NASA Astrophysics Data System (ADS)
Kino, Hisashi; Fukushima, Takafumi; Tanaka, Tetsu
2018-04-01
Charge-trapping memory requires the increase of bit density per cell and a larger memory window for lower-power operation. A tunnel field-effect transistor (TFET) can achieve to increase the bit density per cell owing to its steep subthreshold slope. In addition, a TFET structure has an asymmetric structure, which is promising for achieving a larger memory window. A TFET with the N-type gate shows a higher electric field between the P-type source and the N-type gate edge than the conventional FET structure. This high electric field enables large amounts of charges to be injected into the charge storage layer. In this study, we fabricated silicon-oxide-nitride-oxide-semiconductor (SONOS) memory devices with the TFET structure and observed a steep subthreshold slope and a larger memory window.
NASA Astrophysics Data System (ADS)
Liu, Yongxun; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shinichi; Tsukada, Junichi; Yamauchi, Hiromi; Ishikawa, Yuki; Mizubayashi, Wataru; Morita, Yukinori; Migita, Shinji; Ota, Hiroyuki; Masahara, Meishoku
2014-01-01
Three-dimensional (3D) fin-channel charge trapping (CT) flash memories with different gate materials of physical-vapor-deposited (PVD) titanium nitride (TiN) and n+-polycrystalline silicon (poly-Si) have successfully been fabricated by using (100)-oriented silicon-on-insulator (SOI) wafers and orientation-dependent wet etching. Electrical characteristics of the fabricated flash memories including statistical threshold voltage (Vt) variability, endurance, and data retention have been comparatively investigated. It was experimentally found that a larger memory window and a deeper erase are obtained in PVD-TiN-gated metal-oxide-nitride-oxide-silicon (MONOS)-type flash memories than in poly-Si-gated poly-Si-oxide-nitride-oxide-silicon (SONOS)-type memories. The larger memory window and deeper erase of MONOS-type flash memories are contributed by the higher work function of the PVD-TiN metal gate than of the n+-poly-Si gate, which is effective for suppressing electron back tunneling during erase operation. It was also found that the initial Vt roll-off due to the short-channel effect (SCE) is directly related to the memory window roll-off when the gate length (Lg) is scaled down to 46 nm or less.
Hubbard, Timothy L; Motes, Michael A
2005-08-01
Memory for the initial and final positions of moving targets was examined. When targets appeared adjacent to the boundary of a larger enclosing window, memory for initial position exhibited a Fröhlich effect (i.e., a displacement forward), and when distance of initial position from the boundary increased, memory for initial position exhibited a smaller Fröhlich effect or an onset repulsion effect (i.e., a displacement backward). When targets vanished adjacent to the boundary of a larger enclosing window, memory for final position was displaced backward, and when distance of final position from the boundary increased, memory for final position did not exhibit significant displacement. These patterns differed from previously reported displacements of initial and final positions of targets presented on a blank background. Possible influences of attention and extrapolation of trajectory on whether memory for initial position exhibits a Fröhlich effect or an onset repulsion effect and on backward displacement in memory for final position are discussed.
Han, Su-Ting; Zhou, Ye; Yang, Qing Dan; Zhou, Li; Huang, Long-Biao; Yan, Yan; Lee, Chun-Sing; Roy, Vellaisamy A L
2014-02-25
Tunable memory characteristics are used in multioperational mode circuits where memory cells with various functionalities are needed in one combined device. It is always a challenge to obtain control over threshold voltage for multimode operation. On this regard, we use a strategy of shifting the work function of reduced graphene oxide (rGO) in a controlled manner through doping gold chloride (AuCl3) and obtained a gradient increase of rGO work function. By inserting doped rGO as floating gate, a controlled threshold voltage (Vth) shift has been achieved in both p- and n-type low voltage flexible memory devices with large memory window (up to 4 times for p-type and 8 times for n-type memory devices) in comparison with pristine rGO floating gate memory devices. By proper energy band engineering, we demonstrated a flexible floating gate memory device with larger memory window and controlled threshold voltage shifts.
NASA Astrophysics Data System (ADS)
Chen, Y. Q.; Xu, X. B.; Lei, Z. F.; Y Liao, X.; Wang, X.; Zeng, C.; En, Y. F.; Huang, Y.
2015-01-01
A metal-ferroelectric (SrBi2Ta2O9)-insulator (HfTaO)-semiconductor capacitor was fabricated, and the temperature dependence of its electrical properties was investigated. Within the temperature range of 300-220 K, the maximum memory window is up to 1.26 V, and it could be attributed to a higher coercive field of the ferroelectric film at a lower temperature, which is induced by the deeper and more box-shaped potential well based on the defect-domain interaction model. The memory window decreases with increasing temperature from 300 to 400 K, and the larger sweep voltage leads to a smaller memory window at a higher temperature, which could be attributed to temperature-dependent polarization of the ferroelectric film and charge injection from an Si substrate of the capacitor. With the temperature increasing from 220 to 400 K, the leakage current density increases with temperature by about one order, and the corresponding conduction mechanism is discussed. The results could provide useful guidelines for design and application of ferroelectric memory.
Erickson, Kirk I.; Voss, Michelle W.; Prakash, Ruchika S.; Chaddock, Laura; Kramer, Arthur F.
2010-01-01
The influence of hormone treatment on brain and cognition in postmenopausal women has been a controversial topic. Contradictory patterns of results have prompted speculation that a critical period, or a limited window of opportunity, exists for hormone treatment to protect against cognitive and neural decline in older women. Consistent with this hypothesis, studies in both humans and rodents indicate that the latency between the time of menopause and the initiation of hormone treatment is an important factor in determining whether hormone treatment will prevent or exacerbate cognitive impairment. In this cross-sectional study of 102 postmenopausal women, we examined whether hippocampal, amygdala, or caudate nucleus volumes and spatial memory performance were related to the interval between menopause and the initiation of hormone treatment. Consistent with a critical period hypothesis, we found that shorter intervals between menopause and the initiation of hormone treatment, as determined by self-report, were associated with larger hippocampal volumes compared with longer intervals between menopause and treatment initiation. Initiation of hormone treatment at the time of menopause was also associated with larger hippocampal volumes when compared to peers who had never used hormone treatment. Furthermore, these effects were independent from potentially confounding factors such as age, years of education, the duration of hormone treatment, current or past use of hormone therapy, the type of therapy, and the age at menopause. Larger hippocampal volumes in women who initiated hormone treatment at the time of menopause failed to translate to improved spatial memory performance. There was no relationship between the timing of hormone initiation, spatial memory performance, and amygdala or caudate nucleus volume. Our results provide support for the idea that there is a limited window of opportunity at the time of menopause for hormone treatment to influence hippocampal volume, yet the degree to which these effects translate to improved memory performance is uncertain. PMID:20063947
Organic transistor memory with a charge storage molecular double-floating-gate monolayer.
Tseng, Chiao-Wei; Huang, Ding-Chi; Tao, Yu-Tai
2015-05-13
A flexible, low-voltage, and nonvolatile memory device was fabricated by implanting a functional monolayer on an aluminum oxide dielectric surface in a pentacene-based organic transistor. The monolayer-forming molecule contains a phosphonic acid group as the anchoring moiety and a charge-trapping core group flanked between two alkyl chain spacers as the charge trapping site. The memory characteristics strongly depend on the monolayer used due to the localized charge-trapping capability for different core groups, including the diacetylenic (DA) unit as the hole carrier trap, the naphthalenetetracarboxyldiimide (ND) unit as the electron carrier trap, and the one with both DA and ND units present, respectively. The device with the monolayer carrying both DA and ND groups has a larger memory window than that for the one containing DA only and a longer retention time than that for the one containing DA or ND only, giving a memory window of 1.4 V and a retention time around 10(9) s. This device with hybrid organic monolayer/inorganic dielectrics also exhibited rather stable device characteristics upon bending of the polymeric substrate.
NASA Astrophysics Data System (ADS)
Creusen, I. M.; Hazelhoff, L.; De With, P. H. N.
2013-10-01
In large-scale automatic traffic sign surveying systems, the primary computational effort is concentrated at the traffic sign detection stage. This paper focuses on reducing the computational load of particularly the sliding window object detection algorithm which is employed for traffic sign detection. Sliding-window object detectors often use a linear SVM to classify the features in a window. In this case, the classification can be seen as a convolution of the feature maps with the SVM kernel. It is well known that convolution can be efficiently implemented in the frequency domain, for kernels larger than a certain size. We show that by careful reordering of sliding-window operations, most of the frequency-domain transformations can be eliminated, leading to a substantial increase in efficiency. Additionally, we suggest to use the overlap-add method to keep the memory use within reasonable bounds. This allows us to keep all the transformed kernels in memory, thereby eliminating even more domain transformations, and allows all scales in a multiscale pyramid to be processed using the same set of transformed kernels. For a typical sliding-window implementation, we have found that the detector execution performance improves with a factor of 5.3. As a bonus, many of the detector improvements from literature, e.g. chi-squared kernel approximations, sub-class splitting algorithms etc., can be more easily applied at a lower performance penalty because of an improved scalability.
Limits of the memory coefficient in measuring correlated bursts
NASA Astrophysics Data System (ADS)
Jo, Hang-Hyun; Hiraoka, Takayuki
2018-03-01
Temporal inhomogeneities in event sequences of natural and social phenomena have been characterized in terms of interevent times and correlations between interevent times. The inhomogeneities of interevent times have been extensively studied, while the correlations between interevent times, often called correlated bursts, are far from being fully understood. For measuring the correlated bursts, two relevant approaches were suggested, i.e., memory coefficient and burst size distribution. Here a burst size denotes the number of events in a bursty train detected for a given time window. Empirical analyses have revealed that the larger memory coefficient tends to be associated with the heavier tail of the burst size distribution. In particular, empirical findings in human activities appear inconsistent, such that the memory coefficient is close to 0, while burst size distributions follow a power law. In order to comprehend these observations, by assuming the conditional independence between consecutive interevent times, we derive the analytical form of the memory coefficient as a function of parameters describing interevent time and burst size distributions. Our analytical result can explain the general tendency of the larger memory coefficient being associated with the heavier tail of burst size distribution. We also find that the apparently inconsistent observations in human activities are compatible with each other, indicating that the memory coefficient has limits to measure the correlated bursts.
NASA Astrophysics Data System (ADS)
Jia, Xinlei; Yan, Xiaobing; Wang, Hong; Yang, Tao; Zhou, Zhenyu; Zhao, Jianhui
2018-06-01
In this work, we have investigated two kinds of charge trapping memory devices with Pd/Al2O3/ZnO/SiO2/p-Si and Pd/Al2O3/ZnO/graphene oxide quantum-dots (GOQDs)/ZnO/SiO2/p-Si structure. Compared with the single ZnO sample, the memory window of the ZnO-GOQDs-ZnO sample reaches a larger value (more than doubled) of 2.7 V under the sweeping gate voltage ± 7 V, indicating a better charge storage capability and the significant charge trapping effects by embedding the GOQDs trapping layer. The ZnO-GOQDs-ZnO devices have better date retention properties with the high and low capacitances loss of ˜ 1.1 and ˜ 6.9%, respectively, as well as planar density of the trapped charges of 1.48 × 1012 cm- 2. It is proposed that the GOQDs play an important role in the outstanding memory characteristics due to the deep quantum potential wells and the discrete distribution of the GOQDs. The long date retention time might have resulted from the high potential barrier which suppressed both the back tunneling and the leakage current. Intercalating GOQDs in the memory device is a promising method to realize large memory window, low-power consumption and excellent retention properties.
NASA Astrophysics Data System (ADS)
Lu, Chi-Pei; Luo, Cheng-Kei; Tsui, Bing-Yue; Lin, Cha-Hsin; Tzeng, Pei-Jer; Wang, Ching-Chiun; Tsai, Ming-Jinn
2009-04-01
In this study, a charge-trapping-layer-engineered nanoscale n-channel trigate TiN nanocrystal nonvolatile memory was successfully fabricated on silicon-on-insulator (SOI) wafer. An Al2O3 high-k blocking dielectric layer and a P+ polycrystalline silicon gate electrode were used to obtain low operation voltage and suppress the back-side injection effect, respectively. TiN nanocrystals were formed by annealing TiN/Al2O3 nanolaminates deposited by an atomic layer deposition system. The memory characteristics of various samples with different TiN wetting layer thicknesses, post-deposition annealing times, and blocking oxide thicknesses were also investigated. The sample with a thicker wetting layer exhibited a much larger memory window than other samples owing to its larger nanocrystal size. Good retention with a mere 12% charge loss for up to 10 years and high endurance were also obtained. Furthermore, gate disturbance and read disturbance were measured with very small charge migrations after a 103 s stressing bias.
