Using the High-Level Based Program Interface to Facilitate the Large Scale Scientific Computing
Shang, Yizi; Shang, Ling; Gao, Chuanchang; Lu, Guiming; Ye, Yuntao; Jia, Dongdong
2014-01-01
This paper is to make further research on facilitating the large-scale scientific computing on the grid and the desktop grid platform. The related issues include the programming method, the overhead of the high-level program interface based middleware, and the data anticipate migration. The block based Gauss Jordan algorithm as a real example of large-scale scientific computing is used to evaluate those issues presented above. The results show that the high-level based program interface makes the complex scientific applications on large-scale scientific platform easier, though a little overhead is unavoidable. Also, the data anticipation migration mechanism can improve the efficiency of the platform which needs to process big data based scientific applications. PMID:24574931
The International Conference on Vector and Parallel Computing (2nd)
1989-01-17
Computation of the SVD of Bidiagonal Matrices" ...................................... 11 " Lattice QCD -As a Large Scale Scientific Computation...vectorizcd for the IBM 3090 Vector Facility. In addition, elapsed times " Lattice QCD -As a Large Scale Scientific have been reduced by using 3090...benchmarked Lattice QCD on a large number ofcompu- come from the wavefront solver routine. This was exten- ters: CrayX-MP and Cray 2 (vector
Exploring Cloud Computing for Large-scale Scientific Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Guang; Han, Binh; Yin, Jian
This paper explores cloud computing for large-scale data-intensive scientific applications. Cloud computing is attractive because it provides hardware and software resources on-demand, which relieves the burden of acquiring and maintaining a huge amount of resources that may be used only once by a scientific application. However, unlike typical commercial applications that often just requires a moderate amount of ordinary resources, large-scale scientific applications often need to process enormous amount of data in the terabyte or even petabyte range and require special high performance hardware with low latency connections to complete computation in a reasonable amount of time. To address thesemore » challenges, we build an infrastructure that can dynamically select high performance computing hardware across institutions and dynamically adapt the computation to the selected resources to achieve high performance. We have also demonstrated the effectiveness of our infrastructure by building a system biology application and an uncertainty quantification application for carbon sequestration, which can efficiently utilize data and computation resources across several institutions.« less
Scientific Services on the Cloud
NASA Astrophysics Data System (ADS)
Chapman, David; Joshi, Karuna P.; Yesha, Yelena; Halem, Milt; Yesha, Yaacov; Nguyen, Phuong
Scientific Computing was one of the first every applications for parallel and distributed computation. To this date, scientific applications remain some of the most compute intensive, and have inspired creation of petaflop compute infrastructure such as the Oak Ridge Jaguar and Los Alamos RoadRunner. Large dedicated hardware infrastructure has become both a blessing and a curse to the scientific community. Scientists are interested in cloud computing for much the same reason as businesses and other professionals. The hardware is provided, maintained, and administrated by a third party. Software abstraction and virtualization provide reliability, and fault tolerance. Graduated fees allow for multi-scale prototyping and execution. Cloud computing resources are only a few clicks away, and by far the easiest high performance distributed platform to gain access to. There may still be dedicated infrastructure for ultra-scale science, but the cloud can easily play a major part of the scientific computing initiative.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallarno, George; Rogers, James H; Maxwell, Don E
The high computational capability of graphics processing units (GPUs) is enabling and driving the scientific discovery process at large-scale. The world s second fastest supercomputer for open science, Titan, has more than 18,000 GPUs that computational scientists use to perform scientific simu- lations and data analysis. Understanding of GPU reliability characteristics, however, is still in its nascent stage since GPUs have only recently been deployed at large-scale. This paper presents a detailed study of GPU errors and their impact on system operations and applications, describing experiences with the 18,688 GPUs on the Titan supercom- puter as well as lessons learnedmore » in the process of efficient operation of GPUs at scale. These experiences are helpful to HPC sites which already have large-scale GPU clusters or plan to deploy GPUs in the future.« less
The future of scientific workflows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deelman, Ewa; Peterka, Tom; Altintas, Ilkay
Today’s computational, experimental, and observational sciences rely on computations that involve many related tasks. The success of a scientific mission often hinges on the computer automation of these workflows. In April 2015, the US Department of Energy (DOE) invited a diverse group of domain and computer scientists from national laboratories supported by the Office of Science, the National Nuclear Security Administration, from industry, and from academia to review the workflow requirements of DOE’s science and national security missions, to assess the current state of the art in science workflows, to understand the impact of emerging extreme-scale computing systems on thosemore » workflows, and to develop requirements for automated workflow management in future and existing environments. This article is a summary of the opinions of over 50 leading researchers attending this workshop. We highlight use cases, computing systems, workflow needs and conclude by summarizing the remaining challenges this community sees that inhibit large-scale scientific workflows from becoming a mainstream tool for extreme-scale science.« less
A characterization of workflow management systems for extreme-scale applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferreira da Silva, Rafael; Filgueira, Rosa; Pietri, Ilia
We present that the automation of the execution of computational tasks is at the heart of improving scientific productivity. Over the last years, scientific workflows have been established as an important abstraction that captures data processing and computation of large and complex scientific applications. By allowing scientists to model and express entire data processing steps and their dependencies, workflow management systems relieve scientists from the details of an application and manage its execution on a computational infrastructure. As the resource requirements of today’s computational and data science applications that process vast amounts of data keep increasing, there is a compellingmore » case for a new generation of advances in high-performance computing, commonly termed as extreme-scale computing, which will bring forth multiple challenges for the design of workflow applications and management systems. This paper presents a novel characterization of workflow management systems using features commonly associated with extreme-scale computing applications. We classify 15 popular workflow management systems in terms of workflow execution models, heterogeneous computing environments, and data access methods. Finally, the paper also surveys workflow applications and identifies gaps for future research on the road to extreme-scale workflows and management systems.« less
A characterization of workflow management systems for extreme-scale applications
Ferreira da Silva, Rafael; Filgueira, Rosa; Pietri, Ilia; ...
2017-02-16
We present that the automation of the execution of computational tasks is at the heart of improving scientific productivity. Over the last years, scientific workflows have been established as an important abstraction that captures data processing and computation of large and complex scientific applications. By allowing scientists to model and express entire data processing steps and their dependencies, workflow management systems relieve scientists from the details of an application and manage its execution on a computational infrastructure. As the resource requirements of today’s computational and data science applications that process vast amounts of data keep increasing, there is a compellingmore » case for a new generation of advances in high-performance computing, commonly termed as extreme-scale computing, which will bring forth multiple challenges for the design of workflow applications and management systems. This paper presents a novel characterization of workflow management systems using features commonly associated with extreme-scale computing applications. We classify 15 popular workflow management systems in terms of workflow execution models, heterogeneous computing environments, and data access methods. Finally, the paper also surveys workflow applications and identifies gaps for future research on the road to extreme-scale workflows and management systems.« less
The Computing and Data Grid Approach: Infrastructure for Distributed Science Applications
NASA Technical Reports Server (NTRS)
Johnston, William E.
2002-01-01
With the advent of Grids - infrastructure for using and managing widely distributed computing and data resources in the science environment - there is now an opportunity to provide a standard, large-scale, computing, data, instrument, and collaboration environment for science that spans many different projects and provides the required infrastructure and services in a relatively uniform and supportable way. Grid technology has evolved over the past several years to provide the services and infrastructure needed for building 'virtual' systems and organizations. We argue that Grid technology provides an excellent basis for the creation of the integrated environments that can combine the resources needed to support the large- scale science projects located at multiple laboratories and universities. We present some science case studies that indicate that a paradigm shift in the process of science will come about as a result of Grids providing transparent and secure access to advanced and integrated information and technologies infrastructure: powerful computing systems, large-scale data archives, scientific instruments, and collaboration tools. These changes will be in the form of services that can be integrated with the user's work environment, and that enable uniform and highly capable access to these computers, data, and instruments, regardless of the location or exact nature of these resources. These services will integrate transient-use resources like computing systems, scientific instruments, and data caches (e.g., as they are needed to perform a simulation or analyze data from a single experiment); persistent-use resources. such as databases, data catalogues, and archives, and; collaborators, whose involvement will continue for the lifetime of a project or longer. While we largely address large-scale science in this paper, Grids, particularly when combined with Web Services, will address a broad spectrum of science scenarios. both large and small scale.
Northwest Trajectory Analysis Capability: A Platform for Enhancing Computational Biophysics Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Elena S.; Stephan, Eric G.; Corrigan, Abigail L.
2008-07-30
As computational resources continue to increase, the ability of computational simulations to effectively complement, and in some cases replace, experimentation in scientific exploration also increases. Today, large-scale simulations are recognized as an effective tool for scientific exploration in many disciplines including chemistry and biology. A natural side effect of this trend has been the need for an increasingly complex analytical environment. In this paper, we describe Northwest Trajectory Analysis Capability (NTRAC), an analytical software suite developed to enhance the efficiency of computational biophysics analyses. Our strategy is to layer higher-level services and introduce improved tools within the user’s familiar environmentmore » without preventing researchers from using traditional tools and methods. Our desire is to share these experiences to serve as an example for effectively analyzing data intensive large scale simulation data.« less
Large-Scale Distributed Computational Fluid Dynamics on the Information Power Grid Using Globus
NASA Technical Reports Server (NTRS)
Barnard, Stephen; Biswas, Rupak; Saini, Subhash; VanderWijngaart, Robertus; Yarrow, Maurice; Zechtzer, Lou; Foster, Ian; Larsson, Olle
1999-01-01
This paper describes an experiment in which a large-scale scientific application development for tightly-coupled parallel machines is adapted to the distributed execution environment of the Information Power Grid (IPG). A brief overview of the IPG and a description of the computational fluid dynamics (CFD) algorithm are given. The Globus metacomputing toolkit is used as the enabling device for the geographically-distributed computation. Modifications related to latency hiding and Load balancing were required for an efficient implementation of the CFD application in the IPG environment. Performance results on a pair of SGI Origin 2000 machines indicate that real scientific applications can be effectively implemented on the IPG; however, a significant amount of continued effort is required to make such an environment useful and accessible to scientists and engineers.
Information Power Grid Posters
NASA Technical Reports Server (NTRS)
Vaziri, Arsi
2003-01-01
This document is a summary of the accomplishments of the Information Power Grid (IPG). Grids are an emerging technology that provide seamless and uniform access to the geographically dispersed, computational, data storage, networking, instruments, and software resources needed for solving large-scale scientific and engineering problems. The goal of the NASA IPG is to use NASA's remotely located computing and data system resources to build distributed systems that can address problems that are too large or complex for a single site. The accomplishments outlined in this poster presentation are: access to distributed data, IPG heterogeneous computing, integration of large-scale computing node into distributed environment, remote access to high data rate instruments,and exploratory grid environment.
Software Engineering for Scientific Computer Simulations
NASA Astrophysics Data System (ADS)
Post, Douglass E.; Henderson, Dale B.; Kendall, Richard P.; Whitney, Earl M.
2004-11-01
Computer simulation is becoming a very powerful tool for analyzing and predicting the performance of fusion experiments. Simulation efforts are evolving from including only a few effects to many effects, from small teams with a few people to large teams, and from workstations and small processor count parallel computers to massively parallel platforms. Successfully making this transition requires attention to software engineering issues. We report on the conclusions drawn from a number of case studies of large scale scientific computing projects within DOE, academia and the DoD. The major lessons learned include attention to sound project management including setting reasonable and achievable requirements, building a good code team, enforcing customer focus, carrying out verification and validation and selecting the optimum computational mathematics approaches.
GISpark: A Geospatial Distributed Computing Platform for Spatiotemporal Big Data
NASA Astrophysics Data System (ADS)
Wang, S.; Zhong, E.; Wang, E.; Zhong, Y.; Cai, W.; Li, S.; Gao, S.
2016-12-01
Geospatial data are growing exponentially because of the proliferation of cost effective and ubiquitous positioning technologies such as global remote-sensing satellites and location-based devices. Analyzing large amounts of geospatial data can provide great value for both industrial and scientific applications. Data- and compute- intensive characteristics inherent in geospatial big data increasingly pose great challenges to technologies of data storing, computing and analyzing. Such challenges require a scalable and efficient architecture that can store, query, analyze, and visualize large-scale spatiotemporal data. Therefore, we developed GISpark - a geospatial distributed computing platform for processing large-scale vector, raster and stream data. GISpark is constructed based on the latest virtualized computing infrastructures and distributed computing architecture. OpenStack and Docker are used to build multi-user hosting cloud computing infrastructure for GISpark. The virtual storage systems such as HDFS, Ceph, MongoDB are combined and adopted for spatiotemporal data storage management. Spark-based algorithm framework is developed for efficient parallel computing. Within this framework, SuperMap GIScript and various open-source GIS libraries can be integrated into GISpark. GISpark can also integrated with scientific computing environment (e.g., Anaconda), interactive computing web applications (e.g., Jupyter notebook), and machine learning tools (e.g., TensorFlow/Orange). The associated geospatial facilities of GISpark in conjunction with the scientific computing environment, exploratory spatial data analysis tools, temporal data management and analysis systems make up a powerful geospatial computing tool. GISpark not only provides spatiotemporal big data processing capacity in the geospatial field, but also provides spatiotemporal computational model and advanced geospatial visualization tools that deals with other domains related with spatial property. We tested the performance of the platform based on taxi trajectory analysis. Results suggested that GISpark achieves excellent run time performance in spatiotemporal big data applications.
Scientific Discovery through Advanced Computing in Plasma Science
NASA Astrophysics Data System (ADS)
Tang, William
2005-03-01
Advanced computing is generally recognized to be an increasingly vital tool for accelerating progress in scientific research during the 21st Century. For example, the Department of Energy's ``Scientific Discovery through Advanced Computing'' (SciDAC) Program was motivated in large measure by the fact that formidable scientific challenges in its research portfolio could best be addressed by utilizing the combination of the rapid advances in super-computing technology together with the emergence of effective new algorithms and computational methodologies. The imperative is to translate such progress into corresponding increases in the performance of the scientific codes used to model complex physical systems such as those encountered in high temperature plasma research. If properly validated against experimental measurements and analytic benchmarks, these codes can provide reliable predictive capability for the behavior of a broad range of complex natural and engineered systems. This talk reviews recent progress and future directions for advanced simulations with some illustrative examples taken from the plasma science applications area. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by the combination of access to powerful new computational resources together with innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning a huge range in time and space scales. In particular, the plasma science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPP's to produce three-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of plasma turbulence in magnetically-confined high temperature plasmas. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to stimulate improved cross-cutting collaborations with other fields and also to help attract bright young talent to the computational science area.
Data Intensive Scientific Workflows on a Federated Cloud: CRADA Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garzoglio, Gabriele
The Fermilab Scientific Computing Division and the KISTI Global Science Experimental Data Hub Center have built a prototypical large-scale infrastructure to handle scientific workflows of stakeholders to run on multiple cloud resources. The demonstrations have been in the areas of (a) Data-Intensive Scientific Workflows on Federated Clouds, (b) Interoperability and Federation of Cloud Resources, and (c) Virtual Infrastructure Automation to enable On-Demand Services.
A Rich Metadata Filesystem for Scientific Data
ERIC Educational Resources Information Center
Bui, Hoang
2012-01-01
As scientific research becomes more data intensive, there is an increasing need for scalable, reliable, and high performance storage systems. Such data repositories must provide both data archival services and rich metadata, and cleanly integrate with large scale computing resources. ROARS is a hybrid approach to distributed storage that provides…
What makes computational open source software libraries successful?
NASA Astrophysics Data System (ADS)
Bangerth, Wolfgang; Heister, Timo
2013-01-01
Software is the backbone of scientific computing. Yet, while we regularly publish detailed accounts about the results of scientific software, and while there is a general sense of which numerical methods work well, our community is largely unaware of best practices in writing the large-scale, open source scientific software upon which our discipline rests. This is particularly apparent in the commonly held view that writing successful software packages is largely the result of simply ‘being a good programmer’ when in fact there are many other factors involved, for example the social skill of community building. In this paper, we consider what we have found to be the necessary ingredients for successful scientific software projects and, in particular, for software libraries upon which the vast majority of scientific codes are built today. In particular, we discuss the roles of code, documentation, communities, project management and licenses. We also briefly comment on the impact on academic careers of engaging in software projects.
Java Performance for Scientific Applications on LLNL Computer Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapfer, C; Wissink, A
2002-05-10
Languages in use for high performance computing at the laboratory--Fortran (f77 and f90), C, and C++--have many years of development behind them and are generally considered the fastest available. However, Fortran and C do not readily extend to object-oriented programming models, limiting their capability for very complex simulation software. C++ facilitates object-oriented programming but is a very complex and error-prone language. Java offers a number of capabilities that these other languages do not. For instance it implements cleaner (i.e., easier to use and less prone to errors) object-oriented models than C++. It also offers networking and security as part ofmore » the language standard, and cross-platform executables that make it architecture neutral, to name a few. These features have made Java very popular for industrial computing applications. The aim of this paper is to explain the trade-offs in using Java for large-scale scientific applications at LLNL. Despite its advantages, the computational science community has been reluctant to write large-scale computationally intensive applications in Java due to concerns over its poor performance. However, considerable progress has been made over the last several years. The Java Grande Forum [1] has been promoting the use of Java for large-scale computing. Members have introduced efficient array libraries, developed fast just-in-time (JIT) compilers, and built links to existing packages used in high performance parallel computing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
An account of the Caltech Concurrent Computation Program (C{sup 3}P), a five year project that focused on answering the question: Can parallel computers be used to do large-scale scientific computations '' As the title indicates, the question is answered in the affirmative, by implementing numerous scientific applications on real parallel computers and doing computations that produced new scientific results. In the process of doing so, C{sup 3}P helped design and build several new computers, designed and implemented basic system software, developed algorithms for frequently used mathematical computations on massively parallel machines, devised performance models and measured the performance of manymore » computers, and created a high performance computing facility based exclusively on parallel computers. While the initial focus of C{sup 3}P was the hypercube architecture developed by C. Seitz, many of the methods developed and lessons learned have been applied successfully on other massively parallel architectures.« less
Enabling large-scale viscoelastic calculations via neural network acceleration
NASA Astrophysics Data System (ADS)
Robinson DeVries, P.; Thompson, T. B.; Meade, B. J.
2017-12-01
One of the most significant challenges involved in efforts to understand the effects of repeated earthquake cycle activity are the computational costs of large-scale viscoelastic earthquake cycle models. Deep artificial neural networks (ANNs) can be used to discover new, compact, and accurate computational representations of viscoelastic physics. Once found, these efficient ANN representations may replace computationally intensive viscoelastic codes and accelerate large-scale viscoelastic calculations by more than 50,000%. This magnitude of acceleration enables the modeling of geometrically complex faults over thousands of earthquake cycles across wider ranges of model parameters and at larger spatial and temporal scales than have been previously possible. Perhaps most interestingly from a scientific perspective, ANN representations of viscoelastic physics may lead to basic advances in the understanding of the underlying model phenomenology. We demonstrate the potential of artificial neural networks to illuminate fundamental physical insights with specific examples.
NASA Astrophysics Data System (ADS)
Guiquan, Xi; Lin, Cong; Xuehui, Jin
2018-05-01
As an important platform for scientific and technological development, large -scale scientific facilities are the cornerstone of technological innovation and a guarantee for economic and social development. Researching management of large-scale scientific facilities can play a key role in scientific research, sociology and key national strategy. This paper reviews the characteristics of large-scale scientific facilities, and summarizes development status of China's large-scale scientific facilities. At last, the construction, management, operation and evaluation of large-scale scientific facilities is analyzed from the perspective of sustainable development.
Template Interfaces for Agile Parallel Data-Intensive Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramakrishnan, Lavanya; Gunter, Daniel; Pastorello, Gilerto Z.
Tigres provides a programming library to compose and execute large-scale data-intensive scientific workflows from desktops to supercomputers. DOE User Facilities and large science collaborations are increasingly generating large enough data sets that it is no longer practical to download them to a desktop to operate on them. They are instead stored at centralized compute and storage resources such as high performance computing (HPC) centers. Analysis of this data requires an ability to run on these facilities, but with current technologies, scaling an analysis to an HPC center and to a large data set is difficult even for experts. Tigres ismore » addressing the challenge of enabling collaborative analysis of DOE Science data through a new concept of reusable "templates" that enable scientists to easily compose, run and manage collaborative computational tasks. These templates define common computation patterns used in analyzing a data set.« less
Scalable Automated Model Search
2014-05-20
ma- chines. Categories and Subject Descriptors Big Data [Distributed Computing]: Large scale optimization 1. INTRODUCTION Modern scientific and...from Continuum Analytics[1], and Apache Spark 0.8.1. Additionally, we made use of Hadoop 1.0.4 configured on local disks as our data store for the large...Borkar et al. Hyracks: A flexible and extensible foundation for data -intensive computing. In ICDE, 2011. [16] J. Canny and H. Zhao. Big data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Justin; Karra, Satish; Nakshatrala, Kalyana B.
It is well-known that the standard Galerkin formulation, which is often the formulation of choice under the finite element method for solving self-adjoint diffusion equations, does not meet maximum principles and the non-negative constraint for anisotropic diffusion equations. Recently, optimization-based methodologies that satisfy maximum principles and the non-negative constraint for steady-state and transient diffusion-type equations have been proposed. To date, these methodologies have been tested only on small-scale academic problems. The purpose of this paper is to systematically study the performance of the non-negative methodology in the context of high performance computing (HPC). PETSc and TAO libraries are, respectively, usedmore » for the parallel environment and optimization solvers. For large-scale problems, it is important for computational scientists to understand the computational performance of current algorithms available in these scientific libraries. The numerical experiments are conducted on the state-of-the-art HPC systems, and a single-core performance model is used to better characterize the efficiency of the solvers. Furthermore, our studies indicate that the proposed non-negative computational framework for diffusion-type equations exhibits excellent strong scaling for real-world large-scale problems.« less
Chang, Justin; Karra, Satish; Nakshatrala, Kalyana B.
2016-07-26
It is well-known that the standard Galerkin formulation, which is often the formulation of choice under the finite element method for solving self-adjoint diffusion equations, does not meet maximum principles and the non-negative constraint for anisotropic diffusion equations. Recently, optimization-based methodologies that satisfy maximum principles and the non-negative constraint for steady-state and transient diffusion-type equations have been proposed. To date, these methodologies have been tested only on small-scale academic problems. The purpose of this paper is to systematically study the performance of the non-negative methodology in the context of high performance computing (HPC). PETSc and TAO libraries are, respectively, usedmore » for the parallel environment and optimization solvers. For large-scale problems, it is important for computational scientists to understand the computational performance of current algorithms available in these scientific libraries. The numerical experiments are conducted on the state-of-the-art HPC systems, and a single-core performance model is used to better characterize the efficiency of the solvers. Furthermore, our studies indicate that the proposed non-negative computational framework for diffusion-type equations exhibits excellent strong scaling for real-world large-scale problems.« less
Trajectory Segmentation Map-Matching Approach for Large-Scale, High-Resolution GPS Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Lei; Holden, Jacob R.; Gonder, Jeffrey D.
With the development of smartphones and portable GPS devices, large-scale, high-resolution GPS data can be collected. Map matching is a critical step in studying vehicle driving activity and recognizing network traffic conditions from the data. A new trajectory segmentation map-matching algorithm is proposed to deal accurately and efficiently with large-scale, high-resolution GPS trajectory data. The new algorithm separated the GPS trajectory into segments. It found the shortest path for each segment in a scientific manner and ultimately generated a best-matched path for the entire trajectory. The similarity of a trajectory segment and its matched path is described by a similaritymore » score system based on the longest common subsequence. The numerical experiment indicated that the proposed map-matching algorithm was very promising in relation to accuracy and computational efficiency. Large-scale data set applications verified that the proposed method is robust and capable of dealing with real-world, large-scale GPS data in a computationally efficient and accurate manner.« less
Trajectory Segmentation Map-Matching Approach for Large-Scale, High-Resolution GPS Data
Zhu, Lei; Holden, Jacob R.; Gonder, Jeffrey D.
2017-01-01
With the development of smartphones and portable GPS devices, large-scale, high-resolution GPS data can be collected. Map matching is a critical step in studying vehicle driving activity and recognizing network traffic conditions from the data. A new trajectory segmentation map-matching algorithm is proposed to deal accurately and efficiently with large-scale, high-resolution GPS trajectory data. The new algorithm separated the GPS trajectory into segments. It found the shortest path for each segment in a scientific manner and ultimately generated a best-matched path for the entire trajectory. The similarity of a trajectory segment and its matched path is described by a similaritymore » score system based on the longest common subsequence. The numerical experiment indicated that the proposed map-matching algorithm was very promising in relation to accuracy and computational efficiency. Large-scale data set applications verified that the proposed method is robust and capable of dealing with real-world, large-scale GPS data in a computationally efficient and accurate manner.« less
Pynamic: the Python Dynamic Benchmark
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, G L; Ahn, D H; de Supinksi, B R
2007-07-10
Python is widely used in scientific computing to facilitate application development and to support features such as computational steering. Making full use of some of Python's popular features, which improve programmer productivity, leads to applications that access extremely high numbers of dynamically linked libraries (DLLs). As a result, some important Python-based applications severely stress a system's dynamic linking and loading capabilities and also cause significant difficulties for most development environment tools, such as debuggers. Furthermore, using the Python paradigm for large scale MPI-based applications can create significant file IO and further stress tools and operating systems. In this paper, wemore » present Pynamic, the first benchmark program to support configurable emulation of a wide-range of the DLL usage of Python-based applications for large scale systems. Pynamic has already accurately reproduced system software and tool issues encountered by important large Python-based scientific applications on our supercomputers. Pynamic provided insight for our system software and tool vendors, and our application developers, into the impact of several design decisions. As we describe the Pynamic benchmark, we will highlight some of the issues discovered in our large scale system software and tools using Pynamic.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Chase Qishi; Zhu, Michelle Mengxia
The advent of large-scale collaborative scientific applications has demonstrated the potential for broad scientific communities to pool globally distributed resources to produce unprecedented data acquisition, movement, and analysis. System resources including supercomputers, data repositories, computing facilities, network infrastructures, storage systems, and display devices have been increasingly deployed at national laboratories and academic institutes. These resources are typically shared by large communities of users over Internet or dedicated networks and hence exhibit an inherent dynamic nature in their availability, accessibility, capacity, and stability. Scientific applications using either experimental facilities or computation-based simulations with various physical, chemical, climatic, and biological models featuremore » diverse scientific workflows as simple as linear pipelines or as complex as a directed acyclic graphs, which must be executed and supported over wide-area networks with massively distributed resources. Application users oftentimes need to manually configure their computing tasks over networks in an ad hoc manner, hence significantly limiting the productivity of scientists and constraining the utilization of resources. The success of these large-scale distributed applications requires a highly adaptive and massively scalable workflow platform that provides automated and optimized computing and networking services. This project is to design and develop a generic Scientific Workflow Automation and Management Platform (SWAMP), which contains a web-based user interface specially tailored for a target application, a set of user libraries, and several easy-to-use computing and networking toolkits for application scientists to conveniently assemble, execute, monitor, and control complex computing workflows in heterogeneous high-performance network environments. SWAMP will enable the automation and management of the entire process of scientific workflows with the convenience of a few mouse clicks while hiding the implementation and technical details from end users. Particularly, we will consider two types of applications with distinct performance requirements: data-centric and service-centric applications. For data-centric applications, the main workflow task involves large-volume data generation, catalog, storage, and movement typically from supercomputers or experimental facilities to a team of geographically distributed users; while for service-centric applications, the main focus of workflow is on data archiving, preprocessing, filtering, synthesis, visualization, and other application-specific analysis. We will conduct a comprehensive comparison of existing workflow systems and choose the best suited one with open-source code, a flexible system structure, and a large user base as the starting point for our development. Based on the chosen system, we will develop and integrate new components including a black box design of computing modules, performance monitoring and prediction, and workflow optimization and reconfiguration, which are missing from existing workflow systems. A modular design for separating specification, execution, and monitoring aspects will be adopted to establish a common generic infrastructure suited for a wide spectrum of science applications. We will further design and develop efficient workflow mapping and scheduling algorithms to optimize the workflow performance in terms of minimum end-to-end delay, maximum frame rate, and highest reliability. We will develop and demonstrate the SWAMP system in a local environment, the grid network, and the 100Gpbs Advanced Network Initiative (ANI) testbed. The demonstration will target scientific applications in climate modeling and high energy physics and the functions to be demonstrated include workflow deployment, execution, steering, and reconfiguration. Throughout the project period, we will work closely with the science communities in the fields of climate modeling and high energy physics including Spallation Neutron Source (SNS) and Large Hadron Collider (LHC) projects to mature the system for production use.« less
HEPCloud, a New Paradigm for HEP Facilities: CMS Amazon Web Services Investigation
Holzman, Burt; Bauerdick, Lothar A. T.; Bockelman, Brian; ...
2017-09-29
Historically, high energy physics computing has been performed on large purpose-built computing systems. These began as single-site compute facilities, but have evolved into the distributed computing grids used today. Recently, there has been an exponential increase in the capacity and capability of commercial clouds. Cloud resources are highly virtualized and intended to be able to be flexibly deployed for a variety of computing tasks. There is a growing interest among the cloud providers to demonstrate the capability to perform large-scale scientific computing. In this paper, we discuss results from the CMS experiment using the Fermilab HEPCloud facility, which utilized bothmore » local Fermilab resources and virtual machines in the Amazon Web Services Elastic Compute Cloud. We discuss the planning, technical challenges, and lessons learned involved in performing physics workflows on a large-scale set of virtualized resources. Additionally, we will discuss the economics and operational efficiencies when executing workflows both in the cloud and on dedicated resources.« less
HEPCloud, a New Paradigm for HEP Facilities: CMS Amazon Web Services Investigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holzman, Burt; Bauerdick, Lothar A. T.; Bockelman, Brian
Historically, high energy physics computing has been performed on large purpose-built computing systems. These began as single-site compute facilities, but have evolved into the distributed computing grids used today. Recently, there has been an exponential increase in the capacity and capability of commercial clouds. Cloud resources are highly virtualized and intended to be able to be flexibly deployed for a variety of computing tasks. There is a growing interest among the cloud providers to demonstrate the capability to perform large-scale scientific computing. In this paper, we discuss results from the CMS experiment using the Fermilab HEPCloud facility, which utilized bothmore » local Fermilab resources and virtual machines in the Amazon Web Services Elastic Compute Cloud. We discuss the planning, technical challenges, and lessons learned involved in performing physics workflows on a large-scale set of virtualized resources. Additionally, we will discuss the economics and operational efficiencies when executing workflows both in the cloud and on dedicated resources.« less
PETSc Users Manual Revision 3.7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balay, Satish; Abhyankar, S.; Adams, M.
This manual describes the use of PETSc for the numerical solution of partial differential equations and related problems on high-performance computers. The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data structures and routines that provide the building blocks for the implementation of large-scale application codes on parallel (and serial) computers. PETSc uses the MPI standard for all message-passing communication.
The Influence of Large-Scale Computing on Aircraft Structural Design.
1986-04-01
the customer in the most cost- effective manner. Computer facility organizations became computer resource power brokers. A good data processing...capabilities generated on other processors can be easily used. This approach is easily implementable and provides a good strategy for using existing...assistance to member nations for the purpose of increasing their scientific and technical potential; - Recommending effective ways for the member nations to
PETSc Users Manual Revision 3.8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balay, S.; Abhyankar, S.; Adams, M.
This manual describes the use of PETSc for the numerical solution of partial differential equations and related problems on high-performance computers. The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data structures and routines that provide the building blocks for the implementation of large-scale application codes on parallel (and serial) computers. PETSc uses the MPI standard for all message-passing communication.
NASA Technical Reports Server (NTRS)
Denning, P. J.; Adams, G. B., III; Brown, R. L.; Kanerva, P.; Leiner, B. M.; Raugh, M. R.
1986-01-01
Large, complex computer systems require many years of development. It is recognized that large scale systems are unlikely to be delivered in useful condition unless users are intimately involved throughout the design process. A mechanism is described that will involve users in the design of advanced computing systems and will accelerate the insertion of new systems into scientific research. This mechanism is embodied in a facility called the Center for Advanced Architectures (CAA). CAA would be a division of RIACS (Research Institute for Advanced Computer Science) and would receive its technical direction from a Scientific Advisory Board established by RIACS. The CAA described here is a possible implementation of a center envisaged in a proposed cooperation between NASA and DARPA.
Data Crosscutting Requirements Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleese van Dam, Kerstin; Shoshani, Arie; Plata, Charity
2013-04-01
In April 2013, a diverse group of researchers from the U.S. Department of Energy (DOE) scientific community assembled to assess data requirements associated with DOE-sponsored scientific facilities and large-scale experiments. Participants in the review included facilities staff, program managers, and scientific experts from the offices of Basic Energy Sciences, Biological and Environmental Research, High Energy Physics, and Advanced Scientific Computing Research. As part of the meeting, review participants discussed key issues associated with three distinct aspects of the data challenge: 1) processing, 2) management, and 3) analysis. These discussions identified commonalities and differences among the needs of varied scientific communities.more » They also helped to articulate gaps between current approaches and future needs, as well as the research advances that will be required to close these gaps. Moreover, the review provided a rare opportunity for experts from across the Office of Science to learn about their collective expertise, challenges, and opportunities. The "Data Crosscutting Requirements Review" generated specific findings and recommendations for addressing large-scale data crosscutting requirements.« less
In Defense of the National Labs and Big-Budget Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodwin, J R
2008-07-29
The purpose of this paper is to present the unofficial and unsanctioned opinions of a Visiting Scientist at Lawrence Livermore National Laboratory on the values of LLNL and the other National Labs. The basic founding value and goal of the National Labs is big-budget scientific research, along with smaller-budget scientific research that cannot easily be done elsewhere. The most important example in the latter category is classified defense-related research. The historical guiding light here is the Manhattan Project. This endeavor was unique in human history, and might remain so. The scientific expertise and wealth of an entire nation was tappedmore » in a project that was huge beyond reckoning, with no advance guarantee of success. It was in many respects a clash of scientific titans, with a large supporting cast, collaborating toward a single well-defined goal. Never had scientists received so much respect, so much money, and so much intellectual freedom to pursue scientific progress. And never was the gap between theory and implementation so rapidly narrowed, with results that changed the world, completely. Enormous resources are spent at the national or international level on large-scale scientific projects. LLNL has the most powerful computer in the world, Blue Gene/L. (Oops, Los Alamos just seized the title with Roadrunner; such titles regularly change hands.) LLNL also has the largest laser in the world, the National Ignition Facility (NIF). Lawrence Berkeley National Lab (LBNL) has the most powerful microscope in the world. Not only is it beyond the resources of most large corporations to make such expenditures, but the risk exceeds the possible rewards for those corporations that could. Nor can most small countries afford to finance large scientific projects, and not even the richest can afford largess, especially if Congress is under major budget pressure. Some big-budget research efforts are funded by international consortiums, such as the Large Hadron Collider (LHC) at CERN, and the International Tokamak Experimental Reactor (ITER) in Cadarache, France, a magnetic-confinement fusion research project. The postWWII histories of particle and fusion physics contain remarkable examples of both international competition, with an emphasis on secrecy, and international cooperation, with an emphasis on shared knowledge and resources. Initiatives to share sometimes came from surprising directions. Most large-scale scientific projects have potential defense applications. NIF certainly does; it is primarily designed to create small-scale fusion explosions. Blue Gene/L operates in part in service to NIF, and in part to various defense projects. The most important defense projects include stewardship of the national nuclear weapons stockpile, and the proposed redesign and replacement of those weapons with fewer, safer, more reliable, longer-lived, and less apocalyptic warheads. Many well-meaning people will consider the optimal lifetime of a nuclear weapon to be zero, but most thoughtful people, when asked how much longer they think this nation will require them, will ask for some time to think. NIF is also designed to create exothermic small-scale fusion explosions. The malapropos 'exothermic' here is a convenience to cover a profusion of complexities, but the basic idea is that the explosions will create more recoverable energy than was used to create them. One can hope that the primary future benefits of success for NIF will be in cost-effective generation of electrical power through controlled small-scale fusion reactions, rather than in improved large-scale fusion explosions. Blue Gene/L also services climate research, genomic research, materials research, and a myriad of other computational problems that become more feasible, reliable, and precise the larger the number of computational nodes employed. Blue Gene/L has to be sited within a security complex for obvious reasons, but its value extends to the nation and the world. There is a duality here between large-scale scientific research machines and the supercomputers used to model them. An astounding example is illustrated in a graph released by EFDAJET, at Oxfordshire, UK, presently the largest operating magnetic-confinement fusion experiment. The graph shows plasma confinement times (an essential performance parameter) for all the major tokamaks in the international fusion program, over their existing lifetimes. The remarkable thing about the data is not so much confinement-time versus date or scale, but the fact that the data are given for both the computer model predictions and the actual experimental measurements, and the two are in phenomenal agreement over the extended range of scales. Supercomputer models, sometimes operating with the intricacy of Schroedinger's equation at quantum physical scales, have become a costly but enormously cost-saving tool.« less
Profiling and Improving I/O Performance of a Large-Scale Climate Scientific Application
NASA Technical Reports Server (NTRS)
Liu, Zhuo; Wang, Bin; Wang, Teng; Tian, Yuan; Xu, Cong; Wang, Yandong; Yu, Weikuan; Cruz, Carlos A.; Zhou, Shujia; Clune, Tom;
2013-01-01
Exascale computing systems are soon to emerge, which will pose great challenges on the huge gap between computing and I/O performance. Many large-scale scientific applications play an important role in our daily life. The huge amounts of data generated by such applications require highly parallel and efficient I/O management policies. In this paper, we adopt a mission-critical scientific application, GEOS-5, as a case to profile and analyze the communication and I/O issues that are preventing applications from fully utilizing the underlying parallel storage systems. Through in-detail architectural and experimental characterization, we observe that current legacy I/O schemes incur significant network communication overheads and are unable to fully parallelize the data access, thus degrading applications' I/O performance and scalability. To address these inefficiencies, we redesign its I/O framework along with a set of parallel I/O techniques to achieve high scalability and performance. Evaluation results on the NASA discover cluster show that our optimization of GEOS-5 with ADIOS has led to significant performance improvements compared to the original GEOS-5 implementation.
Mathematical and Computational Challenges in Population Biology and Ecosystems Science
NASA Technical Reports Server (NTRS)
Levin, Simon A.; Grenfell, Bryan; Hastings, Alan; Perelson, Alan S.
1997-01-01
Mathematical and computational approaches provide powerful tools in the study of problems in population biology and ecosystems science. The subject has a rich history intertwined with the development of statistics and dynamical systems theory, but recent analytical advances, coupled with the enhanced potential of high-speed computation, have opened up new vistas and presented new challenges. Key challenges involve ways to deal with the collective dynamics of heterogeneous ensembles of individuals, and to scale from small spatial regions to large ones. The central issues-understanding how detail at one scale makes its signature felt at other scales, and how to relate phenomena across scales-cut across scientific disciplines and go to the heart of algorithmic development of approaches to high-speed computation. Examples are given from ecology, genetics, epidemiology, and immunology.
Deelman, E.; Callaghan, S.; Field, E.; Francoeur, H.; Graves, R.; Gupta, N.; Gupta, V.; Jordan, T.H.; Kesselman, C.; Maechling, P.; Mehringer, J.; Mehta, G.; Okaya, D.; Vahi, K.; Zhao, L.
2006-01-01
This paper discusses the process of building an environment where large-scale, complex, scientific analysis can be scheduled onto a heterogeneous collection of computational and storage resources. The example application is the Southern California Earthquake Center (SCEC) CyberShake project, an analysis designed to compute probabilistic seismic hazard curves for sites in the Los Angeles area. We explain which software tools were used to build to the system, describe their functionality and interactions. We show the results of running the CyberShake analysis that included over 250,000 jobs using resources available through SCEC and the TeraGrid. ?? 2006 IEEE.
NASA Astrophysics Data System (ADS)
Lin, Y.; O'Malley, D.; Vesselinov, V. V.
2015-12-01
Inverse modeling seeks model parameters given a set of observed state variables. However, for many practical problems due to the facts that the observed data sets are often large and model parameters are often numerous, conventional methods for solving the inverse modeling can be computationally expensive. We have developed a new, computationally-efficient Levenberg-Marquardt method for solving large-scale inverse modeling. Levenberg-Marquardt methods require the solution of a dense linear system of equations which can be prohibitively expensive to compute for large-scale inverse problems. Our novel method projects the original large-scale linear problem down to a Krylov subspace, such that the dimensionality of the measurements can be significantly reduced. Furthermore, instead of solving the linear system for every Levenberg-Marquardt damping parameter, we store the Krylov subspace computed when solving the first damping parameter and recycle it for all the following damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved by using these computational techniques. We apply this new inverse modeling method to invert for a random transitivity field. Our algorithm is fast enough to solve for the distributed model parameters (transitivity) at each computational node in the model domain. The inversion is also aided by the use regularization techniques. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). Julia is an advanced high-level scientific programing language that allows for efficient memory management and utilization of high-performance computational resources. By comparing with a Levenberg-Marquardt method using standard linear inversion techniques, our Levenberg-Marquardt method yields speed-up ratio of 15 in a multi-core computational environment and a speed-up ratio of 45 in a single-core computational environment. Therefore, our new inverse modeling method is a powerful tool for large-scale applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerber, Richard; Allcock, William; Beggio, Chris
2014-10-17
U.S. Department of Energy (DOE) High Performance Computing (HPC) facilities are on the verge of a paradigm shift in the way they deliver systems and services to science and engineering teams. Research projects are producing a wide variety of data at unprecedented scale and level of complexity, with community-specific services that are part of the data collection and analysis workflow. On June 18-19, 2014 representatives from six DOE HPC centers met in Oakland, CA at the DOE High Performance Operational Review (HPCOR) to discuss how they can best provide facilities and services to enable large-scale data-driven scientific discovery at themore » DOE national laboratories. The report contains findings from that review.« less
Blueprint for a microwave trapped ion quantum computer.
Lekitsch, Bjoern; Weidt, Sebastian; Fowler, Austin G; Mølmer, Klaus; Devitt, Simon J; Wunderlich, Christof; Hensinger, Winfried K
2017-02-01
The availability of a universal quantum computer may have a fundamental impact on a vast number of research fields and on society as a whole. An increasingly large scientific and industrial community is working toward the realization of such a device. An arbitrarily large quantum computer may best be constructed using a modular approach. We present a blueprint for a trapped ion-based scalable quantum computer module, making it possible to create a scalable quantum computer architecture based on long-wavelength radiation quantum gates. The modules control all operations as stand-alone units, are constructed using silicon microfabrication techniques, and are within reach of current technology. To perform the required quantum computations, the modules make use of long-wavelength radiation-based quantum gate technology. To scale this microwave quantum computer architecture to a large size, we present a fully scalable design that makes use of ion transport between different modules, thereby allowing arbitrarily many modules to be connected to construct a large-scale device. A high error-threshold surface error correction code can be implemented in the proposed architecture to execute fault-tolerant operations. With appropriate adjustments, the proposed modules are also suitable for alternative trapped ion quantum computer architectures, such as schemes using photonic interconnects.
Trace: a high-throughput tomographic reconstruction engine for large-scale datasets.
Bicer, Tekin; Gürsoy, Doğa; Andrade, Vincent De; Kettimuthu, Rajkumar; Scullin, William; Carlo, Francesco De; Foster, Ian T
2017-01-01
Modern synchrotron light sources and detectors produce data at such scale and complexity that large-scale computation is required to unleash their full power. One of the widely used imaging techniques that generates data at tens of gigabytes per second is computed tomography (CT). Although CT experiments result in rapid data generation, the analysis and reconstruction of the collected data may require hours or even days of computation time with a medium-sized workstation, which hinders the scientific progress that relies on the results of analysis. We present Trace, a data-intensive computing engine that we have developed to enable high-performance implementation of iterative tomographic reconstruction algorithms for parallel computers. Trace provides fine-grained reconstruction of tomography datasets using both (thread-level) shared memory and (process-level) distributed memory parallelization. Trace utilizes a special data structure called replicated reconstruction object to maximize application performance. We also present the optimizations that we apply to the replicated reconstruction objects and evaluate them using tomography datasets collected at the Advanced Photon Source. Our experimental evaluations show that our optimizations and parallelization techniques can provide 158× speedup using 32 compute nodes (384 cores) over a single-core configuration and decrease the end-to-end processing time of a large sinogram (with 4501 × 1 × 22,400 dimensions) from 12.5 h to <5 min per iteration. The proposed tomographic reconstruction engine can efficiently process large-scale tomographic data using many compute nodes and minimize reconstruction times.
A Combined Eulerian-Lagrangian Data Representation for Large-Scale Applications.
Sauer, Franz; Xie, Jinrong; Ma, Kwan-Liu
2017-10-01
The Eulerian and Lagrangian reference frames each provide a unique perspective when studying and visualizing results from scientific systems. As a result, many large-scale simulations produce data in both formats, and analysis tasks that simultaneously utilize information from both representations are becoming increasingly popular. However, due to their fundamentally different nature, drawing correlations between these data formats is a computationally difficult task, especially in a large-scale setting. In this work, we present a new data representation which combines both reference frames into a joint Eulerian-Lagrangian format. By reorganizing Lagrangian information according to the Eulerian simulation grid into a "unit cell" based approach, we can provide an efficient out-of-core means of sampling, querying, and operating with both representations simultaneously. We also extend this design to generate multi-resolution subsets of the full data to suit the viewer's needs and provide a fast flow-aware trajectory construction scheme. We demonstrate the effectiveness of our method using three large-scale real world scientific datasets and provide insight into the types of performance gains that can be achieved.
Experience in using commercial clouds in CMS
NASA Astrophysics Data System (ADS)
Bauerdick, L.; Bockelman, B.; Dykstra, D.; Fuess, S.; Garzoglio, G.; Girone, M.; Gutsche, O.; Holzman, B.; Hufnagel, D.; Kim, H.; Kennedy, R.; Mason, D.; Spentzouris, P.; Timm, S.; Tiradani, A.; Vaandering, E.; CMS Collaboration
2017-10-01
Historically high energy physics computing has been performed on large purpose-built computing systems. In the beginning there were single site computing facilities, which evolved into the Worldwide LHC Computing Grid (WLCG) used today. The vast majority of the WLCG resources are used for LHC computing and the resources are scheduled to be continuously used throughout the year. In the last several years there has been an explosion in capacity and capability of commercial and academic computing clouds. Cloud resources are highly virtualized and intended to be able to be flexibly deployed for a variety of computing tasks. There is a growing interest amongst the cloud providers to demonstrate the capability to perform large scale scientific computing. In this presentation we will discuss results from the CMS experiment using the Fermilab HEPCloud Facility, which utilized both local Fermilab resources and Amazon Web Services (AWS). The goal was to work with AWS through a matching grant to demonstrate a sustained scale approximately equal to half of the worldwide processing resources available to CMS. We will discuss the planning and technical challenges involved in organizing the most IO intensive CMS workflows on a large-scale set of virtualized resource provisioned by the Fermilab HEPCloud. We will describe the data handling and data management challenges. Also, we will discuss the economic issues and cost and operational efficiency comparison to our dedicated resources. At the end we will consider the changes in the working model of HEP computing in a domain with the availability of large scale resources scheduled at peak times.
Experience in using commercial clouds in CMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauerdick, L.; Bockelman, B.; Dykstra, D.
Historically high energy physics computing has been performed on large purposebuilt computing systems. In the beginning there were single site computing facilities, which evolved into the Worldwide LHC Computing Grid (WLCG) used today. The vast majority of the WLCG resources are used for LHC computing and the resources are scheduled to be continuously used throughout the year. In the last several years there has been an explosion in capacity and capability of commercial and academic computing clouds. Cloud resources are highly virtualized and intended to be able to be flexibly deployed for a variety of computing tasks. There is amore » growing interest amongst the cloud providers to demonstrate the capability to perform large scale scientific computing. In this presentation we will discuss results from the CMS experiment using the Fermilab HEPCloud Facility, which utilized both local Fermilab resources and Amazon Web Services (AWS). The goal was to work with AWS through a matching grant to demonstrate a sustained scale approximately equal to half of the worldwide processing resources available to CMS. We will discuss the planning and technical challenges involved in organizing the most IO intensive CMS workflows on a large-scale set of virtualized resource provisioned by the Fermilab HEPCloud. We will describe the data handling and data management challenges. Also, we will discuss the economic issues and cost and operational efficiency comparison to our dedicated resources. At the end we will consider the changes in the working model of HEP computing in a domain with the availability of large scale resources scheduled at peak times.« less
Some Thoughts Regarding Practical Quantum Computing
NASA Astrophysics Data System (ADS)
Ghoshal, Debabrata; Gomez, Richard; Lanzagorta, Marco; Uhlmann, Jeffrey
2006-03-01
Quantum computing has become an important area of research in computer science because of its potential to provide more efficient algorithmic solutions to certain problems than are possible with classical computing. The ability of performing parallel operations over an exponentially large computational space has proved to be the main advantage of the quantum computing model. In this regard, we are particularly interested in the potential applications of quantum computers to enhance real software systems of interest to the defense, industrial, scientific and financial communities. However, while much has been written in popular and scientific literature about the benefits of the quantum computational model, several of the problems associated to the practical implementation of real-life complex software systems in quantum computers are often ignored. In this presentation we will argue that practical quantum computation is not as straightforward as commonly advertised, even if the technological problems associated to the manufacturing and engineering of large-scale quantum registers were solved overnight. We will discuss some of the frequently overlooked difficulties that plague quantum computing in the areas of memories, I/O, addressing schemes, compilers, oracles, approximate information copying, logical debugging, error correction and fault-tolerant computing protocols.
Trace: a high-throughput tomographic reconstruction engine for large-scale datasets
Bicer, Tekin; Gursoy, Doga; Andrade, Vincent De; ...
2017-01-28
Here, synchrotron light source and detector technologies enable scientists to perform advanced experiments. These scientific instruments and experiments produce data at such scale and complexity that large-scale computation is required to unleash their full power. One of the widely used data acquisition technique at light sources is Computed Tomography, which can generate tens of GB/s depending on x-ray range. A large-scale tomographic dataset, such as mouse brain, may require hours of computation time with a medium size workstation. In this paper, we present Trace, a data-intensive computing middleware we developed for implementation and parallelization of iterative tomographic reconstruction algorithms. Tracemore » provides fine-grained reconstruction of tomography datasets using both (thread level) shared memory and (process level) distributed memory parallelization. Trace utilizes a special data structure called replicated reconstruction object to maximize application performance. We also present the optimizations we have done on the replicated reconstruction objects and evaluate them using a shale and a mouse brain sinogram. Our experimental evaluations show that the applied optimizations and parallelization techniques can provide 158x speedup (using 32 compute nodes) over single core configuration, which decreases the reconstruction time of a sinogram (with 4501 projections and 22400 detector resolution) from 12.5 hours to less than 5 minutes per iteration.« less
Trace: a high-throughput tomographic reconstruction engine for large-scale datasets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bicer, Tekin; Gursoy, Doga; Andrade, Vincent De
Here, synchrotron light source and detector technologies enable scientists to perform advanced experiments. These scientific instruments and experiments produce data at such scale and complexity that large-scale computation is required to unleash their full power. One of the widely used data acquisition technique at light sources is Computed Tomography, which can generate tens of GB/s depending on x-ray range. A large-scale tomographic dataset, such as mouse brain, may require hours of computation time with a medium size workstation. In this paper, we present Trace, a data-intensive computing middleware we developed for implementation and parallelization of iterative tomographic reconstruction algorithms. Tracemore » provides fine-grained reconstruction of tomography datasets using both (thread level) shared memory and (process level) distributed memory parallelization. Trace utilizes a special data structure called replicated reconstruction object to maximize application performance. We also present the optimizations we have done on the replicated reconstruction objects and evaluate them using a shale and a mouse brain sinogram. Our experimental evaluations show that the applied optimizations and parallelization techniques can provide 158x speedup (using 32 compute nodes) over single core configuration, which decreases the reconstruction time of a sinogram (with 4501 projections and 22400 detector resolution) from 12.5 hours to less than 5 minutes per iteration.« less
Blazing Signature Filter: a library for fast pairwise similarity comparisons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Joon-Yong; Fujimoto, Grant M.; Wilson, Ryan
Identifying similarities between datasets is a fundamental task in data mining and has become an integral part of modern scientific investigation. Whether the task is to identify co-expressed genes in large-scale expression surveys or to predict combinations of gene knockouts which would elicit a similar phenotype, the underlying computational task is often a multi-dimensional similarity test. As datasets continue to grow, improvements to the efficiency, sensitivity or specificity of such computation will have broad impacts as it allows scientists to more completely explore the wealth of scientific data. A significant practical drawback of large-scale data mining is the vast majoritymore » of pairwise comparisons are unlikely to be relevant, meaning that they do not share a signature of interest. It is therefore essential to efficiently identify these unproductive comparisons as rapidly as possible and exclude them from more time-intensive similarity calculations. The Blazing Signature Filter (BSF) is a highly efficient pairwise similarity algorithm which enables extensive data mining within a reasonable amount of time. The algorithm transforms datasets into binary metrics, allowing it to utilize the computationally efficient bit operators and provide a coarse measure of similarity. As a result, the BSF can scale to high dimensionality and rapidly filter unproductive pairwise comparison. Two bioinformatics applications of the tool are presented to demonstrate the ability to scale to billions of pairwise comparisons and the usefulness of this approach.« less
High performance computing and communications: Advancing the frontiers of information technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-12-31
This report, which supplements the President`s Fiscal Year 1997 Budget, describes the interagency High Performance Computing and Communications (HPCC) Program. The HPCC Program will celebrate its fifth anniversary in October 1996 with an impressive array of accomplishments to its credit. Over its five-year history, the HPCC Program has focused on developing high performance computing and communications technologies that can be applied to computation-intensive applications. Major highlights for FY 1996: (1) High performance computing systems enable practical solutions to complex problems with accuracies not possible five years ago; (2) HPCC-funded research in very large scale networking techniques has been instrumental inmore » the evolution of the Internet, which continues exponential growth in size, speed, and availability of information; (3) The combination of hardware capability measured in gigaflop/s, networking technology measured in gigabit/s, and new computational science techniques for modeling phenomena has demonstrated that very large scale accurate scientific calculations can be executed across heterogeneous parallel processing systems located thousands of miles apart; (4) Federal investments in HPCC software R and D support researchers who pioneered the development of parallel languages and compilers, high performance mathematical, engineering, and scientific libraries, and software tools--technologies that allow scientists to use powerful parallel systems to focus on Federal agency mission applications; and (5) HPCC support for virtual environments has enabled the development of immersive technologies, where researchers can explore and manipulate multi-dimensional scientific and engineering problems. Educational programs fostered by the HPCC Program have brought into classrooms new science and engineering curricula designed to teach computational science. This document contains a small sample of the significant HPCC Program accomplishments in FY 1996.« less
NASA Astrophysics Data System (ADS)
Casu, F.; Bonano, M.; de Luca, C.; Lanari, R.; Manunta, M.; Manzo, M.; Zinno, I.
2017-12-01
Since its launch in 2014, the Sentinel-1 (S1) constellation has played a key role on SAR data availability and dissemination all over the World. Indeed, the free and open access data policy adopted by the European Copernicus program together with the global coverage acquisition strategy, make the Sentinel constellation as a game changer in the Earth Observation scenario. Being the SAR data become ubiquitous, the technological and scientific challenge is focused on maximizing the exploitation of such huge data flow. In this direction, the use of innovative processing algorithms and distributed computing infrastructures, such as the Cloud Computing platforms, can play a crucial role. In this work we present a Cloud Computing solution for the advanced interferometric (DInSAR) processing chain based on the Parallel SBAS (P-SBAS) approach, aimed at processing S1 Interferometric Wide Swath (IWS) data for the generation of large spatial scale deformation time series in efficient, automatic and systematic way. Such a DInSAR chain ingests Sentinel 1 SLC images and carries out several processing steps, to finally compute deformation time series and mean deformation velocity maps. Different parallel strategies have been designed ad hoc for each processing step of the P-SBAS S1 chain, encompassing both multi-core and multi-node programming techniques, in order to maximize the computational efficiency achieved within a Cloud Computing environment and cut down the relevant processing times. The presented P-SBAS S1 processing chain has been implemented on the Amazon Web Services platform and a thorough analysis of the attained parallel performances has been performed to identify and overcome the major bottlenecks to the scalability. The presented approach is used to perform national-scale DInSAR analyses over Italy, involving the processing of more than 3000 S1 IWS images acquired from both ascending and descending orbits. Such an experiment confirms the big advantage of exploiting large computational and storage resources of Cloud Computing platforms for large scale DInSAR analysis. The presented Cloud Computing P-SBAS processing chain can be a precious tool in the perspective of developing operational services disposable for the EO scientific community related to hazard monitoring and risk prevention and mitigation.
Parallel Computation of the Regional Ocean Modeling System (ROMS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, P; Song, Y T; Chao, Y
2005-04-05
The Regional Ocean Modeling System (ROMS) is a regional ocean general circulation modeling system solving the free surface, hydrostatic, primitive equations over varying topography. It is free software distributed world-wide for studying both complex coastal ocean problems and the basin-to-global scale ocean circulation. The original ROMS code could only be run on shared-memory systems. With the increasing need to simulate larger model domains with finer resolutions and on a variety of computer platforms, there is a need in the ocean-modeling community to have a ROMS code that can be run on any parallel computer ranging from 10 to hundreds ofmore » processors. Recently, we have explored parallelization for ROMS using the MPI programming model. In this paper, an efficient parallelization strategy for such a large-scale scientific software package, based on an existing shared-memory computing model, is presented. In addition, scientific applications and data-performance issues on a couple of SGI systems, including Columbia, the world's third-fastest supercomputer, are discussed.« less
RELIABILITY, AVAILABILITY, AND SERVICEABILITY FOR PETASCALE HIGH-END COMPUTING AND BEYOND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chokchai "Box" Leangsuksun
2011-05-31
Our project is a multi-institutional research effort that adopts interplay of RELIABILITY, AVAILABILITY, and SERVICEABILITY (RAS) aspects for solving resilience issues in highend scientific computing in the next generation of supercomputers. results lie in the following tracks: Failure prediction in a large scale HPC; Investigate reliability issues and mitigation techniques including in GPGPU-based HPC system; HPC resilience runtime & tools.
Enabling Diverse Software Stacks on Supercomputers using High Performance Virtual Clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younge, Andrew J.; Pedretti, Kevin; Grant, Ryan
While large-scale simulations have been the hallmark of the High Performance Computing (HPC) community for decades, Large Scale Data Analytics (LSDA) workloads are gaining attention within the scientific community not only as a processing component to large HPC simulations, but also as standalone scientific tools for knowledge discovery. With the path towards Exascale, new HPC runtime systems are also emerging in a way that differs from classical distributed com- puting models. However, system software for such capabilities on the latest extreme-scale DOE supercomputing needs to be enhanced to more appropriately support these types of emerging soft- ware ecosystems. In thismore » paper, we propose the use of Virtual Clusters on advanced supercomputing resources to enable systems to support not only HPC workloads, but also emerging big data stacks. Specifi- cally, we have deployed the KVM hypervisor within Cray's Compute Node Linux on a XC-series supercomputer testbed. We also use libvirt and QEMU to manage and provision VMs directly on compute nodes, leveraging Ethernet-over-Aries network emulation. To our knowledge, this is the first known use of KVM on a true MPP supercomputer. We investigate the overhead our solution using HPC benchmarks, both evaluating single-node performance as well as weak scaling of a 32-node virtual cluster. Overall, we find single node performance of our solution using KVM on a Cray is very efficient with near-native performance. However overhead increases by up to 20% as virtual cluster size increases, due to limitations of the Ethernet-over-Aries bridged network. Furthermore, we deploy Apache Spark with large data analysis workloads in a Virtual Cluster, ef- fectively demonstrating how diverse software ecosystems can be supported by High Performance Virtual Clusters.« less
XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Mid-year report FY17 Q2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreland, Kenneth D.; Pugmire, David; Rogers, David
The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less
XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Year-end report FY17.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreland, Kenneth D.; Pugmire, David; Rogers, David
The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less
XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem. Mid-year report FY16 Q2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreland, Kenneth D.; Sewell, Christopher; Childs, Hank
The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less
XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Year-end report FY15 Q4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreland, Kenneth D.; Sewell, Christopher; Childs, Hank
The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less
Scalable parallel distance field construction for large-scale applications
Yu, Hongfeng; Xie, Jinrong; Ma, Kwan -Liu; ...
2015-10-01
Computing distance fields is fundamental to many scientific and engineering applications. Distance fields can be used to direct analysis and reduce data. In this paper, we present a highly scalable method for computing 3D distance fields on massively parallel distributed-memory machines. Anew distributed spatial data structure, named parallel distance tree, is introduced to manage the level sets of data and facilitate surface tracking overtime, resulting in significantly reduced computation and communication costs for calculating the distance to the surface of interest from any spatial locations. Our method supports several data types and distance metrics from real-world applications. We demonstrate itsmore » efficiency and scalability on state-of-the-art supercomputers using both large-scale volume datasets and surface models. We also demonstrate in-situ distance field computation on dynamic turbulent flame surfaces for a petascale combustion simulation. In conclusion, our work greatly extends the usability of distance fields for demanding applications.« less
Scalable Parallel Distance Field Construction for Large-Scale Applications.
Yu, Hongfeng; Xie, Jinrong; Ma, Kwan-Liu; Kolla, Hemanth; Chen, Jacqueline H
2015-10-01
Computing distance fields is fundamental to many scientific and engineering applications. Distance fields can be used to direct analysis and reduce data. In this paper, we present a highly scalable method for computing 3D distance fields on massively parallel distributed-memory machines. A new distributed spatial data structure, named parallel distance tree, is introduced to manage the level sets of data and facilitate surface tracking over time, resulting in significantly reduced computation and communication costs for calculating the distance to the surface of interest from any spatial locations. Our method supports several data types and distance metrics from real-world applications. We demonstrate its efficiency and scalability on state-of-the-art supercomputers using both large-scale volume datasets and surface models. We also demonstrate in-situ distance field computation on dynamic turbulent flame surfaces for a petascale combustion simulation. Our work greatly extends the usability of distance fields for demanding applications.
Code of Federal Regulations, 2014 CFR
2014-01-01
... and that operates solely for the purpose of conducting scientific research the results of which are... employees who perform the work and costs of conducting large-scale computer searches. (c) Duplicate means to... education, that operates a program or programs of scholarly research. (e) Fee category means one of the...
Code of Federal Regulations, 2013 CFR
2013-01-01
... and that operates solely for the purpose of conducting scientific research the results of which are... employees who perform the work and costs of conducting large-scale computer searches. (c) Duplicate means to... education, that operates a program or programs of scholarly research. (e) Fee category means one of the...
Large-scale deep learning for robotically gathered imagery for science
NASA Astrophysics Data System (ADS)
Skinner, K.; Johnson-Roberson, M.; Li, J.; Iscar, E.
2016-12-01
With the explosion of computing power, the intelligence and capability of mobile robotics has dramatically increased over the last two decades. Today, we can deploy autonomous robots to achieve observations in a variety of environments ripe for scientific exploration. These platforms are capable of gathering a volume of data previously unimaginable. Additionally, optical cameras, driven by mobile phones and consumer photography, have rapidly improved in size, power consumption, and quality making their deployment cheaper and easier. Finally, in parallel we have seen the rise of large-scale machine learning approaches, particularly deep neural networks (DNNs), increasing the quality of the semantic understanding that can be automatically extracted from optical imagery. In concert this enables new science using a combination of machine learning and robotics. This work will discuss the application of new low-cost high-performance computing approaches and the associated software frameworks to enable scientists to rapidly extract useful science data from millions of robotically gathered images. The automated analysis of imagery on this scale opens up new avenues of inquiry unavailable using more traditional manual or semi-automated approaches. We will use a large archive of millions of benthic images gathered with an autonomous underwater vehicle to demonstrate how these tools enable new scientific questions to be posed.
Blueprint for a microwave trapped ion quantum computer
Lekitsch, Bjoern; Weidt, Sebastian; Fowler, Austin G.; Mølmer, Klaus; Devitt, Simon J.; Wunderlich, Christof; Hensinger, Winfried K.
2017-01-01
The availability of a universal quantum computer may have a fundamental impact on a vast number of research fields and on society as a whole. An increasingly large scientific and industrial community is working toward the realization of such a device. An arbitrarily large quantum computer may best be constructed using a modular approach. We present a blueprint for a trapped ion–based scalable quantum computer module, making it possible to create a scalable quantum computer architecture based on long-wavelength radiation quantum gates. The modules control all operations as stand-alone units, are constructed using silicon microfabrication techniques, and are within reach of current technology. To perform the required quantum computations, the modules make use of long-wavelength radiation–based quantum gate technology. To scale this microwave quantum computer architecture to a large size, we present a fully scalable design that makes use of ion transport between different modules, thereby allowing arbitrarily many modules to be connected to construct a large-scale device. A high error–threshold surface error correction code can be implemented in the proposed architecture to execute fault-tolerant operations. With appropriate adjustments, the proposed modules are also suitable for alternative trapped ion quantum computer architectures, such as schemes using photonic interconnects. PMID:28164154
Scalable Kernel Methods and Algorithms for General Sequence Analysis
ERIC Educational Resources Information Center
Kuksa, Pavel
2011-01-01
Analysis of large-scale sequential data has become an important task in machine learning and pattern recognition, inspired in part by numerous scientific and technological applications such as the document and text classification or the analysis of biological sequences. However, current computational methods for sequence comparison still lack…
Mira: Argonne's 10-petaflops supercomputer
Papka, Michael; Coghlan, Susan; Isaacs, Eric; Peters, Mark; Messina, Paul
2018-02-13
Mira, Argonne's petascale IBM Blue Gene/Q system, ushers in a new era of scientific supercomputing at the Argonne Leadership Computing Facility. An engineering marvel, the 10-petaflops supercomputer is capable of carrying out 10 quadrillion calculations per second. As a machine for open science, any researcher with a question that requires large-scale computing resources can submit a proposal for time on Mira, typically in allocations of millions of core-hours, to run programs for their experiments. This adds up to billions of hours of computing time per year.
Mira: Argonne's 10-petaflops supercomputer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papka, Michael; Coghlan, Susan; Isaacs, Eric
2013-07-03
Mira, Argonne's petascale IBM Blue Gene/Q system, ushers in a new era of scientific supercomputing at the Argonne Leadership Computing Facility. An engineering marvel, the 10-petaflops supercomputer is capable of carrying out 10 quadrillion calculations per second. As a machine for open science, any researcher with a question that requires large-scale computing resources can submit a proposal for time on Mira, typically in allocations of millions of core-hours, to run programs for their experiments. This adds up to billions of hours of computing time per year.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geveci, Berk; Maynard, Robert
The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. The XVis project brought together collaborators from predominant DOE projects for visualization on accelerators and combining their respectivemore » features into a new visualization toolkit called VTK-m.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lingerfelt, Eric J; Endeve, Eirik; Hui, Yawei
Improvements in scientific instrumentation allow imaging at mesoscopic to atomic length scales, many spectroscopic modes, and now--with the rise of multimodal acquisition systems and the associated processing capability--the era of multidimensional, informationally dense data sets has arrived. Technical issues in these combinatorial scientific fields are exacerbated by computational challenges best summarized as a necessity for drastic improvement in the capability to transfer, store, and analyze large volumes of data. The Bellerophon Environment for Analysis of Materials (BEAM) platform provides material scientists the capability to directly leverage the integrated computational and analytical power of High Performance Computing (HPC) to perform scalablemore » data analysis and simulation and manage uploaded data files via an intuitive, cross-platform client user interface. This framework delivers authenticated, "push-button" execution of complex user workflows that deploy data analysis algorithms and computational simulations utilizing compute-and-data cloud infrastructures and HPC environments like Titan at the Oak Ridge Leadershp Computing Facility (OLCF).« less
NASA's computer science research program
NASA Technical Reports Server (NTRS)
Larsen, R. L.
1983-01-01
Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.
National Laboratory for Advanced Scientific Visualization at UNAM - Mexico
NASA Astrophysics Data System (ADS)
Manea, Marina; Constantin Manea, Vlad; Varela, Alfredo
2016-04-01
In 2015, the National Autonomous University of Mexico (UNAM) joined the family of Universities and Research Centers where advanced visualization and computing plays a key role to promote and advance missions in research, education, community outreach, as well as business-oriented consulting. This initiative provides access to a great variety of advanced hardware and software resources and offers a range of consulting services that spans a variety of areas related to scientific visualization, among which are: neuroanatomy, embryonic development, genome related studies, geosciences, geography, physics and mathematics related disciplines. The National Laboratory for Advanced Scientific Visualization delivers services through three main infrastructure environments: the 3D fully immersive display system Cave, the high resolution parallel visualization system Powerwall, the high resolution spherical displays Earth Simulator. The entire visualization infrastructure is interconnected to a high-performance-computing-cluster (HPCC) called ADA in honor to Ada Lovelace, considered to be the first computer programmer. The Cave is an extra large 3.6m wide room with projected images on the front, left and right, as well as floor walls. Specialized crystal eyes LCD-shutter glasses provide a strong stereo depth perception, and a variety of tracking devices allow software to track the position of a user's hand, head and wand. The Powerwall is designed to bring large amounts of complex data together through parallel computing for team interaction and collaboration. This system is composed by 24 (6x4) high-resolution ultra-thin (2 mm) bezel monitors connected to a high-performance GPU cluster. The Earth Simulator is a large (60") high-resolution spherical display used for global-scale data visualization like geophysical, meteorological, climate and ecology data. The HPCC-ADA, is a 1000+ computing core system, which offers parallel computing resources to applications that requires large quantity of memory as well as large and fast parallel storage systems. The entire system temperature is controlled by an energy and space efficient cooling solution, based on large rear door liquid cooled heat exchangers. This state-of-the-art infrastructure will boost research activities in the region, offer a powerful scientific tool for teaching at undergraduate and graduate levels, and enhance association and cooperation with business-oriented organizations.
