with no dependence on the nonhelical energy in small-scale magnetic fields. Our simulations show that the growth rate of the large-scale field from fully helical forcing is indeed unaffected by the presence or absence of small-scale magnetic fields amplified in a precursor nonhelical dynamo. However, because the precursor nonhelical dynamo in our simulations produced fields that were strongly subequipartition with respect to the kinetic energy, we cannot yet rule out the potential influence of stronger nonhelical small-scale fields. (2) We have identified two features in our simulations which cannot be explained by the most minimalist versions of two-scale mean-field theory: (i) fully helical small-scale forcing produces significant nonhelical large-scale magnetic energy and (ii) the saturation of the large-scale field growth is time delayed with respect to what minimalist theory predicts. We comment on desirable generalizations to the theory in this context and future desired work.

  11. Large-scale dynamo growth rates from numerical simulations and implications for mean-field theories.

    PubMed

    Park, Kiwan; Blackman, Eric G; Subramanian, Kandaswamy

    2013-05-01

    Understanding large-scale magnetic field growth in turbulent plasmas in the magnetohydrodynamic limit is a goal of magnetic dynamo theory. In particular, assessing how well large-scale helical field growth and saturation in simulations match those predicted by existing theories is important for progress. Using numerical simulations of isotropically forced turbulence without large-scale shear with its implications, we focus on several additional aspects of this comparison: (1) Leading mean-field dynamo theories which break the field into large and small scales predict that large-scale helical field growth rates are determined by the difference between kinetic helicity and current helicity with no dependence on the nonhelical energy in small-scale magnetic fields. Our simulations show that the growth rate of the large-scale field from fully helical forcing is indeed unaffected by the presence or absence of small-scale magnetic fields amplified in a precursor nonhelical dynamo. However, because the precursor nonhelical dynamo in our simulations produced fields that were strongly subequipartition with respect to the kinetic energy, we cannot yet rule out the potential influence of stronger nonhelical small-scale fields. (2) We have identified two features in our simulations which cannot be explained by the most minimalist versions of two-scale mean-field theory: (i) fully helical small-scale forcing produces significant nonhelical large-scale magnetic energy and (ii) the saturation of the large-scale field growth is time delayed with respect to what minimalist theory predicts. We comment on desirable generalizations to the theory in this context and future desired work.

  12. A Computational Chemistry Database for Semiconductor Processing

    NASA Technical Reports Server (NTRS)

    Jaffe, R.; Meyyappan, M.; Arnold, J. O. (Technical Monitor)

    1998-01-01

    The concept of 'virtual reactor' or 'virtual prototyping' has received much attention recently in the semiconductor industry. Commercial codes to simulate thermal CVD and plasma processes have become available to aid in equipment and process design efforts, The virtual prototyping effort would go nowhere if codes do not come with a reliable database of chemical and physical properties of gases involved in semiconductor processing. Commercial code vendors have no capabilities to generate such a database, rather leave the task to the user of finding whatever is needed. While individual investigations of interesting chemical systems continue at Universities, there has not been any large scale effort to create a database. In this presentation, we outline our efforts in this area. Our effort focuses on the following five areas: 1. Thermal CVD reaction mechanism and rate constants. 2. Thermochemical properties. 3. Transport properties.4. Electron-molecule collision cross sections. and 5. Gas-surface interactions.

  13. Numerical Prediction of the Influence of Process Parameters on Large Area Diamond Deposition by DC Arcjet with ARC Roots Rotating and Operating at Gas Recycling Mode

    NASA Astrophysics Data System (ADS)

    Lu, F. X.; Huang, T. B.; Tang, W. Z.; Song, J. H.; Tong, Y. M.

    A computer model have been set up for simulation of the flow and temperature field, and the radial distribution of atomic hydrogen and active carbonaceous species over a large area substrate surface for a new type dc arc plasma torch with rotating arc roots and operating at gas recycling mode A gas recycling radio of 90% was assumed. In numerical calculation of plasma chemistry, the Thermal-Calc program and a powerful thermodynamic database were employed. Numerical calculations to the computer model were performed using boundary conditions close to the experimental setup for large area diamond films deposition. The results showed that the flow and temperature field over substrate surface of Φ60-100mm were smooth and uniform. Calculations were also made with plasma of the same geometry but no arc roots rotation. It was clearly demonstrated that the design of rotating arc roots was advantageous for high quality uniform deposition of large area diamond films. Theoretical predictions on growth rate and film quality as well as their radial uniformity, and the influence of process parameters on large area diamond deposition were discussed in detail based on the spatial distribution of atomic hydrogen and the carbonaceous species in the plasma over the substrate surface obtained from thermodynamic calculations of plasma chemistry, and were compared with experimental observations.

  14. Polarization of Sunyaev-Zel'dovich signal due to electron pressure anisotropy in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Khabibullin, I.; Komarov, S.; Churazov, E.; Schekochihin, A.

    2018-02-01

    We describe polarization of the Sunyaev-Zel'dovich (SZ) effect associated with electron pressure anisotropy likely present in the intracluster medium (ICM). The ICM is an astrophysical example of a weakly collisional plasma where the Larmor frequencies of charged particles greatly exceed their collision frequencies. This permits formation of pressure anisotropies, driven by evolving magnetic fields via adiabatic invariance, or by heat fluxes. SZ polarization arises in the process of Compton scattering of the cosmic microwave background (CMB) photons off the thermal ICM electrons due to the difference in the characteristic thermal velocities of the electrons along two mutually orthogonal directions in the sky plane. The signal scales linearly with the optical depth of the region containing large-scale correlated anisotropy, and with the degree of anisotropy itself. It has the same spectral dependence as the polarization induced by cluster motion with respect to the CMB frame (kinematic SZ effect polarization), but can be distinguished by its spatial pattern. For the illustrative case of a galaxy cluster with a cold front, where electron transport is mediated by Coulomb collisions, we estimate the CMB polarization degree at the level of 10-8 (˜10 nK). An increase of the effective electron collisionality due to plasma instabilities will reduce the effect. Such polarization, therefore, may be an independent probe of the electron collisionality in the ICM, which is one of the key properties of a high-β weakly collisional plasma from the point of view of both astrophysics and plasma theory.

  15. Primordial Magnetic Field Effects on the CMB and Large-Scale Structure

    DOE PAGES

    Yamazaki, Dai G.; Ichiki, Kiyotomo; Kajino, Toshitaka; ...

    2010-01-01

    Mmore » agnetic fields are everywhere in nature, and they play an important role in every astronomical environment which involves the formation of plasma and currents. It is natural therefore to suppose that magnetic fields could be present in the turbulent high-temperature environment of the big bang. Such a primordial magnetic field (PF) would be expected to manifest itself in the cosmic microwave background (CB) temperature and polarization anisotropies, and also in the formation of large-scale structure. In this paper, we summarize the theoretical framework which we have developed to calculate the PF power spectrum to high precision. Using this formulation, we summarize calculations of the effects of a PF which take accurate quantitative account of the time evolution of the cutoff scale. We review the constructed numerical program, which is without approximation, and an improvement over the approach used in a number of previous works for studying the effect of the PF on the cosmological perturbations. We demonstrate how the PF is an important cosmological physical process on small scales. We also summarize the current constraints on the PF amplitude B λ and the power spectral index n B which have been deduced from the available CB observational data by using our computational framework.« less

  16. Mechanism for Plasma Etching of Shallow Trench Isolation Features in an Inductively Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Agarwal, Ankur; Rauf, Shahid; He, Jim; Choi, Jinhan; Collins, Ken

    2011-10-01

    Plasma etching for microelectronics fabrication is facing extreme challenges as processes are developed for advanced technological nodes. As device sizes shrink, control of shallow trench isolation (STI) features become more important in both logic and memory devices. Halogen-based inductively coupled plasmas in a pressure range of 20-60 mTorr are typically used to etch STI features. The need for improved performance and shorter development cycles are placing greater emphasis on understanding the underlying mechanisms to meet process specifications. In this work, a surface mechanism for STI etch process will be discussed that couples a fundamental plasma model to experimental etch process measurements. This model utilizes ion/neutral fluxes and energy distributions calculated using the Hybrid Plasma Equipment Model. Experiments are for blanket Si wafers in a Cl2/HBr/O2/N2 plasma over a range of pressures, bias powers, and flow rates of feedstock gases. We found that kinetic treatment of electron transport was critical to achieve good agreement with experiments. The calibrated plasma model is then coupled to a string-based feature scale model to quantify the effect of varying process parameters on the etch profile. We found that the operating parameters strongly influence critical dimensions but have only a subtle impact on the etch depths.

  17. Efficient Plasma Production in Low Background Neutral Pressures with the M2P2 Prototype

    NASA Technical Reports Server (NTRS)

    Ziemba, T.; Euripides, P.; Winglee, R.; Slough, J.; Giersch, L.

    2003-01-01

    Mini-Magnetospheric Plasma Propulsion (M2P2) seeks the creation of a large-scale (10 km radius) magnetic wall or bubble (i.e. a magnetosphere) by the electromagnetic inflation of a small-scale (20 cm radius) dipole magnet. The inflated magnetosphere will intercept the solar wind and thereby provide high-speed propulsion with modest power and fuel requirements due to the gain provided by the ambient medium. Magnetic field inflation is produced by the injection of plasma onto the dipole magnetic field eliminating the need for large mechanical structures and added material weight at launch. For successful inflation of the magnetic bubble a beta near unity must be achieved along the imposed dipole field. This is dependent on the plasma parameters that can be achieved with a plasma source that provide continuous operation at the desired power levels of 1 to 2 kilowatts. Over the last two years we have been developing a laboratory prototype to demonstrate the inflation of the magnetic field under space-like conditions. In this paper we will present some of the latest results from the prototype development at the University of Washington and show that the prototype can produce high ionization efficiencies while operating in near space like neutral background pressures producing electron temperatures of a few tens of electron volts. This allows for operation with propellant expenditures lower than originally estimated.

  18. Laser-plasma extreme ultraviolet and soft X-ray sources based on a double stream gas puff target: interaction of the radiation pulses with matter

    NASA Astrophysics Data System (ADS)

    Bartnik, A.

    2015-06-01

    In this work a review of investigations concerning interaction of intense extreme ultraviolet (EUV) and soft X-ray (SXR) pulses with matter is presented. The investigations were performed using laser-produced plasma (LPP) EUV/SXR sources based on a double stream gas puff target. The sources are equipped with dedicated collectors allowing for efficient focusing of the EUV/SXR radiation pulses. Intense radiation in a wide spectral range, as well as a quasi-monochromatic radiation can be produced. In the paper different kinds of LPP EUV/SXR sources developed in the Institute of Optoelectronics, Military University of Technology are described. Radiation intensities delivered by the sources are sufficient for different kinds of interaction experiments including EUV/SXR induced ablation, surface treatment, EUV fluorescence or photoionized plasma creation. A brief review of the main results concerning this kind of experiments performed by author of the paper are presented. However, since the LPP sources cannot compete with large scale X-ray sources like synchrotrons, free electron lasers or high energy density plasma sources, it was indicated that some investigations not requiring extreme irradiation parameters can be performed using the small scale installations. Some results, especially concerning low temperature photoionized plasmas are very unique and could be hardly obtained using the large facilities.

  19. Detection of F-region electron density irregularities using incoherent-scatter radar

    NASA Astrophysics Data System (ADS)

    Gudivada, Krishna Prasad

    Incoherent-scatter radar data from Poker Flat, Alaska has been used to determine size distributions of electron density structures in the evening time sector of the auroral zone. At high latitudes ionospheric plasma typically moves east-west with speeds of several hundred meters per second. Density irregularities that rapidly move through the radar beam are therefore observed as time-varying power fluctuations. The new phased array radar used for this study has been operated with several antenna directions with successive pulses transmitted in each direction. It is therefore possible to observe plasma Doppler velocities in multiple directions and determine the vector direction of the plasma motion. This near-simultaneous observation of the plasma velocity in conjunction with the electron density height profile data enable a new technique to determine the scale sizes of electron density fluctuations that move horizontally through the radar beam. The study focuses on the collision-less F-region ionosphere where the plasma drift is approximately constant with altitude. The experimental technique limits the range of scale sizes that may be studied to relatively large-scale sizes (i.e. greater than few tens of km). Results show that during magnetically disturbed conditions (Kp ≥ 4) when westward plasma velocities are relatively high (500-1000 m/s) the scale sizes of irregularities (often called plasma blobs) are in the range of 100-300 km and predominantly originate from the polar cap and are transported over long distances (˜1000 km) due to the long chemical recombination times (30-90 minutes). Some irregularities are caused by local auroral particle precipitation and have been identified with associated electron temperature enhancements. For cases of low magnetic activity (Kp ≤ 1), when the radar is located in a region of low plasma velocities (100-500 m/s) well south of the auroral oval (essentially a mid-latitude type ionosphere), the density distribution is always biased strongly toward small-scale sizes (less than 50 km).

  20. Modular Pulsed Plasma Electric Propulsion System for Cubesats

    NASA Technical Reports Server (NTRS)

    Perez, Andres Dono; Gazulla, Oriol Tintore; Teel, George Lewis; Mai, Nghia; Lukas, Joseph; Haque, Sumadra; Uribe, Eddie; Keidar, Michael; Agasid, Elwood

    2014-01-01

    Current capabilities of CubeSats must be improved in order to perform more ambitious missions. Electric propulsion systems will play a key role due to their large specific impulse. Compared to other propulsion alternatives, their simplicity allows an easier miniaturization and manufacturing of autonomous modules into the nano and pico-satellite platform. Pulsed Plasma Thrusters (PPTs) appear as one of the most promising technologies for the near term. The utilization of solid and non-volatile propellants, their low power requirements and their proven reliability in the large scale make them great candidates for rapid implementation. The main challenges are the integration and miniaturization of all the electronic circuitry into a printed circuit board (PCB) that can satisfy the strict requirements that CubeSats present. NASA Ames and the George Washington University have demonstrated functionality and control of three discrete Micro-Cathode Arc Thrusters (CAT) using a bench top configuration that was compatible with the ARC PhoneSat Bus. This demonstration was successfully conducted in a vaccum chamber at the ARC Environmental Test Laboratory. A new effort will integrate a low power Plasma Processing Unit and two plasma thrusters onto a single printed circuit board that will utilize less than 13 U of Bus volume. The target design will be optimized for the accommodation into the PhoneSatEDISON Demonstration of SmallSatellite Networks (EDSN) bus as it uses the same software interface application, which was demonstrated in the previous task. This paper describes the design, integration and architecture of the proposed propulsion subsystem for a planned Technology Demonstration Mission. In addition, a general review of the Pulsed Plasma technology available for CubeSats is presented in order to assess the necessary challenges to overcome further development.