Microeconomics of process control in semiconductor manufacturing
NASA Astrophysics Data System (ADS)
Monahan, Kevin M.
2003-06-01
Process window control enables accelerated design-rule shrinks for both logic and memory manufacturers, but simple microeconomic models that directly link the effects of process window control to maximum profitability are rare. In this work, we derive these links using a simplified model for the maximum rate of profit generated by the semiconductor manufacturing process. We show that the ability of process window control to achieve these economic objectives may be limited by variability in the larger manufacturing context, including measurement delays and process variation at the lot, wafer, x-wafer, x-field, and x-chip levels. We conclude that x-wafer and x-field CD control strategies will be critical enablers of density, performance and optimum profitability at the 90 and 65nm technology nodes. These analyses correlate well with actual factory data and often identify millions of dollars in potential incremental revenue and cost savings. As an example, we show that a scatterometry-based CD Process Window Monitor is an economically justified, enabling technology for the 65nm node.
CMOS imager for pointing and tracking applications
NASA Technical Reports Server (NTRS)
Sun, Chao (Inventor); Pain, Bedabrata (Inventor); Yang, Guang (Inventor); Heynssens, Julie B. (Inventor)
2006-01-01
Systems and techniques to realize pointing and tracking applications with CMOS imaging devices. In general, in one implementation, the technique includes: sampling multiple rows and multiple columns of an active pixel sensor array into a memory array (e.g., an on-chip memory array), and reading out the multiple rows and multiple columns sampled in the memory array to provide image data with reduced motion artifact. Various operation modes may be provided, including TDS, CDS, CQS, a tracking mode to read out multiple windows, and/or a mode employing a sample-first-read-later readout scheme. The tracking mode can take advantage of a diagonal switch array. The diagonal switch array, the active pixel sensor array and the memory array can be integrated onto a single imager chip with a controller. This imager device can be part of a larger imaging system for both space-based applications and terrestrial applications.
Wide-Range Motion Estimation Architecture with Dual Search Windows for High Resolution Video Coding
NASA Astrophysics Data System (ADS)
Dung, Lan-Rong; Lin, Meng-Chun
This paper presents a memory-efficient motion estimation (ME) technique for high-resolution video compression. The main objective is to reduce the external memory access, especially for limited local memory resource. The reduction of memory access can successfully save the notorious power consumption. The key to reduce the memory accesses is based on center-biased algorithm in that the center-biased algorithm performs the motion vector (MV) searching with the minimum search data. While considering the data reusability, the proposed dual-search-windowing (DSW) approaches use the secondary windowing as an option per searching necessity. By doing so, the loading of search windows can be alleviated and hence reduce the required external memory bandwidth. The proposed techniques can save up to 81% of external memory bandwidth and require only 135 MBytes/sec, while the quality degradation is less than 0.2dB for 720p HDTV clips coded at 8Mbits/sec.
Aging and the Effects of Exploratory Behavior on Spatial Memory.
Varner, Kaitlin M; Dopkins, Stephen; Philbeck, John W
2016-03-01
The present research examined the effect of encoding from multiple viewpoints on scene recall in a group of younger (18-22 years) and older (65-80 years) adults. Participants completed a visual search task, during which they were given the opportunity to examine a room using two sets of windows that partitioned the room differently. Their choice of window set was recorded, to determine whether an association between these choices and spatial memory performance existed. Subsequently, participants were tested for spatial memory of the domain in which the search task was completed. Relative to younger adults, older adults demonstrated an increased tendency to use a single set of windows as well as decreased spatial memory for the domain. Window-set usage was associated with spatial memory, such that older adults who relied more heavily on a single set of windows also had better performance on the spatial memory task. These findings suggest that, in older adults, moderation in exploratory behavior may have a positive effect on memory for the domain of exploration. © The Author(s) 2016.
Wide memory window in graphene oxide charge storage nodes
NASA Astrophysics Data System (ADS)
Wang, Shuai; Pu, Jing; Chan, Daniel S. H.; Cho, Byung Jin; Loh, Kian Ping
2010-04-01
Solution-processable, isolated graphene oxide (GO) monolayers have been used as a charge trapping dielectric in TaN gate/Al2O3/isolated GO sheets/SiO2/p-Si memory device (TANOS). The TANOS type structure serves as memory device with the threshold voltage controlled by the amount of charge trapped in the GO sheet. Capacitance-Voltage hysteresis curves reveal a 7.5 V memory window using the sweep voltage of -5-14 V. Thermal reduction in the GO to graphene reduces the memory window to 1.4 V. The unique charge trapping properties of GO points to the potential applications in flexible organic memory devices.
Nonuniform Effects of Reinstatement within the Time Window
ERIC Educational Resources Information Center
Galluccio, Llissa; Rovee-Collier, Carolyn
2006-01-01
A time window is a limited period after an event initially occurs in which additional information can be integrated with the memory of that event. It shuts when the memory is forgotten. The time window hypothesis holds that the impact of a manipulation at different points within the time window is nonuniform. In two operant conditioning…
NASA Astrophysics Data System (ADS)
Lee, Dong-Hoon; Kim, Jung-Min; Lim, Ki-Tae; Cho, Hyeong Jun; Bang, Jin Ho; Kim, Yong-Sang
2016-03-01
In this paper, we empirically investigate the retention performance of organic non-volatile floating gate memory devices with CdSe nanoparticles (NPs) as charge trapping elements. Core-structured CdSe NPs or core-shell-structured ZnS/CdSe NPs were mixed in PMMA and their performance in pentacene based device was compared. The NPs and self-organized thin tunneling PMMA inside the devices exhibited hysteresis by trapping hole during capacitance-voltage characterization. Despite of core-structured NPs showing a larger memory window, the retention time was too short to be adopted by an industry. By contrast core-shell structured NPs showed an improved retention time of >10000 seconds than core-structure NCs. Based on these results and the energy band structure, we propose the retention mechanism of each NPs. This investigation of retention performance provides a comparative and systematic study of the charging/discharging behaviors of NPs based memory devices. [Figure not available: see fulltext.
Performance Evaluation and Improvement of Ferroelectric Field-Effect Transistor Memory
NASA Astrophysics Data System (ADS)
Yu, Hyung Suk
Flash memory is reaching scaling limitations rapidly due to reduction of charge in floating gates, charge leakage and capacitive coupling between cells which cause threshold voltage fluctuations, short retention times, and interference. Many new memory technologies are being considered as alternatives to flash memory in an effort to overcome these limitations. Ferroelectric Field-Effect Transistor (FeFET) is one of the main emerging candidates because of its structural similarity to conventional FETs and fast switching speed. Nevertheless, the performance of FeFETs have not been systematically compared and analyzed against other competing technologies. In this work, we first benchmark the intrinsic performance of FeFETs and other memories by simulations in order to identify the strengths and weaknesses of FeFETs. To simulate realistic memory applications, we compare memories on an array structure. For the comparisons, we construct an accurate delay model and verify it by benchmarking against exact HSPICE simulations. Second, we propose an accurate model for FeFET memory window since the existing model has limitations. The existing model assumes symmetric operation voltages but it is not valid for the practical asymmetric operation voltages. In this modeling, we consider practical operation voltages and device dimensions. Also, we investigate realistic changes of memory window over time and retention time of FeFETs. Last, to improve memory window and subthreshold swing, we suggest nonplanar junctionless structures for FeFETs. Using the suggested structures, we study the dimensional dependences of crucial parameters like memory window and subthreshold swing and also analyze key interference mechanisms.
Li, Wen; Guo, Fengning; Ling, Haifeng; Liu, Hui; Yi, Mingdong; Zhang, Peng; Wang, Wenjun; Xie, Linghai; Huang, Wei
2018-01-01
In this paper, the development of organic field-effect transistor (OFET) memory device based on isolated and ordered nanostructures (NSs) arrays of wide-bandgap (WBG) small-molecule organic semiconductor material [2-(9-(4-(octyloxy)phenyl)-9H-fluoren-2-yl)thiophene]3 (WG 3 ) is reported. The WG 3 NSs are prepared from phase separation by spin-coating blend solutions of WG 3 /trimethylolpropane (TMP), and then introduced as charge storage elements for nonvolatile OFET memory devices. Compared to the OFET memory device with smooth WG 3 film, the device based on WG 3 NSs arrays exhibits significant improvements in memory performance including larger memory window (≈45 V), faster switching speed (≈1 s), stable retention capability (>10 4 s), and reliable switching properties. A quantitative study of the WG 3 NSs morphology reveals that enhanced memory performance is attributed to the improved charge trapping/charge-exciton annihilation efficiency induced by increased contact area between the WG 3 NSs and pentacene layer. This versatile solution-processing approach to preparing WG 3 NSs arrays as charge trapping sites allows for fabrication of high-performance nonvolatile OFET memory devices, which could be applicable to a wide range of WBG organic semiconductor materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Attenuating fearful memories: effect of cued extinction on intrusions.
Marks, Elizabeth H; Zoellner, Lori A
2014-12-01
Exposure-based therapies for posttraumatic stress disorder are thought to reduce intrusive memories through extinction processes. Methods that enhance extinction may translate to improved treatment. Rat research suggests retrieving a memory via a conditioned stimulus (CS) cue, and then modifying the retrieved memory within a specific reconsolidation window may enhance extinction. In humans, studies (e.g., Kindt & Soeter, 2013; Schiller et al., 2010) using basic learning paradigms show discrepant findings. Using a distressing film paradigm, participants (N = 148) completed fear acquisition and extinction. At extinction, they were randomized to 1 of 3 groups: CS cue within reconsolidation window, CS cue outside window, or non-CS cue within window. Intrusions were assessed 24 hr after extinction. Participants receiving the CS cue and completing extinction within the reconsolidation window had more intrusions (M = 2.40, SD = 2.54) than those cued outside (M = 1.65, SD = 1.70) or those receiving a non-CS cue (M = 1.24, SD = 1.26), F(2, 145) = 4.52, p = .01, d = 0.55. Consistent with the reconsolidation hypothesis, presenting a CS cue does appear to activate a specific period of time during which a memory can be updated. However, the CS cue caused increased, rather than decreased, frequency of intrusions. Understanding parameters of preextinction cueing may help us better understand reconsolidation as a potential memory updating mechanism.
NASA Astrophysics Data System (ADS)
Zheng, Zhiwei; Huo, Zongliang; Zhang, Manhong; Zhu, Chenxin; Liu, Jing; Liu, Ming
2011-10-01
This paper reports the simultaneous improvements in erase speed and data retention characteristics in flash memory using a stacked HfO2/Ta2O5 charge-trapping layer. In comparison to a memory capacitor with a single HfO2 trapping layer, the erase speed of a memory capacitor with a stacked HfO2/Ta2O5 charge-trapping layer is 100 times faster and its memory window is enlarged from 2.7 to 4.8 V for the same ±16 V sweeping voltage range. With the same initial window of ΔVFB = 4 V, the device with a stacked HfO2/Ta2O5 charge-trapping layer has a 3.5 V extrapolated 10-year retention window, while the control device with a single HfO2 trapping layer has only 2.5 V for the extrapolated 10-year window. The present results demonstrate that the device with the stacked HfO2/Ta2O5 charge-trapping layer has a strong potential for future high-performance nonvolatile memory application.
Thermal annealing and temperature dependences of memory effect in organic memory transistor
NASA Astrophysics Data System (ADS)
Ren, X. C.; Wang, S. M.; Leung, C. W.; Yan, F.; Chan, P. K. L.
2011-07-01
We investigate the annealing and thermal effects of organic non-volatile memory with floating silver nanoparticles by real-time transfer curve measurements. During annealing, the memory window shows shrinkage of 23% due to structural variation of the nanoparticles. However, by increasing the device operating temperature from 20 to 90 °C after annealing, the memory window demonstrates an enlargement up to 100%. The differences in the thermal responses are explained and confirmed by the co-existence of electron and hole traps. Our findings provide a better understanding of organic memory performances under various operating temperatures and validate their applications for temperature sensing or thermal memories.
A test of multiple correlation temporal window characteristic of non-Markov processes
NASA Astrophysics Data System (ADS)
Arecchi, F. T.; Farini, A.; Megna, N.
2016-03-01
We introduce a sensitive test of memory effects in successive events. The test consists of a combination K of binary correlations at successive times. K decays monotonically from K = 1 for uncorrelated events as a Markov process. For a monotonic memory fading, K<1 always. Here we report evidence of a K>1 temporal window in cognitive tasks consisting of the visual identification of the front face of the Necker cube after a previous presentation of the same. We speculate that memory effects provide a temporal window with K>1 and this experiment could be a possible first step towards a better comprehension of this phenomenon. The K>1 behaviour is maximal at an inter-measurement time τ around 2s with inter-subject differences. The K>1 persists over a time window of 1s around τ; outside this window the K<1 behaviour is recovered. The universal occurrence of a K>1 window in pairs of successive perceptions suggests that, at variance with single visual stimuli eliciting a suitable response, a pair of stimuli shortly separated in time displays mutual correlations.