A uniform approach for programming distributed heterogeneous computing systems
Grasso, Ivan; Pellegrini, Simone; Cosenza, Biagio; Fahringer, Thomas
2014-01-01
Large-scale compute clusters of heterogeneous nodes equipped with multi-core CPUs and GPUs are getting increasingly popular in the scientific community. However, such systems require a combination of different programming paradigms making application development very challenging. In this article we introduce libWater, a library-based extension of the OpenCL programming model that simplifies the development of heterogeneous distributed applications. libWater consists of a simple interface, which is a transparent abstraction of the underlying distributed architecture, offering advanced features such as inter-context and inter-node device synchronization. It provides a runtime system which tracks dependency information enforced by event synchronization to dynamically build a DAG of commands, on which we automatically apply two optimizations: collective communication pattern detection and device-host-device copy removal. We assess libWater’s performance in three compute clusters available from the Vienna Scientific Cluster, the Barcelona Supercomputing Center and the University of Innsbruck, demonstrating improved performance and scaling with different test applications and configurations. PMID:25844015
A uniform approach for programming distributed heterogeneous computing systems.
Grasso, Ivan; Pellegrini, Simone; Cosenza, Biagio; Fahringer, Thomas
2014-12-01
Large-scale compute clusters of heterogeneous nodes equipped with multi-core CPUs and GPUs are getting increasingly popular in the scientific community. However, such systems require a combination of different programming paradigms making application development very challenging. In this article we introduce libWater, a library-based extension of the OpenCL programming model that simplifies the development of heterogeneous distributed applications. libWater consists of a simple interface, which is a transparent abstraction of the underlying distributed architecture, offering advanced features such as inter-context and inter-node device synchronization. It provides a runtime system which tracks dependency information enforced by event synchronization to dynamically build a DAG of commands, on which we automatically apply two optimizations: collective communication pattern detection and device-host-device copy removal. We assess libWater's performance in three compute clusters available from the Vienna Scientific Cluster, the Barcelona Supercomputing Center and the University of Innsbruck, demonstrating improved performance and scaling with different test applications and configurations.
The TeraShake Computational Platform for Large-Scale Earthquake Simulations
NASA Astrophysics Data System (ADS)
Cui, Yifeng; Olsen, Kim; Chourasia, Amit; Moore, Reagan; Maechling, Philip; Jordan, Thomas
Geoscientific and computer science researchers with the Southern California Earthquake Center (SCEC) are conducting a large-scale, physics-based, computationally demanding earthquake system science research program with the goal of developing predictive models of earthquake processes. The computational demands of this program continue to increase rapidly as these researchers seek to perform physics-based numerical simulations of earthquake processes for larger meet the needs of this research program, a multiple-institution team coordinated by SCEC has integrated several scientific codes into a numerical modeling-based research tool we call the TeraShake computational platform (TSCP). A central component in the TSCP is a highly scalable earthquake wave propagation simulation program called the TeraShake anelastic wave propagation (TS-AWP) code. In this chapter, we describe how we extended an existing, stand-alone, wellvalidated, finite-difference, anelastic wave propagation modeling code into the highly scalable and widely used TS-AWP and then integrated this code into the TeraShake computational platform that provides end-to-end (initialization to analysis) research capabilities. We also describe the techniques used to enhance the TS-AWP parallel performance on TeraGrid supercomputers, as well as the TeraShake simulations phases including input preparation, run time, data archive management, and visualization. As a result of our efforts to improve its parallel efficiency, the TS-AWP has now shown highly efficient strong scaling on over 40K processors on IBM’s BlueGene/L Watson computer. In addition, the TSCP has developed into a computational system that is useful to many members of the SCEC community for performing large-scale earthquake simulations.
Managing competing elastic Grid and Cloud scientific computing applications using OpenNebula
NASA Astrophysics Data System (ADS)
Bagnasco, S.; Berzano, D.; Lusso, S.; Masera, M.; Vallero, S.
2015-12-01
Elastic cloud computing applications, i.e. applications that automatically scale according to computing needs, work on the ideal assumption of infinite resources. While large public cloud infrastructures may be a reasonable approximation of this condition, scientific computing centres like WLCG Grid sites usually work in a saturated regime, in which applications compete for scarce resources through queues, priorities and scheduling policies, and keeping a fraction of the computing cores idle to allow for headroom is usually not an option. In our particular environment one of the applications (a WLCG Tier-2 Grid site) is much larger than all the others and cannot autoscale easily. Nevertheless, other smaller applications can benefit of automatic elasticity; the implementation of this property in our infrastructure, based on the OpenNebula cloud stack, will be described and the very first operational experiences with a small number of strategies for timely allocation and release of resources will be discussed.
Final Technical Report - Center for Technology for Advanced Scientific Component Software (TASCS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sussman, Alan
2014-10-21
This is a final technical report for the University of Maryland work in the SciDAC Center for Technology for Advanced Scientific Component Software (TASCS). The Maryland work focused on software tools for coupling parallel software components built using the Common Component Architecture (CCA) APIs. Those tools are based on the Maryland InterComm software framework that has been used in multiple computational science applications to build large-scale simulations of complex physical systems that employ multiple separately developed codes.
Computing at the speed limit (supercomputers)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernhard, R.
1982-07-01
The author discusses how unheralded efforts in the United States, mainly in universities, have removed major stumbling blocks to building cost-effective superfast computers for scientific and engineering applications within five years. These computers would have sustained speeds of billions of floating-point operations per second (flops), whereas with the fastest machines today the top sustained speed is only 25 million flops, with bursts to 160 megaflops. Cost-effective superfast machines can be built because of advances in very large-scale integration and the special software needed to program the new machines. VLSI greatly reduces the cost per unit of computing power. The developmentmore » of such computers would come at an opportune time. Although the US leads the world in large-scale computer technology, its supremacy is now threatened, not surprisingly, by the Japanese. Publicized reports indicate that the Japanese government is funding a cooperative effort by commercial computer manufacturers to develop superfast computers-about 1000 times faster than modern supercomputers. The US computer industry, by contrast, has balked at attempting to boost computer power so sharply because of the uncertain market for the machines and the failure of similar projects in the past to show significant results.« less
Load Balancing Scientific Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearce, Olga Tkachyshyn
2014-12-01
The largest supercomputers have millions of independent processors, and concurrency levels are rapidly increasing. For ideal efficiency, developers of the simulations that run on these machines must ensure that computational work is evenly balanced among processors. Assigning work evenly is challenging because many large modern parallel codes simulate behavior of physical systems that evolve over time, and their workloads change over time. Furthermore, the cost of imbalanced load increases with scale because most large-scale scientific simulations today use a Single Program Multiple Data (SPMD) parallel programming model, and an increasing number of processors will wait for the slowest one atmore » the synchronization points. To address load imbalance, many large-scale parallel applications use dynamic load balance algorithms to redistribute work evenly. The research objective of this dissertation is to develop methods to decide when and how to load balance the application, and to balance it effectively and affordably. We measure and evaluate the computational load of the application, and develop strategies to decide when and how to correct the imbalance. Depending on the simulation, a fast, local load balance algorithm may be suitable, or a more sophisticated and expensive algorithm may be required. We developed a model for comparison of load balance algorithms for a specific state of the simulation that enables the selection of a balancing algorithm that will minimize overall runtime.« less
NASA Astrophysics Data System (ADS)
Liben-Nowell, David
With the recent explosion of popularity of commercial social-networking sites like Facebook and MySpace, the size of social networks that can be studied scientifically has passed from the scale traditionally studied by sociologists and anthropologists to the scale of networks more typically studied by computer scientists. In this chapter, I will highlight a recent line of computational research into the modeling and analysis of the small-world phenomenon - the observation that typical pairs of people in a social network are connected by very short chains of intermediate friends - and the ability of members of a large social network to collectively find efficient routes to reach individuals in the network. I will survey several recent mathematical models of social networks that account for these phenomena, with an emphasis on both the provable properties of these social-network models and the empirical validation of the models against real large-scale social-network data.
Access control and privacy in large distributed systems
NASA Technical Reports Server (NTRS)
Leiner, B. M.; Bishop, M.
1986-01-01
Large scale distributed systems consists of workstations, mainframe computers, supercomputers and other types of servers, all connected by a computer network. These systems are being used in a variety of applications including the support of collaborative scientific research. In such an environment, issues of access control and privacy arise. Access control is required for several reasons, including the protection of sensitive resources and cost control. Privacy is also required for similar reasons, including the protection of a researcher's proprietary results. A possible architecture for integrating available computer and communications security technologies into a system that meet these requirements is described. This architecture is meant as a starting point for discussion, rather that the final answer.
Large Scale Computing and Storage Requirements for High Energy Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerber, Richard A.; Wasserman, Harvey
2010-11-24
The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. Themore » effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes a section that describes efforts already underway or planned at NERSC that address requirements collected at the workshop. NERSC has many initiatives in progress that address key workshop findings and are aligned with NERSC's strategic plans.« less
NASA Astrophysics Data System (ADS)
Callaghan, S.; Maechling, P. J.; Juve, G.; Vahi, K.; Deelman, E.; Jordan, T. H.
2015-12-01
The CyberShake computational platform, developed by the Southern California Earthquake Center (SCEC), is an integrated collection of scientific software and middleware that performs 3D physics-based probabilistic seismic hazard analysis (PSHA) for Southern California. CyberShake integrates large-scale and high-throughput research codes to produce probabilistic seismic hazard curves for individual locations of interest and hazard maps for an entire region. A recent CyberShake calculation produced about 500,000 two-component seismograms for each of 336 locations, resulting in over 300 million synthetic seismograms in a Los Angeles-area probabilistic seismic hazard model. CyberShake calculations require a series of scientific software programs. Early computational stages produce data used as inputs by later stages, so we describe CyberShake calculations using a workflow definition language. Scientific workflow tools automate and manage the input and output data and enable remote job execution on large-scale HPC systems. To satisfy the requests of broad impact users of CyberShake data, such as seismologists, utility companies, and building code engineers, we successfully completed CyberShake Study 15.4 in April and May 2015, calculating a 1 Hz urban seismic hazard map for Los Angeles. We distributed the calculation between the NSF Track 1 system NCSA Blue Waters, the DOE Leadership-class system OLCF Titan, and USC's Center for High Performance Computing. This study ran for over 5 weeks, burning about 1.1 million node-hours and producing over half a petabyte of data. The CyberShake Study 15.4 results doubled the maximum simulated seismic frequency from 0.5 Hz to 1.0 Hz as compared to previous studies, representing a factor of 16 increase in computational complexity. We will describe how our workflow tools supported splitting the calculation across multiple systems. We will explain how we modified CyberShake software components, including GPU implementations and migrating from file-based communication to MPI messaging, to greatly reduce the I/O demands and node-hour requirements of CyberShake. We will also present performance metrics from CyberShake Study 15.4, and discuss challenges that producers of Big Data on open-science HPC resources face moving forward.
NASA Technical Reports Server (NTRS)
Deardorff, Glenn; Djomehri, M. Jahed; Freeman, Ken; Gambrel, Dave; Green, Bryan; Henze, Chris; Hinke, Thomas; Hood, Robert; Kiris, Cetin; Moran, Patrick;
2001-01-01
A series of NASA presentations for the Supercomputing 2001 conference are summarized. The topics include: (1) Mars Surveyor Landing Sites "Collaboratory"; (2) Parallel and Distributed CFD for Unsteady Flows with Moving Overset Grids; (3) IP Multicast for Seamless Support of Remote Science; (4) Consolidated Supercomputing Management Office; (5) Growler: A Component-Based Framework for Distributed/Collaborative Scientific Visualization and Computational Steering; (6) Data Mining on the Information Power Grid (IPG); (7) Debugging on the IPG; (8) Debakey Heart Assist Device: (9) Unsteady Turbopump for Reusable Launch Vehicle; (10) Exploratory Computing Environments Component Framework; (11) OVERSET Computational Fluid Dynamics Tools; (12) Control and Observation in Distributed Environments; (13) Multi-Level Parallelism Scaling on NASA's Origin 1024 CPU System; (14) Computing, Information, & Communications Technology; (15) NAS Grid Benchmarks; (16) IPG: A Large-Scale Distributed Computing and Data Management System; and (17) ILab: Parameter Study Creation and Submission on the IPG.
He, Bo; Zhang, Shujing; Yan, Tianhong; Zhang, Tao; Liang, Yan; Zhang, Hongjin
2011-01-01
Mobile autonomous systems are very important for marine scientific investigation and military applications. Many algorithms have been studied to deal with the computational efficiency problem required for large scale simultaneous localization and mapping (SLAM) and its related accuracy and consistency. Among these methods, submap-based SLAM is a more effective one. By combining the strength of two popular mapping algorithms, the Rao-Blackwellised particle filter (RBPF) and extended information filter (EIF), this paper presents a combined SLAM-an efficient submap-based solution to the SLAM problem in a large scale environment. RBPF-SLAM is used to produce local maps, which are periodically fused into an EIF-SLAM algorithm. RBPF-SLAM can avoid linearization of the robot model during operating and provide a robust data association, while EIF-SLAM can improve the whole computational speed, and avoid the tendency of RBPF-SLAM to be over-confident. In order to further improve the computational speed in a real time environment, a binary-tree-based decision-making strategy is introduced. Simulation experiments show that the proposed combined SLAM algorithm significantly outperforms currently existing algorithms in terms of accuracy and consistency, as well as the computing efficiency. Finally, the combined SLAM algorithm is experimentally validated in a real environment by using the Victoria Park dataset.
Recommendations for open data science.
Gymrek, Melissa; Farjoun, Yossi
2016-01-01
Life science research increasingly relies on large-scale computational analyses. However, the code and data used for these analyses are often lacking in publications. To maximize scientific impact, reproducibility, and reuse, it is crucial that these resources are made publicly available and are fully transparent. We provide recommendations for improving the openness of data-driven studies in life sciences.
Optimizing CyberShake Seismic Hazard Workflows for Large HPC Resources
NASA Astrophysics Data System (ADS)
Callaghan, S.; Maechling, P. J.; Juve, G.; Vahi, K.; Deelman, E.; Jordan, T. H.
2014-12-01
The CyberShake computational platform is a well-integrated collection of scientific software and middleware that calculates 3D simulation-based probabilistic seismic hazard curves and hazard maps for the Los Angeles region. Currently each CyberShake model comprises about 235 million synthetic seismograms from about 415,000 rupture variations computed at 286 sites. CyberShake integrates large-scale parallel and high-throughput serial seismological research codes into a processing framework in which early stages produce files used as inputs by later stages. Scientific workflow tools are used to manage the jobs, data, and metadata. The Southern California Earthquake Center (SCEC) developed the CyberShake platform using USC High Performance Computing and Communications systems and open-science NSF resources.CyberShake calculations were migrated to the NSF Track 1 system NCSA Blue Waters when it became operational in 2013, via an interdisciplinary team approach including domain scientists, computer scientists, and middleware developers. Due to the excellent performance of Blue Waters and CyberShake software optimizations, we reduced the makespan (a measure of wallclock time-to-solution) of a CyberShake study from 1467 to 342 hours. We will describe the technical enhancements behind this improvement, including judicious introduction of new GPU software, improved scientific software components, increased workflow-based automation, and Blue Waters-specific workflow optimizations.Our CyberShake performance improvements highlight the benefits of scientific workflow tools. The CyberShake workflow software stack includes the Pegasus Workflow Management System (Pegasus-WMS, which includes Condor DAGMan), HTCondor, and Globus GRAM, with Pegasus-mpi-cluster managing the high-throughput tasks on the HPC resources. The workflow tools handle data management, automatically transferring about 13 TB back to SCEC storage.We will present performance metrics from the most recent CyberShake study, executed on Blue Waters. We will compare the performance of CPU and GPU versions of our large-scale parallel wave propagation code, AWP-ODC-SGT. Finally, we will discuss how these enhancements have enabled SCEC to move forward with plans to increase the CyberShake simulation frequency to 1.0 Hz.
Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data.
Aji, Ablimit; Wang, Fusheng; Saltz, Joel H
2012-11-06
Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the "big data" challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce.
Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data
Aji, Ablimit; Wang, Fusheng; Saltz, Joel H.
2013-01-01
Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the “big data” challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce. PMID:24501719
Architectural Strategies for Enabling Data-Driven Science at Scale
NASA Astrophysics Data System (ADS)
Crichton, D. J.; Law, E. S.; Doyle, R. J.; Little, M. M.
2017-12-01
The analysis of large data collections from NASA or other agencies is often executed through traditional computational and data analysis approaches, which require users to bring data to their desktops and perform local data analysis. Alternatively, data are hauled to large computational environments that provide centralized data analysis via traditional High Performance Computing (HPC). Scientific data archives, however, are not only growing massive, but are also becoming highly distributed. Neither traditional approach provides a good solution for optimizing analysis into the future. Assumptions across the NASA mission and science data lifecycle, which historically assume that all data can be collected, transmitted, processed, and archived, will not scale as more capable instruments stress legacy-based systems. New paradigms are needed to increase the productivity and effectiveness of scientific data analysis. This paradigm must recognize that architectural and analytical choices are interrelated, and must be carefully coordinated in any system that aims to allow efficient, interactive scientific exploration and discovery to exploit massive data collections, from point of collection (e.g., onboard) to analysis and decision support. The most effective approach to analyzing a distributed set of massive data may involve some exploration and iteration, putting a premium on the flexibility afforded by the architectural framework. The framework should enable scientist users to assemble workflows efficiently, manage the uncertainties related to data analysis and inference, and optimize deep-dive analytics to enhance scalability. In many cases, this "data ecosystem" needs to be able to integrate multiple observing assets, ground environments, archives, and analytics, evolving from stewardship of measurements of data to using computational methodologies to better derive insight from the data that may be fused with other sets of data. This presentation will discuss architectural strategies, including a 2015-2016 NASA AIST Study on Big Data, for evolving scientific research towards massively distributed data-driven discovery. It will include example use cases across earth science, planetary science, and other disciplines.
SciSpark's SRDD : A Scientific Resilient Distributed Dataset for Multidimensional Data
NASA Astrophysics Data System (ADS)
Palamuttam, R. S.; Wilson, B. D.; Mogrovejo, R. M.; Whitehall, K. D.; Mattmann, C. A.; McGibbney, L. J.; Ramirez, P.
2015-12-01
Remote sensing data and climate model output are multi-dimensional arrays of massive sizes locked away in heterogeneous file formats (HDF5/4, NetCDF 3/4) and metadata models (HDF-EOS, CF) making it difficult to perform multi-stage, iterative science processing since each stage requires writing and reading data to and from disk. We have developed SciSpark, a robust Big Data framework, that extends ApacheTM Spark for scaling scientific computations. Apache Spark improves the map-reduce implementation in ApacheTM Hadoop for parallel computing on a cluster, by emphasizing in-memory computation, "spilling" to disk only as needed, and relying on lazy evaluation. Central to Spark is the Resilient Distributed Dataset (RDD), an in-memory distributed data structure that extends the functional paradigm provided by the Scala programming language. However, RDDs are ideal for tabular or unstructured data, and not for highly dimensional data. The SciSpark project introduces the Scientific Resilient Distributed Dataset (sRDD), a distributed-computing array structure which supports iterative scientific algorithms for multidimensional data. SciSpark processes data stored in NetCDF and HDF files by partitioning them across time or space and distributing the partitions among a cluster of compute nodes. We show usability and extensibility of SciSpark by implementing distributed algorithms for geospatial operations on large collections of multi-dimensional grids. In particular we address the problem of scaling an automated method for finding Mesoscale Convective Complexes. SciSpark provides a tensor interface to support the pluggability of different matrix libraries. We evaluate performance of the various matrix libraries in distributed pipelines, such as Nd4jTM and BreezeTM. We detail the architecture and design of SciSpark, our efforts to integrate climate science algorithms, parallel ingest and partitioning (sharding) of A-Train satellite observations from model grids. These solutions are encompassed in SciSpark, an open-source software framework for distributed computing on scientific data.
NAS (Numerical Aerodynamic Simulation Program) technical summaries, March 1989 - February 1990
NASA Technical Reports Server (NTRS)
1990-01-01
Given here are selected scientific results from the Numerical Aerodynamic Simulation (NAS) Program's third year of operation. During this year, the scientific community was given access to a Cray-2 and a Cray Y-MP supercomputer. Topics covered include flow field analysis of fighter wing configurations, large-scale ocean modeling, the Space Shuttle flow field, advanced computational fluid dynamics (CFD) codes for rotary-wing airloads and performance prediction, turbulence modeling of separated flows, airloads and acoustics of rotorcraft, vortex-induced nonlinearities on submarines, and standing oblique detonation waves.
Advanced computations in plasma physics
NASA Astrophysics Data System (ADS)
Tang, W. M.
2002-05-01
Scientific simulation in tandem with theory and experiment is an essential tool for understanding complex plasma behavior. In this paper we review recent progress and future directions for advanced simulations in magnetically confined plasmas with illustrative examples chosen from magnetic confinement research areas such as microturbulence, magnetohydrodynamics, magnetic reconnection, and others. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales together with access to powerful new computational resources. In particular, the fusion energy science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPP's to produce three-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of turbulence self-regulation by zonal flows. It should be emphasized that these calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to stimulate improved cross-cutting collaborations with other fields and also to help attract bright young talent to plasma science.
BlazeDEM3D-GPU A Large Scale DEM simulation code for GPUs
NASA Astrophysics Data System (ADS)
Govender, Nicolin; Wilke, Daniel; Pizette, Patrick; Khinast, Johannes
2017-06-01
Accurately predicting the dynamics of particulate materials is of importance to numerous scientific and industrial areas with applications ranging across particle scales from powder flow to ore crushing. Computational discrete element simulations is a viable option to aid in the understanding of particulate dynamics and design of devices such as mixers, silos and ball mills, as laboratory scale tests comes at a significant cost. However, the computational time required to simulate an industrial scale simulation which consists of tens of millions of particles can take months to complete on large CPU clusters, making the Discrete Element Method (DEM) unfeasible for industrial applications. Simulations are therefore typically restricted to tens of thousands of particles with highly detailed particle shapes or a few million of particles with often oversimplified particle shapes. However, a number of applications require accurate representation of the particle shape to capture the macroscopic behaviour of the particulate system. In this paper we give an overview of the recent extensions to the open source GPU based DEM code, BlazeDEM3D-GPU, that can simulate millions of polyhedra and tens of millions of spheres on a desktop computer with a single or multiple GPUs.
Parallel Tensor Compression for Large-Scale Scientific Data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolda, Tamara G.; Ballard, Grey; Austin, Woody Nathan
As parallel computing trends towards the exascale, scientific data produced by high-fidelity simulations are growing increasingly massive. For instance, a simulation on a three-dimensional spatial grid with 512 points per dimension that tracks 64 variables per grid point for 128 time steps yields 8 TB of data. By viewing the data as a dense five way tensor, we can compute a Tucker decomposition to find inherent low-dimensional multilinear structure, achieving compression ratios of up to 10000 on real-world data sets with negligible loss in accuracy. So that we can operate on such massive data, we present the first-ever distributed memorymore » parallel implementation for the Tucker decomposition, whose key computations correspond to parallel linear algebra operations, albeit with nonstandard data layouts. Our approach specifies a data distribution for tensors that avoids any tensor data redistribution, either locally or in parallel. We provide accompanying analysis of the computation and communication costs of the algorithms. To demonstrate the compression and accuracy of the method, we apply our approach to real-world data sets from combustion science simulations. We also provide detailed performance results, including parallel performance in both weak and strong scaling experiments.« less
Challenges in Managing Trustworthy Large-scale Digital Science
NASA Astrophysics Data System (ADS)
Evans, B. J. K.
2017-12-01
The increased use of large-scale international digital science has opened a number of challenges for managing, handling, using and preserving scientific information. The large volumes of information are driven by three main categories - model outputs including coupled models and ensembles, data products that have been processing to a level of usability, and increasingly heuristically driven data analysis. These data products are increasingly the ones that are usable by the broad communities, and far in excess of the raw instruments data outputs. The data, software and workflows are then shared and replicated to allow broad use at an international scale, which places further demands of infrastructure to support how the information is managed reliably across distributed resources. Users necessarily rely on these underlying "black boxes" so that they are productive to produce new scientific outcomes. The software for these systems depend on computational infrastructure, software interconnected systems, and information capture systems. This ranges from the fundamentals of the reliability of the compute hardware, system software stacks and libraries, and the model software. Due to these complexities and capacity of the infrastructure, there is an increased emphasis of transparency of the approach and robustness of the methods over the full reproducibility. Furthermore, with large volume data management, it is increasingly difficult to store the historical versions of all model and derived data. Instead, the emphasis is on the ability to access the updated products and the reliability by which both previous outcomes are still relevant and can be updated for the new information. We will discuss these challenges and some of the approaches underway that are being used to address these issues.
Computational Prediction of Protein-Protein Interactions
Ehrenberger, Tobias; Cantley, Lewis C.; Yaffe, Michael B.
2015-01-01
The prediction of protein-protein interactions and kinase-specific phosphorylation sites on individual proteins is critical for correctly placing proteins within signaling pathways and networks. The importance of this type of annotation continues to increase with the continued explosion of genomic and proteomic data, particularly with emerging data categorizing posttranslational modifications on a large scale. A variety of computational tools are available for this purpose. In this chapter, we review the general methodologies for these types of computational predictions and present a detailed user-focused tutorial of one such method and computational tool, Scansite, which is freely available to the entire scientific community over the Internet. PMID:25859943
NASA Technical Reports Server (NTRS)
Talbot, Bryan; Zhou, Shu-Jia; Higgins, Glenn; Zukor, Dorothy (Technical Monitor)
2002-01-01
One of the most significant challenges in large-scale climate modeling, as well as in high-performance computing in other scientific fields, is that of effectively integrating many software models from multiple contributors. A software framework facilitates the integration task, both in the development and runtime stages of the simulation. Effective software frameworks reduce the programming burden for the investigators, freeing them to focus more on the science and less on the parallel communication implementation. while maintaining high performance across numerous supercomputer and workstation architectures. This document surveys numerous software frameworks for potential use in Earth science modeling. Several frameworks are evaluated in depth, including Parallel Object-Oriented Methods and Applications (POOMA), Cactus (from (he relativistic physics community), Overture, Goddard Earth Modeling System (GEMS), the National Center for Atmospheric Research Flux Coupler, and UCLA/UCB Distributed Data Broker (DDB). Frameworks evaluated in less detail include ROOT, Parallel Application Workspace (PAWS), and Advanced Large-Scale Integrated Computational Environment (ALICE). A host of other frameworks and related tools are referenced in this context. The frameworks are evaluated individually and also compared with each other.
NASA Astrophysics Data System (ADS)
Okaya, D.; Deelman, E.; Maechling, P.; Wong-Barnum, M.; Jordan, T. H.; Meyers, D.
2007-12-01
Large scientific collaborations, such as the SCEC Petascale Cyberfacility for Physics-based Seismic Hazard Analysis (PetaSHA) Project, involve interactions between many scientists who exchange ideas and research results. These groups must organize, manage, and make accessible their community materials of observational data, derivative (research) results, computational products, and community software. The integration of scientific workflows as a paradigm to solve complex computations provides advantages of efficiency, reliability, repeatability, choices, and ease of use. The underlying resource needed for a scientific workflow to function and create discoverable and exchangeable products is the construction, tracking, and preservation of metadata. In the scientific workflow environment there is a two-tier structure of metadata. Workflow-level metadata and provenance describe operational steps, identity of resources, execution status, and product locations and names. Domain-level metadata essentially define the scientific meaning of data, codes and products. To a large degree the metadata at these two levels are separate. However, between these two levels is a subset of metadata produced at one level but is needed by the other. This crossover metadata suggests that some commonality in metadata handling is needed. SCEC researchers are collaborating with computer scientists at SDSC, the USC Information Sciences Institute, and Carnegie Mellon Univ. in order to perform earthquake science using high-performance computational resources. A primary objective of the "PetaSHA" collaboration is to perform physics-based estimations of strong ground motion associated with real and hypothetical earthquakes located within Southern California. Construction of 3D earth models, earthquake representations, and numerical simulation of seismic waves are key components of these estimations. Scientific workflows are used to orchestrate the sequences of scientific tasks and to access distributed computational facilities such as the NSF TeraGrid. Different types of metadata are produced and captured within the scientific workflows. One workflow within PetaSHA ("Earthworks") performs a linear sequence of tasks with workflow and seismological metadata preserved. Downstream scientific codes ingest these metadata produced by upstream codes. The seismological metadata uses attribute-value pairing in plain text; an identified need is to use more advanced handling methods. Another workflow system within PetaSHA ("Cybershake") involves several complex workflows in order to perform statistical analysis of ground shaking due to thousands of hypothetical but plausible earthquakes. Metadata management has been challenging due to its construction around a number of legacy scientific codes. We describe difficulties arising in the scientific workflow due to the lack of this metadata and suggest corrective steps, which in some cases include the cultural shift of domain science programmers coding for metadata.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srinath Vadlamani; Scott Kruger; Travis Austin
Extended magnetohydrodynamic (MHD) codes are used to model the large, slow-growing instabilities that are projected to limit the performance of International Thermonuclear Experimental Reactor (ITER). The multiscale nature of the extended MHD equations requires an implicit approach. The current linear solvers needed for the implicit algorithm scale poorly because the resultant matrices are so ill-conditioned. A new solver is needed, especially one that scales to the petascale. The most successful scalable parallel processor solvers to date are multigrid solvers. Applying multigrid techniques to a set of equations whose fundamental modes are dispersive waves is a promising solution to CEMM problems.more » For the Phase 1, we implemented multigrid preconditioners from the HYPRE project of the Center for Applied Scientific Computing at LLNL via PETSc of the DOE SciDAC TOPS for the real matrix systems of the extended MHD code NIMROD which is a one of the primary modeling codes of the OFES-funded Center for Extended Magnetohydrodynamic Modeling (CEMM) SciDAC. We implemented the multigrid solvers on the fusion test problem that allows for real matrix systems with success, and in the process learned about the details of NIMROD data structures and the difficulties of inverting NIMROD operators. The further success of this project will allow for efficient usage of future petascale computers at the National Leadership Facilities: Oak Ridge National Laboratory, Argonne National Laboratory, and National Energy Research Scientific Computing Center. The project will be a collaborative effort between computational plasma physicists and applied mathematicians at Tech-X Corporation, applied mathematicians Front Range Scientific Computations, Inc. (who are collaborators on the HYPRE project), and other computational plasma physicists involved with the CEMM project.« less
Advanced Computation in Plasma Physics
NASA Astrophysics Data System (ADS)
Tang, William
2001-10-01
Scientific simulation in tandem with theory and experiment is an essential tool for understanding complex plasma behavior. This talk will review recent progress and future directions for advanced simulations in magnetically-confined plasmas with illustrative examples chosen from areas such as microturbulence, magnetohydrodynamics, magnetic reconnection, and others. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales together with access to powerful new computational resources. In particular, the fusion energy science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop MPP's to produce 3-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of turbulence self-regulation by zonal flows. It should be emphasized that these calculations, which typically utilized billions of particles for tens of thousands time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to stimulate improved cross-cutting collaborations with other fields and also to help attract bright young talent to plasma science.
BioPig: a Hadoop-based analytic toolkit for large-scale sequence data.
Nordberg, Henrik; Bhatia, Karan; Wang, Kai; Wang, Zhong
2013-12-01
The recent revolution in sequencing technologies has led to an exponential growth of sequence data. As a result, most of the current bioinformatics tools become obsolete as they fail to scale with data. To tackle this 'data deluge', here we introduce the BioPig sequence analysis toolkit as one of the solutions that scale to data and computation. We built BioPig on the Apache's Hadoop MapReduce system and the Pig data flow language. Compared with traditional serial and MPI-based algorithms, BioPig has three major advantages: first, BioPig's programmability greatly reduces development time for parallel bioinformatics applications; second, testing BioPig with up to 500 Gb sequences demonstrates that it scales automatically with size of data; and finally, BioPig can be ported without modification on many Hadoop infrastructures, as tested with Magellan system at National Energy Research Scientific Computing Center and the Amazon Elastic Compute Cloud. In summary, BioPig represents a novel program framework with the potential to greatly accelerate data-intensive bioinformatics analysis.
NASA Astrophysics Data System (ADS)
Demir, I.; Krajewski, W. F.
2013-12-01
As geoscientists are confronted with increasingly massive datasets from environmental observations to simulations, one of the biggest challenges is having the right tools to gain scientific insight from the data and communicate the understanding to stakeholders. Recent developments in web technologies make it easy to manage, visualize and share large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to interact with data, and modify the parameters to create custom views of the data to gain insight from simulations and environmental observations. This requires developing new data models and intelligent knowledge discovery techniques to explore and extract information from complex computational simulations or large data repositories. Scientific visualization will be an increasingly important component to build comprehensive environmental information platforms. This presentation provides an overview of the trends and challenges in the field of scientific visualization, and demonstrates information visualization and communication tools developed within the light of these challenges.
Developing science gateways for drug discovery in a grid environment.
Pérez-Sánchez, Horacio; Rezaei, Vahid; Mezhuyev, Vitaliy; Man, Duhu; Peña-García, Jorge; den-Haan, Helena; Gesing, Sandra
2016-01-01
Methods for in silico screening of large databases of molecules increasingly complement and replace experimental techniques to discover novel compounds to combat diseases. As these techniques become more complex and computationally costly we are faced with an increasing problem to provide the research community of life sciences with a convenient tool for high-throughput virtual screening on distributed computing resources. To this end, we recently integrated the biophysics-based drug-screening program FlexScreen into a service, applicable for large-scale parallel screening and reusable in the context of scientific workflows. Our implementation is based on Pipeline Pilot and Simple Object Access Protocol and provides an easy-to-use graphical user interface to construct complex workflows, which can be executed on distributed computing resources, thus accelerating the throughput by several orders of magnitude.
TOPICAL REVIEW: Advances and challenges in computational plasma science
NASA Astrophysics Data System (ADS)
Tang, W. M.; Chan, V. S.
2005-02-01
Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behaviour. Recent advances in simulations of magnetically confined plasmas are reviewed in this paper, with illustrative examples, chosen from associated research areas such as microturbulence, magnetohydrodynamics and other topics. Progress has been stimulated, in particular, by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modelling. This was enabled by two key factors: (a) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (b) access to powerful new computational resources. Excellent progress has been made in developing codes for which computer run-time and problem-size scale well with the number of processors on massively parallel processors (MPPs). Examples include the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPPs to produce three-dimensional, general geometry, nonlinear particle simulations that have accelerated advances in understanding the nature of turbulence self-regulation by zonal flows. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In looking towards the future, the current results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. This should produce the scientific excitement which will help to (a) stimulate enhanced cross-cutting collaborations with other fields and (b) attract the bright young talent needed for the future health of the field of plasma science.
Advances and challenges in computational plasma science
NASA Astrophysics Data System (ADS)
Tang, W. M.
2005-02-01
Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behaviour. Recent advances in simulations of magnetically confined plasmas are reviewed in this paper, with illustrative examples, chosen from associated research areas such as microturbulence, magnetohydrodynamics and other topics. Progress has been stimulated, in particular, by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modelling. This was enabled by two key factors: (a) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (b) access to powerful new computational resources. Excellent progress has been made in developing codes for which computer run-time and problem-size scale well with the number of processors on massively parallel processors (MPPs). Examples include the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPPs to produce three-dimensional, general geometry, nonlinear particle simulations that have accelerated advances in understanding the nature of turbulence self-regulation by zonal flows. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In looking towards the future, the current results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. This should produce the scientific excitement which will help to (a) stimulate enhanced cross-cutting collaborations with other fields and (b) attract the bright young talent needed for the future health of the field of plasma science.
Emerging Nanophotonic Applications Explored with Advanced Scientific Parallel Computing
NASA Astrophysics Data System (ADS)
Meng, Xiang
The domain of nanoscale optical science and technology is a combination of the classical world of electromagnetics and the quantum mechanical regime of atoms and molecules. Recent advancements in fabrication technology allows the optical structures to be scaled down to nanoscale size or even to the atomic level, which are far smaller than the wavelength they are designed for. These nanostructures can have unique, controllable, and tunable optical properties and their interactions with quantum materials can have important near-field and far-field optical response. Undoubtedly, these optical properties can have many important applications, ranging from the efficient and tunable light sources, detectors, filters, modulators, high-speed all-optical switches; to the next-generation classical and quantum computation, and biophotonic medical sensors. This emerging research of nanoscience, known as nanophotonics, is a highly interdisciplinary field requiring expertise in materials science, physics, electrical engineering, and scientific computing, modeling and simulation. It has also become an important research field for investigating the science and engineering of light-matter interactions that take place on wavelength and subwavelength scales where the nature of the nanostructured matter controls the interactions. In addition, the fast advancements in the computing capabilities, such as parallel computing, also become as a critical element for investigating advanced nanophotonic devices. This role has taken on even greater urgency with the scale-down of device dimensions, and the design for these devices require extensive memory and extremely long core hours. Thus distributed computing platforms associated with parallel computing are required for faster designs processes. Scientific parallel computing constructs mathematical models and quantitative analysis techniques, and uses the computing machines to analyze and solve otherwise intractable scientific challenges. In particular, parallel computing are forms of computation operating on the principle that large problems can often be divided into smaller ones, which are then solved concurrently. In this dissertation, we report a series of new nanophotonic developments using the advanced parallel computing techniques. The applications include the structure optimizations at the nanoscale to control both the electromagnetic response of materials, and to manipulate nanoscale structures for enhanced field concentration, which enable breakthroughs in imaging, sensing systems (chapter 3 and 4) and improve the spatial-temporal resolutions of spectroscopies (chapter 5). We also report the investigations on the confinement study of optical-matter interactions at the quantum mechanical regime, where the size-dependent novel properties enhanced a wide range of technologies from the tunable and efficient light sources, detectors, to other nanophotonic elements with enhanced functionality (chapter 6 and 7).
The Quantitative Analysis of User Behavior Online - Data, Models and Algorithms
NASA Astrophysics Data System (ADS)
Raghavan, Prabhakar
By blending principles from mechanism design, algorithms, machine learning and massive distributed computing, the search industry has become good at optimizing monetization on sound scientific principles. This represents a successful and growing partnership between computer science and microeconomics. When it comes to understanding how online users respond to the content and experiences presented to them, we have more of a lacuna in the collaboration between computer science and certain social sciences. We will use a concrete technical example from image search results presentation, developing in the process some algorithmic and machine learning problems of interest in their own right. We then use this example to motivate the kinds of studies that need to grow between computer science and the social sciences; a critical element of this is the need to blend large-scale data analysis with smaller-scale eye-tracking and "individualized" lab studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Supinski, B.; Caliga, D.
2017-09-28
The primary objective of this project was to develop memory optimization technology to efficiently deliver data to, and distribute data within, the SRC-6's Field Programmable Gate Array- ("FPGA") based Multi-Adaptive Processors (MAPs). The hardware/software approach was to explore efficient MAP configurations and generate the compiler technology to exploit those configurations. This memory accessing technology represents an important step towards making reconfigurable symmetric multi-processor (SMP) architectures that will be a costeffective solution for large-scale scientific computing.
NASA Astrophysics Data System (ADS)
Christensen, C.; Summa, B.; Scorzelli, G.; Lee, J. W.; Venkat, A.; Bremer, P. T.; Pascucci, V.
2017-12-01
Massive datasets are becoming more common due to increasingly detailed simulations and higher resolution acquisition devices. Yet accessing and processing these huge data collections for scientific analysis is still a significant challenge. Solutions that rely on extensive data transfers are increasingly untenable and often impossible due to lack of sufficient storage at the client side as well as insufficient bandwidth to conduct such large transfers, that in some cases could entail petabytes of data. Large-scale remote computing resources can be useful, but utilizing such systems typically entails some form of offline batch processing with long delays, data replications, and substantial cost for any mistakes. Both types of workflows can severely limit the flexible exploration and rapid evaluation of new hypotheses that are crucial to the scientific process and thereby impede scientific discovery. In order to facilitate interactivity in both analysis and visualization of these massive data ensembles, we introduce a dynamic runtime system suitable for progressive computation and interactive visualization of arbitrarily large, disparately located spatiotemporal datasets. Our system includes an embedded domain-specific language (EDSL) that allows users to express a wide range of data analysis operations in a simple and abstract manner. The underlying runtime system transparently resolves issues such as remote data access and resampling while at the same time maintaining interactivity through progressive and interruptible processing. Computations involving large amounts of data can be performed remotely in an incremental fashion that dramatically reduces data movement, while the client receives updates progressively thereby remaining robust to fluctuating network latency or limited bandwidth. This system facilitates interactive, incremental analysis and visualization of massive remote datasets up to petabytes in size. Our system is now available for general use in the community through both docker and anaconda.
Institute for scientific computing research;fiscal year 1999 annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keyes, D
2000-03-28
Large-scale scientific computation, and all of the disciplines that support it and help to validate it, have been placed at the focus of Lawrence Livermore National Laboratory by the Accelerated Strategic Computing Initiative (ASCI). The Laboratory operates the computer with the highest peak performance in the world and has undertaken some of the largest and most compute-intensive simulations ever performed. Computers at the architectural extremes, however, are notoriously difficult to use efficiently. Even such successes as the Laboratory's two Bell Prizes awarded in November 1999 only emphasize the need for much better ways of interacting with the results of large-scalemore » simulations. Advances in scientific computing research have, therefore, never been more vital to the core missions of the Laboratory than at present. Computational science is evolving so rapidly along every one of its research fronts that to remain on the leading edge, the Laboratory must engage researchers at many academic centers of excellence. In FY 1999, the Institute for Scientific Computing Research (ISCR) has expanded the Laboratory's bridge to the academic community in the form of collaborative subcontracts, visiting faculty, student internships, a workshop, and a very active seminar series. ISCR research participants are integrated almost seamlessly with the Laboratory's Center for Applied Scientific Computing (CASC), which, in turn, addresses computational challenges arising throughout the Laboratory. Administratively, the ISCR flourishes under the Laboratory's University Relations Program (URP). Together with the other four Institutes of the URP, it must navigate a course that allows the Laboratory to benefit from academic exchanges while preserving national security. Although FY 1999 brought more than its share of challenges to the operation of an academic-like research enterprise within the context of a national security laboratory, the results declare the challenges well met and well worth the continued effort. A change of administration for the ISCR occurred during FY 1999. Acting Director John Fitzgerald retired from LLNL in August after 35 years of service, including the last two at helm of the ISCR. David Keyes, who has been a regular visitor in conjunction with ASCI scalable algorithms research since October 1997, overlapped with John for three months and serves half-time as the new Acting Director.« less
Cross-Identification of Astronomical Catalogs on Multiple GPUs
NASA Astrophysics Data System (ADS)
Lee, M. A.; Budavári, T.
2013-10-01
One of the most fundamental problems in observational astronomy is the cross-identification of sources. Observations are made in different wavelengths, at different times, and from different locations and instruments, resulting in a large set of independent observations. The scientific outcome is often limited by our ability to quickly perform meaningful associations between detections. The matching, however, is difficult scientifically, statistically, as well as computationally. The former two require detailed physical modeling and advanced probabilistic concepts; the latter is due to the large volumes of data and the problem's combinatorial nature. In order to tackle the computational challenge and to prepare for future surveys, whose measurements will be exponentially increasing in size past the scale of feasible CPU-based solutions, we developed a new implementation which addresses the issue by performing the associations on multiple Graphics Processing Units (GPUs). Our implementation utilizes up to 6 GPUs in combination with the Thrust library to achieve an over 40x speed up verses the previous best implementation running on a multi-CPU SQL Server.
ArrayBridge: Interweaving declarative array processing with high-performance computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, Haoyuan; Floratos, Sofoklis; Blanas, Spyros
Scientists are increasingly turning to datacenter-scale computers to produce and analyze massive arrays. Despite decades of database research that extols the virtues of declarative query processing, scientists still write, debug and parallelize imperative HPC kernels even for the most mundane queries. This impedance mismatch has been partly attributed to the cumbersome data loading process; in response, the database community has proposed in situ mechanisms to access data in scientific file formats. Scientists, however, desire more than a passive access method that reads arrays from files. This paper describes ArrayBridge, a bi-directional array view mechanism for scientific file formats, that aimsmore » to make declarative array manipulations interoperable with imperative file-centric analyses. Our prototype implementation of ArrayBridge uses HDF5 as the underlying array storage library and seamlessly integrates into the SciDB open-source array database system. In addition to fast querying over external array objects, ArrayBridge produces arrays in the HDF5 file format just as easily as it can read from it. ArrayBridge also supports time travel queries from imperative kernels through the unmodified HDF5 API, and automatically deduplicates between array versions for space efficiency. Our extensive performance evaluation in NERSC, a large-scale scientific computing facility, shows that ArrayBridge exhibits statistically indistinguishable performance and I/O scalability to the native SciDB storage engine.« less
NASA Astrophysics Data System (ADS)
Lele, Sanjiva K.
2002-08-01
Funds were received in April 2001 under the Department of Defense DURIP program for construction of a 48 processor high performance computing cluster. This report details the hardware which was purchased and how it has been used to enable and enhance research activities directly supported by, and of interest to, the Air Force Office of Scientific Research and the Department of Defense. The report is divided into two major sections. The first section after this summary describes the computer cluster, its setup, and some cluster performance benchmark results. The second section explains ongoing research efforts which have benefited from the cluster hardware, and presents highlights of those efforts since installation of the cluster.
Hydrodynamic Simulations and Tomographic Reconstructions of the Intergalactic Medium
NASA Astrophysics Data System (ADS)
Stark, Casey William
The Intergalactic Medium (IGM) is the dominant reservoir of matter in the Universe from which the cosmic web and galaxies form. The structure and physical state of the IGM provides insight into the cosmological model of the Universe, the origin and timeline of the reionization of the Universe, as well as being an essential ingredient in our understanding of galaxy formation and evolution. Our primary handle on this information is a signal known as the Lyman-alpha forest (or Ly-alpha forest) -- the collection of absorption features in high-redshift sources due to intervening neutral hydrogen, which scatters HI Ly-alpha photons out of the line of sight. The Ly-alpha forest flux traces density fluctuations at high redshift and at moderate overdensities, making it an excellent tool for mapping large-scale structure and constraining cosmological parameters. Although the computational methodology for simulating the Ly-alpha forest has existed for over a decade, we are just now approaching the scale of computing power required to simultaneously capture large cosmological scales and the scales of the smallest absorption systems. My thesis focuses on using simulations at the edge of modern computing to produce precise predictions of the statistics of the Ly-alpha forest and to better understand the structure of the IGM. In the first part of my thesis, I review the state of hydrodynamic simulations of the IGM, including pitfalls of the existing under-resolved simulations. Our group developed a new cosmological hydrodynamics code to tackle the computational challenge, and I developed a distributed analysis framework to compute flux statistics from our simulations. I present flux statistics derived from a suite of our large hydrodynamic simulations and demonstrate convergence to the per cent level. I also compare flux statistics derived from simulations using different discretizations and hydrodynamic schemes (Eulerian finite volume vs. smoothed particle hydrodynamics) and discuss differences in their convergence behavior, their overall agreement, and the implications for cosmological constraints. In the second part of my thesis, I present a tomographic reconstruction method that allows us to make 3D maps of the IGM with Mpc resolution. In order to make reconstructions of large surveys computationally feasible, I developed a new Wiener Filter application with an algorithm specialized to our problem, which significantly reduces the space and time complexity compared to previous implementations. I explore two scientific applications of the maps: finding protoclusters by searching the maps for large, contiguous regions of low flux and finding cosmic voids by searching the maps for regions of high flux. Using a large N-body simulation, I identify and characterize both protoclusters and voids at z = 2.5, in the middle of the redshift range being mapped by ongoing surveys. I provide simple methods for identifying protocluster and void candidates in the tomographic flux maps, and then test them on mock surveys and reconstructions. I present forecasts for sample purity and completeness and other scientific applications of these large, high-redshift objects.
Performance Analysis Tool for HPC and Big Data Applications on Scientific Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Wucherl; Koo, Michelle; Cao, Yu
Big data is prevalent in HPC computing. Many HPC projects rely on complex workflows to analyze terabytes or petabytes of data. These workflows often require running over thousands of CPU cores and performing simultaneous data accesses, data movements, and computation. It is challenging to analyze the performance involving terabytes or petabytes of workflow data or measurement data of the executions, from complex workflows over a large number of nodes and multiple parallel task executions. To help identify performance bottlenecks or debug the performance issues in large-scale scientific applications and scientific clusters, we have developed a performance analysis framework, using state-ofthe-more » art open-source big data processing tools. Our tool can ingest system logs and application performance measurements to extract key performance features, and apply the most sophisticated statistical tools and data mining methods on the performance data. It utilizes an efficient data processing engine to allow users to interactively analyze a large amount of different types of logs and measurements. To illustrate the functionality of the big data analysis framework, we conduct case studies on the workflows from an astronomy project known as the Palomar Transient Factory (PTF) and the job logs from the genome analysis scientific cluster. Our study processed many terabytes of system logs and application performance measurements collected on the HPC systems at NERSC. The implementation of our tool is generic enough to be used for analyzing the performance of other HPC systems and Big Data workows.« less
Large-Scale Assessment, Rationality, and Scientific Management: The Case of No Child Left Behind
ERIC Educational Resources Information Center
Roach, Andrew T.; Frank, Jennifer
2007-01-01
This article examines the ways in which NCLB and the movement towards large-scale assessment systems are based on Weber's concept of formal rationality and tradition of scientific management. Building on these ideas, the authors use Ritzer's McDonaldization thesis to examine some of the core features of large-scale assessment and accountability…
NASA Astrophysics Data System (ADS)
Fiore, S.; Płóciennik, M.; Doutriaux, C.; Blanquer, I.; Barbera, R.; Williams, D. N.; Anantharaj, V. G.; Evans, B. J. K.; Salomoni, D.; Aloisio, G.
2017-12-01
The increased models resolution in the development of comprehensive Earth System Models is rapidly leading to very large climate simulations output that pose significant scientific data management challenges in terms of data sharing, processing, analysis, visualization, preservation, curation, and archiving.Large scale global experiments for Climate Model Intercomparison Projects (CMIP) have led to the development of the Earth System Grid Federation (ESGF), a federated data infrastructure which has been serving the CMIP5 experiment, providing access to 2PB of data for the IPCC Assessment Reports. In such a context, running a multi-model data analysis experiment is very challenging, as it requires the availability of a large amount of data related to multiple climate models simulations and scientific data management tools for large-scale data analytics. To address these challenges, a case study on climate models intercomparison data analysis has been defined and implemented in the context of the EU H2020 INDIGO-DataCloud project. The case study has been tested and validated on CMIP5 datasets, in the context of a large scale, international testbed involving several ESGF sites (LLNL, ORNL and CMCC), one orchestrator site (PSNC) and one more hosting INDIGO PaaS services (UPV). Additional ESGF sites, such as NCI (Australia) and a couple more in Europe, are also joining the testbed. The added value of the proposed solution is summarized in the following: it implements a server-side paradigm which limits data movement; it relies on a High-Performance Data Analytics (HPDA) stack to address performance; it exploits the INDIGO PaaS layer to support flexible, dynamic and automated deployment of software components; it provides user-friendly web access based on the INDIGO Future Gateway; and finally it integrates, complements and extends the support currently available through ESGF. Overall it provides a new "tool" for climate scientists to run multi-model experiments. At the time this contribution is being written, the proposed testbed represents the first implementation of a distributed large-scale, multi-model experiment in the ESGF/CMIP context, joining together server-side approaches for scientific data analysis, HPDA frameworks, end-to-end workflow management, and cloud computing.
NASA Astrophysics Data System (ADS)
Engquist, Björn; Frederick, Christina; Huynh, Quyen; Zhou, Haomin
2017-06-01
We present a multiscale approach for identifying features in ocean beds by solving inverse problems in high frequency seafloor acoustics. The setting is based on Sound Navigation And Ranging (SONAR) imaging used in scientific, commercial, and military applications. The forward model incorporates multiscale simulations, by coupling Helmholtz equations and geometrical optics for a wide range of spatial scales in the seafloor geometry. This allows for detailed recovery of seafloor parameters including material type. Simulated backscattered data is generated using numerical microlocal analysis techniques. In order to lower the computational cost of the large-scale simulations in the inversion process, we take advantage of a pre-computed library of representative acoustic responses from various seafloor parameterizations.
Inferring cortical function in the mouse visual system through large-scale systems neuroscience.
Hawrylycz, Michael; Anastassiou, Costas; Arkhipov, Anton; Berg, Jim; Buice, Michael; Cain, Nicholas; Gouwens, Nathan W; Gratiy, Sergey; Iyer, Ramakrishnan; Lee, Jung Hoon; Mihalas, Stefan; Mitelut, Catalin; Olsen, Shawn; Reid, R Clay; Teeter, Corinne; de Vries, Saskia; Waters, Jack; Zeng, Hongkui; Koch, Christof
2016-07-05
The scientific mission of the Project MindScope is to understand neocortex, the part of the mammalian brain that gives rise to perception, memory, intelligence, and consciousness. We seek to quantitatively evaluate the hypothesis that neocortex is a relatively homogeneous tissue, with smaller functional modules that perform a common computational function replicated across regions. We here focus on the mouse as a mammalian model organism with genetics, physiology, and behavior that can be readily studied and manipulated in the laboratory. We seek to describe the operation of cortical circuitry at the computational level by comprehensively cataloging and characterizing its cellular building blocks along with their dynamics and their cell type-specific connectivities. The project is also building large-scale experimental platforms (i.e., brain observatories) to record the activity of large populations of cortical neurons in behaving mice subject to visual stimuli. A primary goal is to understand the series of operations from visual input in the retina to behavior by observing and modeling the physical transformations of signals in the corticothalamic system. We here focus on the contribution that computer modeling and theory make to this long-term effort.
Parallel block schemes for large scale least squares computations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golub, G.H.; Plemmons, R.J.; Sameh, A.
1986-04-01
Large scale least squares computations arise in a variety of scientific and engineering problems, including geodetic adjustments and surveys, medical image analysis, molecular structures, partial differential equations and substructuring methods in structural engineering. In each of these problems, matrices often arise which possess a block structure which reflects the local connection nature of the underlying physical problem. For example, such super-large nonlinear least squares computations arise in geodesy. Here the coordinates of positions are calculated by iteratively solving overdetermined systems of nonlinear equations by the Gauss-Newton method. The US National Geodetic Survey will complete this year (1986) the readjustment ofmore » the North American Datum, a problem which involves over 540 thousand unknowns and over 6.5 million observations (equations). The observation matrix for these least squares computations has a block angular form with 161 diagnonal blocks, each containing 3 to 4 thousand unknowns. In this paper parallel schemes are suggested for the orthogonal factorization of matrices in block angular form and for the associated backsubstitution phase of the least squares computations. In addition, a parallel scheme for the calculation of certain elements of the covariance matrix for such problems is described. It is shown that these algorithms are ideally suited for multiprocessors with three levels of parallelism such as the Cedar system at the University of Illinois. 20 refs., 7 figs.« less
PANORAMA: An approach to performance modeling and diagnosis of extreme-scale workflows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deelman, Ewa; Carothers, Christopher; Mandal, Anirban
Here we report that computational science is well established as the third pillar of scientific discovery and is on par with experimentation and theory. However, as we move closer toward the ability to execute exascale calculations and process the ensuing extreme-scale amounts of data produced by both experiments and computations alike, the complexity of managing the compute and data analysis tasks has grown beyond the capabilities of domain scientists. Therefore, workflow management systems are absolutely necessary to ensure current and future scientific discoveries. A key research question for these workflow management systems concerns the performance optimization of complex calculation andmore » data analysis tasks. The central contribution of this article is a description of the PANORAMA approach for modeling and diagnosing the run-time performance of complex scientific workflows. This approach integrates extreme-scale systems testbed experimentation, structured analytical modeling, and parallel systems simulation into a comprehensive workflow framework called Pegasus for understanding and improving the overall performance of complex scientific workflows.« less
PANORAMA: An approach to performance modeling and diagnosis of extreme-scale workflows
Deelman, Ewa; Carothers, Christopher; Mandal, Anirban; ...
2015-07-14
Here we report that computational science is well established as the third pillar of scientific discovery and is on par with experimentation and theory. However, as we move closer toward the ability to execute exascale calculations and process the ensuing extreme-scale amounts of data produced by both experiments and computations alike, the complexity of managing the compute and data analysis tasks has grown beyond the capabilities of domain scientists. Therefore, workflow management systems are absolutely necessary to ensure current and future scientific discoveries. A key research question for these workflow management systems concerns the performance optimization of complex calculation andmore » data analysis tasks. The central contribution of this article is a description of the PANORAMA approach for modeling and diagnosing the run-time performance of complex scientific workflows. This approach integrates extreme-scale systems testbed experimentation, structured analytical modeling, and parallel systems simulation into a comprehensive workflow framework called Pegasus for understanding and improving the overall performance of complex scientific workflows.« less
A Computational framework for telemedicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foster, I.; von Laszewski, G.; Thiruvathukal, G. K.
1998-07-01
Emerging telemedicine applications require the ability to exploit diverse and geographically distributed resources. Highspeed networks are used to integrate advanced visualization devices, sophisticated instruments, large databases, archival storage devices, PCs, workstations, and supercomputers. This form of telemedical environment is similar to networked virtual supercomputers, also known as metacomputers. Metacomputers are already being used in many scientific application areas. In this article, we analyze requirements necessary for a telemedical computing infrastructure and compare them with requirements found in a typical metacomputing environment. We will show that metacomputing environments can be used to enable a more powerful and unified computational infrastructure formore » telemedicine. The Globus metacomputing toolkit can provide the necessary low level mechanisms to enable a large scale telemedical infrastructure. The Globus toolkit components are designed in a modular fashion and can be extended to support the specific requirements for telemedicine.« less
Computational Challenges in the Analysis of Petrophysics Using Microtomography and Upscaling
NASA Astrophysics Data System (ADS)
Liu, J.; Pereira, G.; Freij-Ayoub, R.; Regenauer-Lieb, K.
2014-12-01
Microtomography provides detailed 3D internal structures of rocks in micro- to tens of nano-meter resolution and is quickly turning into a new technology for studying petrophysical properties of materials. An important step is the upscaling of these properties as micron or sub-micron resolution can only be done on the sample-scale of millimeters or even less than a millimeter. We present here a recently developed computational workflow for the analysis of microstructures including the upscaling of material properties. Computations of properties are first performed using conventional material science simulations at micro to nano-scale. The subsequent upscaling of these properties is done by a novel renormalization procedure based on percolation theory. We have tested the workflow using different rock samples, biological and food science materials. We have also applied the technique on high-resolution time-lapse synchrotron CT scans. In this contribution we focus on the computational challenges that arise from the big data problem of analyzing petrophysical properties and its subsequent upscaling. We discuss the following challenges: 1) Characterization of microtomography for extremely large data sets - our current capability. 2) Computational fluid dynamics simulations at pore-scale for permeability estimation - methods, computing cost and accuracy. 3) Solid mechanical computations at pore-scale for estimating elasto-plastic properties - computational stability, cost, and efficiency. 4) Extracting critical exponents from derivative models for scaling laws - models, finite element meshing, and accuracy. Significant progress in each of these challenges is necessary to transform microtomography from the current research problem into a robust computational big data tool for multi-scale scientific and engineering problems.
A Lightweight I/O Scheme to Facilitate Spatial and Temporal Queries of Scientific Data Analytics
NASA Technical Reports Server (NTRS)
Tian, Yuan; Liu, Zhuo; Klasky, Scott; Wang, Bin; Abbasi, Hasan; Zhou, Shujia; Podhorszki, Norbert; Clune, Tom; Logan, Jeremy; Yu, Weikuan
2013-01-01
In the era of petascale computing, more scientific applications are being deployed on leadership scale computing platforms to enhance the scientific productivity. Many I/O techniques have been designed to address the growing I/O bottleneck on large-scale systems by handling massive scientific data in a holistic manner. While such techniques have been leveraged in a wide range of applications, they have not been shown as adequate for many mission critical applications, particularly in data post-processing stage. One of the examples is that some scientific applications generate datasets composed of a vast amount of small data elements that are organized along many spatial and temporal dimensions but require sophisticated data analytics on one or more dimensions. Including such dimensional knowledge into data organization can be beneficial to the efficiency of data post-processing, which is often missing from exiting I/O techniques. In this study, we propose a novel I/O scheme named STAR (Spatial and Temporal AggRegation) to enable high performance data queries for scientific analytics. STAR is able to dive into the massive data, identify the spatial and temporal relationships among data variables, and accordingly organize them into an optimized multi-dimensional data structure before storing to the storage. This technique not only facilitates the common access patterns of data analytics, but also further reduces the application turnaround time. In particular, STAR is able to enable efficient data queries along the time dimension, a practice common in scientific analytics but not yet supported by existing I/O techniques. In our case study with a critical climate modeling application GEOS-5, the experimental results on Jaguar supercomputer demonstrate an improvement up to 73 times for the read performance compared to the original I/O method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sreepathi, Sarat; Kumar, Jitendra; Mills, Richard T.
A proliferation of data from vast networks of remote sensing platforms (satellites, unmanned aircraft systems (UAS), airborne etc.), observational facilities (meteorological, eddy covariance etc.), state-of-the-art sensors, and simulation models offer unprecedented opportunities for scientific discovery. Unsupervised classification is a widely applied data mining approach to derive insights from such data. However, classification of very large data sets is a complex computational problem that requires efficient numerical algorithms and implementations on high performance computing (HPC) platforms. Additionally, increasing power, space, cooling and efficiency requirements has led to the deployment of hybrid supercomputing platforms with complex architectures and memory hierarchies like themore » Titan system at Oak Ridge National Laboratory. The advent of such accelerated computing architectures offers new challenges and opportunities for big data analytics in general and specifically, large scale cluster analysis in our case. Although there is an existing body of work on parallel cluster analysis, those approaches do not fully meet the needs imposed by the nature and size of our large data sets. Moreover, they had scaling limitations and were mostly limited to traditional distributed memory computing platforms. We present a parallel Multivariate Spatio-Temporal Clustering (MSTC) technique based on k-means cluster analysis that can target hybrid supercomputers like Titan. We developed a hybrid MPI, CUDA and OpenACC implementation that can utilize both CPU and GPU resources on computational nodes. We describe performance results on Titan that demonstrate the scalability and efficacy of our approach in processing large ecological data sets.« less
THE VIRTUAL INSTRUMENT: SUPPORT FOR GRID-ENABLED MCELL SIMULATIONS
Casanova, Henri; Berman, Francine; Bartol, Thomas; Gokcay, Erhan; Sejnowski, Terry; Birnbaum, Adam; Dongarra, Jack; Miller, Michelle; Ellisman, Mark; Faerman, Marcio; Obertelli, Graziano; Wolski, Rich; Pomerantz, Stuart; Stiles, Joel
2010-01-01
Ensembles of widely distributed, heterogeneous resources, or Grids, have emerged as popular platforms for large-scale scientific applications. In this paper we present the Virtual Instrument project, which provides an integrated application execution environment that enables end-users to run and interact with running scientific simulations on Grids. This work is performed in the specific context of MCell, a computational biology application. While MCell provides the basis for running simulations, its capabilities are currently limited in terms of scale, ease-of-use, and interactivity. These limitations preclude usage scenarios that are critical for scientific advances. Our goal is to create a scientific “Virtual Instrument” from MCell by allowing its users to transparently access Grid resources while being able to steer running simulations. In this paper, we motivate the Virtual Instrument project and discuss a number of relevant issues and accomplishments in the area of Grid software development and application scheduling. We then describe our software design and report on the current implementation. We verify and evaluate our design via experiments with MCell on a real-world Grid testbed. PMID:20689618
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katz, Daniel S; Jha, Shantenu; Weissman, Jon
2017-01-31
This is the final technical report for the AIMES project. Many important advances in science and engineering are due to large-scale distributed computing. Notwithstanding this reliance, we are still learning how to design and deploy large-scale production Distributed Computing Infrastructures (DCI). This is evidenced by missing design principles for DCI, and an absence of generally acceptable and usable distributed computing abstractions. The AIMES project was conceived against this backdrop, following on the heels of a comprehensive survey of scientific distributed applications. AIMES laid the foundations to address the tripartite challenge of dynamic resource management, integrating information, and portable and interoperablemore » distributed applications. Four abstractions were defined and implemented: skeleton, resource bundle, pilot, and execution strategy. The four abstractions were implemented into software modules and then aggregated into the AIMES middleware. This middleware successfully integrates information across the application layer (skeletons) and resource layer (Bundles), derives a suitable execution strategy for the given skeleton and enacts its execution by means of pilots on one or more resources, depending on the application requirements, and resource availabilities and capabilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weissman, Jon; Katz, Dan; Jha, Shantenu
2017-01-31
This is the final technical report for the AIMES project. Many important advances in science and engineering are due to large scale distributed computing. Notwithstanding this reliance, we are still learning how to design and deploy large-scale production Distributed Computing Infrastructures (DCI). This is evidenced by missing design principles for DCI, and an absence of generally acceptable and usable distributed computing abstractions. The AIMES project was conceived against this backdrop, following on the heels of a comprehensive survey of scientific distributed applications. AIMES laid the foundations to address the tripartite challenge of dynamic resource management, integrating information, and portable andmore » interoperable distributed applications. Four abstractions were defined and implemented: skeleton, resource bundle, pilot, and execution strategy. The four abstractions were implemented into software modules and then aggregated into the AIMES middleware. This middleware successfully integrates information across the application layer (skeletons) and resource layer (Bundles), derives a suitable execution strategy for the given skeleton and enacts its execution by means of pilots on one or more resources, depending on the application requirements, and resource availabilities and capabilities.« less
Large-Scale NASA Science Applications on the Columbia Supercluster
NASA Technical Reports Server (NTRS)
Brooks, Walter
2005-01-01
Columbia, NASA's newest 61 teraflops supercomputer that became operational late last year, is a highly integrated Altix cluster of 10,240 processors, and was named to honor the crew of the Space Shuttle lost in early 2003. Constructed in just four months, Columbia increased NASA's computing capability ten-fold, and revitalized the Agency's high-end computing efforts. Significant cutting-edge science and engineering simulations in the areas of space and Earth sciences, as well as aeronautics and space operations, are already occurring on this largest operational Linux supercomputer, demonstrating its capacity and capability to accelerate NASA's space exploration vision. The presentation will describe how an integrated environment consisting not only of next-generation systems, but also modeling and simulation, high-speed networking, parallel performance optimization, and advanced data analysis and visualization, is being used to reduce design cycle time, accelerate scientific discovery, conduct parametric analysis of multiple scenarios, and enhance safety during the life cycle of NASA missions. The talk will conclude by discussing how NAS partnered with various NASA centers, other government agencies, computer industry, and academia, to create a national resource in large-scale modeling and simulation.
Performance analysis of a dual-tree algorithm for computing spatial distance histograms
Chen, Shaoping; Tu, Yi-Cheng; Xia, Yuni
2011-01-01
Many scientific and engineering fields produce large volume of spatiotemporal data. The storage, retrieval, and analysis of such data impose great challenges to database systems design. Analysis of scientific spatiotemporal data often involves computing functions of all point-to-point interactions. One such analytics, the Spatial Distance Histogram (SDH), is of vital importance to scientific discovery. Recently, algorithms for efficient SDH processing in large-scale scientific databases have been proposed. These algorithms adopt a recursive tree-traversing strategy to process point-to-point distances in the visited tree nodes in batches, thus require less time when compared to the brute-force approach where all pairwise distances have to be computed. Despite the promising experimental results, the complexity of such algorithms has not been thoroughly studied. In this paper, we present an analysis of such algorithms based on a geometric modeling approach. The main technique is to transform the analysis of point counts into a problem of quantifying the area of regions where pairwise distances can be processed in batches by the algorithm. From the analysis, we conclude that the number of pairwise distances that are left to be processed decreases exponentially with more levels of the tree visited. This leads to the proof of a time complexity lower than the quadratic time needed for a brute-force algorithm and builds the foundation for a constant-time approximate algorithm. Our model is also general in that it works for a wide range of point spatial distributions, histogram types, and space-partitioning options in building the tree. PMID:21804753
Uvf - Unified Volume Format: A General System for Efficient Handling of Large Volumetric Datasets.
Krüger, Jens; Potter, Kristin; Macleod, Rob S; Johnson, Christopher
2008-01-01
With the continual increase in computing power, volumetric datasets with sizes ranging from only a few megabytes to petascale are generated thousands of times per day. Such data may come from an ordinary source such as simple everyday medical imaging procedures, while larger datasets may be generated from cluster-based scientific simulations or measurements of large scale experiments. In computer science an incredible amount of work worldwide is put into the efficient visualization of these datasets. As researchers in the field of scientific visualization, we often have to face the task of handling very large data from various sources. This data usually comes in many different data formats. In medical imaging, the DICOM standard is well established, however, most research labs use their own data formats to store and process data. To simplify the task of reading the many different formats used with all of the different visualization programs, we present a system for the efficient handling of many types of large scientific datasets (see Figure 1 for just a few examples). While primarily targeted at structured volumetric data, UVF can store just about any type of structured and unstructured data. The system is composed of a file format specification with a reference implementation of a reader. It is not only a common, easy to implement format but also allows for efficient rendering of most datasets without the need to convert the data in memory.
Key Lessons in Building "Data Commons": The Open Science Data Cloud Ecosystem
NASA Astrophysics Data System (ADS)
Patterson, M.; Grossman, R.; Heath, A.; Murphy, M.; Wells, W.