  1. Magnetic Reconnection and Particle Acceleration in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Neukirch, Thomas

    Reconnection plays a major role for the magnetic activity of the solar atmosphere, for example solar flares. An interesting open problem is how magnetic reconnection acts to redistribute the stored magnetic energy released during an eruption into other energy forms, e.g. gener-ating bulk flows, plasma heating and non-thermal energetic particles. In particular, finding a theoretical explanation for the observed acceleration of a large number of charged particles to high energies during solar flares is presently one of the most challenging problems in solar physics. One difficulty is the vast difference between the microscopic (kinetic) and the macro-scopic (MHD) scales involved. Whereas the phenomena observed to occur on large scales are reasonably well explained by the so-called standard model, this does not seem to be the case for the small-scale (kinetic) aspects of flares. Over the past years, observations, in particular by RHESSI, have provided evidence that a naive interpretation of the data in terms of the standard solar flare/thick target model is problematic. As a consequence, the role played by magnetic reconnection in the particle acceleration process during solar flares may have to be reconsidered.

  2. Experimental observation of multi-scale interactions among kink /tearing modes and high-frequency fluctuations in the HL-2A core NBI plasmas

    NASA Astrophysics Data System (ADS)

    Chen, W.; Jiang, M.; Xu, Y.; Shi, P. W.; Yu, L. M.; Ding, X. T.; Shi, Z. B.; Ji, X. Q.; Yu, D. L.; Li, Y. G.; Yang, Z. C.; Zhong, W. L.; Qiu, Z. Y.; Li, J. Q.; Dong, J. Q.; Yang, Q. W.; Liu, Yi.; Yan, L. W.; Xu, M.; Duan, X. R.

    2017-11-01

    Multi-scale interactions have been observed recently in the HL-2A core NBI plasmas, including the synchronous coupling between m/n=1/1 kink mode and m/n=2/1 tearing mode, nonlinear couplings of TAE/BAE and m/n=2/1 TM near q=2 surface, AITG/KBM/BAE and m/n=1/1 kink mode near q=1 surface, and between m/n=1/1 kink mode and high-frequency turbulence. Experimental results suggest that several couplings can exist simultaneously, Alfvenic fluctuations have an important contribution to the high-frequency turbulence spectra, and the couplings reveal the electromagnetic character. Multi-scale interactions via the nonlinear modulation process maybe enhance plasma transport and trigger sawtooth-crash onset.

  3. A linear-field plasma jet for generating a brush-shaped laminar plume at atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xuechen; Jia, Pengying, E-mail: plasmalab@126.com; Key Laboratory of Photo-Electronics Information Materials of Hebei Province, Baoding 071002

    2016-06-15

    A linear-field plasma jet composed of line-to-plate electrodes is used to generate a large-scale brush-shaped plasma plume with flowing argon used as working gas. Through electrical measurement and fast photography, it is found that the plasma plume bridges the two electrodes for the discharge in the positive voltage half-cycle, which behaves like fast moving plasma bullets directed from the anode to the cathode. Compared with the positive discharge, the negative discharge only develops inside the nozzle and propagates much slower. Results also indicate that the gas temperature of the plume is close to room temperature, which is promising for biomedicalmore » application.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, Dustin M., E-mail: dustin.m.fisher.gr@dartmouth.edu; Rogers, Barrett N., E-mail: barrett.rogers@dartmouth.edu; Rossi, Giovanni D.

    The Large Plasma Device (LAPD) is modeled using the 3D Global Braginskii Solver code. Comparisons to experimental measurements are made in the low-bias regime in which there is an intrinsic E × B rotation of the plasma. In the simulations, this rotation is caused primarily by sheath effects and may be a likely mechanism for the intrinsic rotation seen in LAPD. Simulations show strong qualitative agreement with the data, particularly the radial dependence of the density fluctuations, cross-correlation lengths, radial flux dependence outside of the cathode edge, and camera imagery. Kelvin Helmholtz (KH) turbulence at relatively large scales is the dominant drivermore » of cross-field transport in these simulations with smaller-scale drift waves and sheath modes playing a secondary role. Plasma holes and blobs arising from KH vortices in the simulations are consistent with the scale sizes and overall appearance of those in LAPD camera images. The addition of ion-neutral collisions in the simulations at previously theorized values reduces the radial particle flux by about a factor of two, from values that are somewhat larger than the experimentally measured flux to values that are somewhat lower than the measurements. This reduction is due to a modest stabilizing contribution of the collisions on the KH-modes driving the turbulent transport.« less

  5. Dynamo-driven plasmoid formation from a current-sheet instability

    DOE PAGES

    Ebrahimi, F.

    2016-12-15

    Axisymmetric current-carrying plasmoids are formed in the presence of nonaxisymmetric fluctuations during nonlinear three-dimensional resistive MHD simulations in a global toroidal geometry. In this study, we utilize the helicity injection technique to form an initial poloidal flux in the presence of a toroidal guide field. As helicity is injected, two types of current sheets are formed from the oppositely directed field lines in the injector region (primary reconnecting current sheet), and the poloidal flux compression near the plasma edge (edge current sheet). We first find that nonaxisymmetric fluctuations arising from the current-sheet instability isolated near the plasma edge have tearingmore » parity but can nevertheless grow fast (on the poloidal Alfven time scale). These modes saturate by breaking up the current sheet. Second, for the first time, a dynamo poloidal flux amplification is observed at the reconnection site (in the region of the oppositely directed magnetic field). This fluctuation-induced flux amplification increases the local Lundquist number, which then triggers a plasmoid instability and breaks the primary current sheet at the reconnection site. Finally, the plasmoids formation driven by large-scale flux amplification, i.e., a large-scale dynamo, observed here has strong implications for astrophysical reconnection as well as fast reconnection events in laboratory plasmas.« less

  6. Is the S-Web the Secret to Observed Heliospheric Particle Distributions?

    NASA Astrophysics Data System (ADS)

    Higginson, A. K.; Antiochos, S. K.; DeVore, C. R.; Daldorff, L. K. S.; Wyper, P. F.; Ukhorskiy, A. Y.; Sorathia, K.

    2017-12-01

    Particle transport in the heliosphere remains an unsolved problem across energy regimes. Observations of slow solar wind show that plasma escapes from the closed-field corona, but ends up far away from the heliospheric current sheet, even though the release mechanisms are expected to occur at the HCS. Similarly, some impulsive SEP events have extreme longitudinal extents of 100 degrees or more. Recent theoretical and numerical work has shown that interchange reconnection near a coronal-hole corridor can release plasma from originally closed magnetic field lines into a large swath spread across the heliosphere, forming what is known as an S-Web arc. This is a promising mechanism for explaining both the slow solar wind, with its large latitudinal extent, and impulsive SEP particles, with their large longitudinal extent. Here we compute, for the first time, the dynamics of the S-Web when the photospheric driver is applied over a large portion of the solar surface compared to the scale of the driving. We examine the time scales for the interchange reconnection and compute the angular extent of the plasma released, in the context of understanding both the slow solar wind and flare-accelerated SEPs. We will make predictions for Solar Orbiter and Parker Solar Probe and discuss how these new measurements will help to both pinpoint the source of the slow solar wind and illuminate the transport mechanisms of wide-spread impulsive SEP events.

  7. Study of ion-ion plasma formation in negative ion sources by a three-dimensional in real space and three-dimensional in velocity space particle in cell model

    NASA Astrophysics Data System (ADS)

    Nishioka, S.; Goto, I.; Miyamoto, K.; Hatayama, A.; Fukano, A.

    2016-01-01

    Recently, in large-scale hydrogen negative ion sources, the experimental results have shown that ion-ion plasma is formed in the vicinity of the extraction hole under the surface negative ion production case. The purpose of this paper is to clarify the mechanism of the ion-ion plasma formation by our three dimensional particle-in-cell simulation. In the present model, the electron loss along the magnetic filter field is taken into account by the " √{τ///τ⊥ } model." The simulation results show that the ion-ion plasma formation is due to the electron loss along the magnetic filter field. Moreover, the potential profile for the ion-ion plasma case has been looked into carefully in order to discuss the ion-ion plasma formation. Our present results show that the potential drop of the virtual cathode in front of the plasma grid is large when the ion-ion plasma is formed. This tendency has been explained by a relationship between the virtual cathode depth and the net particle flux density at the virtual cathode.

  8. Plasma treatment effect on angiogenesis in wound healing process evaluated in vivo using angiographic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Kim, D. W.; Park, T. J.; Jang, S. J.; You, S. J.; Oh, W. Y.

    2016-12-01

    Non-thermal atmospheric pressure plasma holds promise for promoting wound healing. However, plasma-induced angiogenesis, which is important to better understand the underlying physics of plasma treatment effect on wound healing, remains largely unknown. We therefore evaluated the effect of non-thermal plasma on angiogenesis during wound healing through longitudinal monitoring over 30 days using non-invasive angiographic optical coherence tomography imaging in vivo. We demonstrate that the plasma-treated vascular wound area of mouse ear was noticeably decreased as compared to that of control during the early days in the wound healing process. We also observed that the vascular area density was increased in the plasma affected region near the wound as compared to the plasma unaffected region. The difference in the vascular wound area and the vascular area density peaked around day 3. This indicates that the plasma treatment induced additional angiogenic effects in the wound healing process especially during the early days. This non-invasive optical angiographic approach for in vivo time-lapse imaging provides further insights into elucidating plasma-induced angiogenesis in the wound healing process and its application in the biomedical plasma evaluation.

  9. Nonlinear interactions of electromagnetic waves with the auroral ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Alfred Y.

    1999-09-20

    The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from themore » self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO{sub 2} through the use of ion cyclotron resonant heating.« less

  10. Nonlinear interactions of electromagnetic waves with the auroral ionosphere

    NASA Astrophysics Data System (ADS)

    Wong, Alfred Y.

    1999-09-01

    The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from the self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO2 through the use of ion cyclotron resonant heating.

  11. Monitoring and Hardware Management for Critical Fusion Plasma Instrumentation

    NASA Astrophysics Data System (ADS)

    Carvalho, Paulo F.; Santos, Bruno; Correia, Miguel; Combo, Álvaro M.; Rodrigues, AntÓnio P.; Pereira, Rita C.; Fernandes, Ana; Cruz, Nuno; Sousa, Jorge; Carvalho, Bernardo B.; Batista, AntÓnio J. N.; Correia, Carlos M. B. A.; Gonçalves, Bruno

    2018-01-01

    Controlled nuclear fusion aims to obtain energy by particles collision confined inside a nuclear reactor (Tokamak). These ionized particles, heavier isotopes of hydrogen, are the main elements inside of plasma that is kept at high temperatures (millions of Celsius degrees). Due to high temperatures and magnetic confinement, plasma is exposed to several sources of instabilities which require a set of procedures by the control and data acquisition systems throughout fusion experiments processes. Control and data acquisition systems often used in nuclear fusion experiments are based on the Advanced Telecommunication Computer Architecture (AdvancedTCA®) standard introduced by the Peripheral Component Interconnect Industrial Manufacturers Group (PICMG®), to meet the demands of telecommunications that require large amount of data (TB) transportation at high transfer rates (Gb/s), to ensure high availability including features such as reliability, serviceability and redundancy. For efficient plasma control, systems are required to collect large amounts of data, process it, store for later analysis, make critical decisions in real time and provide status reports either from the experience itself or the electronic instrumentation involved. Moreover, systems should also ensure the correct handling of detected anomalies and identified faults, notify the system operator of occurred events, decisions taken to acknowledge and implemented changes. Therefore, for everything to work in compliance with specifications it is required that the instrumentation includes hardware management and monitoring mechanisms for both hardware and software. These mechanisms should check the system status by reading sensors, manage events, update inventory databases with hardware system components in use and maintenance, store collected information, update firmware and installed software modules, configure and handle alarms to detect possible system failures and prevent emergency scenarios occurrences. The goal is to ensure high availability of the system and provide safety operation, experiment security and data validation for the fusion experiment. This work aims to contribute to the joint effort of the IPFN control and data acquisition group to develop a hardware management and monitoring application for control and data acquisition instrumentation especially designed for large scale tokamaks like ITER.

  12. Planetary magnetospheres

    NASA Technical Reports Server (NTRS)

    Stern, D. P.; Ness, N. F.

    1981-01-01

    A concise overview is presented of our understanding of planetary magnetospheres (and in particular, of that of the Earth), as of the end of 1981. Emphasis is placed on processes of astrophysical interest, e.g., on particle acceleration, collision-free shocks, particle motion, parallel electric fields, magnetic merging, substorms, and large scale plasma flows. The general morphology and topology of the Earth's magnetosphere are discussed, and important results are given about the magnetospheres of Jupiter, Saturn and Mercury, including those derived from the Voyager 1 and 2 missions and those related to Jupiter's satellite Io. About 160 references are cited, including many reviews from which additional details can be obtained.

  13. Numerical modeling of the SNS H{sup −} ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veitzer, Seth A.; Beckwith, Kristian R. C.; Kundrapu, Madhusudhan

    Ion source rf antennas that produce H- ions can fail when plasma heating causes ablation of the insulating coating due to small structural defects such as cracks. Reducing antenna failures that reduce the operating capabilities of the Spallation Neutron Source (SNS) accelerator is one of the top priorities of the SNS H- Source Program at ORNL. Numerical modeling of ion sources can provide techniques for optimizing design in order to reduce antenna failures. There are a number of difficulties in developing accurate models of rf inductive plasmas. First, a large range of spatial and temporal scales must be resolved inmore » order to accurately capture the physics of plasma motion, including the Debye length, rf frequencies on the order of tens of MHz, simulation time scales of many hundreds of rf periods, large device sizes on tens of cm, and ion motions that are thousands of times slower than electrons. This results in large simulation domains with many computational cells for solving plasma and electromagnetic equations, short time steps, and long-duration simulations. In order to reduce the computational requirements, one can develop implicit models for both fields and particle motions (e.g. divergence-preserving ADI methods), various electrostatic models, or magnetohydrodynamic models. We have performed simulations using all three of these methods and have found that fluid models have the greatest potential for giving accurate solutions while still being fast enough to perform long timescale simulations in a reasonable amount of time. We have implemented a number of fluid models with electromagnetics using the simulation tool USim and applied them to modeling the SNS H- ion source. We found that a reduced, single-fluid MHD model with an imposed magnetic field due to the rf antenna current and the confining multi-cusp field generated increased bulk plasma velocities of > 200 m/s in the region of the antenna where ablation is often observed in the SNS source. We report here on comparisons of simulated plasma parameters and code performance using more accurate physical models, such as two-temperature extended MHD models, for both a related benchmark system describing a inductively coupled plasma reactor, and for the SNS ion source. We also present results from scaling studies for mesh generation and solvers in the USim simulation code.« less

  14. Magnetic reconnection physics in the solar wind with Voyager 2

    NASA Astrophysics Data System (ADS)

    Stevens, Michael L.