Helmstaedter, C; Brosch, T; Kurthen, M; Elger, C E
2004-07-01
Recent findings raised evidence that in early-onset left temporal lobe epilepsy, women show greater functional plasticity for verbal memory than men. In particular, women with lesion- or epilepsy-driven atypical language dominance show an advantage over men. The question asked in this study was whether there is evidence of sex- and language dominance-dependent late, i.e. adult age, plasticity for verbal memory when epilepsy surgery is performed in these patients. Pre- and 1-year postoperative memory performance was evaluated in 169 patients (94 males and 75 females) who underwent left temporal lobe surgery and who had WADA testing of hemispheric language dominance prior to surgery. Verbal memory and figural memory were assessed by list-learning paradigms. According to the Bonn intracarotid amobarbital test (IAT) protocol, patients were categorized into left dominant or atypically dominant (right, incomplete left or right, and bilateral dominant) groups. Results were controlled for the hypothesized sex differences. Thirty-four percent of men and 47% of women displayed patterns of atypical language dominance. Atypical dominance was related to an early onset of epilepsy. Men showed a larger time window for development of atypical dominance but, differently from women, the pattern of atypical dominance was more strictly determined by the age at onset of epilepsy. Atypically dominant women showed better verbal memory than typically dominant women or men. After surgery, right dominant patients had better verbal memory outcome than patients with bilateral or left language dominance who showed significant memory loss. No effect of sex on verbal memory change was found. Figural memory deteriorated in men and improved in women, when they were not left dominant. Seizure outcome had no effect on performance changes. It was concluded that better preserved verbal memory in atypically dominant women before surgery indicates greater benefit from atypical dominance in women than men with regard to the initial damage associated with left hemisphere epilepsy. Later in life, when epilepsy surgery causes additional damage, no such sex difference is observed, indicating that the women's advantage over men is fixed to an early time window in life. Postoperative changes in figural memory suggest dynamics in crowding and suppression patterns. Whether this reflects late plasticity and compensation needs further demonstration. For clinical practice, it is important to note that incomplete right hemisphere and bilateral language dominance do not protect against verbal memory loss after left-sided temporal lobe surgery. Copyright 2004 Guarantors of Brain
Temporal texture of associative encoding modulates recall processes.
Tibon, Roni; Levy, Daniel A
2014-02-01
Binding aspects of an experience that are distributed over time is an important element of episodic memory. In the current study, we examined how the temporal complexity of an experience may govern the processes required for its retrieval. We recorded event-related potentials during episodic cued recall following pair associate learning of concurrently and sequentially presented object-picture pairs. Cued recall success effects over anterior and posterior areas were apparent in several time windows. In anterior locations, these recall success effects were similar for concurrently and sequentially encoded pairs. However, in posterior sites clustered over parietal scalp the effect was larger for the retrieval of sequentially encoded pairs. We suggest that anterior aspects of the mid-latency recall success effects may reflect working-with-memory operations or direct access recall processes, while more posterior aspects reflect recollective processes which are required for retrieval of episodes of greater temporal complexity. Copyright © 2013 Elsevier Inc. All rights reserved.
Nitrided SrTiO3 as charge-trapping layer for nonvolatile memory applications
NASA Astrophysics Data System (ADS)
Huang, X. D.; Lai, P. T.; Liu, L.; Xu, J. P.
2011-06-01
Charge-trapping characteristics of SrTiO3 with and without nitrogen incorporation were investigated based on Al/Al2O3/SrTiO3/SiO2/Si (MONOS) capacitors. A Ti-silicate interlayer at the SrTiO3/SiO2 interface was confirmed by x-ray photoelectron spectroscopy and transmission electron microscopy. Compared with the MONOS capacitor with SrTiO3 as charge-trapping layer (CTL), the one with nitrided SrTiO3 showed a larger memory window (8.4 V at ±10 V sweeping voltage), higher P/E speeds (1.8 V at 1 ms +8 V) and better retention properties (charge loss of 38% after 104 s), due to the nitrided SrTiO3 film exhibiting higher dielectric constant, higher deep-level traps induced by nitrogen incorporation, and suppressed formation of Ti silicate between the CTL and SiO2 by nitrogen passivation.
Enhanced charge storage capability of Ge/GeO(2) core/shell nanostructure.
Yuan, C L; Lee, P S
2008-09-03
A Ge/GeO(2) core/shell nanostructure embedded in an Al(2)O(3) gate dielectrics matrix was produced. A larger memory window with good data retention was observed in the fabricated metal-insulator-semiconductor (MIS) capacitor for Ge/GeO(2) core/shell nanoparticles compared to Ge nanoparticles only, which is due to the high percentage of defects located on the surface and grain boundaries of the GeO(2) shell. We believe that the findings presented here provide physical insight and offer useful guidelines to controllably modify the charge storage properties of indirect semiconductors through defect engineering.
Statistical regularities in the return intervals of volatility
NASA Astrophysics Data System (ADS)
Wang, F.; Weber, P.; Yamasaki, K.; Havlin, S.; Stanley, H. E.
2007-01-01
We discuss recent results concerning statistical regularities in the return intervals of volatility in financial markets. In particular, we show how the analysis of volatility return intervals, defined as the time between two volatilities larger than a given threshold, can help to get a better understanding of the behavior of financial time series. We find scaling in the distribution of return intervals for thresholds ranging over a factor of 25, from 0.6 to 15 standard deviations, and also for various time windows from one minute up to 390 min (an entire trading day). Moreover, these results are universal for different stocks, commodities, interest rates as well as currencies. We also analyze the memory in the return intervals which relates to the memory in the volatility and find two scaling regimes, ℓ<ℓ* with α1=0.64±0.02 and ℓ> ℓ* with α2=0.92±0.04; these exponent values are similar to results of Liu et al. for the volatility. As an application, we use the scaling and memory properties of the return intervals to suggest a possibly useful method for estimating risk.
NASA Astrophysics Data System (ADS)
Kim, Tae-Wan; Baek, Il-Jin; Cho, Won-Ju
2018-02-01
In this study, we employed microwave irradiation (MWI) at low temperature in the fabrication of solution-processed AlZnSnO (AZTO) resistive random access memory (ReRAM) devices with a structure of Ti/AZTO/Pt and compared the memory characteristics with the conventional thermal annealing (CTA) process. Typical bipolar resistance switching (BRS) behavior was observed in AZTO ReRAM devices treated with as-deposited (as-dep), CTA and MWI. In the low resistance state, the Ohmic conduction mechanism describes the dominant conduction of these devices. On the other hand, the trap-controlled space charge limited conduction (SCLC) mechanism predominates in the high resistance state. The AZTO ReRAM devices processed with MWI showed larger memory windows, uniform distribution of resistance state and operating voltage, stable DC durability (>103 cycles) and stable retention characteristics (>104 s). In addition, the AZTO ReRAM devices treated with MWI exhibited multistage storage characteristics by modulating the amplitude of the reset bias, and eight distinct resistance levels were obtained with stable retention capability.
Olshavsky, Megan E; Song, Bryan J; Powell, Daniel J; Jones, Carolyn E; Monfils, Marie-H; Lee, Hongjoo J
2013-01-01
When presented with a light cue followed by food, some rats simply approach the foodcup (Nonorienters), while others first orient to the light in addition to displaying the food-cup approach behavior (Orienters). Cue-directed orienting may reflect enhanced attentional and/or emotional processing of the cue, suggesting divergent natures of cue-information processing in Orienters and Nonorienters. The current studies investigate how differences in cue processing might manifest in appetitive memory retrieval and updating using a paradigm developed to persistently attenuate fear responses (Retrieval-extinction paradigm; Monfils et al., 2009). First, we examined whether the retrieval-extinction paradigm could attenuate appetitive responses in Orienters and Nonorienters. Next, we investigated if the appetitive memory could be updated using reversal learning (fear conditioning) during the reconsolidation window (as opposed to repeated unreinforced trials, i.e., extinction). Both extinction and new fear learning given within the reconsolidation window were effective at persistently updating the initial appetitive memory in the Orienters, but not the Nonorienters. Since conditioned orienting is mediated by the amygdala central nucleus (CeA), our final experiment examined the CeA's role in the retrieval-extinction process. Bilateral CeA lesions interfered with the retrieval-extinction paradigm-did not prevent spontaneous recovery of food-cup approach. Together, our studies demonstrate the critical role of conditioned orienting behavior and the CeA in updating appetitive memory during the reconsolidation window.
Rich, David Q; Rhoads, George G; Yiin, Lih-Ming; Zhang, Junfeng; Bai, Zhipeng; Adgate, John L; Ashley, Peter J; Lioy, Paul J
2002-01-01
High efficiency particulate air filter (HEPA) vacuums, which collect particles > 0.3 micro m, and trisodium phosphate (TSP), a detergent claimed to selectively remove lead, have been included in the HUD Guidelines for the Evaluation and Control of Lead Based Paint Hazards in Housing without systematic validation of their effectiveness. At the time the study was initiated, both HEPA vacuums and TSP were relatively expensive, they were not readily found in urban retail centers, and there were environmental concerns about the use and disposal of high-phosphate detergents. A randomized, controlled trial was conducted in urban high-risk homes in northern New Jersey to determine whether a more readily available and less expensive low-phosphate, non-TSP detergent and non-HEPA vacuum could perform as well as TSP and a HEPA vacuum in a cleaning protocol. Homes were randomized to one of three cleaning methods: TSP/HEPA vacuum, TSP/non-HEPA vacuum, or non-TSP/non-HEPA vacuum. Change in log-transformed lead loading was used in mixed models to compare the efficacy of the three cleaning techniques separately for uncarpeted floors, window sills, and window troughs. After we adjusted for baseline lead loading, the non-HEPA vacuum produced larger reductions on hard floors [19%; 95% confidence interval (CI), 3-38%], but the HEPA vacuum produced larger reductions on window sills (22%; 95% CI, 11-32%) and larger reductions on window troughs (16%; 95% CI, -4 to 33%). The non-TSP produced larger reductions on window troughs (21%; 95% CI, -2 to 50%), but TSP produced larger reductions on hard floors (5%; 95% CI, -12 to 19%) and window sills (8%; 95% CI, -5 to 20%). TSP/HEPA produced larger reductions on window sills (28%; 95% CI, 18-37%) and larger reductions on window troughs (2%; 95% CI, -24 to 23%), whereas the non-TSP/non-HEPA method produced larger reductions on hard floors (13%; 95% CI, -5 to 34%). Because neither vacuum nor detergent produced consistent results across surface types, the use of low-phosphate detergents and non-HEPA vacuums in a temporary control measure is supported. PMID:12204823
Rich, David Q; Rhoads, George G; Yiin, Lih-Ming; Zhang, Junfeng; Bai, Zhipeng; Adgate, John L; Ashley, Peter J; Lioy, Paul J
2002-09-01
High efficiency particulate air filter (HEPA) vacuums, which collect particles > 0.3 micro m, and trisodium phosphate (TSP), a detergent claimed to selectively remove lead, have been included in the HUD Guidelines for the Evaluation and Control of Lead Based Paint Hazards in Housing without systematic validation of their effectiveness. At the time the study was initiated, both HEPA vacuums and TSP were relatively expensive, they were not readily found in urban retail centers, and there were environmental concerns about the use and disposal of high-phosphate detergents. A randomized, controlled trial was conducted in urban high-risk homes in northern New Jersey to determine whether a more readily available and less expensive low-phosphate, non-TSP detergent and non-HEPA vacuum could perform as well as TSP and a HEPA vacuum in a cleaning protocol. Homes were randomized to one of three cleaning methods: TSP/HEPA vacuum, TSP/non-HEPA vacuum, or non-TSP/non-HEPA vacuum. Change in log-transformed lead loading was used in mixed models to compare the efficacy of the three cleaning techniques separately for uncarpeted floors, window sills, and window troughs. After we adjusted for baseline lead loading, the non-HEPA vacuum produced larger reductions on hard floors [19%; 95% confidence interval (CI), 3-38%], but the HEPA vacuum produced larger reductions on window sills (22%; 95% CI, 11-32%) and larger reductions on window troughs (16%; 95% CI, -4 to 33%). The non-TSP produced larger reductions on window troughs (21%; 95% CI, -2 to 50%), but TSP produced larger reductions on hard floors (5%; 95% CI, -12 to 19%) and window sills (8%; 95% CI, -5 to 20%). TSP/HEPA produced larger reductions on window sills (28%; 95% CI, 18-37%) and larger reductions on window troughs (2%; 95% CI, -24 to 23%), whereas the non-TSP/non-HEPA method produced larger reductions on hard floors (13%; 95% CI, -5 to 34%). Because neither vacuum nor detergent produced consistent results across surface types, the use of low-phosphate detergents and non-HEPA vacuums in a temporary control measure is supported.