2015-12-01
Cloud computing technology has created a shift around data and data analysis by allowing researchers to push computation to data as opposed to having to pull data to an individual researcher's computer. Subsequently, cloud-based resources can provide unique opportunities to capture computing environments used both to access raw data in its original form and also to create analysis products which may be the source of data for tables and figures presented in research publications. Since 2008, the Open Cloud Consortium (OCC) has operated the Open Science Data Cloud (OSDC), which provides scientific researchers with computational resources for storing, sharing, and analyzing large (terabyte and petabyte-scale) scientific datasets. OSDC has provided compute and storage services to over 750 researchers in a wide variety of data intensive disciplines. Recently, internal users have logged about 2 million core hours each month. The OSDC also serves the research community by colocating these resources with access to nearly a petabyte of public scientific datasets in a variety of fields also accessible for download externally by the public. In our experience operating these resources, researchers are well served by "data commons," meaning cyberinfrastructure that colocates data archives, computing, and storage infrastructure and supports essential tools and services for working with scientific data. In addition to the OSDC public data commons, the OCC operates a data commons in collaboration with NASA and is developing a data commons for NOAA datasets. As cloud-based infrastructures for distributing and computing over data become more pervasive, we ask, "What does it mean to publish data in a data commons?" Here we present the OSDC perspective and discuss several services that are key in architecting data commons, including digital identifier services.
Tigres Workflow Library: Supporting Scientific Pipelines on HPC Systems
Hendrix, Valerie; Fox, James; Ghoshal, Devarshi; ...
2016-07-21
The growth in scientific data volumes has resulted in the need for new tools that enable users to operate on and analyze data on large-scale resources. In the last decade, a number of scientific workflow tools have emerged. These tools often target distributed environments, and often need expert help to compose and execute the workflows. Data-intensive workflows are often ad-hoc, they involve an iterative development process that includes users composing and testing their workflows on desktops, and scaling up to larger systems. In this paper, we present the design and implementation of Tigres, a workflow library that supports the iterativemore » workflow development cycle of data-intensive workflows. Tigres provides an application programming interface to a set of programming templates i.e., sequence, parallel, split, merge, that can be used to compose and execute computational and data pipelines. We discuss the results of our evaluation of scientific and synthetic workflows showing Tigres performs with minimal template overheads (mean of 13 seconds over all experiments). We also discuss various factors (e.g., I/O performance, execution mechanisms) that affect the performance of scientific workflows on HPC systems.« less
Tigres Workflow Library: Supporting Scientific Pipelines on HPC Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrix, Valerie; Fox, James; Ghoshal, Devarshi
The growth in scientific data volumes has resulted in the need for new tools that enable users to operate on and analyze data on large-scale resources. In the last decade, a number of scientific workflow tools have emerged. These tools often target distributed environments, and often need expert help to compose and execute the workflows. Data-intensive workflows are often ad-hoc, they involve an iterative development process that includes users composing and testing their workflows on desktops, and scaling up to larger systems. In this paper, we present the design and implementation of Tigres, a workflow library that supports the iterativemore » workflow development cycle of data-intensive workflows. Tigres provides an application programming interface to a set of programming templates i.e., sequence, parallel, split, merge, that can be used to compose and execute computational and data pipelines. We discuss the results of our evaluation of scientific and synthetic workflows showing Tigres performs with minimal template overheads (mean of 13 seconds over all experiments). We also discuss various factors (e.g., I/O performance, execution mechanisms) that affect the performance of scientific workflows on HPC systems.« less
The scientific data acquisition system of the GAMMA-400 space project
NASA Astrophysics Data System (ADS)
Bobkov, S. G.; Serdin, O. V.; Gorbunov, M. S.; Arkhangelskiy, A. I.; Topchiev, N. P.
2016-02-01
The description of scientific data acquisition system (SDAS) designed by SRISA for the GAMMA-400 space project is presented. We consider the problem of different level electronics unification: the set of reliable fault-tolerant integrated circuits fabricated on Silicon-on-Insulator 0.25 mkm CMOS technology and the high-speed interfaces and reliable modules used in the space instruments. The characteristics of reliable fault-tolerant very large scale integration (VLSI) technology designed by SRISA for the developing of computation systems for space applications are considered. The scalable net structure of SDAS based on Serial RapidIO interface including real-time operating system BAGET is described too.
NASA Astrophysics Data System (ADS)
Evans, B. J. K.; Pugh, T.; Wyborn, L. A.; Porter, D.; Allen, C.; Smillie, J.; Antony, J.; Trenham, C.; Evans, B. J.; Beckett, D.; Erwin, T.; King, E.; Hodge, J.; Woodcock, R.; Fraser, R.; Lescinsky, D. T.
2014-12-01
The National Computational Infrastructure (NCI) has co-located a priority set of national data assets within a HPC research platform. This powerful in-situ computational platform has been created to help serve and analyse the massive amounts of data across the spectrum of environmental collections - in particular the climate, observational data and geoscientific domains. This paper examines the infrastructure, innovation and opportunity for this significant research platform. NCI currently manages nationally significant data collections (10+ PB) categorised as 1) earth system sciences, climate and weather model data assets and products, 2) earth and marine observations and products, 3) geosciences, 4) terrestrial ecosystem, 5) water management and hydrology, and 6) astronomy, social science and biosciences. The data is largely sourced from the NCI partners (who include the custodians of many of the national scientific records), major research communities, and collaborating overseas organisations. By co-locating these large valuable data assets, new opportunities have arisen by harmonising the data collections, making a powerful transdisciplinary research platformThe data is accessible within an integrated HPC-HPD environment - a 1.2 PFlop supercomputer (Raijin), a HPC class 3000 core OpenStack cloud system and several highly connected large scale and high-bandwidth Lustre filesystems. New scientific software, cloud-scale techniques, server-side visualisation and data services have been harnessed and integrated into the platform, so that analysis is performed seamlessly across the traditional boundaries of the underlying data domains. Characterisation of the techniques along with performance profiling ensures scalability of each software component, all of which can either be enhanced or replaced through future improvements. A Development-to-Operations (DevOps) framework has also been implemented to manage the scale of the software complexity alone. This ensures that software is both upgradable and maintainable, and can be readily reused with complexly integrated systems and become part of the growing global trusted community tools for cross-disciplinary research.
The impact of supercomputers on experimentation: A view from a national laboratory
NASA Technical Reports Server (NTRS)
Peterson, V. L.; Arnold, J. O.
1985-01-01
The relative roles of large scale scientific computers and physical experiments in several science and engineering disciplines are discussed. Increasing dependence on computers is shown to be motivated both by the rapid growth in computer speed and memory, which permits accurate numerical simulation of complex physical phenomena, and by the rapid reduction in the cost of performing a calculation, which makes computation an increasingly attractive complement to experimentation. Computer speed and memory requirements are presented for selected areas of such disciplines as fluid dynamics, aerodynamics, aerothermodynamics, chemistry, atmospheric sciences, astronomy, and astrophysics, together with some examples of the complementary nature of computation and experiment. Finally, the impact of the emerging role of computers in the technical disciplines is discussed in terms of both the requirements for experimentation and the attainment of previously inaccessible information on physical processes.
Job Superscheduler Architecture and Performance in Computational Grid Environments
NASA Technical Reports Server (NTRS)
Shan, Hongzhang; Oliker, Leonid; Biswas, Rupak
2003-01-01
Computational grids hold great promise in utilizing geographically separated heterogeneous resources to solve large-scale complex scientific problems. However, a number of major technical hurdles, including distributed resource management and effective job scheduling, stand in the way of realizing these gains. In this paper, we propose a novel grid superscheduler architecture and three distributed job migration algorithms. We also model the critical interaction between the superscheduler and autonomous local schedulers. Extensive performance comparisons with ideal, central, and local schemes using real workloads from leading computational centers are conducted in a simulation environment. Additionally, synthetic workloads are used to perform a detailed sensitivity analysis of our superscheduler. Several key metrics demonstrate that substantial performance gains can be achieved via smart superscheduling in distributed computational grids.
NASA Astrophysics Data System (ADS)
Carvalho, D.; Gavillet, Ph.; Delgado, V.; Albert, J. N.; Bellas, N.; Javello, J.; Miere, Y.; Ruffinoni, D.; Smith, G.
Large Scientific Equipments are controlled by Computer Systems whose complexity is growing driven, on the one hand by the volume and variety of the information, its distributed nature, the sophistication of its treatment and, on the other hand by the fast evolution of the computer and network market. Some people call them genetically Large-Scale Distributed Data Intensive Information Systems or Distributed Computer Control Systems (DCCS) for those systems dealing more with real time control. Taking advantage of (or forced by) the distributed architecture, the tasks are more and more often implemented as Client-Server applications. In this framework the monitoring of the computer nodes, the communications network and the applications becomes of primary importance for ensuring the safe running and guaranteed performance of the system. With the future generation of HEP experiments, such as those at the LHC in view, it is proposed to integrate the various functions of DCCS monitoring into one general purpose Multi-layer System.
Center for Center for Technology for Advanced Scientific Component Software (TASCS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostadin, Damevski
A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technologymore » for Advanced Scientific Component Software (TASCS)1 tackles these these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerber, Richard; Hack, James; Riley, Katherine
The mission of the U.S. Department of Energy Office of Science (DOE SC) is the delivery of scientific discoveries and major scientific tools to transform our understanding of nature and to advance the energy, economic, and national security missions of the United States. To achieve these goals in today’s world requires investments in not only the traditional scientific endeavors of theory and experiment, but also in computational science and the facilities that support large-scale simulation and data analysis. The Advanced Scientific Computing Research (ASCR) program addresses these challenges in the Office of Science. ASCR’s mission is to discover, develop, andmore » deploy computational and networking capabilities to analyze, model, simulate, and predict complex phenomena important to DOE. ASCR supports research in computational science, three high-performance computing (HPC) facilities — the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory and Leadership Computing Facilities at Argonne (ALCF) and Oak Ridge (OLCF) National Laboratories — and the Energy Sciences Network (ESnet) at Berkeley Lab. ASCR is guided by science needs as it develops research programs, computers, and networks at the leading edge of technologies. As we approach the era of exascale computing, technology changes are creating challenges for science programs in SC for those who need to use high performance computing and data systems effectively. Numerous significant modifications to today’s tools and techniques will be needed to realize the full potential of emerging computing systems and other novel computing architectures. To assess these needs and challenges, ASCR held a series of Exascale Requirements Reviews in 2015–2017, one with each of the six SC program offices,1 and a subsequent Crosscut Review that sought to integrate the findings from each. Participants at the reviews were drawn from the communities of leading domain scientists, experts in computer science and applied mathematics, ASCR facility staff, and DOE program managers in ASCR and the respective program offices. The purpose of these reviews was to identify mission-critical scientific problems within the DOE Office of Science (including experimental facilities) and determine the requirements for the exascale ecosystem that would be needed to address those challenges. The exascale ecosystem includes exascale computing systems, high-end data capabilities, efficient software at scale, libraries, tools, and other capabilities. This effort will contribute to the development of a strategic roadmap for ASCR compute and data facility investments and will help the ASCR Facility Division establish partnerships with Office of Science stakeholders. It will also inform the Office of Science research needs and agenda. The results of the six reviews have been published in reports available on the web at http://exascaleage.org/. This report presents a summary of the individual reports and of common and crosscutting findings, and it identifies opportunities for productive collaborations among the DOE SC program offices.« less
NASA Astrophysics Data System (ADS)
Gramelsberger, Gabriele
The scientific understanding of atmospheric processes has been rooted in the mechanical and physical view of nature ever since dynamic meteorology gained ground in the late 19th century. Conceiving the atmosphere as a giant 'air mass circulation engine' entails applying hydro- and thermodynamical theory to the subject in order to describe the atmosphere's behaviour on small scales. But when it comes to forecasting, it turns out that this view is far too complex to be computed. The limitation of analytical methods precludes an exact solution, forcing scientists to make use of numerical simulation. However, simulation introduces two prerequisites to meteorology: First, the partitioning of the theoretical view into two parts-the large-scale behaviour of the atmosphere, and the effects of smaller-scale processes on this large-scale behaviour, so-called parametrizations; and second, the dependency on computational power in order to achieve a higher resolution. The history of today's atmospheric circulation modelling can be reconstructed as the attempt to improve the handling of these basic constraints. It can be further seen as the old schism between theory and application under new circumstances, which triggers a new discussion about the question of how processes may be conceived in atmospheric modelling.
Human computers: the first pioneers of the information age.
Grier, D A
2001-03-01
Before computers were machines, they were people. They were men and women, young and old, well educated and common. They were the workers who convinced scientists that large-scale calculation had value. Long before Presper Eckert and John Mauchly built the ENIAC at the Moore School of Electronics, Philadelphia, or Maurice Wilkes designed the EDSAC for Manchester University, human computers had created the discipline of computation. They developed numerical methodologies and proved them on practical problems. These human computers were not savants or calculating geniuses. Some knew little more than basic arithmetic. A few were near equals of the scientists they served and, in a different time or place, might have become practicing scientists had they not been barred from a scientific career by their class, education, gender or ethnicity.
Report of the Working Group on Large-Scale Computing in Aeronautics.
1984-06-01
incompressible approximations that are presently made in the lifting line or lifting surface representations of rotor blades. Finally, viscous effects in the forms... Effects of Rotor Model Degradation in the Accuracy of Rotocraft Real-Time Simulation, NASA TN D-8378;1977. 20. Gullen, R. K., Cattell, C. S., and Overton...assistance to member nations for the purpose of increasing their scientific and technical potential; - Recommending effective ways for the member nations
1985-12-01
Office of Scientific Research , and Air Force Space Division are sponsoring research for the development of a high speed DFT processor. This DFT...to the arithmetic circuitry through a master/slave 11-15 %v OPR ONESHOT OUTPUT OUTPUT .., ~ INITIALIZATION COLUMN’ 00 N DONE CUTRPLANE PLAtNE Figure...Since the TSP is an NP-complete problem, many mathematicians, operations researchers , computer scientists and the like have proposed heuristic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Computational Research Division, Lawrence Berkeley National Laboratory; NERSC, Lawrence Berkeley National Laboratory; Computer Science Department, University of California, Berkeley
2009-05-04
We apply auto-tuning to a hybrid MPI-pthreads lattice Boltzmann computation running on the Cray XT4 at National Energy Research Scientific Computing Center (NERSC). Previous work showed that multicore-specific auto-tuning can improve the performance of lattice Boltzmann magnetohydrodynamics (LBMHD) by a factor of 4x when running on dual- and quad-core Opteron dual-socket SMPs. We extend these studies to the distributed memory arena via a hybrid MPI/pthreads implementation. In addition to conventional auto-tuning at the local SMP node, we tune at the message-passing level to determine the optimal aspect ratio as well as the correct balance between MPI tasks and threads permore » MPI task. Our study presents a detailed performance analysis when moving along an isocurve of constant hardware usage: fixed total memory, total cores, and total nodes. Overall, our work points to approaches for improving intra- and inter-node efficiency on large-scale multicore systems for demanding scientific applications.« less
Final Report. Institute for Ultralscale Visualization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Kwan-Liu; Galli, Giulia; Gygi, Francois
The SciDAC Institute for Ultrascale Visualization brought together leading experts from visualization, high-performance computing, and science application areas to make advanced visualization solutions for SciDAC scientists and the broader community. Over the five-year project, the Institute introduced many new enabling visualization techniques, which have significantly enhanced scientists’ ability to validate their simulations, interpret their data, and communicate with others about their work and findings. This Institute project involved a large number of junior and student researchers, who received the opportunities to work on some of the most challenging science applications and gain access to the most powerful high-performance computing facilitiesmore » in the world. They were readily trained and prepared for facing the greater challenges presented by extreme-scale computing. The Institute’s outreach efforts, through publications, workshops and tutorials, successfully disseminated the new knowledge and technologies to the SciDAC and the broader scientific communities. The scientific findings and experience of the Institute team helped plan the SciDAC3 program.« less
Climate Modeling with a Million CPUs
NASA Astrophysics Data System (ADS)
Tobis, M.; Jackson, C. S.
2010-12-01
Michael Tobis, Ph.D. Research Scientist Associate University of Texas Institute for Geophysics Charles S. Jackson Research Scientist University of Texas Institute for Geophysics Meteorological, oceanographic, and climatological applications have been at the forefront of scientific computing since its inception. The trend toward ever larger and more capable computing installations is unabated. However, much of the increase in capacity is accompanied by an increase in parallelism and a concomitant increase in complexity. An increase of at least four additional orders of magnitude in the computational power of scientific platforms is anticipated. It is unclear how individual climate simulations can continue to make effective use of the largest platforms. Conversion of existing community codes to higher resolution, or to more complex phenomenology, or both, presents daunting design and validation challenges. Our alternative approach is to use the expected resources to run very large ensembles of simulations of modest size, rather than to await the emergence of very large simulations. We are already doing this in exploring the parameter space of existing models using the Multiple Very Fast Simulated Annealing algorithm, which was developed for seismic imaging. Our experiments have the dual intentions of tuning the model and identifying ranges of parameter uncertainty. Our approach is less strongly constrained by the dimensionality of the parameter space than are competing methods. Nevertheless, scaling up remains costly. Much could be achieved by increasing the dimensionality of the search and adding complexity to the search algorithms. Such ensemble approaches scale naturally to very large platforms. Extensions of the approach are anticipated. For example, structurally different models can be tuned to comparable effectiveness. This can provide an objective test for which there is no realistic precedent with smaller computations. We find ourselves inventing new code to manage our ensembles. Component computations involve tens to hundreds of CPUs and tens to hundreds of hours. The results of these moderately large parallel jobs influence the scheduling of subsequent jobs, and complex algorithms may be easily contemplated for this. The operating system concept of a "thread" re-emerges at a very coarse level, where each thread manages atomic computations of thousands of CPU-hours. That is, rather than multiple threads operating on a processor, at this level, multiple processors operate within a single thread. In collaboration with the Texas Advanced Computing Center, we are developing a software library at the system level, which should facilitate the development of computations involving complex strategies which invoke large numbers of moderately large multi-processor jobs. While this may have applications in other sciences, our key intent is to better characterize the coupled behavior of a very large set of climate model configurations.
Accelerating scientific discovery : 2007 annual report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckman, P.; Dave, P.; Drugan, C.
2008-11-14
As a gateway for scientific discovery, the Argonne Leadership Computing Facility (ALCF) works hand in hand with the world's best computational scientists to advance research in a diverse span of scientific domains, ranging from chemistry, applied mathematics, and materials science to engineering physics and life sciences. Sponsored by the U.S. Department of Energy's (DOE) Office of Science, researchers are using the IBM Blue Gene/L supercomputer at the ALCF to study and explore key scientific problems that underlie important challenges facing our society. For instance, a research team at the University of California-San Diego/ SDSC is studying the molecular basis ofmore » Parkinson's disease. The researchers plan to use the knowledge they gain to discover new drugs to treat the disease and to identify risk factors for other diseases that are equally prevalent. Likewise, scientists from Pratt & Whitney are using the Blue Gene to understand the complex processes within aircraft engines. Expanding our understanding of jet engine combustors is the secret to improved fuel efficiency and reduced emissions. Lessons learned from the scientific simulations of jet engine combustors have already led Pratt & Whitney to newer designs with unprecedented reductions in emissions, noise, and cost of ownership. ALCF staff members provide in-depth expertise and assistance to those using the Blue Gene/L and optimizing user applications. Both the Catalyst and Applications Performance Engineering and Data Analytics (APEDA) teams support the users projects. In addition to working with scientists running experiments on the Blue Gene/L, we have become a nexus for the broader global community. In partnership with the Mathematics and Computer Science Division at Argonne National Laboratory, we have created an environment where the world's most challenging computational science problems can be addressed. Our expertise in high-end scientific computing enables us to provide guidance for applications that are transitioning to petascale as well as to produce software that facilitates their development, such as the MPICH library, which provides a portable and efficient implementation of the MPI standard--the prevalent programming model for large-scale scientific applications--and the PETSc toolkit that provides a programming paradigm that eases the development of many scientific applications on high-end computers.« less
Approaching the exa-scale: a real-world evaluation of rendering extremely large data sets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patchett, John M; Ahrens, James P; Lo, Li - Ta
2010-10-15
Extremely large scale analysis is becoming increasingly important as supercomputers and their simulations move from petascale to exascale. The lack of dedicated hardware acceleration for rendering on today's supercomputing platforms motivates our detailed evaluation of the possibility of interactive rendering on the supercomputer. In order to facilitate our understanding of rendering on the supercomputing platform, we focus on scalability of rendering algorithms and architecture envisioned for exascale datasets. To understand tradeoffs for dealing with extremely large datasets, we compare three different rendering algorithms for large polygonal data: software based ray tracing, software based rasterization and hardware accelerated rasterization. We presentmore » a case study of strong and weak scaling of rendering extremely large data on both GPU and CPU based parallel supercomputers using Para View, a parallel visualization tool. Wc use three different data sets: two synthetic and one from a scientific application. At an extreme scale, algorithmic rendering choices make a difference and should be considered while approaching exascale computing, visualization, and analysis. We find software based ray-tracing offers a viable approach for scalable rendering of the projected future massive data sizes.« less
Paradigms and strategies for scientific computing on distributed memory concurrent computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foster, I.T.; Walker, D.W.
1994-06-01
In this work we examine recent advances in parallel languages and abstractions that have the potential for improving the programmability and maintainability of large-scale, parallel, scientific applications running on high performance architectures and networks. This paper focuses on Fortran M, a set of extensions to Fortran 77 that supports the modular design of message-passing programs. We describe the Fortran M implementation of a particle-in-cell (PIC) plasma simulation application, and discuss issues in the optimization of the code. The use of two other methodologies for parallelizing the PIC application are considered. The first is based on the shared object abstraction asmore » embodied in the Orca language. The second approach is the Split-C language. In Fortran M, Orca, and Split-C the ability of the programmer to control the granularity of communication is important is designing an efficient implementation.« less
To simulate or not to simulate: what are the questions?
Dudai, Yadin; Evers, Kathinka
2014-10-22
Simulation is a powerful method in science and engineering. However, simulation is an umbrella term, and its meaning and goals differ among disciplines. Rapid advances in neuroscience and computing draw increasing attention to large-scale brain simulations. What is the meaning of simulation, and what should the method expect to achieve? We discuss the concept of simulation from an integrated scientific and philosophical vantage point and pinpoint selected issues that are specific to brain simulation.
2007-01-01
Mechanical Turk: Artificial Artificial Intelligence . Retrieved May 15, 2006 from http://www.mturk.com/ mturk/welcome Atkins, D. E., Droegemeier, K. K...Turk (Amazon, 2006) site goes beyond volunteers and pays people to do Human Intelligence Tasks, those that are difficult for computers but relatively...geographically distributed scientific collaboration, and the use of videogame technology for training. Address: U.S. Army Research Institute, 2511 Jefferson
Comparisons of some large scientific computers
NASA Technical Reports Server (NTRS)
Credeur, K. R.
1981-01-01
In 1975, the National Aeronautics and Space Administration (NASA) began studies to assess the technical and economic feasibility of developing a computer having sustained computational speed of one billion floating point operations per second and a working memory of at least 240 million words. Such a powerful computer would allow computational aerodynamics to play a major role in aeronautical design and advanced fluid dynamics research. Based on favorable results from these studies, NASA proceeded with developmental plans. The computer was named the Numerical Aerodynamic Simulator (NAS). To help insure that the estimated cost, schedule, and technical scope were realistic, a brief study was made of past large scientific computers. Large discrepancies between inception and operation in scope, cost, or schedule were studied so that they could be minimized with NASA's proposed new compter. The main computers studied were the ILLIAC IV, STAR 100, Parallel Element Processor Ensemble (PEPE), and Shuttle Mission Simulator (SMS) computer. Comparison data on memory and speed were also obtained on the IBM 650, 704, 7090, 360-50, 360-67, 360-91, and 370-195; the CDC 6400, 6600, 7600, CYBER 203, and CYBER 205; CRAY 1; and the Advanced Scientific Computer (ASC). A few lessons learned conclude the report.
Changing computing paradigms towards power efficiency
Klavík, Pavel; Malossi, A. Cristiano I.; Bekas, Costas; Curioni, Alessandro
2014-01-01
Power awareness is fast becoming immensely important in computing, ranging from the traditional high-performance computing applications to the new generation of data centric workloads. In this work, we describe our efforts towards a power-efficient computing paradigm that combines low- and high-precision arithmetic. We showcase our ideas for the widely used kernel of solving systems of linear equations that finds numerous applications in scientific and engineering disciplines as well as in large-scale data analytics, statistics and machine learning. Towards this goal, we developed tools for the seamless power profiling of applications at a fine-grain level. In addition, we verify here previous work on post-FLOPS/W metrics and show that these can shed much more light in the power/energy profile of important applications. PMID:24842033
Big questions, big science: meeting the challenges of global ecology.
Schimel, David; Keller, Michael
2015-04-01
Ecologists are increasingly tackling questions that require significant infrastucture, large experiments, networks of observations, and complex data and computation. Key hypotheses in ecology increasingly require more investment, and larger data sets to be tested than can be collected by a single investigator's or s group of investigator's labs, sustained for longer than a typical grant. Large-scale projects are expensive, so their scientific return on the investment has to justify the opportunity cost-the science foregone because resources were expended on a large project rather than supporting a number of individual projects. In addition, their management must be accountable and efficient in the use of significant resources, requiring the use of formal systems engineering and project management to mitigate risk of failure. Mapping the scientific method into formal project management requires both scientists able to work in the context, and a project implementation team sensitive to the unique requirements of ecology. Sponsoring agencies, under pressure from external and internal forces, experience many pressures that push them towards counterproductive project management but a scientific community aware and experienced in large project science can mitigate these tendencies. For big ecology to result in great science, ecologists must become informed, aware and engaged in the advocacy and governance of large ecological projects.
Opal web services for biomedical applications.
Ren, Jingyuan; Williams, Nadya; Clementi, Luca; Krishnan, Sriram; Li, Wilfred W
2010-07-01
Biomedical applications have become increasingly complex, and they often require large-scale high-performance computing resources with a large number of processors and memory. The complexity of application deployment and the advances in cluster, grid and cloud computing require new modes of support for biomedical research. Scientific Software as a Service (sSaaS) enables scalable and transparent access to biomedical applications through simple standards-based Web interfaces. Towards this end, we built a production web server (http://ws.nbcr.net) in August 2007 to support the bioinformatics application called MEME. The server has grown since to include docking analysis with AutoDock and AutoDock Vina, electrostatic calculations using PDB2PQR and APBS, and off-target analysis using SMAP. All the applications on the servers are powered by Opal, a toolkit that allows users to wrap scientific applications easily as web services without any modification to the scientific codes, by writing simple XML configuration files. Opal allows both web forms-based access and programmatic access of all our applications. The Opal toolkit currently supports SOAP-based Web service access to a number of popular applications from the National Biomedical Computation Resource (NBCR) and affiliated collaborative and service projects. In addition, Opal's programmatic access capability allows our applications to be accessed through many workflow tools, including Vision, Kepler, Nimrod/K and VisTrails. From mid-August 2007 to the end of 2009, we have successfully executed 239,814 jobs. The number of successfully executed jobs more than doubled from 205 to 411 per day between 2008 and 2009. The Opal-enabled service model is useful for a wide range of applications. It provides for interoperation with other applications with Web Service interfaces, and allows application developers to focus on the scientific tool and workflow development. Web server availability: http://ws.nbcr.net.
Network bandwidth utilization forecast model on high bandwidth networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Wuchert; Sim, Alex
With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology,more » our forecast model reduces computation time by 83.2%. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.« less
Network Bandwidth Utilization Forecast Model on High Bandwidth Network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Wucherl; Sim, Alex
With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology,more » our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.« less
NASA Astrophysics Data System (ADS)
Samios, Nicholas
2014-09-01
Since its inception in 1997, the RIKEN BNL Research Center (RBRC) has been a major force in the realms of Spin Physics, Relativistic Heavy Ion Physics, large scale Computing Physics and the training of a new generation of extremely talented physicists. This has been accomplished through the recruitment of an outstanding non-permanent staff of Fellows and Research associates in theory and experiment. RBRC is now a mature organization that has reached a steady level in the size of scientific and support staff while at the same time retaining its vibrant youth. A brief history of the scientific accomplishments and contributions of the RBRC physicists will be presented as well as a discussion of the unique RBRC management structure.
Requirements for migration of NSSD code systems from LTSS to NLTSS
NASA Technical Reports Server (NTRS)
Pratt, M.
1984-01-01
The purpose of this document is to address the requirements necessary for a successful conversion of the Nuclear Design (ND) application code systems to the NLTSS environment. The ND application code system community can be characterized as large-scale scientific computation carried out on supercomputers. NLTSS is a distributed operating system being developed at LLNL to replace the LTSS system currently in use. The implications of change are examined including a description of the computational environment and users in ND. The discussion then turns to requirements, first in a general way, followed by specific requirements, including a proposal for managing the transition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahrens, J.P.; Shapiro, L.G.; Tanimoto, S.L.
1997-04-01
This paper describes a computing environment which supports computer-based scientific research work. Key features include support for automatic distributed scheduling and execution and computer-based scientific experimentation. A new flexible and extensible scheduling technique that is responsive to a user`s scheduling constraints, such as the ordering of program results and the specification of task assignments and processor utilization levels, is presented. An easy-to-use constraint language for specifying scheduling constraints, based on the relational database query language SQL, is described along with a search-based algorithm for fulfilling these constraints. A set of performance studies show that the environment can schedule and executemore » program graphs on a network of workstations as the user requests. A method for automatically generating computer-based scientific experiments is described. Experiments provide a concise method of specifying a large collection of parameterized program executions. The environment achieved significant speedups when executing experiments; for a large collection of scientific experiments an average speedup of 3.4 on an average of 5.5 scheduled processors was obtained.« less
Software engineering and automatic continuous verification of scientific software
NASA Astrophysics Data System (ADS)
Piggott, M. D.; Hill, J.; Farrell, P. E.; Kramer, S. C.; Wilson, C. R.; Ham, D.; Gorman, G. J.; Bond, T.
2011-12-01
Software engineering of scientific code is challenging for a number of reasons including pressure to publish and a lack of awareness of the pitfalls of software engineering by scientists. The Applied Modelling and Computation Group at Imperial College is a diverse group of researchers that employ best practice software engineering methods whilst developing open source scientific software. Our main code is Fluidity - a multi-purpose computational fluid dynamics (CFD) code that can be used for a wide range of scientific applications from earth-scale mantle convection, through basin-scale ocean dynamics, to laboratory-scale classic CFD problems, and is coupled to a number of other codes including nuclear radiation and solid modelling. Our software development infrastructure consists of a number of free tools that could be employed by any group that develops scientific code and has been developed over a number of years with many lessons learnt. A single code base is developed by over 30 people for which we use bazaar for revision control, making good use of the strong branching and merging capabilities. Using features of Canonical's Launchpad platform, such as code review, blueprints for designing features and bug reporting gives the group, partners and other Fluidity uers an easy-to-use platform to collaborate and allows the induction of new members of the group into an environment where software development forms a central part of their work. The code repositoriy are coupled to an automated test and verification system which performs over 20,000 tests, including unit tests, short regression tests, code verification and large parallel tests. Included in these tests are build tests on HPC systems, including local and UK National HPC services. The testing of code in this manner leads to a continuous verification process; not a discrete event performed once development has ceased. Much of the code verification is done via the "gold standard" of comparisons to analytical solutions via the method of manufactured solutions. By developing and verifying code in tandem we avoid a number of pitfalls in scientific software development and advocate similar procedures for other scientific code applications.
The Large-Scale Structure of Scientific Method
ERIC Educational Resources Information Center
Kosso, Peter
2009-01-01
The standard textbook description of the nature of science describes the proposal, testing, and acceptance of a theoretical idea almost entirely in isolation from other theories. The resulting model of science is a kind of piecemeal empiricism that misses the important network structure of scientific knowledge. Only the large-scale description of…
Christensen, A. J.; Srinivasan, V.; Hart, J. C.; ...
2018-03-17
Sustainable crop production is a contributing factor to current and future food security. Innovative technologies are needed to design strategies that will achieve higher crop yields on less land and with fewer resources. Computational modeling coupled with advanced scientific visualization enables researchers to explore and interact with complex agriculture, nutrition, and climate data to predict how crops will respond to untested environments. These virtual observations and predictions can direct the development of crop ideotypes designed to meet future yield and nutritional demands. This review surveys modeling strategies for the development of crop ideotypes and scientific visualization technologies that have ledmore » to discoveries in “big data” analysis. Combined modeling and visualization approaches have been used to realistically simulate crops and to guide selection that immediately enhances crop quantity and quality under challenging environmental conditions. Lastly, this survey of current and developing technologies indicates that integrative modeling and advanced scientific visualization may help overcome challenges in agriculture and nutrition data as large-scale and multidimensional data become available in these fields.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christensen, A. J.; Srinivasan, V.; Hart, J. C.
Sustainable crop production is a contributing factor to current and future food security. Innovative technologies are needed to design strategies that will achieve higher crop yields on less land and with fewer resources. Computational modeling coupled with advanced scientific visualization enables researchers to explore and interact with complex agriculture, nutrition, and climate data to predict how crops will respond to untested environments. These virtual observations and predictions can direct the development of crop ideotypes designed to meet future yield and nutritional demands. This review surveys modeling strategies for the development of crop ideotypes and scientific visualization technologies that have ledmore » to discoveries in “big data” analysis. Combined modeling and visualization approaches have been used to realistically simulate crops and to guide selection that immediately enhances crop quantity and quality under challenging environmental conditions. Lastly, this survey of current and developing technologies indicates that integrative modeling and advanced scientific visualization may help overcome challenges in agriculture and nutrition data as large-scale and multidimensional data become available in these fields.« less
Christensen, A J; Srinivasan, Venkatraman; Hart, John C; Marshall-Colon, Amy
2018-05-01
Sustainable crop production is a contributing factor to current and future food security. Innovative technologies are needed to design strategies that will achieve higher crop yields on less land and with fewer resources. Computational modeling coupled with advanced scientific visualization enables researchers to explore and interact with complex agriculture, nutrition, and climate data to predict how crops will respond to untested environments. These virtual observations and predictions can direct the development of crop ideotypes designed to meet future yield and nutritional demands. This review surveys modeling strategies for the development of crop ideotypes and scientific visualization technologies that have led to discoveries in "big data" analysis. Combined modeling and visualization approaches have been used to realistically simulate crops and to guide selection that immediately enhances crop quantity and quality under challenging environmental conditions. This survey of current and developing technologies indicates that integrative modeling and advanced scientific visualization may help overcome challenges in agriculture and nutrition data as large-scale and multidimensional data become available in these fields.
Christensen, A J; Srinivasan, Venkatraman; Hart, John C; Marshall-Colon, Amy
2018-01-01
Abstract Sustainable crop production is a contributing factor to current and future food security. Innovative technologies are needed to design strategies that will achieve higher crop yields on less land and with fewer resources. Computational modeling coupled with advanced scientific visualization enables researchers to explore and interact with complex agriculture, nutrition, and climate data to predict how crops will respond to untested environments. These virtual observations and predictions can direct the development of crop ideotypes designed to meet future yield and nutritional demands. This review surveys modeling strategies for the development of crop ideotypes and scientific visualization technologies that have led to discoveries in “big data” analysis. Combined modeling and visualization approaches have been used to realistically simulate crops and to guide selection that immediately enhances crop quantity and quality under challenging environmental conditions. This survey of current and developing technologies indicates that integrative modeling and advanced scientific visualization may help overcome challenges in agriculture and nutrition data as large-scale and multidimensional data become available in these fields. PMID:29562368
NASA Astrophysics Data System (ADS)
Fiore, Sandro; Williams, Dean; Aloisio, Giovanni
2016-04-01
In many scientific domains such as climate, data is often n-dimensional and requires tools that support specialized data types and primitives to be properly stored, accessed, analysed and visualized. Moreover, new challenges arise in large-scale scenarios and eco-systems where petabytes (PB) of data can be available and data can be distributed and/or replicated (e.g., the Earth System Grid Federation (ESGF) serving the Coupled Model Intercomparison Project, Phase 5 (CMIP5) experiment, providing access to 2.5PB of data for the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). Most of the tools currently available for scientific data analysis in the climate domain fail at large scale since they: (1) are desktop based and need the data locally; (2) are sequential, so do not benefit from available multicore/parallel machines; (3) do not provide declarative languages to express scientific data analysis tasks; (4) are domain-specific, which ties their adoption to a specific domain; and (5) do not provide a workflow support, to enable the definition of complex "experiments". The Ophidia project aims at facing most of the challenges highlighted above by providing a big data analytics framework for eScience. Ophidia provides declarative, server-side, and parallel data analysis, jointly with an internal storage model able to efficiently deal with multidimensional data and a hierarchical data organization to manage large data volumes ("datacubes"). The project relies on a strong background of high performance database management and OLAP systems to manage large scientific data sets. It also provides a native workflow management support, to define processing chains and workflows with tens to hundreds of data analytics operators to build real scientific use cases. With regard to interoperability aspects, the talk will present the contribution provided both to the RDA Working Group on Array Databases, and the Earth System Grid Federation (ESGF) Compute Working Team. Also highlighted will be the results of large scale climate model intercomparison data analysis experiments, for example: (1) defined in the context of the EU H2020 INDIGO-DataCloud project; (2) implemented in a real geographically distributed environment involving CMCC (Italy) and LLNL (US) sites; (3) exploiting Ophidia as server-side, parallel analytics engine; and (4) applied on real CMIP5 data sets available through ESGF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moniz, Ernest; Carr, Alan; Bethe, Hans
The Trinity Test of July 16, 1945 was the first full-scale, real-world test of a nuclear weapon; with the new Trinity supercomputer Los Alamos National Laboratory's goal is to do this virtually, in 3D. Trinity was the culmination of a fantastic effort of groundbreaking science and engineering by hundreds of men and women at Los Alamos and other Manhattan Project sites. It took them less than two years to change the world. The Laboratory is marking the 70th anniversary of the Trinity Test because it not only ushered in the Nuclear Age, but with it the origin of today’s advancedmore » supercomputing. We live in the Age of Supercomputers due in large part to nuclear weapons science here at Los Alamos. National security science, and nuclear weapons science in particular, at Los Alamos National Laboratory have provided a key motivation for the evolution of large-scale scientific computing. Beginning with the Manhattan Project there has been a constant stream of increasingly significant, complex problems in nuclear weapons science whose timely solutions demand larger and faster computers. The relationship between national security science at Los Alamos and the evolution of computing is one of interdependence.« less
The Cell Collective: Toward an open and collaborative approach to systems biology
2012-01-01
Background Despite decades of new discoveries in biomedical research, the overwhelming complexity of cells has been a significant barrier to a fundamental understanding of how cells work as a whole. As such, the holistic study of biochemical pathways requires computer modeling. Due to the complexity of cells, it is not feasible for one person or group to model the cell in its entirety. Results The Cell Collective is a platform that allows the world-wide scientific community to create these models collectively. Its interface enables users to build and use models without specifying any mathematical equations or computer code - addressing one of the major hurdles with computational research. In addition, this platform allows scientists to simulate and analyze the models in real-time on the web, including the ability to simulate loss/gain of function and test what-if scenarios in real time. Conclusions The Cell Collective is a web-based platform that enables laboratory scientists from across the globe to collaboratively build large-scale models of various biological processes, and simulate/analyze them in real time. In this manuscript, we show examples of its application to a large-scale model of signal transduction. PMID:22871178
Moniz, Ernest; Carr, Alan; Bethe, Hans; Morrison, Phillip; Ramsay, Norman; Teller, Edward; Brixner, Berlyn; Archer, Bill; Agnew, Harold; Morrison, John
2018-01-16
The Trinity Test of July 16, 1945 was the first full-scale, real-world test of a nuclear weapon; with the new Trinity supercomputer Los Alamos National Laboratory's goal is to do this virtually, in 3D. Trinity was the culmination of a fantastic effort of groundbreaking science and engineering by hundreds of men and women at Los Alamos and other Manhattan Project sites. It took them less than two years to change the world. The Laboratory is marking the 70th anniversary of the Trinity Test because it not only ushered in the Nuclear Age, but with it the origin of todayâs advanced supercomputing. We live in the Age of Supercomputers due in large part to nuclear weapons science here at Los Alamos. National security science, and nuclear weapons science in particular, at Los Alamos National Laboratory have provided a key motivation for the evolution of large-scale scientific computing. Beginning with the Manhattan Project there has been a constant stream of increasingly significant, complex problems in nuclear weapons science whose timely solutions demand larger and faster computers. The relationship between national security science at Los Alamos and the evolution of computing is one of interdependence.
Technologies for Large Data Management in Scientific Computing
NASA Astrophysics Data System (ADS)
Pace, Alberto
2014-01-01
In recent years, intense usage of computing has been the main strategy of investigations in several scientific research projects. The progress in computing technology has opened unprecedented opportunities for systematic collection of experimental data and the associated analysis that were considered impossible only few years ago. This paper focuses on the strategies in use: it reviews the various components that are necessary for an effective solution that ensures the storage, the long term preservation, and the worldwide distribution of large quantities of data that are necessary in a large scientific research project. The paper also mentions several examples of data management solutions used in High Energy Physics for the CERN Large Hadron Collider (LHC) experiments in Geneva, Switzerland which generate more than 30,000 terabytes of data every year that need to be preserved, analyzed, and made available to a community of several tenth of thousands scientists worldwide.
NASA Astrophysics Data System (ADS)
Strayer, Michael
2007-09-01
Good morning. Welcome to Boston, the home of the Red Sox, Celtics and Bruins, baked beans, tea parties, Robert Parker, and SciDAC 2007. A year ago I stood before you to share the legacy of the first SciDAC program and identify the challenges that we must address on the road to petascale computing—a road E E Cummins described as `. . . never traveled, gladly beyond any experience.' Today, I want to explore the preparations for the rapidly approaching extreme scale (X-scale) generation. These preparations are the first step propelling us along the road of burgeoning scientific discovery enabled by the application of X- scale computing. We look to petascale computing and beyond to open up a world of discovery that cuts across scientific fields and leads us to a greater understanding of not only our world, but our universe. As part of the President's America Competitiveness Initiative, the ASCR Office has been preparing a ten year vision for computing. As part of this planning the LBNL together with ORNL and ANL hosted three town hall meetings on Simulation and Modeling at the Exascale for Energy, Ecological Sustainability and Global Security (E3). The proposed E3 initiative is organized around four programmatic themes: Engaging our top scientists, engineers, computer scientists and applied mathematicians; investing in pioneering large-scale science; developing scalable analysis algorithms, and storage architectures to accelerate discovery; and accelerating the build-out and future development of the DOE open computing facilities. It is clear that we have only just started down the path to extreme scale computing. Plan to attend Thursday's session on the out-briefing and discussion of these meetings. The road to the petascale has been at best rocky. In FY07, the continuing resolution provided 12% less money for Advanced Scientific Computing than either the President, the Senate, or the House. As a consequence, many of you had to absorb a no cost extension for your SciDAC work. I am pleased that the President's FY08 budget restores the funding for SciDAC. Quoting from Advanced Scientific Computing Research description in the House Energy and Water Development Appropriations Bill for FY08, "Perhaps no other area of research at the Department is so critical to sustaining U.S. leadership in science and technology, revolutionizing the way science is done and improving research productivity." As a society we need to revolutionize our approaches to energy, environmental and global security challenges. As we go forward along the road to the X-scale generation, the use of computation will continue to be a critical tool along with theory and experiment in understanding the behavior of the fundamental components of nature as well as for fundamental discovery and exploration of the behavior of complex systems. The foundation to overcome these societal challenges will build from the experiences and knowledge gained as you, members of our SciDAC research teams, work together to attack problems at the tera- and peta- scale. If SciDAC is viewed as an experiment for revolutionizing scientific methodology, then a strategic goal of ASCR program must be to broaden the intellectual base prepared to address the challenges of the new X-scale generation of computing. We must focus our computational science experiences gained over the past five years on the opportunities introduced with extreme scale computing. Our facilities are on a path to provide the resources needed to undertake the first part of our journey. Using the newly upgraded 119 teraflop Cray XT system at the Leadership Computing Facility, SciDAC research teams have in three days performed a 100-year study of the time evolution of the atmospheric CO2 concentration originating from the land surface. The simulation of the El Nino/Southern Oscillation which was part of this study has been characterized as `the most impressive new result in ten years' gained new insight into the behavior of superheated ionic gas in the ITER reactor as a result of an AORSA run on 22,500 processors that achieved over 87 trillion calculations per second (87 teraflops) which is 74% of the system's theoretical peak. Tomorrow, Argonne and IBM will announce that the first IBM Blue Gene/P, a 100 teraflop system, will be shipped to the Argonne Leadership Computing Facility later this fiscal year. By the end of FY2007 ASCR high performance and leadership computing resources will include the 114 teraflop IBM Blue Gene/P; a 102 teraflop Cray XT4 at NERSC and a 119 teraflop Cray XT system at Oak Ridge. Before ringing in the New Year, Oak Ridge will upgrade to 250 teraflops with the replacement of the dual core processors with quad core processors and Argonne will upgrade to between 250-500 teraflops, and next year, a petascale Cray Baker system is scheduled for delivery at Oak Ridge. The multidisciplinary teams in our SciDAC Centers for Enabling Technologies and our SciDAC Institutes must continue to work with our Scientific Application teams to overcome the barriers that prevent effective use of these new systems. These challenges include: the need for new algorithms as well as operating system and runtime software and tools which scale to parallel systems composed of hundreds of thousands processors; program development environments and tools which scale effectively and provide ease of use for developers and scientific end users; and visualization and data management systems that support moving, storing, analyzing, manipulating and visualizing multi-petabytes of scientific data and objects. The SciDAC Centers, located primarily at our DOE national laboratories will take the lead in ensuring that critical computer science and applied mathematics issues are addressed in a timely and comprehensive fashion and to address issues associated with research software lifecycle. In contrast, the SciDAC Institutes, which are university-led centers of excellence, will have more flexibility to pursue new research topics through a range of research collaborations. The Institutes will also work to broaden the intellectual and researcher base—conducting short courses and summer schools to take advantage of new high performance computing capabilities. The SciDAC Outreach Center at Lawrence Berkeley National Laboratory complements the outreach efforts of the SciDAC Institutes. The Outreach Center is our clearinghouse for SciDAC activities and resources and will communicate with the high performance computing community in part to understand their needs for workshops, summer schools and institutes. SciDAC is not ASCR's only effort to broaden the computational science community needed to meet the challenges of the new X-scale generation. I hope that you were able to attend the Computational Science Graduate Fellowship poster session last night. ASCR developed the fellowship in 1991 to meet the nation's growing need for scientists and technology professionals with advanced computer skills. CSGF, now jointly funded between ASCR and NNSA, is more than a traditional academic fellowship. It has provided more than 200 of the best and brightest graduate students with guidance, support and community in preparing them as computational scientists. Today CSGF alumni are bringing their diverse top-level skills and knowledge to research teams at DOE laboratories and in industries such as Proctor and Gamble, Lockheed Martin and Intel. At universities they are working to train the next generation of computational scientists. To build on this success, we intend to develop a wholly new Early Career Principal Investigator's (ECPI) program. Our objective is to stimulate academic research in scientific areas within ASCR's purview especially among faculty in early stages of their academic careers. Last February, we lost Ken Kennedy, one of the leading lights of our community. As we move forward into the extreme computing generation, his vision and insight will be greatly missed. In memorial to Ken Kennedy, we shall designate the ECPI grants to beginning faculty in Computer Science as the Ken Kennedy Fellowship. Watch the ASCR website for more information about ECPI and other early career programs in the computational sciences. We look to you, our scientists, researchers, and visionaries to take X-scale computing and use it to explode scientific discovery in your fields. We at SciDAC will work to ensure that this tool is the sharpest and most precise and efficient instrument to carve away the unknown and reveal the most exciting secrets and stimulating scientific discoveries of our time. The partnership between research and computing is the marriage that will spur greater discovery, and as Spencer said to Susan in Robert Parker's novel, `Sudden Mischief', `We stick together long enough, and we may get as smart as hell'. Michael Strayer
An engineering closure for heavily under-resolved coarse-grid CFD in large applications
NASA Astrophysics Data System (ADS)
Class, Andreas G.; Yu, Fujiang; Jordan, Thomas
2016-11-01
Even though high performance computation allows very detailed description of a wide range of scales in scientific computations, engineering simulations used for design studies commonly merely resolve the large scales thus speeding up simulation time. The coarse-grid CFD (CGCFD) methodology is developed for flows with repeated flow patterns as often observed in heat exchangers or porous structures. It is proposed to use inviscid Euler equations on a very coarse numerical mesh. This coarse mesh needs not to conform to the geometry in all details. To reinstall physics on all smaller scales cheap subgrid models are employed. Subgrid models are systematically constructed by analyzing well-resolved generic representative simulations. By varying the flow conditions in these simulations correlations are obtained. These comprehend for each individual coarse mesh cell a volume force vector and volume porosity. Moreover, for all vertices, surface porosities are derived. CGCFD is related to the immersed boundary method as both exploit volume forces and non-body conformal meshes. Yet, CGCFD differs with respect to the coarser mesh and the use of Euler equations. We will describe the methodology based on a simple test case and the application of the method to a 127 pin wire-wrap fuel bundle.
On Establishing Big Data Wave Breakwaters with Analytics (Invited)
NASA Astrophysics Data System (ADS)
Riedel, M.
2013-12-01
The Research Data Alliance Big Data Analytics (RDA-BDA) Interest Group seeks to develop community based recommendations on feasible data analytics approaches to address scientific community needs of utilizing large quantities of data. RDA-BDA seeks to analyze different scientific domain applications and their potential use of various big data analytics techniques. A systematic classification of feasible combinations of analysis algorithms, analytical tools, data and resource characteristics and scientific queries will be covered in these recommendations. These combinations are complex since a wide variety of different data analysis algorithms exist (e.g. specific algorithms using GPUs of analyzing brain images) that need to work together with multiple analytical tools reaching from simple (iterative) map-reduce methods (e.g. with Apache Hadoop or Twister) to sophisticated higher level frameworks that leverage machine learning algorithms (e.g. Apache Mahout). These computational analysis techniques are often augmented with visual analytics techniques (e.g. computational steering on large-scale high performance computing platforms) to put the human judgement into the analysis loop or new approaches with databases that are designed to support new forms of unstructured or semi-structured data as opposed to the rather tradtional structural databases (e.g. relational databases). More recently, data analysis and underpinned analytics frameworks also have to consider energy footprints of underlying resources. To sum up, the aim of this talk is to provide pieces of information to understand big data analytics in the context of science and engineering using the aforementioned classification as the lighthouse and as the frame of reference for a systematic approach. This talk will provide insights about big data analytics methods in context of science within varios communities and offers different views of how approaches of correlation and causality offer complementary methods to advance in science and engineering today. The RDA Big Data Analytics Group seeks to understand what approaches are not only technically feasible, but also scientifically feasible. The lighthouse Goal of the RDA Big Data Analytics Group is a classification of clever combinations of various Technologies and scientific applications in order to provide clear recommendations to the scientific community what approaches are technicalla and scientifically feasible.
NASA Technical Reports Server (NTRS)
Schreiber, Robert; Simon, Horst D.
1992-01-01
We are surveying current projects in the area of parallel supercomputers. The machines considered here will become commercially available in the 1990 - 1992 time frame. All are suitable for exploring the critical issues in applying parallel processors to large scale scientific computations, in particular CFD calculations. This chapter presents an overview of the surveyed machines, and a detailed analysis of the various architectural and technology approaches taken. Particular emphasis is placed on the feasibility of a Teraflops capability following the paths proposed by various developers.
Workshop on Advances in Scientific Computation and Differential Equations (SCADE)
1994-07-18
STATEMENT ~~’"j’’ Approved for public release; distribution unlimited. I ABSTRACT (MAMMU 200WOMW 94 808 1 64 4.L SUBIECT TERMS Ii11URE Of PAGES 12 16...called differential algebraic ODEs (DAES). (Some important early research on this topic was by L. Petzold.) Both theoretically and in terms of...completely specify the solution. In many physical systems, especially those in biology, or other large scale slowly responding systems, the inclusion of some
Beowulf Distributed Processing and the United States Geological Survey
Maddox, Brian G.
2002-01-01
Introduction In recent years, the United States Geological Survey's (USGS) National Mapping Discipline (NMD) has expanded its scientific and research activities. Work is being conducted in areas such as emergency response research, scientific visualization, urban prediction, and other simulation activities. Custom-produced digital data have become essential for these types of activities. High-resolution, remotely sensed datasets are also seeing increased use. Unfortunately, the NMD is also finding that it lacks the resources required to perform some of these activities. Many of these projects require large amounts of computer processing resources. Complex urban-prediction simulations, for example, involve large amounts of processor-intensive calculations on large amounts of input data. This project was undertaken to learn and understand the concepts of distributed processing. Experience was needed in developing these types of applications. The idea was that this type of technology could significantly aid the needs of the NMD scientific and research programs. Porting a numerically intensive application currently being used by an NMD science program to run in a distributed fashion would demonstrate the usefulness of this technology. There are several benefits that this type of technology can bring to the USGS's research programs. Projects can be performed that were previously impossible due to a lack of computing resources. Other projects can be performed on a larger scale than previously possible. For example, distributed processing can enable urban dynamics research to perform simulations on larger areas without making huge sacrifices in resolution. The processing can also be done in a more reasonable amount of time than with traditional single-threaded methods (a scaled version of Chester County, Pennsylvania, took about fifty days to finish its first calibration phase with a single-threaded program). This paper has several goals regarding distributed processing technology. It will describe the benefits of the technology. Real data about a distributed application will be presented as an example of the benefits that this technology can bring to USGS scientific programs. Finally, some of the issues with distributed processing that relate to USGS work will be discussed.
From computer-assisted intervention research to clinical impact: The need for a holistic approach.
Ourselin, Sébastien; Emberton, Mark; Vercauteren, Tom
2016-10-01
The early days of the field of medical image computing (MIC) and computer-assisted intervention (CAI), when publishing a strong self-contained methodological algorithm was enough to produce impact, are over. As a community, we now have substantial responsibility to translate our scientific progresses into improved patient care. In the field of computer-assisted interventions, the emphasis is also shifting from the mere use of well-known established imaging modalities and position trackers to the design and combination of innovative sensing, elaborate computational models and fine-grained clinical workflow analysis to create devices with unprecedented capabilities. The barriers to translating such devices in the complex and understandably heavily regulated surgical and interventional environment can seem daunting. Whether we leave the translation task mostly to our industrial partners or welcome, as researchers, an important share of it is up to us. We argue that embracing the complexity of surgical and interventional sciences is mandatory to the evolution of the field. Being able to do so requires large-scale infrastructure and a critical mass of expertise that very few research centres have. In this paper, we emphasise the need for a holistic approach to computer-assisted interventions where clinical, scientific, engineering and regulatory expertise are combined as a means of moving towards clinical impact. To ensure that the breadth of infrastructure and expertise required for translational computer-assisted intervention research does not lead to a situation where the field advances only thanks to a handful of exceptionally large research centres, we also advocate that solutions need to be designed to lower the barriers to entry. Inspired by fields such as particle physics and astronomy, we claim that centralised very large innovation centres with state of the art technology and health technology assessment capabilities backed by core support staff and open interoperability standards need to be accessible to the wider computer-assisted intervention research community. Copyright © 2016. Published by Elsevier B.V.
A second golden age of aeroacoustics?
Lele, Sanjiva K; Nichols, Joseph W
2014-08-13
In 1992, Sir James Lighthill foresaw the dawn of a second golden age in aeroacoustics enabled by computer simulations (Hardin JC, Hussaini MY (eds) 1993 Computational aeroacoustics, New York, NY: Springer (doi:10.1007/978-1-4613-8342-0)). This review traces the progress in large-scale computations to resolve the noise-source processes and the methods devised to predict the far-field radiated sound using this information. Keeping focus on aviation-related noise sources a brief account of the progress in simulations of jet noise, fan noise and airframe noise is given highlighting the key technical issues and challenges. The complex geometry of nozzle elements and airframe components as well as the high Reynolds number of target applications require careful assessment of the discretization algorithms on unstructured grids and modelling compromises. High-fidelity simulations with 200-500 million points are not uncommon today and are used to improve scientific understanding of the noise generation process in specific situations. We attempt to discern where the future might take us, especially if exascale computing becomes a reality in 10 years. A pressing question in this context concerns the role of modelling in the coming era. While the sheer scale of the data generated by large-scale simulations will require new methods for data analysis and data visualization, it is our view that suitable theoretical formulations and reduced models will be even more important in future. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Suplatov, Dmitry; Popova, Nina; Zhumatiy, Sergey; Voevodin, Vladimir; Švedas, Vytas
2016-04-01
Rapid expansion of online resources providing access to genomic, structural, and functional information associated with biological macromolecules opens an opportunity to gain a deeper understanding of the mechanisms of biological processes due to systematic analysis of large datasets. This, however, requires novel strategies to optimally utilize computer processing power. Some methods in bioinformatics and molecular modeling require extensive computational resources. Other algorithms have fast implementations which take at most several hours to analyze a common input on a modern desktop station, however, due to multiple invocations for a large number of subtasks the full task requires a significant computing power. Therefore, an efficient computational solution to large-scale biological problems requires both a wise parallel implementation of resource-hungry methods as well as a smart workflow to manage multiple invocations of relatively fast algorithms. In this work, a new computer software mpiWrapper has been developed to accommodate non-parallel implementations of scientific algorithms within the parallel supercomputing environment. The Message Passing Interface has been implemented to exchange information between nodes. Two specialized threads - one for task management and communication, and another for subtask execution - are invoked on each processing unit to avoid deadlock while using blocking calls to MPI. The mpiWrapper can be used to launch all conventional Linux applications without the need to modify their original source codes and supports resubmission of subtasks on node failure. We show that this approach can be used to process huge amounts of biological data efficiently by running non-parallel programs in parallel mode on a supercomputer. The C++ source code and documentation are available from http://biokinet.belozersky.msu.ru/mpiWrapper .
Statistical processing of large image sequences.
Khellah, F; Fieguth, P; Murray, M J; Allen, M
2005-01-01
The dynamic estimation of large-scale stochastic image sequences, as frequently encountered in remote sensing, is important in a variety of scientific applications. However, the size of such images makes conventional dynamic estimation methods, for example, the Kalman and related filters, impractical. In this paper, we present an approach that emulates the Kalman filter, but with considerably reduced computational and storage requirements. Our approach is illustrated in the context of a 512 x 512 image sequence of ocean surface temperature. The static estimation step, the primary contribution here, uses a mixture of stationary models to accurately mimic the effect of a nonstationary prior, simplifying both computational complexity and modeling. Our approach provides an efficient, stable, positive-definite model which is consistent with the given correlation structure. Thus, the methods of this paper may find application in modeling and single-frame estimation.
What is bioinformatics? A proposed definition and overview of the field.
Luscombe, N M; Greenbaum, D; Gerstein, M
2001-01-01
The recent flood of data from genome sequences and functional genomics has given rise to new field, bioinformatics, which combines elements of biology and computer science. Here we propose a definition for this new field and review some of the research that is being pursued, particularly in relation to transcriptional regulatory systems. Our definition is as follows: Bioinformatics is conceptualizing biology in terms of macromolecules (in the sense of physical-chemistry) and then applying "informatics" techniques (derived from disciplines such as applied maths, computer science, and statistics) to understand and organize the information associated with these molecules, on a large-scale. Analyses in bioinformatics predominantly focus on three types of large datasets available in molecular biology: macromolecular structures, genome sequences, and the results of functional genomics experiments (e.g. expression data). Additional information includes the text of scientific papers and "relationship data" from metabolic pathways, taxonomy trees, and protein-protein interaction networks. Bioinformatics employs a wide range of computational techniques including sequence and structural alignment, database design and data mining, macromolecular geometry, phylogenetic tree construction, prediction of protein structure and function, gene finding, and expression data clustering. The emphasis is on approaches integrating a variety of computational methods and heterogeneous data sources. Finally, bioinformatics is a practical discipline. We survey some representative applications, such as finding homologues, designing drugs, and performing large-scale censuses. Additional information pertinent to the review is available over the web at http://bioinfo.mbb.yale.edu/what-is-it.
Changing computing paradigms towards power efficiency.
Klavík, Pavel; Malossi, A Cristiano I; Bekas, Costas; Curioni, Alessandro
2014-06-28
Power awareness is fast becoming immensely important in computing, ranging from the traditional high-performance computing applications to the new generation of data centric workloads. In this work, we describe our efforts towards a power-efficient computing paradigm that combines low- and high-precision arithmetic. We showcase our ideas for the widely used kernel of solving systems of linear equations that finds numerous applications in scientific and engineering disciplines as well as in large-scale data analytics, statistics and machine learning. Towards this goal, we developed tools for the seamless power profiling of applications at a fine-grain level. In addition, we verify here previous work on post-FLOPS/W metrics and show that these can shed much more light in the power/energy profile of important applications. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
The International Symposium on Grids and Clouds
NASA Astrophysics Data System (ADS)
The International Symposium on Grids and Clouds (ISGC) 2012 will be held at Academia Sinica in Taipei from 26 February to 2 March 2012, with co-located events and workshops. The conference is hosted by the Academia Sinica Grid Computing Centre (ASGC). 2012 is the decennium anniversary of the ISGC which over the last decade has tracked the convergence, collaboration and innovation of individual researchers across the Asia Pacific region to a coherent community. With the continuous support and dedication from the delegates, ISGC has provided the primary international distributed computing platform where distinguished researchers and collaboration partners from around the world share their knowledge and experiences. The last decade has seen the wide-scale emergence of e-Infrastructure as a critical asset for the modern e-Scientist. The emergence of large-scale research infrastructures and instruments that has produced a torrent of electronic data is forcing a generational change in the scientific process and the mechanisms used to analyse the resulting data deluge. No longer can the processing of these vast amounts of data and production of relevant scientific results be undertaken by a single scientist. Virtual Research Communities that span organisations around the world, through an integrated digital infrastructure that connects the trust and administrative domains of multiple resource providers, have become critical in supporting these analyses. Topics covered in ISGC 2012 include: High Energy Physics, Biomedicine & Life Sciences, Earth Science, Environmental Changes and Natural Disaster Mitigation, Humanities & Social Sciences, Operations & Management, Middleware & Interoperability, Security and Networking, Infrastructure Clouds & Virtualisation, Business Models & Sustainability, Data Management, Distributed Volunteer & Desktop Grid Computing, High Throughput Computing, and High Performance, Manycore & GPU Computing.
NASA Astrophysics Data System (ADS)
Prodanovic, M.; Esteva, M.; Hanlon, M.; Nanda, G.; Agarwal, P.
2015-12-01
Recent advances in imaging have provided a wealth of 3D datasets that reveal pore space microstructure (nm to cm length scale) and allow investigation of nonlinear flow and mechanical phenomena from first principles using numerical approaches. This framework has popularly been called "digital rock physics". Researchers, however, have trouble storing and sharing the datasets both due to their size and the lack of standardized image types and associated metadata for volumetric datasets. This impedes scientific cross-validation of the numerical approaches that characterize large scale porous media properties, as well as development of multiscale approaches required for correct upscaling. A single research group typically specializes in an imaging modality and/or related modeling on a single length scale, and lack of data-sharing infrastructure makes it difficult to integrate different length scales. We developed a sustainable, open and easy-to-use repository called the Digital Rocks Portal, that (1) organizes images and related experimental measurements of different porous materials, (2) improves access to them for a wider community of geosciences or engineering researchers not necessarily trained in computer science or data analysis. Once widely accepter, the repository will jumpstart productivity and enable scientific inquiry and engineering decisions founded on a data-driven basis. This is the first repository of its kind. We show initial results on incorporating essential software tools and pipelines that make it easier for researchers to store and reuse data, and for educators to quickly visualize and illustrate concepts to a wide audience. For data sustainability and continuous access, the portal is implemented within the reliable, 24/7 maintained High Performance Computing Infrastructure supported by the Texas Advanced Computing Center (TACC) at the University of Texas at Austin. Long-term storage is provided through the University of Texas System Research Cyber-infrastructure initiative.
Time-Series Forecast Modeling on High-Bandwidth Network Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Wucherl; Sim, Alex
With the increasing number of geographically distributed scientific collaborations and the growing sizes of scientific data, it has become challenging for users to achieve the best possible network performance on a shared network. In this paper, we have developed a model to forecast expected bandwidth utilization on high-bandwidth wide area networks. The forecast model can improve the efficiency of the resource utilization and scheduling of data movements on high-bandwidth networks to accommodate ever increasing data volume for large-scale scientific data applications. A univariate time-series forecast model is developed with the Seasonal decomposition of Time series by Loess (STL) and themore » AutoRegressive Integrated Moving Average (ARIMA) on Simple Network Management Protocol (SNMP) path utilization measurement data. Compared with the traditional approach such as Box-Jenkins methodology to train the ARIMA model, our forecast model reduces computation time up to 92.6 %. It also shows resilience against abrupt network usage changes. Finally, our forecast model conducts the large number of multi-step forecast, and the forecast errors are within the mean absolute deviation (MAD) of the monitored measurements.« less
Time-Series Forecast Modeling on High-Bandwidth Network Measurements
Yoo, Wucherl; Sim, Alex
2016-06-24
With the increasing number of geographically distributed scientific collaborations and the growing sizes of scientific data, it has become challenging for users to achieve the best possible network performance on a shared network. In this paper, we have developed a model to forecast expected bandwidth utilization on high-bandwidth wide area networks. The forecast model can improve the efficiency of the resource utilization and scheduling of data movements on high-bandwidth networks to accommodate ever increasing data volume for large-scale scientific data applications. A univariate time-series forecast model is developed with the Seasonal decomposition of Time series by Loess (STL) and themore » AutoRegressive Integrated Moving Average (ARIMA) on Simple Network Management Protocol (SNMP) path utilization measurement data. Compared with the traditional approach such as Box-Jenkins methodology to train the ARIMA model, our forecast model reduces computation time up to 92.6 %. It also shows resilience against abrupt network usage changes. Finally, our forecast model conducts the large number of multi-step forecast, and the forecast errors are within the mean absolute deviation (MAD) of the monitored measurements.« less
Delensing CMB polarization with external datasets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Kendrick M.; Hanson, Duncan; LoVerde, Marilena
2012-06-01
One of the primary scientific targets of current and future CMB polarization experiments is the search for a stochastic background of gravity waves in the early universe. As instrumental sensitivity improves, the limiting factor will eventually be B-mode power generated by gravitational lensing, which can be removed through use of so-called ''delensing'' algorithms. We forecast prospects for delensing using lensing maps which are obtained externally to CMB polarization: either from large-scale structure observations, or from high-resolution maps of CMB temperature. We conclude that the forecasts in either case are not encouraging, and that significantly delensing large-scale CMB polarization requires high-resolutionmore » polarization maps with sufficient sensitivity to measure the lensing B-mode. We also present a simple formalism for including delensing in CMB forecasts which is computationally fast and agrees well with Monte Carlos.« less
Unified Performance and Power Modeling of Scientific Workloads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Shuaiwen; Barker, Kevin J.; Kerbyson, Darren J.
2013-11-17
It is expected that scientific applications executing on future large-scale HPC must be optimized not only in terms of performance, but also in terms of power consumption. As power and energy become increasingly constrained resources, researchers and developers must have access to tools that will allow for accurate prediction of both performance and power consumption. Reasoning about performance and power consumption in concert will be critical for achieving maximum utilization of limited resources on future HPC systems. To this end, we present a unified performance and power model for the Nek-Bone mini-application developed as part of the DOE's CESAR Exascalemore » Co-Design Center. Our models consider the impact of computation, point-to-point communication, and collective communication« less
The European perspective for LSST
NASA Astrophysics Data System (ADS)
Gangler, Emmanuel
2017-06-01
LSST is a next generation telescope that will produce an unprecedented data flow. The project goal is to deliver data products such as images and catalogs thus enabling scientific analysis for a wide community of users. As a large scale survey, LSST data will be complementary with other facilities in a wide range of scientific domains, including data from ESA or ESO. European countries have invested in LSST since 2007, in the construction of the camera as well as in the computing effort. This latter will be instrumental in designing the next step: how to distribute LSST data to Europe. Astroinformatics challenges for LSST indeed includes not only the analysis of LSST big data, but also the practical efficiency of the data access.
NASA Astrophysics Data System (ADS)
Rosen, P. A.; Gurrola, E. M.; Sacco, G. F.; Agram, P. S.; Lavalle, M.; Zebker, H. A.
2014-12-01
The NASA ESTO-developed InSAR Scientific Computing Environment (ISCE) provides acomputing framework for geodetic image processing for InSAR sensors that ismodular, flexible, and extensible, enabling scientists to reduce measurementsdirectly from a diverse array of radar satellites and aircraft to newgeophysical products. ISCE can serve as the core of a centralized processingcenter to bring Level-0 raw radar data up to Level-3 data products, but isadaptable to alternative processing approaches for science users interested innew and different ways to exploit mission data. This is accomplished throughrigorous componentization of processing codes, abstraction and generalization ofdata models, and a xml-based input interface with multi-level prioritizedcontrol of the component configurations depending on the science processingcontext. The proposed NASA-ISRO SAR (NISAR) Mission would deliver data ofunprecedented quantity and quality, making possible global-scale studies inclimate research, natural hazards, and Earth's ecosystems. ISCE is planned tobecome a key element in processing projected NISAR data into higher level dataproducts, enabling a new class of analyses that take greater advantage of thelong time and large spatial scales of these new data than current approaches.NISAR would be but one mission in a constellation of radar satellites in thefuture delivering such data. ISCE has been incorporated into two prototypecloud-based systems that have demonstrated its elasticity to addressing largerdata processing problems in a "production" context and its ability to becontrolled by individual science users on the cloud for large data problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasenkamp, Daren; Sim, Alexander; Wehner, Michael
Extensive computing power has been used to tackle issues such as climate changes, fusion energy, and other pressing scientific challenges. These computations produce a tremendous amount of data; however, many of the data analysis programs currently only run a single processor. In this work, we explore the possibility of using the emerging cloud computing platform to parallelize such sequential data analysis tasks. As a proof of concept, we wrap a program for analyzing trends of tropical cyclones in a set of virtual machines (VMs). This approach allows the user to keep their familiar data analysis environment in the VMs, whilemore » we provide the coordination and data transfer services to ensure the necessary input and output are directed to the desired locations. This work extensively exercises the networking capability of the cloud computing systems and has revealed a number of weaknesses in the current cloud system software. In our tests, we are able to scale the parallel data analysis job to a modest number of VMs and achieve a speedup that is comparable to running the same analysis task using MPI. However, compared to MPI based parallelization, the cloud-based approach has a number of advantages. The cloud-based approach is more flexible because the VMs can capture arbitrary software dependencies without requiring the user to rewrite their programs. The cloud-based approach is also more resilient to failure; as long as a single VM is running, it can make progress while as soon as one MPI node fails the whole analysis job fails. In short, this initial work demonstrates that a cloud computing system is a viable platform for distributed scientific data analyses traditionally conducted on dedicated supercomputing systems.« less
An Application-Based Performance Characterization of the Columbia Supercluster
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Djomehri, Jahed M.; Hood, Robert; Jin, Hoaqiang; Kiris, Cetin; Saini, Subhash
2005-01-01
Columbia is a 10,240-processor supercluster consisting of 20 Altix nodes with 512 processors each, and currently ranked as the second-fastest computer in the world. In this paper, we present the performance characteristics of Columbia obtained on up to four computing nodes interconnected via the InfiniBand and/or NUMAlink4 communication fabrics. We evaluate floating-point performance, memory bandwidth, message passing communication speeds, and compilers using a subset of the HPC Challenge benchmarks, and some of the NAS Parallel Benchmarks including the multi-zone versions. We present detailed performance results for three scientific applications of interest to NASA, one from molecular dynamics, and two from computational fluid dynamics. Our results show that both the NUMAlink4 and the InfiniBand hold promise for application scaling to a large number of processors.