    2009-08-01

    Magnetic reconnection is the process by which the magnetic topology evolves in collisionless plasmas. This phenomenon is fundamental to a broad range of astrophysical processes such as stellar flares, magnetospheric substorms, and plasma accretion, yet it is poorly understood and difficult to observe in situ . In this thesis, the solar wind plasma permeating interplanetary space is treated as a laboratory for reconnection physics. I present an exhaustive statistical approach to the identification of reconnection outflow jets in turbulent plasma and magnetic field time series data. This approach has been automated and characterized so that the resulting reconnection survey can be put in context with other related studies. The algorithm is shown to perform similarly to ad hoc studies in the inner heliosphere. Based on this technique, I present a survey of 138 outflow jets for the Voyager 2 spacecraft mission, including the most distant in situ evidence of reconnection discovered to date. Reconnection in the solar wind is shown to be strongly correlated with stream interactions and with solar activity. The solar wind magnetic field is found to be reconnecting via large, quasi-steady slow- mode magnetohydrodynamic structures as far out as the orbit of Neptune. The role of slow-mode shocks is explored and, in one instance, a well-developed reconnection structure is shown to be in good agreement with the Petschek theory for fast reconnection. This is the first reported example of a reconnection exhaust that satisfies the full jump conditions for a stationary slow-mode shock pair. A complete investigation into corotating stream interactions over the Voyager 2 mission has revealed that detectable reconnection structure occurs in about 23% of forced, global-scale current sheets. Contrary to previous studies, I find that signatures of this kind are most likely to be observed for current sheets where the magnetic field shear and the plasma-b are high. Evidence has been found of thinning in Kelvin-Helmholtz unstable reconnection structures. I hypothesize that reconnection in turbulent environments occurs predominantly on smaller scales than one can measure with Voyager 2. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617- 253-5668; Fax 617-253-1690.)

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubel, Oliver; Loring, Burlen; Vay, Jean -Luc

    The generation of short pulses of ion beams through the interaction of an intense laser with a plasma sheath offers the possibility of compact and cheaper ion sources for many applications--from fast ignition and radiography of dense targets to hadron therapy and injection into conventional accelerators. To enable the efficient analysis of large-scale, high-fidelity particle accelerator simulations using the Warp simulation suite, the authors introduce the Warp In situ Visualization Toolkit (WarpIV). WarpIV integrates state-of-the-art in situ visualization and analysis using VisIt with Warp, supports management and control of complex in situ visualization and analysis workflows, and implements integrated analyticsmore » to facilitate query- and feature-based data analytics and efficient large-scale data analysis. WarpIV enables for the first time distributed parallel, in situ visualization of the full simulation data using high-performance compute resources as the data is being generated by Warp. The authors describe the application of WarpIV to study and compare large 2D and 3D ion accelerator simulations, demonstrating significant differences in the acceleration process in 2D and 3D simulations. WarpIV is available to the public via https://bitbucket.org/berkeleylab/warpiv. The Warp In situ Visualization Toolkit (WarpIV) supports large-scale, parallel, in situ visualization and analysis and facilitates query- and feature-based analytics, enabling for the first time high-performance analysis of large-scale, high-fidelity particle accelerator simulations while the data is being generated by the Warp simulation suite. Furthermore, this supplemental material https://extras.computer.org/extra/mcg2016030022s1.pdf provides more details regarding the memory profiling and optimization and the Yee grid recentering optimization results discussed in the main article.« less

  16. WarpIV: In situ visualization and analysis of ion accelerator simulations

    DOE PAGES

    Rubel, Oliver; Loring, Burlen; Vay, Jean -Luc; ...

    2016-05-09

    The generation of short pulses of ion beams through the interaction of an intense laser with a plasma sheath offers the possibility of compact and cheaper ion sources for many applications--from fast ignition and radiography of dense targets to hadron therapy and injection into conventional accelerators. To enable the efficient analysis of large-scale, high-fidelity particle accelerator simulations using the Warp simulation suite, the authors introduce the Warp In situ Visualization Toolkit (WarpIV). WarpIV integrates state-of-the-art in situ visualization and analysis using VisIt with Warp, supports management and control of complex in situ visualization and analysis workflows, and implements integrated analyticsmore » to facilitate query- and feature-based data analytics and efficient large-scale data analysis. WarpIV enables for the first time distributed parallel, in situ visualization of the full simulation data using high-performance compute resources as the data is being generated by Warp. The authors describe the application of WarpIV to study and compare large 2D and 3D ion accelerator simulations, demonstrating significant differences in the acceleration process in 2D and 3D simulations. WarpIV is available to the public via https://bitbucket.org/berkeleylab/warpiv. The Warp In situ Visualization Toolkit (WarpIV) supports large-scale, parallel, in situ visualization and analysis and facilitates query- and feature-based analytics, enabling for the first time high-performance analysis of large-scale, high-fidelity particle accelerator simulations while the data is being generated by the Warp simulation suite. Furthermore, this supplemental material https://extras.computer.org/extra/mcg2016030022s1.pdf provides more details regarding the memory profiling and optimization and the Yee grid recentering optimization results discussed in the main article.« less

  17. Optical in situ monitoring of plasma-enhanced atomic layer deposition process

    NASA Astrophysics Data System (ADS)

    Zeeshan Arshad, Muhammad; Jo, Kyung Jae; Kim, Hyun Gi; Jeen Hong, Sang

    2018-06-01

    An optical in situ process monitoring method for the early detection of anomalies in plasma process equipment is presented. Cyclic process steps of precursor treatment and plasma reaction for the deposition of an angstrom-scale film increase their complexity to ensure the process quality. However, a small deviation in process parameters, for instance, gas flow rate, process temperature, or RF power, may jeopardize the deposited film quality. As a test vehicle for the process monitoring, we have investigated the aluminum-oxide (Al2O3) encapsulation process in plasma-enhanced atomic layer deposition (PEALD) to form a moisture and oxygen diffusion barrier in organic-light emitting diodes (OLEDs). By optical in situ monitoring, we successfully identified the reduction in oxygen flow rates in the reaction steps, which resulted in a 2.67 times increase in the water vapor transmission ratio (WVTR) of the deposited Al2O3 films. Therefore, we are convinced that the suggested in situ monitoring method is useful for the detection of process shifts or drifts that adversely affect PEALD film quality.

  18. A micro-scale plasma spectrometer for space and plasma edge applications (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scime, E. E., E-mail: escime@wvu.edu; Keesee, A. M.; Elliott, D.

    2016-11-15

    A plasma spectrometer design based on advances in lithography and microchip stacking technologies is described. A series of curved plate energy analyzers, with an integrated collimator, is etched into a silicon wafer. Tests of spectrometer elements, the energy analyzer and collimator, were performed with a 5 keV electron beam. The measured collimator transmission and energy selectivity were in good agreement with design targets. A single wafer element could be used as a plasma processing or fusion first wall diagnostic.

  19. Numerical Simulation of Energy Conversion Mechanism in Electric Explosion

    NASA Astrophysics Data System (ADS)

    Wanjun, Wang; Junjun, Lv; Mingshui, Zhu; Qiubo, Fu; EFIs Integration R&D Group Team

    2017-06-01

    Electric explosion happens when micron-scale metal films such as copper film is stimulated by short-time current pulse, while generating high temperature and high pressure plasma. The expansion process of the plasma plays an important role in the study of the generation of shock waves and the study of the EOS of matter under high pressure. In this paper, the electric explosion process is divided into two stages: the energy deposition stage and the quasi-isentropic expansion stage, and a dynamic EOS of plasma considering the energy replenishment is established. On this basis, flyer driven by plasma is studied numerically, the pressure and the internal energy of plasma in the energy deposition stage and the quasi - isentropic expansion stage are obtained by comparing the velocity history of the flyer with the experimental results. An energy conversion model is established, and the energy conversion efficiency of each process is obtained, and the influence of impedance matching relationship between flyer and metal plasma on the energy conversion efficiency is proposed in this paper.

  20. Numerical simulation of turbulence and terahertz magnetosonic waves generation in collisionless plasmas

    NASA Astrophysics Data System (ADS)

    Kumar, Narender; Singh, Ram Kishor; Sharma, Swati; Uma, R.; Sharma, R. P.

    2018-01-01

    This paper presents numerical simulations of laser beam (x-mode) coupling with a magnetosonic wave (MSW) in a collisionless plasma. The coupling arises through ponderomotive non-linearity. The pump beam has been perturbed by a periodic perturbation that leads to the nonlinear evolution of the laser beam. It is observed that the frequency spectra of the MSW have peaks at terahertz frequencies. The simulation results show quite complex localized structures that grow with time. The ensemble averaged power spectrum has also been studied which indicates that the spectral index follows an approximate scaling of the order of ˜ k-2.1 at large scales and scaling of the order of ˜ k-3.6 at smaller scales. The results indicate considerable randomness in the spatial structure of the magnetic field profile which gives sufficient indication of turbulence.

  1. The Basic Plasma Science Facility: a platform for studying plasma processes relevant to space and astrophysical settings

    NASA Astrophysics Data System (ADS)

    Carter, T. A.

    2017-10-01

    The Basic Plasma Science Facility at UCLA is a national user facility for studies of fundamental processes in magnetized plasmas. The centerpiece is the Large Plasma Device, a 20 m, magnetized linear plasma device. Two hot cathode plasma sources are available. A Barium Oxide coated cathode produces plasmas with n 1012 cm-3, Te 5 eV, Ti < 1 eV with magnetic field from 400G-2kG. This low- β plasma has been used to study fundamental processes, including: dispersion and damping of kinetic and inertial Alfvén waves, flux ropes and magnetic reconnection, three-wave interactions and parametric instabilities of Alfvén waves, turbulence and transport, and interactions of energetic ions and electrons with plasma waves. A new Lanthanum Hexaboride (LaB6) cathode is now available which produces significantly higher densities and temperatures: n < 5 ×1013 cm-3, Te 12 eV, Ti 6 eV. This higher pressure plasma source enabled the observation of laser-driven collisionless magnetized shocks and, with lowered magnetic field, provides magnetized plasmas with β approaching or possibly exceeding unity. This opens up opportunities for investigating processes relevant to the solar wind and astrophysical plasmas. BaPSF is jointly supported by US DOE and NSF.

  2. Block Preconditioning to Enable Physics-Compatible Implicit Multifluid Plasma Simulations

    NASA Astrophysics Data System (ADS)

    Phillips, Edward; Shadid, John; Cyr, Eric; Miller, Sean

    2017-10-01

    Multifluid plasma simulations involve large systems of partial differential equations in which many time-scales ranging over many orders of magnitude arise. Since the fastest of these time-scales may set a restrictively small time-step limit for explicit methods, the use of implicit or implicit-explicit time integrators can be more tractable for obtaining dynamics at time-scales of interest. Furthermore, to enforce properties such as charge conservation and divergence-free magnetic field, mixed discretizations using volume, nodal, edge-based, and face-based degrees of freedom are often employed in some form. Together with the presence of stiff modes due to integrating over fast time-scales, the mixed discretization makes the required linear solves for implicit methods particularly difficult for black box and monolithic solvers. This work presents a block preconditioning strategy for multifluid plasma systems that segregates the linear system based on discretization type and approximates off-diagonal coupling in block diagonal Schur complement operators. By employing multilevel methods for the block diagonal subsolves, this strategy yields algorithmic and parallel scalability which we demonstrate on a range of problems.

  3. The influence of plasma flows bringing the magnetotail back to a more symmetric configuration

    NASA Astrophysics Data System (ADS)

    Reistad, J. P.; Østgaard, N.; Laundal, K.; Tenfjord, P.; Snekvik, K.; Haaland, S.; Milan, S. E.; Ohma, A.; Grocott, A.; Oksavik, K.

    2017-12-01

    Research from the past decades, most importantly conjugate studies, have shown extensive evidence of the Earth's closed magnetotail being highly displaced from the quiet-day configuration in response to the IMF interacting with the magnetosphere. By displaced we here refer to the mapping of magnetic field-lines from one hemisphere to the other. The large-scale ionospheric convection related to such displaced closed field-lines has also been studied, showing that the footprint in one hemisphere tend to move faster to reduce the displacement, a process we refer to as the restoring of symmetry. Although the appearance and occurrence of the plasma flows related to the restoring of symmetry has been shown to have a strong Interplanetary Magnetic Field (IMF) control, its dynamics and relation to internal magnetospheric processes are unknown. Using multiple years of line-of-sight measurements of the ionospheric plasma convection from the Super Dual Auroral Radar Network binned by IMF, season, and SML index, we have found that the restoring symmetry flows dominate the average convection pattern in the nightside ionosphere during low levels of magnetotail activity, quantified by the SML index. For increasing magnetotail activity, signatures of the restoring symmetry process become less and less pronounced in the global average convection maps. This effect is seen for all clock angles away from IMF By = 0. These results are relevant in order to better understand the dynamic evolution of flux-tubes in the asymmetric magnetosphere.

  4. Dry efficient cleaning of poly-methyl-methacrylate residues from graphene with high-density H{sub 2} and H{sub 2}-N{sub 2} plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunge, G., E-mail: gilles.cunge@cea.fr; Petit-Etienne, C.; Davydova, A.

    Graphene is the first engineering electronic material, which is purely two-dimensional: it consists of two exposed sp{sup 2}-hybridized carbon surfaces and has no bulk. Therefore, surface effects such as contamination by adsorbed polymer residues have a critical influence on its electrical properties and can drastically hamper its widespread use in devices fabrication. These contaminants, originating from mandatory technological processes of graphene synthesis and transfer, also impact fundamental studies of the electronic and structural properties at the atomic scale. Therefore, graphene-based technology and research requires “soft” and selective surface cleaning techniques dedicated to limit or to suppress this surface contamination. Here,more » we show that a high-density H{sub 2} and H{sub 2}-N{sub 2} plasmas can be used to selectively remove polymeric residues from monolayer graphene without any damage on the graphene surface. The efficiency of this dry-cleaning process is evidenced unambiguously by a set of spectroscopic and microscopic methods, providing unprecedented insights on the cleaning mechanisms and highlighting the role of specific poly-methyl-methacrylate residues at the graphene interface. The plasma is shown to perform much better cleaning than solvents and has the advantage to be an industrially mature technology adapted to large area substrates. The process is transferable to other kinds of two-dimensional material and heterostructures.« less

  5. Measuring helium nano-bubble formation in tungsten with grazing-incidence small angle X-ray scattering

    NASA Astrophysics Data System (ADS)

    Thompson, Matt A. T.