Davis, Ronald L.
2012-01-01
Summary Studies using functional cellullar imaging of living flies have identified six memory traces that form in the olfactory nervous system after conditioning with odors. These traces occur in distinct nodes of the olfactory nervous system, form and disappear across different windows of time, and are detected in the imaged neurons as increased calcium influx or synaptic release in response to the conditioned odor. Three traces form at, or near acquisition and co-exist with short-term behavioral memory. One trace forms with a delay after learning and co-exists with intermediate-term behavioral memory. Two traces form many hours after acquisition and co-exist with long-term behavioral memory. The transient memory traces may support behavior across the time-windows of their existence. The experimental approaches for dissecting memory formation in the fly, ranging from the molecular to the systems, make it an ideal system for dissecting the logic by which the nervous system organizes and stores different temporal forms of memory. PMID:21482352
Impacts of Co doping on ZnO transparent switching memory device characteristics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simanjuntak, Firman Mangasa; Wei, Kung-Hwa; Prasad, Om Kumar
2016-05-02
The resistive switching characteristics of indium tin oxide (ITO)/Zn{sub 1−x}Co{sub x}O/ITO transparent resistive memory devices were investigated. An appropriate amount of cobalt dopant in ZnO resistive layer demonstrated sufficient memory window and switching stability. In contrast, pure ZnO devices demonstrated a poor memory window, and using an excessive dopant concentration led to switching instability. To achieve suitable memory performance, relying only on controlling defect concentrations is insufficient; the grain growth orientation of the resistive layer must also be considered. Stable endurance with an ON/OFF ratio of more than one order of magnitude during 5000 cycles confirmed that the Co-doped ZnOmore » device is a suitable candidate for resistive random access memory application. Additionally, fully transparent devices with a high transmittance of up to 90% at wavelength of 550 nm have been fabricated.« less
NASA Astrophysics Data System (ADS)
Pan, Chih-Hung; Chang, Ting-Chang; Tsai, Tsung-Ming; Chang, Kuan-Chang; Chu, Tian-Jian; Lin, Wen-Yan; Chen, Min-Chen; Sze, Simon M.
2016-09-01
In this letter, we demonstrate completely different characteristics with different operating modes and analyze the electrical field effect to confirm the filament dissolution behavior. The device exhibited a larger memory window when using a single voltage sweep method during reset process rather than the traditional double sweep method. The phenomenon was verified by using fast I-V measurement to simulate the two operating methods. A better high resistance state (HRS) will be obtained with a very short rising time pulse, but quite notably, lower power consumption was needed. We proposed the electrical field effect to explain the phenomenon and demonstrate distribution by COMSOL simulation.
Threshold-voltage modulated phase change heterojunction for application of high density memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Baihan; Tong, Hao, E-mail: tonghao@hust.edu.cn; Qian, Hang
2015-09-28
Phase change random access memory is one of the most important candidates for the next generation non-volatile memory technology. However, the ability to reduce its memory size is compromised by the fundamental limitations inherent in the CMOS technology. While 0T1R configuration without any additional access transistor shows great advantages in improving the storage density, the leakage current and small operation window limit its application in large-scale arrays. In this work, phase change heterojunction based on GeTe and n-Si is fabricated to address those problems. The relationship between threshold voltage and doping concentration is investigated, and energy band diagrams and X-raymore » photoelectron spectroscopy measurements are provided to explain the results. The threshold voltage is modulated to provide a large operational window based on this relationship. The switching performance of the heterojunction is also tested, showing a good reverse characteristic, which could effectively decrease the leakage current. Furthermore, a reliable read-write-erase function is achieved during the tests. Phase change heterojunction is proposed for high-density memory, showing some notable advantages, such as modulated threshold voltage, large operational window, and low leakage current.« less
Forming-free resistive switching characteristics of Ag/CeO2/Pt devices with a large memory window
NASA Astrophysics Data System (ADS)
Zheng, Hong; Kim, Hyung Jun; Yang, Paul; Park, Jong-Sung; Kim, Dong Wook; Lee, Hyun Ho; Kang, Chi Jung; Yoon, Tae-Sik
2017-05-01
Ag/CeO2(∼45 nm)/Pt devices exhibited forming-free bipolar resistive switching with a large memory window (low-resistance-state (LRS)/high-resistance-state (HRS) ratio >106) at a low switching voltage (<±1 ∼ 2 V) in voltage sweep condition. Also, they retained a large memory window (>104) at a pulse operation (±5 V, 50 μs). The high oxygen ionic conductivity of the CeO2 layer as well as the migration of silver facilitated the formation of filament for the transition to LRS at a low voltage without a high voltage forming operation. Also, a certain amount of defects in the CeO2 layer was required for stable HRS with space-charge-limited-conduction, which was confirmed comparing the devices with non-annealed and annealed CeO2 layers.
A Novel Ni/WOX/W Resistive Random Access Memory with Excellent Retention and Low Switching Current
NASA Astrophysics Data System (ADS)
Chien, Wei-Chih; Chen, Yi-Chou; Lee, Feng-Ming; Lin, Yu-Yu; Lai, Erh-Kun; Yao, Yeong-Der; Gong, Jeng; Horng, Sheng-Fu; Yeh, Chiao-Wen; Tsai, Shih-Chang; Lee, Ching-Hsiung; Huang, Yu-Kai; Chen, Chun-Fu; Kao, Hsiao-Feng; Shih, Yen-Hao; Hsieh, Kuang-Yeu; Lu, Chih-Yuan
2011-04-01
The behavior of WOX resistive random access memory (ReRAM) is a strong function of the top electrode material, which controls the conduction mechanism and the forming process. When using a top electrode with low work function, the current conduction is limited by space charges. On the other hand, the mechanism becomes thermionic emission for devices with a high work function top electrode. These (thermionic) devices are also found to have higher initial resistance, reduced forming current, and larger resistance window. Based on these insights and considering the compatibility to complementary metal-oxide-semiconductor (CMOS) process, we proposed to use Ni as the top electrode for high performance WOX ReRAM devices. The new Ni/WOX/W device can be switched at a low current density less than 8×105 A/cm2, with RESET/SET resistance ratio greater than 100, and extremely good data retention of more than 300 years at 85 °C.
A sensitive period for musical training: contributions of age of onset and cognitive abilities.
Bailey, Jennifer; Penhune, Virginia B
2012-04-01
The experiences we engage in during childhood can stay with us well into our adult years. The idea of a sensitive period--a window during maturation when our brains are most influenced by behavior--has been proposed. Work from our laboratory has shown that early-trained musicians (ET) performed better on visual-motor and auditory-motor synchronization tasks than late-trained musicians (LT), even when matched for total musical experience. Although the groups of musicians showed no cognitive differences, working memory scores correlated with task performance. In this study, we have replicated these findings in a larger sample of musicians and included a group of highly educated nonmusicians (NM). Participants performed six woodblock rhythms of varying levels of metrical complexity and completed cognitive subtests measuring verbal abilities, working memory, and pattern recognition. Working memory scores correlated with task performance across all three groups. Interestingly, verbal abilities were stronger among the NM, while nonverbal abilities were stronger among musicians. These findings are discussed in context of the sensitive period hypothesis as well as the debate surrounding cognitive differences between musicians and NM. © 2012 New York Academy of Sciences.
NASA Astrophysics Data System (ADS)
Abbas, Haider; Park, Mi Ra; Abbas, Yawar; Hu, Quanli; Kang, Tae Su; Yoon, Tae-Sik; Kang, Chi Jung
2018-06-01
Improved resistive switching characteristics are demonstrated in a hybrid device with Pt/Ti/MnO (thin film)/MnO (nanoparticle)/Pt structure. The hybrid devices of MnO thin film and nanoparticle assembly were fabricated. MnO nanoparticles with an average diameter of ∼30 nm were chemically synthesized and assembled as a monolayer on a Pt bottom electrode. A MnO thin film of ∼40 nm thickness was deposited on the nanoparticle assembly to form the hybrid structure. Resistive switching could be induced by the formation and rupture of conducting filaments in the hybrid oxide layers. The hybrid device exhibited very stable unipolar switching with good endurance and retention characteristics. It showed a larger and stable memory window with a uniform distribution of SET and RESET voltages. Moreover, the conduction mechanisms of ohmic conduction, space-charge-limited conduction, Schottky emission, and Poole–Frenkel emission have been investigated as possible conduction mechanisms for the switching of the devices. Using MnO nanoparticles in the thin film and nanoparticle heterostructures enabled the appropriate control of resistive random access memory (RRAM) devices and markedly improved their memory characteristics.
Windowed multipole for cross section Doppler broadening
NASA Astrophysics Data System (ADS)
Josey, C.; Ducru, P.; Forget, B.; Smith, K.
2016-02-01
This paper presents an in-depth analysis on the accuracy and performance of the windowed multipole Doppler broadening method. The basic theory behind cross section data is described, along with the basic multipole formalism followed by the approximations leading to windowed multipole method and the algorithm used to efficiently evaluate Doppler broadened cross sections. The method is tested by simulating the BEAVRS benchmark with a windowed multipole library composed of 70 nuclides. Accuracy of the method is demonstrated on a single assembly case where total neutron production rates and 238U capture rates compare within 0.1% to ACE format files at the same temperature. With regards to performance, clock cycle counts and cache misses were measured for single temperature ACE table lookup and for windowed multipole. The windowed multipole method was found to require 39.6% more clock cycles to evaluate, translating to a 7.9% performance loss overall. However, the algorithm has significantly better last-level cache performance, with 3 fewer misses per evaluation, or a 65% reduction in last-level misses. This is due to the small memory footprint of the windowed multipole method and better memory access pattern of the algorithm.
Detecting Hardware-assisted Hypervisor Rootkits within Nested Virtualized Environments
2012-06-14
least the minimum required for the guest OS and click “Next”. For 64-bit Windows 7 the minimum required is 2048 MB (Figure 66). Figure 66. Memory...prompted for Memory, allocate at least the minimum required for the guest OS, for 64-bit Windows 7 the minimum required is 2048 MB (Figure 79...130 21. Within the virtual disk creation wizard, select VDI for the file type (Figure 81). Figure 81. Select File Type 22. Select Dynamically
Preventing the return of fear in humans using reconsolidation update mechanisms.
Schiller, Daniela; Monfils, Marie-H; Raio, Candace M; Johnson, David C; Ledoux, Joseph E; Phelps, Elizabeth A
2010-01-07
Recent research on changing fears has examined targeting reconsolidation. During reconsolidation, stored information is rendered labile after being retrieved. Pharmacological manipulations at this stage result in an inability to retrieve the memories at later times, suggesting that they are erased or persistently inhibited. Unfortunately, the use of these pharmacological manipulations in humans can be problematic. Here we introduce a non-invasive technique to target the reconsolidation of fear memories in humans. We provide evidence that old fear memories can be updated with non-fearful information provided during the reconsolidation window. As a consequence, fear responses are no longer expressed, an effect that lasted at least a year and was selective only to reactivated memories without affecting others. These findings demonstrate the adaptive role of reconsolidation as a window of opportunity to rewrite emotional memories, and suggest a non-invasive technique that can be used safely in humans to prevent the return of fear.
Light programmable organic transistor memory device based on hybrid dielectric
NASA Astrophysics Data System (ADS)
Ren, Xiaochen; Chan, Paddy K. L.
2013-09-01
We have fabricated the transistor memory devices based on SiO2 and polystyrene (PS) hybrid dielectric. The trap states densities with different semiconductors have been investigated and a maximum 160V memory window between programming and erasing is realized. For DNTT based transistor, the trapped electron density is limited by the number of mobile electrons in semiconductor. The charge transport mechanism is verified by light induced Vth shift effect. Furthermore, in order to meet the low operating power requirement of portable electronic devices, we fabricated the organic memory transistor based on AlOx/self-assembly monolayer (SAM)/PS hybrid dielectric, the effective capacitance of hybrid dielectric is 210 nF cm-2 and the transistor can reach saturation state at -3V gate bias. The memory window in transfer I-V curve is around 1V under +/-5V programming and erasing bias.
Extinction training during the reconsolidation window prevents recovery of fear.