Load Balancing Unstructured Adaptive Grids for CFD Problems
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Oliker, Leonid
1996-01-01
Mesh adaption is a powerful tool for efficient unstructured-grid computations but causes load imbalance among processors on a parallel machine. A dynamic load balancing method is presented that balances the workload across all processors with a global view. After each parallel tetrahedral mesh adaption, the method first determines if the new mesh is sufficiently unbalanced to warrant a repartitioning. If so, the adapted mesh is repartitioned, with new partitions assigned to processors so that the redistribution cost is minimized. The new partitions are accepted only if the remapping cost is compensated by the improved load balance. Results indicate that this strategy is effective for large-scale scientific computations on distributed-memory multiprocessors.
NASA Astrophysics Data System (ADS)
Schruff, T.; Liang, R.; Rüde, U.; Schüttrumpf, H.; Frings, R. M.
2018-01-01
The knowledge of structural properties of granular materials such as porosity is highly important in many application-oriented and scientific fields. In this paper we present new results of computer-based packing simulations where we use the non-smooth granular dynamics (NSGD) method to simulate gravitational random dense packing of spherical particles with various particle size distributions and two types of depositional conditions. A bin packing scenario was used to compare simulation results to laboratory porosity measurements and to quantify the sensitivity of the NSGD regarding critical simulation parameters such as time step size. The results of the bin packing simulations agree well with laboratory measurements across all particle size distributions with all absolute errors below 1%. A large-scale packing scenario with periodic side walls was used to simulate the packing of up to 855,600 spherical particles with various particle size distributions (PSD). Simulation outcomes are used to quantify the effect of particle-domain-size ratio on the packing compaction. A simple correction model, based on the coordination number, is employed to compensate for this effect on the porosity and to determine the relationship between PSD and porosity. Promising accuracy and stability results paired with excellent computational performance recommend the application of NSGD for large-scale packing simulations, e.g. to further enhance the generation of representative granular deposits.
N, Sadhasivam; R, Balamurugan; M, Pandi
2018-01-27
Objective: Epigenetic modifications involving DNA methylation and histone statud are responsible for the stable maintenance of cellular phenotypes. Abnormalities may be causally involved in cancer development and therefore could have diagnostic potential. The field of epigenomics refers to all epigenetic modifications implicated in control of gene expression, with a focus on better understanding of human biology in both normal and pathological states. Epigenomics scientific workflow is essentially a data processing pipeline to automate the execution of various genome sequencing operations or tasks. Cloud platform is a popular computing platform for deploying large scale epigenomics scientific workflow. Its dynamic environment provides various resources to scientific users on a pay-per-use billing model. Scheduling epigenomics scientific workflow tasks is a complicated problem in cloud platform. We here focused on application of an improved particle swam optimization (IPSO) algorithm for this purpose. Methods: The IPSO algorithm was applied to find suitable resources and allocate epigenomics tasks so that the total cost was minimized for detection of epigenetic abnormalities of potential application for cancer diagnosis. Result: The results showed that IPSO based task to resource mapping reduced total cost by 6.83 percent as compared to the traditional PSO algorithm. Conclusion: The results for various cancer diagnosis tasks showed that IPSO based task to resource mapping can achieve better costs when compared to PSO based mapping for epigenomics scientific application workflow. Creative Commons Attribution License
An integrated network of Arabidopsis growth regulators and its use for gene prioritization.
Sabaghian, Ehsan; Drebert, Zuzanna; Inzé, Dirk; Saeys, Yvan
2015-12-01
Elucidating the molecular mechanisms that govern plant growth has been an important topic in plant research, and current advances in large-scale data generation call for computational tools that efficiently combine these different data sources to generate novel hypotheses. In this work, we present a novel, integrated network that combines multiple large-scale data sources to characterize growth regulatory genes in Arabidopsis, one of the main plant model organisms. The contributions of this work are twofold: first, we characterized a set of carefully selected growth regulators with respect to their connectivity patterns in the integrated network, and, subsequently, we explored to which extent these connectivity patterns can be used to suggest new growth regulators. Using a large-scale comparative study, we designed new supervised machine learning methods to prioritize growth regulators. Our results show that these methods significantly improve current state-of-the-art prioritization techniques, and are able to suggest meaningful new growth regulators. In addition, the integrated network is made available to the scientific community, providing a rich data source that will be useful for many biological processes, not necessarily restricted to plant growth.
Barrett, R. F.; Crozier, P. S.; Doerfler, D. W.; ...
2014-09-28
Computational science and engineering application programs are typically large, complex, and dynamic, and are often constrained by distribution limitations. As a means of making tractable rapid explorations of scientific and engineering application programs in the context of new, emerging, and future computing architectures, a suite of miniapps has been created to serve as proxies for full scale applications. Each miniapp is designed to represent a key performance characteristic that does or is expected to significantly impact the runtime performance of an application program. In this paper we introduce a methodology for assessing the ability of these miniapps to effectively representmore » these performance issues. We applied this methodology to four miniapps, examining the linkage between them and an application they are intended to represent. Herein we evaluate the fidelity of that linkage. This work represents the initial steps required to begin to answer the question, ''Under what conditions does a miniapp represent a key performance characteristic in a full app?''« less
Current Scientific Issues in Large Scale Atmospheric Dynamics
NASA Technical Reports Server (NTRS)
Miller, T. L. (Compiler)
1986-01-01
Topics in large scale atmospheric dynamics are discussed. Aspects of atmospheric blocking, the influence of transient baroclinic eddies on planetary-scale waves, cyclogenesis, the effects of orography on planetary scale flow, small scale frontal structure, and simulations of gravity waves in frontal zones are discussed.
A Novel Interdisciplinary Approach to Socio-Technical Complexity
NASA Astrophysics Data System (ADS)
Bassetti, Chiara
The chapter presents a novel interdisciplinary approach that integrates micro-sociological analysis into computer-vision and pattern-recognition modeling and algorithms, the purpose being to tackle socio-technical complexity at a systemic yet micro-grounded level. The approach is empirically-grounded and both theoretically- and analytically-driven, yet systemic and multidimensional, semi-supervised and computable, and oriented towards large scale applications. The chapter describes the proposed approach especially as for its sociological foundations, and as applied to the analysis of a particular setting --i.e. sport-spectator crowds. Crowds, better defined as large gatherings, are almost ever-present in our societies, and capturing their dynamics is crucial. From social sciences to public safety management and emergency response, modeling and predicting large gatherings' presence and dynamics, thus possibly preventing critical situations and being able to properly react to them, is fundamental. This is where semi/automated technologies can make the difference. The work presented in this chapter is intended as a scientific step towards such an objective.
Using Relational Reasoning to Learn about Scientific Phenomena at Unfamiliar Scales
ERIC Educational Resources Information Center
Resnick, Ilyse; Davatzes, Alexandra; Newcombe, Nora S.; Shipley, Thomas F.
2016-01-01
Many scientific theories and discoveries involve reasoning about extreme scales, removed from human experience, such as time in geology, size in nanoscience. Thus, understanding scale is central to science, technology, engineering, and mathematics. Unfortunately, novices have trouble understanding and comparing sizes of unfamiliar large and small…
Using Relational Reasoning to Learn about Scientific Phenomena at Unfamiliar Scales
ERIC Educational Resources Information Center
Resnick, Ilyse; Davatzes, Alexandra; Newcombe, Nora S.; Shipley, Thomas F.
2017-01-01
Many scientific theories and discoveries involve reasoning about extreme scales, removed from human experience, such as time in geology and size in nanoscience. Thus, understanding scale is central to science, technology, engineering, and mathematics. Unfortunately, novices have trouble understanding and comparing sizes of unfamiliar large and…
Djurfeldt, Mikael
2012-07-01
The connection-set algebra (CSA) is a novel and general formalism for the description of connectivity in neuronal network models, from small-scale to large-scale structure. The algebra provides operators to form more complex sets of connections from simpler ones and also provides parameterization of such sets. CSA is expressive enough to describe a wide range of connection patterns, including multiple types of random and/or geometrically dependent connectivity, and can serve as a concise notation for network structure in scientific writing. CSA implementations allow for scalable and efficient representation of connectivity in parallel neuronal network simulators and could even allow for avoiding explicit representation of connections in computer memory. The expressiveness of CSA makes prototyping of network structure easy. A C+ + version of the algebra has been implemented and used in a large-scale neuronal network simulation (Djurfeldt et al., IBM J Res Dev 52(1/2):31-42, 2008b) and an implementation in Python has been publicly released.
Knowledge Discovery from Climate Data using Graph-Based Methods
NASA Astrophysics Data System (ADS)
Steinhaeuser, K.
2012-04-01
Climate and Earth sciences have recently experienced a rapid transformation from a historically data-poor to a data-rich environment, thus bringing them into the realm of the Fourth Paradigm of scientific discovery - a term coined by the late Jim Gray (Hey et al. 2009), the other three being theory, experimentation and computer simulation. In particular, climate-related observations from remote sensors on satellites and weather radars, in situ sensors and sensor networks, as well as outputs of climate or Earth system models from large-scale simulations, provide terabytes of spatio-temporal data. These massive and information-rich datasets offer a significant opportunity for advancing climate science and our understanding of the global climate system, yet current analysis techniques are not able to fully realize their potential benefits. We describe a class of computational approaches, specifically from the data mining and machine learning domains, which may be novel to the climate science domain and can assist in the analysis process. Computer scientists have developed spatial and spatio-temporal analysis techniques for a number of years now, and many of them may be applicable and/or adaptable to problems in climate science. We describe a large-scale, NSF-funded project aimed at addressing climate science question using computational analysis methods; team members include computer scientists, statisticians, and climate scientists from various backgrounds. One of the major thrusts is in the development of graph-based methods, and several illustrative examples of recent work in this area will be presented.
History of the numerical aerodynamic simulation program
NASA Technical Reports Server (NTRS)
Peterson, Victor L.; Ballhaus, William F., Jr.
1987-01-01
The Numerical Aerodynamic Simulation (NAS) program has reached a milestone with the completion of the initial operating configuration of the NAS Processing System Network. This achievement is the first major milestone in the continuing effort to provide a state-of-the-art supercomputer facility for the national aerospace community and to serve as a pathfinder for the development and use of future supercomputer systems. The underlying factors that motivated the initiation of the program are first identified and then discussed. These include the emergence and evolution of computational aerodynamics as a powerful new capability in aerodynamics research and development, the computer power required for advances in the discipline, the complementary nature of computation and wind tunnel testing, and the need for the government to play a pathfinding role in the development and use of large-scale scientific computing systems. Finally, the history of the NAS program is traced from its inception in 1975 to the present time.
Job Scheduling in a Heterogeneous Grid Environment
NASA Technical Reports Server (NTRS)
Shan, Hong-Zhang; Smith, Warren; Oliker, Leonid; Biswas, Rupak
2004-01-01
Computational grids have the potential for solving large-scale scientific problems using heterogeneous and geographically distributed resources. However, a number of major technical hurdles must be overcome before this potential can be realized. One problem that is critical to effective utilization of computational grids is the efficient scheduling of jobs. This work addresses this problem by describing and evaluating a grid scheduling architecture and three job migration algorithms. The architecture is scalable and does not assume control of local site resources. The job migration policies use the availability and performance of computer systems, the network bandwidth available between systems, and the volume of input and output data associated with each job. An extensive performance comparison is presented using real workloads from leading computational centers. The results, based on several key metrics, demonstrate that the performance of our distributed migration algorithms is significantly greater than that of a local scheduling framework and comparable to a non-scalable global scheduling approach.
NASA Technical Reports Server (NTRS)
Biggerstaff, J. A. (Editor)
1985-01-01
Topics related to physics instrumentation are discussed, taking into account cryostat and electronic development associated with multidetector spectrometer systems, the influence of materials and counting-rate effects on He-3 neutron spectrometry, a data acquisition system for time-resolved muscle experiments, and a sensitive null detector for precise measurements of integral linearity. Other subjects explored are concerned with space instrumentation, computer applications, detectors, instrumentation for high energy physics, instrumentation for nuclear medicine, environmental monitoring and health physics instrumentation, nuclear safeguards and reactor instrumentation, and a 1984 symposium on nuclear power systems. Attention is given to the application of multiprocessors to scientific problems, a large-scale computer facility for computational aerodynamics, a single-board 32-bit computer for the Fastbus, the integration of detector arrays and readout electronics on a single chip, and three-dimensional Monte Carlo simulation of the electron avalanche in a proportional counter.
Kenny, Joseph P.; Janssen, Curtis L.; Gordon, Mark S.; ...
2008-01-01
Cutting-edge scientific computing software is complex, increasingly involving the coupling of multiple packages to combine advanced algorithms or simulations at multiple physical scales. Component-based software engineering (CBSE) has been advanced as a technique for managing this complexity, and complex component applications have been created in the quantum chemistry domain, as well as several other simulation areas, using the component model advocated by the Common Component Architecture (CCA) Forum. While programming models do indeed enable sound software engineering practices, the selection of programming model is just one building block in a comprehensive approach to large-scale collaborative development which must also addressmore » interface and data standardization, and language and package interoperability. We provide an overview of the development approach utilized within the Quantum Chemistry Science Application Partnership, identifying design challenges, describing the techniques which we have adopted to address these challenges and highlighting the advantages which the CCA approach offers for collaborative development.« less
ASCR Cybersecurity for Scientific Computing Integrity - Research Pathways and Ideas Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peisert, Sean; Potok, Thomas E.; Jones, Todd
At the request of the U.S. Department of Energy's (DOE) Office of Science (SC) Advanced Scientific Computing Research (ASCR) program office, a workshop was held June 2-3, 2015, in Gaithersburg, MD, to identify potential long term (10 to +20 year) cybersecurity fundamental basic research and development challenges, strategies and roadmap facing future high performance computing (HPC), networks, data centers, and extreme-scale scientific user facilities. This workshop was a follow-on to the workshop held January 7-9, 2015, in Rockville, MD, that examined higher level ideas about scientific computing integrity specific to the mission of the DOE Office of Science. Issues includedmore » research computation and simulation that takes place on ASCR computing facilities and networks, as well as network-connected scientific instruments, such as those run by various DOE Office of Science programs. Workshop participants included researchers and operational staff from DOE national laboratories, as well as academic researchers and industry experts. Participants were selected based on the submission of abstracts relating to the topics discussed in the previous workshop report [1] and also from other ASCR reports, including "Abstract Machine Models and Proxy Architectures for Exascale Computing" [27], the DOE "Preliminary Conceptual Design for an Exascale Computing Initiative" [28], and the January 2015 machine learning workshop [29]. The workshop was also attended by several observers from DOE and other government agencies. The workshop was divided into three topic areas: (1) Trustworthy Supercomputing, (2) Extreme-Scale Data, Knowledge, and Analytics for Understanding and Improving Cybersecurity, and (3) Trust within High-end Networking and Data Centers. Participants were divided into three corresponding teams based on the category of their abstracts. The workshop began with a series of talks from the program manager and workshop chair, followed by the leaders for each of the three topics and a representative of each of the four major DOE Office of Science Advanced Scientific Computing Research Facilities: the Argonne Leadership Computing Facility (ALCF), the Energy Sciences Network (ESnet), the National Energy Research Scientific Computing Center (NERSC), and the Oak Ridge Leadership Computing Facility (OLCF). The rest of the workshop consisted of topical breakout discussions and focused writing periods that produced much of this report.« less
The Emergence of Dominant Design(s) in Large Scale Cyber-Infrastructure Systems
ERIC Educational Resources Information Center
Diamanti, Eirini Ilana
2012-01-01
Cyber-infrastructure systems are integrated large-scale IT systems designed with the goal of transforming scientific practice by enabling multi-disciplinary, cross-institutional collaboration. Their large scale and socio-technical complexity make design decisions for their underlying architecture practically irreversible. Drawing on three…
Analysis of the flight dynamics of the Solar Maximum Mission (SMM) off-sun scientific pointing
NASA Technical Reports Server (NTRS)
Pitone, D. S.; Klein, J. R.
1989-01-01
Algorithms are presented which were created and implemented by the Goddard Space Flight Center's (GSFC's) Solar Maximum Mission (SMM) attitude operations team to support large-angle spacecraft pointing at scientific objectives. The mission objective of the post-repair SMM satellite was to study solar phenomena. However, because the scientific instruments, such as the Coronagraph/Polarimeter (CP) and the Hard X ray Burst Spectrometer (HXRBS), were able to view objects other than the Sun, attitude operations support for attitude pointing at large angles from the nominal solar-pointing attitudes was required. Subsequently, attitude support for SMM was provided for scientific objectives such as Comet Halley, Supernova 1987A, Cygnus X-1, and the Crab Nebula. In addition, the analysis was extended to include the reverse problem, computing the right ascension and declination of a body given the off-Sun angles. This analysis led to the computation of the orbits of seven new solar comets seen in the field-of-view (FOV) of the CP. The activities necessary to meet these large-angle attitude-pointing sequences, such as slew sequence planning, viewing-period prediction, and tracking-bias computation are described. Analysis is presented for the computation of maneuvers and pointing parameters relative to the SMM-unique, Sun-centered reference frame. Finally, science data and independent attitude solutions are used to evaluate the large-angle pointing performance.
Analysis of the flight dynamics of the Solar Maximum Mission (SMM) off-sun scientific pointing
NASA Technical Reports Server (NTRS)
Pitone, D. S.; Klein, J. R.; Twambly, B. J.
1990-01-01
Algorithms are presented which were created and implemented by the Goddard Space Flight Center's (GSFC's) Solar Maximum Mission (SMM) attitude operations team to support large-angle spacecraft pointing at scientific objectives. The mission objective of the post-repair SMM satellite was to study solar phenomena. However, because the scientific instruments, such as the Coronagraph/Polarimeter (CP) and the Hard X-ray Burst Spectrometer (HXRBS), were able to view objects other than the Sun, attitude operations support for attitude pointing at large angles from the nominal solar-pointing attitudes was required. Subsequently, attitude support for SMM was provided for scientific objectives such as Comet Halley, Supernova 1987A, Cygnus X-1, and the Crab Nebula. In addition, the analysis was extended to include the reverse problem, computing the right ascension and declination of a body given the off-Sun angles. This analysis led to the computation of the orbits of seven new solar comets seen in the field-of-view (FOV) of the CP. The activities necessary to meet these large-angle attitude-pointing sequences, such as slew sequence planning, viewing-period prediction, and tracking-bias computation are described. Analysis is presented for the computation of maneuvers and pointing parameters relative to the SMM-unique, Sun-centered reference frame. Finally, science data and independent attitude solutions are used to evaluate the larg-angle pointing performance.
Optimized Materials From First Principles Simulations: Are We There Yet?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galli, G; Gygi, F
2005-07-26
In the past thirty years, the use of scientific computing has become pervasive in all disciplines: collection and interpretation of most experimental data is carried out using computers, and physical models in computable form, with various degrees of complexity and sophistication, are utilized in all fields of science. However, full prediction of physical and chemical phenomena based on the basic laws of Nature, using computer simulations, is a revolution still in the making, and it involves some formidable theoretical and computational challenges. We illustrate the progress and successes obtained in recent years in predicting fundamental properties of materials in condensedmore » phases and at the nanoscale, using ab-initio, quantum simulations. We also discuss open issues related to the validation of the approximate, first principles theories used in large scale simulations, and the resulting complex interplay between computation and experiment. Finally, we describe some applications, with focus on nanostructures and liquids, both at ambient and under extreme conditions.« less
ISCB Ebola Award for Important Future Research on the Computational Biology of Ebola Virus
Karp, Peter D.; Berger, Bonnie; Kovats, Diane; Lengauer, Thomas; Linial, Michal; Sabeti, Pardis; Hide, Winston; Rost, Burkhard
2015-01-01
Speed is of the essence in combating Ebola; thus, computational approaches should form a significant component of Ebola research. As for the development of any modern drug, computational biology is uniquely positioned to contribute through comparative analysis of the genome sequences of Ebola strains as well as 3-D protein modeling. Other computational approaches to Ebola may include large-scale docking studies of Ebola proteins with human proteins and with small-molecule libraries, computational modeling of the spread of the virus, computational mining of the Ebola literature, and creation of a curated Ebola database. Taken together, such computational efforts could significantly accelerate traditional scientific approaches. In recognition of the need for important and immediate solutions from the field of computational biology against Ebola, the International Society for Computational Biology (ISCB) announces a prize for an important computational advance in fighting the Ebola virus. ISCB will confer the ISCB Fight against Ebola Award, along with a prize of US$2,000, at its July 2016 annual meeting (ISCB Intelligent Systems for Molecular Biology (ISMB) 2016, Orlando, Florida). PMID:26097686
ISCB Ebola Award for Important Future Research on the Computational Biology of Ebola Virus.
Karp, Peter D; Berger, Bonnie; Kovats, Diane; Lengauer, Thomas; Linial, Michal; Sabeti, Pardis; Hide, Winston; Rost, Burkhard
2015-01-01
Speed is of the essence in combating Ebola; thus, computational approaches should form a significant component of Ebola research. As for the development of any modern drug, computational biology is uniquely positioned to contribute through comparative analysis of the genome sequences of Ebola strains as well as 3-D protein modeling. Other computational approaches to Ebola may include large-scale docking studies of Ebola proteins with human proteins and with small-molecule libraries, computational modeling of the spread of the virus, computational mining of the Ebola literature, and creation of a curated Ebola database. Taken together, such computational efforts could significantly accelerate traditional scientific approaches. In recognition of the need for important and immediate solutions from the field of computational biology against Ebola, the International Society for Computational Biology (ISCB) announces a prize for an important computational advance in fighting the Ebola virus. ISCB will confer the ISCB Fight against Ebola Award, along with a prize of US$2,000, at its July 2016 annual meeting (ISCB Intelligent Systems for Molecular Biology (ISMB) 2016, Orlando, Florida).
Real science at the petascale.
Saksena, Radhika S; Boghosian, Bruce; Fazendeiro, Luis; Kenway, Owain A; Manos, Steven; Mazzeo, Marco D; Sadiq, S Kashif; Suter, James L; Wright, David; Coveney, Peter V
2009-06-28
We describe computational science research that uses petascale resources to achieve scientific results at unprecedented scales and resolution. The applications span a wide range of domains, from investigation of fundamental problems in turbulence through computational materials science research to biomedical applications at the forefront of HIV/AIDS research and cerebrovascular haemodynamics. This work was mainly performed on the US TeraGrid 'petascale' resource, Ranger, at Texas Advanced Computing Center, in the first half of 2008 when it was the largest computing system in the world available for open scientific research. We have sought to use this petascale supercomputer optimally across application domains and scales, exploiting the excellent parallel scaling performance found on up to at least 32 768 cores for certain of our codes in the so-called 'capability computing' category as well as high-throughput intermediate-scale jobs for ensemble simulations in the 32-512 core range. Furthermore, this activity provides evidence that conventional parallel programming with MPI should be successful at the petascale in the short to medium term. We also report on the parallel performance of some of our codes on up to 65 636 cores on the IBM Blue Gene/P system at the Argonne Leadership Computing Facility, which has recently been named the fastest supercomputer in the world for open science.
Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Dean N.; Silva, Claudio
2013-09-30
For the past three years, a large analysis and visualization effort—funded by the Department of Energy’s Office of Biological and Environmental Research (BER), the National Aeronautics and Space Administration (NASA), and the National Oceanic and Atmospheric Administration (NOAA)—has brought together a wide variety of industry-standard scientific computing libraries and applications to create Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT) to serve the global climate simulation and observational research communities. To support interactive analysis and visualization, all components connect through a provenance application–programming interface to capture meaningful history and workflow. Components can be loosely coupled into the framework for fast integrationmore » or tightly coupled for greater system functionality and communication with other components. The overarching goal of UV-CDAT is to provide a new paradigm for access to and analysis of massive, distributed scientific data collections by leveraging distributed data architectures located throughout the world. The UV-CDAT framework addresses challenges in analysis and visualization and incorporates new opportunities, including parallelism for better efficiency, higher speed, and more accurate scientific inferences. Today, it provides more than 600 users access to more analysis and visualization products than any other single source.« less
A Combined Ethical and Scientific Analysis of Large-scale Tests of Solar Climate Engineering
NASA Astrophysics Data System (ADS)
Ackerman, T. P.
2017-12-01
Our research group recently published an analysis of the combined ethical and scientific issues surrounding large-scale testing of stratospheric aerosol injection (SAI; Lenferna et al., 2017, Earth's Future). We are expanding this study in two directions. The first is extending this same analysis to other geoengineering techniques, particularly marine cloud brightening (MCB). MCB has substantial differences to SAI in this context because MCB can be tested over significantly smaller areas of the planet and, following injection, has a much shorter lifetime of weeks as opposed to years for SAI. We examine issues such as the role of intent, the lesser of two evils, and the nature of consent. In addition, several groups are currently considering climate engineering governance tools such as a code of ethics and a registry. We examine how these tools might influence climate engineering research programs and, specifically, large-scale testing. The second direction of expansion is asking whether ethical and scientific issues associated with large-scale testing are so significant that they effectively preclude moving ahead with climate engineering research and testing. Some previous authors have suggested that no research should take place until these issues are resolved. We think this position is too draconian and consider a more nuanced version of this argument. We note, however, that there are serious questions regarding the ability of the scientific research community to move to the point of carrying out large-scale tests.
Improving the energy efficiency of sparse linear system solvers on multicore and manycore systems.
Anzt, H; Quintana-Ortí, E S
2014-06-28
While most recent breakthroughs in scientific research rely on complex simulations carried out in large-scale supercomputers, the power draft and energy spent for this purpose is increasingly becoming a limiting factor to this trend. In this paper, we provide an overview of the current status in energy-efficient scientific computing by reviewing different technologies used to monitor power draft as well as power- and energy-saving mechanisms available in commodity hardware. For the particular domain of sparse linear algebra, we analyse the energy efficiency of a broad collection of hardware architectures and investigate how algorithmic and implementation modifications can improve the energy performance of sparse linear system solvers, without negatively impacting their performance. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
McLaughlin, David; Shapley, Robert; Shelley, Michael
2003-01-01
A large-scale computational model of a local patch of input layer 4 [Formula: see text] of the primary visual cortex (V1) of the macaque monkey, together with a coarse-grained reduction of the model, are used to understand potential effects of cortical architecture upon neuronal performance. Both the large-scale point neuron model and its asymptotic reduction are described. The work focuses upon orientation preference and selectivity, and upon the spatial distribution of neuronal responses across the cortical layer. Emphasis is given to the role of cortical architecture (the geometry of synaptic connectivity, of the ordered and disordered structure of input feature maps, and of their interplay) as mechanisms underlying cortical responses within the model. Specifically: (i) Distinct characteristics of model neuronal responses (firing rates and orientation selectivity) as they depend upon the neuron's location within the cortical layer relative to the pinwheel centers of the map of orientation preference; (ii) A time independent (DC) elevation in cortico-cortical conductances within the model, in contrast to a "push-pull" antagonism between excitation and inhibition; (iii) The use of asymptotic analysis to unveil mechanisms which underly these performances of the model; (iv) A discussion of emerging experimental data. The work illustrates that large-scale scientific computation--coupled together with analytical reduction, mathematical analysis, and experimental data, can provide significant understanding and intuition about the possible mechanisms of cortical response. It also illustrates that the idealization which is a necessary part of theoretical modeling can outline in sharp relief the consequences of differing alternative interpretations and mechanisms--with final arbiter being a body of experimental evidence whose measurements address the consequences of these analyses.
Lattice QCD Calculations in Nuclear Physics towards the Exascale
NASA Astrophysics Data System (ADS)
Joo, Balint
2017-01-01
The combination of algorithmic advances and new highly parallel computing architectures are enabling lattice QCD calculations to tackle ever more complex problems in nuclear physics. In this talk I will review some computational challenges that are encountered in large scale cold nuclear physics campaigns such as those in hadron spectroscopy calculations. I will discuss progress in addressing these with algorithmic improvements such as multi-grid solvers and software for recent hardware architectures such as GPUs and Intel Xeon Phi, Knights Landing. Finally, I will highlight some current topics for research and development as we head towards the Exascale era This material is funded by the U.S. Department of Energy, Office Of Science, Offices of Nuclear Physics, High Energy Physics and Advanced Scientific Computing Research, as well as the Office of Nuclear Physics under contract DE-AC05-06OR23177.
A Comparative Study of Point Cloud Data Collection and Processing
NASA Astrophysics Data System (ADS)
Pippin, J. E.; Matheney, M.; Gentle, J. N., Jr.; Pierce, S. A.; Fuentes-Pineda, G.
2016-12-01
Over the past decade, there has been dramatic growth in the acquisition of publicly funded high-resolution topographic data for scientific, environmental, engineering and planning purposes. These data sets are valuable for applications of interest across a large and varied user community. However, because of the large volumes of data produced by high-resolution mapping technologies and expense of aerial data collection, it is often difficult to collect and distribute these datasets. Furthermore, the data can be technically challenging to process, requiring software and computing resources not readily available to many users. This study presents a comparison of advanced computing hardware and software that is used to collect and process point cloud datasets, such as LIDAR scans. Activities included implementation and testing of open source libraries and applications for point cloud data processing such as, Meshlab, Blender, PDAL, and PCL. Additionally, a suite of commercial scale applications, Skanect and Cloudcompare, were applied to raw datasets. Handheld hardware solutions, a Structure Scanner and Xbox 360 Kinect V1, were tested for their ability to scan at three field locations. The resultant data projects successfully scanned and processed subsurface karst features ranging from small stalactites to large rooms, as well as a surface waterfall feature. Outcomes support the feasibility of rapid sensing in 3D at field scales.
A Novel Coarsening Method for Scalable and Efficient Mesh Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, A; Hysom, D; Gunney, B
2010-12-02
In this paper, we propose a novel mesh coarsening method called brick coarsening method. The proposed method can be used in conjunction with any graph partitioners and scales to very large meshes. This method reduces problem space by decomposing the original mesh into fixed-size blocks of nodes called bricks, layered in a similar way to conventional brick laying, and then assigning each node of the original mesh to appropriate brick. Our experiments indicate that the proposed method scales to very large meshes while allowing simple RCB partitioner to produce higher-quality partitions with significantly less edge cuts. Our results further indicatemore » that the proposed brick-coarsening method allows more complicated partitioners like PT-Scotch to scale to very large problem size while still maintaining good partitioning performance with relatively good edge-cut metric. Graph partitioning is an important problem that has many scientific and engineering applications in such areas as VLSI design, scientific computing, and resource management. Given a graph G = (V,E), where V is the set of vertices and E is the set of edges, (k-way) graph partitioning problem is to partition the vertices of the graph (V) into k disjoint groups such that each group contains roughly equal number of vertices and the number of edges connecting vertices in different groups is minimized. Graph partitioning plays a key role in large scientific computing, especially in mesh-based computations, as it is used as a tool to minimize the volume of communication and to ensure well-balanced load across computing nodes. The impact of graph partitioning on the reduction of communication can be easily seen, for example, in different iterative methods to solve a sparse system of linear equation. Here, a graph partitioning technique is applied to the matrix, which is basically a graph in which each edge is a non-zero entry in the matrix, to allocate groups of vertices to processors in such a way that many of matrix-vector multiplication can be performed locally on each processor and hence to minimize communication. Furthermore, a good graph partitioning scheme ensures the equal amount of computation performed on each processor. Graph partitioning is a well known NP-complete problem, and thus the most commonly used graph partitioning algorithms employ some forms of heuristics. These algorithms vary in terms of their complexity, partition generation time, and the quality of partitions, and they tend to trade off these factors. A significant challenge we are currently facing at the Lawrence Livermore National Laboratory is how to partition very large meshes on massive-size distributed memory machines like IBM BlueGene/P, where scalability becomes a big issue. For example, we have found that the ParMetis, a very popular graph partitioning tool, can only scale to 16K processors. An ideal graph partitioning method on such an environment should be fast and scale to very large meshes, while producing high quality partitions. This is an extremely challenging task, as to scale to that level, the partitioning algorithm should be simple and be able to produce partitions that minimize inter-processor communications and balance the load imposed on the processors. Our goals in this work are two-fold: (1) To develop a new scalable graph partitioning method with good load balancing and communication reduction capability. (2) To study the performance of the proposed partitioning method on very large parallel machines using actual data sets and compare the performance to that of existing methods. The proposed method achieves the desired scalability by reducing the mesh size. For this, it coarsens an input mesh into a smaller size mesh by coalescing the vertices and edges of the original mesh into a set of mega-vertices and mega-edges. A new coarsening method called brick algorithm is developed in this research. In the brick algorithm, the zones in a given mesh are first grouped into fixed size blocks called bricks. These brick are then laid in a way similar to conventional brick laying technique, which reduces the number of neighboring blocks each block needs to communicate. Contributions of this research are as follows: (1) We have developed a novel method that scales to a really large problem size while producing high quality mesh partitions; (2) We measured the performance and scalability of the proposed method on a machine of massive size using a set of actual large complex data sets, where we have scaled to a mesh with 110 million zones using our method. To the best of our knowledge, this is the largest complex mesh that a partitioning method is successfully applied to; and (3) We have shown that proposed method can reduce the number of edge cuts by as much as 65%.« less
JACOB: an enterprise framework for computational chemistry.
Waller, Mark P; Dresselhaus, Thomas; Yang, Jack
2013-06-15
Here, we present just a collection of beans (JACOB): an integrated batch-based framework designed for the rapid development of computational chemistry applications. The framework expedites developer productivity by handling the generic infrastructure tier, and can be easily extended by user-specific scientific code. Paradigms from enterprise software engineering were rigorously applied to create a scalable, testable, secure, and robust framework. A centralized web application is used to configure and control the operation of the framework. The application-programming interface provides a set of generic tools for processing large-scale noninteractive jobs (e.g., systematic studies), or for coordinating systems integration (e.g., complex workflows). The code for the JACOB framework is open sourced and is available at: www.wallerlab.org/jacob. Copyright © 2013 Wiley Periodicals, Inc.
Review of An Introduction to Parallel and Vector Scientific Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, David H.; Lefton, Lew
2006-06-30
On one hand, the field of high-performance scientific computing is thriving beyond measure. Performance of leading-edge systems on scientific calculations, as measured say by the Top500 list, has increased by an astounding factor of 8000 during the 15-year period from 1993 to 2008, which is slightly faster even than Moore's Law. Even more importantly, remarkable advances in numerical algorithms, numerical libraries and parallel programming environments have led to improvements in the scope of what can be computed that are entirely on a par with the advances in computing hardware. And these successes have spread far beyond the confines of largemore » government-operated laboratories, many universities, modest-sized research institutes and private firms now operate clusters that differ only in scale from the behemoth systems at the large-scale facilities. In the wake of these recent successes, researchers from fields that heretofore have not been part of the scientific computing world have been drawn into the arena. For example, at the recent SC07 conference, the exhibit hall, which long has hosted displays from leading computer systems vendors and government laboratories, featured some 70 exhibitors who had not previously participated. In spite of all these exciting developments, and in spite of the clear need to present these concepts to a much broader technical audience, there is a perplexing dearth of training material and textbooks in the field, particularly at the introductory level. Only a handful of universities offer coursework in the specific area of highly parallel scientific computing, and instructors of such courses typically rely on custom-assembled material. For example, the present reviewer and Robert F. Lucas relied on materials assembled in a somewhat ad-hoc fashion from colleagues and personal resources when presenting a course on parallel scientific computing at the University of California, Berkeley, a few years ago. Thus it is indeed refreshing to see the publication of the book An Introduction to Parallel and Vector Scientic Computing, written by Ronald W. Shonkwiler and Lew Lefton, both of the Georgia Institute of Technology. They have taken the bull by the horns and produced a book that appears to be entirely satisfactory as an introductory textbook for use in such a course. It is also of interest to the much broader community of researchers who are already in the field, laboring day by day to improve the power and performance of their numerical simulations. The book is organized into 11 chapters, plus an appendix. The first three chapters describe the basics of system architecture including vector, parallel and distributed memory systems, the details of task dependence and synchronization, and the various programming models currently in use - threads, MPI and OpenMP. Chapters four through nine provide a competent introduction to floating-point arithmetic, numerical error and numerical linear algebra. Some of the topics presented include Gaussian elimination, LU decomposition, tridiagonal systems, Givens rotations, QR decompositions, Gauss-Seidel iterations and Householder transformations. Chapters 10 and 11 introduce Monte Carlo methods and schemes for discrete optimization such as genetic algorithms.« less
Eppig, Janan T
2017-07-01
The Mouse Genome Informatics (MGI) Resource supports basic, translational, and computational research by providing high-quality, integrated data on the genetics, genomics, and biology of the laboratory mouse. MGI serves a strategic role for the scientific community in facilitating biomedical, experimental, and computational studies investigating the genetics and processes of diseases and enabling the development and testing of new disease models and therapeutic interventions. This review describes the nexus of the body of growing genetic and biological data and the advances in computer technology in the late 1980s, including the World Wide Web, that together launched the beginnings of MGI. MGI develops and maintains a gold-standard resource that reflects the current state of knowledge, provides semantic and contextual data integration that fosters hypothesis testing, continually develops new and improved tools for searching and analysis, and partners with the scientific community to assure research data needs are met. Here we describe one slice of MGI relating to the development of community-wide large-scale mutagenesis and phenotyping projects and introduce ways to access and use these MGI data. References and links to additional MGI aspects are provided. © The Author 2017. Published by Oxford University Press.
Eppig, Janan T.
2017-01-01
Abstract The Mouse Genome Informatics (MGI) Resource supports basic, translational, and computational research by providing high-quality, integrated data on the genetics, genomics, and biology of the laboratory mouse. MGI serves a strategic role for the scientific community in facilitating biomedical, experimental, and computational studies investigating the genetics and processes of diseases and enabling the development and testing of new disease models and therapeutic interventions. This review describes the nexus of the body of growing genetic and biological data and the advances in computer technology in the late 1980s, including the World Wide Web, that together launched the beginnings of MGI. MGI develops and maintains a gold-standard resource that reflects the current state of knowledge, provides semantic and contextual data integration that fosters hypothesis testing, continually develops new and improved tools for searching and analysis, and partners with the scientific community to assure research data needs are met. Here we describe one slice of MGI relating to the development of community-wide large-scale mutagenesis and phenotyping projects and introduce ways to access and use these MGI data. References and links to additional MGI aspects are provided. PMID:28838066
Computational Cosmology at the Bleeding Edge
NASA Astrophysics Data System (ADS)
Habib, Salman
2013-04-01
Large-area sky surveys are providing a wealth of cosmological information to address the mysteries of dark energy and dark matter. Observational probes based on tracking the formation of cosmic structure are essential to this effort, and rely crucially on N-body simulations that solve the Vlasov-Poisson equation in an expanding Universe. As statistical errors from survey observations continue to shrink, and cosmological probes increase in number and complexity, simulations are entering a new regime in their use as tools for scientific inference. Changes in supercomputer architectures provide another rationale for developing new parallel simulation and analysis capabilities that can scale to computational concurrency levels measured in the millions to billions. In this talk I will outline the motivations behind the development of the HACC (Hardware/Hybrid Accelerated Cosmology Code) extreme-scale cosmological simulation framework and describe its essential features. By exploiting a novel algorithmic structure that allows flexible tuning across diverse computer architectures, including accelerated and many-core systems, HACC has attained a performance of 14 PFlops on the IBM BG/Q Sequoia system at 69% of peak, using more than 1.5 million cores.
Understanding I/O workload characteristics of a Peta-scale storage system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Youngjae; Gunasekaran, Raghul
2015-01-01
Understanding workload characteristics is critical for optimizing and improving the performance of current systems and software, and architecting new storage systems based on observed workload patterns. In this paper, we characterize the I/O workloads of scientific applications of one of the world s fastest high performance computing (HPC) storage cluster, Spider, at the Oak Ridge Leadership Computing Facility (OLCF). OLCF flagship petascale simulation platform, Titan, and other large HPC clusters, in total over 250 thousands compute cores, depend on Spider for their I/O needs. We characterize the system utilization, the demands of reads and writes, idle time, storage space utilization,more » and the distribution of read requests to write requests for the Peta-scale Storage Systems. From this study, we develop synthesized workloads, and we show that the read and write I/O bandwidth usage as well as the inter-arrival time of requests can be modeled as a Pareto distribution. We also study the I/O load imbalance problems using I/O performance data collected from the Spider storage system.« less
Large-Scale 1:1 Computing Initiatives: An Open Access Database
ERIC Educational Resources Information Center
Richardson, Jayson W.; McLeod, Scott; Flora, Kevin; Sauers, Nick J.; Kannan, Sathiamoorthy; Sincar, Mehmet
2013-01-01
This article details the spread and scope of large-scale 1:1 computing initiatives around the world. What follows is a review of the existing literature around 1:1 programs followed by a description of the large-scale 1:1 database. Main findings include: 1) the XO and the Classmate PC dominate large-scale 1:1 initiatives; 2) if professional…
NASA Astrophysics Data System (ADS)
Cox, S. J.; Wyborn, L. A.; Fraser, R.; Rankine, T.; Woodcock, R.; Vote, J.; Evans, B.
2012-12-01
The Virtual Geophysics Laboratory (VGL) is web portal that provides geoscientists with an integrated online environment that: seamlessly accesses geophysical and geoscience data services from the AuScope national geoscience information infrastructure; loosely couples these data to a variety of gesocience software tools; and provides large scale processing facilities via cloud computing. VGL is a collaboration between CSIRO, Geoscience Australia, National Computational Infrastructure, Monash University, Australian National University and the University of Queensland. The VGL provides a distributed system whereby a user can enter an online virtual laboratory to seamlessly connect to OGC web services for geoscience data. The data is supplied in open standards formats using international standards like GeoSciML. A VGL user uses a web mapping interface to discover and filter the data sources using spatial and attribute filters to define a subset. Once the data is selected the user is not required to download the data. VGL collates the service query information for later in the processing workflow where it will be staged directly to the computing facilities. The combination of deferring data download and access to Cloud computing enables VGL users to access their data at higher resolutions and to undertake larger scale inversions, more complex models and simulations than their own local computing facilities might allow. Inside the Virtual Geophysics Laboratory, the user has access to a library of existing models, complete with exemplar workflows for specific scientific problems based on those models. For example, the user can load a geological model published by Geoscience Australia, apply a basic deformation workflow provided by a CSIRO scientist, and have it run in a scientific code from Monash. Finally the user can publish these results to share with a colleague or cite in a paper. This opens new opportunities for access and collaboration as all the resources (models, code, data, processing) are shared in the one virtual laboratory. VGL provides end users with access to an intuitive, user-centered interface that leverages cloud storage and cloud and cluster processing from both the research communities and commercial suppliers (e.g. Amazon). As the underlying data and information services are agnostic of the scientific domain, they can support many other data types. This fundamental characteristic results in a highly reusable virtual laboratory infrastructure that could also be used for example natural hazards, satellite processing, soil geochemistry, climate modeling, agriculture crop modeling.
NASA Astrophysics Data System (ADS)
de Groot, R. M.; Benthien, M. L.
2006-12-01
The Southern California Earthquake Center (SCEC) has been developing groundbreaking computer modeling capabilities for studying earthquakes. These visualizations were initially shared within the scientific community but have recently have gained visibility via television news coverage in Southern California. These types of visualizations are becoming pervasive in the teaching and learning of concepts related to earth science. Computers have opened up a whole new world for scientists working with large data sets, and students can benefit from the same opportunities (Libarkin &Brick, 2002). Earthquakes are ideal candidates for visualization products: they cannot be predicted, are completed in a matter of seconds, occur deep in the earth, and the time between events can be on a geologic time scale. For example, the southern part of the San Andreas fault has not seen a major earthquake since about 1690, setting the stage for an earthquake as large as magnitude 7.7 -- the "big one." Since no one has experienced such an earthquake, visualizations can help people understand the scale of such an event. Accordingly, SCEC has developed a revolutionary simulation of this earthquake, with breathtaking visualizations that are now being distributed. According to Gordin and Pea (1995), theoretically visualization should make science accessible, provide means for authentic inquiry, and lay the groundwork to understand and critique scientific issues. This presentation will discuss how the new SCEC visualizations and other earthquake imagery achieve these results, how they fit within the context of major themes and study areas in science communication, and how the efficacy of these tools can be improved.
Exascale computing and big data
Reed, Daniel A.; Dongarra, Jack
2015-06-25
Scientific discovery and engineering innovation requires unifying traditionally separated high-performance computing and big data analytics. The tools and cultures of high-performance computing and big data analytics have diverged, to the detriment of both; unification is essential to address a spectrum of major research domains. The challenges of scale tax our ability to transmit data, compute complicated functions on that data, or store a substantial part of it; new approaches are required to meet these challenges. Finally, the international nature of science demands further development of advanced computer architectures and global standards for processing data, even as international competition complicates themore » openness of the scientific process.« less
Exascale computing and big data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, Daniel A.; Dongarra, Jack
Scientific discovery and engineering innovation requires unifying traditionally separated high-performance computing and big data analytics. The tools and cultures of high-performance computing and big data analytics have diverged, to the detriment of both; unification is essential to address a spectrum of major research domains. The challenges of scale tax our ability to transmit data, compute complicated functions on that data, or store a substantial part of it; new approaches are required to meet these challenges. Finally, the international nature of science demands further development of advanced computer architectures and global standards for processing data, even as international competition complicates themore » openness of the scientific process.« less
Using Amazon's Elastic Compute Cloud to dynamically scale CMS computational resources
NASA Astrophysics Data System (ADS)
Evans, D.; Fisk, I.; Holzman, B.; Melo, A.; Metson, S.; Pordes, R.; Sheldon, P.; Tiradani, A.
2011-12-01
Large international scientific collaborations such as the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider have traditionally addressed their data reduction and analysis needs by building and maintaining dedicated computational infrastructure. Emerging cloud computing services such as Amazon's Elastic Compute Cloud (EC2) offer short-term CPU and storage resources with costs based on usage. These services allow experiments to purchase computing resources as needed, without significant prior planning and without long term investments in facilities and their management. We have demonstrated that services such as EC2 can successfully be integrated into the production-computing model of CMS, and find that they work very well as worker nodes. The cost-structure and transient nature of EC2 services makes them inappropriate for some CMS production services and functions. We also found that the resources are not truely "on-demand" as limits and caps on usage are imposed. Our trial workflows allow us to make a cost comparison between EC2 resources and dedicated CMS resources at a University, and conclude that it is most cost effective to purchase dedicated resources for the "base-line" needs of experiments such as CMS. However, if the ability to use cloud computing resources is built into an experiment's software framework before demand requires their use, cloud computing resources make sense for bursting during times when spikes in usage are required.
Cloud computing for genomic data analysis and collaboration.
Langmead, Ben; Nellore, Abhinav
2018-04-01
Next-generation sequencing has made major strides in the past decade. Studies based on large sequencing data sets are growing in number, and public archives for raw sequencing data have been doubling in size every 18 months. Leveraging these data requires researchers to use large-scale computational resources. Cloud computing, a model whereby users rent computers and storage from large data centres, is a solution that is gaining traction in genomics research. Here, we describe how cloud computing is used in genomics for research and large-scale collaborations, and argue that its elasticity, reproducibility and privacy features make it ideally suited for the large-scale reanalysis of publicly available archived data, including privacy-protected data.
NASA Astrophysics Data System (ADS)
Duffy, D.; Maxwell, T. P.; Doutriaux, C.; Williams, D. N.; Chaudhary, A.; Ames, S.
2015-12-01
As the size of remote sensing observations and model output data grows, the volume of the data has become overwhelming, even to many scientific experts. As societies are forced to better understand, mitigate, and adapt to climate changes, the combination of Earth observation data and global climate model projects is crucial to not only scientists but to policy makers, downstream applications, and even the public. Scientific progress on understanding climate is critically dependent on the availability of a reliable infrastructure that promotes data access, management, and provenance. The Earth System Grid Federation (ESGF) has created such an environment for the Intergovernmental Panel on Climate Change (IPCC). ESGF provides a federated global cyber infrastructure for data access and management of model outputs generated for the IPCC Assessment Reports (AR). The current generation of the ESGF federated grid allows consumers of the data to find and download data with limited capabilities for server-side processing. Since the amount of data for future AR is expected to grow dramatically, ESGF is working on integrating server-side analytics throughout the federation. The ESGF Compute Working Team (CWT) has created a Web Processing Service (WPS) Application Programming Interface (API) to enable access scalable computational resources. The API is the exposure point to high performance computing resources across the federation. Specifically, the API allows users to execute simple operations, such as maximum, minimum, average, and anomalies, on ESGF data without having to download the data. These operations are executed at the ESGF data node site with access to large amounts of parallel computing capabilities. This presentation will highlight the WPS API, its capabilities, provide implementation details, and discuss future developments.
Toward Transparent Data Management in Multi-layer Storage Hierarchy for HPC Systems
Wadhwa, Bharti; Byna, Suren; Butt, Ali R.
2018-04-17
Upcoming exascale high performance computing (HPC) systems are expected to comprise multi-tier storage hierarchy, and thus will necessitate innovative storage and I/O mechanisms. Traditional disk and block-based interfaces and file systems face severe challenges in utilizing capabilities of storage hierarchies due to the lack of hierarchy support and semantic interfaces. Object-based and semantically-rich data abstractions for scientific data management on large scale systems offer a sustainable solution to these challenges. Such data abstractions can also simplify users involvement in data movement. Here, we take the first steps of realizing such an object abstraction and explore storage mechanisms for these objectsmore » to enhance I/O performance, especially for scientific applications. We explore how an object-based interface can facilitate next generation scalable computing systems by presenting the mapping of data I/O from two real world HPC scientific use cases: a plasma physics simulation code (VPIC) and a cosmology simulation code (HACC). Our storage model stores data objects in different physical organizations to support data movement across layers of memory/storage hierarchy. Our implementation sclaes well to 16K parallel processes, and compared to the state of the art, such as MPI-IO and HDF5, our object-based data abstractions and data placement strategy in multi-level storage hierarchy achieves up to 7 X I/O performance improvement for scientific data.« less
Toward Transparent Data Management in Multi-layer Storage Hierarchy for HPC Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wadhwa, Bharti; Byna, Suren; Butt, Ali R.
Upcoming exascale high performance computing (HPC) systems are expected to comprise multi-tier storage hierarchy, and thus will necessitate innovative storage and I/O mechanisms. Traditional disk and block-based interfaces and file systems face severe challenges in utilizing capabilities of storage hierarchies due to the lack of hierarchy support and semantic interfaces. Object-based and semantically-rich data abstractions for scientific data management on large scale systems offer a sustainable solution to these challenges. Such data abstractions can also simplify users involvement in data movement. Here, we take the first steps of realizing such an object abstraction and explore storage mechanisms for these objectsmore » to enhance I/O performance, especially for scientific applications. We explore how an object-based interface can facilitate next generation scalable computing systems by presenting the mapping of data I/O from two real world HPC scientific use cases: a plasma physics simulation code (VPIC) and a cosmology simulation code (HACC). Our storage model stores data objects in different physical organizations to support data movement across layers of memory/storage hierarchy. Our implementation sclaes well to 16K parallel processes, and compared to the state of the art, such as MPI-IO and HDF5, our object-based data abstractions and data placement strategy in multi-level storage hierarchy achieves up to 7 X I/O performance improvement for scientific data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaidle, Joshua A.; Habas, Susan E.; Baddour, Frederick G.
Catalyst design, from idea to commercialization, requires multi-disciplinary scientific and engineering research and development over 10-20 year time periods. Historically, the identification of new or improved catalyst materials has largely been an empirical trial-and-error process. However, advances in computational capabilities (new tools and increased processing power) coupled with new synthetic techniques have started to yield rationally-designed catalysts with controlled nano-structures and tailored properties. This technological advancement represents an opportunity to accelerate the catalyst development timeline and to deliver new materials that outperform existing industrial catalysts or enable new applications, once a number of unique challenges associated with the scale-up ofmore » nano-structured materials are overcome.« less
ISCR Annual Report: Fical Year 2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGraw, J R
2005-03-03
Large-scale scientific computation and all of the disciplines that support and help to validate it have been placed at the focus of Lawrence Livermore National Laboratory (LLNL) by the Advanced Simulation and Computing (ASC) program of the National Nuclear Security Administration (NNSA) and the Scientific Discovery through Advanced Computing (SciDAC) initiative of the Office of Science of the Department of Energy (DOE). The maturation of computational simulation as a tool of scientific and engineering research is underscored in the November 2004 statement of the Secretary of Energy that, ''high performance computing is the backbone of the nation's science and technologymore » enterprise''. LLNL operates several of the world's most powerful computers--including today's single most powerful--and has undertaken some of the largest and most compute-intensive simulations ever performed. Ultrascale simulation has been identified as one of the highest priorities in DOE's facilities planning for the next two decades. However, computers at architectural extremes are notoriously difficult to use efficiently. Furthermore, each successful terascale simulation only points out the need for much better ways of interacting with the resulting avalanche of data. Advances in scientific computing research have, therefore, never been more vital to LLNL's core missions than at present. Computational science is evolving so rapidly along every one of its research fronts that to remain on the leading edge, LLNL must engage researchers at many academic centers of excellence. In Fiscal Year 2004, the Institute for Scientific Computing Research (ISCR) served as one of LLNL's main bridges to the academic community with a program of collaborative subcontracts, visiting faculty, student internships, workshops, and an active seminar series. The ISCR identifies researchers from the academic community for computer science and computational science collaborations with LLNL and hosts them for short- and long-term visits with the aim of encouraging long-term academic research agendas that address LLNL's research priorities. Through such collaborations, ideas and software flow in both directions, and LLNL cultivates its future workforce. The Institute strives to be LLNL's ''eyes and ears'' in the computer and information sciences, keeping the Laboratory aware of and connected to important external advances. It also attempts to be the ''feet and hands'' that carry those advances into the Laboratory and incorporates them into practice. ISCR research participants are integrated into LLNL's Computing and Applied Research (CAR) Department, especially into its Center for Applied Scientific Computing (CASC). In turn, these organizations address computational challenges arising throughout the rest of the Laboratory. Administratively, the ISCR flourishes under LLNL's University Relations Program (URP). Together with the other five institutes of the URP, it navigates a course that allows LLNL to benefit from academic exchanges while preserving national security. While it is difficult to operate an academic-like research enterprise within the context of a national security laboratory, the results declare the challenges well met and worth the continued effort.« less
NASA Astrophysics Data System (ADS)
Liu, Jia; Liu, Longli; Xue, Yong; Dong, Jing; Hu, Yingcui; Hill, Richard; Guang, Jie; Li, Chi
2017-01-01
Workflow for remote sensing quantitative retrieval is the ;bridge; between Grid services and Grid-enabled application of remote sensing quantitative retrieval. Workflow averts low-level implementation details of the Grid and hence enables users to focus on higher levels of application. The workflow for remote sensing quantitative retrieval plays an important role in remote sensing Grid and Cloud computing services, which can support the modelling, construction and implementation of large-scale complicated applications of remote sensing science. The validation of workflow is important in order to support the large-scale sophisticated scientific computation processes with enhanced performance and to minimize potential waste of time and resources. To research the semantic correctness of user-defined workflows, in this paper, we propose a workflow validation method based on tacit knowledge research in the remote sensing domain. We first discuss the remote sensing model and metadata. Through detailed analysis, we then discuss the method of extracting the domain tacit knowledge and expressing the knowledge with ontology. Additionally, we construct the domain ontology with Protégé. Through our experimental study, we verify the validity of this method in two ways, namely data source consistency error validation and parameters matching error validation.
Extreme-Scale Computing Project Aims to Advance Precision Oncology | FNLCR Staging
Two government agencies and five national laboratories are collaborating to develop extremely high-performance computing capabilities that will analyze mountains of research and clinical data to improve scientific understanding of cancer, predict dru
Very Large Scale Integration (VLSI).
ERIC Educational Resources Information Center
Yeaman, Andrew R. J.
Very Large Scale Integration (VLSI), the state-of-the-art production techniques for computer chips, promises such powerful, inexpensive computing that, in the future, people will be able to communicate with computer devices in natural language or even speech. However, before full-scale VLSI implementation can occur, certain salient factors must be…
Evaluating non-relational storage technology for HEP metadata and meta-data catalog
NASA Astrophysics Data System (ADS)
Grigorieva, M. A.; Golosova, M. V.; Gubin, M. Y.; Klimentov, A. A.; Osipova, V. V.; Ryabinkin, E. A.
2016-10-01
Large-scale scientific experiments produce vast volumes of data. These data are stored, processed and analyzed in a distributed computing environment. The life cycle of experiment is managed by specialized software like Distributed Data Management and Workload Management Systems. In order to be interpreted and mined, experimental data must be accompanied by auxiliary metadata, which are recorded at each data processing step. Metadata describes scientific data and represent scientific objects or results of scientific experiments, allowing them to be shared by various applications, to be recorded in databases or published via Web. Processing and analysis of constantly growing volume of auxiliary metadata is a challenging task, not simpler than the management and processing of experimental data itself. Furthermore, metadata sources are often loosely coupled and potentially may lead to an end-user inconsistency in combined information queries. To aggregate and synthesize a range of primary metadata sources, and enhance them with flexible schema-less addition of aggregated data, we are developing the Data Knowledge Base architecture serving as the intelligence behind GUIs and APIs.
Intraseasonal and Interannual Variability of Mars Present Climate
NASA Astrophysics Data System (ADS)
Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.
1996-01-01
This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. The focus of this JRI has been to investigate the nature of intraseasonal and interannual variability of Mars'present climate. We have applied a three-dimensional climate model based on the full hydrostatic primitive equations to determine the spatial, but primarily, the temporal structures of the planet's large-scale circulation as it evolves during a given seasonal advance, and, over multi-annual cycles. The particular climate model applies simplified physical parameterizations and is computationally efficient. It could thus easily be integrated in a perpetual season or advancing season configuration, as well as over many Mars years. We have assessed both high and low-frequency components of the circulation (i.e., motions having periods of Omicron(2-10 days) or greater than Omicron(10 days), respectively). Results from this investigation have explored the basic issue whether Mars' climate system is naturally 'chaotic' associated with nonlinear interactions of the large-scale circulation-regardless of any allowance for year-to-year variations in external forcing mechanisms. Titles of papers presented at scientific conferences and a manuscript to be submitted to the scientific literature are provided. An overview of a areas for further investigation is also presented.
NASA Astrophysics Data System (ADS)
Beggrow, Elizabeth P.; Ha, Minsu; Nehm, Ross H.; Pearl, Dennis; Boone, William J.
2014-02-01
The landscape of science education is being transformed by the new Framework for Science Education (National Research Council, A framework for K-12 science education: practices, crosscutting concepts, and core ideas. The National Academies Press, Washington, DC, 2012), which emphasizes the centrality of scientific practices—such as explanation, argumentation, and communication—in science teaching, learning, and assessment. A major challenge facing the field of science education is developing assessment tools that are capable of validly and efficiently evaluating these practices. Our study examined the efficacy of a free, open-source machine-learning tool for evaluating the quality of students' written explanations of the causes of evolutionary change relative to three other approaches: (1) human-scored written explanations, (2) a multiple-choice test, and (3) clinical oral interviews. A large sample of undergraduates (n = 104) exposed to varying amounts of evolution content completed all three assessments: a clinical oral interview, a written open-response assessment, and a multiple-choice test. Rasch analysis was used to compute linear person measures and linear item measures on a single logit scale. We found that the multiple-choice test displayed poor person and item fit (mean square outfit >1.3), while both oral interview measures and computer-generated written response measures exhibited acceptable fit (average mean square outfit for interview: person 0.97, item 0.97; computer: person 1.03, item 1.06). Multiple-choice test measures were more weakly associated with interview measures (r = 0.35) than the computer-scored explanation measures (r = 0.63). Overall, Rasch analysis indicated that computer-scored written explanation measures (1) have the strongest correspondence to oral interview measures; (2) are capable of capturing students' normative scientific and naive ideas as accurately as human-scored explanations, and (3) more validly detect understanding than the multiple-choice assessment. These findings demonstrate the great potential of machine-learning tools for assessing key scientific practices highlighted in the new Framework for Science Education.
PoPLAR: Portal for Petascale Lifescience Applications and Research
2013-01-01
Background We are focusing specifically on fast data analysis and retrieval in bioinformatics that will have a direct impact on the quality of human health and the environment. The exponential growth of data generated in biology research, from small atoms to big ecosystems, necessitates an increasingly large computational component to perform analyses. Novel DNA sequencing technologies and complementary high-throughput approaches--such as proteomics, genomics, metabolomics, and meta-genomics--drive data-intensive bioinformatics. While individual research centers or universities could once provide for these applications, this is no longer the case. Today, only specialized national centers can deliver the level of computing resources required to meet the challenges posed by rapid data growth and the resulting computational demand. Consequently, we are developing massively parallel applications to analyze the growing flood of biological data and contribute to the rapid discovery of novel knowledge. Methods The efforts of previous National Science Foundation (NSF) projects provided for the generation of parallel modules for widely used bioinformatics applications on the Kraken supercomputer. We have profiled and optimized the code of some of the scientific community's most widely used desktop and small-cluster-based applications, including BLAST from the National Center for Biotechnology Information (NCBI), HMMER, and MUSCLE; scaled them to tens of thousands of cores on high-performance computing (HPC) architectures; made them robust and portable to next-generation architectures; and incorporated these parallel applications in science gateways with a web-based portal. Results This paper will discuss the various developmental stages, challenges, and solutions involved in taking bioinformatics applications from the desktop to petascale with a front-end portal for very-large-scale data analysis in the life sciences. Conclusions This research will help to bridge the gap between the rate of data generation and the speed at which scientists can study this data. The ability to rapidly analyze data at such a large scale is having a significant, direct impact on science achieved by collaborators who are currently using these tools on supercomputers. PMID:23902523
NASA Technical Reports Server (NTRS)
Storaasli, Olaf O. (Editor); Housner, Jerrold M. (Editor)
1993-01-01
Computing speed is leaping forward by several orders of magnitude each decade. Engineers and scientists gathered at a NASA Langley symposium to discuss these exciting trends as they apply to parallel computational methods for large-scale structural analysis and design. Among the topics discussed were: large-scale static analysis; dynamic, transient, and thermal analysis; domain decomposition (substructuring); and nonlinear and numerical methods.
NASA Astrophysics Data System (ADS)
Wyborn, L. A.; Evans, B. J. K.; Pugh, T.; Lescinsky, D. T.; Foster, C.; Uhlherr, A.
2014-12-01
The National Computational Infrastructure (NCI) at the Australian National University (ANU) is a partnership between CSIRO, ANU, Bureau of Meteorology (BoM) and Geoscience Australia. Recent investments in a 1.2 PFlop Supercomputer (Raijin), ~ 20 PB data storage using Lustre filesystems and a 3000 core high performance cloud have created a hybrid platform for higher performance computing and data-intensive science to enable large scale earth and climate systems modelling and analysis. There are > 3000 users actively logging in and > 600 projects on the NCI system. Efficiently scaling and adapting data and software systems to petascale infrastructures requires the collaborative development of an architecture that is designed, programmed and operated to enable users to interactively invoke different forms of in-situ computation over complex and large scale data collections. NCI makes available major and long tail data collections from both the government and research sectors based on six themes: 1) weather, climate and earth system science model simulations, 2) marine and earth observations, 3) geosciences, 4) terrestrial ecosystems, 5) water and hydrology and 6) astronomy, bio and social. Collectively they span the lithosphere, crust, biosphere, hydrosphere, troposphere, and stratosphere. Collections are the operational form for data management and access. Similar data types from individual custodians are managed cohesively. Use of international standards for discovery and interoperability allow complex interactions within and between the collections. This design facilitates a transdisciplinary approach to research and enables a shift from small scale, 'stove-piped' science efforts to large scale, collaborative systems science. This new and complex infrastructure requires a move to shared, globally trusted software frameworks that can be maintained and updated. Workflow engines become essential and need to integrate provenance, versioning, traceability, repeatability and publication. There are also human resource challenges as highly skilled HPC/HPD specialists, specialist programmers, and data scientists are required whose skills can support scaling to the new paradigm of effective and efficient data-intensive earth science analytics on petascale, and soon to be exascale systems.
NASA Astrophysics Data System (ADS)
Fiore, Sandro; Płóciennik, Marcin; Doutriaux, Charles; Blanquer, Ignacio; Barbera, Roberto; Donvito, Giacinto; Williams, Dean N.; Anantharaj, Valentine; Salomoni, Davide D.; Aloisio, Giovanni
2017-04-01
In many scientific domains such as climate, data is often n-dimensional and requires tools that support specialized data types and primitives to be properly stored, accessed, analysed and visualized. Moreover, new challenges arise in large-scale scenarios and eco-systems where petabytes (PB) of data can be available and data can be distributed and/or replicated, such as the Earth System Grid Federation (ESGF) serving the Coupled Model Intercomparison Project, Phase 5 (CMIP5) experiment, providing access to 2.5PB of data for the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). A case study on climate models intercomparison data analysis addressing several classes of multi-model experiments is being implemented in the context of the EU H2020 INDIGO-DataCloud project. Such experiments require the availability of large amount of data (multi-terabyte order) related to the output of several climate models simulations as well as the exploitation of scientific data management tools for large-scale data analytics. More specifically, the talk discusses in detail a use case on precipitation trend analysis in terms of requirements, architectural design solution, and infrastructural implementation. The experiment has been tested and validated on CMIP5 datasets, in the context of a large scale distributed testbed across EU and US involving three ESGF sites (LLNL, ORNL, and CMCC) and one central orchestrator site (PSNC). The general "environment" of the case study relates to: (i) multi-model data analysis inter-comparison challenges; (ii) addressed on CMIP5 data; and (iii) which are made available through the IS-ENES/ESGF infrastructure. The added value of the solution proposed in the INDIGO-DataCloud project are summarized in the following: (i) it implements a different paradigm (from client- to server-side); (ii) it intrinsically reduces data movement; (iii) it makes lightweight the end-user setup; (iv) it fosters re-usability (of data, final/intermediate products, workflows, sessions, etc.) since everything is managed on the server-side; (v) it complements, extends and interoperates with the ESGF stack; (vi) it provides a "tool" for scientists to run multi-model experiments, and finally; and (vii) it can drastically reduce the time-to-solution for these experiments from weeks to hours. At the time the contribution is being written, the proposed testbed represents the first concrete implementation of a distributed multi-model experiment in the ESGF/CMIP context joining server-side and parallel processing, end-to-end workflow management and cloud computing. As opposed to the current scenario based on search & discovery, data download, and client-based data analysis, the INDIGO-DataCloud architectural solution described in this contribution addresses the scientific computing & analytics requirements by providing a paradigm shift based on server-side and high performance big data frameworks jointly with two-level workflow management systems realized at the PaaS level via a cloud infrastructure.
Workflow based framework for life science informatics.
Tiwari, Abhishek; Sekhar, Arvind K T
2007-10-01
Workflow technology is a generic mechanism to integrate diverse types of available resources (databases, servers, software applications and different services) which facilitate knowledge exchange within traditionally divergent fields such as molecular biology, clinical research, computational science, physics, chemistry and statistics. Researchers can easily incorporate and access diverse, distributed tools and data to develop their own research protocols for scientific analysis. Application of workflow technology has been reported in areas like drug discovery, genomics, large-scale gene expression analysis, proteomics, and system biology. In this article, we have discussed the existing workflow systems and the trends in applications of workflow based systems.
Global Load Balancing with Parallel Mesh Adaption on Distributed-Memory Systems
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Oliker, Leonid; Sohn, Andrew
1996-01-01
Dynamic mesh adaption on unstructured grids is a powerful tool for efficiently computing unsteady problems to resolve solution features of interest. Unfortunately, this causes load imbalance among processors on a parallel machine. This paper describes the parallel implementation of a tetrahedral mesh adaption scheme and a new global load balancing method. A heuristic remapping algorithm is presented that assigns partitions to processors such that the redistribution cost is minimized. Results indicate that the parallel performance of the mesh adaption code depends on the nature of the adaption region and show a 35.5X speedup on 64 processors of an SP2 when 35% of the mesh is randomly adapted. For large-scale scientific computations, our load balancing strategy gives almost a sixfold reduction in solver execution times over non-balanced loads. Furthermore, our heuristic remapper yields processor assignments that are less than 3% off the optimal solutions but requires only 1% of the computational time.
NASA Astrophysics Data System (ADS)
Candela, S. G.; Howat, I.; Noh, M. J.; Porter, C. C.; Morin, P. J.