    The behaviour of helium in tungsten is an important concern for the fusion materials community. Under helium plasma exposure, small nano-scale bubbles form beneath the material surface as helium precipitates from the tungsten matrix. Under certain conditions this can lead to the subsequent formation of a surface "nano-fuzz", though the mechanisms of this process are not presently understood. For sub-surface nano-bubble formation transmission electron microscopy (TEM) has been the most widely used technique. While certainly a powerful technique, TEM suffers from a number of significant drawbacks: sample preparation is difficult and destructive, and there are sampling limitations as nano-structures must be located and characterised individually. This makes quantitative characterisation of nano-scale modification in tungsten challenging, which in turn makes it difficult to perform systematic studies on the effects of factors such as temperature and plasma composition on nano-scale modification. Here, Grazing Incidence Small Angle X-ray Scattering (GISAXS) is presented as a powerful addition to the field of fusion materials. With GISAXS, one can measure the X-ray scattering from nano-scale features throughout a relatively large volume, allowing information about full nano-bubble size distributions to be obtained from a simple, non-destructive measurement. Where it typically takes days or weeks to prepare a sample and study it under TEM, GISAXS measurements can be performed in a matter of minutes, and the data analysis performed autonomously by a computer in hours. This thesis describes the work establishing GISAXS as a viable technique for fusion materials. A GISAXS pattern fitting model was first developed, and then validated via comparison between GISAXS and TEM measurements of helium induced nano-bubble formation in tungsten exposed to a helium discharge in the large helical device. Under these conditions, nano-bubbles were found to follow an approximately exponential diameter distribution, with a mean nano-bubble diameters mu=0.596+/-0.001 nm and mu=0.68+/-0.04 nm computed for GISAXS and TEM, respectively. Depth distributions were also approximately exponential, with average bubble depths estimated at tau=9.1+/-0.4 nm and tau=8.4+/-0.5 for GISAXS and TEM, respectively. GISAXS was then applied to study the effects of plasma fluence, sample temperature and large transient heat and particle loads on nano-bubble formation. Nano-bubble sizes were found to saturate with increasing fluence at fluences less than 2.7x10. 24 He/m. 2 at 473 K. At higher temperatures larger nano-bubblesare able to form, suggesting a shift in the growth mechanisms, possibly from vacancy capture to bubble coalescence. Evidence is also presented which indicates that nano-bubble size distributions are qualitatively different for tungsten exposed to transient heat and particle loads due edge localised modes (ELMs) in the DIII-D tokamak, with a relatively large population of smaller (0.5-1 nm) nano-bubbles forming in this case. This is posited to be a consequence of rapid precipitation due to either extremely high helium concentrations during the ELM, or rapid cooling after it. Finally, synergistic effects between plasma composition and sample temperature are explored to determine which factors are most relevant for hydrogen and helium retention. Here, evidence has been found that helium ions from the plasma require a minimum energy of 9.0+/-1.4 eV in order to be implanted into tungsten. This was the dominant factor governing helium retention in this experiment. On the other hand, sample temperature is the dominant factor for hydrogen retention.

  6. 3D two-fluid simulations of turbulence in LAPD

    NASA Astrophysics Data System (ADS)

    Fisher, Dustin M.

    The Large Plasma Device (LAPD) is modeled using a modified version of the 3D Global Braginskii Solver code (GBS) for a nominal Helium plasma. The unbiased low-flow regime is explored in simulations where there is an intrinsic E x B rotation of the plasma. In the simulations this rotation is caused primarily by sheath effects with the Reynolds stress and J x B torque due to a cross-field Pederson conductivity having little effect. Explicit biasing simulations are also explored for the first time where the intrinsic rotation of the plasma is modified through boundary conditions that mimic the biasable limiter used in LAPD. Comparisons to experimental measurements in the unbiased case show strong qualitative agreement with the data, particularly the radial dependence of the density fluctuations, cross-correlation lengths, radial flux dependence outside of the cathode edge, and camera imagery. Kelvin Helmholtz (KH) turbulence at relatively large scales is the dominant driver of cross-field transport in these simulations with smaller-scale drift waves and sheath modes playing a secondary role. Plasma holes and blobs arising from KH vortices are consistent with the scale sizes and overall appearance of those in LAPD camera images. The addition of ion-neutral collisions in the unbiased simulations at previously theorized values reduces the radial particle flux due to a modest stabilizing contribution of the collisions on the KH-modes driving the turbulent transport. In the biased runs the ion-neutral collisions have a much smaller effect due to the modification of the potential from sheath terms. In biasing the plasma to increase the intrinsic rotation, simulations show the emergence of a nonlinearly saturated coherent mode of order m = 6. In addition, the plasma inside of the cathode edge becomes quiescent due to the strong influence of the wall bias in setting up the equilibrium plasma potential. Biasing in the direction opposite to the intrinsic flow reduces the effective shear and leads to a stronger presence of drift modes that are seen to saturate when the KH drive has been suppressed. Both biasing cases show a moderate density confinement similarly seen in the experiment.

  7. Hybrid-PIC modeling of laser-plasma interactions and hot electron generation in gold hohlraum walls

    NASA Astrophysics Data System (ADS)

    Thoma, C.; Welch, D. R.; Clark, R. E.; Rose, D. V.; Golovkin, I. E.

    2017-06-01

    The walls of the hohlraum used in experiments at the national ignition facility are heated by laser beams with intensities ˜ 10 15 W/cm2, a wavelength of ˜ 1 / 3 μm, and pulse lengths on the order of a ns, with collisional absorption believed to be the primary heating mechanism. X-rays generated by the hot ablated plasma at the gold walls are then used to implode a target in the hohlraum interior. In addition to the collisional absorption of laser energy at the walls, non-linear laser-plasma interactions (LPI), such as stimulated Raman scattering and two plasmon decay, are believed to generate a population of supra-thermal electrons which, if present in the hohlraum, can have a deleterious effect on target implosion. We describe results of hohlraum modeling using a hybrid particle-in-cell code. To enable this work, new particle-based algorithms for a multiple-ion magneto-hydrodynamic (MHD) treatment, and a particle-based ray-tracing model were developed. The use of such hybrid methods relaxes the requirement to resolve the laser wavelength, and allows for relatively large-scale hohlraum simulations with a reasonable number of cells. But the non-linear effects which are believed to be the cause of hot electron generation can only be captured by fully kinetic simulations with good resolution of the laser wavelength. For this reason, we employ a two-tiered approach to hohlraum modeling. Large-scale simulations of the collisional absorption process can be conducted using the fast quasi-neutral MHD algorithm with fluid particle species. From these simulations, we can observe the time evolution of the hohlraum walls and characterize the density and temperature profiles. From these results, we can transition to smaller-scale highly resolved simulations using traditional kinetic particle-in-cell methods, from which we can fully model all of the non-linear laser-plasma interactions, as well as assess the details of the electron distribution function. We find that vacuum hohlraums should be stable to both two plasmon decay and stimulated Raman scattering instabilities for intensities ≤ 10 15 W/cm2. In gas-filled hohlraums, shocks may be induced in the blowoff gold plasma, which leads to more complex density and temperatures profiles. The resulting effect on LPI stability depends strongly on the details of the profile, and it is possible for the gas-filled hohlraum to become unstable to two plasmon decay at 1015 W/cm2 if the quarter-critical surface reaches temperatures exceeding 1 keV.

  8. The Dependence of CNT Aerogel Synthesis on Sulfur-driven Catalyst Nucleation Processes and a Critical Catalyst Particle Mass Concentration.

    PubMed

    Hoecker, Christian; Smail, Fiona; Pick, Martin; Weller, Lee; Boies, Adam M

    2017-11-06

    The floating catalyst chemical vapor deposition (FC-CVD) process permits macro-scale assembly of nanoscale materials, enabling continuous production of carbon nanotube (CNT) aerogels. Despite the intensive research in the field, fundamental uncertainties remain regarding how catalyst particle dynamics within the system influence the CNT aerogel formation, thus limiting effective scale-up. While aerogel formation in FC-CVD reactors requires a catalyst (typically iron, Fe) and a promotor (typically sulfur, S), their synergistic roles are not fully understood. This paper presents a paradigm shift in the understanding of the role of S in the process with new experimental studies identifying that S lowers the nucleation barrier of the catalyst nanoparticles. Furthermore, CNT aerogel formation requires a critical threshold of Fe x C y  > 160 mg/m 3 , but is surprisingly independent of the initial catalyst diameter or number concentration. The robustness of the critical catalyst mass concentration principle is proved further by producing CNTs using alternative catalyst systems; Fe nanoparticles from a plasma spark generator and cobaltocene and nickelocene precursors. This finding provides evidence that low-cost and high throughput CNT aerogel routes may be achieved by decoupled and enhanced catalyst production and control, opening up new possibilities for large-scale CNT synthesis.

  9. Sex differences in plasma homovanillic acid levels in schizophrenia and normal controls: relation to neuroleptic resistance.

    PubMed

    Sumiyoshi, T; Hasegawa, M; Jayathilake, K; Meltzer, H Y

    1997-03-01

    Plasma homovanillic acid (pHVA) levels were compared in a large number of neuroleptic-resistant and -responsive schizophrenic patients (male/female = 161/46) and normal controls (67/27), and correlated with various measures of psychopathology. Psychopathology was evaluated with the brief psychiatric rating scale, the Schedule for Affective Disorders and Schizophrenia-Change version (SADS-C) and SADS-C Global Assessment Scale, the Scale for Assessment of Negative Symptoms, the Scale for Assessment of Positive Symptoms (SAPS), and the Quality of Life Scale. No significant differences in pHVA levels between neuroleptic-resistant (n = 104) or -responsive (n = 103) schizophrenic patients, and normal controls, were found; however, there was a main effect for sex, due to higher pHVA levels in women than men. There were no diagnosis x gender or age effects on pHVA levels. No significant correlations were observed between psychopathology ratings and baseline pHVA levels, except with the Hallucinations subscale of SAPS in neuroleptic-responsive patients. Neither duration of neuroleptic washout nor plasma prolactin levels correlated with pHVA levels. Further studies on the origin and significance of the gender difference in pHVA are indicated.

  10. Constraining Large-Scale Solar Magnetic Field Models with Optical Coronal Observations

    NASA Astrophysics Data System (ADS)

    Uritsky, V. M.; Davila, J. M.; Jones, S. I.

    2015-12-01

    Scientific success of the Solar Probe Plus (SPP) and Solar Orbiter (SO) missions will depend to a large extent on the accuracy of the available coronal magnetic field models describing the connectivity of plasma disturbances in the inner heliosphere with their source regions. We argue that ground based and satellite coronagraph images can provide robust geometric constraints for the next generation of improved coronal magnetic field extrapolation models. In contrast to the previously proposed loop segmentation codes designed for detecting compact closed-field structures above solar active regions, we focus on the large-scale geometry of the open-field coronal regions located at significant radial distances from the solar surface. Details on the new feature detection algorithms will be presented. By applying the developed image processing methodology to high-resolution Mauna Loa Solar Observatory images, we perform an optimized 3D B-line tracing for a full Carrington rotation using the magnetic field extrapolation code presented in a companion talk by S.Jones at al. Tracing results are shown to be in a good qualitative agreement with the large-scalie configuration of the optical corona. Subsequent phases of the project and the related data products for SSP and SO missions as wwll as the supporting global heliospheric simulations will be discussed.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steigies, C. T.; Barjatya, A.

    Langmuir probes are standard instruments for plasma density measurements on many sounding rockets. These probes can be operated in swept-bias as well as in fixed-bias modes. In swept-bias Langmuir probes, contamination effects are frequently visible as a hysteresis between consecutive up and down voltage ramps. This hysteresis, if not corrected, leads to poorly determined plasma densities and temperatures. With a properly chosen sweep function, the contamination parameters can be determined from the measurements and correct plasma parameters can then be determined. In this paper, we study the contamination effects on fixed-bias Langmuir probes, where no hysteresis type effect is seenmore » in the data. Even though the contamination is not evident from the measurements, it does affect the plasma density fluctuation spectrum as measured by the fixed-bias Langmuir probe. We model the contamination as a simple resistor-capacitor circuit between the probe surface and the plasma. We find that measurements of small scale plasma fluctuations (meter to sub-meter scale) along a rocket trajectory are not affected, but the measured amplitude of large scale plasma density variation (tens of meters or larger) is attenuated. From the model calculations, we determine amplitude and cross-over frequency of the contamination effect on fixed-bias probes for different contamination parameters. The model results also show that a fixed bias probe operating in the ion-saturation region is affected less by contamination as compared to a fixed bias probe operating in the electron saturation region.« less

  12. Changes in plasma thrombospondin-1 concentrations following acute intracerebral hemorrhage.

    PubMed

    Dong, Xiao-Qiao; Yu, Wen-Hua; Zhu, Qiang; Cheng, Zhen-Yu; Chen, Yi-Hua; Lin, Xiao-Feng; Ten, Xian-Lin; Tang, Xiao-Bing; Chen, Juan

    2015-10-23

    Angiogenesis is a fundamental process for brain development and repair. Thrombospondin-1 is the first identified endogenous angiogenesis inhibitor. Its expression in rat brain is upregulated after intracerebral hemorrhage (ICH). We determined whether plasma thrombospondin-1 concentrations are associated with injury severity and prognosis in ICH patients. This observational, prospective study recruited 110 patients and 110 age- and gender-matched healthy controls. Blood samples were collected from the patients at admission and from the healthy controls at study entry to measure plasma thrombospondin-1 concentrations. The endpoints included 1-week mortality, 6-month mortality, 6-month overall survival and 6-month unfavorable outcome (modified Rankin Scale score >2). Plasma thrombospondin-1 concentrations were markedly higher in patients than in healthy controls. Thrombospondin-1 was an independent predictive factor for all endpoints and plasma thrombospondin-1 concentrations were highly associated with injury severity reflected by hematoma volume and National Institutes of Health Stroke Scale score. Under receiver operating characteristic curves, plasma thrombospondin-1 concentrations had similar predictive values compared with hematoma volume and National Institutes of Health Stroke Scale score. Increased plasma thrombospondin-1 concentrations following ICH are independently associated with injury severity and short-term and long-term clinical outcomes. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Filamentation of plasma in the auroral region by an ion-ion instability: A process for the formation of bidimensional potential structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mottez, F.; Chanteur, G.; Roux, A.

    1992-07-01

    A two-dimensional, explicit, electrostatic particle code is used to investigate the nonlinear behavior of electrostatic ion waves generated by an ion beam flowing through a thermal ion and electron background in a strongly magnetized plasma ({omega}{sub ce} {much gt} {omega}{sub pe} where {omega}{sub ce} and {omega}{sub pe} are the electron gyrofrequency and the plasma frequency). To follow the nonlinear evolution of these ions waves, a long-lasting simulation is run with a large simulation grid: 128 {times} 512{lambda}{sub d}. Beam ions are shown to generate oblique waves. The nonlinear beatings between these oblique waves produce purely transverse waves, which leads tomore » a strong modulation of the density and of the electric potential in a direction transverse to the magnetic field. The transverse scale of these essentially field-aligned filaments is L{sub {perpendicular}} = 10 {rho}{sub i} where {rho}{sub i} is the ion Larmor radius of beam ions. Within these filaments, relatively stable field-aligned density and potential structures develop. The typical size, along the magnetic field, of these structures is L{sub {parallel}} = 10 {lambda}{sub d}, the density is modulated by 30%, and the electric potential is as large as T{sub e} within these structures. Unlike the potential structures that develop in a two-component plasma with downgoing electrons, these structures move upward. These characteristics are in good agreement with the weak double layers recently detected by Viking.« less

  14. MHD Modeling of the Solar Wind with Turbulence Transport and Heating

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Usmanov, A. V.; Matthaeus, W. H.; Breech, B.