Schiller, Daniela; Raio, Candace M; Phelps, Elizabeth A
2012-08-24
Fear is maladaptive when it persists long after circumstances have become safe. It is therefore crucial to develop an approach that persistently prevents the return of fear. Pavlovian fear-conditioning paradigms are commonly employed to create a controlled, novel fear association in the laboratory. After pairing an innocuous stimulus (conditioned stimulus, CS) with an aversive outcome (unconditioned stimulus, US) we can elicit a fear response (conditioned response, or CR) by presenting just the stimulus alone. Once fear is acquired, it can be diminished using extinction training, whereby the conditioned stimulus is repeatedly presented without the aversive outcome until fear is no longer expressed. This inhibitory learning creates a new, safe representation for the CS, which competes for expression with the original fear memory. Although extinction is effective at inhibiting fear, it is not permanent. Fear can spontaneously recover with the passage of time. Exposure to stress or returning to the context of initial learning can also cause fear to resurface. Our protocol addresses the transient nature of extinction by targeting the reconsolidation window to modify emotional memory in a more permanent manner. Ample evidence suggests that reactivating a consolidated memory returns it to a labile state, during which the memory is again susceptible to interference. This window of opportunity appears to open shortly after reactivation and close approximately 6 hrs later, although this may vary depending on the strength and age of the memory. By allowing new information to incorporate into the original memory trace, this memory may be updated as it reconsolidates. Studies involving non-human animals have successfully blocked the expression of fear memory by introducing pharmacological manipulations within the reconsolidation window, however, most agents used are either toxic to humans or show equivocal effects when used in human studies. Our protocol addresses these challenges by offering an effective, yet non-invasive, behavioral manipulation that is safe for humans. By prompting fear memory retrieval prior to extinction, we essentially trigger the reconsolidation process, allowing new safety information (i.e., extinction) to be incorporated while the fear memory is still susceptible to interference. A recent study employing this behavioral manipulation in rats has successfully blocked fear memory using these temporal parameters. Additional studies in humans have demonstrated that introducing new information after the retrieval of previously consolidated motor, episodic, or declarative memories leads to interference with the original memory trace. We outline below a novel protocol used to block fear recovery in humans.
NASA Astrophysics Data System (ADS)
Chen, Ying-Chih; Su, Yan-Kuin; Yu, Hsin-Chieh; Huang, Chun-Yuan; Huang, Tsung-Syun
2011-10-01
A wide hysteresis width characteristic (memory window) was observed in the organic thin film transistors (OTFTs) using poly(2-hydroxyethyl methacrylate) (PHEMA)-based polymer multilayers. In this study, a strong memory effect was also found in the pentacene-based OTFTs and the electric characteristics were improved by introducing PHEMA/poly(methyl methacrylate) (PMMA)/PHEMA trilayer to replace the conventional PHEMA monolayer or PMMA/PHEMA and PHEMA/PMMA bilayer as the dielectric layers of OTFTs. The memory effect was originated from the electron trapping and slow polarization of the dielectrics. The hydroxyl (-OH) groups inside the polymer dielectric were the main charge storage sites of the electrons. This charge-storage phenomenon could lead to a wide flat-band voltage shift (memory window, △VFB = 22 V) which is essential for the OTFTs' memory-related applications. Moreover, the fabricated transistors also exhibited significant switchable channel current due to the charge-storage and slow charge relaxation.
GRIDVIEW: Recent Improvements in Research and Education Software for Exploring Mars Topography
NASA Technical Reports Server (NTRS)
Roark, J. H.; Masuoka, C. M.; Frey, H. V.
2004-01-01
GRIDVIEW is being developed by the GEODYNAMICS Branch at NASA's Goddard Space Flight Center and can be downloaded on the web at http://geodynamics.gsfc.nasa.gov/gridview/. The program is very mature and has been successfully used for more than four years, but is still under development as we add new features for data analysis and visualization. The software can run on any computer supported by the IDL virtual machine application supplied by RSI. The virtual machine application is currently available for recent versions of MS Windows, MacOS X, Red Hat Linux and UNIX. Minimum system memory requirement is 32 MB, however loading large data sets may require larger amounts of RAM to function adequately.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Shi-Bing; Zhang, Wen-Peng; Liu, Wen-Jun
Amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistor (TFT) memory is very promising for transparent and flexible system-on-panel displays; however, electrical erasability has always been a severe challenge for this memory. In this article, we demonstrated successfully an electrically programmable-erasable memory with atomic-layer-deposited Al{sub 2}O{sub 3}/Pt nanocrystals/Al{sub 2}O{sub 3} gate stack under a maximal processing temperature of 300 {sup o}C. As the programming voltage was enhanced from 14 to 19 V for a constant pulse of 0.2 ms, the threshold voltage shift increased significantly from 0.89 to 4.67 V. When the programmed device was subjected to an appropriate pulse under negative gatemore » bias, it could return to the original state with a superior erasing efficiency. The above phenomena could be attributed to Fowler-Nordheim tunnelling of electrons from the IGZO channel to the Pt nanocrystals during programming, and inverse tunnelling of the trapped electrons during erasing. In terms of 0.2-ms programming at 16 V and 350-ms erasing at −17 V, a large memory window of 3.03 V was achieved successfully. Furthermore, the memory exhibited stable repeated programming/erasing (P/E) characteristics and good data retention, i.e., for 2-ms programming at 14 V and 250-ms erasing at −14 V, a memory window of 2.08 V was still maintained after 10{sup 3} P/E cycles, and a memory window of 1.1 V was retained after 10{sup 5} s retention time.« less
Effect of Data Assimilation Parameters on The Optimized Surface CO2 Flux in Asia
NASA Astrophysics Data System (ADS)
Kim, Hyunjung; Kim, Hyun Mee; Kim, Jinwoong; Cho, Chun-Ho
2018-02-01
In this study, CarbonTracker, an inverse modeling system based on the ensemble Kalman filter, was used to evaluate the effects of data assimilation parameters (assimilation window length and ensemble size) on the estimation of surface CO2 fluxes in Asia. Several experiments with different parameters were conducted, and the results were verified using CO2 concentration observations. The assimilation window lengths tested were 3, 5, 7, and 10 weeks, and the ensemble sizes were 100, 150, and 300. Therefore, a total of 12 experiments using combinations of these parameters were conducted. The experimental period was from January 2006 to December 2009. Differences between the optimized surface CO2 fluxes of the experiments were largest in the Eurasian Boreal (EB) area, followed by Eurasian Temperate (ET) and Tropical Asia (TA), and were larger in boreal summer than in boreal winter. The effect of ensemble size on the optimized biosphere flux is larger than the effect of the assimilation window length in Asia, but the importance of them varies in specific regions in Asia. The optimized biosphere flux was more sensitive to the assimilation window length in EB, whereas it was sensitive to the ensemble size as well as the assimilation window length in ET. The larger the ensemble size and the shorter the assimilation window length, the larger the uncertainty (i.e., spread of ensemble) of optimized surface CO2 fluxes. The 10-week assimilation window and 300 ensemble size were the optimal configuration for CarbonTracker in the Asian region based on several verifications using CO2 concentration measurements.
Two stages of directed forgetting: Electrophysiological evidence from a short-term memory task.
Gao, Heming; Cao, Bihua; Qi, Mingming; Wang, Jing; Zhang, Qi; Li, Fuhong
2016-06-01
In this study, a short-term memory test was used to investigate the temporal course and neural mechanism of directed forgetting under different memory loads. Within each trial, two memory items with high or low load were presented sequentially, followed by a cue indicating whether the presented items should be remembered. After an interval, subjects were asked to respond to the probe stimuli. The ERPs locked to the cues showed that (a) the effect of cue type was initially observed during the P2 (160-240 ms) time window, with more positive ERPs for remembering relative to forgetting cues; (b) load effects were observed during the N2-P3 (250-500 ms) time window, with more positive ERPs for the high-load than low-load condition; (c) the cue effect was also observed during the N2-P3 time window, with more negative ERPs for forgetting versus remembering cues. These results demonstrated that directed forgetting involves two stages: task-relevance identification and information discarding. The cue effects during the N2 epoch supported the view that directed forgetting is an active process. © 2016 Society for Psychophysiological Research.
11 Foot Unitary Plan Tunnel Facility Optical Improvement Large Window Analysis
NASA Technical Reports Server (NTRS)
Hawke, Veronica M.
2015-01-01
The test section of the 11 by 11-foot Unitary Plan Transonic Wind Tunnel (11-foot UPWT) may receive an upgrade of larger optical windows on both the North and South sides. These new larger windows will provide better access for optical imaging of test article flow phenomena including surface and off body flow characteristics. The installation of these new larger windows will likely produce a change to the aerodynamic characteristics of the flow in the Test Section. In an effort understand the effect of this change, a computational model was employed to predict the flows through the slotted walls, in the test section and around the model before and after the tunnel modification. This report documents the solid CAD model that was created and the inviscid computational analysis that was completed as a preliminary estimate of the effect of the changes.
Expanded interleaved solid-state memory for a wide bandwidth transient waveform recorder
NASA Technical Reports Server (NTRS)
Thomas, R. M., Jr.
1980-01-01
An interleaved, solid state expanded memory for a 100 MHz bandwidth waveform recorder is described. The memory development resulted in a significant increase in the storage capacity of a commercially available recorder. The motivation for the memory expansion of the waveform recorder, which is used to support in-flight measurement of the electromagnetic characteristics of lightning discharges, was the need for a significantly longer data window than that provided by the commercially available unit. The expanded recorder provides a data window that is 128 times longer than the commercial unit, while maintaining the same time resolution, by increasing the storage capacity from 1024 to 131 072 data samples. The expanded unit operates at sample periods as small as 10 ns. Sampling once every 10 ns, the commercial unit records for about 10 microseconds before the memory is filled, whereas, the expanded unit records for about 1300 microseconds. A photo of the expanded waveform recorder is shown.
26. Historic American Buildings Survey L. C. Durette, Photographer MORTISE ...
26. Historic American Buildings Survey L. C. Durette, Photographer MORTISE HOLES IN GIRT OVER WINDOW, EAST ELEVATION, SHOWING PLAIN SOFFIT ABOVE ORIGINAL WINDOW. SMALL MORTISE FOR PLANK + WINDOW JAMB (MISSING), LARGER MORTISE FOR BRACE, ORIGINAL PLANK AT RIGHT OF WINDOW - Doe Garrison, Lamprey River & Great Bay, Newmarket, Rockingham County, NH
ERIC Educational Resources Information Center
Zhang, Yili; Smolen, Paul; Baxter, Douglas A.; Byrne, John H.
2010-01-01
Memory consolidation and reconsolidation require kinase activation and protein synthesis. Blocking either process during or shortly after training or recall disrupts memory stabilization, which suggests the existence of a critical time window during which these processes are necessary. Using a computational model of kinase synthesis and…
Resistive switching near electrode interfaces: Estimations by a current model
NASA Astrophysics Data System (ADS)
Schroeder, Herbert; Zurhelle, Alexander; Stemmer, Stefanie; Marchewka, Astrid; Waser, Rainer
2013-02-01
The growing resistive switching database is accompanied by many detailed mechanisms which often are pure hypotheses. Some of these suggested models can be verified by checking their predictions with the benchmarks of future memory cells. The valence change memory model assumes that the different resistances in ON and OFF states are made by changing the defect density profiles in a sheet near one working electrode during switching. The resulting different READ current densities in ON and OFF states were calculated by using an appropriate simulation model with variation of several important defect and material parameters of the metal/insulator (oxide)/metal thin film stack such as defect density and its profile change in density and thickness, height of the interface barrier, dielectric permittivity, applied voltage. The results were compared to the benchmarks and some memory windows of the varied parameters can be defined: The required ON state READ current density of 105 A/cm2 can only be achieved for barriers smaller than 0.7 eV and defect densities larger than 3 × 1020 cm-3. The required current ratio between ON and OFF states of at least 10 requests defect density reduction of approximately an order of magnitude in a sheet of several nanometers near the working electrode.
NASA Astrophysics Data System (ADS)
Singh, Prashant; Jha, Rajesh Kumar; Singh, Rajat Kumar; Singh, B. R.
2018-02-01
We report the integration of multilayer ferroelectric film deposited by RF magnetron sputtering and explore the electrical characteristics for its application as the gate of ferroelectric field effect transistor for non-volatile memories. PZT (Pb[Zr0.35Ti0.65]O3) and SBN (SrBi2Nb2O9) ferroelectric materials were selected for the stack fabrication due to their large polarization and fatigue free properties respectively. Electrical characterization has been carried out to obtain memory window, leakage current density, PUND and endurance characteristics. Fabricated multilayer ferroelectric film capacitor structure shows large memory window of 17.73 V and leakage current density of the order 10-6 A cm-2 for the voltage sweep of -30 to +30 V. This multilayer gate stack of PZT/SBN shows promising endurance property with no degradation in the remnant polarization for the read/write iteration cycles upto 108.
Levenson, M.