2016-12-01
In the last decade, high resolution satellite imagery has become an increasingly accessible tool for geoscientists to quantify changes in the Arctic land surface due to geophysical, ecological and anthropomorphic processes. However, the trade off between spatial coverage and spatial-temporal resolution has limited detailed, process-level change detection over large (i.e. continental) scales. The ArcticDEM project utilized over 300,000 Worldview image pairs to produce a nearly 100% coverage elevation model (above 60°N) offering the first polar, high spatial - high resolution (2-8m by region) dataset, often with multiple repeats in areas of particular interest to geo-scientists. A dataset of this size (nearly 250 TB) offers endless new avenues of scientific inquiry, but quickly becomes unmanageable computationally and logistically for the computing resources available to the average scientist. Here we present TopoDiff, a framework for a generalized. automated workflow that requires minimal input from the end user about a study site, and utilizes cloud computing resources to provide a temporally sorted and differenced dataset, ready for geostatistical analysis. This hands-off approach allows the end user to focus on the science, without having to manage thousands of files, or petabytes of data. At the same time, TopoDiff provides a consistent and accurate workflow for image sorting, selection, and co-registration enabling cross-comparisons between research projects.
NASA Astrophysics Data System (ADS)
Jiang, Xikai; Li, Jiyuan; Zhao, Xujun; Qin, Jian; Karpeev, Dmitry; Hernandez-Ortiz, Juan; de Pablo, Juan J.; Heinonen, Olle
2016-08-01
Large classes of materials systems in physics and engineering are governed by magnetic and electrostatic interactions. Continuum or mesoscale descriptions of such systems can be cast in terms of integral equations, whose direct computational evaluation requires O(N2) operations, where N is the number of unknowns. Such a scaling, which arises from the many-body nature of the relevant Green's function, has precluded wide-spread adoption of integral methods for solution of large-scale scientific and engineering problems. In this work, a parallel computational approach is presented that relies on using scalable open source libraries and utilizes a kernel-independent Fast Multipole Method (FMM) to evaluate the integrals in O(N) operations, with O(N) memory cost, thereby substantially improving the scalability and efficiency of computational integral methods. We demonstrate the accuracy, efficiency, and scalability of our approach in the context of two examples. In the first, we solve a boundary value problem for a ferroelectric/ferromagnetic volume in free space. In the second, we solve an electrostatic problem involving polarizable dielectric bodies in an unbounded dielectric medium. The results from these test cases show that our proposed parallel approach, which is built on a kernel-independent FMM, can enable highly efficient and accurate simulations and allow for considerable flexibility in a broad range of applications.
Jiang, Xikai; Li, Jiyuan; Zhao, Xujun; ...
2016-08-10
Large classes of materials systems in physics and engineering are governed by magnetic and electrostatic interactions. Continuum or mesoscale descriptions of such systems can be cast in terms of integral equations, whose direct computational evaluation requires O( N 2) operations, where N is the number of unknowns. Such a scaling, which arises from the many-body nature of the relevant Green's function, has precluded wide-spread adoption of integral methods for solution of large-scale scientific and engineering problems. In this work, a parallel computational approach is presented that relies on using scalable open source libraries and utilizes a kernel-independent Fast Multipole Methodmore » (FMM) to evaluate the integrals in O( N) operations, with O( N) memory cost, thereby substantially improving the scalability and efficiency of computational integral methods. We demonstrate the accuracy, efficiency, and scalability of our approach in the context of two examples. In the first, we solve a boundary value problem for a ferroelectric/ferromagnetic volume in free space. In the second, we solve an electrostatic problem involving polarizable dielectric bodies in an unbounded dielectric medium. Lastly, the results from these test cases show that our proposed parallel approach, which is built on a kernel-independent FMM, can enable highly efficient and accurate simulations and allow for considerable flexibility in a broad range of applications.« less
Are Cloud Environments Ready for Scientific Applications?
NASA Astrophysics Data System (ADS)
Mehrotra, P.; Shackleford, K.
2011-12-01
Cloud computing environments are becoming widely available both in the commercial and government sectors. They provide flexibility to rapidly provision resources in order to meet dynamic and changing computational needs without the customers incurring capital expenses and/or requiring technical expertise. Clouds also provide reliable access to resources even though the end-user may not have in-house expertise for acquiring or operating such resources. Consolidation and pooling in a cloud environment allow organizations to achieve economies of scale in provisioning or procuring computing resources and services. Because of these and other benefits, many businesses and organizations are migrating their business applications (e.g., websites, social media, and business processes) to cloud environments-evidenced by the commercial success of offerings such as the Amazon EC2. In this paper, we focus on the feasibility of utilizing cloud environments for scientific workloads and workflows particularly of interest to NASA scientists and engineers. There is a wide spectrum of such technical computations. These applications range from small workstation-level computations to mid-range computing requiring small clusters to high-performance simulations requiring supercomputing systems with high bandwidth/low latency interconnects. Data-centric applications manage and manipulate large data sets such as satellite observational data and/or data previously produced by high-fidelity modeling and simulation computations. Most of the applications are run in batch mode with static resource requirements. However, there do exist situations that have dynamic demands, particularly ones with public-facing interfaces providing information to the general public, collaborators and partners, as well as to internal NASA users. In the last few months we have been studying the suitability of cloud environments for NASA's technical and scientific workloads. We have ported several applications to multiple cloud environments including NASA's Nebula environment, Amazon's EC2, Magellan at NERSC, and SGI's Cyclone system. We critically examined the performance of the applications on these systems. We also collected information on the usability of these cloud environments. In this talk we will present the results of our study focusing on the efficacy of using clouds for NASA's scientific applications.
NASA Astrophysics Data System (ADS)
Debnath, Lokenath
2010-09-01
This article is essentially devoted to a brief historical introduction to Euler's formula for polyhedra, topology, theory of graphs and networks with many examples from the real-world. Celebrated Königsberg seven-bridge problem and some of the basic properties of graphs and networks for some understanding of the macroscopic behaviour of real physical systems are included. We also mention some important and modern applications of graph theory or network problems from transportation to telecommunications. Graphs or networks are effectively used as powerful tools in industrial, electrical and civil engineering, communication networks in the planning of business and industry. Graph theory and combinatorics can be used to understand the changes that occur in many large and complex scientific, technical and medical systems. With the advent of fast large computers and the ubiquitous Internet consisting of a very large network of computers, large-scale complex optimization problems can be modelled in terms of graphs or networks and then solved by algorithms available in graph theory. Many large and more complex combinatorial problems dealing with the possible arrangements of situations of various kinds, and computing the number and properties of such arrangements can be formulated in terms of networks. The Knight's tour problem, Hamilton's tour problem, problem of magic squares, the Euler Graeco-Latin squares problem and their modern developments in the twentieth century are also included.
GPU Multi-Scale Particle Tracking and Multi-Fluid Simulations of the Radiation Belts
NASA Astrophysics Data System (ADS)
Ziemba, T.; Carscadden, J.; O'Donnell, D.; Winglee, R.; Harnett, E.; Cash, M.
2007-12-01
The properties of the radiation belts can vary dramatically under the influence of magnetic storms and storm-time substorms. The task of understanding and predicting radiation belt properties is made difficult because their properties determined by global processes as well as small-scale wave-particle interactions. A full solution to the problem will require major innovations in technique and computer hardware. The proposed work will demonstrates liked particle tracking codes with new multi-scale/multi-fluid global simulations that provide the first means to include small-scale processes within the global magnetospheric context. A large hurdle to the problem is having sufficient computer hardware that is able to handle the dissipate temporal and spatial scale sizes. A major innovation of the work is that the codes are designed to run of graphics processing units (GPUs). GPUs are intrinsically highly parallelized systems that provide more than an order of magnitude computing speed over a CPU based systems, for little more cost than a high end-workstation. Recent advancements in GPU technologies allow for full IEEE float specifications with performance up to several hundred GFLOPs per GPU and new software architectures have recently become available to ease the transition from graphics based to scientific applications. This allows for a cheap alternative to standard supercomputing methods and should increase the time to discovery. A demonstration of the code pushing more than 500,000 particles faster than real time is presented, and used to provide new insight into radiation belt dynamics.
Equation solvers for distributed-memory computers
NASA Technical Reports Server (NTRS)
Storaasli, Olaf O.
1994-01-01
A large number of scientific and engineering problems require the rapid solution of large systems of simultaneous equations. The performance of parallel computers in this area now dwarfs traditional vector computers by nearly an order of magnitude. This talk describes the major issues involved in parallel equation solvers with particular emphasis on the Intel Paragon, IBM SP-1 and SP-2 processors.
Bin recycling strategy for improving the histogram precision on GPU
NASA Astrophysics Data System (ADS)
Cárdenas-Montes, Miguel; Rodríguez-Vázquez, Juan José; Vega-Rodríguez, Miguel A.
2016-07-01
Histogram is an easily comprehensible way to present data and analyses. In the current scientific context with access to large volumes of data, the processing time for building histogram has dramatically increased. For this reason, parallel construction is necessary to alleviate the impact of the processing time in the analysis activities. In this scenario, GPU computing is becoming widely used for reducing until affordable levels the processing time of histogram construction. Associated to the increment of the processing time, the implementations are stressed on the bin-count accuracy. Accuracy aspects due to the particularities of the implementations are not usually taken into consideration when building histogram with very large data sets. In this work, a bin recycling strategy to create an accuracy-aware implementation for building histogram on GPU is presented. In order to evaluate the approach, this strategy was applied to the computation of the three-point angular correlation function, which is a relevant function in Cosmology for the study of the Large Scale Structure of Universe. As a consequence of the study a high-accuracy implementation for histogram construction on GPU is proposed.
Two government agencies and five national laboratories are collaborating to develop extremely high-performance computing capabilities that will analyze mountains of research and clinical data to improve scientific understanding of cancer, predict dru
Extreme-Scale Computing Project Aims to Advance Precision Oncology | Poster
Two government agencies and five national laboratories are collaborating to develop extremely high-performance computing capabilities that will analyze mountains of research and clinical data to improve scientific understanding of cancer, predict drug response, and improve treatments for patients.
Center for Technology for Advanced Scientific Componet Software (TASCS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Govindaraju, Madhusudhan
Advanced Scientific Computing Research Computer Science FY 2010Report Center for Technology for Advanced Scientific Component Software: Distributed CCA State University of New York, Binghamton, NY, 13902 Summary The overall objective of Binghamton's involvement is to work on enhancements of the CCA environment, motivated by the applications and research initiatives discussed in the proposal. This year we are working on re-focusing our design and development efforts to develop proof-of-concept implementations that have the potential to significantly impact scientific components. We worked on developing parallel implementations for non-hydrostatic code and worked on a model coupling interface for biogeochemical computations coded in MATLAB.more » We also worked on the design and implementation modules that will be required for the emerging MapReduce model to be effective for scientific applications. Finally, we focused on optimizing the processing of scientific datasets on multi-core processors. Research Details We worked on the following research projects that we are working on applying to CCA-based scientific applications. 1. Non-Hydrostatic Hydrodynamics: Non-static hydrodynamics are significantly more accurate at modeling internal waves that may be important in lake ecosystems. Non-hydrostatic codes, however, are significantly more computationally expensive, often prohibitively so. We have worked with Chin Wu at the University of Wisconsin to parallelize non-hydrostatic code. We have obtained a speed up of about 26 times maximum. Although this is significant progress, we hope to improve the performance further, such that it becomes a practical alternative to hydrostatic codes. 2. Model-coupling for water-based ecosystems: To answer pressing questions about water resources requires that physical models (hydrodynamics) be coupled with biological and chemical models. Most hydrodynamics codes are written in Fortran, however, while most ecologists work in MATLAB. This disconnect creates a great barrier. To address this, we are working on a model coupling interface that will allow biogeochemical computations written in MATLAB to couple with Fortran codes. This will greatly improve the productivity of ecosystem scientists. 2. Low overhead and Elastic MapReduce Implementation Optimized for Memory and CPU-Intensive Applications: Since its inception, MapReduce has frequently been associated with Hadoop and large-scale datasets. Its deployment at Amazon in the cloud, and its applications at Yahoo! for large-scale distributed document indexing and database building, among other tasks, have thrust MapReduce to the forefront of the data processing application domain. The applicability of the paradigm however extends far beyond its use with data intensive applications and diskbased systems, and can also be brought to bear in processing small but CPU intensive distributed applications. MapReduce however carries its own burdens. Through experiments using Hadoop in the context of diverse applications, we uncovered latencies and delay conditions potentially inhibiting the expected performance of a parallel execution in CPU-intensive applications. Furthermore, as it currently stands, MapReduce is favored for data-centric applications, and as such tends to be solely applied to disk-based applications. The paradigm, falls short in bringing its novelty to diskless systems dedicated to in-memory applications, and compute intensive programs processing much smaller data, but requiring intensive computations. In this project, we focused both on the performance of processing large-scale hierarchical data in distributed scientific applications, as well as the processing of smaller but demanding input sizes primarily used in diskless, and memory resident I/O systems. We designed LEMO-MR [1], a Low overhead, elastic, configurable for in- memory applications, and on-demand fault tolerance, an optimized implementation of MapReduce, for both on disk and in memory applications. We conducted experiments to identify not only the necessary components of this model, but also trade offs and factors to be considered. We have initial results to show the efficacy of our implementation in terms of potential speedup that can be achieved for representative data sets used by cloud applications. We have quantified the performance gains exhibited by our MapReduce implementation over Apache Hadoop in a compute intensive environment. 3. Cache Performance Optimization for Processing XML and HDF-based Application Data on Multi-core Processors: It is important to design and develop scientific middleware libraries to harness the opportunities presented by emerging multi-core processors. Implementations of scientific middleware and applications that do not adapt to the programming paradigm when executing on emerging processors can severely impact the overall performance. In this project, we focused on the utilization of the L2 cache, which is a critical shared resource on chip multiprocessors (CMP). The access pattern of the shared L2 cache, which is dependent on how the application schedules and assigns processing work to each thread, can either enhance or hurt the ability to hide memory latency on a multi-core processor. Therefore, while processing scientific datasets such as HDF5, it is essential to conduct fine-grained analysis of cache utilization, to inform scheduling decisions in multi-threaded programming. In this project, using the TAU toolkit for performance feedback from dual- and quad-core machines, we conducted performance analysis and recommendations on how processing threads can be scheduled on multi-core nodes to enhance the performance of a class of scientific applications that requires processing of HDF5 data. In particular, we quantified the gains associated with the use of the adaptations we have made to the Cache-Affinity and Balanced-Set scheduling algorithms to improve L2 cache performance, and hence the overall application execution time [2]. References: 1. Zacharia Fadika, Madhusudhan Govindaraju, ``MapReduce Implementation for Memory-Based and Processing Intensive Applications'', accepted in 2nd IEEE International Conference on Cloud Computing Technology and Science, Indianapolis, USA, Nov 30 - Dec 3, 2010. 2. Rajdeep Bhowmik, Madhusudhan Govindaraju, ``Cache Performance Optimization for Processing XML-based Application Data on Multi-core Processors'', in proceedings of The 10th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, May 17-20, 2010, Melbourne, Victoria, Australia. Contact Information: Madhusudhan Govindaraju Binghamton University State University of New York (SUNY) mgovinda@cs.binghamton.edu Phone: 607-777-4904« less
Ma, Li; Runesha, H Birali; Dvorkin, Daniel; Garbe, John R; Da, Yang
2008-01-01
Background Genome-wide association studies (GWAS) using single nucleotide polymorphism (SNP) markers provide opportunities to detect epistatic SNPs associated with quantitative traits and to detect the exact mode of an epistasis effect. Computational difficulty is the main bottleneck for epistasis testing in large scale GWAS. Results The EPISNPmpi and EPISNP computer programs were developed for testing single-locus and epistatic SNP effects on quantitative traits in GWAS, including tests of three single-locus effects for each SNP (SNP genotypic effect, additive and dominance effects) and five epistasis effects for each pair of SNPs (two-locus interaction, additive × additive, additive × dominance, dominance × additive, and dominance × dominance) based on the extended Kempthorne model. EPISNPmpi is the parallel computing program for epistasis testing in large scale GWAS and achieved excellent scalability for large scale analysis and portability for various parallel computing platforms. EPISNP is the serial computing program based on the EPISNPmpi code for epistasis testing in small scale GWAS using commonly available operating systems and computer hardware. Three serial computing utility programs were developed for graphical viewing of test results and epistasis networks, and for estimating CPU time and disk space requirements. Conclusion The EPISNPmpi parallel computing program provides an effective computing tool for epistasis testing in large scale GWAS, and the epiSNP serial computing programs are convenient tools for epistasis analysis in small scale GWAS using commonly available computer hardware. PMID:18644146
Computing the universe: how large-scale simulations illuminate galaxies and dark energy
NASA Astrophysics Data System (ADS)
O'Shea, Brian
2015-04-01
High-performance and large-scale computing is absolutely to understanding astronomical objects such as stars, galaxies, and the cosmic web. This is because these are structures that operate on physical, temporal, and energy scales that cannot be reasonably approximated in the laboratory, and whose complexity and nonlinearity often defies analytic modeling. In this talk, I show how the growth of computing platforms over time has facilitated our understanding of astrophysical and cosmological phenomena, focusing primarily on galaxies and large-scale structure in the Universe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perahia, Dvora; Grest, Gary S.
Neutron experiments coupled with computational components have resulted in unprecedented understanding of the factors that impact the behavior of ionic structured polymers. Additionally, new computational tools to study macromolecules, were developed. In parallel, this DOE funding have enabled the education of the next generation of material researchers who are able to take the advantage neutron tools offer to the understanding and design of advanced materials. Our research has provided unprecedented insight into one of the major factors that limits the use of ionizable polymers, combining the macroscopic view obtained from the experimental techniques with molecular insight extracted from computational studiesmore » leading to transformative knowledge that will impact the design of nano-structured, materials. With the focus on model systems, of broad interest to the scientific community and to industry, the research addressed challenges that cut across a large number of polymers, independent of the specific chemical structure or the transported species.« less
Preparing for in situ processing on upcoming leading-edge supercomputers
Kress, James; Churchill, Randy Michael; Klasky, Scott; ...
2016-10-01
High performance computing applications are producing increasingly large amounts of data and placing enormous stress on current capabilities for traditional post-hoc visualization techniques. Because of the growing compute and I/O imbalance, data reductions, including in situ visualization, are required. These reduced data are used for analysis and visualization in a variety of different ways. Many of he visualization and analysis requirements are known a priori, but when they are not, scientists are dependent on the reduced data to accurately represent the simulation in post hoc analysis. The contributions of this paper is a description of the directions we are pursuingmore » to assist a large scale fusion simulation code succeed on the next generation of supercomputers. Finally, these directions include the role of in situ processing for performing data reductions, as well as the tradeoffs between data size and data integrity within the context of complex operations in a typical scientific workflow.« less
Creating a Parallel Version of VisIt for Microsoft Windows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitlock, B J; Biagas, K S; Rawson, P L
2011-12-07
VisIt is a popular, free interactive parallel visualization and analysis tool for scientific data. Users can quickly generate visualizations from their data, animate them through time, manipulate them, and save the resulting images or movies for presentations. VisIt was designed from the ground up to work on many scales of computers from modest desktops up to massively parallel clusters. VisIt is comprised of a set of cooperating programs. All programs can be run locally or in client/server mode in which some run locally and some run remotely on compute clusters. The VisIt program most able to harness today's computing powermore » is the VisIt compute engine. The compute engine is responsible for reading simulation data from disk, processing it, and sending results or images back to the VisIt viewer program. In a parallel environment, the compute engine runs several processes, coordinating using the Message Passing Interface (MPI) library. Each MPI process reads some subset of the scientific data and filters the data in various ways to create useful visualizations. By using MPI, VisIt has been able to scale well into the thousands of processors on large computers such as dawn and graph at LLNL. The advent of multicore CPU's has made parallelism the 'new' way to achieve increasing performance. With today's computers having at least 2 cores and in many cases up to 8 and beyond, it is more important than ever to deploy parallel software that can use that computing power not only on clusters but also on the desktop. We have created a parallel version of VisIt for Windows that uses Microsoft's MPI implementation (MSMPI) to process data in parallel on the Windows desktop as well as on a Windows HPC cluster running Microsoft Windows Server 2008. Initial desktop parallel support for Windows was deployed in VisIt 2.4.0. Windows HPC cluster support has been completed and will appear in the VisIt 2.5.0 release. We plan to continue supporting parallel VisIt on Windows so our users will be able to take full advantage of their multicore resources.« less
Linear static structural and vibration analysis on high-performance computers
NASA Technical Reports Server (NTRS)
Baddourah, M. A.; Storaasli, O. O.; Bostic, S. W.
1993-01-01
Parallel computers offer the oppurtunity to significantly reduce the computation time necessary to analyze large-scale aerospace structures. This paper presents algorithms developed for and implemented on massively-parallel computers hereafter referred to as Scalable High-Performance Computers (SHPC), for the most computationally intensive tasks involved in structural analysis, namely, generation and assembly of system matrices, solution of systems of equations and calculation of the eigenvalues and eigenvectors. Results on SHPC are presented for large-scale structural problems (i.e. models for High-Speed Civil Transport). The goal of this research is to develop a new, efficient technique which extends structural analysis to SHPC and makes large-scale structural analyses tractable.
Direct Computation of Sound Radiation by Jet Flow Using Large-scale Equations
NASA Technical Reports Server (NTRS)
Mankbadi, R. R.; Shih, S. H.; Hixon, D. R.; Povinelli, L. A.
1995-01-01
Jet noise is directly predicted using large-scale equations. The computational domain is extended in order to directly capture the radiated field. As in conventional large-eddy-simulations, the effect of the unresolved scales on the resolved ones is accounted for. Special attention is given to boundary treatment to avoid spurious modes that can render the computed fluctuations totally unacceptable. Results are presented for a supersonic jet at Mach number 2.1.
Hi-Corrector: a fast, scalable and memory-efficient package for normalizing large-scale Hi-C data.
Li, Wenyuan; Gong, Ke; Li, Qingjiao; Alber, Frank; Zhou, Xianghong Jasmine
2015-03-15
Genome-wide proximity ligation assays, e.g. Hi-C and its variant TCC, have recently become important tools to study spatial genome organization. Removing biases from chromatin contact matrices generated by such techniques is a critical preprocessing step of subsequent analyses. The continuing decline of sequencing costs has led to an ever-improving resolution of the Hi-C data, resulting in very large matrices of chromatin contacts. Such large-size matrices, however, pose a great challenge on the memory usage and speed of its normalization. Therefore, there is an urgent need for fast and memory-efficient methods for normalization of Hi-C data. We developed Hi-Corrector, an easy-to-use, open source implementation of the Hi-C data normalization algorithm. Its salient features are (i) scalability-the software is capable of normalizing Hi-C data of any size in reasonable times; (ii) memory efficiency-the sequential version can run on any single computer with very limited memory, no matter how little; (iii) fast speed-the parallel version can run very fast on multiple computing nodes with limited local memory. The sequential version is implemented in ANSI C and can be easily compiled on any system; the parallel version is implemented in ANSI C with the MPI library (a standardized and portable parallel environment designed for solving large-scale scientific problems). The package is freely available at http://zhoulab.usc.edu/Hi-Corrector/. © The Author 2014. Published by Oxford University Press.
Parallel processing for scientific computations
NASA Technical Reports Server (NTRS)
Alkhatib, Hasan S.
1995-01-01
The scope of this project dealt with the investigation of the requirements to support distributed computing of scientific computations over a cluster of cooperative workstations. Various experiments on computations for the solution of simultaneous linear equations were performed in the early phase of the project to gain experience in the general nature and requirements of scientific applications. A specification of a distributed integrated computing environment, DICE, based on a distributed shared memory communication paradigm has been developed and evaluated. The distributed shared memory model facilitates porting existing parallel algorithms that have been designed for shared memory multiprocessor systems to the new environment. The potential of this new environment is to provide supercomputing capability through the utilization of the aggregate power of workstations cooperating in a cluster interconnected via a local area network. Workstations, generally, do not have the computing power to tackle complex scientific applications, making them primarily useful for visualization, data reduction, and filtering as far as complex scientific applications are concerned. There is a tremendous amount of computing power that is left unused in a network of workstations. Very often a workstation is simply sitting idle on a desk. A set of tools can be developed to take advantage of this potential computing power to create a platform suitable for large scientific computations. The integration of several workstations into a logical cluster of distributed, cooperative, computing stations presents an alternative to shared memory multiprocessor systems. In this project we designed and evaluated such a system.
The scaling issue: scientific opportunities
NASA Astrophysics Data System (ADS)
Orbach, Raymond L.
2009-07-01
A brief history of the Leadership Computing Facility (LCF) initiative is presented, along with the importance of SciDAC to the initiative. The initiative led to the initiation of the Innovative and Novel Computational Impact on Theory and Experiment program (INCITE), open to all researchers in the US and abroad, and based solely on scientific merit through peer review, awarding sizeable allocations (typically millions of processor-hours per project). The development of the nation's LCFs has enabled available INCITE processor-hours to double roughly every eight months since its inception in 2004. The 'top ten' LCF accomplishments in 2009 illustrate the breadth of the scientific program, while the 75 million processor hours allocated to American business since 2006 highlight INCITE contributions to US competitiveness. The extrapolation of INCITE processor hours into the future brings new possibilities for many 'classic' scaling problems. Complex systems and atomic displacements to cracks are but two examples. However, even with increasing computational speeds, the development of theory, numerical representations, algorithms, and efficient implementation are required for substantial success, exhibiting the crucial role that SciDAC will play.
Moving image analysis to the cloud: A case study with a genome-scale tomographic study
NASA Astrophysics Data System (ADS)
Mader, Kevin; Stampanoni, Marco
2016-01-01
Over the last decade, the time required to measure a terabyte of microscopic imaging data has gone from years to minutes. This shift has moved many of the challenges away from experimental design and measurement to scalable storage, organization, and analysis. As many scientists and scientific institutions lack training and competencies in these areas, major bottlenecks have arisen and led to substantial delays and gaps between measurement, understanding, and dissemination. We present in this paper a framework for analyzing large 3D datasets using cloud-based computational and storage resources. We demonstrate its applicability by showing the setup and costs associated with the analysis of a genome-scale study of bone microstructure. We then evaluate the relative advantages and disadvantages associated with local versus cloud infrastructures.
Hadoop-GIS: A High Performance Spatial Data Warehousing System over MapReduce.
Aji, Ablimit; Wang, Fusheng; Vo, Hoang; Lee, Rubao; Liu, Qiaoling; Zhang, Xiaodong; Saltz, Joel
2013-08-01
Support of high performance queries on large volumes of spatial data becomes increasingly important in many application domains, including geospatial problems in numerous fields, location based services, and emerging scientific applications that are increasingly data- and compute-intensive. The emergence of massive scale spatial data is due to the proliferation of cost effective and ubiquitous positioning technologies, development of high resolution imaging technologies, and contribution from a large number of community users. There are two major challenges for managing and querying massive spatial data to support spatial queries: the explosion of spatial data, and the high computational complexity of spatial queries. In this paper, we present Hadoop-GIS - a scalable and high performance spatial data warehousing system for running large scale spatial queries on Hadoop. Hadoop-GIS supports multiple types of spatial queries on MapReduce through spatial partitioning, customizable spatial query engine RESQUE, implicit parallel spatial query execution on MapReduce, and effective methods for amending query results through handling boundary objects. Hadoop-GIS utilizes global partition indexing and customizable on demand local spatial indexing to achieve efficient query processing. Hadoop-GIS is integrated into Hive to support declarative spatial queries with an integrated architecture. Our experiments have demonstrated the high efficiency of Hadoop-GIS on query response and high scalability to run on commodity clusters. Our comparative experiments have showed that performance of Hadoop-GIS is on par with parallel SDBMS and outperforms SDBMS for compute-intensive queries. Hadoop-GIS is available as a set of library for processing spatial queries, and as an integrated software package in Hive.
Hadoop-GIS: A High Performance Spatial Data Warehousing System over MapReduce
Aji, Ablimit; Wang, Fusheng; Vo, Hoang; Lee, Rubao; Liu, Qiaoling; Zhang, Xiaodong; Saltz, Joel
2013-01-01
Support of high performance queries on large volumes of spatial data becomes increasingly important in many application domains, including geospatial problems in numerous fields, location based services, and emerging scientific applications that are increasingly data- and compute-intensive. The emergence of massive scale spatial data is due to the proliferation of cost effective and ubiquitous positioning technologies, development of high resolution imaging technologies, and contribution from a large number of community users. There are two major challenges for managing and querying massive spatial data to support spatial queries: the explosion of spatial data, and the high computational complexity of spatial queries. In this paper, we present Hadoop-GIS – a scalable and high performance spatial data warehousing system for running large scale spatial queries on Hadoop. Hadoop-GIS supports multiple types of spatial queries on MapReduce through spatial partitioning, customizable spatial query engine RESQUE, implicit parallel spatial query execution on MapReduce, and effective methods for amending query results through handling boundary objects. Hadoop-GIS utilizes global partition indexing and customizable on demand local spatial indexing to achieve efficient query processing. Hadoop-GIS is integrated into Hive to support declarative spatial queries with an integrated architecture. Our experiments have demonstrated the high efficiency of Hadoop-GIS on query response and high scalability to run on commodity clusters. Our comparative experiments have showed that performance of Hadoop-GIS is on par with parallel SDBMS and outperforms SDBMS for compute-intensive queries. Hadoop-GIS is available as a set of library for processing spatial queries, and as an integrated software package in Hive. PMID:24187650
NASA Astrophysics Data System (ADS)
Klein, R.; Woodward, C. S.; Johannesson, G.; Domyancic, D.; Covey, C. C.; Lucas, D. D.
2012-12-01
Uncertainty Quantification (UQ) is a critical field within 21st century simulation science that resides at the very center of the web of emerging predictive capabilities. The science of UQ holds the promise of giving much greater meaning to the results of complex large-scale simulations, allowing for quantifying and bounding uncertainties. This powerful capability will yield new insights into scientific predictions (e.g. Climate) of great impact on both national and international arenas, allow informed decisions on the design of critical experiments (e.g. ICF capsule design, MFE, NE) in many scientific fields, and assign confidence bounds to scientifically predictable outcomes (e.g. nuclear weapons design). In this talk I will discuss a major new strategic initiative (SI) we have developed at Lawrence Livermore National Laboratory to advance the science of Uncertainty Quantification at LLNL focusing in particular on (a) the research and development of new algorithms and methodologies of UQ as applied to multi-physics multi-scale codes, (b) incorporation of these advancements into a global UQ Pipeline (i.e. a computational superstructure) that will simplify user access to sophisticated tools for UQ studies as well as act as a self-guided, self-adapting UQ engine for UQ studies on extreme computing platforms and (c) use laboratory applications as a test bed for new algorithms and methodologies. The initial SI focus has been on applications for the quantification of uncertainty associated with Climate prediction, but the validated UQ methodologies we have developed are now being fed back into Science Based Stockpile Stewardship (SSS) and ICF UQ efforts. To make advancements in several of these UQ grand challenges, I will focus in talk on the following three research areas in our Strategic Initiative: Error Estimation in multi-physics and multi-scale codes ; Tackling the "Curse of High Dimensionality"; and development of an advanced UQ Computational Pipeline to enable complete UQ workflow and analysis for ensemble runs at the extreme scale (e.g. exascale) with self-guiding adaptation in the UQ Pipeline engine. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was funded by the Uncertainty Quantification Strategic Initiative Laboratory Directed Research and Development Project at LLNL under project tracking code 10-SI-013 (UCRL LLNL-ABS-569112).
Tri-Laboratory Linux Capacity Cluster 2007 SOW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seager, M
2007-03-22
The Advanced Simulation and Computing (ASC) Program (formerly know as Accelerated Strategic Computing Initiative, ASCI) has led the world in capability computing for the last ten years. Capability computing is defined as a world-class platform (in the Top10 of the Top500.org list) with scientific simulations running at scale on the platform. Example systems are ASCI Red, Blue-Pacific, Blue-Mountain, White, Q, RedStorm, and Purple. ASC applications have scaled to multiple thousands of CPUs and accomplished a long list of mission milestones on these ASC capability platforms. However, the computing demands of the ASC and Stockpile Stewardship programs also include a vastmore » number of smaller scale runs for day-to-day simulations. Indeed, every 'hero' capability run requires many hundreds to thousands of much smaller runs in preparation and post processing activities. In addition, there are many aspects of the Stockpile Stewardship Program (SSP) that can be directly accomplished with these so-called 'capacity' calculations. The need for capacity is now so great within the program that it is increasingly difficult to allocate the computer resources required by the larger capability runs. To rectify the current 'capacity' computing resource shortfall, the ASC program has allocated a large portion of the overall ASC platforms budget to 'capacity' systems. In addition, within the next five to ten years the Life Extension Programs (LEPs) for major nuclear weapons systems must be accomplished. These LEPs and other SSP programmatic elements will further drive the need for capacity calculations and hence 'capacity' systems as well as future ASC capability calculations on 'capability' systems. To respond to this new workload analysis, the ASC program will be making a large sustained strategic investment in these capacity systems over the next ten years, starting with the United States Government Fiscal Year 2007 (GFY07). However, given the growing need for 'capability' systems as well, the budget demands are extreme and new, more cost effective ways of fielding these systems must be developed. This Tri-Laboratory Linux Capacity Cluster (TLCC) procurement represents the ASC first investment vehicle in these capacity systems. It also represents a new strategy for quickly building, fielding and integrating many Linux clusters of various sizes into classified and unclassified production service through a concept of Scalable Units (SU). The programmatic objective is to dramatically reduce the overall Total Cost of Ownership (TCO) of these 'capacity' systems relative to the best practices in Linux Cluster deployments today. This objective only makes sense in the context of these systems quickly becoming very robust and useful production clusters under the crushing load that will be inflicted on them by the ASC and SSP scientific simulation capacity workload.« less
Active Storage with Analytics Capabilities and I/O Runtime System for Petascale Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhary, Alok
Computational scientists must understand results from experimental, observational and computational simulation generated data to gain insights and perform knowledge discovery. As systems approach the petascale range, problems that were unimaginable a few years ago are within reach. With the increasing volume and complexity of data produced by ultra-scale simulations and high-throughput experiments, understanding the science is largely hampered by the lack of comprehensive I/O, storage, acceleration of data manipulation, analysis, and mining tools. Scientists require techniques, tools and infrastructure to facilitate better understanding of their data, in particular the ability to effectively perform complex data analysis, statistical analysis and knowledgemore » discovery. The goal of this work is to enable more effective analysis of scientific datasets through the integration of enhancements in the I/O stack, from active storage support at the file system layer to MPI-IO and high-level I/O library layers. We propose to provide software components to accelerate data analytics, mining, I/O, and knowledge discovery for large-scale scientific applications, thereby increasing productivity of both scientists and the systems. Our approaches include 1) design the interfaces in high-level I/O libraries, such as parallel netCDF, for applications to activate data mining operations at the lower I/O layers; 2) Enhance MPI-IO runtime systems to incorporate the functionality developed as a part of the runtime system design; 3) Develop parallel data mining programs as part of runtime library for server-side file system in PVFS file system; and 4) Prototype an active storage cluster, which will utilize multicore CPUs, GPUs, and FPGAs to carry out the data mining workload.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keyes, D E; McGraw, J R
2006-02-02
Large-scale scientific computation and all of the disciplines that support and help validate it have been placed at the focus of Lawrence Livermore National Laboratory (LLNL) by the Advanced Simulation and Computing (ASC) program of the National Nuclear Security Administration (NNSA) and the Scientific Discovery through Advanced Computing (SciDAC) initiative of the Office of Science of the Department of Energy (DOE). The maturation of simulation as a fundamental tool of scientific and engineering research is underscored in the President's Information Technology Advisory Committee (PITAC) June 2005 finding that ''computational science has become critical to scientific leadership, economic competitiveness, and nationalmore » security''. LLNL operates several of the world's most powerful computers--including today's single most powerful--and has undertaken some of the largest and most compute-intensive simulations ever performed, most notably the molecular dynamics simulation that sustained more than 100 Teraflop/s and won the 2005 Gordon Bell Prize. Ultrascale simulation has been identified as one of the highest priorities in DOE's facilities planning for the next two decades. However, computers at architectural extremes are notoriously difficult to use in an efficient manner. Furthermore, each successful terascale simulation only points out the need for much better ways of interacting with the resulting avalanche of data. Advances in scientific computing research have, therefore, never been more vital to the core missions of LLNL than at present. Computational science is evolving so rapidly along every one of its research fronts that to remain on the leading edge, LLNL must engage researchers at many academic centers of excellence. In FY 2005, the Institute for Scientific Computing Research (ISCR) served as one of LLNL's main bridges to the academic community with a program of collaborative subcontracts, visiting faculty, student internships, workshops, and an active seminar series. The ISCR identifies researchers from the academic community for computer science and computational science collaborations with LLNL and hosts them for both brief and extended visits with the aim of encouraging long-term academic research agendas that address LLNL research priorities. Through these collaborations, ideas and software flow in both directions, and LLNL cultivates its future workforce. The Institute strives to be LLNL's ''eyes and ears'' in the computer and information sciences, keeping the Laboratory aware of and connected to important external advances. It also attempts to be the ''hands and feet'' that carry those advances into the Laboratory and incorporate them into practice. ISCR research participants are integrated into LLNL's Computing Applications and Research (CAR) Department, especially into its Center for Applied Scientific Computing (CASC). In turn, these organizations address computational challenges arising throughout the rest of the Laboratory. Administratively, the ISCR flourishes under LLNL's University Relations Program (URP). Together with the other four institutes of the URP, the ISCR navigates a course that allows LLNL to benefit from academic exchanges while preserving national security. While it is difficult to operate an academic-like research enterprise within the context of a national security laboratory, the results declare the challenges well met and worth the continued effort. The pages of this annual report summarize the activities of the faculty members, postdoctoral researchers, students, and guests from industry and other laboratories who participated in LLNL's computational mission under the auspices of the ISCR during FY 2005.« less
Amplify scientific discovery with artificial intelligence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gil, Yolanda; Greaves, Mark T.; Hendler, James
Computing innovations have fundamentally changed many aspects of scientific inquiry. For example, advances in robotics, high-end computing, networking, and databases now underlie much of what we do in science such as gene sequencing, general number crunching, sharing information between scientists, and analyzing large amounts of data. As computing has evolved at a rapid pace, so too has its impact in science, with the most recent computing innovations repeatedly being brought to bear to facilitate new forms of inquiry. Recently, advances in Artificial Intelligence (AI) have deeply penetrated many consumer sectors, including for example Apple’s Siri™ speech recognition system, real-time automatedmore » language translation services, and a new generation of self-driving cars and self-navigating drones. However, AI has yet to achieve comparable levels of penetration in scientific inquiry, despite its tremendous potential in aiding computers to help scientists tackle tasks that require scientific reasoning. We contend that advances in AI will transform the practice of science as we are increasingly able to effectively and jointly harness human and machine intelligence in the pursuit of major scientific challenges.« less
High-Resiliency and Auto-Scaling of Large-Scale Cloud Computing for OCO-2 L2 Full Physics Processing
NASA Astrophysics Data System (ADS)
Hua, H.; Manipon, G.; Starch, M.; Dang, L. B.; Southam, P.; Wilson, B. D.; Avis, C.; Chang, A.; Cheng, C.; Smyth, M.; McDuffie, J. L.; Ramirez, P.
2015-12-01
Next generation science data systems are needed to address the incoming flood of data from new missions such as SWOT and NISAR where data volumes and data throughput rates are order of magnitude larger than present day missions. Additionally, traditional means of procuring hardware on-premise are already limited due to facilities capacity constraints for these new missions. Existing missions, such as OCO-2, may also require high turn-around time for processing different science scenarios where on-premise and even traditional HPC computing environments may not meet the high processing needs. We present our experiences on deploying a hybrid-cloud computing science data system (HySDS) for the OCO-2 Science Computing Facility to support large-scale processing of their Level-2 full physics data products. We will explore optimization approaches to getting best performance out of hybrid-cloud computing as well as common issues that will arise when dealing with large-scale computing. Novel approaches were utilized to do processing on Amazon's spot market, which can potentially offer ~10X costs savings but with an unpredictable computing environment based on market forces. We will present how we enabled high-tolerance computing in order to achieve large-scale computing as well as operational cost savings.
Li, Chen; Yongbo, Lv; Chi, Chen
2015-01-01
Based on the data from 30 provincial regions in China, an assessment and empirical analysis was carried out on the utilizing and sharing of the large-scale scientific equipment with a comprehensive assessment model established on the three dimensions, namely, equipment, utilization and sharing. The assessment results were interpreted in light of relevant policies. The results showed that on the whole, the overall development level in the provincial regions in eastern and central China is higher than that in western China. This is mostly because of the large gap among the different provincial regions with respect to the equipped level. But in terms of utilizing and sharing, some of the Western provincial regions, such as Ningxia, perform well, which is worthy of our attention. Policy adjustment targeting at the differentiation, elevation of the capacity of the equipment management personnel, perfection of the sharing and cooperation platform, and the promotion of the establishment of open sharing funds, are all important measures to promote the utilization and sharing of the large-scale scientific equipment and to narrow the gap among different regions. PMID:25937850
ORNL Cray X1 evaluation status report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, P.K.; Alexander, R.A.; Apra, E.
2004-05-01
On August 15, 2002 the Department of Energy (DOE) selected the Center for Computational Sciences (CCS) at Oak Ridge National Laboratory (ORNL) to deploy a new scalable vector supercomputer architecture for solving important scientific problems in climate, fusion, biology, nanoscale materials and astrophysics. ''This program is one of the first steps in an initiative designed to provide U.S. scientists with the computational power that is essential to 21st century scientific leadership,'' said Dr. Raymond L. Orbach, director of the department's Office of Science. In FY03, CCS procured a 256-processor Cray X1 to evaluate the processors, memory subsystem, scalability of themore » architecture, software environment and to predict the expected sustained performance on key DOE applications codes. The results of the micro-benchmarks and kernel bench marks show the architecture of the Cray X1 to be exceptionally fast for most operations. The best results are shown on large problems, where it is not possible to fit the entire problem into the cache of the processors. These large problems are exactly the types of problems that are important for the DOE and ultra-scale simulation. Application performance is found to be markedly improved by this architecture: - Large-scale simulations of high-temperature superconductors run 25 times faster than on an IBM Power4 cluster using the same number of processors. - Best performance of the parallel ocean program (POP v1.4.3) is 50 percent higher than on Japan s Earth Simulator and 5 times higher than on an IBM Power4 cluster. - A fusion application, global GYRO transport, was found to be 16 times faster on the X1 than on an IBM Power3. The increased performance allowed simulations to fully resolve questions raised by a prior study. - The transport kernel in the AGILE-BOLTZTRAN astrophysics code runs 15 times faster than on an IBM Power4 cluster using the same number of processors. - Molecular dynamics simulations related to the phenomenon of photon echo run 8 times faster than previously achieved. Even at 256 processors, the Cray X1 system is already outperforming other supercomputers with thousands of processors for a certain class of applications such as climate modeling and some fusion applications. This evaluation is the outcome of a number of meetings with both high-performance computing (HPC) system vendors and application experts over the past 9 months and has received broad-based support from the scientific community and other agencies.« less
Reproducible Large-Scale Neuroimaging Studies with the OpenMOLE Workflow Management System.
Passerat-Palmbach, Jonathan; Reuillon, Romain; Leclaire, Mathieu; Makropoulos, Antonios; Robinson, Emma C; Parisot, Sarah; Rueckert, Daniel
2017-01-01
OpenMOLE is a scientific workflow engine with a strong emphasis on workload distribution. Workflows are designed using a high level Domain Specific Language (DSL) built on top of Scala. It exposes natural parallelism constructs to easily delegate the workload resulting from a workflow to a wide range of distributed computing environments. OpenMOLE hides the complexity of designing complex experiments thanks to its DSL. Users can embed their own applications and scale their pipelines from a small prototype running on their desktop computer to a large-scale study harnessing distributed computing infrastructures, simply by changing a single line in the pipeline definition. The construction of the pipeline itself is decoupled from the execution context. The high-level DSL abstracts the underlying execution environment, contrary to classic shell-script based pipelines. These two aspects allow pipelines to be shared and studies to be replicated across different computing environments. Workflows can be run as traditional batch pipelines or coupled with OpenMOLE's advanced exploration methods in order to study the behavior of an application, or perform automatic parameter tuning. In this work, we briefly present the strong assets of OpenMOLE and detail recent improvements targeting re-executability of workflows across various Linux platforms. We have tightly coupled OpenMOLE with CARE, a standalone containerization solution that allows re-executing on a Linux host any application that has been packaged on another Linux host previously. The solution is evaluated against a Python-based pipeline involving packages such as scikit-learn as well as binary dependencies. All were packaged and re-executed successfully on various HPC environments, with identical numerical results (here prediction scores) obtained on each environment. Our results show that the pair formed by OpenMOLE and CARE is a reliable solution to generate reproducible results and re-executable pipelines. A demonstration of the flexibility of our solution showcases three neuroimaging pipelines harnessing distributed computing environments as heterogeneous as local clusters or the European Grid Infrastructure (EGI).
Reproducible Large-Scale Neuroimaging Studies with the OpenMOLE Workflow Management System
Passerat-Palmbach, Jonathan; Reuillon, Romain; Leclaire, Mathieu; Makropoulos, Antonios; Robinson, Emma C.; Parisot, Sarah; Rueckert, Daniel
2017-01-01
OpenMOLE is a scientific workflow engine with a strong emphasis on workload distribution. Workflows are designed using a high level Domain Specific Language (DSL) built on top of Scala. It exposes natural parallelism constructs to easily delegate the workload resulting from a workflow to a wide range of distributed computing environments. OpenMOLE hides the complexity of designing complex experiments thanks to its DSL. Users can embed their own applications and scale their pipelines from a small prototype running on their desktop computer to a large-scale study harnessing distributed computing infrastructures, simply by changing a single line in the pipeline definition. The construction of the pipeline itself is decoupled from the execution context. The high-level DSL abstracts the underlying execution environment, contrary to classic shell-script based pipelines. These two aspects allow pipelines to be shared and studies to be replicated across different computing environments. Workflows can be run as traditional batch pipelines or coupled with OpenMOLE's advanced exploration methods in order to study the behavior of an application, or perform automatic parameter tuning. In this work, we briefly present the strong assets of OpenMOLE and detail recent improvements targeting re-executability of workflows across various Linux platforms. We have tightly coupled OpenMOLE with CARE, a standalone containerization solution that allows re-executing on a Linux host any application that has been packaged on another Linux host previously. The solution is evaluated against a Python-based pipeline involving packages such as scikit-learn as well as binary dependencies. All were packaged and re-executed successfully on various HPC environments, with identical numerical results (here prediction scores) obtained on each environment. Our results show that the pair formed by OpenMOLE and CARE is a reliable solution to generate reproducible results and re-executable pipelines. A demonstration of the flexibility of our solution showcases three neuroimaging pipelines harnessing distributed computing environments as heterogeneous as local clusters or the European Grid Infrastructure (EGI). PMID:28381997
Parallel Index and Query for Large Scale Data Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Jerry; Wu, Kesheng; Ruebel, Oliver
2011-07-18
Modern scientific datasets present numerous data management and analysis challenges. State-of-the-art index and query technologies are critical for facilitating interactive exploration of large datasets, but numerous challenges remain in terms of designing a system for process- ing general scientific datasets. The system needs to be able to run on distributed multi-core platforms, efficiently utilize underlying I/O infrastructure, and scale to massive datasets. We present FastQuery, a novel software framework that address these challenges. FastQuery utilizes a state-of-the-art index and query technology (FastBit) and is designed to process mas- sive datasets on modern supercomputing platforms. We apply FastQuery to processing ofmore » a massive 50TB dataset generated by a large scale accelerator modeling code. We demonstrate the scalability of the tool to 11,520 cores. Motivated by the scientific need to search for inter- esting particles in this dataset, we use our framework to reduce search time from hours to tens of seconds.« less
Development and Applications of a Modular Parallel Process for Large Scale Fluid/Structures Problems
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; Byun, Chansup; Kwak, Dochan (Technical Monitor)
2001-01-01
A modular process that can efficiently solve large scale multidisciplinary problems using massively parallel super computers is presented. The process integrates disciplines with diverse physical characteristics by retaining the efficiency of individual disciplines. Computational domain independence of individual disciplines is maintained using a meta programming approach. The process integrates disciplines without affecting the combined performance. Results are demonstrated for large scale aerospace problems on several supercomputers. The super scalability and portability of the approach is demonstrated on several parallel computers.
a Novel Discrete Optimal Transport Method for Bayesian Inverse Problems
NASA Astrophysics Data System (ADS)
Bui-Thanh, T.; Myers, A.; Wang, K.; Thiery, A.
2017-12-01
We present the Augmented Ensemble Transform (AET) method for generating approximate samples from a high-dimensional posterior distribution as a solution to Bayesian inverse problems. Solving large-scale inverse problems is critical for some of the most relevant and impactful scientific endeavors of our time. Therefore, constructing novel methods for solving the Bayesian inverse problem in more computationally efficient ways can have a profound impact on the science community. This research derives the novel AET method for exploring a posterior by solving a sequence of linear programming problems, resulting in a series of transport maps which map prior samples to posterior samples, allowing for the computation of moments of the posterior. We show both theoretical and numerical results, indicating this method can offer superior computational efficiency when compared to other SMC methods. Most of this efficiency is derived from matrix scaling methods to solve the linear programming problem and derivative-free optimization for particle movement. We use this method to determine inter-well connectivity in a reservoir and the associated uncertainty related to certain parameters. The attached file shows the difference between the true parameter and the AET parameter in an example 3D reservoir problem. The error is within the Morozov discrepancy allowance with lower computational cost than other particle methods.
Idle waves in high-performance computing
NASA Astrophysics Data System (ADS)
Markidis, Stefano; Vencels, Juris; Peng, Ivy Bo; Akhmetova, Dana; Laure, Erwin; Henri, Pierre
2015-01-01
The vast majority of parallel scientific applications distributes computation among processes that are in a busy state when computing and in an idle state when waiting for information from other processes. We identify the propagation of idle waves through processes in scientific applications with a local information exchange between the two processes. Idle waves are nondispersive and have a phase velocity inversely proportional to the average busy time. The physical mechanism enabling the propagation of idle waves is the local synchronization between two processes due to remote data dependency. This study provides a description of the large number of processes in parallel scientific applications as a continuous medium. This work also is a step towards an understanding of how localized idle periods can affect remote processes, leading to the degradation of global performance in parallel scientific applications.
Recent Enhancements to the Community Multiscale Air Quality Modeling System (CMAQ)
EPA’s Office of Research and Development, Computational Exposure Division held a webinar on January 31, 2017 to present the recent scientific and computational updates made by EPA to the Community Multi-Scale Air Quality Model (CMAQ). Topics covered included: (1) Improveme...
Information Science Research: The Search for the Nature of Information.
ERIC Educational Resources Information Center
Kochen, Manfred
1984-01-01
High-level scientific research in the information sciences is illustrated by sampling of recent discoveries involving adaptive information processing strategies, computer and information systems, centroid scaling, economic growth of computer and communication industries, and information flow in biological systems. Relationship of information…
Environmental models are products of the computer architecture and software tools available at the time of development. Scientifically sound algorithms may persist in their original state even as system architectures and software development approaches evolve and progress. Dating...
xSDK Foundations: Toward an Extreme-scale Scientific Software Development Kit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heroux, Michael A.; Bartlett, Roscoe; Demeshko, Irina
Here, extreme-scale computational science increasingly demands multiscale and multiphysics formulations. Combining software developed by independent groups is imperative: no single team has resources for all predictive science and decision support capabilities. Scientific libraries provide high-quality, reusable software components for constructing applications with improved robustness and portability. However, without coordination, many libraries cannot be easily composed. Namespace collisions, inconsistent arguments, lack of third-party software versioning, and additional difficulties make composition costly. The Extreme-scale Scientific Software Development Kit (xSDK) defines community policies to improve code quality and compatibility across independently developed packages (hypre, PETSc, SuperLU, Trilinos, and Alquimia) and provides a foundationmore » for addressing broader issues in software interoperability, performance portability, and sustainability. The xSDK provides turnkey installation of member software and seamless combination of aggregate capabilities, and it marks first steps toward extreme-scale scientific software ecosystems from which future applications can be composed rapidly with assured quality and scalability.« less
xSDK Foundations: Toward an Extreme-scale Scientific Software Development Kit
Heroux, Michael A.; Bartlett, Roscoe; Demeshko, Irina; ...
2017-03-01
Here, extreme-scale computational science increasingly demands multiscale and multiphysics formulations. Combining software developed by independent groups is imperative: no single team has resources for all predictive science and decision support capabilities. Scientific libraries provide high-quality, reusable software components for constructing applications with improved robustness and portability. However, without coordination, many libraries cannot be easily composed. Namespace collisions, inconsistent arguments, lack of third-party software versioning, and additional difficulties make composition costly. The Extreme-scale Scientific Software Development Kit (xSDK) defines community policies to improve code quality and compatibility across independently developed packages (hypre, PETSc, SuperLU, Trilinos, and Alquimia) and provides a foundationmore » for addressing broader issues in software interoperability, performance portability, and sustainability. The xSDK provides turnkey installation of member software and seamless combination of aggregate capabilities, and it marks first steps toward extreme-scale scientific software ecosystems from which future applications can be composed rapidly with assured quality and scalability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Second SIAM Conference on Computational Science and Engineering was held in San Diego from February 10-12, 2003. Total conference attendance was 553. This is a 23% increase in attendance over the first conference. The focus of this conference was to draw attention to the tremendous range of major computational efforts on large problems in science and engineering, to promote the interdisciplinary culture required to meet these large-scale challenges, and to encourage the training of the next generation of computational scientists. Computational Science & Engineering (CS&E) is now widely accepted, along with theory and experiment, as a crucial third modemore » of scientific investigation and engineering design. Aerospace, automotive, biological, chemical, semiconductor, and other industrial sectors now rely on simulation for technical decision support. For federal agencies also, CS&E has become an essential support for decisions on resources, transportation, and defense. CS&E is, by nature, interdisciplinary. It grows out of physical applications and it depends on computer architecture, but at its heart are powerful numerical algorithms and sophisticated computer science techniques. From an applied mathematics perspective, much of CS&E has involved analysis, but the future surely includes optimization and design, especially in the presence of uncertainty. Another mathematical frontier is the assimilation of very large data sets through such techniques as adaptive multi-resolution, automated feature search, and low-dimensional parameterization. The themes of the 2003 conference included, but were not limited to: Advanced Discretization Methods; Computational Biology and Bioinformatics; Computational Chemistry and Chemical Engineering; Computational Earth and Atmospheric Sciences; Computational Electromagnetics; Computational Fluid Dynamics; Computational Medicine and Bioengineering; Computational Physics and Astrophysics; Computational Solid Mechanics and Materials; CS&E Education; Meshing and Adaptivity; Multiscale and Multiphysics Problems; Numerical Algorithms for CS&E; Discrete and Combinatorial Algorithms for CS&E; Inverse Problems; Optimal Design, Optimal Control, and Inverse Problems; Parallel and Distributed Computing; Problem-Solving Environments; Software and Wddleware Systems; Uncertainty Estimation and Sensitivity Analysis; and Visualization and Computer Graphics.« less
NASA Astrophysics Data System (ADS)
Ellins, K. K.; Eriksson, S. C.; Samsel, F.; Lavier, L.
2017-12-01
A new undergraduate, upper level geoscience course was developed and taught by faculty and staff of the UT Austin Jackson School of Geosciences, the Center for Agile Technology, and the Texas Advanced Computational Center. The course examined the role of the visual arts in placing the scientific process and knowledge in a broader context and introduced students to innovations in the visual arts that promote scientific investigation through collaboration between geoscientists and artists. The course addressed (1) the role of the visual arts in teaching geoscience concepts and promoting geoscience learning; (2) the application of innovative visualization and artistic techniques to large volumes of geoscience data to enhance scientific understanding and to move scientific investigation forward; and (3) the illustrative power of art to communicate geoscience to the public. In-class activities and discussions, computer lab instruction on the application of Paraview software, reading assignments, lectures, and group projects with presentations comprised the two-credit, semester-long "special topics" course, which was taken by geoscience, computer science, and engineering students. Assessment of student learning was carried out by the instructors and course evaluation was done by an external evaluator using rubrics, likert-scale surveys and focus goups. The course achieved its goals of students' learning the concepts and techniques of the visual arts. The final projects demonstrated this, along with the communication of geologic concepts using what they had learned in the course. The basic skill of sketching for learning and using best practices in visual communication were used extensively and, in most cases, very effectively. The use of an advanced visualization tool, Paraview, was received with mixed reviews because of the lack of time to really learn the tool and the fact that it is not a tool used routinely in geoscience. Those senior students with advanced computer skills saw the importance of this tool. Students worked in teams, more or less effectively, and made suggestions for improving future offerings of the course.
Big Data and Dementia: Charting the Route Ahead for Research, Ethics, and Policy
Ienca, Marcello; Vayena, Effy; Blasimme, Alessandro
2018-01-01
Emerging trends in pervasive computing and medical informatics are creating the possibility for large-scale collection, sharing, aggregation and analysis of unprecedented volumes of data, a phenomenon commonly known as big data. In this contribution, we review the existing scientific literature on big data approaches to dementia, as well as commercially available mobile-based applications in this domain. Our analysis suggests that big data approaches to dementia research and care hold promise for improving current preventive and predictive models, casting light on the etiology of the disease, enabling earlier diagnosis, optimizing resource allocation, and delivering more tailored treatments to patients with specific disease trajectories. Such promissory outlook, however, has not materialized yet, and raises a number of technical, scientific, ethical, and regulatory challenges. This paper provides an assessment of these challenges and charts the route ahead for research, ethics, and policy. PMID:29468161
White House announces “big data” initiative
NASA Astrophysics Data System (ADS)
Showstack, Randy
2012-04-01
The world is now generating zetabytes—which is 10 to the 21st power, or a billion trillion bytess—of information every year, according to John Holdren, director of the White House Office of Science and Technology Policy. With data volumes growing exponentially from a variety of sources such as computers running large-scale models, scientific instruments including telescopes and particle accelerators, and even online retail transactions, a key challenge is to better manage and utilize the data. The Big Data Research and Development Initiative, launched by the White House at a 29 March briefing, initially includes six federal departments and agencies providing more than $200 million in new commitments to improve tools and techniques for better accessing, organizing, and using data for scientific advances. The agencies and departments include the National Science Foundation (NSF), Department of Energy, U.S. Geological Survey (USGS), National Institutes of Health (NIH), Department of Defense, and Defense Advanced Research Projects Agency.
Big Data and Dementia: Charting the Route Ahead for Research, Ethics, and Policy.
Ienca, Marcello; Vayena, Effy; Blasimme, Alessandro
2018-01-01
Emerging trends in pervasive computing and medical informatics are creating the possibility for large-scale collection, sharing, aggregation and analysis of unprecedented volumes of data, a phenomenon commonly known as big data. In this contribution, we review the existing scientific literature on big data approaches to dementia, as well as commercially available mobile-based applications in this domain. Our analysis suggests that big data approaches to dementia research and care hold promise for improving current preventive and predictive models, casting light on the etiology of the disease, enabling earlier diagnosis, optimizing resource allocation, and delivering more tailored treatments to patients with specific disease trajectories. Such promissory outlook, however, has not materialized yet, and raises a number of technical, scientific, ethical, and regulatory challenges. This paper provides an assessment of these challenges and charts the route ahead for research, ethics, and policy.
Efficient Load Balancing and Data Remapping for Adaptive Grid Calculations
NASA Technical Reports Server (NTRS)
Oliker, Leonid; Biswas, Rupak
1997-01-01
Mesh adaption is a powerful tool for efficient unstructured- grid computations but causes load imbalance among processors on a parallel machine. We present a novel method to dynamically balance the processor workloads with a global view. This paper presents, for the first time, the implementation and integration of all major components within our dynamic load balancing strategy for adaptive grid calculations. Mesh adaption, repartitioning, processor assignment, and remapping are critical components of the framework that must be accomplished rapidly and efficiently so as not to cause a significant overhead to the numerical simulation. Previous results indicated that mesh repartitioning and data remapping are potential bottlenecks for performing large-scale scientific calculations. We resolve these issues and demonstrate that our framework remains viable on a large number of processors.
Higher-order ice-sheet modelling accelerated by multigrid on graphics cards
NASA Astrophysics Data System (ADS)
Brædstrup, Christian; Egholm, David
2013-04-01
Higher-order ice flow modelling is a very computer intensive process owing primarily to the nonlinear influence of the horizontal stress coupling. When applied for simulating long-term glacial landscape evolution, the ice-sheet models must consider very long time series, while both high temporal and spatial resolution is needed to resolve small effects. The use of higher-order and full stokes models have therefore seen very limited usage in this field. However, recent advances in graphics card (GPU) technology for high performance computing have proven extremely efficient in accelerating many large-scale scientific computations. The general purpose GPU (GPGPU) technology is cheap, has a low power consumption and fits into a normal desktop computer. It could therefore provide a powerful tool for many glaciologists working on ice flow models. Our current research focuses on utilising the GPU as a tool in ice-sheet and glacier modelling. To this extent we have implemented the Integrated Second-Order Shallow Ice Approximation (iSOSIA) equations on the device using the finite difference method. To accelerate the computations, the GPU solver uses a non-linear Red-Black Gauss-Seidel iterator coupled with a Full Approximation Scheme (FAS) multigrid setup to further aid convergence. The GPU finite difference implementation provides the inherent parallelization that scales from hundreds to several thousands of cores on newer cards. We demonstrate the efficiency of the GPU multigrid solver using benchmark experiments.
Schmoldt, D.L.; Peterson, D.L.; Keane, R.E.; Lenihan, J.M.; McKenzie, D.; Weise, D.R.; Sandberg, D.V.
1999-01-01
A team of fire scientists and resource managers convened 17-19 April 1996 in Seattle, Washington, to assess the effects of fire disturbance on ecosystems. Objectives of this workshop were to develop scientific recommendations for future fire research and management activities. These recommendations included a series of numerically ranked scientific and managerial questions and responses focusing on (1) links among fire effects, fuels, and climate; (2) fire as a large-scale disturbance; (3) fire-effects modeling structures; and (4) managerial concerns, applications, and decision support. At the present time, understanding of fire effects and the ability to extrapolate fire-effects knowledge to large spatial scales are limited, because most data have been collected at small spatial scales for specific applications. Although we clearly need more large-scale fire-effects data, it will be more expedient to concentrate efforts on improving and linking existing models that simulate fire effects in a georeferenced format while integrating empirical data as they become available. A significant component of this effort should be improved communication between modelers and managers to develop modeling tools to use in a planning context. Another component of this modeling effort should improve our ability to predict the interactions of fire and potential climatic change at very large spatial scales. The priority issues and approaches described here provide a template for fire science and fire management programs in the next decade and beyond.
Science Gateways, Scientific Workflows and Open Community Software
NASA Astrophysics Data System (ADS)
Pierce, M. E.; Marru, S.
2014-12-01
Science gateways and scientific workflows occupy different ends of the spectrum of user-focused cyberinfrastructure. Gateways, sometimes called science portals, provide a way for enabling large numbers of users to take advantage of advanced computing resources (supercomputers, advanced storage systems, science clouds) by providing Web and desktop interfaces and supporting services. Scientific workflows, at the other end of the spectrum, support advanced usage of cyberinfrastructure that enable "power users" to undertake computational experiments that are not easily done through the usual mechanisms (managing simulations across multiple sites, for example). Despite these different target communities, gateways and workflows share many similarities and can potentially be accommodated by the same software system. For example, pipelines to process InSAR imagery sets or to datamine GPS time series data are workflows. The results and the ability to make downstream products may be made available through a gateway, and power users may want to provide their own custom pipelines. In this abstract, we discuss our efforts to build an open source software system, Apache Airavata, that can accommodate both gateway and workflow use cases. Our approach is general, and we have applied the software to problems in a number of scientific domains. In this talk, we discuss our applications to usage scenarios specific to earth science, focusing on earthquake physics examples drawn from the QuakSim.org and GeoGateway.org efforts. We also examine the role of the Apache Software Foundation's open community model as a way to build up common commmunity codes that do not depend upon a single "owner" to sustain. Pushing beyond open source software, we also see the need to provide gateways and workflow systems as cloud services. These services centralize operations, provide well-defined programming interfaces, scale elastically, and have global-scale fault tolerance. We discuss our work providing Apache Airavata as a hosted service to provide these features.
On the Large-Scaling Issues of Cloud-based Applications for Earth Science Dat
NASA Astrophysics Data System (ADS)
Hua, H.
2016-12-01
Next generation science data systems are needed to address the incoming flood of data from new missions such as NASA's SWOT and NISAR where its SAR data volumes and data throughput rates are order of magnitude larger than present day missions. Existing missions, such as OCO-2, may also require high turn-around time for processing different science scenarios where on-premise and even traditional HPC computing environments may not meet the high processing needs. Additionally, traditional means of procuring hardware on-premise are already limited due to facilities capacity constraints for these new missions. Experiences have shown that to embrace efficient cloud computing approaches for large-scale science data systems requires more than just moving existing code to cloud environments. At large cloud scales, we need to deal with scaling and cost issues. We present our experiences on deploying multiple instances of our hybrid-cloud computing science data system (HySDS) to support large-scale processing of Earth Science data products. We will explore optimization approaches to getting best performance out of hybrid-cloud computing as well as common issues that will arise when dealing with large-scale computing. Novel approaches were utilized to do processing on Amazon's spot market, which can potentially offer 75%-90% costs savings but with an unpredictable computing environment based on market forces.
Large Eddy Simulation in the Computation of Jet Noise
NASA Technical Reports Server (NTRS)
Mankbadi, R. R.; Goldstein, M. E.; Povinelli, L. A.; Hayder, M. E.; Turkel, E.
1999-01-01
Noise can be predicted by solving Full (time-dependent) Compressible Navier-Stokes Equation (FCNSE) with computational domain. The fluctuating near field of the jet produces propagating pressure waves that produce far-field sound. The fluctuating flow field as a function of time is needed in order to calculate sound from first principles. Noise can be predicted by solving the full, time-dependent, compressible Navier-Stokes equations with the computational domain extended to far field - but this is not feasible as indicated above. At high Reynolds number of technological interest turbulence has large range of scales. Direct numerical simulations (DNS) can not capture the small scales of turbulence. The large scales are more efficient than the small scales in radiating sound. The emphasize is thus on calculating sound radiated by large scales.
The Convergence of High Performance Computing and Large Scale Data Analytics
NASA Astrophysics Data System (ADS)
Duffy, D.; Bowen, M. K.; Thompson, J. H.; Yang, C. P.; Hu, F.; Wills, B.
2015-12-01
As the combinations of remote sensing observations and model outputs have grown, scientists are increasingly burdened with both the necessity and complexity of large-scale data analysis. Scientists are increasingly applying traditional high performance computing (HPC) solutions to solve their "Big Data" problems. While this approach has the benefit of limiting data movement, the HPC system is not optimized to run analytics, which can create problems that permeate throughout the HPC environment. To solve these issues and to alleviate some of the strain on the HPC environment, the NASA Center for Climate Simulation (NCCS) has created the Advanced Data Analytics Platform (ADAPT), which combines both HPC and cloud technologies to create an agile system designed for analytics. Large, commonly used data sets are stored in this system in a write once/read many file system, such as Landsat, MODIS, MERRA, and NGA. High performance virtual machines are deployed and scaled according to the individual scientist's requirements specifically for data analysis. On the software side, the NCCS and GMU are working with emerging commercial technologies and applying them to structured, binary scientific data in order to expose the data in new ways. Native NetCDF data is being stored within a Hadoop Distributed File System (HDFS) enabling storage-proximal processing through MapReduce while continuing to provide accessibility of the data to traditional applications. Once the data is stored within HDFS, an additional indexing scheme is built on top of the data and placed into a relational database. This spatiotemporal index enables extremely fast mappings of queries to data locations to dramatically speed up analytics. These are some of the first steps toward a single unified platform that optimizes for both HPC and large-scale data analysis, and this presentation will elucidate the resulting and necessary exascale architectures required for future systems.
A Large Scale Computer Terminal Output Controller.
ERIC Educational Resources Information Center
Tucker, Paul Thomas
This paper describes the design and implementation of a large scale computer terminal output controller which supervises the transfer of information from a Control Data 6400 Computer to a PLATO IV data network. It discusses the cost considerations leading to the selection of educational television channels rather than telephone lines for…
Multiscale Computation. Needs and Opportunities for BER Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheibe, Timothy D.; Smith, Jeremy C.
2015-01-01
The Environmental Molecular Sciences Laboratory (EMSL), a scientific user facility managed by Pacific Northwest National Laboratory for the U.S. Department of Energy, Office of Biological and Environmental Research (BER), conducted a one-day workshop on August 26, 2014 on the topic of “Multiscale Computation: Needs and Opportunities for BER Science.” Twenty invited participants, from various computational disciplines within the BER program research areas, were charged with the following objectives; Identify BER-relevant models and their potential cross-scale linkages that could be exploited to better connect molecular-scale research to BER research at larger scales and; Identify critical science directions that will motivate EMSLmore » decisions regarding future computational (hardware and software) architectures.« less
The architecture of the High Performance Storage System (HPSS)
NASA Technical Reports Server (NTRS)
Teaff, Danny; Watson, Dick; Coyne, Bob
1994-01-01
The rapid growth in the size of datasets has caused a serious imbalance in I/O and storage system performance and functionality relative to application requirements and the capabilities of other system components. The High Performance Storage System (HPSS) is a scalable, next-generation storage system that will meet the functionality and performance requirements or large-scale scientific and commercial computing environments. Our goal is to improve the performance and capacity of storage by two orders of magnitude or more over what is available in the general or mass marketplace today. We are also providing corresponding improvements in architecture and functionality. This paper describes the architecture and functionality of HPSS.