    2009-01-01

    We have developed a magnetohydrodynamic model that describes the global axisymmetric steady-state structure of the solar wind near solar minimum with account for transport of small-scale turbulence associated heating. The Reynolds-averaged mass, momentum, induction, and energy equations for the large-scale solar wind flow are solved simultaneously with the turbulence transport equations in the region from 0.3 to 100 AU. The large-scale equations include subgrid-scale terms due to turbulence and the turbulence (small-scale) equations describe the effects of transport and (phenomenologically) dissipation of the MHD turbulence based on a few statistical parameters (turbulence energy, normalized cross-helicity, and correlation scale). The coupled set of equations is integrated numerically for a source dipole field on the Sun by a time-relaxation method in the corotating frame of reference. We present results on the plasma, magnetic field, and turbulence distributions throughout the heliosphere and on the role of the turbulence in the large-scale structure and temperature distribution in the solar wind.

  15. Comparison of three rf plasma impedance monitors on a high phase angle planar inductively coupled plasma source

    NASA Astrophysics Data System (ADS)

    Uchiyama, H.; Watanabe, M.; Shaw, D. M.; Bahia, J. E.; Collins, G. J.

    1999-10-01

    Accurate measurement of plasma source impedance is important for verification of plasma circuit models, as well as for plasma process characterization and endpoint detection. Most impedance measurement techniques depend in some manner on the cosine of the phase angle to determine the impedance of the plasma load. Inductively coupled plasmas are generally highly inductive, with the phase angle between the applied rf voltage and the rf current in the range of 88 to near 90 degrees. A small measurement error in this phase angle range results in a large error in the calculated cosine of the angle, introducing large impedance measurement variations. In this work, we have compared the measured impedance of a planar inductively coupled plasma using three commercial plasma impedance monitors (ENI V/I probe, Advanced Energy RFZ60 and Advanced Energy Z-Scan). The plasma impedance is independently verified using a specially designed match network and a calibrated load, representing the plasma, to provide a measurement standard.

  16. The distinct character of anisotropy and intermittency in inertial and kinetic range solar wind plasma turbulence

    NASA Astrophysics Data System (ADS)

    Kiyani, Khurom; Chapman, Sandra; Osman, Kareem; Sahraoui, Fouad; Hnat, Bogdan

    2014-05-01

    The anisotropic nature of the scaling properties of solar wind magnetic turbulence fluctuations is investigated scale by scale using high cadence in situ magnetic field measurements from the Cluster, ACE and STEREO spacecraft missions in both fast and slow quiet solar wind conditions. The data span five decades in scales from the inertial range to the electron Larmor radius. We find a clear transition in scaling behaviour between the inertial and kinetic range of scales, which provides a direct, quantitative constraint on the physical processes that mediate the cascade of energy through these scales. In the inertial (magnetohydrodynamic) range the statistical nature of turbulent fluctuations are known to be anisotropic, both in the vector components of the magnetic field fluctuations (variance anisotropy) and in the spatial scales of these fluctuations (wavevector or k-anisotropy). We show for the first time that, when measuring parallel to the local magnetic field direction, the full statistical signature of the magnetic and Elsasser field fluctuations is that of a non-Gaussian globally scale-invariant process. This is distinct from the classic multi-exponent statistics observed when the local magnetic field is perpendicular to the flow direction. These observations suggest the weakness, or absence, of a parallel magnetofluid turbulence energy cascade. In contrast to the inertial range, there is a successive increase toward isotropy between parallel and transverse power at scales below the ion Larmor radius, with isotropy being achieved at the electron Larmor radius. Computing higher-order statistics, we show that the full statistical signature of both parallel, and perpendicular fluctuations at scales below the ion Larmor radius are that of an isotropic globally scale-invariant non-Gaussian process. Lastly, we perform a survey of multiple intervals of quiet solar wind sampled under different plasma conditions (fast, slow wind; plasma beta etc.) and find that the above results on the scaling transition between inertial and kinetic range scales are qualitatively robust, and that quantitatively, there is a spread in the values of the scaling exponents.

  17. Random dust charge fluctuations in the near-Enceladus plasma

    NASA Astrophysics Data System (ADS)

    Yaroshenko, V. V.; Lühr, H.

    2014-08-01

    Stochastic dust charge fluctuations have been studied in the light of Cassini data on the near-Enceladus plasma environment. Estimates of fluctuation time scales showed that this process can be of importance for the grains emanating from the icy moon. The analytical modeling predicts that in the dust-loaded Enceladus plasma a majority of the grains acquires fluctuating negative charges, but there might appear a minority of positively charged particles. The probability of this effect mostly depends on the ratio of the dust/plasma number densities. Our findings appear to be supported by the available Cassini Plasma Spectrometer measurements of the charged grain distributions during E3 and E5 plume flybys. The theoretical results can also provide new insights into the intricate process of particle dynamics in the inner magnetosphere.

  18. ZaP-HD: High Energy Density Z-Pinch Plasmas using Sheared Flow Stabilization

    NASA Astrophysics Data System (ADS)

    Golingo, R. P.; Shumlak, U.; Nelson, B. A.; Claveau, E. L.; Doty, S. A.; Forbes, E. G.; Hughes, M. C.; Kim, B.; Ross, M. P.; Weed, J. R.

    2015-11-01

    The ZaP-HD flow Z-pinch project investigates scaling the flow Z-pinch to High Energy Density Plasma, HEDP, conditions by using sheared flow stabilization. ZaP used a single power supply to produce 100 cm long Z-pinches that were quiescent for many radial Alfven times and axial flow-through times. The flow Z-pinch concept provides an approach to achieve HED plasmas, which are dimensionally large and persist for extended durations. The ZaP-HD device replaces the single power supply from ZaP with two separate power supplies to independently control the plasma flow and current in the Z-pinch. Equilibrium is determined by diagnostic measurements of the density with interferometry and digital holography, the plasma flow and temperature with passive spectroscopy, the magnetic field with surface magnetic probes, and plasma emission with optical imaging. The diagnostics fully characterize the plasma from its initiation in the coaxial accelerator, through the pinch, and exhaust from the assembly region. The plasma evolution is modeled with high resolution codes: Mach2, WARPX, and NIMROD. Experimental results and scaling analyses are presented. This work is supported by grants from the U.S. Department of Energy and the U.S. National Nuclear Security Administration.

  19. Numerical modeling of materials processes with fluid-fluid interfaces

    NASA Astrophysics Data System (ADS)

    Yanke, Jeffrey Michael

    A numerical model has been developed to study material processes that depend on the interaction between fluids with a large discontinuity in thermophysical properties. A base model capable of solving equations of mass, momentum, energy conservation, and solidification has been altered to enable tracking of the interface between two immiscible fluids and correctly predict the interface deformation using a volume of fluid (VOF) method. Two materials processes investigated using this technique are Electroslag Remelting (ESR) and plasma spray deposition. ESR is a secondary melting technique that passes an AC current through an electrically resistive slag to provide the heat necessary to melt the alloy. The simulation tracks the interface between the slag and metal. The model was validated against industrial scale ESR ingots and was able to predict trends in melt rate, sump depth, macrosegregation, and liquid sump depth. In order to better understand the underlying physics of the process, several constant current ESR runs simulated the effects of freezing slag in the model. Including the solidifying slag in the imulations was found to have an effect on the melt rate and sump shape but there is too much uncertainty in ESR slag property data at this time for quantitative predictions. The second process investigated in this work is the deposition of ceramic coatings via plasma spray deposition. In plasma spray deposition, powderized coating material is injected into a plasma that melts and carries the powder towards the substrate were it impacts, flattening out and freezing. The impacting droplets pile up to form a porous coating. The model is used to simulate this rain of liquid ceramic particles impacting the substrate and forming a coating. Trends in local solidification time and porosity are calculated for various particle sizes and velocities. The predictions of decreasing porosity with increasing particle velocity matches previous experimental results. Also, a preliminary study was conducted to investigate the effects of substrate surface defects and droplet impact angle on the propensity to form columnar porosity.

  20. SCOPE : Future Formation-Flying Magnetospheric Satellite Mission

    NASA Astrophysics Data System (ADS)

    Saito, Yoshifumi

    A formation flight satellite mission "SCOPE" is now under study aiming at launching in 2017. "SCOPE" stands for ‘cross Scale COupling in the Plasma universE'. The main purpose of this mission is to investigate the dynamic behaviors of plasma in the terrestrial magnetosphere that range over magnitudes of both temporal and spatial scales. The basic idea of the SCOPE mission is to distinguish temporal and spatial variations of physical processes by putting five formation flight spacecraft into the key regions of the Earth's magnetosphere. The formation consists of one large mother satellite and four small daughter satellites. Three of the four daughter satellites surround the mother satellite 3-dimensionally maintaining the mutual distances of variable ranges between 5 km and 5000 km. The fourth daughter satellite stays near the mother satellite with the distance between 5 km and 100 km. By this configuration, we can obtain both the macro-scale (1000 km - 5000 km) and micro-scale (¡ 100 km) information about the plasma disturbances at the same time. The launcher for SCOPE has been assumed to be M-V rocket (or its succession rocket) of JAXA. However, due to the termination of M-V rocket, we are now considering to use HIIA. The orbits of SCOPE satellites are all highly elliptical with its apogee 30Re from the Earth center. The inter-satellite link is used for telemetry/command operation as well as ranging to determine the relative orbits of the 5 satellites in small distances. The SCOPE mission is designed such that observational studies from the new perspective, the crossscale coupling, should be conducted. The orbit of the formation flight are designed such that the spacecraft will visit most of the key regions in the magnetosphere, including the bow shock, the magnetospheric boundary, the inner-magnetosphere, and the near-Earth magnetotail. The key issues for the realization of this mission are: (1) The need for high temporal resolution of electron measurements and quantitative wave field measurements at electron scales; (2) The need for full coverage over the energy range of interests with mass spectroscopy; (3) The need for coordinated space plasma observations by intercommunicated formation flying satellites; and (4) The need to resolve more than one-scale simultaneously. In order to cover the multiple (more than two) scales simultaneously, SCOPE and esa's Cross-Scale have started detailed discussion for the future collaboration. By this collaboration, SCOPE can reduce the number of the daughter satellites that can stay within 100 km throughout the mission life.

  1. Systemic Inflammation: Methodological Approaches to Identification of the Common Pathological Process.

    PubMed

    Zotova, N V; Chereshnev, V A; Gusev, E Yu

    2016-01-01

    We defined Systemic inflammation (SI) as a "typical, multi-syndrome, phase-specific pathological process, developing from systemic damage and characterized by the total inflammatory reactivity of endotheliocytes, plasma and blood cell factors, connective tissue and, at the final stage, by microcirculatory disorders in vital organs and tissues." The goal of the work: to determine methodological approaches and particular methodical solutions for the problem of identification of SI as a common pathological process. SI can be defined by the presence in plasma of systemic proinflammatory cell stress products-cytokines and other inflammatory mediators, and also by the complexity of other processes signs. We have developed 2 scales: 1) The Reactivity Level scale (RL)-from 0 to 5 points: 0-normal level; RL-5 confirms systemic nature of inflammatory mediator release, and RL- 2-4 defines different degrees of event probability. 2) The SI scale, considering additional criteria along with RL, addresses more integral criteria of SI: the presence of ≥ 5 points according to the SI scale proves the high probability of SI developing. To calculate the RL scale, concentrations of 4 cytokines (IL-6, IL-8, IL-10, TNF-α) and C-reactive protein in plasma were examined. Additional criteria of the SI scale were the following: D-dimers>500ng/ml, cortisol>1380 or <100nmol/l, troponin I≥0.2ng/ml and/or myoglobin≥800ng/ml. 422 patients were included in the study with different septic (n-207) and aseptic (n-215) pathologies. In 190 cases (of 422) there were signs of SI (lethality 38.4%, n-73). In only 5 of 78 cases, lethality was not confirmed by the presence of SI. SI was registered in 100% of cases with septic shock (n-31). There were not significant differences between AU-ROC of CR, SI scale and SOFA to predict death in patients with sepsis and trauma.

  2. An alternative possibility to equatorial plasma bubble forecasting through mathematical modeling and Digisonde data

    NASA Astrophysics Data System (ADS)

    Sousasantos, J.; Kherani, E. A.; Sobral, J. H. A.

    2017-02-01

    Equatorial plasma bubbles (EPBs), or large-scale plasma depleted regions, are one of the subjects of great interest in space weather research since such phenomena have been extensively reported to cause strong degrading effects on transionospheric radio propagation at low latitudes, especially over the Brazilian region, where satellite communication interruptions by the EPBs have been, frequently, registered. One of the most difficult tasks for this field of scientific research is the forecasting of such plasma-depleted structures. This forecasting capability would be of significant help for users of positioning/navigation systems operating in the low-latitude/equatorial region all over the world. Recently, some efforts have been made trying to assess and improve the capability of predicting the EPB events. The purpose of this paper is to present an alternative approach to EPB prediction by means of the use of mathematical numerical simulation associated with ionospheric vertical drift, obtained through Digisonde data, focusing on telling beforehand whether ionospheric plasma instability processes will evolve or not into EPB structures. Modulations in the ionospheric vertical motion induced by gravity waves prior to the prereversal enhancement occurrence were used as input in the numerical model. A comparison between the numerical results and the observed EPB phenomena through CCD all-sky image data reveals a considerable coherence and supports the hypothesis of a capability of short-term forecasting.

  3. The Alfvénic nature of energy transfer mediation in localized, strongly nonlinear Alfvén wavepacket collisions

    NASA Astrophysics Data System (ADS)

    Verniero, J. L.; Howes, G. G.

    2018-02-01

    In space and astrophysical plasmas, violent events or instabilities inject energy into turbulent motions at large scales. Nonlinear interactions among the turbulent fluctuations drive a cascade of energy to small perpendicular scales at which the energy is ultimately converted into plasma heat. Previous work with the incompressible magnetohydrodynamic (MHD) equations has shown that this turbulent energy cascade is driven by the nonlinear interaction between counterpropagating Alfvén waves - also known as Alfvén wave collisions. Direct numerical simulations of weakly collisional plasma turbulence enables deeper insight into the nature of the nonlinear interactions underlying the turbulent cascade of energy. In this paper, we directly compare four cases: both periodic and localized Alfvén wave collisions in the weakly and strongly nonlinear limits. Our results reveal that in the more realistic case of localized Alfvén wave collisions (rather than the periodic case), all nonlinearly generated fluctuations are Alfvén waves, which mediates nonlinear energy transfer to smaller perpendicular scales.

  4. Optical imaging of airglow structure in equatorial plasma bubbles at radio scintillation scales

    NASA Astrophysics Data System (ADS)

    Holmes, J. M.; Pedersen, T.; Parris, R. T.; Stephens, B.; Caton, R. G.; Dao, E. V.; Kratochvil, S.; Morton, Y.; Xu, D.; Jiao, Y.; Taylor, S.; Carrano, C. S.