1960-10-25
A cave window is described. It is constructed of thick glass panes arranged so that interior panes have smaller windowpane areas and exterior panes have larger areas. Exterior panes on the radiation exposure side are remotely replaceable when darkened excessively. Metal shutters minimize exposure time to extend window life.
van Geest, Quinten; Hulst, Hanneke E; Meijer, Kim A; Hoyng, Lieke; Geurts, Jeroen J G; Douw, Linda
2018-05-01
Brain dynamics (i.e., variable strength of communication between areas), even at the scale of seconds, are thought to underlie complex human behavior, such as learning and memory. In multiple sclerosis (MS), memory problems occur often and have so far only been related to "stationary" brain measures (e.g., atrophy, lesions, activation and stationary (s) functional connectivity (FC) over an entire functional scanning session). However, dynamics in FC (dFC) between the hippocampus and the (neo)cortex may be another important neurobiological substrate of memory impairment in MS that has not yet been explored. Therefore, we investigated hippocampal dFC during a functional (f) magnetic resonance imaging (MRI) episodic memory task and its relationship with verbal and visuospatial memory performance outside the MR scanner. Thirty-eight MS patients and 29 healthy controls underwent neuropsychological tests to assess memory function. Imaging (1.5T) was obtained during performance of a memory task. We assessed hippocampal volume, functional activation, and sFC (i.e., FC of the hippocampus with the rest of the brain averaged over the entire scan, using an atlas-based approach). Dynamic FC of the hippocampus was calculated using a sliding window approach. No group differences were found in hippocampal activation, sFC, and dFC. However, stepwise forward regression analyses in patients revealed that lower dFC of the left hippocampus (standardized β = -0.30; p = .021) could explain an additional 7% of variance (53% in total) in verbal memory, in addition to female sex and larger left hippocampal volume. For visuospatial memory, lower dFC of the right hippocampus (standardized β = -0.38; p = .013) could explain an additional 13% of variance (24% in total) in addition to higher sFC of the right hippocampus. Low hippocampal dFC is an important indicator for maintained memory performance in MS, in addition to other hippocampal imaging measures. Hence, brain dynamics may offer new insights into the neurobiological mechanisms underlying memory (dys)function.
Lee, Young Tack; Kwon, Hyeokjae; Kim, Jin Sung; Kim, Hong-Hee; Lee, Yun Jae; Lim, Jung Ah; Song, Yong-Won; Yi, Yeonjin; Choi, Won-Kook; Hwang, Do Kyung; Im, Seongil
2015-10-27
Two-dimensional van der Waals (2D vdWs) materials are a class of new materials that can provide important resources for future electronics and materials sciences due to their unique physical properties. Among 2D vdWs materials, black phosphorus (BP) has exhibited significant potential for use in electronic and optoelectronic applications because of its allotropic properties, high mobility, and direct and narrow band gap. Here, we demonstrate a few-layered BP-based nonvolatile memory transistor with a poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) ferroelectric top gate insulator. Experiments showed that our BP-based ferroelectric transistors operate satisfactorily at room temperature in ambient air and exhibit a clear memory window. Unlike conventional ambipolar BP transistors, our ferroelectric transistors showed only p-type characteristics due to the carbon-fluorine (C-F) dipole effect of the P(VDF-TrFE) layer, as well as the highest linear mobility value of 1159 cm(2) V(-1) s(-1) with a 10(3) on/off current ratio. For more advanced memory applications beyond unit memory devices, we implemented two memory inverter circuits, a resistive-load inverter circuit and a complementary inverter circuit, combined with an n-type molybdenum disulfide (MoS2) nanosheet. Our memory inverter circuits displayed a clear memory window of 15 V and memory output voltage efficiency of 95%.
A general graphical user interface for automatic reliability modeling
NASA Technical Reports Server (NTRS)
Liceaga, Carlos A.; Siewiorek, Daniel P.
1991-01-01
Reported here is a general Graphical User Interface (GUI) for automatic reliability modeling of Processor Memory Switch (PMS) structures using a Markov model. This GUI is based on a hierarchy of windows. One window has graphical editing capabilities for specifying the system's communication structure, hierarchy, reconfiguration capabilities, and requirements. Other windows have field texts, popup menus, and buttons for specifying parameters and selecting actions. An example application of the GUI is given.
Memory Reactivation Enables Long-Term Prevention of Interference.
Herszage, Jasmine; Censor, Nitzan
2017-05-22
The ability of the human brain to successively learn or perform two competing tasks constitutes a major challenge in daily function. Indeed, exposing the brain to two different competing memories within a short temporal offset can induce interference, resulting in deteriorated performance in at least one of the learned memories [1-4]. Although previous studies have investigated online interference and its effects on performance [5-13], whether the human brain can enable long-term prevention of future interference is unknown. To address this question, we utilized the memory reactivation-reconsolidation framework [2, 12] stemming from studies at the synaptic level [14-17], according to which reactivation of a memory enables its update. In a set of experiments, using the motor sequence learning task [18] we report that a unique pairing of reactivating the original memory (right hand) in synchrony with novel memory trials (left hand) prevented future interference between the two memories. Strikingly, these effects were long-term and observed a month following reactivation. Further experiments showed that preventing future interference was not due to practice per se, but rather specifically depended on a limited time window induced by reactivation of the original memory. These results suggest a mechanism according to which memory reactivation enables long-term prevention of interference, possibly by creating an updated memory trace integrating original and novel memories during the reconsolidation time window. The opportunity to induce a long-term preventive effect on memories may enable the utilization of strategies optimizing normal human learning, as well as recovery following neurological insults. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chiu, Yueh-Hsiu Mathilda; Hsu, Hsiao-Hsien Leon; Coull, Brent A.; Bellinger, David C.; Kloog, Itai; Schwartz, Joel; Wright, Robert O.; Wright, Rosalind J.
2015-01-01
Background Brain growth and structural organization occurs in stages beginning prenatally. Toxicants may impact neurodevelopment differently dependent upon exposure timing and fetal sex. Objectives We implemented innovative methodology to identify sensitive windows for the associations between prenatal particulate matter with diameter≤2.5μm (PM2.5) and children’s neurodevelopment. Methods We assessed 267 full-term urban children’s prenatal daily PM2.5 exposure using a validated satellite-based spatio-temporally resolved prediction model. Outcomes included IQ (WISC-IV), attention (omission errors [OEs], commission errors [CEs], hit reaction time [HRT], and HRT standard error [HRT-SE] on the Conners’ CPT-II), and memory (general memory [GM] index and its components - verbal [VEM] and visual [VIM] memory, and attention-concentration [AC] indices on the WRAML-2) assessed at age 6.5±0.98 years. To identify the role of exposure timing, we used distributed lag models to examine associations between weekly prenatal PM2.5 exposure and neurodevelopment. Sex-specific associations were also examined. Results Mothers were primarily minorities (60% Hispanic, 25% black); 69% had ≤12 years of education. Adjusting for maternal age, education, race, and smoking, we found associations between higher PM2.5 levels at 31–38 weeks with lower IQ, at 20–26 weeks gestation with increased OEs, at 32–36 weeks with slower HRT, and at 22–40 weeks with increased HRT-SE among boys, while significant associations were found in memory domains in girls (higher PM2.5 exposure at 18–26 weeks with reduced VIM, at 12–20 weeks with reduced GM). Conclusions Increased PM2.5 exposure in specific prenatal windows was associated with poorer function across memory and attention domains with variable associations based on sex. Refined determination of time window- and sex-specific associations may enhance insight into underlying mechanisms and identification of vulnerable subgroups. PMID:26641520
Chiu, Yueh-Hsiu Mathilda; Hsu, Hsiao-Hsien Leon; Coull, Brent A; Bellinger, David C; Kloog, Itai; Schwartz, Joel; Wright, Robert O; Wright, Rosalind J
2016-02-01
Brain growth and structural organization occurs in stages beginning prenatally. Toxicants may impact neurodevelopment differently dependent upon exposure timing and fetal sex. We implemented innovative methodology to identify sensitive windows for the associations between prenatal particulate matter with diameter ≤ 2.5 μm (PM2.5) and children's neurodevelopment. We assessed 267 full-term urban children's prenatal daily PM2.5 exposure using a validated satellite-based spatio-temporally resolved prediction model. Outcomes included IQ (WISC-IV), attention (omission errors [OEs], commission errors [CEs], hit reaction time [HRT], and HRT standard error [HRT-SE] on the Conners' CPT-II), and memory (general memory [GM] index and its components - verbal [VEM] and visual [VIM] memory, and attention-concentration [AC] indices on the WRAML-2) assessed at age 6.5±0.98 years. To identify the role of exposure timing, we used distributed lag models to examine associations between weekly prenatal PM2.5 exposure and neurodevelopment. Sex-specific associations were also examined. Mothers were primarily minorities (60% Hispanic, 25% black); 69% had ≤12 years of education. Adjusting for maternal age, education, race, and smoking, we found associations between higher PM2.5 levels at 31-38 weeks with lower IQ, at 20-26 weeks gestation with increased OEs, at 32-36 weeks with slower HRT, and at 22-40 weeks with increased HRT-SE among boys, while significant associations were found in memory domains in girls (higher PM2.5 exposure at 18-26 weeks with reduced VIM, at 12-20 weeks with reduced GM). Increased PM2.5 exposure in specific prenatal windows may be associated with poorer function across memory and attention domains with variable associations based on sex. Refined determination of time window- and sex-specific associations may enhance insight into underlying mechanisms and identification of vulnerable subgroups. Copyright © 2015 Elsevier Ltd. All rights reserved.
Memory Club: A Group Intervention for People with Early-Stage Dementia and Their Care Partners
ERIC Educational Resources Information Center
Zarit, Steven H.; Femia, Elia E.; Watson, Jennifer; Rice-Oeschger, Laura; Kakos, Bernadette
2004-01-01
Purpose: Diagnosis of dementia in its early stages presents a window of opportunity for examining the immediate and long-term consequences of the illness at a point when the individual with memory loss can still participate in decision making. Design and Methods: Memory Club is a l0-session group program designed to provide information about…
Casagrande, Mirelle A; Haubrich, Josué; Pedraza, Lizeth K; Popik, Bruno; Quillfeldt, Jorge A; de Oliveira Alvares, Lucas
2018-04-01
Memories are not instantly created in the brain, requiring a gradual stabilization process called consolidation to be stored and persist in a long-lasting manner. However, little is known whether this time-dependent process is dynamic or static, and the factors that might modulate it. Here, we hypothesized that the time-course of consolidation could be affected by specific learning parameters, changing the time window where memory is susceptible to retroactive interference. In the rodent contextual fear conditioning paradigm, we compared weak and strong training protocols and found that in the latter memory is susceptible to post-training hippocampal inactivation for a shorter period of time. The accelerated consolidation process triggered by the strong training was mediated by glucocorticoids, since this effect was blocked by pre-training administration of metyrapone. In addition, we found that pre-exposure to the training context also accelerates fear memory consolidation. Hence, our results demonstrate that the time window in which memory is susceptible to post-training interferences varies depending on fear conditioning intensity and contextual familiarity. We propose that the time-course of memory consolidation is dynamic, being directly affected by attributes of the learning experiences. Copyright © 2018 Elsevier Inc. All rights reserved.
A hot hole-programmed and low-temperature-formed SONOS flash memory
2013-01-01
In this study, a high-performance TixZrySizO flash memory is demonstrated using a sol–gel spin-coating method and formed under a low annealing temperature. The high-efficiency charge storage layer is formed by depositing a well-mixed solution of titanium tetrachloride, silicon tetrachloride, and zirconium tetrachloride, followed by 60 s of annealing at 600°C. The flash memory exhibits a noteworthy hot hole trapping characteristic and excellent electrical properties regarding memory window, program/erase speeds, and charge retention. At only 6-V operation, the program/erase speeds can be as fast as 120:5.2 μs with a 2-V shift, and the memory window can be up to 8 V. The retention times are extrapolated to 106 s with only 5% (at 85°C) and 10% (at 125°C) charge loss. The barrier height of the TixZrySizO film is demonstrated to be 1.15 eV for hole trapping, through the extraction of the Poole-Frenkel current. The excellent performance of the memory is attributed to high trapping sites of the low-temperature-annealed, high-κ sol–gel film. PMID:23899050
Photo-reactive charge trapping memory based on lanthanide complex.
Zhuang, Jiaqing; Lo, Wai-Sum; Zhou, Li; Sun, Qi-Jun; Chan, Chi-Fai; Zhou, Ye; Han, Su-Ting; Yan, Yan; Wong, Wing-Tak; Wong, Ka-Leung; Roy, V A L
2015-10-09
Traditional utilization of photo-induced excitons is popularly but restricted in the fields of photovoltaic devices as well as photodetectors, and efforts on broadening its function have always been attempted. However, rare reports are available on organic field effect transistor (OFET) memory employing photo-induced charges. Here, we demonstrate an OFET memory containing a novel organic lanthanide complex Eu(tta)3ppta (Eu(tta)3 = Europium(III) thenoyltrifluoroacetonate, ppta = 2-phenyl-4,6-bis(pyrazol-1-yl)-1,3,5-triazine), in which the photo-induced charges can be successfully trapped and detrapped. The luminescent complex emits intense red emission upon ultraviolet (UV) light excitation and serves as a trapping element of holes injected from the pentacene semiconductor layer. Memory window can be significantly enlarged by light-assisted programming and erasing procedures, during which the photo-induced excitons in the semiconductor layer are separated by voltage bias. The enhancement of memory window is attributed to the increasing number of photo-induced excitons by the UV light. The charges are stored in this luminescent complex for at least 10(4) s after withdrawing voltage bias. The present study on photo-assisted novel memory may motivate the research on a new type of light tunable charge trapping photo-reactive memory devices.