Evaluation of Cache-based Superscalar and Cacheless Vector Architectures for Scientific Computations
NASA Technical Reports Server (NTRS)
Oliker, Leonid; Carter, Jonathan; Shalf, John; Skinner, David; Ethier, Stephane; Biswas, Rupak; Djomehri, Jahed; VanderWijngaart, Rob
2003-01-01
The growing gap between sustained and peak performance for scientific applications has become a well-known problem in high performance computing. The recent development of parallel vector systems offers the potential to bridge this gap for a significant number of computational science codes and deliver a substantial increase in computing capabilities. This paper examines the intranode performance of the NEC SX6 vector processor and the cache-based IBM Power3/4 superscalar architectures across a number of key scientific computing areas. First, we present the performance of a microbenchmark suite that examines a full spectrum of low-level machine characteristics. Next, we study the behavior of the NAS Parallel Benchmarks using some simple optimizations. Finally, we evaluate the perfor- mance of several numerical codes from key scientific computing domains. Overall results demonstrate that the SX6 achieves high performance on a large fraction of our application suite and in many cases significantly outperforms the RISC-based architectures. However, certain classes of applications are not easily amenable to vectorization and would likely require extensive reengineering of both algorithm and implementation to utilize the SX6 effectively.
Hyder, Adnan A; Allen, Katharine A; Peters, David H; Chandran, Aruna; Bishai, David
2013-01-01
The growing burden of road traffic injuries, which kill over 1.2 million people yearly, falls mostly on low- and middle-income countries (LMICs). Despite this, evidence generation on the effectiveness of road safety interventions in LMIC settings remains scarce. This paper explores a scientific approach for evaluating road safety programmes in LMICs and introduces such a road safety multi-country initiative, the Road Safety in 10 Countries Project (RS-10). By building on existing evaluation frameworks, we develop a scientific approach for evaluating large-scale road safety programmes in LMIC settings. This also draws on '13 lessons' of large-scale programme evaluation: defining the evaluation scope; selecting study sites; maintaining objectivity; developing an impact model; utilising multiple data sources; using multiple analytic techniques; maximising external validity; ensuring an appropriate time frame; the importance of flexibility and a stepwise approach; continuous monitoring; providing feedback to implementers, policy-makers; promoting the uptake of evaluation results; and understanding evaluation costs. The use of relatively new approaches for evaluation of real-world programmes allows for the production of relevant knowledge. The RS-10 project affords an important opportunity to scientifically test these approaches for a real-world, large-scale road safety evaluation and generate new knowledge for the field of road safety.
Haidar, Azzam; Jagode, Heike; Vaccaro, Phil; ...
2018-03-22
The emergence of power efficiency as a primary constraint in processor and system design poses new challenges concerning power and energy awareness for numerical libraries and scientific applications. Power consumption also plays a major role in the design of data centers, which may house petascale or exascale-level computing systems. At these extreme scales, understanding and improving the energy efficiency of numerical libraries and their related applications becomes a crucial part of the successful implementation and operation of the computing system. In this paper, we study and investigate the practice of controlling a compute system's power usage, and we explore howmore » different power caps affect the performance of numerical algorithms with different computational intensities. Further, we determine the impact, in terms of performance and energy usage, that these caps have on a system running scientific applications. This analysis will enable us to characterize the types of algorithms that benefit most from these power management schemes. Our experiments are performed using a set of representative kernels and several popular scientific benchmarks. Lastly, we quantify a number of power and performance measurements and draw observations and conclusions that can be viewed as a roadmap to achieving energy efficiency in the design and execution of scientific algorithms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haidar, Azzam; Jagode, Heike; Vaccaro, Phil
The emergence of power efficiency as a primary constraint in processor and system design poses new challenges concerning power and energy awareness for numerical libraries and scientific applications. Power consumption also plays a major role in the design of data centers, which may house petascale or exascale-level computing systems. At these extreme scales, understanding and improving the energy efficiency of numerical libraries and their related applications becomes a crucial part of the successful implementation and operation of the computing system. In this paper, we study and investigate the practice of controlling a compute system's power usage, and we explore howmore » different power caps affect the performance of numerical algorithms with different computational intensities. Further, we determine the impact, in terms of performance and energy usage, that these caps have on a system running scientific applications. This analysis will enable us to characterize the types of algorithms that benefit most from these power management schemes. Our experiments are performed using a set of representative kernels and several popular scientific benchmarks. Lastly, we quantify a number of power and performance measurements and draw observations and conclusions that can be viewed as a roadmap to achieving energy efficiency in the design and execution of scientific algorithms.« less
Large-scale flow experiments for managing river systems
Konrad, Christopher P.; Olden, Julian D.; Lytle, David A.; Melis, Theodore S.; Schmidt, John C.; Bray, Erin N.; Freeman, Mary C.; Gido, Keith B.; Hemphill, Nina P.; Kennard, Mark J.; McMullen, Laura E.; Mims, Meryl C.; Pyron, Mark; Robinson, Christopher T.; Williams, John G.
2011-01-01
Experimental manipulations of streamflow have been used globally in recent decades to mitigate the impacts of dam operations on river systems. Rivers are challenging subjects for experimentation, because they are open systems that cannot be isolated from their social context. We identify principles to address the challenges of conducting effective large-scale flow experiments. Flow experiments have both scientific and social value when they help to resolve specific questions about the ecological action of flow with a clear nexus to water policies and decisions. Water managers must integrate new information into operating policies for large-scale experiments to be effective. Modeling and monitoring can be integrated with experiments to analyze long-term ecological responses. Experimental design should include spatially extensive observations and well-defined, repeated treatments. Large-scale flow manipulations are only a part of dam operations that affect river systems. Scientists can ensure that experimental manipulations continue to be a valuable approach for the scientifically based management of river systems.
NASA Astrophysics Data System (ADS)
Ramachandran, R.; Murphy, K. J.; Baynes, K.; Lynnes, C.
2016-12-01
With the volume of Earth observation data expanding rapidly, cloud computing is quickly changing the way Earth observation data is processed, analyzed, and visualized. The cloud infrastructure provides the flexibility to scale up to large volumes of data and handle high velocity data streams efficiently. Having freely available Earth observation data collocated on a cloud infrastructure creates opportunities for innovation and value-added data re-use in ways unforeseen by the original data provider. These innovations spur new industries and applications and spawn new scientific pathways that were previously limited due to data volume and computational infrastructure issues. NASA, in collaboration with Amazon, Google, and Microsoft, have jointly developed a set of recommendations to enable efficient transfer of Earth observation data from existing data systems to a cloud computing infrastructure. The purpose of these recommendations is to provide guidelines against which all data providers can evaluate existing data systems and be used to improve any issues uncovered to enable efficient search, access, and use of large volumes of data. Additionally, these guidelines ensure that all cloud providers utilize a common methodology for bulk-downloading data from data providers thus preventing the data providers from building custom capabilities to meet the needs of individual cloud providers. The intent is to share these recommendations with other Federal agencies and organizations that serve Earth observation to enable efficient search, access, and use of large volumes of data. Additionally, the adoption of these recommendations will benefit data users interested in moving large volumes of data from data systems to any other location. These data users include the cloud providers, cloud users such as scientists, and other users working in a high performance computing environment who need to move large volumes of data.
Next Generation Analytic Tools for Large Scale Genetic Epidemiology Studies of Complex Diseases
Mechanic, Leah E.; Chen, Huann-Sheng; Amos, Christopher I.; Chatterjee, Nilanjan; Cox, Nancy J.; Divi, Rao L.; Fan, Ruzong; Harris, Emily L.; Jacobs, Kevin; Kraft, Peter; Leal, Suzanne M.; McAllister, Kimberly; Moore, Jason H.; Paltoo, Dina N.; Province, Michael A.; Ramos, Erin M.; Ritchie, Marylyn D.; Roeder, Kathryn; Schaid, Daniel J.; Stephens, Matthew; Thomas, Duncan C.; Weinberg, Clarice R.; Witte, John S.; Zhang, Shunpu; Zöllner, Sebastian; Feuer, Eric J.; Gillanders, Elizabeth M.
2012-01-01
Over the past several years, genome-wide association studies (GWAS) have succeeded in identifying hundreds of genetic markers associated with common diseases. However, most of these markers confer relatively small increments of risk and explain only a small proportion of familial clustering. To identify obstacles to future progress in genetic epidemiology research and provide recommendations to NIH for overcoming these barriers, the National Cancer Institute sponsored a workshop entitled “Next Generation Analytic Tools for Large-Scale Genetic Epidemiology Studies of Complex Diseases” on September 15–16, 2010. The goal of the workshop was to facilitate discussions on (1) statistical strategies and methods to efficiently identify genetic and environmental factors contributing to the risk of complex disease; and (2) how to develop, apply, and evaluate these strategies for the design, analysis, and interpretation of large-scale complex disease association studies in order to guide NIH in setting the future agenda in this area of research. The workshop was organized as a series of short presentations covering scientific (gene-gene and gene-environment interaction, complex phenotypes, and rare variants and next generation sequencing) and methodological (simulation modeling and computational resources and data management) topic areas. Specific needs to advance the field were identified during each session and are summarized. PMID:22147673
Development of high performance scientific components for interoperability of computing packages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulabani, Teena Pratap
2008-01-01
Three major high performance quantum chemistry computational packages, NWChem, GAMESS and MPQC have been developed by different research efforts following different design patterns. The goal is to achieve interoperability among these packages by overcoming the challenges caused by the different communication patterns and software design of each of these packages. A chemistry algorithm is hard to develop as well as being a time consuming process; integration of large quantum chemistry packages will allow resource sharing and thus avoid reinvention of the wheel. Creating connections between these incompatible packages is the major motivation of the proposed work. This interoperability is achievedmore » by bringing the benefits of Component Based Software Engineering through a plug-and-play component framework called Common Component Architecture (CCA). In this thesis, I present a strategy and process used for interfacing two widely used and important computational chemistry methodologies: Quantum Mechanics and Molecular Mechanics. To show the feasibility of the proposed approach the Tuning and Analysis Utility (TAU) has been coupled with NWChem code and its CCA components. Results show that the overhead is negligible when compared to the ease and potential of organizing and coping with large-scale software applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Y.; Cameron, K.W.
1998-11-24
Workload characterization has been proven an essential tool to architecture design and performance evaluation in both scientific and commercial computing areas. Traditional workload characterization techniques include FLOPS rate, cache miss ratios, CPI (cycles per instruction or IPC, instructions per cycle) etc. With the complexity of sophisticated modern superscalar microprocessors, these traditional characterization techniques are not powerful enough to pinpoint the performance bottleneck of an application on a specific microprocessor. They are also incapable of immediately demonstrating the potential performance benefit of any architectural or functional improvement in a new processor design. To solve these problems, many people rely on simulators,more » which have substantial constraints especially on large-scale scientific computing applications. This paper presents a new technique of characterizing applications at the instruction level using hardware performance counters. It has the advantage of collecting instruction-level characteristics in a few runs virtually without overhead or slowdown. A variety of instruction counts can be utilized to calculate some average abstract workload parameters corresponding to microprocessor pipelines or functional units. Based on the microprocessor architectural constraints and these calculated abstract parameters, the architectural performance bottleneck for a specific application can be estimated. In particular, the analysis results can provide some insight to the problem that only a small percentage of processor peak performance can be achieved even for many very cache-friendly codes. Meanwhile, the bottleneck estimation can provide suggestions about viable architectural/functional improvement for certain workloads. Eventually, these abstract parameters can lead to the creation of an analytical microprocessor pipeline model and memory hierarchy model.« less
Karp, Peter D; Berger, Bonnie; Kovats, Diane; Lengauer, Thomas; Linial, Michal; Sabeti, Pardis; Hide, Winston; Rost, Burkhard
2015-02-15
Speed is of the essence in combating Ebola; thus, computational approaches should form a significant component of Ebola research. As for the development of any modern drug, computational biology is uniquely positioned to contribute through comparative analysis of the genome sequences of Ebola strains and three-dimensional protein modeling. Other computational approaches to Ebola may include large-scale docking studies of Ebola proteins with human proteins and with small-molecule libraries, computational modeling of the spread of the virus, computational mining of the Ebola literature and creation of a curated Ebola database. Taken together, such computational efforts could significantly accelerate traditional scientific approaches. In recognition of the need for important and immediate solutions from the field of computational biology against Ebola, the International Society for Computational Biology (ISCB) announces a prize for an important computational advance in fighting the Ebola virus. ISCB will confer the ISCB Fight against Ebola Award, along with a prize of US$2000, at its July 2016 annual meeting (ISCB Intelligent Systems for Molecular Biology 2016, Orlando, FL). dkovats@iscb.org or rost@in.tum.de. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Xu, Jincheng; Liu, Wei; Wang, Jin; Liu, Linong; Zhang, Jianfeng
2018-02-01
De-absorption pre-stack time migration (QPSTM) compensates for the absorption and dispersion of seismic waves by introducing an effective Q parameter, thereby making it an effective tool for 3D, high-resolution imaging of seismic data. Although the optimal aperture obtained via stationary-phase migration reduces the computational cost of 3D QPSTM and yields 3D stationary-phase QPSTM, the associated computational efficiency is still the main problem in the processing of 3D, high-resolution images for real large-scale seismic data. In the current paper, we proposed a division method for large-scale, 3D seismic data to optimize the performance of stationary-phase QPSTM on clusters of graphics processing units (GPU). Then, we designed an imaging point parallel strategy to achieve an optimal parallel computing performance. Afterward, we adopted an asynchronous double buffering scheme for multi-stream to perform the GPU/CPU parallel computing. Moreover, several key optimization strategies of computation and storage based on the compute unified device architecture (CUDA) were adopted to accelerate the 3D stationary-phase QPSTM algorithm. Compared with the initial GPU code, the implementation of the key optimization steps, including thread optimization, shared memory optimization, register optimization and special function units (SFU), greatly improved the efficiency. A numerical example employing real large-scale, 3D seismic data showed that our scheme is nearly 80 times faster than the CPU-QPSTM algorithm. Our GPU/CPU heterogeneous parallel computing framework significant reduces the computational cost and facilitates 3D high-resolution imaging for large-scale seismic data.
NASA Astrophysics Data System (ADS)
Evans, B. J. K.; Foster, C.; Minchin, S. A.; Pugh, T.; Lewis, A.; Wyborn, L. A.; Evans, B. J.; Uhlherr, A.
2014-12-01
The National Computational Infrastructure (NCI) has established a powerful in-situ computational environment to enable both high performance computing and data-intensive science across a wide spectrum of national environmental data collections - in particular climate, observational data and geoscientific assets. This paper examines 1) the computational environments that supports the modelling and data processing pipelines, 2) the analysis environments and methods to support data analysis, and 3) the progress in addressing harmonisation of the underlying data collections for future transdisciplinary research that enable accurate climate projections. NCI makes available 10+ PB major data collections from both the government and research sectors based on six themes: 1) weather, climate, and earth system science model simulations, 2) marine and earth observations, 3) geosciences, 4) terrestrial ecosystems, 5) water and hydrology, and 6) astronomy, social and biosciences. Collectively they span the lithosphere, crust, biosphere, hydrosphere, troposphere, and stratosphere. The data is largely sourced from NCI's partners (which include the custodians of many of the national scientific records), major research communities, and collaborating overseas organisations. The data is accessible within an integrated HPC-HPD environment - a 1.2 PFlop supercomputer (Raijin), a HPC class 3000 core OpenStack cloud system and several highly connected large scale and high-bandwidth Lustre filesystems. This computational environment supports a catalogue of integrated reusable software and workflows from earth system and ecosystem modelling, weather research, satellite and other observed data processing and analysis. To enable transdisciplinary research on this scale, data needs to be harmonised so that researchers can readily apply techniques and software across the corpus of data available and not be constrained to work within artificial disciplinary boundaries. Future challenges will involve the further integration and analysis of this data across the social sciences to facilitate the impacts across the societal domain, including timely analysis to more accurately predict and forecast future climate and environmental state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucas, Robert; Ang, James; Bergman, Keren
2014-02-10
Exascale computing systems are essential for the scientific fields that will transform the 21st century global economy, including energy, biotechnology, nanotechnology, and materials science. Progress in these fields is predicated on the ability to perform advanced scientific and engineering simulations, and analyze the deluge of data. On July 29, 2013, ASCAC was charged by Patricia Dehmer, the Acting Director of the Office of Science, to assemble a subcommittee to provide advice on exascale computing. This subcommittee was directed to return a list of no more than ten technical approaches (hardware and software) that will enable the development of a systemmore » that achieves the Department's goals for exascale computing. Numerous reports over the past few years have documented the technical challenges and the non¬-viability of simply scaling existing computer designs to reach exascale. The technical challenges revolve around energy consumption, memory performance, resilience, extreme concurrency, and big data. Drawing from these reports and more recent experience, this ASCAC subcommittee has identified the top ten computing technology advancements that are critical to making a capable, economically viable, exascale system.« less
IDEAL: Images Across Domains, Experiments, Algorithms and Learning
NASA Astrophysics Data System (ADS)
Ushizima, Daniela M.; Bale, Hrishikesh A.; Bethel, E. Wes; Ercius, Peter; Helms, Brett A.; Krishnan, Harinarayan; Grinberg, Lea T.; Haranczyk, Maciej; Macdowell, Alastair A.; Odziomek, Katarzyna; Parkinson, Dilworth Y.; Perciano, Talita; Ritchie, Robert O.; Yang, Chao
2016-11-01
Research across science domains is increasingly reliant on image-centric data. Software tools are in high demand to uncover relevant, but hidden, information in digital images, such as those coming from faster next generation high-throughput imaging platforms. The challenge is to analyze the data torrent generated by the advanced instruments efficiently, and provide insights such as measurements for decision-making. In this paper, we overview work performed by an interdisciplinary team of computational and materials scientists, aimed at designing software applications and coordinating research efforts connecting (1) emerging algorithms for dealing with large and complex datasets; (2) data analysis methods with emphasis in pattern recognition and machine learning; and (3) advances in evolving computer architectures. Engineering tools around these efforts accelerate the analyses of image-based recordings, improve reusability and reproducibility, scale scientific procedures by reducing time between experiments, increase efficiency, and open opportunities for more users of the imaging facilities. This paper describes our algorithms and software tools, showing results across image scales, demonstrating how our framework plays a role in improving image understanding for quality control of existent materials and discovery of new compounds.
Final Project Report. Scalable fault tolerance runtime technology for petascale computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnamoorthy, Sriram; Sadayappan, P
With the massive number of components comprising the forthcoming petascale computer systems, hardware failures will be routinely encountered during execution of large-scale applications. Due to the multidisciplinary, multiresolution, and multiscale nature of scientific problems that drive the demand for high end systems, applications place increasingly differing demands on the system resources: disk, network, memory, and CPU. In addition to MPI, future applications are expected to use advanced programming models such as those developed under the DARPA HPCS program as well as existing global address space programming models such as Global Arrays, UPC, and Co-Array Fortran. While there has been amore » considerable amount of work in fault tolerant MPI with a number of strategies and extensions for fault tolerance proposed, virtually none of advanced models proposed for emerging petascale systems is currently fault aware. To achieve fault tolerance, development of underlying runtime and OS technologies able to scale to petascale level is needed. This project has evaluated range of runtime techniques for fault tolerance for advanced programming models.« less
A feasibility study on porting the community land model onto accelerators using OpenACC
Wang, Dali; Wu, Wei; Winkler, Frank; ...
2014-01-01
As environmental models (such as Accelerated Climate Model for Energy (ACME), Parallel Reactive Flow and Transport Model (PFLOTRAN), Arctic Terrestrial Simulator (ATS), etc.) became more and more complicated, we are facing enormous challenges regarding to porting those applications onto hybrid computing architecture. OpenACC appears as a very promising technology, therefore, we have conducted a feasibility analysis on porting the Community Land Model (CLM), a terrestrial ecosystem model within the Community Earth System Models (CESM)). Specifically, we used automatic function testing platform to extract a small computing kernel out of CLM, then we apply this kernel into the actually CLM dataflowmore » procedure, and investigate the strategy of data parallelization and the benefit of data movement provided by current implementation of OpenACC. Even it is a non-intensive kernel, on a single 16-core computing node, the performance (based on the actual computation time using one GPU) of OpenACC implementation is 2.3 time faster than that of OpenMP implementation using single OpenMP thread, but it is 2.8 times slower than the performance of OpenMP implementation using 16 threads. On multiple nodes, MPI_OpenACC implementation demonstrated very good scalability on up to 128 GPUs on 128 computing nodes. This study also provides useful information for us to look into the potential benefits of “deep copy” capability and “routine” feature of OpenACC standards. In conclusion, we believe that our experience on the environmental model, CLM, can be beneficial to many other scientific research programs who are interested to porting their large scale scientific code using OpenACC onto high-end computers, empowered by hybrid computing architecture.« less
Large-scale neuromorphic computing systems
NASA Astrophysics Data System (ADS)
Furber, Steve
2016-10-01
Neuromorphic computing covers a diverse range of approaches to information processing all of which demonstrate some degree of neurobiological inspiration that differentiates them from mainstream conventional computing systems. The philosophy behind neuromorphic computing has its origins in the seminal work carried out by Carver Mead at Caltech in the late 1980s. This early work influenced others to carry developments forward, and advances in VLSI technology supported steady growth in the scale and capability of neuromorphic devices. Recently, a number of large-scale neuromorphic projects have emerged, taking the approach to unprecedented scales and capabilities. These large-scale projects are associated with major new funding initiatives for brain-related research, creating a sense that the time and circumstances are right for progress in our understanding of information processing in the brain. In this review we present a brief history of neuromorphic engineering then focus on some of the principal current large-scale projects, their main features, how their approaches are complementary and distinct, their advantages and drawbacks, and highlight the sorts of capabilities that each can deliver to neural modellers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habib, Salman; Roser, Robert; Gerber, Richard
The U.S. Department of Energy (DOE) Office of Science (SC) Offices of High Energy Physics (HEP) and Advanced Scientific Computing Research (ASCR) convened a programmatic Exascale Requirements Review on June 10–12, 2015, in Bethesda, Maryland. This report summarizes the findings, results, and recommendations derived from that meeting. The high-level findings and observations are as follows. Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude — and in some cases greatermore » — than that available currently. The growth rate of data produced by simulations is overwhelming the current ability of both facilities and researchers to store and analyze it. Additional resources and new techniques for data analysis are urgently needed. Data rates and volumes from experimental facilities are also straining the current HEP infrastructure in its ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. A close integration of high-performance computing (HPC) simulation and data analysis will greatly aid in interpreting the results of HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. Long-range planning between HEP and ASCR will be required to meet HEP’s research needs. To best use ASCR HPC resources, the experimental HEP program needs (1) an established, long-term plan for access to ASCR computational and data resources, (2) the ability to map workflows to HPC resources, (3) the ability for ASCR facilities to accommodate workflows run by collaborations potentially comprising thousands of individual members, (4) to transition codes to the next-generation HPC platforms that will be available at ASCR facilities, (5) to build up and train a workforce capable of developing and using simulations and analysis to support HEP scientific research on next-generation systems.« less
Machine Learning, deep learning and optimization in computer vision
NASA Astrophysics Data System (ADS)
Canu, Stéphane
2017-03-01
As quoted in the Large Scale Computer Vision Systems NIPS workshop, computer vision is a mature field with a long tradition of research, but recent advances in machine learning, deep learning, representation learning and optimization have provided models with new capabilities to better understand visual content. The presentation will go through these new developments in machine learning covering basic motivations, ideas, models and optimization in deep learning for computer vision, identifying challenges and opportunities. It will focus on issues related with large scale learning that is: high dimensional features, large variety of visual classes, and large number of examples.
NASA Astrophysics Data System (ADS)
Mead, J.; Wright, G. B.
2013-12-01
The collection of massive amounts of high quality data from new and greatly improved observing technologies and from large-scale numerical simulations are drastically improving our understanding and modeling of the earth system. However, these datasets are also revealing important knowledge gaps and limitations of our current conceptual models for explaining key aspects of these new observations. These limitations are impeding progress on questions that have both fundamental scientific and societal significance, including climate and weather, natural disaster mitigation, earthquake and volcano dynamics, earth structure and geodynamics, resource exploration, and planetary evolution. New conceptual approaches and numerical methods for characterizing and simulating these systems are needed - methods that can handle processes which vary through a myriad of scales in heterogeneous, complex environments. Additionally, as certain aspects of these systems may be observable only indirectly or not at all, new statistical methods are also needed. This type of research will demand integrating the expertise of geoscientist together with that of mathematicians, statisticians, and computer scientists. If the past is any indicator, this interdisciplinary research will no doubt lead to advances in all these fields in addition to vital improvements in our ability to predict the behavior of the planetary environment. The Consortium for Mathematics in the Geosciences (CMG++) arose from two scientific workshops held at Northwestern and Princeton in 2011 and 2012 with participants from mathematics, statistics, geoscience and computational science. The mission of CMG++ is to accelerate the traditional interaction between people in these disciplines through the promotion of both collaborative research and interdisciplinary education. We will discuss current activities, describe how people can get involved, and solicit input from the broader AGU community.
Big data analytics workflow management for eScience
NASA Astrophysics Data System (ADS)
Fiore, Sandro; D'Anca, Alessandro; Palazzo, Cosimo; Elia, Donatello; Mariello, Andrea; Nassisi, Paola; Aloisio, Giovanni
2015-04-01
In many domains such as climate and astrophysics, scientific data is often n-dimensional and requires tools that support specialized data types and primitives if it is to be properly stored, accessed, analysed and visualized. Currently, scientific data analytics relies on domain-specific software and libraries providing a huge set of operators and functionalities. However, most of these software fail at large scale since they: (i) are desktop based, rely on local computing capabilities and need the data locally; (ii) cannot benefit from available multicore/parallel machines since they are based on sequential codes; (iii) do not provide declarative languages to express scientific data analysis tasks, and (iv) do not provide newer or more scalable storage models to better support the data multidimensionality. Additionally, most of them: (v) are domain-specific, which also means they support a limited set of data formats, and (vi) do not provide a workflow support, to enable the construction, execution and monitoring of more complex "experiments". The Ophidia project aims at facing most of the challenges highlighted above by providing a big data analytics framework for eScience. Ophidia provides several parallel operators to manipulate large datasets. Some relevant examples include: (i) data sub-setting (slicing and dicing), (ii) data aggregation, (iii) array-based primitives (the same operator applies to all the implemented UDF extensions), (iv) data cube duplication, (v) data cube pivoting, (vi) NetCDF-import and export. Metadata operators are available too. Additionally, the Ophidia framework provides array-based primitives to perform data sub-setting, data aggregation (i.e. max, min, avg), array concatenation, algebraic expressions and predicate evaluation on large arrays of scientific data. Bit-oriented plugins have also been implemented to manage binary data cubes. Defining processing chains and workflows with tens, hundreds of data analytics operators is the real challenge in many practical scientific use cases. This talk will specifically address the main needs, requirements and challenges regarding data analytics workflow management applied to large scientific datasets. Three real use cases concerning analytics workflows for sea situational awareness, fire danger prevention, climate change and biodiversity will be discussed in detail.
NASA Astrophysics Data System (ADS)
Myre, Joseph M.
Heterogeneous computing systems have recently come to the forefront of the High-Performance Computing (HPC) community's interest. HPC computer systems that incorporate special purpose accelerators, such as Graphics Processing Units (GPUs), are said to be heterogeneous. Large scale heterogeneous computing systems have consistently ranked highly on the Top500 list since the beginning of the heterogeneous computing trend. By using heterogeneous computing systems that consist of both general purpose processors and special- purpose accelerators, the speed and problem size of many simulations could be dramatically increased. Ultimately this results in enhanced simulation capabilities that allows, in some cases for the first time, the execution of parameter space and uncertainty analyses, model optimizations, and other inverse modeling techniques that are critical for scientific discovery and engineering analysis. However, simplifying the usage and optimization of codes for heterogeneous computing systems remains a challenge. This is particularly true for scientists and engineers for whom understanding HPC architectures and undertaking performance analysis may not be primary research objectives. To enable scientists and engineers to remain focused on their primary research objectives, a modular environment for geophysical inversion and run-time autotuning on heterogeneous computing systems is presented. This environment is composed of three major components: 1) CUSH---a framework for reducing the complexity of programming heterogeneous computer systems, 2) geophysical inversion routines which can be used to characterize physical systems, and 3) run-time autotuning routines designed to determine configurations of heterogeneous computing systems in an attempt to maximize the performance of scientific and engineering codes. Using three case studies, a lattice-Boltzmann method, a non-negative least squares inversion, and a finite-difference fluid flow method, it is shown that this environment provides scientists and engineers with means to reduce the programmatic complexity of their applications, to perform geophysical inversions for characterizing physical systems, and to determine high-performing run-time configurations of heterogeneous computing systems using a run-time autotuner.
Global Load Balancing with Parallel Mesh Adaption on Distributed-Memory Systems
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Oliker, Leonid; Sohn, Andrew
1996-01-01
Dynamic mesh adaptation on unstructured grids is a powerful tool for efficiently computing unsteady problems to resolve solution features of interest. Unfortunately, this causes load inbalances among processors on a parallel machine. This paper described the parallel implementation of a tetrahedral mesh adaption scheme and a new global load balancing method. A heuristic remapping algorithm is presented that assigns partitions to processors such that the redistribution coast is minimized. Results indicate that the parallel performance of the mesh adaption code depends on the nature of the adaption region and show a 35.5X speedup on 64 processors of an SP2 when 35 percent of the mesh is randomly adapted. For large scale scientific computations, our load balancing strategy gives an almost sixfold reduction in solver execution times over non-balanced loads. Furthermore, our heuristic remappier yields processor assignments that are less than 3 percent of the optimal solutions, but requires only 1 percent of the computational time.
Multi-Objective Approach for Energy-Aware Workflow Scheduling in Cloud Computing Environments
Kadima, Hubert; Granado, Bertrand
2013-01-01
We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service) requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS) technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach. PMID:24319361
NASA Astrophysics Data System (ADS)
Loring, B.; Karimabadi, H.; Rortershteyn, V.
2015-10-01
The surface line integral convolution(LIC) visualization technique produces dense visualization of vector fields on arbitrary surfaces. We present a screen space surface LIC algorithm for use in distributed memory data parallel sort last rendering infrastructures. The motivations for our work are to support analysis of datasets that are too large to fit in the main memory of a single computer and compatibility with prevalent parallel scientific visualization tools such as ParaView and VisIt. By working in screen space using OpenGL we can leverage the computational power of GPUs when they are available and run without them when they are not. We address efficiency and performance issues that arise from the transformation of data from physical to screen space by selecting an alternate screen space domain decomposition. We analyze the algorithm's scaling behavior with and without GPUs on two high performance computing systems using data from turbulent plasma simulations.
Multi-objective approach for energy-aware workflow scheduling in cloud computing environments.
Yassa, Sonia; Chelouah, Rachid; Kadima, Hubert; Granado, Bertrand
2013-01-01
We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service) requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS) technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loring, Burlen; Karimabadi, Homa; Rortershteyn, Vadim
2014-07-01
The surface line integral convolution(LIC) visualization technique produces dense visualization of vector fields on arbitrary surfaces. We present a screen space surface LIC algorithm for use in distributed memory data parallel sort last rendering infrastructures. The motivations for our work are to support analysis of datasets that are too large to fit in the main memory of a single computer and compatibility with prevalent parallel scientific visualization tools such as ParaView and VisIt. By working in screen space using OpenGL we can leverage the computational power of GPUs when they are available and run without them when they are not.more » We address efficiency and performance issues that arise from the transformation of data from physical to screen space by selecting an alternate screen space domain decomposition. We analyze the algorithm's scaling behavior with and without GPUs on two high performance computing systems using data from turbulent plasma simulations.« less
Overview of Computer Simulation Modeling Approaches and Methods
Robert E. Manning; Robert M. Itami; David N. Cole; Randy Gimblett
2005-01-01
The field of simulation modeling has grown greatly with recent advances in computer hardware and software. Much of this work has involved large scientific and industrial applications for which substantial financial resources are available. However, advances in object-oriented programming and simulation methodology, concurrent with dramatic increases in computer...
Reactive transport modeling in the subsurface environment with OGS-IPhreeqc
NASA Astrophysics Data System (ADS)
He, Wenkui; Beyer, Christof; Fleckenstein, Jan; Jang, Eunseon; Kalbacher, Thomas; Naumov, Dimitri; Shao, Haibing; Wang, Wenqing; Kolditz, Olaf
2015-04-01
Worldwide, sustainable water resource management becomes an increasingly challenging task due to the growth of population and extensive applications of fertilizer in agriculture. Moreover, climate change causes further stresses to both water quantity and quality. Reactive transport modeling in the coupled soil-aquifer system is a viable approach to assess the impacts of different land use and groundwater exploitation scenarios on the water resources. However, the application of this approach is usually limited in spatial scale and to simplified geochemical systems due to the huge computational expense involved. Such computational expense is not only caused by solving the high non-linearity of the initial boundary value problems of water flow in the unsaturated zone numerically with rather fine spatial and temporal discretization for the correct mass balance and numerical stability, but also by the intensive computational task of quantifying geochemical reactions. In the present study, a flexible and efficient tool for large scale reactive transport modeling in variably saturated porous media and its applications are presented. The open source scientific software OpenGeoSys (OGS) is coupled with the IPhreeqc module of the geochemical solver PHREEQC. The new coupling approach makes full use of advantages from both codes: OGS provides a flexible choice of different numerical approaches for simulation of water flow in the vadose zone such as the pressure-based or mixed forms of Richards equation; whereas the IPhreeqc module leads to a simplification of data storage and its communication with OGS, which greatly facilitates the coupling and code updating. Moreover, a parallelization scheme with MPI (Message Passing Interface) is applied, in which the computational task of water flow and mass transport is partitioned through domain decomposition, whereas the efficient parallelization of geochemical reactions is achieved by smart allocation of computational workload over multiple compute nodes. The plausibility of the new coupling is verified by several benchmark tests. In addition, the efficiency of the new coupling approach is demonstrated by its application in a large scale scenario, in which the environmental fate of pesticides in a complex soil-aquifer system is studied.
Reactive transport modeling in variably saturated porous media with OGS-IPhreeqc
NASA Astrophysics Data System (ADS)
He, W.; Beyer, C.; Fleckenstein, J. H.; Jang, E.; Kalbacher, T.; Shao, H.; Wang, W.; Kolditz, O.
2014-12-01
Worldwide, sustainable water resource management becomes an increasingly challenging task due to the growth of population and extensive applications of fertilizer in agriculture. Moreover, climate change causes further stresses to both water quantity and quality. Reactive transport modeling in the coupled soil-aquifer system is a viable approach to assess the impacts of different land use and groundwater exploitation scenarios on the water resources. However, the application of this approach is usually limited in spatial scale and to simplified geochemical systems due to the huge computational expense involved. Such computational expense is not only caused by solving the high non-linearity of the initial boundary value problems of water flow in the unsaturated zone numerically with rather fine spatial and temporal discretization for the correct mass balance and numerical stability, but also by the intensive computational task of quantifying geochemical reactions. In the present study, a flexible and efficient tool for large scale reactive transport modeling in variably saturated porous media and its applications are presented. The open source scientific software OpenGeoSys (OGS) is coupled with the IPhreeqc module of the geochemical solver PHREEQC. The new coupling approach makes full use of advantages from both codes: OGS provides a flexible choice of different numerical approaches for simulation of water flow in the vadose zone such as the pressure-based or mixed forms of Richards equation; whereas the IPhreeqc module leads to a simplification of data storage and its communication with OGS, which greatly facilitates the coupling and code updating. Moreover, a parallelization scheme with MPI (Message Passing Interface) is applied, in which the computational task of water flow and mass transport is partitioned through domain decomposition, whereas the efficient parallelization of geochemical reactions is achieved by smart allocation of computational workload over multiple compute nodes. The plausibility of the new coupling is verified by several benchmark tests. In addition, the efficiency of the new coupling approach is demonstrated by its application in a large scale scenario, in which the environmental fate of pesticides in a complex soil-aquifer system is studied.
ERIC Educational Resources Information Center
Benedis-Grab, Gregory
2011-01-01
Computers have changed the landscape of scientific research in profound ways. Technology has always played an important role in scientific experimentation--through the development of increasingly sophisticated tools, the measurement of elusive quantities, and the processing of large amounts of data. However, the advent of social networking and the…
Interoperability of GADU in using heterogeneous Grid resources for bioinformatics applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sulakhe, D.; Rodriguez, A.; Wilde, M.
2008-03-01
Bioinformatics tools used for efficient and computationally intensive analysis of genetic sequences require large-scale computational resources to accommodate the growing data. Grid computational resources such as the Open Science Grid and TeraGrid have proved useful for scientific discovery. The genome analysis and database update system (GADU) is a high-throughput computational system developed to automate the steps involved in accessing the Grid resources for running bioinformatics applications. This paper describes the requirements for building an automated scalable system such as GADU that can run jobs on different Grids. The paper describes the resource-independent configuration of GADU using the Pegasus-based virtual datamore » system that makes high-throughput computational tools interoperable on heterogeneous Grid resources. The paper also highlights the features implemented to make GADU a gateway to computationally intensive bioinformatics applications on the Grid. The paper will not go into the details of problems involved or the lessons learned in using individual Grid resources as it has already been published in our paper on genome analysis research environment (GNARE) and will focus primarily on the architecture that makes GADU resource independent and interoperable across heterogeneous Grid resources.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perumalla, Kalyan S.; Yoginath, Srikanth B.
Problems such as fault tolerance and scalable synchronization can be efficiently solved using reversibility of applications. Making applications reversible by relying on computation rather than on memory is ideal for large scale parallel computing, especially for the next generation of supercomputers in which memory is expensive in terms of latency, energy, and price. In this direction, a case study is presented here in reversing a computational core, namely, Basic Linear Algebra Subprograms, which is widely used in scientific applications. A new Reversible BLAS (RBLAS) library interface has been designed, and a prototype has been implemented with two modes: (1) amore » memory-mode in which reversibility is obtained by checkpointing to memory in forward and restoring from memory in reverse, and (2) a computational-mode in which nothing is saved in the forward, but restoration is done entirely via inverse computation in reverse. The article is focused on detailed performance benchmarking to evaluate the runtime dynamics and performance effects, comparing reversible computation with checkpointing on both traditional CPU platforms and recent GPU accelerator platforms. For BLAS Level-1 subprograms, data indicates over an order of magnitude better speed of reversible computation compared to checkpointing. For BLAS Level-2 and Level-3, a more complex tradeoff is observed between reversible computation and checkpointing, depending on computational and memory complexities of the subprograms.« less
Improving Data Mobility & Management for International Cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borrill, Julian; Dart, Eli; Gore, Brooklin
In February 2015 the third workshop in the CrossConnects series, with a focus on Improving Data Mobility & Management for International Cosmology, was held at Lawrence Berkeley National Laboratory. Scientists from fields including astrophysics, cosmology, and astronomy collaborated with experts in computing and networking to outline strategic opportunities for enhancing scientific productivity and effectively managing the ever-increasing scale of scientific data. While each field has unique details which depend on the instruments employed, the type and scale of the data, and the structure of scientific collaborations, several important themes emerged from the workshop discussions. Findings, as well as a setmore » of recommendations, are contained in their respective sections in this report.« less
Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks
Kaltenbacher, Barbara; Hasenauer, Jan
2017-01-01
Mechanistic mathematical modeling of biochemical reaction networks using ordinary differential equation (ODE) models has improved our understanding of small- and medium-scale biological processes. While the same should in principle hold for large- and genome-scale processes, the computational methods for the analysis of ODE models which describe hundreds or thousands of biochemical species and reactions are missing so far. While individual simulations are feasible, the inference of the model parameters from experimental data is computationally too intensive. In this manuscript, we evaluate adjoint sensitivity analysis for parameter estimation in large scale biochemical reaction networks. We present the approach for time-discrete measurement and compare it to state-of-the-art methods used in systems and computational biology. Our comparison reveals a significantly improved computational efficiency and a superior scalability of adjoint sensitivity analysis. The computational complexity is effectively independent of the number of parameters, enabling the analysis of large- and genome-scale models. Our study of a comprehensive kinetic model of ErbB signaling shows that parameter estimation using adjoint sensitivity analysis requires a fraction of the computation time of established methods. The proposed method will facilitate mechanistic modeling of genome-scale cellular processes, as required in the age of omics. PMID:28114351
NASA Astrophysics Data System (ADS)
Gorelick, Noel
2013-04-01
The Google Earth Engine platform is a system designed to enable petabyte-scale, scientific analysis and visualization of geospatial datasets. Earth Engine provides a consolidated environment including a massive data catalog co-located with thousands of computers for analysis. The user-friendly front-end provides a workbench environment to allow interactive data and algorithm development and exploration and provides a convenient mechanism for scientists to share data, visualizations and analytic algorithms via URLs. The Earth Engine data catalog contains a wide variety of popular, curated datasets, including the world's largest online collection of Landsat scenes (> 2.0M), numerous MODIS collections, and many vector-based data sets. The platform provides a uniform access mechanism to a variety of data types, independent of their bands, projection, bit-depth, resolution, etc..., facilitating easy multi-sensor analysis. Additionally, a user is able to add and curate their own data and collections. Using a just-in-time, distributed computation model, Earth Engine can rapidly process enormous quantities of geo-spatial data. All computation is performed lazily; nothing is computed until it's required either for output or as input to another step. This model allows real-time feedback and preview during algorithm development, supporting a rapid algorithm development, test, and improvement cycle that scales seamlessly to large-scale production data processing. Through integration with a variety of other services, Earth Engine is able to bring to bear considerable analytic and technical firepower in a transparent fashion, including: AI-based classification via integration with Google's machine learning infrastructure, publishing and distribution at Google scale through integration with the Google Maps API, Maps Engine and Google Earth, and support for in-the-field activities such as validation, ground-truthing, crowd-sourcing and citizen science though the Android Open Data Kit.
NASA Astrophysics Data System (ADS)
Gorelick, N.
2012-12-01
The Google Earth Engine platform is a system designed to enable petabyte-scale, scientific analysis and visualization of geospatial datasets. Earth Engine provides a consolidated environment including a massive data catalog co-located with thousands of computers for analysis. The user-friendly front-end provides a workbench environment to allow interactive data and algorithm development and exploration and provides a convenient mechanism for scientists to share data, visualizations and analytic algorithms via URLs. The Earth Engine data catalog contains a wide variety of popular, curated datasets, including the world's largest online collection of Landsat scenes (> 2.0M), numerous MODIS collections, and many vector-based data sets. The platform provides a uniform access mechanism to a variety of data types, independent of their bands, projection, bit-depth, resolution, etc..., facilitating easy multi-sensor analysis. Additionally, a user is able to add and curate their own data and collections. Using a just-in-time, distributed computation model, Earth Engine can rapidly process enormous quantities of geo-spatial data. All computation is performed lazily; nothing is computed until it's required either for output or as input to another step. This model allows real-time feedback and preview during algorithm development, supporting a rapid algorithm development, test, and improvement cycle that scales seamlessly to large-scale production data processing. Through integration with a variety of other services, Earth Engine is able to bring to bear considerable analytic and technical firepower in a transparent fashion, including: AI-based classification via integration with Google's machine learning infrastructure, publishing and distribution at Google scale through integration with the Google Maps API, Maps Engine and Google Earth, and support for in-the-field activities such as validation, ground-truthing, crowd-sourcing and citizen science though the Android Open Data Kit.
NASA Technical Reports Server (NTRS)
Keller, Richard M.
1991-01-01
The construction of scientific software models is an integral part of doing science, both within NASA and within the scientific community at large. Typically, model-building is a time-intensive and painstaking process, involving the design of very large, complex computer programs. Despite the considerable expenditure of resources involved, completed scientific models cannot easily be distributed and shared with the larger scientific community due to the low-level, idiosyncratic nature of the implemented code. To address this problem, we have initiated a research project aimed at constructing a software tool called the Scientific Modeling Assistant. This tool provides automated assistance to the scientist in developing, using, and sharing software models. We describe the Scientific Modeling Assistant, and also touch on some human-machine interaction issues relevant to building a successful tool of this type.
The MPO system for automatic workflow documentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abla, G.; Coviello, E. N.; Flanagan, S. M.
Data from large-scale experiments and extreme-scale computing is expensive to produce and may be used for critical applications. However, it is not the mere existence of data that is important, but our ability to make use of it. Experience has shown that when metadata is better organized and more complete, the underlying data becomes more useful. Traditionally, capturing the steps of scientific workflows and metadata was the role of the lab notebook, but the digital era has resulted instead in the fragmentation of data, processing, and annotation. Here, this article presents the Metadata, Provenance, and Ontology (MPO) System, the softwaremore » that can automate the documentation of scientific workflows and associated information. Based on recorded metadata, it provides explicit information about the relationships among the elements of workflows in notebook form augmented with directed acyclic graphs. A set of web-based graphical navigation tools and Application Programming Interface (API) have been created for searching and browsing, as well as programmatically accessing the workflows and data. We describe the MPO concepts and its software architecture. We also report the current status of the software as well as the initial deployment experience.« less
The MPO system for automatic workflow documentation
Abla, G.; Coviello, E. N.; Flanagan, S. M.; ...
2016-04-18
Data from large-scale experiments and extreme-scale computing is expensive to produce and may be used for critical applications. However, it is not the mere existence of data that is important, but our ability to make use of it. Experience has shown that when metadata is better organized and more complete, the underlying data becomes more useful. Traditionally, capturing the steps of scientific workflows and metadata was the role of the lab notebook, but the digital era has resulted instead in the fragmentation of data, processing, and annotation. Here, this article presents the Metadata, Provenance, and Ontology (MPO) System, the softwaremore » that can automate the documentation of scientific workflows and associated information. Based on recorded metadata, it provides explicit information about the relationships among the elements of workflows in notebook form augmented with directed acyclic graphs. A set of web-based graphical navigation tools and Application Programming Interface (API) have been created for searching and browsing, as well as programmatically accessing the workflows and data. We describe the MPO concepts and its software architecture. We also report the current status of the software as well as the initial deployment experience.« less
Mountain hydrology, snow color, and the fourth paradigm
NASA Astrophysics Data System (ADS)
Dozier, Jeff
2011-10-01
The world's mountain ranges accumulate substantial snow, whose melt produces the bulk of runoff and often combines with rain to cause floods. Worldwide, inadequate understanding and a reliance on sparsely distributed observations limit our ability to predict seasonal and paroxysmal runoff as climate changes, ecosystems adapt, populations grow, land use evolves, and societies make choices. To improve assessments of snow accumulation, melt, and runoff, scientists and community planners can take advantage of two emerging trends: (1) an ability to remotely sense snow properties from satellites at a spatial scale appropriate for mountain regions (10- to 100-meter resolution, coverage of the order of 100,000 square kilometers) and a daily temporal scale appropriate for the dynamic nature of snow and (2) The Fourth Paradigm [Hey et al., 2009], which posits a new scientific approach in which insight is discovered through the manipulation of large data sets as the evolutionary step in scientific thinking beyond the first three paradigms: empiricism, analyses, and simulation. The inspiration for the book's title comes from pioneering computer scientist Jim Gray, based on a lecture he gave at the National Academy of Sciences 3 weeks before he disappeared at sea.
Climate Analytics as a Service. Chapter 11
NASA Technical Reports Server (NTRS)
Schnase, John L.
2016-01-01
Exascale computing, big data, and cloud computing are driving the evolution of large-scale information systems toward a model of data-proximal analysis. In response, we are developing a concept of climate analytics as a service (CAaaS) that represents a convergence of data analytics and archive management. With this approach, high-performance compute-storage implemented as an analytic system is part of a dynamic archive comprising both static and computationally realized objects. It is a system whose capabilities are framed as behaviors over a static data collection, but where queries cause results to be created, not found and retrieved. Those results can be the product of a complex analysis, but, importantly, they also can be tailored responses to the simplest of requests. NASA's MERRA Analytic Service and associated Climate Data Services API provide a real-world example of climate analytics delivered as a service in this way. Our experiences reveal several advantages to this approach, not the least of which is orders-of-magnitude time reduction in the data assembly task common to many scientific workflows.
The Australian Computational Earth Systems Simulator
NASA Astrophysics Data System (ADS)
Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.
2001-12-01
Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic behaviour of earth systems. ACcESS represents a part of Australia's contribution to the APEC Cooperation for Earthquake Simulation (ACES) international initiative. Together with other national earth systems science initiatives including the Japanese Earth Simulator and US General Earthquake Model projects, ACcESS aims to provide a driver for scientific advancement and technological breakthroughs including: quantum leaps in understanding of earth evolution at global, crustal, regional and microscopic scales; new knowledge of the physics of crustal fault systems required to underpin the grand challenge of earthquake prediction; new understanding and predictive capabilities of geological processes such as tectonics and mineralisation.
Dodge, Somayeh; Bohrer, Gil; Weinzierl, Rolf P.; Davidson, Sarah C.; Kays, Roland; Douglas, David C.; Cruz, Sebastian; Han, J.; Brandes, David; Wikelski, Martin
2013-01-01
The movement of animals is strongly influenced by external factors in their surrounding environment such as weather, habitat types, and human land use. With advances in positioning and sensor technologies, it is now possible to capture animal locations at high spatial and temporal granularities. Likewise, scientists have an increasing access to large volumes of environmental data. Environmental data are heterogeneous in source and format, and are usually obtained at different spatiotemporal scales than movement data. Indeed, there remain scientific and technical challenges in developing linkages between the growing collections of animal movement data and the large repositories of heterogeneous remote sensing observations, as well as in the developments of new statistical and computational methods for the analysis of movement in its environmental context. These challenges include retrieval, indexing, efficient storage, data integration, and analytical techniques.
A Web-based Distributed Voluntary Computing Platform for Large Scale Hydrological Computations
NASA Astrophysics Data System (ADS)
Demir, I.; Agliamzanov, R.
2014-12-01
Distributed volunteer computing can enable researchers and scientist to form large parallel computing environments to utilize the computing power of the millions of computers on the Internet, and use them towards running large scale environmental simulations and models to serve the common good of local communities and the world. Recent developments in web technologies and standards allow client-side scripting languages to run at speeds close to native application, and utilize the power of Graphics Processing Units (GPU). Using a client-side scripting language like JavaScript, we have developed an open distributed computing framework that makes it easy for researchers to write their own hydrologic models, and run them on volunteer computers. Users will easily enable their websites for visitors to volunteer sharing their computer resources to contribute running advanced hydrological models and simulations. Using a web-based system allows users to start volunteering their computational resources within seconds without installing any software. The framework distributes the model simulation to thousands of nodes in small spatial and computational sizes. A relational database system is utilized for managing data connections and queue management for the distributed computing nodes. In this paper, we present a web-based distributed volunteer computing platform to enable large scale hydrological simulations and model runs in an open and integrated environment.
NASA Astrophysics Data System (ADS)
Manfredi, Sabato
2016-06-01
Large-scale dynamic systems are becoming highly pervasive in their occurrence with applications ranging from system biology, environment monitoring, sensor networks, and power systems. They are characterised by high dimensionality, complexity, and uncertainty in the node dynamic/interactions that require more and more computational demanding methods for their analysis and control design, as well as the network size and node system/interaction complexity increase. Therefore, it is a challenging problem to find scalable computational method for distributed control design of large-scale networks. In this paper, we investigate the robust distributed stabilisation problem of large-scale nonlinear multi-agent systems (briefly MASs) composed of non-identical (heterogeneous) linear dynamical systems coupled by uncertain nonlinear time-varying interconnections. By employing Lyapunov stability theory and linear matrix inequality (LMI) technique, new conditions are given for the distributed control design of large-scale MASs that can be easily solved by the toolbox of MATLAB. The stabilisability of each node dynamic is a sufficient assumption to design a global stabilising distributed control. The proposed approach improves some of the existing LMI-based results on MAS by both overcoming their computational limits and extending the applicative scenario to large-scale nonlinear heterogeneous MASs. Additionally, the proposed LMI conditions are further reduced in terms of computational requirement in the case of weakly heterogeneous MASs, which is a common scenario in real application where the network nodes and links are affected by parameter uncertainties. One of the main advantages of the proposed approach is to allow to move from a centralised towards a distributed computing architecture so that the expensive computation workload spent to solve LMIs may be shared among processors located at the networked nodes, thus increasing the scalability of the approach than the network size. Finally, a numerical example shows the applicability of the proposed method and its advantage in terms of computational complexity when compared with the existing approaches.
Large Eddy Simulation of a Supercritical Turbulent Mixing Layer
NASA Astrophysics Data System (ADS)
Sheikhi, Reza; Hadi, Fatemeh; Safari, Mehdi
2017-11-01
Supercritical turbulent flows are relevant to a wide range of applications such as supercritical power cycles, gas turbine combustors, rocket propulsion and internal combustion engines. Large eddy simulation (LES) analysis of such flows involves solving mass, momentum, energy and scalar transport equations with inclusion of generalized diffusion fluxes. These equations are combined with a real gas equation of state and the corresponding thermodynamic mixture variables. Subgrid scale models are needed for not only the conventional convective terms but also the additional high pressure effects arising due to the nonlinearity associated with generalized diffusion fluxes and real gas equation of state. In this study, LES is carried out to study the high pressure turbulent mixing of methane with carbon dioxide in a temporally developing mixing layer under supercritical condition. LES results are assessed by comparing with data obtained from direct numerical simulation (DNS) of the same layer. LES predictions agree favorably with DNS data and represent several key supercritical turbulent flow features such as high density gradient regions. Supported by DOE Grant SC0017097; computational support is provided by DOE National Energy Research Scientific Computing Center.
Improving Data Mobility & Management for International Cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borrill, Julian; Dart, Eli; Gore, Brooklin
In February 2015 the third workshop in the CrossConnects series, with a focus on Improving Data Mobility & Management for International Cosmology, was held at Lawrence Berkeley National Laboratory. Scientists from fields including astrophysics, cosmology, and astronomy collaborated with experts in computing and networking to outline strategic opportunities for enhancing scientific productivity and effectively managing the ever-increasing scale of scientific data.
Tackling some of the most intricate geophysical challenges via high-performance computing
NASA Astrophysics Data System (ADS)
Khosronejad, A.
2016-12-01
Recently, world has been witnessing significant enhancements in computing power of supercomputers. Computer clusters in conjunction with the advanced mathematical algorithms has set the stage for developing and applying powerful numerical tools to tackle some of the most intricate geophysical challenges that today`s engineers face. One such challenge is to understand how turbulent flows, in real-world settings, interact with (a) rigid and/or mobile complex bed bathymetry of waterways and sea-beds in the coastal areas; (b) objects with complex geometry that are fully or partially immersed; and (c) free-surface of waterways and water surface waves in the coastal area. This understanding is especially important because the turbulent flows in real-world environments are often bounded by geometrically complex boundaries, which dynamically deform and give rise to multi-scale and multi-physics transport phenomena, and characterized by multi-lateral interactions among various phases (e.g. air/water/sediment phases). Herein, I present some of the multi-scale and multi-physics geophysical fluid mechanics processes that I have attempted to study using an in-house high-performance computational model, the so-called VFS-Geophysics. More specifically, I will present the simulation results of turbulence/sediment/solute/turbine interactions in real-world settings. Parts of the simulations I present are performed to gain scientific insights into the processes such as sand wave formation (A. Khosronejad, and F. Sotiropoulos, (2014), Numerical simulation of sand waves in a turbulent open channel flow, Journal of Fluid Mechanics, 753:150-216), while others are carried out to predict the effects of climate change and large flood events on societal infrastructures ( A. Khosronejad, et al., (2016), Large eddy simulation of turbulence and solute transport in a forested headwater stream, Journal of Geophysical Research:, doi: 10.1002/2014JF003423).
Human connectome module pattern detection using a new multi-graph MinMax cut model.
De, Wang; Wang, Yang; Nie, Feiping; Yan, Jingwen; Cai, Weidong; Saykin, Andrew J; Shen, Li; Huang, Heng
2014-01-01
Many recent scientific efforts have been devoted to constructing the human connectome using Diffusion Tensor Imaging (DTI) data for understanding the large-scale brain networks that underlie higher-level cognition in human. However, suitable computational network analysis tools are still lacking in human connectome research. To address this problem, we propose a novel multi-graph min-max cut model to detect the consistent network modules from the brain connectivity networks of all studied subjects. A new multi-graph MinMax cut model is introduced to solve this challenging computational neuroscience problem and the efficient optimization algorithm is derived. In the identified connectome module patterns, each network module shows similar connectivity patterns in all subjects, which potentially associate to specific brain functions shared by all subjects. We validate our method by analyzing the weighted fiber connectivity networks. The promising empirical results demonstrate the effectiveness of our method.
Drawing the PDB: Protein-Ligand Complexes in Two Dimensions.
Stierand, Katrin; Rarey, Matthias
2010-12-09
The two-dimensional representation of molecules is a popular communication medium in chemistry and the associated scientific fields. Computational methods for drawing small molecules with and without manual investigation are well-established and widely spread in terms of numerous software tools. Concerning the planar depiction of molecular complexes, there is considerably less choice. We developed the software PoseView, which automatically generates two-dimensional diagrams of macromolecular complexes, showing the ligand, the interactions, and the interacting residues. All depicted molecules are drawn on an atomic level as structure diagrams; thus, the output plots are clearly structured and easily readable for the scientist. We tested the performance of PoseView in a large-scale application on nearly all druglike complexes of the PDB (approximately 200000 complexes); for more than 92% of the complexes considered for drawing, a layout could be computed. In the following, we will present the results of this application study.
Wong, William W L; Feng, Zeny Z; Thein, Hla-Hla
2016-11-01
Agent-based models (ABMs) are computer simulation models that define interactions among agents and simulate emergent behaviors that arise from the ensemble of local decisions. ABMs have been increasingly used to examine trends in infectious disease epidemiology. However, the main limitation of ABMs is the high computational cost for a large-scale simulation. To improve the computational efficiency for large-scale ABM simulations, we built a parallelizable sliding region algorithm (SRA) for ABM and compared it to a nonparallelizable ABM. We developed a complex agent network and performed two simulations to model hepatitis C epidemics based on the real demographic data from Saskatchewan, Canada. The first simulation used the SRA that processed on each postal code subregion subsequently. The second simulation processed the entire population simultaneously. It was concluded that the parallelizable SRA showed computational time saving with comparable results in a province-wide simulation. Using the same method, SRA can be generalized for performing a country-wide simulation. Thus, this parallel algorithm enables the possibility of using ABM for large-scale simulation with limited computational resources.
Sound production due to large-scale coherent structures
NASA Technical Reports Server (NTRS)
Gatski, T. B.
1979-01-01
The acoustic pressure fluctuations due to large-scale finite amplitude disturbances in a free turbulent shear flow are calculated. The flow is decomposed into three component scales; the mean motion, the large-scale wave-like disturbance, and the small-scale random turbulence. The effect of the large-scale structure on the flow is isolated by applying both a spatial and phase average on the governing differential equations and by initially taking the small-scale turbulence to be in energetic equilibrium with the mean flow. The subsequent temporal evolution of the flow is computed from global energetic rate equations for the different component scales. Lighthill's theory is then applied to the region with the flowfield as the source and an observer located outside the flowfield in a region of uniform velocity. Since the time history of all flow variables is known, a minimum of simplifying assumptions for the Lighthill stress tensor is required, including no far-field approximations. A phase average is used to isolate the pressure fluctuations due to the large-scale structure, and also to isolate the dynamic process responsible. Variation of mean square pressure with distance from the source is computed to determine the acoustic far-field location and decay rate, and, in addition, spectra at various acoustic field locations are computed and analyzed. Also included are the effects of varying the growth and decay of the large-scale disturbance on the sound produced.
magHD: a new approach to multi-dimensional data storage, analysis, display and exploitation
NASA Astrophysics Data System (ADS)
Angleraud, Christophe
2014-06-01
The ever increasing amount of data and processing capabilities - following the well- known Moore's law - is challenging the way scientists and engineers are currently exploiting large datasets. The scientific visualization tools, although quite powerful, are often too generic and provide abstract views of phenomena, thus preventing cross disciplines fertilization. On the other end, Geographic information Systems allow nice and visually appealing maps to be built but they often get very confused as more layers are added. Moreover, the introduction of time as a fourth analysis dimension to allow analysis of time dependent phenomena such as meteorological or climate models, is encouraging real-time data exploration techniques that allow spatial-temporal points of interests to be detected by integration of moving images by the human brain. Magellium is involved in high performance image processing chains for satellite image processing as well as scientific signal analysis and geographic information management since its creation (2003). We believe that recent work on big data, GPU and peer-to-peer collaborative processing can open a new breakthrough in data analysis and display that will serve many new applications in collaborative scientific computing, environment mapping and understanding. The magHD (for Magellium Hyper-Dimension) project aims at developing software solutions that will bring highly interactive tools for complex datasets analysis and exploration commodity hardware, targeting small to medium scale clusters with expansion capabilities to large cloud based clusters.
A novel computational approach towards the certification of large-scale boson sampling
NASA Astrophysics Data System (ADS)
Huh, Joonsuk
Recent proposals of boson sampling and the corresponding experiments exhibit the possible disproof of extended Church-Turning Thesis. Furthermore, the application of boson sampling to molecular computation has been suggested theoretically. Till now, however, only small-scale experiments with a few photons have been successfully performed. The boson sampling experiments of 20-30 photons are expected to reveal the computational superiority of the quantum device. A novel theoretical proposal for the large-scale boson sampling using microwave photons is highly promising due to the deterministic photon sources and the scalability. Therefore, the certification protocol of large-scale boson sampling experiments should be presented to complete the exciting story. We propose, in this presentation, a computational protocol towards the certification of large-scale boson sampling. The correlations of paired photon modes and the time-dependent characteristic functional with its Fourier component can show the fingerprint of large-scale boson sampling. This work was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(NRF-2015R1A6A3A04059773), the ICT R&D program of MSIP/IITP [2015-019, Fundamental Research Toward Secure Quantum Communication] and Mueunjae Institute for Chemistry (MIC) postdoctoral fellowship.
Idea Paper: The Lifecycle of Software for Scientific Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubey, Anshu; McInnes, Lois C.
The software lifecycle is a well researched topic that has produced many models to meet the needs of different types of software projects. However, one class of projects, software development for scientific computing, has received relatively little attention from lifecycle researchers. In particular, software for end-to-end computations for obtaining scientific results has received few lifecycle proposals and no formalization of a development model. An examination of development approaches employed by the teams implementing large multicomponent codes reveals a great deal of similarity in their strategies. This idea paper formalizes these related approaches into a lifecycle model for end-to-end scientific applicationmore » software, featuring loose coupling between submodels for development of infrastructure and scientific capability. We also invite input from stakeholders to converge on a model that captures the complexity of this development processes and provides needed lifecycle guidance to the scientific software community.« less
Michael Keller; Maria Assunção Silva-Dias; Daniel C. Nepstad; Meinrat O. Andreae
2004-01-01
The Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) is a multi-disciplinary, multinational scientific project led by Brazil. LBA researchers seek to understand Amazonia in its global context especially with regard to regional and global climate. Current development activities in Amazonia including deforestation, logging, cattle ranching, and agriculture...
USDA-ARS?s Scientific Manuscript database
Large-scale crop monitoring and yield estimation are important for both scientific research and practical applications. Satellite remote sensing provides an effective means for regional and global cropland monitoring, particularly in data-sparse regions that lack reliable ground observations and rep...
Reconfigurable Computing for Computational Science: A New Focus in High Performance Computing
2006-11-01
in the past decade. Researchers are regularly employing the power of large computing systems and parallel processing to tackle larger and more...complex problems in all of the physical sciences. For the past decade or so, most of this growth in computing power has been “free” with increased...the scientific computing community as a means to continued growth in computing capability. This paper offers a glimpse of the hardware and
NASA Astrophysics Data System (ADS)
Evans, Ben; Allen, Chris; Antony, Joseph; Bastrakova, Irina; Gohar, Kashif; Porter, David; Pugh, Tim; Santana, Fabiana; Smillie, Jon; Trenham, Claire; Wang, Jingbo; Wyborn, Lesley
2015-04-01
The National Computational Infrastructure (NCI) has established a powerful and flexible in-situ petascale computational environment to enable both high performance computing and Data-intensive Science across a wide spectrum of national environmental and earth science data collections - in particular climate, observational data and geoscientific assets. This paper examines 1) the computational environments that supports the modelling and data processing pipelines, 2) the analysis environments and methods to support data analysis, and 3) the progress so far to harmonise the underlying data collections for future interdisciplinary research across these large volume data collections. NCI has established 10+ PBytes of major national and international data collections from both the government and research sectors based on six themes: 1) weather, climate, and earth system science model simulations, 2) marine and earth observations, 3) geosciences, 4) terrestrial ecosystems, 5) water and hydrology, and 6) astronomy, social and biosciences. Collectively they span the lithosphere, crust, biosphere, hydrosphere, troposphere, and stratosphere. The data is largely sourced from NCI's partners (which include the custodians of many of the major Australian national-scale scientific collections), leading research communities, and collaborating overseas organisations. New infrastructures created at NCI mean the data collections are now accessible within an integrated High Performance Computing and Data (HPC-HPD) environment - a 1.2 PFlop supercomputer (Raijin), a HPC class 3000 core OpenStack cloud system and several highly connected large-scale high-bandwidth Lustre filesystems. The hardware was designed at inception to ensure that it would allow the layered software environment to flexibly accommodate the advancement of future data science. New approaches to software technology and data models have also had to be developed to enable access to these large and exponentially increasing data volumes at NCI. Traditional HPC and data environments are still made available in a way that flexibly provides the tools, services and supporting software systems on these new petascale infrastructures. But to enable the research to take place at this scale, the data, metadata and software now need to evolve together - creating a new integrated high performance infrastructure. The new infrastructure at NCI currently supports a catalogue of integrated, reusable software and workflows from earth system and ecosystem modelling, weather research, satellite and other observed data processing and analysis. One of the challenges for NCI has been to support existing techniques and methods, while carefully preparing the underlying infrastructure for the transition needed for the next class of Data-intensive Science. In doing so, a flexible range of techniques and software can be made available for application across the corpus of data collections available, and to provide a new infrastructure for future interdisciplinary research.
Must Invisible Colleges Be Invisible? An Approach to Examining Large Communities of Network Users.
ERIC Educational Resources Information Center
Ruth, Stephen R.; Gouet, Raul
1993-01-01
Discussion of characteristics of users of computer-mediated communication systems and scientific networks focuses on a study of the scientific community in Chile. Topics addressed include users and nonusers; productivity; educational level; academic specialty; age; gender; international connectivity; public policy issues; and future research…
Computer Card Games in Computer Science Education: A 10-Year Review
ERIC Educational Resources Information Center
Kordaki, Maria; Gousiou, Anthi
2016-01-01
This paper presents a 10-year review study that focuses on the investigation of the use of computer card games (CCGs) as learning tools in Computer Science (CS) Education. Specific search terms keyed into 10 large scientific electronic databases identified 24 papers referring to the use of CCGs for the learning of CS matters during the last…
DOE Office of Scientific and Technical Information (OSTI.GOV)
2012-09-25
The Megatux platform enables the emulation of large scale (multi-million node) distributed systems. In particular, it allows for the emulation of large-scale networks interconnecting a very large number of emulated computer systems. It does this by leveraging virtualization and associated technologies to allow hundreds of virtual computers to be hosted on a single moderately sized server or workstation. Virtualization technology provided by modern processors allows for multiple guest OSs to run at the same time, sharing the hardware resources. The Megatux platform can be deployed on a single PC, a small cluster of a few boxes or a large clustermore » of computers. With a modest cluster, the Megatux platform can emulate complex organizational networks. By using virtualization, we emulate the hardware, but run actual software enabling large scale without sacrificing fidelity.« less
Large-scale Labeled Datasets to Fuel Earth Science Deep Learning Applications
NASA Astrophysics Data System (ADS)
Maskey, M.; Ramachandran, R.; Miller, J.
2017-12-01
Deep learning has revolutionized computer vision and natural language processing with various algorithms scaled using high-performance computing. However, generic large-scale labeled datasets such as the ImageNet are the fuel that drives the impressive accuracy of deep learning results. Large-scale labeled datasets already exist in domains such as medical science, but creating them in the Earth science domain is a challenge. While there are ways to apply deep learning using limited labeled datasets, there is a need in the Earth sciences for creating large-scale labeled datasets for benchmarking and scaling deep learning applications. At the NASA Marshall Space Flight Center, we are using deep learning for a variety of Earth science applications where we have encountered the need for large-scale labeled datasets. We will discuss our approaches for creating such datasets and why these datasets are just as valuable as deep learning algorithms. We will also describe successful usage of these large-scale labeled datasets with our deep learning based applications.
A microkernel design for component-based parallel numerical software systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balay, S.
1999-01-13
What is the minimal software infrastructure and what type of conventions are needed to simplify development of sophisticated parallel numerical application codes using a variety of software components that are not necessarily available as source code? We propose an opaque object-based model where the objects are dynamically loadable from the file system or network. The microkernel required to manage such a system needs to include, at most: (1) a few basic services, namely--a mechanism for loading objects at run time via dynamic link libraries, and consistent schemes for error handling and memory management; and (2) selected methods that all objectsmore » share, to deal with object life (destruction, reference counting, relationships), and object observation (viewing, profiling, tracing). We are experimenting with these ideas in the context of extensible numerical software within the ALICE (Advanced Large-scale Integrated Computational Environment) project, where we are building the microkernel to manage the interoperability among various tools for large-scale scientific simulations. This paper presents some preliminary observations and conclusions from our work with microkernel design.« less
Understanding the Performance and Potential of Cloud Computing for Scientific Applications
Sadooghi, Iman; Martin, Jesus Hernandez; Li, Tonglin; ...