    2015-12-01

    Imagery of optical emissions from F-region plasma is one of the few means available todetermine plasma density structure in two dimensions. However, the smallest spatial scalesobservable with this technique are typically limited not by magnification of the lens or resolutionof the detector but rather by the optical throughput of the system, which drives the integrationtime, which in turn causes smearing of the features that are typically moving at speeds of 100m/s or more. In this paper we present high spatio-temporal imagery of equatorial plasma bubbles(EPBs) from an imaging system called the Large Aperture Ionospheric Structure Imager(LAISI), which was specifically designed to capture short-integration, high-resolution images ofF-region recombination airglow at λ557.7 nm. The imager features 8-inch diameter entranceoptics comprised of a unique F/0.87 lens, combined with a monolithic 8-inch diameterinterference filter and a 2x2-inch CCD detector. The LAISI field of view is approximately 30degrees. Filtered all-sky images at common airglow wavelengths are combined with magneticfield-aligned LAISI images, GNSS scintillation, and VHF scintillation data obtained atAscension Island (7.98S, 14.41W geographic). A custom-built, multi-constellation GNSS datacollection system was employed that sampled GPS L1, L2C, L5, GLONASS L1 and L2, BeidouB1, and Galileo E1 and E5a signals. Sophisticated processing software was able to maintainlock of all signals during strong scintillation, providing unprecedented spatial observability ofL band scintillation. The smallest-resolvable scale sizes above the noise floor in the EPBs, as viewed byLAISI, are illustrated for integration times of 1, 5 and 10 seconds, with concurrentzonal irregularity drift speeds from both spaced-receiver VHF measurements and single-stationGNSS measurements of S4 and σφ. These observable optical scale sizes are placed in thecontext of those that give rise to radio scintillation in VHF and L band signals.

  5. Intermittency of solar wind on scale 0.01-16 Hz.

    NASA Astrophysics Data System (ADS)

    Riazantseva, Maria; Zastenker, Georgy; Chernyshov, Alexander; Petrosyan, Arakel

    Magnetosphere of the Earth is formed in the process of solar wind flow around earth's magnetic field. Solar wind is a flow of turbulent plasma that displays a multifractal structure and an intermittent character. That is why the study of the characteristics of solar wind turbulence is very important part of the solution of the problem of the energy transport from the solar wind to magnetosphere. A large degree of intermittency is observed in the solar wind ion flux and magnetic field time rows. We investigated the intermittency of solar wind fluctuations under large statistics of high time resolution measurements onboard Interball-1 spacecraft on scale from 0.01 to 16 Hz. Especially it is important that these investigation is carry out for the first time for the earlier unexplored (by plasma data) region of comparatively fast variations (frequency up to 16 Hz), so we significantly extend the range of intermittency observations for solar wind plasma. The intermittency practically absent on scale more then 1000 s and it grows to the small scales right up till t 30-60 s. The behavior of the intermittency for the scale less then 30-60 s is rather changeable. The boundary between these two rates of intermittency is quantitatively near to the well-known boundary between the dissipation and inertial scales of fluctuations, what may point to their possible relation. Special attention is given to a comparison of intermittency for solar wind observation intervals containing SCIF (Sudden Changes of Ion Flux) to ones for intervals without SCIF. Such a comparison allows one to reveal the fundamental turbulent properties of the solar wind regions in which SCIF is observed more frequently. We use nearly incompressible model of the solar wind turbulence for obtained data interpretation. The regime when density fluctuations are passive scalar in a hydrodynamic field of velocity is realized in turbulent solar wind flows according to this model. This hypothesis can be verified straightforwardly by investigating the density spectrum which should be slaved to the incompressible velocity spectrum. Density discontinuities on times up to t 30-60 s are defined by intermittency of velocity turbulent field. Solar wind intermittency and many or most of its discontinuities are produced by MHD turbulence in this time interval. It is possible that many or even most of the current structures in the solar wind, particularly inertial range structures that contribute to the tails of the PDFs. Complex non-gaussian behaviour on smaller times is described by dissipation rate nonhomogeneity of statistical moments for density field in a random flow.

  6. The Geospace Plume: Multi-scale Magnetosphere-Ionosphere Dynamics During the 17 March 2015 Great Storm

    NASA Astrophysics Data System (ADS)

    Erickson, P. J.; Foster, J. C.; Walsh, B.; Wygant, J. R.; Zhang, S.

    2015-12-01

    A number of studies over the past three decades have developed an increased understanding of the important redistribution of cold plasma from the ionosphere and inner magnetosphere to other elements of the near-Earth geospace system including the cusp, magnetopause, polar cap, and magnetotail. This redistribution process, especially prevalent during strong geomagnetic storm forcing, has been observed using a wide range of techniques encompassing ground-based and space-based imaging, modeling, and in-situ data. The large diversity of characteristics and location of these separate measurements and models has been reflected in a similarly large variety of nomenclature describing various aspects of the process, e.g. the plasmaspheric surge and drainage plume, storm enhanced density, sub-auroral polarization stream mass flow, and others. To emphasize the interconnections among these magnetosphere and ionosphere observations, we introduce the geospace plume as a unifying concept that recognizes cold plasma redistribution as a global coupling phenomenon, linking mid and sub-auroral ionospheric regions with high latitude cusp heavy ion outflow to the magnetopause and into the magnetotail. Cold redistributed plasma of ionospheric origin has many influences on reconnection, wave-particle interactions, and space weather effects. We will illustrate the continuity, morphology, and consequences of the geospace plume using observations from the March 2015 great geomagnetic storm. This interval has excellent coverage of the spatial extent and dynamics of the plume in the ionosphere (IS radar and GPS TEC mapping), plasmasphere boundary layer (Millstone Hill ISR, Van Allen Probes), and the magnetopause (THEMIS). Quantification of associated mass flows during the formation and evolution of plume structures is also possible at multiple space and time locations.

  7. Multirate Particle-in-Cell Time Integration Techniques of Vlasov-Maxwell Equations for Collisionless Kinetic Plasma Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Guangye; Chacon, Luis; Knoll, Dana Alan

    2015-07-31

    A multi-rate PIC formulation was developed that employs large timesteps for slow field evolution, and small (adaptive) timesteps for particle orbit integrations. Implementation is based on a JFNK solver with nonlinear elimination and moment preconditioning. The approach is free of numerical instabilities (ω peΔt >>1, and Δx >> λ D), and requires many fewer dofs (vs. explicit PIC) for comparable accuracy in challenging problems. Significant gains (vs. conventional explicit PIC) may be possible for large scale simulations. The paper is organized as follows: Vlasov-Maxwell Particle-in-cell (PIC) methods for plasmas; Explicit, semi-implicit, and implicit time integrations; Implicit PIC formulation (Jacobian-Free Newton-Krylovmore » (JFNK) with nonlinear elimination allows different treatments of disparate scales, discrete conservation properties (energy, charge, canonical momentum, etc.)); Some numerical examples; and Summary.« less

  8. Feasibility study of surface-modified carbon cloth electrodes using atmospheric pressure plasma jets for microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Chang, Shih-Hang; Liou, Jyun-Sian; Liu, Jung-Liang; Chiu, Yi-Fan; Xu, Chang-Han; Chen, Bor-Yann; Chen, Jian-Zhang

    2016-12-01

    This study investigated the surface and electrochemical properties of carbon cloth electrodes surface-modified by using atmospheric pressure plasma jets (APPJs) for applications involving microbial fuel cells (MFCs). APPJ treatment made the carbon cloth highly hydrophilic and did not introduce any observable cracks or flaws. MFCs configured with APPJ-treated carbon cloth electrodes exhibited electrochemical performance (maximum power density of 7.56 mW m-2) superior to that of MFCs configured with untreated carbon cloth electrodes (maximum power density of 2.38 mW m-2). This boost in performance can be attributed to the formation of abundant carboxyl and ammonium functional groups on the surface of APPJ-treated carbon cloth, which promoted the formation of anodic biofilms and the adhesion of bacteria, while facilitating the transfer of electrons from the bacteria to the electrodes. APPJ surface modification is non-toxic and environmentally friendly (no exogenous chemicals are required), which is particularly beneficial as the introduction of toxins might otherwise inhibit bacterial growth and metabolism. The APPJ surface modification process is rapid, cost-effective, and applicable to substrates covering a large area, making it ideal for the fabrication of large-scale MFCs and bioelectrochemical bioenergy devices.

  9. A large-area diffuse air discharge plasma excited by nanosecond pulse under a double hexagon needle-array electrode.

    PubMed

    Liu, Zhi-Jie; Wang, Wen-Chun; Yang, De-Zheng; Wang, Sen; Zhang, Shuai; Tang, Kai; Jiang, Peng-Chao

    2014-01-01

    A large-area diffuse air discharge plasma excited by bipolar nanosecond pulse is generated under a double hexagon needle-array electrode at atmospheric pressure. The images of the diffuse discharge, electric characteristics, and the optical emission spectra emitted from the diffuse air discharge plasma are obtained. Based on the waveforms of pulse voltage and current, the power consumption, and the power density of the diffuse air discharge plasma are investigated under different pulse peak voltages. The electron density and the electron temperature of the diffuse plasma are estimated to be approximately 1.42×10(11) cm(-3) and 4.4 eV, respectively. The optical emission spectra are arranged to determine the rotational and vibrational temperatures by comparing experimental with simulated spectra. Meanwhile, the rotational and vibrational temperatures of the diffuse discharge plasma are also discussed under different pulse peak voltages and pulse repetition rates, respectively. In addition, the diffuse air discharge plasma can form an area of about 70×50 mm(2) on the surface of dielectric layer and can be scaled up to the required size. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  10. Nitrogen oxides and methane treatment by non-thermal plasma

    NASA Astrophysics Data System (ADS)

    Alva, E.; Pacheco, M.; Colín, A.; Sánchez, V.; Pacheco, J.; Valdivia, R.; Soria, G.

    2015-03-01

    Non thermal plasma was used to treat nitrogen oxides (NOx) and methane (CH4), since they are important constituents of hydrocarbon combustion emissions processes and, both gases, play a key role in the formation of tropospheric ozone. These gases are involved in environmental problems like acid rain and some diseases such as bronchitis and pneumonia. In the case of methane is widely known its importance in the global climate change, and currently accounts for 30% of global warming. There is a growing concern for methane leaks, associated with a rapid expansion of unconventional oil and gas extraction techniques as well as a large-scale methane release from Arctic because of ice melting and the subsequent methane production of decaying organic matter. Therefore, methane mitigation is a key to avoid dangerous levels of global warming. The research, here reported, deals about the generation of non-thermal plasma with a double dielectric barrier (2DBD) at atmospheric pressure with alternating current (AC) for NOx and CH4 treatment. The degradation efficiencies and their respective power consumption for different reactor configurations (cylindrical and planar) are also reported. Qualitative and quantitative analysis of gases degradation are reported before and after treatment with cold plasma. Experimental and theoretical results are compared obtaining good removal efficiencies, superior to 90% and to 20% respectively for NOx and CH4.

  11. On the properties of energy transfer in solar wind turbulence.

    NASA Astrophysics Data System (ADS)

    Sorriso-Valvo, Luca; Marino, Raffaele; Chen, Christopher H. K.; Wicks, Robert; Nigro, Giuseppina

    2017-04-01

    Spacecraft observations have shown that the solar wind plasma is heated during its expansion in the heliosphere. The necessary energy is made available at small scales by a turbulent cascade, although the nature of the heating processes is still debated. Because of the intermittent nature of turbulence, the small-scale energy is inhomogeneously distributed in space, resulting for example in the formation of highly localized current sheets and eddies. In order to understand the small-scale plasma processes occurring in the solar wind, the global and local properties of such energy distribution must be known. Here we study such properties using a proxy derived from the Von Karman-Howart relation for magnetohydrodynamics. The statistical properties of the energy transfer rate in the fluid range of scales are studied in detail using WIND spacecraft plasma and magnetic field measurements and discussed in the framework of the multifractal turbulent cascade. Dependence of the energy dissipation proxy on the solar wind conditions (speed, type, solar activity...) is analysed, and its evolution during solar wind expansion in the heliosphere is described using Helios II and Ulysses measurements. A comparison with other proxies, such as the PVI, is performed. Finally, the local singularity properties of the energy dissipation proxy are conditionally compared to the corresponding particle velocity distributions. This allows the identification of specific plasma features occurring near turbulent dissipation events, and could be used as enhanced mode trigger in future space missions.

  12. Electrocatalytically Active Nickel-Based Electrode Coatings Formed by Atmospheric and Suspension Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Aghasibeig, M.; Mousavi, M.; Ben Ettouill, F.; Moreau, C.; Wuthrich, R.; Dolatabadi, A.

    2014-01-01

    Ni-based electrode coatings with enhanced surface areas, for hydrogen production, were developed using atmospheric plasma spray (APS) and suspension plasma spray (SPS) processes. The results revealed a larger electrochemical active surface area for the coatings produced by SPS compared to those produced by APS process. SEM micrographs showed that the surface microstructure of the sample with the largest surface area was composed of a large number of small cauliflower-like aggregates with an average diameter of 10 μm.

  13. Magnetic field generation in core-sheath jets via the kinetic Kelvin-Helmholtz instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishikawa, K.-I.; Hardee, P. E.; Duţan, I.

    2014-09-20

    We have investigated magnetic field generation in velocity shears via the kinetic Kelvin-Helmholtz instability (kKHI) using a relativistic plasma jet core and stationary plasma sheath. Our three-dimensional particle-in-cell simulations consider plasma jet cores with Lorentz factors of 1.5, 5, and 15 for both electron-proton and electron-positron plasmas. For electron-proton plasmas, we find generation of strong large-scale DC currents and magnetic fields that extend over the entire shear surface and reach thicknesses of a few tens of electron skin depths. For electron-positron plasmas, we find generation of alternating currents and magnetic fields. Jet and sheath plasmas are accelerated across the shearmore » surface in the strong magnetic fields generated by the kKHI. The mixing of jet and sheath plasmas generates a transverse structure similar to that produced by the Weibel instability.« less

  14. 3D Global Fluid Simulations of Turbulence in LAPD

    NASA Astrophysics Data System (ADS)

    Rogers, Barrett; Ricci, Paolo; Li, Bo

    2009-05-01

    We present 3D global fluid simulations of the UCLA upgraded Large Plasma Device (LAPD). This device confines an 18-m-long, cylindrically symmetric plasma with a uniform magnetic field. The plasma in the simulations is generated by density and temperature sources inside the computational domain, and sheath boundary conditions are applied at the ends of the plasma column. In 3D simulations of the entire plasma, we observe strong, rotating intermittent density and temperature fluctuations driven by resistive driftwave turbulence with finite parallel wavenumbers. Analogous simulations carried out in the 2D limit (that is, assuming that the motions are purely interchange-like) display much weaker mode activity driven a Kelvin-Helmholtz instability. The properties and scaling of the turbulence and transport will be discussed.