Hanh, Nguyen Hong; Jang, Kyungsoo; Yi, Junsin
2016-05-01
We directly deposited amorphous InGaZnO (a-IGZO) nonvolatile memory (NVM) devices with oxynitride-oxide-dioxide (OOO) stack structures on plastic substrate by a DC pulsed magnetron sputtering and inductively coupled plasma chemical vapor deposition (ICPCVD) system, using a low-temperature of 150 degrees C. The fabricated bottom gate a-IGZO NVM devices have a wide memory window with a low operating voltage during programming and erasing, due to an effective control of the gate dielectrics. In addition, after ten years, the memory device retains a memory window of over 73%, with a programming duration of only 1 ms. Moreover, the a-IGZO films show high optical transmittance of over 85%, and good uniformity with a root mean square (RMS) roughness of 0.26 nm. This film is a promising candidate to achieve flexible displays and transparency on plastic substrates because of the possibility of low-temperature deposition, and the high transparent properties of a-IGZO films. These results demonstrate that the a-IGZO NVM devices obtained at low-temperature have a suitable programming and erasing efficiency for data storage under low-voltage conditions, in combination with excellent charge retention characteristics, and thus show great potential application in flexible memory displays.
Light-erasable embedded charge-trapping memory based on MoS2 for system-on-panel applications
NASA Astrophysics Data System (ADS)
He, Long-Fei; Zhu, Hao; Xu, Jing; Liu, Hao; Nie, Xin-Ran; Chen, Lin; Sun, Qing-Qing; Xia, Yang; Wei Zhang, David
2017-11-01
The continuous scaling and challenges in device integrations in modern portable electronic products have aroused many scientific interests, and a great deal of effort has been made in seeking solutions towards a more microminiaturized package assembled with smaller and more powerful components. In this study, an embedded light-erasable charge-trapping memory with a high-k dielectric stack (Al2O3/HfO2/Al2O3) and an atomically thin MoS2 channel has been fabricated and fully characterized. The memory exhibits a sufficient memory window, fast programming and erasing (P/E) speed, and high On/Off current ratio up to 107. Less than 25% memory window degradation is observed after projected 10-year retention, and the device functions perfectly after 8000 P/E operation cycles. Furthermore, the programmed device can be fully erased by incident light without electrical assistance. Such excellent memory performance originates from the intrinsic properties of two-dimensional (2D) MoS2 and the engineered back-gate dielectric stack. Our integration of 2D semiconductors in the infrastructure of light-erasable charge-trapping memory is very promising for future system-on-panel applications like storage of metadata and flexible imaging arrays.
Photo-reactive charge trapping memory based on lanthanide complex
NASA Astrophysics Data System (ADS)
Zhuang, Jiaqing; Lo, Wai-Sum; Zhou, Li; Sun, Qi-Jun; Chan, Chi-Fai; Zhou, Ye; Han, Su-Ting; Yan, Yan; Wong, Wing-Tak; Wong, Ka-Leung; Roy, V. A. L.
2015-10-01
Traditional utilization of photo-induced excitons is popularly but restricted in the fields of photovoltaic devices as well as photodetectors, and efforts on broadening its function have always been attempted. However, rare reports are available on organic field effect transistor (OFET) memory employing photo-induced charges. Here, we demonstrate an OFET memory containing a novel organic lanthanide complex Eu(tta)3ppta (Eu(tta)3 = Europium(III) thenoyltrifluoroacetonate, ppta = 2-phenyl-4,6-bis(pyrazol-1-yl)-1,3,5-triazine), in which the photo-induced charges can be successfully trapped and detrapped. The luminescent complex emits intense red emission upon ultraviolet (UV) light excitation and serves as a trapping element of holes injected from the pentacene semiconductor layer. Memory window can be significantly enlarged by light-assisted programming and erasing procedures, during which the photo-induced excitons in the semiconductor layer are separated by voltage bias. The enhancement of memory window is attributed to the increasing number of photo-induced excitons by the UV light. The charges are stored in this luminescent complex for at least 104 s after withdrawing voltage bias. The present study on photo-assisted novel memory may motivate the research on a new type of light tunable charge trapping photo-reactive memory devices.
Yang, Shiqian; Wang, Qin; Zhang, Manhong; Long, Shibing; Liu, Jing; Liu, Ming
2010-06-18
Titanium-tungsten nanocrystals (NCs) were fabricated by a self-assembly rapid thermal annealing (RTA) process. Well isolated Ti(0.46)W(0.54) NCs were embedded in the gate dielectric stack of SiO(2)/Al(2)O(3). A metal-oxide-semiconductor (MOS) capacitor was fabricated to investigate its application in a non-volatile memory (NVM) device. It demonstrated a large memory window of 6.2 V in terms of flat-band voltage (V(FB)) shift under a dual-directional sweeping gate voltage of - 10 to 10 V. A 1.1 V V(FB) shift under a low dual-directional sweeping gate voltage of - 4 to 4 V was also observed. The retention characteristic of this MOS capacitor was demonstrated by a 0.5 V memory window after 10(4) s of elapsed time at room temperature. The endurance characteristic was demonstrated by a program/erase cycling test.
2015-04-01
report is to examine how a computer forensic investigator/incident handler, without specialised computer memory or software reverse engineering skills ...The skills amassed by incident handlers and investigators alike while using Volatility to examine Windows memory images will be of some help...bin/pulseaudio --start --log-target=syslog 1362 1000 1000 nautilus 1366 1000 1000 /usr/lib/pulseaudio/pulse/gconf- helper 1370 1000 1000 nm-applet
NASA Technical Reports Server (NTRS)
Vo, San C.; Biegel, Bryan (Technical Monitor)
2001-01-01
Scalar multiplication is an essential operation in elliptic curve cryptosystems because its implementation determines the speed and the memory storage requirements. This paper discusses some improvements on two popular signed window algorithms for implementing scalar multiplications of an elliptic curve point - Morain-Olivos's algorithm and Koyarna-Tsuruoka's algorithm.
NASA Astrophysics Data System (ADS)
Singh, Prashant; Jha, Rajesh Kumar; Singh, Rajat Kumar; Singh, B. R.
2018-02-01
In this paper, we present the structural and electrical properties of the Al2O3 buffer layer on non-volatile memory behavior using Metal/PZT/Al2O3/Silicon structures. Metal/PZT/Silicon and Metal/Al2O3/Silicon structures were also fabricated and characterized to obtain capacitance and leakage current parameters. Lead zirconate titanate (PZT::35:65) and Al2O3 films were deposited by sputtering on the silicon substrate. Memory window, PUND, endurance, breakdown voltage, effective charges, flat-band voltage and leakage current density parameters were measured and the effects of process parameters on the structural and electrical characteristics were investigated. X-ray data show dominant (110) tetragonal phase of the PZT film, which crystallizes at 500 °C. The sputtered Al2O3 film annealed at different temperatures show dominant (312) orientation and amorphous nature at 425 °C. Multiple angle laser ellipsometric analysis reveals the temperature dependence of PZT film refractive index and extinction coefficient. Electrical characterization shows the maximum memory window of 3.9 V and breakdown voltage of 25 V for the Metal/Ferroelectric/Silicon (MFeS) structures annealed at 500 °C. With 10 nm Al2O3 layer in the Metal/Ferroelectric/Insulator/Silicon (MFeIS) structure, the memory window and breakdown voltage was improved to 7.21 and 35 V, respectively. Such structures show high endurance with no significant reduction polarization charge for upto 2.2 × 109 iteration cycles.
Bigger is better and worse: on the intricate relationship between hippocampal size and memory.
Molnár, Katalin; Kéri, Szabolcs
2014-04-01
The structure-function relationship between the hippocampal region and memory is a debated topic in the literature. It has been suggested that larger hippocampi are associated with less effective memory performance in healthy young adults because of a partial synaptic pruning. Here, we tested this hypothesis in individuals with Fragile X Syndrome (FXS) with known abnormal pruning and IQ- and age-matched individuals with hypoxic brain injury, preterm birth, and obstetric complications. Results revealed larger normalized hippocampal volume in FXS compared with neurotypical controls, whereas individuals with hypoxic injury had smaller hippocampi. In neurotypical controls and individuals with hypoxic injury, better general memory, as indexed by the Wechsler Memory Scale-Revised, was associated with larger hippocampus. In contrast, in FXS we observed the opposite relationship: larger hippocampus was associated with worse general memory. Caudate volume did not correlate with memory in either group. These results suggest that incomplete pruning in young healthy adults may not contribute to less efficient memory capacity, and hippocampal size is positively associated with memory performance. However, abnormally large and poorly pruned hippocampus may indeed be less effective in FXS. Copyright © 2014 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Cahan, Sorel; Mor, Yaniv
2007-01-01
Narrow Window theory, suggested by Y. Kareev ten years ago, has so far focused on one central implication of the limited capacity of working memory on intuitive correlation estimation, namely, overestimation of the distal population correlation. This paper points to additional and perhaps more dramatic implications due to the large dispersion of…
Design and DSP implementation of star image acquisition and star point fast acquiring and tracking
NASA Astrophysics Data System (ADS)
Zhou, Guohui; Wang, Xiaodong; Hao, Zhihang
2006-02-01
Star sensor is a special high accuracy photoelectric sensor. Attitude acquisition time is an important function index of star sensor. In this paper, the design target is to acquire 10 samples per second dynamic performance. On the basis of analyzing CCD signals timing and star image processing, a new design and a special parallel architecture for improving star image processing are presented in this paper. In the design, the operation moving the data in expanded windows including the star to the on-chip memory of DSP is arranged in the invalid period of CCD frame signal. During the CCD saving the star image to memory, DSP processes the data in the on-chip memory. This parallelism greatly improves the efficiency of processing. The scheme proposed here results in enormous savings of memory normally required. In the scheme, DSP HOLD mode and CPLD technology are used to make a shared memory between CCD and DSP. The efficiency of processing is discussed in numerical tests. Only in 3.5ms is acquired the five lightest stars in the star acquisition stage. In 43us, the data in five expanded windows including stars are moved into the internal memory of DSP, and in 1.6ms, five star coordinates are achieved in the star tracking stage.
A Design of Finite Memory Residual Generation Filter for Sensor Fault Detection
NASA Astrophysics Data System (ADS)
Kim, Pyung Soo
2017-04-01
In the current paper, a residual generation filter with finite memory structure is proposed for sensor fault detection. The proposed finite memory residual generation filter provides the residual by real-time filtering of fault vector using only the most recent finite measurements and inputs on the window. It is shown that the residual given by the proposed residual generation filter provides the exact fault for noisefree systems. The proposed residual generation filter is specified to the digital filter structure for the amenability to hardware implementation. Finally, to illustrate the capability of the proposed residual generation filter, extensive simulations are performed for the discretized DC motor system with two types of sensor faults, incipient soft bias-type fault and abrupt bias-type fault. In particular, according to diverse noise levels and windows lengths, meaningful simulation results are given for the abrupt bias-type fault.
NASA Astrophysics Data System (ADS)
Zhou, Ye; Han, Su-Ting; Xu, Zong-Xiang; Roy, V. A. L.