2015-02-19
In this paper, commercial clouds bring a great opportunity to the scientific computing area. Scientific applications usually require significant resources, however not all scientists have access to sufficient high-end computing systems, may of which can be found in the Top500 list. Cloud Computing has gained the attention of scientists as a competitive resource to run HPC applications at a potentially lower cost. But as a different infrastructure, it is unclear whether clouds are capable of running scientific applications with a reasonable performance per money spent. This work studies the performance of public clouds and places this performance in context tomore » price. We evaluate the raw performance of different services of AWS cloud in terms of the basic resources, such as compute, memory, network and I/O. We also evaluate the performance of the scientific applications running in the cloud. This paper aims to assess the ability of the cloud to perform well, as well as to evaluate the cost of the cloud running scientific applications. We developed a full set of metrics and conducted a comprehensive performance evlauation over the Amazon cloud. We evaluated EC2, S3, EBS and DynamoDB among the many Amazon AWS services. We evaluated the memory sub-system performance with CacheBench, the network performance with iperf, processor and network performance with the HPL benchmark application, and shared storage with NFS and PVFS in addition to S3. We also evaluated a real scientific computing application through the Swift parallel scripting system at scale. Armed with both detailed benchmarks to gauge expected performance and a detailed monetary cost analysis, we expect this paper will be a recipe cookbook for scientists to help them decide where to deploy and run their scientific applications between public clouds, private clouds, or hybrid clouds.« less
Understanding the Performance and Potential of Cloud Computing for Scientific Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadooghi, Iman; Martin, Jesus Hernandez; Li, Tonglin
In this paper, commercial clouds bring a great opportunity to the scientific computing area. Scientific applications usually require significant resources, however not all scientists have access to sufficient high-end computing systems, may of which can be found in the Top500 list. Cloud Computing has gained the attention of scientists as a competitive resource to run HPC applications at a potentially lower cost. But as a different infrastructure, it is unclear whether clouds are capable of running scientific applications with a reasonable performance per money spent. This work studies the performance of public clouds and places this performance in context tomore » price. We evaluate the raw performance of different services of AWS cloud in terms of the basic resources, such as compute, memory, network and I/O. We also evaluate the performance of the scientific applications running in the cloud. This paper aims to assess the ability of the cloud to perform well, as well as to evaluate the cost of the cloud running scientific applications. We developed a full set of metrics and conducted a comprehensive performance evlauation over the Amazon cloud. We evaluated EC2, S3, EBS and DynamoDB among the many Amazon AWS services. We evaluated the memory sub-system performance with CacheBench, the network performance with iperf, processor and network performance with the HPL benchmark application, and shared storage with NFS and PVFS in addition to S3. We also evaluated a real scientific computing application through the Swift parallel scripting system at scale. Armed with both detailed benchmarks to gauge expected performance and a detailed monetary cost analysis, we expect this paper will be a recipe cookbook for scientists to help them decide where to deploy and run their scientific applications between public clouds, private clouds, or hybrid clouds.« less
Systematic identification of latent disease-gene associations from PubMed articles.
Zhang, Yuji; Shen, Feichen; Mojarad, Majid Rastegar; Li, Dingcheng; Liu, Sijia; Tao, Cui; Yu, Yue; Liu, Hongfang
2018-01-01
Recent scientific advances have accumulated a tremendous amount of biomedical knowledge providing novel insights into the relationship between molecular and cellular processes and diseases. Literature mining is one of the commonly used methods to retrieve and extract information from scientific publications for understanding these associations. However, due to large data volume and complicated associations with noises, the interpretability of such association data for semantic knowledge discovery is challenging. In this study, we describe an integrative computational framework aiming to expedite the discovery of latent disease mechanisms by dissecting 146,245 disease-gene associations from over 25 million of PubMed indexed articles. We take advantage of both Latent Dirichlet Allocation (LDA) modeling and network-based analysis for their capabilities of detecting latent associations and reducing noises for large volume data respectively. Our results demonstrate that (1) the LDA-based modeling is able to group similar diseases into disease topics; (2) the disease-specific association networks follow the scale-free network property; (3) certain subnetwork patterns were enriched in the disease-specific association networks; and (4) genes were enriched in topic-specific biological processes. Our approach offers promising opportunities for latent disease-gene knowledge discovery in biomedical research.
Systematic identification of latent disease-gene associations from PubMed articles
Mojarad, Majid Rastegar; Li, Dingcheng; Liu, Sijia; Tao, Cui; Yu, Yue; Liu, Hongfang
2018-01-01
Recent scientific advances have accumulated a tremendous amount of biomedical knowledge providing novel insights into the relationship between molecular and cellular processes and diseases. Literature mining is one of the commonly used methods to retrieve and extract information from scientific publications for understanding these associations. However, due to large data volume and complicated associations with noises, the interpretability of such association data for semantic knowledge discovery is challenging. In this study, we describe an integrative computational framework aiming to expedite the discovery of latent disease mechanisms by dissecting 146,245 disease-gene associations from over 25 million of PubMed indexed articles. We take advantage of both Latent Dirichlet Allocation (LDA) modeling and network-based analysis for their capabilities of detecting latent associations and reducing noises for large volume data respectively. Our results demonstrate that (1) the LDA-based modeling is able to group similar diseases into disease topics; (2) the disease-specific association networks follow the scale-free network property; (3) certain subnetwork patterns were enriched in the disease-specific association networks; and (4) genes were enriched in topic-specific biological processes. Our approach offers promising opportunities for latent disease-gene knowledge discovery in biomedical research. PMID:29373609
Scientific Visualization Tools for Enhancement of Undergraduate Research
NASA Astrophysics Data System (ADS)
Rodriguez, W. J.; Chaudhury, S. R.
2001-05-01
Undergraduate research projects that utilize remote sensing satellite instrument data to investigate atmospheric phenomena pose many challenges. A significant challenge is processing large amounts of multi-dimensional data. Remote sensing data initially requires mining; filtering of undesirable spectral, instrumental, or environmental features; and subsequently sorting and reformatting to files for easy and quick access. The data must then be transformed according to the needs of the investigation(s) and displayed for interpretation. These multidimensional datasets require views that can range from two-dimensional plots to multivariable-multidimensional scientific visualizations with animations. Science undergraduate students generally find these data processing tasks daunting. Generally, researchers are required to fully understand the intricacies of the dataset and write computer programs or rely on commercially available software, which may not be trivial to use. In the time that undergraduate researchers have available for their research projects, learning the data formats, programming languages, and/or visualization packages is impractical. When dealing with large multi-dimensional data sets appropriate Scientific Visualization tools are imperative in allowing students to have a meaningful and pleasant research experience, while producing valuable scientific research results. The BEST Lab at Norfolk State University has been creating tools for multivariable-multidimensional analysis of Earth Science data. EzSAGE and SAGE4D have been developed to sort, analyze and visualize SAGE II (Stratospheric Aerosol and Gas Experiment) data with ease. Three- and four-dimensional visualizations in interactive environments can be produced. EzSAGE provides atmospheric slices in three-dimensions where the researcher can change the scales in the three-dimensions, color tables and degree of smoothing interactively to focus on particular phenomena. SAGE4D provides a navigable four-dimensional interactive environment. These tools allow students to make higher order decisions based on large multidimensional sets of data while diminishing the level of frustration that results from dealing with the details of processing large data sets.
NASA Astrophysics Data System (ADS)
Wyborn, Lesley; Evans, Ben; Foster, Clinton; Pugh, Timothy; Uhlherr, Alfred
2015-04-01
Digital geoscience data and information are integral to informing decisions on the social, economic and environmental management of natural resources. Traditionally, such decisions were focused on regional or national viewpoints only, but it is increasingly being recognised that global perspectives are required to meet new challenges such as predicting impacts of climate change; sustainably exploiting scarce water, mineral and energy resources; and protecting our communities through better prediction of the behaviour of natural hazards. In recent years, technical advances in scientific instruments have resulted in a surge in data volumes, with data now being collected at unprecedented rates and at ever increasing resolutions. The size of many earth science data sets now exceed the computational capacity of many government and academic organisations to locally store and dynamically access the data sets; to internally process and analyse them to high resolutions; and then to deliver them online to clients, partners and stakeholders. Fortunately, at the same time, computational capacities have commensurately increased (both cloud and HPC): these can now provide the capability to effectively access the ever-growing data assets within realistic time frames. However, to achieve this, data and computing need to be co-located: bandwidth limits the capacity to move the large data sets; the data transfers are too slow; and latencies to access them are too high. These scenarios are driving the move towards more centralised High Performance (HP) Infrastructures. The rapidly increasing scale of data, the growing complexity of software and hardware environments, combined with the energy costs of running such infrastructures is creating a compelling economic argument for just having one or two major national (or continental) HP facilities that can be federated internationally to enable earth and environmental issues to be tackled at global scales. But at the same time, if properly constructed, these infrastructures can also service very small-scale research projects. The National Computational Infrastructure (NCI) at the Australian National University (ANU) has built such an HP infrastructure as part of the Australian Government's National Collaborative Research Infrastructure Strategy. NCI operates as a formal partnership between the ANU and the three major Australian National Government Scientific Agencies: the Commonwealth Scientific and Industrial Research Organisation (CSIRO), the Bureau of Meteorology and Geoscience Australia. The government partners agreed to explore the new opportunities offered within the partnership with NCI, rather than each running their own separate agenda independently. The data from these national agencies, as well as from collaborating overseas organisations (e.g., NASA, NOAA, USGS, CMIP, etc.) are either replicated to, or produced at, NCI. By co-locating and harmonising these vast data collections within the integrated HP computing environments at NCI, new opportunities have arisen for Data-intensive Interdisciplinary Science at scales and resolutions not hitherto possible. The new NCI infrastructure has also enabled the blending of research by the university sector with the more operational business of government science agencies, with the fundamental shift being that researchers from both sectors work and collaborate within a federated data and computational environment that contains both national and international data collections.
Using stroboscopic flow imaging to validate large-scale computational fluid dynamics simulations
NASA Astrophysics Data System (ADS)
Laurence, Ted A.; Ly, Sonny; Fong, Erika; Shusteff, Maxim; Randles, Amanda; Gounley, John; Draeger, Erik
2017-02-01
The utility and accuracy of computational modeling often requires direct validation against experimental measurements. The work presented here is motivated by taking a combined experimental and computational approach to determine the ability of large-scale computational fluid dynamics (CFD) simulations to understand and predict the dynamics of circulating tumor cells in clinically relevant environments. We use stroboscopic light sheet fluorescence imaging to track the paths and measure the velocities of fluorescent microspheres throughout a human aorta model. Performed over complex physiologicallyrealistic 3D geometries, large data sets are acquired with microscopic resolution over macroscopic distances.
NASA Technical Reports Server (NTRS)
Kramer, Williams T. C.; Simon, Horst D.
1994-01-01
This tutorial proposes to be a practical guide for the uninitiated to the main topics and themes of high-performance computing (HPC), with particular emphasis to distributed computing. The intent is first to provide some guidance and directions in the rapidly increasing field of scientific computing using both massively parallel and traditional supercomputers. Because of their considerable potential computational power, loosely or tightly coupled clusters of workstations are increasingly considered as a third alternative to both the more conventional supercomputers based on a small number of powerful vector processors, as well as high massively parallel processors. Even though many research issues concerning the effective use of workstation clusters and their integration into a large scale production facility are still unresolved, such clusters are already used for production computing. In this tutorial we will utilize the unique experience made at the NAS facility at NASA Ames Research Center. Over the last five years at NAS massively parallel supercomputers such as the Connection Machines CM-2 and CM-5 from Thinking Machines Corporation and the iPSC/860 (Touchstone Gamma Machine) and Paragon Machines from Intel were used in a production supercomputer center alongside with traditional vector supercomputers such as the Cray Y-MP and C90.
MODIS algorithm development and data visualization using ACTS
NASA Technical Reports Server (NTRS)
Abbott, Mark R.
1992-01-01
The study of the Earth as a system will require the merger of scientific and data resources on a much larger scale than has been done in the past. New methods of scientific research, particularly in the development of geographically dispersed, interdisciplinary teams, are necessary if we are to understand the complexity of the Earth system. Even the planned satellite missions themselves, such as the Earth Observing System, will require much more interaction between researchers and engineers if they are to produce scientifically useful data products. A key component in these activities is the development of flexible, high bandwidth data networks that can be used to move large amounts of data as well as allow researchers to communicate in new ways, such as through video. The capabilities of the Advanced Communications Technology Satellite (ACTS) will allow the development of such networks. The Pathfinder global AVHRR data set and the upcoming SeaWiFS Earthprobe mission would serve as a testbed in which to develop the tools to share data and information among geographically distributed researchers. Our goal is to develop a 'Distributed Research Environment' that can be used as a model for scientific collaboration in the EOS era. The challenge is to unite the advances in telecommunications with the parallel advances in computing and networking.
Barbera, J; Macintyre, A; Gostin, L; Inglesby, T; O'Toole, T; DeAtley, C; Tonat, K; Layton, M
2001-12-05
Concern for potential bioterrorist attacks causing mass casualties has increased recently. Particular attention has been paid to scenarios in which a biological agent capable of person-to-person transmission, such as smallpox, is intentionally released among civilians. Multiple public health interventions are possible to effect disease containment in this context. One disease control measure that has been regularly proposed in various settings is the imposition of large-scale or geographic quarantine on the potentially exposed population. Although large-scale quarantine has not been implemented in recent US history, it has been used on a small scale in biological hoaxes, and it has been invoked in federally sponsored bioterrorism exercises. This article reviews the scientific principles that are relevant to the likely effectiveness of quarantine, the logistic barriers to its implementation, legal issues that a large-scale quarantine raises, and possible adverse consequences that might result from quarantine action. Imposition of large-scale quarantine-compulsory sequestration of groups of possibly exposed persons or human confinement within certain geographic areas to prevent spread of contagious disease-should not be considered a primary public health strategy in most imaginable circumstances. In the majority of contexts, other less extreme public health actions are likely to be more effective and create fewer unintended adverse consequences than quarantine. Actions and areas for future research, policy development, and response planning efforts are provided.
Development and Applications of a Modular Parallel Process for Large Scale Fluid/Structures Problems
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; Kwak, Dochan (Technical Monitor)
2002-01-01
A modular process that can efficiently solve large scale multidisciplinary problems using massively parallel supercomputers is presented. The process integrates disciplines with diverse physical characteristics by retaining the efficiency of individual disciplines. Computational domain independence of individual disciplines is maintained using a meta programming approach. The process integrates disciplines without affecting the combined performance. Results are demonstrated for large scale aerospace problems on several supercomputers. The super scalability and portability of the approach is demonstrated on several parallel computers.
Triangle Computer Science Distinguished Lecture Series
2018-01-30
scientific inquiry - the cell, the brain, the market - as well as in the models developed by scientists over the centuries for studying them. Human...the great objects of scientific inquiry - the cell, the brain, the market - as well as in the models developed by scientists over the centuries for...in principle , secure system operation can be achieved. Massive-Scale Streaming Analytics David Bader, Georgia Institute of Technology (telecast from
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potok, Thomas; Schuman, Catherine; Patton, Robert
The White House and Department of Energy have been instrumental in driving the development of a neuromorphic computing program to help the United States continue its lead in basic research into (1) Beyond Exascale—high performance computing beyond Moore’s Law and von Neumann architectures, (2) Scientific Discovery—new paradigms for understanding increasingly large and complex scientific data, and (3) Emerging Architectures—assessing the potential of neuromorphic and quantum architectures. Neuromorphic computing spans a broad range of scientific disciplines from materials science to devices, to computer science, to neuroscience, all of which are required to solve the neuromorphic computing grand challenge. In our workshopmore » we focus on the computer science aspects, specifically from a neuromorphic device through an application. Neuromorphic devices present a very different paradigm to the computer science community from traditional von Neumann architectures, which raises six major questions about building a neuromorphic application from the device level. We used these fundamental questions to organize the workshop program and to direct the workshop panels and discussions. From the white papers, presentations, panels, and discussions, there emerged several recommendations on how to proceed.« less
Report to the Institutional Computing Executive Group (ICEG) August 14, 2006
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carnes, B
We have delayed this report from its normal distribution schedule for two reasons. First, due to the coverage provided in the White Paper on Institutional Capability Computing Requirements distributed in August 2005, we felt a separate 2005 ICEG report would not be value added. Second, we wished to provide some specific information about the Peloton procurement and we have just now reached a point in the process where we can make some definitive statements. The Peloton procurement will result in an almost complete replacement of current M&IC systems. We have plans to retire MCR, iLX, and GPS. We will replacemore » them with new parallel and serial capacity systems based on the same node architecture in the new Peloton capability system named ATLAS. We are currently adding the first users to the Green Data Oasis, a large file system on the open network that will provide the institution with external collaboration data sharing. Only Thunder will remain from the current M&IC system list and it will be converted from Capability to Capacity. We are confident that we are entering a challenging yet rewarding new phase for the M&IC program. Institutional computing has been an essential component of our S&T investment strategy and has helped us achieve recognition in many scientific and technical forums. Through consistent institutional investments, M&IC has grown into a powerful unclassified computing resource that is being used across the Lab to push the limits of computing and its application to simulation science. With the addition of Peloton, the Laboratory will significantly increase the broad-based computing resources available to meet the ever-increasing demand for the large scale simulations indispensable to advancing all scientific disciplines. All Lab research efforts are bolstered through the long term development of mission driven scalable applications and platforms. The new systems will soon be fully utilized and will position Livermore to extend the outstanding science and technology breakthroughs the M&IC program has enabled to date.« less
NASA Astrophysics Data System (ADS)
Anantharaj, Valentine; Norman, Matthew; Evans, Katherine; Taylor, Mark; Worley, Patrick; Hack, James; Mayer, Benjamin
2014-05-01
During 2013, high-resolution climate model simulations accounted for over 100 million "core hours" using Titan at the Oak Ridge Leadership Computing Facility (OLCF). The suite of climate modeling experiments, primarily using the Community Earth System Model (CESM) at nearly 0.25 degree horizontal resolution, generated over a petabyte of data and nearly 100,000 files, ranging in sizes from 20 MB to over 100 GB. Effective utilization of leadership class resources requires careful planning and preparation. The application software, such as CESM, need to be ported, optimized and benchmarked for the target platform in order to meet the computational readiness requirements. The model configuration needs to be "tuned and balanced" for the experiments. This can be a complicated and resource intensive process, especially for high-resolution configurations using complex physics. The volume of I/O also increases with resolution; and new strategies may be required to manage I/O especially for large checkpoint and restart files that may require more frequent output for resiliency. It is also essential to monitor the application performance during the course of the simulation exercises. Finally, the large volume of data needs to be analyzed to derive the scientific results; and appropriate data and information delivered to the stakeholders. Titan is currently the largest supercomputer available for open science. The computational resources, in terms of "titan core hours" are allocated primarily via the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) and ASCR Leadership Computing Challenge (ALCC) programs, both sponsored by the U.S. Department of Energy (DOE) Office of Science. Titan is a Cray XK7 system, capable of a theoretical peak performance of over 27 PFlop/s, consists of 18,688 compute nodes, with a NVIDIA Kepler K20 GPU and a 16-core AMD Opteron CPU in every node, for a total of 299,008 Opteron cores and 18,688 GPUs offering a cumulative 560,640 equivalent cores. Scientific applications, such as CESM, are also required to demonstrate a "computational readiness capability" to efficiently scale across and utilize 20% of the entire system. The 0,25 deg configuration of the spectral element dynamical core of the Community Atmosphere Model (CAM-SE), the atmospheric component of CESM, has been demonstrated to scale efficiently across more than 5,000 nodes (80,000 CPU cores) on Titan. The tracer transport routines of CAM-SE have also been ported to take advantage of the hybrid many-core architecture of Titan using GPUs [see EGU2014-4233], yielding over 2X speedup when transporting over 100 tracers. The high throughput I/O in CESM, based on the Parallel IO Library (PIO), is being further augmented to support even higher resolutions and enhance resiliency. The application performance of the individual runs are archived in a database and routinely analyzed to identify and rectify performance degradation during the course of the experiments. The various resources available at the OLCF now support a scientific workflow to facilitate high-resolution climate modelling. A high-speed center-wide parallel file system, called ATLAS, capable of 1 TB/s, is available on Titan as well as on the clusters used for analysis (Rhea) and visualization (Lens/EVEREST). Long-term archive is facilitated by the HPSS storage system. The Earth System Grid (ESG), featuring search & discovery, is also used to deliver data. The end-to-end workflow allows OLCF users to efficiently share data and publish results in a timely manner.
NASA Astrophysics Data System (ADS)
Huang, Qian
2014-09-01
Scientific computing often requires the availability of a massive number of computers for performing large-scale simulations, and computing in mineral physics is no exception. In order to investigate physical properties of minerals at extreme conditions in computational mineral physics, parallel computing technology is used to speed up the performance by utilizing multiple computer resources to process a computational task simultaneously thereby greatly reducing computation time. Traditionally, parallel computing has been addressed by using High Performance Computing (HPC) solutions and installed facilities such as clusters and super computers. Today, it has been seen that there is a tremendous growth in cloud computing. Infrastructure as a Service (IaaS), the on-demand and pay-as-you-go model, creates a flexible and cost-effective mean to access computing resources. In this paper, a feasibility report of HPC on a cloud infrastructure is presented. It is found that current cloud services in IaaS layer still need to improve performance to be useful to research projects. On the other hand, Software as a Service (SaaS), another type of cloud computing, is introduced into an HPC system for computing in mineral physics, and an application of which is developed. In this paper, an overall description of this SaaS application is presented. This contribution can promote cloud application development in computational mineral physics, and cross-disciplinary studies.
A Comparison of Compressed Sensing and Sparse Recovery Algorithms Applied to Simulation Data
Fan, Ya Ju; Kamath, Chandrika
2016-09-01
The move toward exascale computing for scientific simulations is placing new demands on compression techniques. It is expected that the I/O system will not be able to support the volume of data that is expected to be written out. To enable quantitative analysis and scientific discovery, we are interested in techniques that compress high-dimensional simulation data and can provide perfect or near-perfect reconstruction. In this paper, we explore the use of compressed sensing (CS) techniques to reduce the size of the data before they are written out. Using large-scale simulation data, we investigate how the sufficient sparsity condition and themore » contrast in the data affect the quality of reconstruction and the degree of compression. Also, we provide suggestions for the practical implementation of CS techniques and compare them with other sparse recovery methods. Finally, our results show that despite longer times for reconstruction, compressed sensing techniques can provide near perfect reconstruction over a range of data with varying sparsity.« less
A Comparison of Compressed Sensing and Sparse Recovery Algorithms Applied to Simulation Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Ya Ju; Kamath, Chandrika
The move toward exascale computing for scientific simulations is placing new demands on compression techniques. It is expected that the I/O system will not be able to support the volume of data that is expected to be written out. To enable quantitative analysis and scientific discovery, we are interested in techniques that compress high-dimensional simulation data and can provide perfect or near-perfect reconstruction. In this paper, we explore the use of compressed sensing (CS) techniques to reduce the size of the data before they are written out. Using large-scale simulation data, we investigate how the sufficient sparsity condition and themore » contrast in the data affect the quality of reconstruction and the degree of compression. Also, we provide suggestions for the practical implementation of CS techniques and compare them with other sparse recovery methods. Finally, our results show that despite longer times for reconstruction, compressed sensing techniques can provide near perfect reconstruction over a range of data with varying sparsity.« less
NASA Astrophysics Data System (ADS)
Speranza, A.; Accadia, C.; Casaioli, M.; Mariani, S.; Monacelli, G.; Inghilesi, R.; Tartaglione, N.; Ruti, P. M.; Carillo, A.; Bargagli, A.; Pisacane, G.; Valentinotti, F.; Lavagnini, A.
2004-07-01
The Mediterranean area is characterized by relevant hydrological, meteorological and marine processes developing at horizontal space-scales of the order of 1-100 km. In the recent past, several international programs have been addressed (ALPEX, POEM, MAP, etc.) to "resolving" the dynamics of such motions. Other projects (INTERREG-Flooding, MEDEX, etc.) are at present being developed with special emphasis on catastrophic events with major impact on human society that are, quite often, characterized in their manifestation by processes with the above-mentioned scales of motion. In the dynamical evolution of such events, however, equally important is the dynamics of interaction of the local (and sometimes very damaging) processes with others developing at larger scales of motion. In fact, some of the most catastrophic events in the history of Mediterranean countries are associated with dynamical processes covering all the range of space-time scales from planetary to local. The Prevision Operational System for the mEditerranean basIn and the Defence of the lagOon of veNice (POSEIDON) is an integrated system for the analysis and forecast of hydrological, meteorological, oceanic fields specifically designed and set up in order to bridge the gap between global and local scales of motion, by modeling explicitly the above referred to dynamical processes in the range of scales from Mediterranean to local. The core of POSEIDON consists of a "cascade" of numerical models that, starting from global scale numerical analysis-forecast, goes all the way to very local phenomena, like tidal propagation in Venice Lagoon. The large computational load imposed by such operational design requires necessarily parallel computing technology: the first model in the cascade is a parallelised version of BOlogna Limited Area Model (BOLAM) running on a Quadrics 128 processors computer (also known as QBOLAM). POSEIDON, developed in the context of a co-operation between the Italian Agency for New technologies, Energy and Environment (Ente per le Nuove tecnologie, l'Energia e l'Ambiente, ENEA) and the Italian Agency for Environmental Protection and Technical Services (Agenzia per la Protezione dell'Ambiente e per i Servizi Tecnici, APAT), has become operational in 2000 and we are presently in the condition of drawing some preliminary conclusions about its performance. In the paper we describe the scientific concepts that were at the basis of the original planning, the structure of the system, its operational cycle and some preliminary scientific and technical evaluations after two years of experimentation.
Grid-Enabled Quantitative Analysis of Breast Cancer
2010-10-01
large-scale, multi-modality computerized image analysis . The central hypothesis of this research is that large-scale image analysis for breast cancer...research, we designed a pilot study utilizing large scale parallel Grid computing harnessing nationwide infrastructure for medical image analysis . Also
NASA Astrophysics Data System (ADS)
Silva, F.; Maechling, P. J.; Goulet, C.; Somerville, P.; Jordan, T. H.
2013-12-01
The Southern California Earthquake Center (SCEC) Broadband Platform is a collaborative software development project involving SCEC researchers, graduate students, and the SCEC Community Modeling Environment. The SCEC Broadband Platform is open-source scientific software that can generate broadband (0-100Hz) ground motions for earthquakes, integrating complex scientific modules that implement rupture generation, low and high-frequency seismogram synthesis, non-linear site effects calculation, and visualization into a software system that supports easy on-demand computation of seismograms. The Broadband Platform operates in two primary modes: validation simulations and scenario simulations. In validation mode, the Broadband Platform runs earthquake rupture and wave propagation modeling software to calculate seismograms of a historical earthquake for which observed strong ground motion data is available. Also in validation mode, the Broadband Platform calculates a number of goodness of fit measurements that quantify how well the model-based broadband seismograms match the observed seismograms for a certain event. Based on these results, the Platform can be used to tune and validate different numerical modeling techniques. During the past year, we have modified the software to enable the addition of a large number of historical events, and we are now adding validation simulation inputs and observational data for 23 historical events covering the Eastern and Western United States, Japan, Taiwan, Turkey, and Italy. In scenario mode, the Broadband Platform can run simulations for hypothetical (scenario) earthquakes. In this mode, users input an earthquake description, a list of station names and locations, and a 1D velocity model for their region of interest, and the Broadband Platform software then calculates ground motions for the specified stations. By establishing an interface between scientific modules with a common set of input and output files, the Broadband Platform facilitates the addition of new scientific methods, which are written by earth scientists in a number of languages such as C, C++, Fortran, and Python. The Broadband Platform's modular design also supports the reuse of existing software modules as building blocks to create new scientific methods. Additionally, the Platform implements a wrapper around each scientific module, converting input and output files to and from the specific formats required (or produced) by individual scientific codes. Working in close collaboration with scientists and research engineers, the SCEC software development group continues to add new capabilities to the Broadband Platform and to release new versions as open-source scientific software distributions that can be compiled and run on many Linux computer systems. Our latest release includes the addition of 3 new simulation methods and several new data products, such as map and distance-based goodness of fit plots. Finally, as the number and complexity of scenarios simulated using the Broadband Platform increase, we have added batching utilities to substantially improve support for running large-scale simulations on computing clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boman, Erik G.; Catalyurek, Umit V.; Chevalier, Cedric
2015-01-16
This final progress report summarizes the work accomplished at the Combinatorial Scientific Computing and Petascale Simulations Institute. We developed Zoltan, a parallel mesh partitioning library that made use of accurate hypergraph models to provide load balancing in mesh-based computations. We developed several graph coloring algorithms for computing Jacobian and Hessian matrices and organized them into a software package called ColPack. We developed parallel algorithms for graph coloring and graph matching problems, and also designed multi-scale graph algorithms. Three PhD students graduated, six more are continuing their PhD studies, and four postdoctoral scholars were advised. Six of these students and Fellowsmore » have joined DOE Labs (Sandia, Berkeley), as staff scientists or as postdoctoral scientists. We also organized the SIAM Workshop on Combinatorial Scientific Computing (CSC) in 2007, 2009, and 2011 to continue to foster the CSC community.« less
Computer network access to scientific information systems for minority universities
NASA Astrophysics Data System (ADS)
Thomas, Valerie L.; Wakim, Nagi T.
1993-08-01
The evolution of computer networking technology has lead to the establishment of a massive networking infrastructure which interconnects various types of computing resources at many government, academic, and corporate institutions. A large segment of this infrastructure has been developed to facilitate information exchange and resource sharing within the scientific community. The National Aeronautics and Space Administration (NASA) supports both the development and the application of computer networks which provide its community with access to many valuable multi-disciplinary scientific information systems and on-line databases. Recognizing the need to extend the benefits of this advanced networking technology to the under-represented community, the National Space Science Data Center (NSSDC) in the Space Data and Computing Division at the Goddard Space Flight Center has developed the Minority University-Space Interdisciplinary Network (MU-SPIN) Program: a major networking and education initiative for Historically Black Colleges and Universities (HBCUs) and Minority Universities (MUs). In this paper, we will briefly explain the various components of the MU-SPIN Program while highlighting how, by providing access to scientific information systems and on-line data, it promotes a higher level of collaboration among faculty and students and NASA scientists.
Gokmen, Tayfun; Vlasov, Yurii
2016-01-01
In recent years, deep neural networks (DNN) have demonstrated significant business impact in large scale analysis and classification tasks such as speech recognition, visual object detection, pattern extraction, etc. Training of large DNNs, however, is universally considered as time consuming and computationally intensive task that demands datacenter-scale computational resources recruited for many days. Here we propose a concept of resistive processing unit (RPU) devices that can potentially accelerate DNN training by orders of magnitude while using much less power. The proposed RPU device can store and update the weight values locally thus minimizing data movement during training and allowing to fully exploit the locality and the parallelism of the training algorithm. We evaluate the effect of various RPU device features/non-idealities and system parameters on performance in order to derive the device and system level specifications for implementation of an accelerator chip for DNN training in a realistic CMOS-compatible technology. For large DNNs with about 1 billion weights this massively parallel RPU architecture can achieve acceleration factors of 30, 000 × compared to state-of-the-art microprocessors while providing power efficiency of 84, 000 GigaOps∕s∕W. Problems that currently require days of training on a datacenter-size cluster with thousands of machines can be addressed within hours on a single RPU accelerator. A system consisting of a cluster of RPU accelerators will be able to tackle Big Data problems with trillions of parameters that is impossible to address today like, for example, natural speech recognition and translation between all world languages, real-time analytics on large streams of business and scientific data, integration, and analysis of multimodal sensory data flows from a massive number of IoT (Internet of Things) sensors. PMID:27493624
Gokmen, Tayfun; Vlasov, Yurii
2016-01-01
In recent years, deep neural networks (DNN) have demonstrated significant business impact in large scale analysis and classification tasks such as speech recognition, visual object detection, pattern extraction, etc. Training of large DNNs, however, is universally considered as time consuming and computationally intensive task that demands datacenter-scale computational resources recruited for many days. Here we propose a concept of resistive processing unit (RPU) devices that can potentially accelerate DNN training by orders of magnitude while using much less power. The proposed RPU device can store and update the weight values locally thus minimizing data movement during training and allowing to fully exploit the locality and the parallelism of the training algorithm. We evaluate the effect of various RPU device features/non-idealities and system parameters on performance in order to derive the device and system level specifications for implementation of an accelerator chip for DNN training in a realistic CMOS-compatible technology. For large DNNs with about 1 billion weights this massively parallel RPU architecture can achieve acceleration factors of 30, 000 × compared to state-of-the-art microprocessors while providing power efficiency of 84, 000 GigaOps∕s∕W. Problems that currently require days of training on a datacenter-size cluster with thousands of machines can be addressed within hours on a single RPU accelerator. A system consisting of a cluster of RPU accelerators will be able to tackle Big Data problems with trillions of parameters that is impossible to address today like, for example, natural speech recognition and translation between all world languages, real-time analytics on large streams of business and scientific data, integration, and analysis of multimodal sensory data flows from a massive number of IoT (Internet of Things) sensors.
NASA Astrophysics Data System (ADS)
Agram, P. S.; Gurrola, E. M.; Lavalle, M.; Sacco, G. F.; Rosen, P. A.
2016-12-01
The InSAR Scientific Computing Environment (ISCE) provides both a modular, flexible, and extensible framework for building software components and applications that work together seamlessly as well as a toolbox for processing InSAR data into higher level geodetic image products from a diverse array of radar satellites and aircraft. ISCE easily scales to serve as the SAR processing engine at the core of the NASA JPL Advanced Rapid Imaging and Analysis (ARIA) Center for Natural Hazards as well as a software toolbox for individual scientists working with SAR data. ISCE is planned as the foundational element in processing NISAR data, enabling a new class of analyses that take greater advantage of the long time and large spatial scales of these data. ISCE in ARIA is also a SAR Foundry for development of new processing components and workflows to meet the needs of both large processing centers and individual users. The ISCE framework contains object-oriented Python components layered to construct Python InSAR components that manage legacy Fortran/C InSAR programs. The Python user interface enables both command-line deployment of workflows as well as an interactive "sand box" (the Python interpreter) where scientists can "play" with the data. Recent developments in ISCE include the addition of components to ingest Sentinel-1A SAR data (both stripmap and TOPS-mode) and a new workflow for processing the TOPS-mode data. New components are being developed to exploit polarimetric-SAR data to provide the ecosystem and land-cover/land-use change communities with rigorous and efficient tools to perform multi-temporal, polarimetric and tomographic analyses in order to generate calibrated, geocoded and mosaicked Level-2 and Level-3 products (e.g., maps of above-ground biomass or forest disturbance). ISCE has been downloaded by over 200 users by a license for WinSAR members through the Unavco.org website. Others may apply directly to JPL for a license at download.jpl.nasa.gov.
Mechanisation and Automation of Information Library Procedures in the USSR.
ERIC Educational Resources Information Center
Batenko, A. I.
Scientific and technical libraries represent a fundamental link in a complex information storage and retrieval system. The handling of a large volume of scientific and technical data and provision of information library services requires the utilization of computing facilities and automation equipment, and was started in the Soviet Union on a…
Computational Infrastructure for Geodynamics (CIG)
NASA Astrophysics Data System (ADS)
Gurnis, M.; Kellogg, L. H.; Bloxham, J.; Hager, B. H.; Spiegelman, M.; Willett, S.; Wysession, M. E.; Aivazis, M.
2004-12-01
Solid earth geophysicists have a long tradition of writing scientific software to address a wide range of problems. In particular, computer simulations came into wide use in geophysics during the decade after the plate tectonic revolution. Solution schemes and numerical algorithms that developed in other areas of science, most notably engineering, fluid mechanics, and physics, were adapted with considerable success to geophysics. This software has largely been the product of individual efforts and although this approach has proven successful, its strength for solving problems of interest is now starting to show its limitations as we try to share codes and algorithms or when we want to recombine codes in novel ways to produce new science. With funding from the NSF, the US community has embarked on a Computational Infrastructure for Geodynamics (CIG) that will develop, support, and disseminate community-accessible software for the greater geodynamics community from model developers to end-users. The software is being developed for problems involving mantle and core dynamics, crustal and earthquake dynamics, magma migration, seismology, and other related topics. With a high level of community participation, CIG is leveraging state-of-the-art scientific computing into a suite of open-source tools and codes. The infrastructure that we are now starting to develop will consist of: (a) a coordinated effort to develop reusable, well-documented and open-source geodynamics software; (b) the basic building blocks - an infrastructure layer - of software by which state-of-the-art modeling codes can be quickly assembled; (c) extension of existing software frameworks to interlink multiple codes and data through a superstructure layer; (d) strategic partnerships with the larger world of computational science and geoinformatics; and (e) specialized training and workshops for both the geodynamics and broader Earth science communities. The CIG initiative has already started to leverage and develop long-term strategic partnerships with open source development efforts within the larger thrusts of scientific computing and geoinformatics. These strategic partnerships are essential as the frontier has moved into multi-scale and multi-physics problems in which many investigators now want to use simulation software for data interpretation, data assimilation, and hypothesis testing.
Advances and trends in computational structural mechanics
NASA Technical Reports Server (NTRS)
Noor, A. K.
1986-01-01
Recent developments in computational structural mechanics are reviewed with reference to computational needs for future structures technology, advances in computational models for material behavior, discrete element technology, assessment and control of numerical simulations of structural response, hybrid analysis, and techniques for large-scale optimization. Research areas in computational structural mechanics which have high potential for meeting future technological needs are identified. These include prediction and analysis of the failure of structural components made of new materials, development of computational strategies and solution methodologies for large-scale structural calculations, and assessment of reliability and adaptive improvement of response predictions.
Adjoint-Based Aerodynamic Design of Complex Aerospace Configurations
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.
2016-01-01
An overview of twenty years of adjoint-based aerodynamic design research at NASA Langley Research Center is presented. Adjoint-based algorithms provide a powerful tool for efficient sensitivity analysis of complex large-scale computational fluid dynamics (CFD) simulations. Unlike alternative approaches for which computational expense generally scales with the number of design parameters, adjoint techniques yield sensitivity derivatives of a simulation output with respect to all input parameters at the cost of a single additional simulation. With modern large-scale CFD applications often requiring millions of compute hours for a single analysis, the efficiency afforded by adjoint methods is critical in realizing a computationally tractable design optimization capability for such applications.
Computational data sciences for assessment and prediction of climate extremes
NASA Astrophysics Data System (ADS)
Ganguly, A. R.
2011-12-01
Climate extremes may be defined inclusively as severe weather events or large shifts in global or regional weather patterns which may be caused or exacerbated by natural climate variability or climate change. This area of research arguably represents one of the largest knowledge-gaps in climate science which is relevant for informing resource managers and policy makers. While physics-based climate models are essential in view of non-stationary and nonlinear dynamical processes, their current pace of uncertainty reduction may not be adequate for urgent stakeholder needs. The structure of the models may in some cases preclude reduction of uncertainty for critical processes at scales or for the extremes of interest. On the other hand, methods based on complex networks, extreme value statistics, machine learning, and space-time data mining, have demonstrated significant promise to improve scientific understanding and generate enhanced predictions. When combined with conceptual process understanding at multiple spatiotemporal scales and designed to handle massive data, interdisciplinary data science methods and algorithms may complement or supplement physics-based models. Specific examples from the prior literature and our ongoing work suggests how data-guided improvements may be possible, for example, in the context of ocean meteorology, climate oscillators, teleconnections, and atmospheric process understanding, which in turn can improve projections of regional climate, precipitation extremes and tropical cyclones in an useful and interpretable fashion. A community-wide effort is motivated to develop and adapt computational data science tools for translating climate model simulations to information relevant for adaptation and policy, as well as for improving our scientific understanding of climate extremes from both observed and model-simulated data.
NASA Astrophysics Data System (ADS)
Wilson, B. D.; McGibbney, L. J.; Mattmann, C. A.; Ramirez, P.; Joyce, M.; Whitehall, K. D.
2015-12-01
Quantifying scientific relevancy is of increasing importance to NASA and the research community. Scientific relevancy may be defined by mapping the impacts of a particular NASA mission, instrument, and/or retrieved variables to disciplines such as climate predictions, natural hazards detection and mitigation processes, education, and scientific discoveries. Related to relevancy, is the ability to expose data with similar attributes. This in turn depends upon the ability for us to extract latent, implicit document features from scientific data and resources and make them explicit, accessible and useable for search activities amongst others. This paper presents MemexGATE; a server side application, command line interface and computing environment for running large scale metadata extraction, general architecture text engineering, document classification and indexing tasks over document resources such as social media streams, scientific literature archives, legal documentation, etc. This work builds on existing experiences using MemexGATE (funded, developed and validated through the DARPA Memex Progrjam PI Mattmann) for extracting and leveraging latent content features from document resources within the Materials Research domain. We extend the software functionality capability to the domain of scientific literature with emphasis on the expansion of gazetteer lists, named entity rules, natural language construct labeling (e.g. synonym, antonym, hyponym, etc.) efforts to enable extraction of latent content features from data hosted by wide variety of scientific literature vendors (AGU Meeting Abstract Database, Springer, Wiley Online, Elsevier, etc.) hosting earth science literature. Such literature makes both implicit and explicit references to NASA datasets and relationships between such concepts stored across EOSDIS DAAC's hence we envisage that a significant part of this effort will also include development and understanding of relevancy signals which can ultimately be utilized for improved search and relevancy ranking across scientific literature.
Parallel Geospatial Data Management for Multi-Scale Environmental Data Analysis on GPUs
NASA Astrophysics Data System (ADS)
Wang, D.; Zhang, J.; Wei, Y.
2013-12-01
As the spatial and temporal resolutions of Earth observatory data and Earth system simulation outputs are getting higher, in-situ and/or post- processing such large amount of geospatial data increasingly becomes a bottleneck in scientific inquires of Earth systems and their human impacts. Existing geospatial techniques that are based on outdated computing models (e.g., serial algorithms and disk-resident systems), as have been implemented in many commercial and open source packages, are incapable of processing large-scale geospatial data and achieve desired level of performance. In this study, we have developed a set of parallel data structures and algorithms that are capable of utilizing massively data parallel computing power available on commodity Graphics Processing Units (GPUs) for a popular geospatial technique called Zonal Statistics. Given two input datasets with one representing measurements (e.g., temperature or precipitation) and the other one represent polygonal zones (e.g., ecological or administrative zones), Zonal Statistics computes major statistics (or complete distribution histograms) of the measurements in all regions. Our technique has four steps and each step can be mapped to GPU hardware by identifying its inherent data parallelisms. First, a raster is divided into blocks and per-block histograms are derived. Second, the Minimum Bounding Boxes (MBRs) of polygons are computed and are spatially matched with raster blocks; matched polygon-block pairs are tested and blocks that are either inside or intersect with polygons are identified. Third, per-block histograms are aggregated to polygons for blocks that are completely within polygons. Finally, for blocks that intersect with polygon boundaries, all the raster cells within the blocks are examined using point-in-polygon-test and cells that are within polygons are used to update corresponding histograms. As the task becomes I/O bound after applying spatial indexing and GPU hardware acceleration, we have developed a GPU-based data compression technique by reusing our previous work on Bitplane Quadtree (or BPQ-Tree) based indexing of binary bitmaps. Results have shown that our GPU-based parallel Zonal Statistic technique on 3000+ US counties over 20+ billion NASA SRTM 30 meter resolution Digital Elevation (DEM) raster cells has achieved impressive end-to-end runtimes: 101 seconds and 46 seconds a low-end workstation equipped with a Nvidia GTX Titan GPU using cold and hot cache, respectively; and, 60-70 seconds using a single OLCF TITAN computing node and 10-15 seconds using 8 nodes. Our experiment results clearly show the potentials of using high-end computing facilities for large-scale geospatial processing.
Towards reversible basic linear algebra subprograms: A performance study
Perumalla, Kalyan S.; Yoginath, Srikanth B.
2014-12-06
Problems such as fault tolerance and scalable synchronization can be efficiently solved using reversibility of applications. Making applications reversible by relying on computation rather than on memory is ideal for large scale parallel computing, especially for the next generation of supercomputers in which memory is expensive in terms of latency, energy, and price. In this direction, a case study is presented here in reversing a computational core, namely, Basic Linear Algebra Subprograms, which is widely used in scientific applications. A new Reversible BLAS (RBLAS) library interface has been designed, and a prototype has been implemented with two modes: (1) amore » memory-mode in which reversibility is obtained by checkpointing to memory in forward and restoring from memory in reverse, and (2) a computational-mode in which nothing is saved in the forward, but restoration is done entirely via inverse computation in reverse. The article is focused on detailed performance benchmarking to evaluate the runtime dynamics and performance effects, comparing reversible computation with checkpointing on both traditional CPU platforms and recent GPU accelerator platforms. For BLAS Level-1 subprograms, data indicates over an order of magnitude better speed of reversible computation compared to checkpointing. For BLAS Level-2 and Level-3, a more complex tradeoff is observed between reversible computation and checkpointing, depending on computational and memory complexities of the subprograms.« less
Parallel processing for scientific computations
NASA Technical Reports Server (NTRS)
Alkhatib, Hasan S.
1991-01-01
The main contribution of the effort in the last two years is the introduction of the MOPPS system. After doing extensive literature search, we introduced the system which is described next. MOPPS employs a new solution to the problem of managing programs which solve scientific and engineering applications on a distributed processing environment. Autonomous computers cooperate efficiently in solving large scientific problems with this solution. MOPPS has the advantage of not assuming the presence of any particular network topology or configuration, computer architecture, or operating system. It imposes little overhead on network and processor resources while efficiently managing programs concurrently. The core of MOPPS is an intelligent program manager that builds a knowledge base of the execution performance of the parallel programs it is managing under various conditions. The manager applies this knowledge to improve the performance of future runs. The program manager learns from experience.
DIALOG: An executive computer program for linking independent programs
NASA Technical Reports Server (NTRS)
Glatt, C. R.; Hague, D. S.; Watson, D. A.
1973-01-01
A very large scale computer programming procedure called the DIALOG executive system was developed for the CDC 6000 series computers. The executive computer program, DIALOG, controls the sequence of execution and data management function for a library of independent computer programs. Communication of common information is accomplished by DIALOG through a dynamically constructed and maintained data base of common information. Each computer program maintains its individual identity and is unaware of its contribution to the large scale program. This feature makes any computer program a candidate for use with the DIALOG executive system. The installation and uses of the DIALOG executive system are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trujillo, Angelina Michelle
Strategy, Planning, Acquiring- very large scale computing platforms come and go and planning for immensely scalable machines often precedes actual procurement by 3 years. Procurement can be another year or more. Integration- After Acquisition, machines must be integrated into the computing environments at LANL. Connection to scalable storage via large scale storage networking, assuring correct and secure operations. Management and Utilization – Ongoing operations, maintenance, and trouble shooting of the hardware and systems software at massive scale is required.
: A Scalable and Transparent System for Simulating MPI Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perumalla, Kalyan S
2010-01-01
is a scalable, transparent system for experimenting with the execution of parallel programs on simulated computing platforms. The level of simulated detail can be varied for application behavior as well as for machine characteristics. Unique features of are repeatability of execution, scalability to millions of simulated (virtual) MPI ranks, scalability to hundreds of thousands of host (real) MPI ranks, portability of the system to a variety of host supercomputing platforms, and the ability to experiment with scientific applications whose source-code is available. The set of source-code interfaces supported by is being expanded to support a wider set of applications, andmore » MPI-based scientific computing benchmarks are being ported. In proof-of-concept experiments, has been successfully exercised to spawn and sustain very large-scale executions of an MPI test program given in source code form. Low slowdowns are observed, due to its use of purely discrete event style of execution, and due to the scalability and efficiency of the underlying parallel discrete event simulation engine, sik. In the largest runs, has been executed on up to 216,000 cores of a Cray XT5 supercomputer, successfully simulating over 27 million virtual MPI ranks, each virtual rank containing its own thread context, and all ranks fully synchronized by virtual time.« less
Neo-deterministic definition of earthquake hazard scenarios: a multiscale application to India
NASA Astrophysics Data System (ADS)
Peresan, Antonella; Magrin, Andrea; Parvez, Imtiyaz A.; Rastogi, Bal K.; Vaccari, Franco; Cozzini, Stefano; Bisignano, Davide; Romanelli, Fabio; Panza, Giuliano F.; Ashish, Mr; Mir, Ramees R.
2014-05-01
The development of effective mitigation strategies requires scientifically consistent estimates of seismic ground motion; recent analysis, however, showed that the performances of the classical probabilistic approach to seismic hazard assessment (PSHA) are very unsatisfactory in anticipating ground shaking from future large earthquakes. Moreover, due to their basic heuristic limitations, the standard PSHA estimates are by far unsuitable when dealing with the protection of critical structures (e.g. nuclear power plants) and cultural heritage, where it is necessary to consider extremely long time intervals. Nonetheless, the persistence in resorting to PSHA is often explained by the need to deal with uncertainties related with ground shaking and earthquakes recurrence. We show that current computational resources and physical knowledge of the seismic waves generation and propagation processes, along with the improving quantity and quality of geophysical data, allow nowadays for viable numerical and analytical alternatives to the use of PSHA. The advanced approach considered in this study, namely the NDSHA (neo-deterministic seismic hazard assessment), is based on the physically sound definition of a wide set of credible scenario events and accounts for uncertainties and earthquakes recurrence in a substantially different way. The expected ground shaking due to a wide set of potential earthquakes is defined by means of full waveforms modelling, based on the possibility to efficiently compute synthetic seismograms in complex laterally heterogeneous anelastic media. In this way a set of scenarios of ground motion can be defined, either at national and local scale, the latter considering the 2D and 3D heterogeneities of the medium travelled by the seismic waves. The efficiency of the NDSHA computational codes allows for the fast generation of hazard maps at the regional scale even on a modern laptop computer. At the scenario scale, quick parametric studies can be easily performed to understand the influence of the model characteristics on the computed ground shaking scenarios. For massive parametric tests, or for the repeated generation of large scale hazard maps, the methodology can take advantage of more advanced computational platforms, ranging from GRID computing infrastructures to HPC dedicated clusters up to Cloud computing. In such a way, scientists can deal efficiently with the variety and complexity of the potential earthquake sources, and perform parametric studies to characterize the related uncertainties. NDSHA provides realistic time series of expected ground motion readily applicable for seismic engineering analysis and other mitigation actions. The methodology has been successfully applied to strategic buildings, lifelines and cultural heritage sites, and for the purpose of seismic microzoning in several urban areas worldwide. A web application is currently being developed that facilitates the access to the NDSHA methodology and the related outputs by end-users, who are interested in reliable territorial planning and in the design and construction of buildings and infrastructures in seismic areas. At the same, the web application is also shaping up as an advanced educational tool to explore interactively how seismic waves are generated at the source, propagate inside structural models, and build up ground shaking scenarios. We illustrate the preliminary results obtained from a multiscale application of NDSHA approach to the territory of India, zooming from large scale hazard maps of ground shaking at bedrock, to the definition of local scale earthquake scenarios for selected sites in the Gujarat state (NW India). The study aims to provide the community (e.g. authorities and engineers) with advanced information for earthquake risk mitigation, which is particularly relevant to Gujarat in view of the rapid development and urbanization of the region.
Architecture and Programming Models for High Performance Intensive Computation
2016-06-29
Applications Systems and Large-Scale-Big-Data & Large-Scale-Big-Computing (DDDAS- LS ). ICCS 2015, June 2015. Reykjavk, Ice- land. 2. Bo YT, Wang P, Guo ZL...The Mahali project,” Communications Magazine , vol. 52, pp. 111–133, Aug 2014. 14 DISTRIBUTION A: Distribution approved for public release. Response ID
The large scale microelectronics Computer-Aided Design and Test (CADAT) system
NASA Technical Reports Server (NTRS)
Gould, J. M.
1978-01-01
The CADAT system consists of a number of computer programs written in FORTRAN that provide the capability to simulate, lay out, analyze, and create the artwork for large scale microelectronics. The function of each software component of the system is described with references to specific documentation for each software component.
The role of dedicated data computing centers in the age of cloud computing
NASA Astrophysics Data System (ADS)
Caramarcu, Costin; Hollowell, Christopher; Strecker-Kellogg, William; Wong, Antonio; Zaytsev, Alexandr
2017-10-01
Brookhaven National Laboratory (BNL) anticipates significant growth in scientific programs with large computing and data storage needs in the near future and has recently reorganized support for scientific computing to meet these needs. A key component is the enhanced role of the RHIC-ATLAS Computing Facility (RACF) in support of high-throughput and high-performance computing (HTC and HPC) at BNL. This presentation discusses the evolving role of the RACF at BNL, in light of its growing portfolio of responsibilities and its increasing integration with cloud (academic and for-profit) computing activities. We also discuss BNL’s plan to build a new computing center to support the new responsibilities of the RACF and present a summary of the cost benefit analysis done, including the types of computing activities that benefit most from a local data center vs. cloud computing. This analysis is partly based on an updated cost comparison of Amazon EC2 computing services and the RACF, which was originally conducted in 2012.
Haugum, Mona; Danielsen, Kirsten; Iversen, Hilde Hestad; Bjertnaes, Oyvind
2014-12-01
An important goal for national and large-scale surveys of user experiences is quality improvement. However, large-scale surveys are normally conducted by a professional external surveyor, creating an institutionalized division between the measurement of user experiences and the quality work that is performed locally. The aim of this study was to identify and describe scientific studies related to the use of national and large-scale surveys of user experiences in local quality work. Ovid EMBASE, Ovid MEDLINE, Ovid PsycINFO and the Cochrane Database of Systematic Reviews. Scientific publications about user experiences and satisfaction about the extent to which data from national and other large-scale user experience surveys are used for local quality work in the health services. Themes of interest were identified and a narrative analysis was undertaken. Thirteen publications were included, all differed substantially in several characteristics. The results show that large-scale surveys of user experiences are used in local quality work. The types of follow-up activity varied considerably from conducting a follow-up analysis of user experience survey data to information sharing and more-systematic efforts to use the data as a basis for improving the quality of care. This review shows that large-scale surveys of user experiences are used in local quality work. However, there is a need for more, better and standardized research in this field. The considerable variation in follow-up activities points to the need for systematic guidance on how to use data in local quality work. © The Author 2014. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.
The application of cloud computing to scientific workflows: a study of cost and performance.
Berriman, G Bruce; Deelman, Ewa; Juve, Gideon; Rynge, Mats; Vöckler, Jens-S
2013-01-28
The current model of transferring data from data centres to desktops for analysis will soon be rendered impractical by the accelerating growth in the volume of science datasets. Processing will instead often take place on high-performance servers co-located with data. Evaluations of how new technologies such as cloud computing would support such a new distributed computing model are urgently needed. Cloud computing is a new way of purchasing computing and storage resources on demand through virtualization technologies. We report here the results of investigations of the applicability of commercial cloud computing to scientific computing, with an emphasis on astronomy, including investigations of what types of applications can be run cheaply and efficiently on the cloud, and an example of an application well suited to the cloud: processing a large dataset to create a new science product.
Austin, from 2001 to 2007. There he was principal in HPC applications and user support, as well as in research and development in large-scale scientific applications and different HPC systems and technologies Interests HPC applications performance and optimizations|HPC systems and accelerator technologies|Scientific
Basin scale permeability and thermal evolution of a magmatic hydrothermal system
NASA Astrophysics Data System (ADS)
Taron, J.; Hickman, S. H.; Ingebritsen, S.; Williams, C.
2013-12-01
Large-scale hydrothermal systems are potentially valuable energy resources and are of general scientific interest due to extreme conditions of stress, temperature, and reactive chemistry that can act to modify crustal rheology and composition. With many proposed sites for Enhanced Geothermal Systems (EGS) located on the margins of large-scale hydrothermal systems, understanding the temporal evolution of these systems contributes to site selection, characterization and design of EGS. This understanding is also needed to address the long-term sustainability of EGS once they are created. Many important insights into heat and mass transfer within natural hydrothermal systems can be obtained through hydrothermal modeling assuming that stress and permeability structure do not evolve over time. However, this is not fully representative of natural systems, where the effects of thermo-elastic stress changes, chemical fluid-rock interactions, and rock failure on fluid flow and thermal evolution can be significant. The quantitative importance of an evolving permeability field within the overall behavior of a large-scale hydrothermal system is somewhat untested, and providing such a parametric understanding is one of the goals of this study. We explore the thermal evolution of a sedimentary basin hydrothermal system following the emplacement of a magma body. The Salton Sea geothermal field and its associated magmatic system in southern California is utilized as a general backdrop to define the initial state. Working within the general framework of the open-source scientific computing initiative OpenGeoSys (www.opengeosys.org), we introduce full treatment of thermodynamic properties at the extreme conditions following magma emplacement. This treatment utilizes a combination of standard Galerkin and control-volume finite elements to balance fluid mass, mechanical deformation, and thermal energy with consideration of local thermal non-equilibrium (LTNE) between fluids and solids. Permeability is allowed to evolve under several constitutive models tailored to both porous media and fractures, considering the influence of both mechanical stress and diagenesis. In this first analysis, a relatively simple mechanical model is used; complexity will be added incrementally to represent specific characteristics of the Salton Sea hydrothermal field.
InSAR Scientific Computing Environment
NASA Astrophysics Data System (ADS)
Gurrola, E. M.; Rosen, P. A.; Sacco, G.; Zebker, H. A.; Simons, M.; Sandwell, D. T.
2010-12-01
The InSAR Scientific Computing Environment (ISCE) is a software development effort in its second year within the NASA Advanced Information Systems and Technology program. The ISCE will provide a new computing environment for geodetic image processing for InSAR sensors that will enable scientists to reduce measurements directly from radar satellites and aircraft to new geophysical products without first requiring them to develop detailed expertise in radar processing methods. The environment can serve as the core of a centralized processing center to bring Level-0 raw radar data up to Level-3 data products, but is adaptable to alternative processing approaches for science users interested in new and different ways to exploit mission data. The NRC Decadal Survey-recommended DESDynI mission will deliver data of unprecedented quantity and quality, making possible global-scale studies in climate research, natural hazards, and Earth's ecosystem. The InSAR Scientific Computing Environment is planned to become a key element in processing DESDynI data into higher level data products and it is expected to enable a new class of analyses that take greater advantage of the long time and large spatial scales of these new data, than current approaches. At the core of ISCE is both legacy processing software from the JPL/Caltech ROI_PAC repeat-pass interferometry package as well as a new InSAR processing package containing more efficient and more accurate processing algorithms being developed at Stanford for this project that is based on experience gained in developing processors for missions such as SRTM and UAVSAR. Around the core InSAR processing programs we are building object-oriented wrappers to enable their incorporation into a more modern, flexible, extensible software package that is informed by modern programming methods, including rigorous componentization of processing codes, abstraction and generalization of data models, and a robust, intuitive user interface with graduated exposure to the levels of sophistication, allowing novices to apply it readily for common tasks and experienced users to mine data with great facility and flexibility. The environment is designed to easily allow user contributions, enabling an open source community to extend the framework into the indefinite future. In this paper we briefly describe both the legacy and the new core processing algorithms and their integration into the new computing environment. We describe the ISCE component and application architecture and the features that permit the desired flexibility, extensibility and ease-of-use. We summarize the state of progress of the environment and the plans for completion of the environment and for its future introduction into the radar processing community.
InSAR Scientific Computing Environment - The Home Stretch
NASA Astrophysics Data System (ADS)
Rosen, P. A.; Gurrola, E. M.; Sacco, G.; Zebker, H. A.
2011-12-01
The Interferometric Synthetic Aperture Radar (InSAR) Scientific Computing Environment (ISCE) is a software development effort in its third and final year within the NASA Advanced Information Systems and Technology program. The ISCE is a new computing environment for geodetic image processing for InSAR sensors enabling scientists to reduce measurements directly from radar satellites to new geophysical products with relative ease. The environment can serve as the core of a centralized processing center to bring Level-0 raw radar data up to Level-3 data products, but is adaptable to alternative processing approaches for science users interested in new and different ways to exploit mission data. Upcoming international SAR missions will deliver data of unprecedented quantity and quality, making possible global-scale studies in climate research, natural hazards, and Earth's ecosystem. The InSAR Scientific Computing Environment has the functionality to become a key element in processing data from NASA's proposed DESDynI mission into higher level data products, supporting a new class of analyses that take advantage of the long time and large spatial scales of these new data. At the core of ISCE is a new set of efficient and accurate InSAR algorithms. These algorithms are placed into an object-oriented, flexible, extensible software package that is informed by modern programming methods, including rigorous componentization of processing codes, abstraction and generalization of data models. The environment is designed to easily allow user contributions, enabling an open source community to extend the framework into the indefinite future. ISCE supports data from nearly all of the available satellite platforms, including ERS, EnviSAT, Radarsat-1, Radarsat-2, ALOS, TerraSAR-X, and Cosmo-SkyMed. The code applies a number of parallelization techniques and sensible approximations for speed. It is configured to work on modern linux-based computers with gcc compilers and python. ISCE is now a complete, functional package, under configuration management, and with extensive documentation and tested use cases appropriate to geodetic imaging applications. The software has been tested with canonical simulated radar data ("point targets") as well as with a variety of existing satellite data, cross-compared with other software packages. Its extensibility has already been proven by the straightforward addition of polarimetric processing and calibration, and derived filtering and estimation routines associated with polarimetry that supplement the original InSAR geodetic functionality. As of October 2011, the software is available for non-commercial use through UNAVCO's WinSAR consortium.
Applications of large-scale density functional theory in biology
NASA Astrophysics Data System (ADS)
Cole, Daniel J.; Hine, Nicholas D. M.
2016-10-01
Density functional theory (DFT) has become a routine tool for the computation of electronic structure in the physics, materials and chemistry fields. Yet the application of traditional DFT to problems in the biological sciences is hindered, to a large extent, by the unfavourable scaling of the computational effort with system size. Here, we review some of the major software and functionality advances that enable insightful electronic structure calculations to be performed on systems comprising many thousands of atoms. We describe some of the early applications of large-scale DFT to the computation of the electronic properties and structure of biomolecules, as well as to paradigmatic problems in enzymology, metalloproteins, photosynthesis and computer-aided drug design. With this review, we hope to demonstrate that first principles modelling of biological structure-function relationships are approaching a reality.
Cormode, Graham; Dasgupta, Anirban; Goyal, Amit; Lee, Chi Hoon
2018-01-01
Many modern applications of AI such as web search, mobile browsing, image processing, and natural language processing rely on finding similar items from a large database of complex objects. Due to the very large scale of data involved (e.g., users' queries from commercial search engines), computing such near or nearest neighbors is a non-trivial task, as the computational cost grows significantly with the number of items. To address this challenge, we adopt Locality Sensitive Hashing (a.k.a, LSH) methods and evaluate four variants in a distributed computing environment (specifically, Hadoop). We identify several optimizations which improve performance, suitable for deployment in very large scale settings. The experimental results demonstrate our variants of LSH achieve the robust performance with better recall compared with "vanilla" LSH, even when using the same amount of space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springmeyer, R R; Brugger, E; Cook, R
The Data group provides data analysis and visualization support to its customers. This consists primarily of the development and support of VisIt, a data analysis and visualization tool. Support ranges from answering questions about the tool, providing classes on how to use the tool, and performing data analysis and visualization for customers. The Information Management and Graphics Group supports and develops tools that enhance our ability to access, display, and understand large, complex data sets. Activities include applying visualization software for large scale data exploration; running video production labs on two networks; supporting graphics libraries and tools for end users;more » maintaining PowerWalls and assorted other displays; and developing software for searching and managing scientific data. Researchers in the Center for Applied Scientific Computing (CASC) work on various projects including the development of visualization techniques for large scale data exploration that are funded by the ASC program, among others. The researchers also have LDRD projects and collaborations with other lab researchers, academia, and industry. The IMG group is located in the Terascale Simulation Facility, home to Dawn, Atlas, BGL, and others, which includes both classified and unclassified visualization theaters, a visualization computer floor and deployment workshop, and video production labs. We continued to provide the traditional graphics group consulting and video production support. We maintained five PowerWalls and many other displays. We deployed a 576-node Opteron/IB cluster with 72 TB of memory providing a visualization production server on our classified network. We continue to support a 128-node Opteron/IB cluster providing a visualization production server for our unclassified systems and an older 256-node Opteron/IB cluster for the classified systems, as well as several smaller clusters to drive the PowerWalls. The visualization production systems includes NFS servers to provide dedicated storage for data analysis and visualization. The ASC projects have delivered new versions of visualization and scientific data management tools to end users and continue to refine them. VisIt had 4 releases during the past year, ending with VisIt 2.0. We released version 2.4 of Hopper, a Java application for managing and transferring files. This release included a graphical disk usage view which works on all types of connections and an aggregated copy feature for quickly transferring massive datasets quickly and efficiently to HPSS. We continue to use and develop Blockbuster and Telepath. Both the VisIt and IMG teams were engaged in a variety of movie production efforts during the past year in addition to the development tasks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, Kurt H.; McCurdy, C. William; Orlando, Thomas M.
2000-09-01
This report is based largely on presentations and discussions at two workshops and contributions from workshop participants. The workshop on Fundamental Challenges in Electron-Driven Chemistry was held in Berkeley, October 9-10, 1998, and addressed questions regarding theory, computation, and simulation. The workshop on Electron-Driven Processes: Scientific Challenges and Technological Opportunities was held at Stevens Institute of Technology, March 16-17, 2000, and focused largely on experiments. Electron-molecule and electron-atom collisions initiate and drive almost all the relevant chemical processes associated with radiation chemistry, environmental chemistry, stability of waste repositories, plasma-enhanced chemical vapor deposition, plasma processing of materials for microelectronic devices andmore » other applications, and novel light sources for research purposes (e.g. excimer lamps in the extreme ultraviolet) and in everyday lighting applications. The life sciences are a rapidly advancing field where the important role of electron-driven processes is only now beginning to be recognized. Many of the applications of electron-initiated chemical processes require results in the near term. A large-scale, multidisciplinary and collaborative effort should be mounted to solve these problems in a timely way so that their solution will have the needed impact on the urgent questions of understanding the physico-chemical processes initiated and driven by electron interactions.« less
Using Agent Base Models to Optimize Large Scale Network for Large System Inventories
NASA Technical Reports Server (NTRS)
Shameldin, Ramez Ahmed; Bowling, Shannon R.
2010-01-01
The aim of this paper is to use Agent Base Models (ABM) to optimize large scale network handling capabilities for large system inventories and to implement strategies for the purpose of reducing capital expenses. The models used in this paper either use computational algorithms or procedure implementations developed by Matlab to simulate agent based models in a principal programming language and mathematical theory using clusters, these clusters work as a high performance computational performance to run the program in parallel computational. In both cases, a model is defined as compilation of a set of structures and processes assumed to underlie the behavior of a network system.
Preface to the volume Large Rivers
NASA Astrophysics Data System (ADS)
Latrubesse, Edgardo M.; Abad, Jorge D.
2018-02-01
The study and knowledge of the geomorphology of large rivers increased significantly during the last years and the factors that triggered these advances are multiple. On one hand, modern technologies became more accessible and their disseminated usage allowed the collection of data from large rivers as never seen before. The generalized use of high tech data collection with geophysics equipment such as acoustic Doppler current profilers-ADCPs, multibeam echosounders, plus the availability of geospatial and computational tools for morphodynamics, hydrological and hydrosedimentological modeling, have accelerated the scientific production on the geomorphology of large rivers at a global scale. Despite the advances, there is yet a lot of work ahead. Good parts of the large rivers are in the tropics and many are still unexplored. The tropics also hold crucial fluvial basins that concentrate good part of the gross domestic product of large countries like the Parana River in Argentina and Brazil, the Ganges-Brahmaputra in India, the Indus River in Pakistan, and the Mekong River in several countries of South East Asia. The environmental importance of tropical rivers is also outstanding. They hold the highest biodiversity of fluvial fauna and alluvial vegetation and many of them, particularly those in Southeast Asia, are among the most hazardous systems for floods in the entire world. Tropical rivers draining mountain chains such as the Himalaya, the Andes and insular Southeast Asia are also among the most heavily sediment loaded rivers and play a key role in both the storage of sediment at continental scale and the transference of sediments from the continent to the Ocean at planetary scale (Andermann et al., 2012; Latrubesse and Restrepo, 2014; Milliman and Syvitski, 1992; Milliman and Farsnworth, 2011; Sinha and Friend, 1994).
Performance of the engineering analysis and data system 2 common file system
NASA Technical Reports Server (NTRS)
Debrunner, Linda S.
1993-01-01
The Engineering Analysis and Data System (EADS) was used from April 1986 to July 1993 to support large scale scientific and engineering computation (e.g. computational fluid dynamics) at Marshall Space Flight Center. The need for an updated system resulted in a RFP in June 1991, after which a contract was awarded to Cray Grumman. EADS II was installed in February 1993, and by July 1993 most users were migrated. EADS II is a network of heterogeneous computer systems supporting scientific and engineering applications. The Common File System (CFS) is a key component of this system. The CFS provides a seamless, integrated environment to the users of EADS II including both disk and tape storage. UniTree software is used to implement this hierarchical storage management system. The performance of the CFS suffered during the early months of the production system. Several of the performance problems were traced to software bugs which have been corrected. Other problems were associated with hardware. However, the use of NFS in UniTree UCFM software limits the performance of the system. The performance issues related to the CFS have led to a need to develop a greater understanding of the CFS organization. This paper will first describe the EADS II with emphasis on the CFS. Then, a discussion of mass storage systems will be presented, and methods of measuring the performance of the Common File System will be outlined. Finally, areas for further study will be identified and conclusions will be drawn.
DNA Compass: a secure, client-side site for navigating personal genetic information
Curnin, Charles; Gordon, Assaf; Erlich, Yaniv
2017-01-01
Abstract Motivation: Millions of individuals have access to raw genomic data using direct-to-consumer companies. The advent of large-scale sequencing projects, such as the Precision Medicine Initiative, will further increase the number of individuals with access to their own genomic information. However, querying genomic data requires a computer terminal and computational skill to analyze the data—an impediment for the general public. Results: DNA Compass is a website designed to empower the public by enabling simple navigation of personal genomic data. Users can query the status of their genomic variants for over 1658 markers or tens of millions of documented single nucleotide polymorphisms (SNPs). DNA Compass presents the relevant genotypes of the user side-by-side with explanatory scientific resources. The genotype data never leaves the user’s computer, a feature that provides improved security and performance. More than 12 000 unique users, mainly from the general genetic genealogy community, have already used DNA Compass, demonstrating its utility. Availability and Implementation: DNA Compass is freely available on https://compass.dna.land. Contact: yaniv@cs.columbia.edu PMID:28334237
Role of Open Source Tools and Resources in Virtual Screening for Drug Discovery.