  15. The earth's foreshock, bow shock, and magnetosheath

    NASA Technical Reports Server (NTRS)

    Onsager, T. G.; Thomsen, M. F.

    1991-01-01

    Studies directly pertaining to the earth's foreshock, bow shock, and magnetosheath are reviewed, and some comparisons are made with data on other planets. Topics considered in detail include the electron foreshock, the ion foreshock, the quasi-parallel shock, the quasi-perpendicular shock, and the magnetosheath. Information discussed spans a broad range of disciplines, from large-scale macroscopic plasma phenomena to small-scale microphysical interactions.

  16. Modelling of auroral electrodynamical processes: Magnetosphere to mesosphere

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Gorney, D. J.; Kishi, A. M.; Newman, A. L.; Schulz, M.; Walterscheid, R. L.; CORNWALL; Prasad, S. S.

    1982-01-01

    Research conducted on auroral electrodynamic coupling between the magnetosphere and ionosphere-atmosphere in support of the development of a global scale kinetic plasma theory is reviewed. Topics covered include electric potential structure in the evening sector; morning and dayside auroras; auroral plasma formation; electrodynamic coupling with the thermosphere; and auroral electron interaction with the atmosphere.

  17. Comparison of Observations of Sporadic-E Layers in the Nighttime and Daytime Mid-Latitude Ionosphere

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Freudenreich, H.; Rowland, D.; Klenzing, J.; Clemmons, J.; Larsen, M.; Kudeki, E.; Franke, S.; Urbina, J.; Bullett, T.

    2012-01-01

    A comparison of numerous rocket experiments to investigate mid-latitude sporadic-E layers is presented. Electric field and plasma density data gathered on sounding rockets launched in the presence of sporadic-E layers and QP radar echoes reveal a complex electrodynamics including both DC parameters and plasma waves detected over a large range of scales. We show both DC and wave electric fields and discuss their relationship to intense sporadic-E layers in both nighttime and daytime conditions. Where available, neutral wind observations provide the complete electrodynamic picture revealing an essential source of free energy that both sets up the layers and drives them unstable. Electric field data from the nighttime experiments reveal the presence of km-scale waves as well as well-defined packets of broadband (10's of meters to meters) irregularities. What is surprising is that in both the nighttime and daytime experiments, neither the large scale nor short scale waves appear to be distinctly organized by the sporadic-E density layer itself. The observations are discussed in the context of current theories regarding sporadic-E layer generation and quasi-periodic echoes.

  18. Dissipation of Alfven Waves at Fluid Scale through Parametric Decay Instabilities in Low-beta Turbulent Plasma

    NASA Astrophysics Data System (ADS)

    Fu, X.; Li, H.; Guo, F.; Li, X.; Roytershteyn, V.

    2017-12-01

    The solar wind is a turbulent magnetized plasma extending from the upper atmosphere of the sun to the edge of the heliosphere. It carries charged particles and magnetic fields originated from the Sun, which have great impact on the geomagnetic environment and human activities in space. In such a magnetized plasma, Alfven waves play a crucial role in carrying energy from the surface of the Sun, injecting into the solar wind and establishing power-law spectra through turbulent energy cascades. On the other hand, in compressible plasmas large amplitude Alfven waves are subject to a parametric decay instability (PDI) which converts an Alfven wave to another counter-propagating Alfven wave and an ion acoustic wave (slow mode). The counter-propagating Alfven wave provides an important ingredient for turbulent cascade, and the slow-mode wave provides a channel for solar wind heating in a spatial scale much larger than ion kinetic scales. Growth and saturation of PDI in quiet plasma have been intensively studied using linear theory and nonlinear simulations in the past. Here using 3D hybrid simulations, we show that PDI is still effective in turbulent low-beta plasmas, generating slow modes and causing ion heating. Selected events in WIND data are analyzed to identify slow modes in the solar wind and the role of PDI, and compared with our simulation results. We also investigate the validity of linear Vlasov theory regarding PDI growth and slow mode damping in turbulent plasmas. Since PDI favors low plasma beta, we expect to see more evidence of PDI in the solar wind close to the Sun, especially from the upcoming NASA's Parker Solar Probe mission which will provide unprecedented wave and plasma data as close as 8.5 solar radii from the Sun.

  19. Single-Step Seeded-Growth of Graphene Nanoribbons (GNRs) via Plasma-Enhanced Chemical Vapor Deposition (PECVD)

    NASA Astrophysics Data System (ADS)

    Hsu, C.-C.; Yang, K.; Tseng, W.-S.; Li, Yiliang; Li, Yilun; Tour, J. M.; Yeh, N.-C.

    One of the main challenges in the fabrication of GNRs is achieving large-scale low-cost production with high quality. Current techniques, including lithography and unzipped carbon nanotubes, are not suitable for mass production. We have recently developed a single-step PECVD growth process of high-quality graphene sheets without any active heating. By adding some substituted aromatic as seeding molecules, we are able to rapidly grow GNRs vertically on various transition-metal substrates. The morphology and electrical properties of the GNRs are dependent on the growth parameters such as the growth time, gas flow and species of the seeding molecules. On the other hand, all GNRs exhibit strong infrared and optical absorption. From studies of the Raman spectra, scanning electron microscopic images, and x-ray/ultraviolet photoelectron spectra of these GNRs as functions of the growth parameters, we propose a model for the growth mechanism. Our findings suggest that our approach opens up a pathway to large-scale, inexpensive production of GNRs for applications to supercapacitors and solar cells. This work was supported by the Grubstake Award and NSF through IQIM at Caltech.

  20. Electromagnetic phenomena in granular flows in the laboratory and dusty plasmas in geophysics and astrophysics

    NASA Astrophysics Data System (ADS)

    Lathrop, Daniel; Eiskowitz, Skylar; Rojas, Ruben

    2017-11-01

    In clouds of suspended particles, collisions electrify particles and the clouds produce electric potential differences over large scales. This is seen in the atmosphere as lightning in thunderstorms, thundersnow, dust storms, and volcanic ash plumes, but it is a general phenomena in granular systems. The electrification process is not well understood. To investigate the relative importance of particle material properties and collective phenomena in granular and atmospheric electrification, we used several tabletop experiments that excite particle-laden flows. Various electromagnetic phenomena ensue. Measured electric fields result from capacitive and direct charge transfer to electrodes. These results suggest that while particle properties do matter (as previous investigations have shown), macroscopic electrification of granular flows is somewhat material independent and large-scale collective phenomena play a major role. As well, our results on charge separation and Hall effects suggest a very different view of the dynamics of clouds, planetary rings, and cold accretion disks in proto-planetary systems. We gratefully acknowledge past funding from the Julian Schwinger Foundation as well as the Ph.D. work of Freja Nordsiek.

  1. Principles of Space Plasma Wave Instrument Design

    NASA Technical Reports Server (NTRS)

    Gurnett, Donald A.

    1998-01-01

    Space plasma waves span the frequency range from somewhat below the ion cyclotron frequency to well above the electron cyclotron frequency and plasma frequency. Because of the large frequency range involved, the design of space plasma wave instrumentation presents many interesting challenges. This chapter discusses the principles of space plasma wave instrument design. The topics covered include: performance requirements, electric antennas, magnetic antennas, and signal processing. Where appropriate, comments are made on the likely direction of future developments.

  2. Large Volume Non-Equilibrium Air Plasma at Atmospheric Pressure: A Novel Method with Low Power Requirements

    DTIC Science & Technology

    2007-02-28

    of magnitude in size. Also unlike corona -like devices such as the plasma needle , which generates 2-3 mm long plasma at the tip of a sharp wire...Distribution Unlimited Table of Contents Abstract AC System with Water Electrode Current voltage characteristics Plasma diagnostics results Experimental setup...Laroussi, PI. 4 AC SYSTEM WITH WATER ELECTRODE Recently, non-equilibrium atmospheric pressure plasmas have been used in a variety of material processing

  3. High-performance modeling of plasma-based acceleration and laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Vay, Jean-Luc; Blaclard, Guillaume; Godfrey, Brendan; Kirchen, Manuel; Lee, Patrick; Lehe, Remi; Lobet, Mathieu; Vincenti, Henri

    2016-10-01

    Large-scale numerical simulations are essential to the design of plasma-based accelerators and laser-plasma interations for ultra-high intensity (UHI) physics. The electromagnetic Particle-In-Cell (PIC) approach is the method of choice for self-consistent simulations, as it is based on first principles, and captures all kinetic effects, and also scale favorably to many cores on supercomputers. The standard PIC algorithm relies on second-order finite-difference discretization of the Maxwell and Newton-Lorentz equations. We present here novel formulations, based on very high-order pseudo-spectral Maxwell solvers, which enable near-total elimination of the numerical Cherenkov instability and increased accuracy over the standard PIC method for standard laboratory frame and Lorentz boosted frame simulations. We also present the latest implementations in the PIC modules Warp-PICSAR and FBPIC on the Intel Xeon Phi and GPU architectures. Examples of applications will be given on the simulation of laser-plasma accelerators and high-harmonic generation with plasma mirrors. Work supported by US-DOE Contracts DE-AC02-05CH11231 and by the European Commission through the Marie Slowdoska-Curie fellowship PICSSAR Grant Number 624543. Used resources of NERSC.

  4. Prominence Mass Supply and the Cavity

    NASA Technical Reports Server (NTRS)

    Schmit, Donald J.; Gibson, S.; Luna, M.; Karpen, J.; Innes, D.

    2013-01-01

    A prevalent but untested paradigm is often used to describe the prominence-cavity system; the cavity is under-dense because it it evacuated by supplying mass to the condensed prominence. The thermal non-equilibrium (TNE) model of prominence formation offers a theoretical framework to predict the thermodynamic evolutin of the prominence and the surrounding corona. We examine the evidence for a prominence-cavity connection by comparing the TNE model and diagnostics of dynamic extreme ultraviolet (EUV) emission surrounding the prominence, specifically prominence horns. Horns are correlated extensions of prminence plasma and coronal plasma which appear to connect the prominence and cavity. The TNE model predicts that large-scale brightenings will occur in the Solar Dynamics Observatory Atmospheric Imaging Assembly 171 A badpass near he prominence that are associated with the cooling phase of condensation formation. In our simulations, variations in the magnitude of footpoint heating lead to variations in the duration, spatial scale, and temporal offset between emission enhancements in the other EUV bandpasses. While these predictions match well a subset of the horn observations, the range of variations in the observed structures is not captured by the model. We discuss the implications of one-dimensional loop simulations for the three-dimensional time-averaged equilibrium in the prominence and the cavity. Evidence suggests that horns are likely caused by condensing prominence plasma, but the larger question of whether this process produces a density-depleted cavity requires a more tightly constrained model of heating and better knowledge of the associated magnetic structure.

  5. The controllable electron-heating by external magnetic fields at relativistic laser-solid interactions in the presence of large scale pre-plasmas

    NASA Astrophysics Data System (ADS)

    Wu, D.; Luan, S. X.; Wang, J. W.; Yu, W.; Gong, J. X.; Cao, L. H.; Zheng, C. Y.; He, X. T.

    2017-06-01

    The two-stage electron acceleration/heating model (Wu et al 2017 Nucl. Fusion 57 016007 and Wu et al 2016 Phys. Plasmas 23 123116) is extended to the study of laser magnetized-plasmas interactions at relativistic intensities and in the presence of large-scale preformed plasmas. It is shown that the electron-heating efficiency is a controllable value by the external magnetic fields. Detailed studies indicate that for a right-hand circularly polarized laser, the electron heating efficiency depends on both strength and directions of external magnetic fields. The electron-heating is dramatically enhanced when the external magnetic field is of B\\equiv {ω }c/{ω }0> 1. When magnetic field is of negative direction, i.e. B< 0, it trends to suppress the electron heating. The underlining physics—the dependences of electron-heating on both the strength and directions of the external magnetic fields—is uncovered. With -∞ < B< 1, the electron-heating is explained by the synergetic effects by longitudinal charge separation electric field and the reflected ‘envelop-modulated’ CP laser. It is indicated that the ‘modulation depth’ of reflected CP laser is significantly determined by the external magnetic fields, which will in turn influence the efficiency of the electron-heating. While with B> 1, a laser front sharpening mechanism is identified at relativistic laser magnetized-plasmas interactions, which is responsible for the dramatical enhancement of electron-heating.

  6. Plasma reactor waste management systems

    NASA Technical Reports Server (NTRS)

    Ness, Robert O., Jr.; Rindt, John R.; Ness, Sumitra R.

    1992-01-01

    The University of North Dakota is developing a plasma reactor system for use in closed-loop processing that includes biological, materials, manufacturing, and waste processing. Direct-current, high-frequency, or microwave discharges will be used to produce plasmas for the treatment of materials. The plasma reactors offer several advantages over other systems, including low operating temperatures, low operating pressures, mechanical simplicity, and relatively safe operation. Human fecal material, sunflowers, oats, soybeans, and plastic were oxidized in a batch plasma reactor. Over 98 percent of the organic material was converted to gaseous products. The solids were then analyzed and a large amount of water and acid-soluble materials were detected. These materials could possibly be used as nutrients for biological systems.

  7. Ultra-stiff large-area carpets of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Meysami, Seyyed Shayan; Dallas, Panagiotis; Britton, Jude; Lozano, Juan G.; Murdock, Adrian T.; Ferraro, Claudio; Gutierrez, Eduardo Saiz; Rijnveld, Niek; Holdway, Philip; Porfyrakis, Kyriakos; Grobert, Nicole

    2016-06-01

    Herewith, we report the influence of post-synthesis heat treatment (<=2350 °C and plasma temperatures) on the crystal structure, defect density, purity, alignment and dispersibility of free-standing large-area (several cm2) carpets of ultra-long (several mm) vertically aligned multi-wall carbon nanotubes (VA-MWCNTs). VA-MWCNTs were produced in large quantities (20-30 g per batch) using a semi-scaled-up aerosol-assisted chemical vapour deposition (AACVD) setup. Electron and X-ray diffraction showed that the heat treatment at 2350 °C under inert atmosphere purifies, removes residual catalyst particles, and partially aligns adjacent single crystals (crystallites) in polycrystalline MWCNTs. The purification and improvement in the crystallites alignment within the MWCNTs resulted in reduced dispersibility of the VA-MWCNTs in liquid media. High-resolution microscopy revealed that the crystallinity is improved in scales of few tens of nanometres while the point defects remain largely unaffected. The heat treatment also had a marked benefit on the mechanical properties of the carpets. For the first time, we report compression moduli as high as 120 MPa for VA-MWCNT carpets, i.e. an order of magnitude higher than previously reported figures. The application of higher temperatures (arc-discharge plasma, >=4000 °C) resulted in the formation of a novel graphite-matrix composite reinforced with CVD and arc-discharge-like carbon nanotubes.Herewith, we report the influence of post-synthesis heat treatment (<=2350 °C and plasma temperatures) on the crystal structure, defect density, purity, alignment and dispersibility of free-standing large-area (several cm2) carpets of ultra-long (several mm) vertically aligned multi-wall carbon nanotubes (VA-MWCNTs). VA-MWCNTs were produced in large quantities (20-30 g per batch) using a semi-scaled-up aerosol-assisted chemical vapour deposition (AACVD) setup. Electron and X-ray diffraction showed that the heat treatment at 2350 °C under inert atmosphere purifies, removes residual catalyst particles, and partially aligns adjacent single crystals (crystallites) in polycrystalline MWCNTs. The purification and improvement in the crystallites alignment within the MWCNTs resulted in reduced dispersibility of the VA-MWCNTs in liquid media. High-resolution microscopy revealed that the crystallinity is improved in scales of few tens of nanometres while the point defects remain largely unaffected. The heat treatment also had a marked benefit on the mechanical properties of the carpets. For the first time, we report compression moduli as high as 120 MPa for VA-MWCNT carpets, i.e. an order of magnitude higher than previously reported figures. The application of higher temperatures (arc-discharge plasma, >=4000 °C) resulted in the formation of a novel graphite-matrix composite reinforced with CVD and arc-discharge-like carbon nanotubes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01660j

  8. Turbulent mass transfer caused by vortex induced reconnection in collisionless magnetospheric plasmas

    DOE PAGES

    Nakamura, T. K. M.; Hasegawa, H.; Daughton, William Scott; ...

    2017-11-17

    Magnetic reconnection is believed to be the main driver to transport solar wind into the Earth’s magnetosphere when the magnetopause features a large magnetic shear. However, even when the magnetic shear is too small for spontaneous reconnection, the Kelvin–Helmholtz instability driven by a super-Alfvénic velocity shear is expected to facilitate the transport. Although previous kinetic simulations have demonstrated that the non-linear vortex flows from the Kelvin–Helmholtz instability gives rise to vortex-induced reconnection and resulting plasma transport, the system sizes of these simulations were too small to allow the reconnection to evolve much beyond the electron scale as recently observed bymore » the Magnetospheric Multiscale (MMS) spacecraft. Here in this paper, based on a large-scale kinetic simulation and its comparison with MMS observations, we show for the first time that ion-scale jets from vortex-induced reconnection rapidly decay through self-generated turbulence, leading to a mass transfer rate nearly one order higher than previous expectations for the Kelvin–Helmholtz instability.« less

  9. Turbulent mass transfer caused by vortex induced reconnection in collisionless magnetospheric plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, T. K. M.; Hasegawa, H.; Daughton, William Scott

    Magnetic reconnection is believed to be the main driver to transport solar wind into the Earth’s magnetosphere when the magnetopause features a large magnetic shear. However, even when the magnetic shear is too small for spontaneous reconnection, the Kelvin–Helmholtz instability driven by a super-Alfvénic velocity shear is expected to facilitate the transport. Although previous kinetic simulations have demonstrated that the non-linear vortex flows from the Kelvin–Helmholtz instability gives rise to vortex-induced reconnection and resulting plasma transport, the system sizes of these simulations were too small to allow the reconnection to evolve much beyond the electron scale as recently observed bymore » the Magnetospheric Multiscale (MMS) spacecraft. Here in this paper, based on a large-scale kinetic simulation and its comparison with MMS observations, we show for the first time that ion-scale jets from vortex-induced reconnection rapidly decay through self-generated turbulence, leading to a mass transfer rate nearly one order higher than previous expectations for the Kelvin–Helmholtz instability.« less

  10. High-power hybrid plasma spraying of large yttria-stabilized zirconia powder

    NASA Astrophysics Data System (ADS)

    Huang, Heji; Eguchi, Keisuke; Yoshida, Toyonobu

    2006-03-01

    To testify to the advantage of large ceramic powder spraying, numerical simulations and experimental studies on the behavior of large yttria-stabilized zirconia (YSZ) powder in a high-power hybrid plasma spraying process have been carried out. Numeric predictions and experimental results showed that, with the high radio frequency (RF) input power of 100 kW, the most refractory YSZ powder with particle sizes as large as 88 μm could be fully melted and well-flattened splats could be formed. A large degree of flattening (ξ) of 4.7 has been achieved. The improved adhesive strength between the large splat and the substrate was confirmed based on the measurement of the crack density inside of the splats. A thick YSZ coating >300 μm was successfully deposited on a large CoNiCrAlY-coated Inconel substrate (50×50×4 mm in size). The ultradense microstructure without clear boundaries between the splats and the clean and crack-free interface between the top-coat and the bond-coat also indicate the good adhesion. These results showed that highpower hybrid plasma spraying of large ceramic powder is a very promising process for deposition of highquality coatings, especially in the application of thermal barrier coatings (TBCs).

  11. Intermittent electron density and temperature fluctuations and associated fluxes in the Alcator C-Mod scrape-off layer

    NASA Astrophysics Data System (ADS)

    Kube, R.; Garcia, O. E.; Theodorsen, A.; Brunner, D.; Kuang, A. Q.; LaBombard, B.; Terry, J. L.

    2018-06-01

    The Alcator C-Mod mirror Langmuir probe system has been used to sample data time series of fluctuating plasma parameters in the outboard mid-plane far scrape-off layer. We present a statistical analysis of one second long time series of electron density, temperature, radial electric drift velocity and the corresponding particle and electron heat fluxes. These are sampled during stationary plasma conditions in an ohmically heated, lower single null diverted discharge. The electron density and temperature are strongly correlated and feature fluctuation statistics similar to the ion saturation current. Both electron density and temperature time series are dominated by intermittent, large-amplitude burst with an exponential distribution of both burst amplitudes and waiting times between them. The characteristic time scale of the large-amplitude bursts is approximately 15 μ {{s}}. Large-amplitude velocity fluctuations feature a slightly faster characteristic time scale and appear at a faster rate than electron density and temperature fluctuations. Describing these time series as a superposition of uncorrelated exponential pulses, we find that probability distribution functions, power spectral densities as well as auto-correlation functions of the data time series agree well with predictions from the stochastic model. The electron particle and heat fluxes present large-amplitude fluctuations. For this low-density plasma, the radial electron heat flux is dominated by convection, that is, correlations of fluctuations in the electron density and radial velocity. Hot and dense blobs contribute only a minute fraction of the total fluctuation driven heat flux.

  12. Ultrarelativistic electromagnetic pulses in plasmas

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M.; Leboeuf, J. N.; Tajima, T.; Dawson, J. M.; Kennel, C. F.

    1981-01-01

    The physical processes of a linearly polarized electromagnetic pulse of highly relativistic amplitude in an underdense plasma accelerating particles to very high energies are studied through computer simulation. An electron-positron plasma is considered first. The maximum momenta achieved scale as the square of the wave amplitude. This acceleration stops when the bulk of the wave energy is converted to particle energy. The pulse leaves behind as a wake a vacuum region whose length scales as the amplitude of the wave. The results can be explained in terms of a snow plow or piston-like action of the radiation on the plasma. When a mass ratio other than unity is chosen and electrostatic effects begin to play a role, first the ion energy increases faster than the electron energy and then the electron energy catches up later, eventually reaching the same value.

  13. Observation of the ballooning mode that limits the operation space of the high-density super-dense-core plasma in the LHD

    NASA Astrophysics Data System (ADS)

    Ohdachi, S.; Watanabe, K. Y.; Tanaka, K.; Suzuki, Y.; Takemura, Y.; Sakakibara, S.; Du, X. D.; Bando, T.; Narushima, Y.; Sakamoto, R.; Miyazawa, J.; Motojima, G.; Morisaki, T.; LHD Experiment Group

    2017-06-01

    The central beta of the super-dense-core (SDC) plasma in the large helical device (LHD) is limited by a large scale MHD event called ‘core density collapse’ (CDC). The detailed measurement reveals that a new type of ballooning mode, quite localized in space and destabilized from the 3D nature of Heliotron devices, is the cause of the CDC. It is the first observation of an unstable mode in a region with global negative magnetic shear. Avoidance of the excitation of this mode is a key to expand the operational limit of the LHD.

  14. Genetics of Triglycerides and the Risk of Atherosclerosis.

    PubMed

    Dron, Jacqueline S; Hegele, Robert A

    2017-07-01

    Plasma triglycerides are routinely measured with a lipid profile, and elevated plasma triglycerides are commonly encountered in the clinic. The confounded nature of this trait, which is correlated with numerous other metabolic perturbations, including depressed high-density lipoprotein cholesterol (HDL-C), has thwarted efforts to directly implicate triglycerides as causal in atherogenesis. Human genetic approaches involving large-scale populations and high-throughput genomic assessment under a Mendelian randomization framework have undertaken to sort out questions of causality. We review recent large-scale meta-analyses of cohorts and population-based sequencing studies designed to address whether common and rare variants in genes whose products are determinants of plasma triglycerides are also associated with clinical cardiovascular endpoints. The studied loci include genes encoding lipoprotein lipase and proteins that interact with it, such as apolipoprotein (apo) A-V, apo C-III and angiopoietin-like proteins 3 and 4, and common polymorphisms identified in genome-wide association studies. Triglyceride-raising variant alleles of these genes showed generally strong associations with clinical cardiovascular endpoints. However, in most cases, a second lipid disturbance-usually depressed HDL-C-was concurrently associated. While the findings collectively shift our understanding towards a potential causal role for triglycerides, we still cannot rule out the possibilities that triglycerides are a component of a joint phenotype with low HDL-C or that they are but markers of deeper causal metabolic disturbances that are not routinely measured in epidemiological-scale genetic studies.

  15. Lunar interactions: Abstracts of papers presented at the Conference on Interactions of the Interplanetary Plasma with the Modern and Ancient Moon

    NASA Technical Reports Server (NTRS)

    Criswell, D. R. (Editor); Freeman, J. W. (Editor)

    1974-01-01

    Reviewed are the active mechanisms relating the moon to its environment and the linkage between these mechanisms and their records in the lunar sample and geophysical data. Topics: (1) large scale plasma interactions with the moon and non-magnetic planets; (2) ancient and present day lunar surface magnetic and electric fields; (3) dynamics and evolution of the lunar atmosphere; (4) evolution of the solar plasma; (5) lunar record of solar radiations; (6) non-meteoritic and meteoritic disturbance and transport of lunar surface materials; and (7) future lunar exploration.

  16. Multi-dimensional PIC-simulations of parametric instabilities for shock-ignition conditions

    NASA Astrophysics Data System (ADS)

    Riconda, C.; Weber, S.; Klimo, O.; Héron, A.; Tikhonchuk, V. T.

    2013-11-01

    Laser-plasma interaction is investigated for conditions relevant for the shock-ignition (SI) scheme of inertial confinement fusion using two-dimensional particle-in-cell (PIC) simulations of an intense laser beam propagating in a hot, large-scale, non-uniform plasma. The temporal evolution and interdependence of Raman- (SRS), and Brillouin- (SBS), side/backscattering as well as Two-Plasmon-Decay (TPD) are studied. TPD is developing in concomitance with SRS creating a broad spectrum of plasma waves near the quarter-critical density. They are rapidly saturated due to plasma cavitation within a few picoseconds. The hot electron spectrum created by SRS and TPD is relatively soft, limited to energies below one hundred keV.

  17. Study of Pulsed vs. RF Plasma Properties for Surface Processing Applications

    NASA Astrophysics Data System (ADS)

    Tang, Ricky; Hopkins, Matthew; Barnat, Edward; Miller, Paul

    2015-09-01

    The ability to manipulate the plasma parameters (density, E/N) was previously demonstrated using a double-pulsed column discharge. Experiments extending this to large-surface plasmas of interest to the plasma processing community were conducted. Differences between an audio-frequency pulsed plasma and a radio-frequency (rf) discharge, both prevalent in plasma processing applications, were studied. Optical emission spectroscopy shows higher-intensity emission in the UV/visible range for the pulsed plasma comparing to the rf plasma at comparable powers. Data suggest that the electron energy is higher for the pulsed plasma leading to higher ionization, resulting in increased ion density and ion flux. Diode laser absorption measurements of the concentration of the 1S5 metastable and 1S4 resonance states of argon (correlated with the plasma E/N) provide comparisons between the excitation/ionization states of the two plasmas. Preliminary modeling efforts suggest that the low-frequency polarity switch causes a much more abrupt potential variation to support interesting transport phenomena, generating a ``wave'' of higher temperature electrons leading to more ionization, as well as ``sheath capture'' of a higher density bolus of ions that are then accelerated during polarity switch.

  18. Robust Low-Cost Cathode for Commercial Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.

    2007-01-01

    Under funding from the NASA Commercial Technology Office, a cathode assembly was designed, developed, fabricated, and tested for use in plasma sources for ground-based materials processing applications. The cathode development activity relied on the large prior NASA investment and successful development of high-current, high-efficiency, long-life hollow cathodes for use on the International Space Station Plasma Contactor System. The hollow cathode was designed and fabricated based on known engineering criteria and manufacturing processes for compatibility with the requirements of the plasma source. The transfer of NASA GRC-developed hollow cathode technology for use as an electron emitter in the commercial plasma source is anticipated to yield a significant increase in process control, while eliminating the present issues of electron emitter lifetime and contamination.

  19. High Throughput Plasma Water Treatment

    NASA Astrophysics Data System (ADS)

    Mujovic, Selman; Foster, John

    2016-10-01

    The troublesome emergence of new classes of micro-pollutants, such as pharmaceuticals and endocrine disruptors, poses challenges for conventional water treatment systems. In an effort to address these contaminants and to support water reuse in drought stricken regions, new technologies must be introduced. The interaction of water with plasma rapidly mineralizes organics by inducing advanced oxidation in addition to other chemical, physical and radiative processes. The primary barrier to the implementation of plasma-based water treatment is process volume scale up. In this work, we investigate a potentially scalable, high throughput plasma water reactor that utilizes a packed bed dielectric barrier-like geometry to maximize the plasma-water interface. Here, the water serves as the dielectric medium. High-speed imaging and emission spectroscopy are used to characterize the reactor discharges. Changes in methylene blue concentration and basic water parameters are mapped as a function of plasma treatment time. Experimental results are compared to electrostatic and plasma chemistry computations, which will provide insight into the reactor's operation so that efficiency can be assessed. Supported by NSF (CBET 1336375).

  20. White-light parametric instabilities in plasmas.

    PubMed

    Santos, J E; Silva, L O; Bingham, R

    2007-06-08

    Parametric instabilities driven by partially coherent radiation in plasmas are described by a generalized statistical Wigner-Moyal set of equations, formally equivalent to the full wave equation, coupled to the plasma fluid equations. A generalized dispersion relation for stimulated Raman scattering driven by a partially coherent pump field is derived, revealing a growth rate dependence, with the coherence width sigma of the radiation field, scaling with 1/sigma for backscattering (three-wave process), and with 1/sigma1/2 for direct forward scattering (four-wave process). Our results demonstrate the possibility to control the growth rates of these instabilities by properly using broadband pump radiation fields.

Top