Karthikeyan, Muthukumarasamy; Vyas, Renu
2015-01-01
Advancement in chemoinformatics research in parallel with availability of high performance computing platform has made handling of large scale multi-dimensional scientific data for high throughput drug discovery easier. In this study we have explored publicly available molecular databases with the help of open-source based integrated in-house molecular informatics tools for virtual screening. The virtual screening literature for past decade has been extensively investigated and thoroughly analyzed to reveal interesting patterns with respect to the drug, target, scaffold and disease space. The review also focuses on the integrated chemoinformatics tools that are capable of harvesting chemical data from textual literature information and transform them into truly computable chemical structures, identification of unique fragments and scaffolds from a class of compounds, automatic generation of focused virtual libraries, computation of molecular descriptors for structure-activity relationship studies, application of conventional filters used in lead discovery along with in-house developed exhaustive PTC (Pharmacophore, Toxicophores and Chemophores) filters and machine learning tools for the design of potential disease specific inhibitors. A case study on kinase inhibitors is provided as an example.
Two-dimensional nonsteady viscous flow simulation on the Navier-Stokes computer miniNode
NASA Technical Reports Server (NTRS)
Nosenchuck, Daniel M.; Littman, Michael G.; Flannery, William
1986-01-01
The needs of large-scale scientific computation are outpacing the growth in performance of mainframe supercomputers. In particular, problems in fluid mechanics involving complex flow simulations require far more speed and capacity than that provided by current and proposed Class VI supercomputers. To address this concern, the Navier-Stokes Computer (NSC) was developed. The NSC is a parallel-processing machine, comprised of individual Nodes, each comparable in performance to current supercomputers. The global architecture is that of a hypercube, and a 128-Node NSC has been designed. New architectural features, such as a reconfigurable many-function ALU pipeline and a multifunction memory-ALU switch, have provided the capability to efficiently implement a wide range of algorithms. Efficient algorithms typically involve numerically intensive tasks, which often include conditional operations. These operations may be efficiently implemented on the NSC without, in general, sacrificing vector-processing speed. To illustrate the architecture, programming, and several of the capabilities of the NSC, the simulation of two-dimensional, nonsteady viscous flows on a prototype Node, called the miniNode, is presented.
On the contributions of astroparticle physics to cosmology
NASA Astrophysics Data System (ADS)
Falkenburg, Brigitte
2014-05-01
Studying astroparticle physics sheds new light on scientific explanation and on the ways in which cosmology is empirically underdetermined or not. Astroparticle physics extends the empirical domain of cosmology from purely astronomical data to "multi-messenger astrophysics", i.e., measurements of all kinds of cosmic rays including very high energetic gamma rays, neutrinos, and charged particles. My paper investigates the ways in which these measurements contribute to cosmology and compares them with philosophical views about scientific explanation, the relation between theory and data, and scientific realism. The "standard models" of cosmology and particle physics lack of unified foundations. Both are "piecemeal physics" in Cartwright's sense, but contrary to her metaphysics of a "dappled world" the work in both fields of research aims at unification. Cosmology proceeds "top-down", from models to data and from large scale to small-scale structures of the universe. Astroparticle physics proceeds "bottom-up", from data taking to models and from subatomic particles to large-scale structures of the universe. In order to reconstruct the causal stories of cosmic rays and the nature of their sources, several pragmatic unifying strategies are employed. Standard views about scientific explanation and scientific realism do not cope with these "bottom-up" strategies and the way in which they contribute to cosmology. In addition it has to be noted that the shift to "multi-messenger astrophysics" transforms the relation between cosmological theory and astrophysical data in a mutually holistic way.
Large-scale high-throughput computer-aided discovery of advanced materials using cloud computing
NASA Astrophysics Data System (ADS)
Bazhirov, Timur; Mohammadi, Mohammad; Ding, Kevin; Barabash, Sergey
Recent advances in cloud computing made it possible to access large-scale computational resources completely on-demand in a rapid and efficient manner. When combined with high fidelity simulations, they serve as an alternative pathway to enable computational discovery and design of new materials through large-scale high-throughput screening. Here, we present a case study for a cloud platform implemented at Exabyte Inc. We perform calculations to screen lightweight ternary alloys for thermodynamic stability. Due to the lack of experimental data for most such systems, we rely on theoretical approaches based on first-principle pseudopotential density functional theory. We calculate the formation energies for a set of ternary compounds approximated by special quasirandom structures. During an example run we were able to scale to 10,656 CPUs within 7 minutes from the start, and obtain results for 296 compounds within 38 hours. The results indicate that the ultimate formation enthalpy of ternary systems can be negative for some of lightweight alloys, including Li and Mg compounds. We conclude that compared to traditional capital-intensive approach that requires in on-premises hardware resources, cloud computing is agile and cost-effective, yet scalable and delivers similar performance.
Assembling Large, Multi-Sensor Climate Datasets Using the SciFlo Grid Workflow System
NASA Astrophysics Data System (ADS)
Wilson, B.; Manipon, G.; Xing, Z.; Fetzer, E.
2009-04-01
NASA's Earth Observing System (EOS) is an ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the "A-Train" platforms (AIRS, AMSR-E, MODIS, MISR, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over periods of years to decades. However, moving from predominantly single-instrument studies to a multi-sensor, measurement-based model for long-duration analysis of important climate variables presents serious challenges for large-scale data mining and data fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another instrument (MODIS), and to a model (ECMWF), stratify the comparisons using a classification of the "cloud scenes" from CloudSat, and repeat the entire analysis over years of AIRS data. To perform such an analysis, one must discover & access multiple datasets from remote sites, find the space/time "matchups" between instruments swaths and model grids, understand the quality flags and uncertainties for retrieved physical variables, assemble merged datasets, and compute fused products for further scientific and statistical analysis. To meet these large-scale challenges, we are utilizing a Grid computing and dataflow framework, named SciFlo, in which we are deploying a set of versatile and reusable operators for data query, access, subsetting, co-registration, mining, fusion, and advanced statistical analysis. SciFlo is a semantically-enabled ("smart") Grid Workflow system that ties together a peer-to-peer network of computers into an efficient engine for distributed computation. The SciFlo workflow engine enables scientists to do multi-instrument Earth Science by assembling remotely-invokable Web Services (SOAP or http GET URLs), native executables, command-line scripts, and Python codes into a distributed computing flow. A scientist visually authors the graph of operation in the VizFlow GUI, or uses a text editor to modify the simple XML workflow documents. The SciFlo client & server engines optimize the execution of such distributed workflows and allow the user to transparently find and use datasets and operators without worrying about the actual location of the Grid resources. The engine transparently moves data to the operators, and moves operators to the data (on the dozen trusted SciFlo nodes). SciFlo also deploys a variety of Data Grid services to: query datasets in space and time, locate & retrieve on-line data granules, provide on-the-fly variable and spatial subsetting, perform pairwise instrument matchups for A-Train datasets, and compute fused products. These services are combined into efficient workflows to assemble the desired large-scale, merged climate datasets. SciFlo is currently being applied in several large climate studies: comparisons of aerosol optical depth between MODIS, MISR, AERONET ground network, and U. Michigan's IMPACT aerosol transport model; characterization of long-term biases in microwave and infrared instruments (AIRS, MLS) by comparisons to GPS temperature retrievals accurate to 0.1 degrees Kelvin; and construction of a decade-long, multi-sensor water vapor climatology stratified by classified cloud scene by bringing together datasets from AIRS/AMSU, AMSR-E, MLS, MODIS, and CloudSat (NASA MEASUREs grant, Fetzer PI). The presentation will discuss the SciFlo technologies, their application in these distributed workflows, and the many challenges encountered in assembling and analyzing these massive datasets.
Unsteady flow simulations around complex geometries using stationary or rotating unstructured grids
NASA Astrophysics Data System (ADS)
Sezer-Uzol, Nilay
In this research, the computational analysis of three-dimensional, unsteady, separated, vortical flows around complex geometries is studied by using stationary or moving unstructured grids. Two main engineering problems are investigated. The first problem is the unsteady simulation of a ship airwake, where helicopter operations become even more challenging, by using stationary unstructured grids. The second problem is the unsteady simulation of wind turbine rotor flow fields by using moving unstructured grids which are rotating with the whole three-dimensional rigid rotor geometry. The three dimensional, unsteady, parallel, unstructured, finite volume flow solver, PUMA2, is used for the computational fluid dynamics (CFD) simulations considered in this research. The code is modified to have a moving grid capability to perform three-dimensional, time-dependent rotor simulations. An instantaneous log-law wall model for Large Eddy Simulations is also implemented in PUMA2 to investigate the very large Reynolds number flow fields of rotating blades. To verify the code modifications, several sample test cases are also considered. In addition, interdisciplinary studies, which are aiming to provide new tools and insights to the aerospace and wind energy scientific communities, are done during this research by focusing on the coupling of ship airwake CFD simulations with the helicopter flight dynamics and control analysis, the coupling of wind turbine rotor CFD simulations with the aeroacoustic analysis, and the analysis of these time-dependent and large-scale CFD simulations with the help of a computational monitoring, steering and visualization tool, POSSE.
Computational methods and software systems for dynamics and control of large space structures
NASA Technical Reports Server (NTRS)
Park, K. C.; Felippa, C. A.; Farhat, C.; Pramono, E.
1990-01-01
This final report on computational methods and software systems for dynamics and control of large space structures covers progress to date, projected developments in the final months of the grant, and conclusions. Pertinent reports and papers that have not appeared in scientific journals (or have not yet appeared in final form) are enclosed. The grant has supported research in two key areas of crucial importance to the computer-based simulation of large space structure. The first area involves multibody dynamics (MBD) of flexible space structures, with applications directed to deployment, construction, and maneuvering. The second area deals with advanced software systems, with emphasis on parallel processing. The latest research thrust in the second area, as reported here, involves massively parallel computers.
Karst medium characterization and simulation of groundwater flow in Lijiang Riversed, China
NASA Astrophysics Data System (ADS)
Hu, B. X.
2015-12-01
It is important to study water and carbon cycle processes for water resource management, pollution prevention and global warming influence on southwest karst region of China. Lijiang river basin is selected as our study region. Interdisciplinary field and laboratory experiments with various technologies are conducted to characterize the karst aquifers in detail. Key processes in the karst water cycle and carbon cycle are determined. Based on the MODFLOW-CFP model, new watershed flow and carbon cycle models are developed coupled subsurface and surface water flow models, flow and chemical/biological models. Our study is focused on the karst springshed in Mao village. The mechanisms coupling carbon cycle and water cycle are explored. Parallel computing technology is used to construct the numerical model for the carbon cycle and water cycle in the small scale watershed, which are calibrated and verified by field observations. The developed coupling model for the small scale watershed is extended to a large scale watershed considering the scale effect of model parameters and proper model structure simplification. The large scale watershed model is used to study water cycle and carbon cycle in Lijiang rivershed, and to calculate the carbon flux and carbon sinks in the Lijiang river basin. The study results provide scientific methods for water resources management and environmental protection in southwest karst region corresponding to global climate change. This study could provide basic theory and simulation method for geological carbon sequestration in China karst region.
Simulation of groundwater flow and evaluation of carbon sink in Lijiang Rivershed, China
NASA Astrophysics Data System (ADS)
Hu, Bill X.; Cao, Jianhua; Tong, Juxiu; Gao, Bing
2016-04-01
It is important to study water and carbon cycle processes for water resource management, pollution prevention and global warming influence on southwest karst region of China. Lijiang river basin is selected as our study region. Interdisciplinary field and laboratory experiments with various technologies are conducted to characterize the karst aquifers in detail. Key processes in the karst water cycle and carbon cycle are determined. Based on the MODFLOW-CFP model, new watershed flow and carbon cycle models are developed coupled subsurface and surface water flow models, flow and chemical/biological models. Our study is focused on the karst springshed in Mao village. The mechanisms coupling carbon cycle and water cycle are explored. Parallel computing technology is used to construct the numerical model for the carbon cycle and water cycle in the small scale watershed, which are calibrated and verified by field observations. The developed coupling model for the small scale watershed is extended to a large scale watershed considering the scale effect of model parameters and proper model structure simplification. The large scale watershed model is used to study water cycle and carbon cycle in Lijiang rivershed, and to calculate the carbon flux and carbon sinks in the Lijiang river basin. The study results provide scientific methods for water resources management and environmental protection in southwest karst region corresponding to global climate change. This study could provide basic theory and simulation method for geological carbon sequestration in China karst region.
Integrating Cloud-Computing-Specific Model into Aircraft Design
NASA Astrophysics Data System (ADS)
Zhimin, Tian; Qi, Lin; Guangwen, Yang
Cloud Computing is becoming increasingly relevant, as it will enable companies involved in spreading this technology to open the door to Web 3.0. In the paper, the new categories of services introduced will slowly replace many types of computational resources currently used. In this perspective, grid computing, the basic element for the large scale supply of cloud services, will play a fundamental role in defining how those services will be provided. The paper tries to integrate cloud computing specific model into aircraft design. This work has acquired good results in sharing licenses of large scale and expensive software, such as CFD (Computational Fluid Dynamics), UG, CATIA, and so on.
Localization Algorithm Based on a Spring Model (LASM) for Large Scale Wireless Sensor Networks.
Chen, Wanming; Mei, Tao; Meng, Max Q-H; Liang, Huawei; Liu, Yumei; Li, Yangming; Li, Shuai
2008-03-15
A navigation method for a lunar rover based on large scale wireless sensornetworks is proposed. To obtain high navigation accuracy and large exploration area, highnode localization accuracy and large network scale are required. However, thecomputational and communication complexity and time consumption are greatly increasedwith the increase of the network scales. A localization algorithm based on a spring model(LASM) method is proposed to reduce the computational complexity, while maintainingthe localization accuracy in large scale sensor networks. The algorithm simulates thedynamics of physical spring system to estimate the positions of nodes. The sensor nodesare set as particles with masses and connected with neighbor nodes by virtual springs. Thevirtual springs will force the particles move to the original positions, the node positionscorrespondingly, from the randomly set positions. Therefore, a blind node position can bedetermined from the LASM algorithm by calculating the related forces with the neighbornodes. The computational and communication complexity are O(1) for each node, since thenumber of the neighbor nodes does not increase proportionally with the network scale size.Three patches are proposed to avoid local optimization, kick out bad nodes and deal withnode variation. Simulation results show that the computational and communicationcomplexity are almost constant despite of the increase of the network scale size. The time consumption has also been proven to remain almost constant since the calculation steps arealmost unrelated with the network scale size.
Jackin, Boaz Jessie; Watanabe, Shinpei; Ootsu, Kanemitsu; Ohkawa, Takeshi; Yokota, Takashi; Hayasaki, Yoshio; Yatagai, Toyohiko; Baba, Takanobu
2018-04-20
A parallel computation method for large-size Fresnel computer-generated hologram (CGH) is reported. The method was introduced by us in an earlier report as a technique for calculating Fourier CGH from 2D object data. In this paper we extend the method to compute Fresnel CGH from 3D object data. The scale of the computation problem is also expanded to 2 gigapixels, making it closer to real application requirements. The significant feature of the reported method is its ability to avoid communication overhead and thereby fully utilize the computing power of parallel devices. The method exhibits three layers of parallelism that favor small to large scale parallel computing machines. Simulation and optical experiments were conducted to demonstrate the workability and to evaluate the efficiency of the proposed technique. A two-times improvement in computation speed has been achieved compared to the conventional method, on a 16-node cluster (one GPU per node) utilizing only one layer of parallelism. A 20-times improvement in computation speed has been estimated utilizing two layers of parallelism on a very large-scale parallel machine with 16 nodes, where each node has 16 GPUs.
A Game of Thrones: Organising and Legitimising Knowledge through PISA Research
ERIC Educational Resources Information Center
Mølstad, Christina E.; Pettersson, Daniel; Forsberg, Eva
2017-01-01
This study investigates knowledge structures and scientific communication using bibliometric methods to explore scientific knowledge production and dissemination. The aim is to develop knowledge about this growing field by investigating studies using international large-scale assessment (ILSA) data, with a specific focus on those using Programme…
Research and management issues in large-scale fire modeling
David L. Peterson; Daniel L. Schmoldt
2000-01-01
In 1996, a team of North American fire scientists and resource managers convened to assess the effects of fire disturbance on ecosystems and to develop scientific recommendations for future fire research and management activities. These recommendations - elicited with the Analytic Hierarchy Process - include numerically ranked scientific and managerial questions and...
Are large-scale flow experiments informing the science and management of freshwater ecosystems?
Olden, Julian D.; Konrad, Christopher P.; Melis, Theodore S.; Kennard, Mark J.; Freeman, Mary C.; Mims, Meryl C.; Bray, Erin N.; Gido, Keith B.; Hemphill, Nina P.; Lytle, David A.; McMullen, Laura E.; Pyron, Mark; Robinson, Christopher T.; Schmidt, John C.; Williams, John G.
2013-01-01
Greater scientific knowledge, changing societal values, and legislative mandates have emphasized the importance of implementing large-scale flow experiments (FEs) downstream of dams. We provide the first global assessment of FEs to evaluate their success in advancing science and informing management decisions. Systematic review of 113 FEs across 20 countries revealed that clear articulation of experimental objectives, while not universally practiced, was crucial for achieving management outcomes and changing dam-operating policies. Furthermore, changes to dam operations were three times less likely when FEs were conducted primarily for scientific purposes. Despite the recognized importance of riverine flow regimes, four-fifths of FEs involved only discrete flow events. Over three-quarters of FEs documented both abiotic and biotic outcomes, but only one-third examined multiple taxonomic responses, thus limiting how FE results can inform holistic dam management. Future FEs will present new opportunities to advance scientifically credible water policies.
NASA Astrophysics Data System (ADS)
Moore, R. T.; Hansen, M. C.
2011-12-01
Google Earth Engine is a new technology platform that enables monitoring and measurement of changes in the earth's environment, at planetary scale, on a large catalog of earth observation data. The platform offers intrinsically-parallel computational access to thousands of computers in Google's data centers. Initial efforts have focused primarily on global forest monitoring and measurement, in support of REDD+ activities in the developing world. The intent is to put this platform into the hands of scientists and developing world nations, in order to advance the broader operational deployment of existing scientific methods, and strengthen the ability for public institutions and civil society to better understand, manage and report on the state of their natural resources. Earth Engine currently hosts online nearly the complete historical Landsat archive of L5 and L7 data collected over more than twenty-five years. Newly-collected Landsat imagery is downloaded from USGS EROS Center into Earth Engine on a daily basis. Earth Engine also includes a set of historical and current MODIS data products. The platform supports generation, on-demand, of spatial and temporal mosaics, "best-pixel" composites (for example to remove clouds and gaps in satellite imagery), as well as a variety of spectral indices. Supervised learning methods are available over the Landsat data catalog. The platform also includes a new application programming framework, or "API", that allows scientists access to these computational and data resources, to scale their current algorithms or develop new ones. Under the covers of the Google Earth Engine API is an intrinsically-parallel image-processing system. Several forest monitoring applications powered by this API are currently in development and expected to be operational in 2011. Combining science with massive data and technology resources in a cloud-computing framework can offer advantages of computational speed, ease-of-use and collaboration, as well as transparency in data and methods. Methods developed for global processing of MODIS data to map land cover are being adopted for use with Landsat data. Specifically, the MODIS Vegetation Continuous Field product methodology has been applied for mapping forest extent and change at national scales using Landsat time-series data sets. Scaling this method to continental and global scales is enabled by Google Earth Engine computing capabilities. By combining the supervised learning VCF approach with the Landsat archive and cloud computing, unprecedented monitoring of land cover dynamics is enabled.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Ann E; Barker, Ashley D; Bland, Arthur S Buddy
Oak Ridge National Laboratory's Leadership Computing Facility (OLCF) continues to deliver the most powerful resources in the U.S. for open science. At 2.33 petaflops peak performance, the Cray XT Jaguar delivered more than 1.4 billion core hours in calendar year (CY) 2011 to researchers around the world for computational simulations relevant to national and energy security; advancing the frontiers of knowledge in physical sciences and areas of biological, medical, environmental, and computer sciences; and providing world-class research facilities for the nation's science enterprise. Users reported more than 670 publications this year arising from their use of OLCF resources. Of thesemore » we report the 300 in this review that are consistent with guidance provided. Scientific achievements by OLCF users cut across all range scales from atomic to molecular to large-scale structures. At the atomic scale, researchers discovered that the anomalously long half-life of Carbon-14 can be explained by calculating, for the first time, the very complex three-body interactions between all the neutrons and protons in the nucleus. At the molecular scale, researchers combined experimental results from LBL's light source and simulations on Jaguar to discover how DNA replication continues past a damaged site so a mutation can be repaired later. Other researchers combined experimental results from ORNL's Spallation Neutron Source and simulations on Jaguar to reveal the molecular structure of ligno-cellulosic material used in bioethanol production. This year, Jaguar has been used to do billion-cell CFD calculations to develop shock wave compression turbo machinery as a means to meet DOE goals for reducing carbon sequestration costs. General Electric used Jaguar to calculate the unsteady flow through turbo machinery to learn what efficiencies the traditional steady flow assumption is hiding from designers. Even a 1% improvement in turbine design can save the nation billions of gallons of fuel.« less
Changing from computing grid to knowledge grid in life-science grid.
Talukdar, Veera; Konar, Amit; Datta, Ayan; Choudhury, Anamika Roy
2009-09-01
Grid computing has a great potential to become a standard cyber infrastructure for life sciences that often require high-performance computing and large data handling, which exceeds the computing capacity of a single institution. Grid computer applies the resources of many computers in a network to a single problem at the same time. It is useful to scientific problems that require a great number of computer processing cycles or access to a large amount of data.As biologists,we are constantly discovering millions of genes and genome features, which are assembled in a library and distributed on computers around the world.This means that new, innovative methods must be developed that exploit the re-sources available for extensive calculations - for example grid computing.This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing a "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. By extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community.
Challenges and opportunities of cloud computing for atmospheric sciences
NASA Astrophysics Data System (ADS)
Pérez Montes, Diego A.; Añel, Juan A.; Pena, Tomás F.; Wallom, David C. H.
2016-04-01
Cloud computing is an emerging technological solution widely used in many fields. Initially developed as a flexible way of managing peak demand it has began to make its way in scientific research. One of the greatest advantages of cloud computing for scientific research is independence of having access to a large cyberinfrastructure to fund or perform a research project. Cloud computing can avoid maintenance expenses for large supercomputers and has the potential to 'democratize' the access to high-performance computing, giving flexibility to funding bodies for allocating budgets for the computational costs associated with a project. Two of the most challenging problems in atmospheric sciences are computational cost and uncertainty in meteorological forecasting and climate projections. Both problems are closely related. Usually uncertainty can be reduced with the availability of computational resources to better reproduce a phenomenon or to perform a larger number of experiments. Here we expose results of the application of cloud computing resources for climate modeling using cloud computing infrastructures of three major vendors and two climate models. We show how the cloud infrastructure compares in performance to traditional supercomputers and how it provides the capability to complete experiments in shorter periods of time. The monetary cost associated is also analyzed. Finally we discuss the future potential of this technology for meteorological and climatological applications, both from the point of view of operational use and research.
NASA Technical Reports Server (NTRS)
Riley, Peter
2000-01-01
This investigation is concerned with the large-scale evolution and topology of coronal mass ejections (CMEs) in the solar wind. During this reporting period we have focused on several aspects of CME properties, their identification and their evolution in the solar wind. The work included both analysis of Ulysses and ACE observations as well as fluid and magnetohydrodynamic simulations. In addition, we analyzed a series of "density holes" observed in the solar wind, that bear many similarities with CMEs. Finally, this work was communicated to the scientific community at three meetings and has led to three scientific papers that are in various stages of review.
Scientific management and implementation of the geophysical fluid flow cell for Spacelab missions
NASA Technical Reports Server (NTRS)
Hart, J.; Toomre, J.
1980-01-01
Scientific support for the spherical convection experiment to be flown on Spacelab 3 was developed. This experiment takes advantage of the zero gravity environment of the orbiting space laboratory to conduct fundamental fluid flow studies concerned with thermally driven motions inside a rotating spherical shell with radial gravity. Such a system is a laboratory analog of large scale atmospheric and solar circulations. The radial body force necessary to model gravity correctly is obtained by using dielectric polarization forces in a radially varying electric field to produce radial accelerations proportional to temperature. This experiment will answer fundamental questions concerned with establishing the preferred modes of large scale motion in planetary and stellar atmospheres.
Using a Dialogue System Based on Dialogue Maps for Computer Assisted Second Language Learning
ERIC Educational Resources Information Center
Choi, Sung-Kwon; Kwon, Oh-Woog; Kim, Young-Kil; Lee, Yunkeun
2016-01-01
In order to use dialogue systems for computer assisted second-language learning systems, one of the difficult issues in such systems is how to construct large-scale dialogue knowledge that matches the dialogue modelling of a dialogue system. This paper describes how we have accomplished the short-term construction of large-scale and…
An Approach to Scoring and Equating Tests with Binary Items: Piloting With Large-Scale Assessments
ERIC Educational Resources Information Center
Dimitrov, Dimiter M.
2016-01-01
This article describes an approach to test scoring, referred to as "delta scoring" (D-scoring), for tests with dichotomously scored items. The D-scoring uses information from item response theory (IRT) calibration to facilitate computations and interpretations in the context of large-scale assessments. The D-score is computed from the…
Slow Invariant Manifolds in Chemically Reactive Systems
NASA Astrophysics Data System (ADS)
Paolucci, Samuel; Powers, Joseph M.
2006-11-01
The scientific design of practical gas phase combustion devices has come to rely on the use of mathematical models which include detailed chemical kinetics. Such models intrinsically admit a wide range of scales which renders their accurate numerical approximation difficult. Over the past decade, rational strategies, such as Intrinsic Low Dimensional Manifolds (ILDM) or Computational Singular Perturbations (CSP), for equilibrating fast time scale events have been successfully developed, though their computation can be challenging and their accuracy in most cases uncertain. Both are approximations to the preferable slow invariant manifold which best describes how the system evolves in the long time limit. Strategies for computing the slow invariant manifold are examined, and results are presented for practical combustion systems.
NASA Technical Reports Server (NTRS)
Silverberg, R. F.; Cheng, E. S.; Cottingham, D. A.; Fixsen, D. J.; Meyer, S. S.; Knox, L.; Timbie, P.; Wilson, G.
2003-01-01
Measurements of the large-scale anisotropy of the Cosmic Infared Background (CIB) can be used to determine the characteristics of the distribution of galaxies at the largest spatial scales. With this information important tests of galaxy evolution models and primordial structure growth are possible. In this paper, we describe the scientific goals, instrumentation, and operation of EDGE, a mission using an Antarctic Long Duration Balloon (LDB) platform. EDGE will osbserve the anisotropy in the CIB in 8 spectral bands from 270 GHz-1.5 THz with 6 arcminute angular resolution over a region -400 square degrees. EDGE uses a one-meter class off-axis telescope and an array of Frequency Selective Bololeters (FSB) to provide the compact and efficient multi-colar, high sensitivity radiometer required to achieve its scientific objectives.
Do large-scale assessments measure students' ability to integrate scientific knowledge?
NASA Astrophysics Data System (ADS)
Lee, Hee-Sun
2010-03-01
Large-scale assessments are used as means to diagnose the current status of student achievement in science and compare students across schools, states, and countries. For efficiency, multiple-choice items and dichotomously-scored open-ended items are pervasively used in large-scale assessments such as Trends in International Math and Science Study (TIMSS). This study investigated how well these items measure secondary school students' ability to integrate scientific knowledge. This study collected responses of 8400 students to 116 multiple-choice and 84 open-ended items and applied an Item Response Theory analysis based on the Rasch Partial Credit Model. Results indicate that most multiple-choice items and dichotomously-scored open-ended items can be used to determine whether students have normative ideas about science topics, but cannot measure whether students integrate multiple pieces of relevant science ideas. Only when the scoring rubric is redesigned to capture subtle nuances of student open-ended responses, open-ended items become a valid and reliable tool to assess students' knowledge integration ability.
Can beaches survive climate change?
Vitousek, Sean; Barnard, Patrick L.; Limber, Patrick W.
2017-01-01
Anthropogenic climate change is driving sea level rise, leading to numerous impacts on the coastal zone, such as increased coastal flooding, beach erosion, cliff failure, saltwater intrusion in aquifers, and groundwater inundation. Many beaches around the world are currently experiencing chronic erosion as a result of gradual, present-day rates of sea level rise (about 3 mm/year) and human-driven restrictions in sand supply (e.g., harbor dredging and river damming). Accelerated sea level rise threatens to worsen coastal erosion and challenge the very existence of natural beaches throughout the world. Understanding and predicting the rates of sea level rise and coastal erosion depends on integrating data on natural systems with computer simulations. Although many computer modeling approaches are available to simulate shoreline change, few are capable of making reliable long-term predictions needed for full adaption or to enhance resilience. Recent advancements have allowed convincing decadal to centennial-scale predictions of shoreline evolution. For example, along 500 km of the Southern California coast, a new model featuring data assimilation predicts that up to 67% of beaches may completely erode by 2100 without large-scale human interventions. In spite of recent advancements, coastal evolution models must continue to improve in their theoretical framework, quantification of accuracy and uncertainty, computational efficiency, predictive capability, and integration with observed data, in order to meet the scientific and engineering challenges produced by a changing climate.
Optimization and large scale computation of an entropy-based moment closure
NASA Astrophysics Data System (ADS)
Kristopher Garrett, C.; Hauck, Cory; Hill, Judith
2015-12-01
We present computational advances and results in the implementation of an entropy-based moment closure, MN, in the context of linear kinetic equations, with an emphasis on heterogeneous and large-scale computing platforms. Entropy-based closures are known in several cases to yield more accurate results than closures based on standard spectral approximations, such as PN, but the computational cost is generally much higher and often prohibitive. Several optimizations are introduced to improve the performance of entropy-based algorithms over previous implementations. These optimizations include the use of GPU acceleration and the exploitation of the mathematical properties of spherical harmonics, which are used as test functions in the moment formulation. To test the emerging high-performance computing paradigm of communication bound simulations, we present timing results at the largest computational scales currently available. These results show, in particular, load balancing issues in scaling the MN algorithm that do not appear for the PN algorithm. We also observe that in weak scaling tests, the ratio in time to solution of MN to PN decreases.
Optimization and large scale computation of an entropy-based moment closure
Hauck, Cory D.; Hill, Judith C.; Garrett, C. Kristopher
2015-09-10
We present computational advances and results in the implementation of an entropy-based moment closure, M N, in the context of linear kinetic equations, with an emphasis on heterogeneous and large-scale computing platforms. Entropy-based closures are known in several cases to yield more accurate results than closures based on standard spectral approximations, such as P N, but the computational cost is generally much higher and often prohibitive. Several optimizations are introduced to improve the performance of entropy-based algorithms over previous implementations. These optimizations include the use of GPU acceleration and the exploitation of the mathematical properties of spherical harmonics, which aremore » used as test functions in the moment formulation. To test the emerging high-performance computing paradigm of communication bound simulations, we present timing results at the largest computational scales currently available. Lastly, these results show, in particular, load balancing issues in scaling the M N algorithm that do not appear for the P N algorithm. We also observe that in weak scaling tests, the ratio in time to solution of M N to P N decreases.« less
Adaptive LES Methodology for Turbulent Flow Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oleg V. Vasilyev
2008-06-12
Although turbulent flows are common in the world around us, a solution to the fundamental equations that govern turbulence still eludes the scientific community. Turbulence has often been called one of the last unsolved problem in classical physics, yet it is clear that the need to accurately predict the effect of turbulent flows impacts virtually every field of science and engineering. As an example, a critical step in making modern computational tools useful in designing aircraft is to be able to accurately predict the lift, drag, and other aerodynamic characteristics in numerical simulations in a reasonable amount of time. Simulationsmore » that take months to years to complete are much less useful to the design cycle. Much work has been done toward this goal (Lee-Rausch et al. 2003, Jameson 2003) and as cost effective accurate tools for simulating turbulent flows evolve, we will all benefit from new scientific and engineering breakthroughs. The problem of simulating high Reynolds number (Re) turbulent flows of engineering and scientific interest would have been solved with the advent of Direct Numerical Simulation (DNS) techniques if unlimited computing power, memory, and time could be applied to each particular problem. Yet, given the current and near future computational resources that exist and a reasonable limit on the amount of time an engineer or scientist can wait for a result, the DNS technique will not be useful for more than 'unit' problems for the foreseeable future (Moin & Kim 1997, Jimenez & Moin 1991). The high computational cost for the DNS of three dimensional turbulent flows results from the fact that they have eddies of significant energy in a range of scales from the characteristic length scale of the flow all the way down to the Kolmogorov length scale. The actual cost of doing a three dimensional DNS scales as Re{sup 9/4} due to the large disparity in scales that need to be fully resolved. State-of-the-art DNS calculations of isotropic turbulence have recently been completed at the Japanese Earth Simulator (Yokokawa et al. 2002, Kaneda et al. 2003) using a resolution of 40963 (approximately 10{sup 11}) grid points with a Taylor-scale Reynolds number of 1217 (Re {approx} 10{sup 6}). Impressive as these calculations are, performed on one of the world's fastest super computers, more brute computational power would be needed to simulate the flow over the fuselage of a commercial aircraft at cruising speed. Such a calculation would require on the order of 10{sup 16} grid points and would have a Reynolds number in the range of 108. Such a calculation would take several thousand years to simulate one minute of flight time on today's fastest super computers (Moin & Kim 1997). Even using state-of-the-art zonal approaches, which allow DNS calculations that resolve the necessary range of scales within predefined 'zones' in the flow domain, this calculation would take far too long for the result to be of engineering interest when it is finally obtained. Since computing power, memory, and time are all scarce resources, the problem of simulating turbulent flows has become one of how to abstract or simplify the complexity of the physics represented in the full Navier-Stokes (NS) equations in such a way that the 'important' physics of the problem is captured at a lower cost. To do this, a portion of the modes of the turbulent flow field needs to be approximated by a low order model that is cheaper than the full NS calculation. This model can then be used along with a numerical simulation of the 'important' modes of the problem that cannot be well represented by the model. The decision of what part of the physics to model and what kind of model to use has to be based on what physical properties are considered 'important' for the problem. It should be noted that 'nothing is free', so any use of a low order model will by definition lose some information about the original flow.« less
Cognitive Model Exploration and Optimization: A New Challenge for Computational Science
2010-03-01
the generation and analysis of computational cognitive models to explain various aspects of cognition. Typically the behavior of these models...computational scale of a workstation, so we have turned to high performance computing (HPC) clusters and volunteer computing for large-scale...computational resources. The majority of applications on the Department of Defense HPC clusters focus on solving partial differential equations (Post
1982-08-01
though the two groups were different in terms of SC!I scientific interests and academic orientation scores (the aviation supply sample scored higher on...51 Chemists/Physicists 50 MARINE OFFICERS- COMUNICATION 49 MARINE OFFICERS-DATA SYSTEMS 48 Engineers 47 Biologists 46 Systems Analysts/Computer...Base ( Scientific and Technical Information Office) Commander, Air Force Human Resources Laboratory, Lowry Air Force Base (Technical Training Branch
Genten: Software for Generalized Tensor Decompositions v. 1.0.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phipps, Eric T.; Kolda, Tamara G.; Dunlavy, Daniel
Tensors, or multidimensional arrays, are a powerful mathematical means of describing multiway data. This software provides computational means for decomposing or approximating a given tensor in terms of smaller tensors of lower dimension, focusing on decomposition of large, sparse tensors. These techniques have applications in many scientific areas, including signal processing, linear algebra, computer vision, numerical analysis, data mining, graph analysis, neuroscience and more. The software is designed to take advantage of parallelism present emerging computer architectures such has multi-core CPUs, many-core accelerators such as the Intel Xeon Phi, and computation-oriented GPUs to enable efficient processing of large tensors.
Pérez-Rodríguez, Gael; Glez-Peña, Daniel; Azevedo, Nuno F; Pereira, Maria Olívia; Fdez-Riverola, Florentino; Lourenço, Anália
2015-03-01
Biofilms are receiving increasing attention from the biomedical community. Biofilm-like growth within human body is considered one of the key microbial strategies to augment resistance and persistence during infectious processes. The Biofilms Experiment Workbench is a novel software workbench for the operation and analysis of biofilms experimental data. The goal is to promote the interchange and comparison of data among laboratories, providing systematic, harmonised and large-scale data computation. The workbench was developed with AIBench, an open-source Java desktop application framework for scientific software development in the domain of translational biomedicine. Implementation favours free and open-source third-parties, such as the R statistical package, and reaches for the Web services of the BiofOmics database to enable public experiment deposition. First, we summarise the novel, free, open, XML-based interchange format for encoding biofilms experimental data. Then, we describe the execution of common scenarios of operation with the new workbench, such as the creation of new experiments, the importation of data from Excel spreadsheets, the computation of analytical results, the on-demand and highly customised construction of Web publishable reports, and the comparison of results between laboratories. A considerable and varied amount of biofilms data is being generated, and there is a critical need to develop bioinformatics tools that expedite the interchange and comparison of microbiological and clinical results among laboratories. We propose a simple, open-source software infrastructure which is effective, extensible and easy to understand. The workbench is freely available for non-commercial use at http://sing.ei.uvigo.es/bew under LGPL license. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Predicting protein structures with a multiplayer online game.
Cooper, Seth; Khatib, Firas; Treuille, Adrien; Barbero, Janos; Lee, Jeehyung; Beenen, Michael; Leaver-Fay, Andrew; Baker, David; Popović, Zoran; Players, Foldit
2010-08-05
People exert large amounts of problem-solving effort playing computer games. Simple image- and text-recognition tasks have been successfully 'crowd-sourced' through games, but it is not clear if more complex scientific problems can be solved with human-directed computing. Protein structure prediction is one such problem: locating the biologically relevant native conformation of a protein is a formidable computational challenge given the very large size of the search space. Here we describe Foldit, a multiplayer online game that engages non-scientists in solving hard prediction problems. Foldit players interact with protein structures using direct manipulation tools and user-friendly versions of algorithms from the Rosetta structure prediction methodology, while they compete and collaborate to optimize the computed energy. We show that top-ranked Foldit players excel at solving challenging structure refinement problems in which substantial backbone rearrangements are necessary to achieve the burial of hydrophobic residues. Players working collaboratively develop a rich assortment of new strategies and algorithms; unlike computational approaches, they explore not only the conformational space but also the space of possible search strategies. The integration of human visual problem-solving and strategy development capabilities with traditional computational algorithms through interactive multiplayer games is a powerful new approach to solving computationally-limited scientific problems.
1977-01-26
Sisteme Matematicheskogo Obespecheniya YeS EVM [ Applied Programs in the Software System for the Unified System of Computers], by A. Ye. Fateyev, A. I...computerized systems are most effective in large production complexes , in which the level of utilization of computers can be as high as 500,000...performance of these tasks could be furthered by the complex introduction of electronic computers in automated control systems. The creation of ASU
Towards Large-area Field-scale Operational Evapotranspiration for Water Use Mapping
NASA Astrophysics Data System (ADS)
Senay, G. B.; Friedrichs, M.; Morton, C.; Huntington, J. L.; Verdin, J.
2017-12-01
Field-scale evapotranspiration (ET) estimates are needed for improving surface and groundwater use and water budget studies. Ideally, field-scale ET estimates would be at regional to national levels and cover long time periods. As a result of large data storage and computational requirements associated with processing field-scale satellite imagery such as Landsat, numerous challenges remain to develop operational ET estimates over large areas for detailed water use and availability studies. However, the combination of new science, data availability, and cloud computing technology is enabling unprecedented capabilities for ET mapping. To demonstrate this capability, we used Google's Earth Engine cloud computing platform to create nationwide annual ET estimates with 30-meter resolution Landsat ( 16,000 images) and gridded weather data using the Operational Simplified Surface Energy Balance (SSEBop) model in support of the National Water Census, a USGS research program designed to build decision support capacity for water management agencies and other natural resource managers. By leveraging Google's Earth Engine Application Programming Interface (API) and developing software in a collaborative, open-platform environment, we rapidly advance from research towards applications for large-area field-scale ET mapping. Cloud computing of the Landsat image archive combined with other satellite, climate, and weather data, is creating never imagined opportunities for assessing ET model behavior and uncertainty, and ultimately providing the ability for more robust operational monitoring and assessment of water use at field-scales.
NASA's Information Power Grid: Large Scale Distributed Computing and Data Management
NASA Technical Reports Server (NTRS)
Johnston, William E.; Vaziri, Arsi; Hinke, Tom; Tanner, Leigh Ann; Feiereisen, William J.; Thigpen, William; Tang, Harry (Technical Monitor)
2001-01-01
Large-scale science and engineering are done through the interaction of people, heterogeneous computing resources, information systems, and instruments, all of which are geographically and organizationally dispersed. The overall motivation for Grids is to facilitate the routine interactions of these resources in order to support large-scale science and engineering. Multi-disciplinary simulations provide a good example of a class of applications that are very likely to require aggregation of widely distributed computing, data, and intellectual resources. Such simulations - e.g. whole system aircraft simulation and whole system living cell simulation - require integrating applications and data that are developed by different teams of researchers frequently in different locations. The research team's are the only ones that have the expertise to maintain and improve the simulation code and/or the body of experimental data that drives the simulations. This results in an inherently distributed computing and data management environment.
2018-01-01
Many modern applications of AI such as web search, mobile browsing, image processing, and natural language processing rely on finding similar items from a large database of complex objects. Due to the very large scale of data involved (e.g., users’ queries from commercial search engines), computing such near or nearest neighbors is a non-trivial task, as the computational cost grows significantly with the number of items. To address this challenge, we adopt Locality Sensitive Hashing (a.k.a, LSH) methods and evaluate four variants in a distributed computing environment (specifically, Hadoop). We identify several optimizations which improve performance, suitable for deployment in very large scale settings. The experimental results demonstrate our variants of LSH achieve the robust performance with better recall compared with “vanilla” LSH, even when using the same amount of space. PMID:29346410
NASA Astrophysics Data System (ADS)
Smith-Konter, B.; Jacobs, A.; Lawrence, K.; Kilb, D.
2006-12-01
The most effective means of communicating science to today's "high-tech" students is through the use of visually attractive and animated lessons, hands-on activities, and interactive Internet-based exercises. To address these needs, we have developed Earthquakes in Action, a summer high school enrichment course offered through the California State Summer School for Mathematics and Science (COSMOS) Program at the University of California, San Diego. The summer course consists of classroom lectures, lab experiments, and a final research project designed to foster geophysical innovations, technological inquiries, and effective scientific communication (http://topex.ucsd.edu/cosmos/earthquakes). Course content includes lessons on plate tectonics, seismic wave behavior, seismometer construction, fault characteristics, California seismicity, global seismic hazards, earthquake stress triggering, tsunami generation, and geodetic measurements of the Earth's crust. Students are introduced to these topics through lectures-made-fun using a range of multimedia, including computer animations, videos, and interactive 3-D visualizations. These lessons are further enforced through both hands-on lab experiments and computer-based exercises. Lab experiments included building hand-held seismometers, simulating the frictional behavior of faults using bricks and sandpaper, simulating tsunami generation in a mini-wave pool, and using the Internet to collect global earthquake data on a daily basis and map earthquake locations using a large classroom map. Students also use Internet resources like Google Earth and UNAVCO/EarthScope's Jules Verne Voyager Jr. interactive mapping tool to study Earth Science on a global scale. All computer-based exercises and experiments developed for Earthquakes in Action have been distributed to teachers participating in the 2006 Earthquake Education Workshop, hosted by the Visualization Center at Scripps Institution of Oceanography (http://siovizcenter.ucsd.edu/workshop). In addition to daily lecture and lab exercises, COSMOS students also conduct a mini-research project of their choice that uses data ranging from the 2004 Parkfield Earthquake, to Southern California seismicity, to global seismicity. Students collect seismic data from the Internet and evaluate earthquake locations, magnitudes, temporal sequence of seismic activity, active fault planes, and plate tectonic boundaries using research quality techniques. Students are given the opportunity to build 3-D visualizations of their research data sets and archive these at the SIO Visualization Center's online library, which is globally accessible to students, teachers, researchers, and the general public (http://www.siovizcenter.ucsd.edu/library.php). These student- generated visualizations have become a practical resource for not only students and teachers, but also geophysical researchers that use the visual objects as research tools to better explore and understand their data. Through Earthquakes in Action, we offer both the tools for scientific exploration and the thrills of scientific discovery, providing students with valuable knowledge, novel research experience, and a unique sense of scientific contribution.
Adaptation of XMM-Newton SAS to GRID and VO architectures via web
NASA Astrophysics Data System (ADS)
Ibarra, A.; de La Calle, I.; Gabriel, C.; Salgado, J.; Osuna, P.
2008-10-01
The XMM-Newton Scientific Analysis Software (SAS) is a robust software that has allowed users to produce good scientific results since the beginning of the mission. This has been possible given the SAS capability to evolve with the advent of new technologies and adapt to the needs of the scientific community. The prototype of the Remote Interface for Science Analysis (RISA) presented here, is one such example, which provides remote analysis of XMM-Newton data with access to all the existing SAS functionality, while making use of GRID computing technology. This new technology has recently emerged within the astrophysical community to tackle the ever lasting problem of computer power for the reduction of large amounts of data.
Learning Physics-based Models in Hydrology under the Framework of Generative Adversarial Networks
NASA Astrophysics Data System (ADS)
Karpatne, A.; Kumar, V.
2017-12-01
Generative adversarial networks (GANs), that have been highly successful in a number of applications involving large volumes of labeled and unlabeled data such as computer vision, offer huge potential for modeling the dynamics of physical processes that have been traditionally studied using simulations of physics-based models. While conventional physics-based models use labeled samples of input/output variables for model calibration (estimating the right parametric forms of relationships between variables) or data assimilation (identifying the most likely sequence of system states in dynamical systems), there is a greater opportunity to explore the full power of machine learning (ML) methods (e.g, GANs) for studying physical processes currently suffering from large knowledge gaps, e.g. ground-water flow. However, success in this endeavor requires a principled way of combining the strengths of ML methods with physics-based numerical models that are founded on a wealth of scientific knowledge. This is especially important in scientific domains like hydrology where the number of data samples is small (relative to Internet-scale applications such as image recognition where machine learning methods has found great success), and the physical relationships are complex (high-dimensional) and non-stationary. We will present a series of methods for guiding the learning of GANs using physics-based models, e.g., by using the outputs of physics-based models as input data to the generator-learner framework, and by using physics-based models as generators trained using validation data in the adversarial learning framework. These methods are being developed under the broad paradigm of theory-guided data science that we are developing to integrate scientific knowledge with data science methods for accelerating scientific discovery.
Data Transparency in Privately Funded Scientific Research
NASA Astrophysics Data System (ADS)
Brewer, P. G.
2016-12-01
Research investigations funded by the Gulf of Mexico Research Initiative (GoMRI) have resulted in a large pulse of scientific data produced by studies ranging across the research goals of the program. These studies have produced datasets from laboratory, field, and modeling activities describing phenomenon ranging from microscopic fluid dynamics to large-scale ocean currents, bacteria to marine mammals, and detailed field observations to synoptic mapping. One of GoMRI's central tenets is to ensure that all data are preserved and made publicly available. Thus, GoMRI formed the Gulf of Mexico Research Initiative Data and Information Cooperative (GRIIDC) with the mission to ensure a data and information legacy that promotes continual scientific discovery and public awareness of the Gulf of Mexico ecosystem. The GoMRI Research Board commitment to open data is exemplified in GoMRI's data program policies and management. The Research Board established a policy that research data must be publically available as soon as possible and no later than one year following collection or at the time of publication. GRIIDC's data specialists, and computer system experts along with a team of researchers funded by GOMRI and GoMRI Research Board members developed a data management system and process for storing and distributing all of the scientific data generated by the GoMRI researchers. Researcher compliance with the data policy is a requirement for annual funding increments, No Cost Extensions, and eligibility for future funding. Since data compliance is an important element of grant performance compliance with GOMRI data policies data are actively tracked and reported to the Board. This initiative comprises an essential component of GoMRI's research independence and legacy.
The NSF ITR Project: Framework for the National Virtual Observatory
NASA Astrophysics Data System (ADS)
Szalay, A. S.; Williams, R. D.; NVO Collaboration
2002-05-01
Technological advances in telescope and instrument design during the last ten years, coupled with the exponential increase in computer and communications capability, have caused a dramatic and irreversible change in the character of astronomical research. Large-scale surveys of the sky from space and ground are being initiated at wavelengths from radio to x-ray, thereby generating vast amounts of high quality irreplaceable data. The potential for scientific discovery afforded by these new surveys is enormous. Entirely new and unexpected scientific results of major significance will emerge from the combined use of the resulting datasets, science that would not be possible from such sets used singly. However, their large size and complexity require tools and structures to discover the complex phenomena encoded within them. We plan to build the NVO framework both through coordinating diverse efforts already in existence and providing a focus for the development of capabilities that do not yet exist. The NVO we envisage will act as an enabling and coordinating entity to foster the development of further tools, protocols, and collaborations necessary to realize the full scientific potential of large astronomical datasets in the coming decade. The NVO must be able to change and respond to the rapidly evolving world of IT technology. In spite of its underlying complex software, the NVO should be no harder to use for the average astronomer, than today's brick-and-mortar observatories and telescopes. Development of these capabilities will require close interaction and collaboration with the information technology community and other disciplines facing similar challenges. We need to ensure that the tools that we need exist or are built, but we do not duplicate efforts, and rely on relevant experience of others.
NASA Astrophysics Data System (ADS)
Massei, Nicolas; Labat, David; Jourde, Hervé; Lecoq, Nicolas; Mazzilli, Naomi
2017-04-01
The french karst observatory network SNO KARST is a national initiative from the National Institute for Earth Sciences and Astronomy (INSU) of the National Center for Scientific Research (CNRS). It is also part of the new french research infrastructure for the observation of the critical zone OZCAR. SNO KARST is composed by several karst sites distributed over conterminous France which are located in different physiographic and climatic contexts (Mediterranean, Pyrenean, Jura mountain, western and northwestern shore near the Atlantic or the English Channel). This allows the scientific community to develop advanced research and experiments dedicated to improve understanding of the hydrological functioning of karst catchments. Here we used several sites of SNO KARST in order to assess the hydrological response of karst catchments to long-term variation of large-scale atmospheric circulation. Using NCEP reanalysis products and karst discharge, we analyzed the links between large-scale circulation and karst water resources variability. As karst hydrosystems are highly heterogeneous media, they behave differently across different time-scales : we explore the large-scale/local-scale relationships according to time-scales using a wavelet multiresolution approach of both karst hydrological variables and large-scale climate fields such as sea level pressure (SLP). The different wavelet components of karst discharge in response to the corresponding wavelet component of climate fields are either 1) compared to physico-chemical/geochemical responses at karst springs, or 2) interpreted in terms of hydrological functioning by comparing discharge wavelet components to internal components obtained from precipitation/discharge models using the KARSTMOD conceptual modeling platform of SNO KARST.
2017-12-08
Piers Sellers is currently Deputy Director of the Sciences and Exploration Directorate and Acting Director of the Earth Sciences Division at NASA/GSFC. He was born and educated in the United Kingdom and moved to the U.S. in 1982 to carry out climate research at NASA/GSFC. From 1982 to 1996, he worked on global climate problems, particularly those involving interactions between the biosphere and the atmosphere, and was involved in constructing computer models of the global climate system, satellite data interpretation and conducting large-scale field experiments in the USA, Canada, Africa, and Brazil. He served as project scientist for the first large Earth Observing System platform, Terra, launched in 1998. He joined the NASA astronaut corps in 1996 and flew to the International Space Station (ISS) in 2002, 2006, and 2010, carrying out six spacewalks and working on ISS assembly tasks. He returned to Goddard Space Flight Center in June, 2011. Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Automated metadata--final project report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schissel, David
This report summarizes the work of the Automated Metadata, Provenance Cataloging, and Navigable Interfaces: Ensuring the Usefulness of Extreme-Scale Data Project (MPO Project) funded by the United States Department of Energy (DOE), Offices of Advanced Scientific Computing Research and Fusion Energy Sciences. Initially funded for three years starting in 2012, it was extended for 6 months with additional funding. The project was a collaboration between scientists at General Atomics, Lawrence Berkley National Laboratory (LBNL), and Massachusetts Institute of Technology (MIT). The group leveraged existing computer science technology where possible, and extended or created new capabilities where required. The MPO projectmore » was able to successfully create a suite of software tools that can be used by a scientific community to automatically document their scientific workflows. These tools were integrated into workflows for fusion energy and climate research illustrating the general applicability of the project’s toolkit. Feedback was very positive on the project’s toolkit and the value of such automatic workflow documentation to the scientific endeavor.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, Pallavi; Ebrahimi, Fatima; Blackman, Eric G.
Here, we study the dynamo generation (exponential growth) of large-scale (planar averaged) fields in unstratified shearing box simulations of the magnetorotational instability (MRI). In contrast to previous studies restricted to horizontal (x–y) averaging, we also demonstrate the presence of large-scale fields when vertical (y–z) averaging is employed instead. By computing space–time planar averaged fields and power spectra, we find large-scale dynamo action in the early MRI growth phase – a previously unidentified feature. Non-axisymmetric linear MRI modes with low horizontal wavenumbers and vertical wavenumbers near that of expected maximal growth, amplify the large-scale fields exponentially before turbulence and high wavenumbermore » fluctuations arise. Thus the large-scale dynamo requires only linear fluctuations but not non-linear turbulence (as defined by mode–mode coupling). Vertical averaging also allows for monitoring the evolution of the large-scale vertical field and we find that a feedback from horizontal low wavenumber MRI modes provides a clue as to why the large-scale vertical field sustains against turbulent diffusion in the non-linear saturation regime. We compute the terms in the mean field equations to identify the individual contributions to large-scale field growth for both types of averaging. The large-scale fields obtained from vertical averaging are found to compare well with global simulations and quasi-linear analytical analysis from a previous study by Ebrahimi & Blackman. We discuss the potential implications of these new results for understanding the large-scale MRI dynamo saturation and turbulence.« less
Bhat, Pallavi; Ebrahimi, Fatima; Blackman, Eric G.
2016-07-06
Here, we study the dynamo generation (exponential growth) of large-scale (planar averaged) fields in unstratified shearing box simulations of the magnetorotational instability (MRI). In contrast to previous studies restricted to horizontal (x–y) averaging, we also demonstrate the presence of large-scale fields when vertical (y–z) averaging is employed instead. By computing space–time planar averaged fields and power spectra, we find large-scale dynamo action in the early MRI growth phase – a previously unidentified feature. Non-axisymmetric linear MRI modes with low horizontal wavenumbers and vertical wavenumbers near that of expected maximal growth, amplify the large-scale fields exponentially before turbulence and high wavenumbermore » fluctuations arise. Thus the large-scale dynamo requires only linear fluctuations but not non-linear turbulence (as defined by mode–mode coupling). Vertical averaging also allows for monitoring the evolution of the large-scale vertical field and we find that a feedback from horizontal low wavenumber MRI modes provides a clue as to why the large-scale vertical field sustains against turbulent diffusion in the non-linear saturation regime. We compute the terms in the mean field equations to identify the individual contributions to large-scale field growth for both types of averaging. The large-scale fields obtained from vertical averaging are found to compare well with global simulations and quasi-linear analytical analysis from a previous study by Ebrahimi & Blackman. We discuss the potential implications of these new results for understanding the large-scale MRI dynamo saturation and turbulence.« less
Extreme Scale Computing to Secure the Nation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, D L; McGraw, J R; Johnson, J R
2009-11-10
Since the dawn of modern electronic computing in the mid 1940's, U.S. national security programs have been dominant users of every new generation of high-performance computer. Indeed, the first general-purpose electronic computer, ENIAC (the Electronic Numerical Integrator and Computer), was used to calculate the expected explosive yield of early thermonuclear weapons designs. Even the U. S. numerical weather prediction program, another early application for high-performance computing, was initially funded jointly by sponsors that included the U.S. Air Force and Navy, agencies interested in accurate weather predictions to support U.S. military operations. For the decades of the cold war, national securitymore » requirements continued to drive the development of high performance computing (HPC), including advancement of the computing hardware and development of sophisticated simulation codes to support weapons and military aircraft design, numerical weather prediction as well as data-intensive applications such as cryptography and cybersecurity U.S. national security concerns continue to drive the development of high-performance computers and software in the U.S. and in fact, events following the end of the cold war have driven an increase in the growth rate of computer performance at the high-end of the market. This mainly derives from our nation's observance of a moratorium on underground nuclear testing beginning in 1992, followed by our voluntary adherence to the Comprehensive Test Ban Treaty (CTBT) beginning in 1995. The CTBT prohibits further underground nuclear tests, which in the past had been a key component of the nation's science-based program for assuring the reliability, performance and safety of U.S. nuclear weapons. In response to this change, the U.S. Department of Energy (DOE) initiated the Science-Based Stockpile Stewardship (SBSS) program in response to the Fiscal Year 1994 National Defense Authorization Act, which requires, 'in the absence of nuclear testing, a progam to: (1) Support a focused, multifaceted program to increase the understanding of the enduring stockpile; (2) Predict, detect, and evaluate potential problems of the aging of the stockpile; (3) Refurbish and re-manufacture weapons and components, as required; and (4) Maintain the science and engineering institutions needed to support the nation's nuclear deterrent, now and in the future'. This program continues to fulfill its national security mission by adding significant new capabilities for producing scientific results through large-scale computational simulation coupled with careful experimentation, including sub-critical nuclear experiments permitted under the CTBT. To develop the computational science and the computational horsepower needed to support its mission, SBSS initiated the Accelerated Strategic Computing Initiative, later renamed the Advanced Simulation & Computing (ASC) program (sidebar: 'History of ASC Computing Program Computing Capability'). The modern 3D computational simulation capability of the ASC program supports the assessment and certification of the current nuclear stockpile through calibration with past underground test (UGT) data. While an impressive accomplishment, continued evolution of national security mission requirements will demand computing resources at a significantly greater scale than we have today. In particular, continued observance and potential Senate confirmation of the Comprehensive Test Ban Treaty (CTBT) together with the U.S administration's promise for a significant reduction in the size of the stockpile and the inexorable aging and consequent refurbishment of the stockpile all demand increasing refinement of our computational simulation capabilities. Assessment of the present and future stockpile with increased confidence of the safety and reliability without reliance upon calibration with past or future test data is a long-term goal of the ASC program. This will be accomplished through significant increases in the scientific bases that underlie the computational tools. Computer codes must be developed that replace phenomenology with increased levels of scientific understanding together with an accompanying quantification of uncertainty. These advanced codes will place significantly higher demands on the computing infrastructure than do the current 3D ASC codes. This article discusses not only the need for a future computing capability at the exascale for the SBSS program, but also considers high performance computing requirements for broader national security questions. For example, the increasing concern over potential nuclear terrorist threats demands a capability to assess threats and potential disablement technologies as well as a rapid forensic capability for determining a nuclear weapons design from post-detonation evidence (nuclear counterterrorism).« less
Developing Large Scale Explosively Driven Flyer Experiments on Sand
NASA Astrophysics Data System (ADS)
Rehagen, Thomas; Kraus, Richard
2017-06-01
Measurements of the dynamic behavior of granular materials are of great importance to a variety of scientific and engineering applications, including planetary science, seismology, and construction and destruction. In addition, high quality data are needed to enhance our understanding of granular physics and improve the computational models used to simulate related physical processes. However, since there is a non-negligible grain size associated with these materials, experiments must be of a relatively large scale in order to capture the continuum response of the material and reduce errors associated with the finite grain size. We will present designs for explosively driven flyer experiments to make high accuracy measurements of the Hugoniot of sand (with a grain size of hundreds of microns). To achieve an accuracy of better than a few percent in density, we are developing a platform to measure the Hugoniot of samples several centimeters in thickness. We will present the target designs as well as coupled designs for the explosively launched flyer system. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.
Applications of Parallel Process HiMAP for Large Scale Multidisciplinary Problems
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; Potsdam, Mark; Rodriguez, David; Kwak, Dochay (Technical Monitor)
2000-01-01
HiMAP is a three level parallel middleware that can be interfaced to a large scale global design environment for code independent, multidisciplinary analysis using high fidelity equations. Aerospace technology needs are rapidly changing. Computational tools compatible with the requirements of national programs such as space transportation are needed. Conventional computation tools are inadequate for modern aerospace design needs. Advanced, modular computational tools are needed, such as those that incorporate the technology of massively parallel processors (MPP).
He, Qiang; Hu, Xiangtao; Ren, Hong; Zhang, Hongqi
2015-11-01
A novel artificial fish swarm algorithm (NAFSA) is proposed for solving large-scale reliability-redundancy allocation problem (RAP). In NAFSA, the social behaviors of fish swarm are classified in three ways: foraging behavior, reproductive behavior, and random behavior. The foraging behavior designs two position-updating strategies. And, the selection and crossover operators are applied to define the reproductive ability of an artificial fish. For the random behavior, which is essentially a mutation strategy, the basic cloud generator is used as the mutation operator. Finally, numerical results of four benchmark problems and a large-scale RAP are reported and compared. NAFSA shows good performance in terms of computational accuracy and computational efficiency for large scale RAP. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerfler, Douglas; Austin, Brian; Cook, Brandon
There are many potential issues associated with deploying the Intel Xeon Phi™ (code named Knights Landing [KNL]) manycore processor in a large-scale supercomputer. One in particular is the ability to fully utilize the high-speed communications network, given that the serial performance of a Xeon Phi TM core is a fraction of a Xeon®core. In this paper, we take a look at the trade-offs associated with allocating enough cores to fully utilize the Aries high-speed network versus cores dedicated to computation, e.g., the trade-off between MPI and OpenMP. In addition, we evaluate new features of Cray MPI in support of KNL,more » such as internode optimizations. We also evaluate one-sided programming models such as Unified Parallel C. We quantify the impact of the above trade-offs and features using a suite of National Energy Research Scientific Computing Center applications.« less
A Bridge for Accelerating Materials by Design
Sumpter, Bobby G.; Vasudevan, Rama K.; Potok, Thomas E.; ...
2015-11-25
Recent technical advances in the area of nanoscale imaging, spectroscopy, and scattering/diffraction have led to unprecedented capabilities for investigating materials structural, dynamical and functional characteristics. In addition, recent advances in computational algorithms and computer capacities that are orders of magnitude larger/faster have enabled large-scale simulations of materials properties starting with nothing but the identity of the atomic species and the basic principles of quantum- and statistical-mechanics and thermodynamics. Along with these advances, an explosion of high-resolution data has emerged. This confluence of capabilities and rise of big data offer grand opportunities for advancing materials sciences but also introduce several challenges.more » In this editorial we identify challenges impeding progress towards advancing materials by design (e.g., the design/discovery of materials with improved properties/performance), possible solutions, and provide examples of scientific issues that can be addressed by using a tightly integrated approach where theory and experiments are linked through big-deep data.« less
Automated Performance Prediction of Message-Passing Parallel Programs
NASA Technical Reports Server (NTRS)
Block, Robert J.; Sarukkai, Sekhar; Mehra, Pankaj; Woodrow, Thomas S. (Technical Monitor)
1995-01-01
The increasing use of massively parallel supercomputers to solve large-scale scientific problems has generated a need for tools that can predict scalability trends of applications written for these machines. Much work has been done to create simple models that represent important characteristics of parallel programs, such as latency, network contention, and communication volume. But many of these methods still require substantial manual effort to represent an application in the model's format. The NIK toolkit described in this paper is the result of an on-going effort to automate the formation of analytic expressions of program execution time, with a minimum of programmer assistance. In this paper we demonstrate the feasibility of our approach, by extending previous work to detect and model communication patterns automatically, with and without overlapped computations. The predictions derived from these models agree, within reasonable limits, with execution times of programs measured on the Intel iPSC/860 and Paragon. Further, we demonstrate the use of MK in selecting optimal computational grain size and studying various scalability metrics.
NASA Astrophysics Data System (ADS)
Coppola, Erika; Sobolowski, Stefan
2017-04-01
The join EURO-CORDEX and Med-CORDEX Flagship Pilot Study dedicated to the frontier research of using convective permitting models to address the impact of human induced climate change on convection, has been recently approved and the scientific community behind the project is made of 30 different scientific institutes distributed all around Europe. The motivations for such a challenge is the availability of large field campaigns dedicated to the study of heavy precipitation events such as HyMeX and high resolution dense observation networks like WegnerNet, RdisaggH (CH),COMEPHORE (Fr), SAFRAN (Fr), EURO4M-APGD (CH); the increased computing capacity and model developments; the emerging trend signals in extreme precipitation at daily and mainly sub-daily time scale in the Mediterranean and Alpine regions and the priority of convective extreme events under the WCRP Grand Challenge on climate extremes, because they carry both society-relevant and scientific challenges. The main objective of this effort are to investigate convective-scale events, their processes and their changes in a few key regions of Europe and the Mediterranean using convection-permitting RCMs, statistical models and available observations. To provide a collective assessment of the modeling capacity at convection-permitting scale and to shape a coherent and collective assessment of the consequences of climate change on convective event impacts at local to regional scales. The scientific aims of this research are to investigate how the convective events and the damaging phenomena associated with them will respond to changing climate conditions in several European regions with different climates. To understand if an improved representation of convective phenomena at convective permitting scales will lead to upscaled added value and finally to assess the possibility to replace these costly convection-permitting experiments with statistical approaches like "convection emulators". The common initial domain will be an extended Alpine domain and all the groups will simulate a minimum of 10 years period with ERA-interim boundary conditions, with the possibility of other two sub-domains one in the Northwest continental Europe and another in the Southeast Mediterranean. The scenario simulations will be completed for three different 10 years time slices one in the historical period, one in the near future and the last one in the far future for the RCP8.5 scenario. The first target of this scientific community is to have an ensemble of 1-2 years ERA-interim simulations ready by next summer.
NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations
NASA Astrophysics Data System (ADS)
Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Van Dam, H. J. J.; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T. L.; de Jong, W. A.
2010-09-01
The latest release of NWChem delivers an open-source computational chemistry package with extensive capabilities for large scale simulations of chemical and biological systems. Utilizing a common computational framework, diverse theoretical descriptions can be used to provide the best solution for a given scientific problem. Scalable parallel implementations and modular software design enable efficient utilization of current computational architectures. This paper provides an overview of NWChem focusing primarily on the core theoretical modules provided by the code and their parallel performance. Program summaryProgram title: NWChem Catalogue identifier: AEGI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGI_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Open Source Educational Community License No. of lines in distributed program, including test data, etc.: 11 709 543 No. of bytes in distributed program, including test data, etc.: 680 696 106 Distribution format: tar.gz Programming language: Fortran 77, C Computer: all Linux based workstations and parallel supercomputers, Windows and Apple machines Operating system: Linux, OS X, Windows Has the code been vectorised or parallelized?: Code is parallelized Classification: 2.1, 2.2, 3, 7.3, 7.7, 16.1, 16.2, 16.3, 16.10, 16.13 Nature of problem: Large-scale atomistic simulations of chemical and biological systems require efficient and reliable methods for ground and excited solutions of many-electron Hamiltonian, analysis of the potential energy surface, and dynamics. Solution method: Ground and excited solutions of many-electron Hamiltonian are obtained utilizing density-functional theory, many-body perturbation approach, and coupled cluster expansion. These solutions or a combination thereof with classical descriptions are then used to analyze potential energy surface and perform dynamical simulations. Additional comments: Full documentation is provided in the distribution file. This includes an INSTALL file giving details of how to build the package. A set of test runs is provided in the examples directory. The distribution file for this program is over 90 Mbytes and therefore is not delivered directly when download or Email is requested. Instead a html file giving details of how the program can be obtained is sent. Running time: Running time depends on the size of the chemical system, complexity of the method, number of cpu's and the computational task. It ranges from several seconds for serial DFT energy calculations on a few atoms to several hours for parallel coupled cluster energy calculations on tens of atoms or ab-initio molecular dynamics simulation on hundreds of atoms.
Distributed intrusion detection system based on grid security model
NASA Astrophysics Data System (ADS)
Su, Jie; Liu, Yahui
2008-03-01
Grid computing has developed rapidly with the development of network technology and it can solve the problem of large-scale complex computing by sharing large-scale computing resource. In grid environment, we can realize a distributed and load balance intrusion detection system. This paper first discusses the security mechanism in grid computing and the function of PKI/CA in the grid security system, then gives the application of grid computing character in the distributed intrusion detection system (IDS) based on Artificial Immune System. Finally, it gives a distributed intrusion detection system based on grid security system that can reduce the processing delay and assure the detection rates.
2011-09-30
and easy to apply in large-scale physical-biogeochemical simulations. We also collaborate with Dr. Curt Mobley at Sequoia Scientific for the second...we are collaborating with Dr. Curtis Mobley of Sequoia Scientific on improving the link between the radiative transfer model (EcoLight) within the
"Scientifically-Based Research": The Art of Politics and the Distortion of Science
ERIC Educational Resources Information Center
Shaker, Paul; Ruitenberg, Claudia
2007-01-01
The US Federal Government is forcefully prescribing a narrow definition of "scientifically-based" educational research. US policy, emerging from contemporary neoliberal and technocratic viewpoints and funded and propagated on a large scale, has the potential to influence international thinking on educational research. In this article we continue a…
Electronic Scientific Data & Literature Aggregation: A Review for Librarians
ERIC Educational Resources Information Center
Losoff, Barbara
2009-01-01
The advent of large-scale digital repositories, along with the need for sharing useful data world-wide, demands change to the current information structure. The merging of digital scientific data with scholarly literature has the potential to fulfill the Semantic Web design principles. This paper will identify factors leading to integration of…