2013-02-01
The strain and temperature dependent memory effect of organic memory transistors on plastic substrates has been investigated under ambient conditions. The gold (Au) nanoparticle monolayer was prepared and embedded in an atomic layer deposited aluminum oxide (Al2O3) as the charge trapping layer. The devices exhibited low operation voltage, reliable memory characteristics and long data retention time. Experimental analysis of the programming and erasing behavior at various bending states showed the relationship between strain and charging capacity. Thermal-induced effects on these memory devices have also been analyzed. The mobility shows ~200% rise and the memory window increases from 1.48 V to 1.8 V when the temperature rises from 20 °C to 80 °C due to thermally activated transport. The retention capability of the devices decreases with the increased working temperature. Our findings provide a better understanding of flexible organic memory transistors under various operating temperatures and validate their applications in various areas such as temperature sensors, temperature memory or advanced electronic circuits. Furthermore, the low temperature processing procedures of the key elements (Au nanoparticle monolayer and Al2O3 dielectric layer) could be potentially integrated with large area flexible electronics.The strain and temperature dependent memory effect of organic memory transistors on plastic substrates has been investigated under ambient conditions. The gold (Au) nanoparticle monolayer was prepared and embedded in an atomic layer deposited aluminum oxide (Al2O3) as the charge trapping layer. The devices exhibited low operation voltage, reliable memory characteristics and long data retention time. Experimental analysis of the programming and erasing behavior at various bending states showed the relationship between strain and charging capacity. Thermal-induced effects on these memory devices have also been analyzed. The mobility shows ~200% rise and the memory window increases from 1.48 V to 1.8 V when the temperature rises from 20 °C to 80 °C due to thermally activated transport. The retention capability of the devices decreases with the increased working temperature. Our findings provide a better understanding of flexible organic memory transistors under various operating temperatures and validate their applications in various areas such as temperature sensors, temperature memory or advanced electronic circuits. Furthermore, the low temperature processing procedures of the key elements (Au nanoparticle monolayer and Al2O3 dielectric layer) could be potentially integrated with large area flexible electronics. Electronic supplementary information (ESI) available: UV-vis spectrum of Au nanoparticle aqueous solution, transfer characteristics of the transistors without inserting an Au nanoparticle monolayer, AFM image of the pentacene layer, transfer characteristics at different program voltages and memory windows with respect to the P/E voltage. See DOI: 10.1039/c2nr32579a
The Profile of Memory Function in Children With Autism
Williams, Diane L.; Goldstein, Gerald; Minshew, Nancy J.
2007-01-01
A clinical memory test was administered to 38 high-functioning children with autism and 38 individually matched normal controls, 8–16 years of age. The resulting profile of memory abilities in the children with autism was characterized by relatively poor memory for complex visual and verbal information and spatial working memory with relatively intact associative learning ability, verbal working memory, and recognition memory. A stepwise discriminant function analysis of the subtests found that the Finger Windows subtest, a measure of spatial working memory, discriminated most accurately between the autism and normal control groups. A principal components analysis indicated that the factor structure of the subtests differed substantially between the children with autism and controls, suggesting differing organizations of memory ability. PMID:16460219
Stress within a Restricted Time Window Selectively Affects the Persistence of Long-Term Memory
Fang, Qin; Chai, Ning; Zhao, Li-Yan; Xue, Yan-Xue; Luo, Yi-Xiao; Jian, Min; Han, Ying; Shi, Hai-Shui; Lu, Lin; Wu, Ping; Wang, Ji-Shi
2013-01-01
The effects of stress on emotional memory are distinct and depend on the stages of memory. Memory undergoes consolidation and reconsolidation after acquisition and retrieval, respectively. Stress facilitates the consolidation but disrupts the reconsolidation of emotional memory. Previous research on the effects of stress on memory have focused on long-term memory (LTM) formation (tested 24 h later), but the effects of stress on the persistence of LTM (tested at least 1 week later) are unclear. Recent findings indicated that the persistence of LTM requires late-phase protein synthesis in the dorsal hippocampus. The present study investigated the effect of stress (i.e., cold water stress) during the late phase after the acquisition and retrieval of contextual fear memory in rats. We found that stress and corticosterone administration during the late phase (12 h) after acquisition, referred to as late consolidation, selectively enhanced the persistence of LTM, whereas stress during the late phase (12 h) after retrieval, referred to as late reconsolidation, selectively disrupted the restabilized persistence of LTM. Moreover, the effects of stress on the persistence of LTM were blocked by the corticosterone synthesis inhibitor metyrapone, which was administered before stress, suggesting that the glucocorticoid system is involved in the effects of stress on the persistence of LTM. We conclude that stress within a restricted time window after acquisition or retrieval selectively affects the persistence of LTM and depends on the glucocorticoid system. PMID:23544051
Rapid, experience-dependent translation of neurogranin enables memory encoding.
Jones, Kendrick J; Templet, Sebastian; Zemoura, Khaled; Kuzniewska, Bozena; Pena, Franciso X; Hwang, Hongik; Lei, Ding J; Haensgen, Henny; Nguyen, Shannon; Saenz, Christopher; Lewis, Michael; Dziembowska, Magdalena; Xu, Weifeng
2018-06-19
Experience induces de novo protein synthesis in the brain and protein synthesis is required for long-term memory. It is important to define the critical temporal window of protein synthesis and identify newly synthesized proteins required for memory formation. Using a behavioral paradigm that temporally separates the contextual exposure from the association with fear, we found that protein synthesis during the transient window of context exposure is required for contextual memory formation. Among an array of putative activity-dependent translational neuronal targets tested, we identified one candidate, a schizophrenia-associated candidate mRNA, neurogranin (Ng, encoded by the Nrgn gene) responding to novel-context exposure. The Ng mRNA was recruited to the actively translating mRNA pool upon novel-context exposure, and its protein levels were rapidly increased in the hippocampus. By specifically blocking activity-dependent translation of Ng using virus-mediated molecular perturbation, we show that experience-dependent translation of Ng in the hippocampus is required for contextual memory formation. We further interrogated the molecular mechanism underlying the experience-dependent translation of Ng, and found that fragile-X mental retardation protein (FMRP) interacts with the 3'UTR of the Nrgn mRNA and is required for activity-dependent translation of Ng in the synaptic compartment and contextual memory formation. Our results reveal that FMRP-mediated, experience-dependent, rapid enhancement of Ng translation in the hippocampus during the memory acquisition enables durable context memory encoding. Copyright © 2018 the Author(s). Published by PNAS.
Rapid, experience-dependent translation of neurogranin enables memory encoding
Jones, Kendrick J.; Templet, Sebastian; Zemoura, Khaled; Pena, Franciso X.; Hwang, Hongik; Lei, Ding J.; Haensgen, Henny; Nguyen, Shannon; Saenz, Christopher; Lewis, Michael; Dziembowska, Magdalena
2018-01-01
Experience induces de novo protein synthesis in the brain and protein synthesis is required for long-term memory. It is important to define the critical temporal window of protein synthesis and identify newly synthesized proteins required for memory formation. Using a behavioral paradigm that temporally separates the contextual exposure from the association with fear, we found that protein synthesis during the transient window of context exposure is required for contextual memory formation. Among an array of putative activity-dependent translational neuronal targets tested, we identified one candidate, a schizophrenia-associated candidate mRNA, neurogranin (Ng, encoded by the Nrgn gene) responding to novel-context exposure. The Ng mRNA was recruited to the actively translating mRNA pool upon novel-context exposure, and its protein levels were rapidly increased in the hippocampus. By specifically blocking activity-dependent translation of Ng using virus-mediated molecular perturbation, we show that experience-dependent translation of Ng in the hippocampus is required for contextual memory formation. We further interrogated the molecular mechanism underlying the experience-dependent translation of Ng, and found that fragile-X mental retardation protein (FMRP) interacts with the 3′UTR of the Nrgn mRNA and is required for activity-dependent translation of Ng in the synaptic compartment and contextual memory formation. Our results reveal that FMRP-mediated, experience-dependent, rapid enhancement of Ng translation in the hippocampus during the memory acquisition enables durable context memory encoding. PMID:29880715
NASA Astrophysics Data System (ADS)
Wen, Xixing; Zeng, Xiangbin; Zheng, Wenjun; Liao, Wugang; Feng, Feng
2015-01-01
The charging/discharging behavior of Si quantum dots (QDs) embedded in amorphous silicon carbide (a-SiCx) was investigated based on the Al/insulating layer/Si QDs embedded in a-SiCx/SiO2/p-Si (metal-insulator-quantum dots-oxide-silicon) multilayer structure by capacitance-voltage (C-V) and conductance-voltage (G-V) measurements. Transmission electron microscopy and Raman scattering spectroscopy measurements reveal the microstructure and distribution of Si QDs. The occurrence and shift of conductance peaks indicate the carrier transfer and the charging/discharging behavior of Si QDs. The multilayer structure shows a large memory window of 5.2 eV at ±8 V sweeping voltage. Analysis of the C-V and G-V results allows a quantification of the Coulomb charging energy and the trapped charge density associated with the charging/discharging behavior. It is found that the memory window is related to the size effect, and Si QDs with large size or low Coulomb charging energy can trap two or more electrons by changing the charging voltage. Meanwhile, the estimated lower potential barrier height between Si QD and a-SiCx, and the lower Coulomb charging energy of Si QDs could enhance the charging and discharging effect of Si QDs and lead to an enlarged memory window. Further studies of the charging/discharging mechanism of Si QDs embedded in a-SiCx can promote the application of Si QDs in low-power consumption semiconductor memory devices.
NASA Astrophysics Data System (ADS)
Huang, Wei; Shi, Wei; Han, Shijiao; Yu, Junsheng
2013-05-01
Hysteresis mechanism of pentacene organic field-effect transistors (OFETs) with polyvinyl alcohol (PVA) and/or polymethyl methacrylate (PMMA) dielectrics is studied. Through analyzing the electrical characteristics of OFETs with various PVA/PMMA arrangements, it shows that charge, which is trapped in PVA bulk and at the interface of pentacene/PVA, is one of the origins of hysteresis. The results also show that memory window is proportional to both trap amount in PVA and charge density at the gate/PVA or PVA/pentacene interfaces. Hence, the controllable memory window of around 0 ˜ 10 V can be realized by controlling the thickness and combination of triple-layer polymer dielectrics.
EEG correlates of visual short-term memory as neuro-cognitive endophenotypes of ADHD.
Wiegand, Iris; Hennig-Fast, Kristina; Kilian, Beate; Müller, Hermann J; Töllner, Thomas; Möller, Hans-Jürgen; Engel, Rolf R; Finke, Kathrin
2016-05-01
Attention deficit hyperactivity disorder (ADHD) frequently persists into adulthood. A reduction in visual short-term memory (vSTM) storage capacity was recently suggested as a potential neuro-cognitive endophenotype, i.e., a testable marker of an individual's liability for developing ADHD. This study aimed at identifying markers of the brain abnormalities underlying vSTM reductions in adult ADHD. We combined behavioral parameter-based assessment with electrophysiology in groups of adult ADHD patients and healthy age-matched controls. Amplitudes of ERP markers of vSTM storage capacity, the contralateral delay activity (CDA) and the P3b, were analyzed according to (i) differences between individuals with higher vs. lower storage capacity K and (ii) differences between ADHD patients and control participants. We replicated the finding of reduced storage capacity in adult ADHD. Across groups, individuals with higher relative to lower storage capacity showed a larger CDA and P3b. We further found differences between the patient and control groups in the ERPs: The CDA amplitude was attenuated in an early time window for ADHD patients compared to control participants, and was negatively correlated with ADHD patients' symptom severity ratings. Furthermore, the P3b was larger in ADHD patients relative to control participants. These electrophysiological findings indicate altered brain mechanisms underlying visual storage capacity in ADHD, which are characterized by deficient encoding and maintenance, and increased recruitment of control processes. Accordingly, (quantifiable) ERP markers of vSTM in adult ADHD bear candidacy as neuro-cognitive endophenotypes of the disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Priddis, Lynn E.; Howieson, Noel D.
2010-01-01
This article describes a procedure which has proven useful in facilitating narratives about experience of everyday family situations in order to provide insights into the inner world of children around five-seven years. The Windows to Attachment in Young Children (WAYC) consists of the procedure itself and scoring frameworks through which the…
Metal-Insulator Transition Driven by Vacancy Ordering in GeSbTe Phase Change Materials.
Bragaglia, Valeria; Arciprete, Fabrizio; Zhang, Wei; Mio, Antonio Massimiliano; Zallo, Eugenio; Perumal, Karthick; Giussani, Alessandro; Cecchi, Stefano; Boschker, Jos Emiel; Riechert, Henning; Privitera, Stefania; Rimini, Emanuele; Mazzarello, Riccardo; Calarco, Raffaella
2016-04-01
Phase Change Materials (PCMs) are unique compounds employed in non-volatile random access memory thanks to the rapid and reversible transformation between the amorphous and crystalline state that display large differences in electrical and optical properties. In addition to the amorphous-to-crystalline transition, experimental results on polycrystalline GeSbTe alloys (GST) films evidenced a Metal-Insulator Transition (MIT) attributed to disorder in the crystalline phase. Here we report on a fundamental advance in the fabrication of GST with out-of-plane stacking of ordered vacancy layers by means of three distinct methods: Molecular Beam Epitaxy, thermal annealing and application of femtosecond laser pulses. We assess the degree of vacancy ordering and explicitly correlate it with the MIT. We further tune the ordering in a controlled fashion attaining a large range of resistivity. Employing ordered GST might allow the realization of cells with larger programming windows.
Forensic Analysis of Window’s(Registered) Virtual Memory Incorporating the System’s Page-File
2008-12-01
Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE December...data in a meaningful way. One reason for this is how memory is managed by the operating system. Data belonging to one process can be distributed...way. One reason for this is how memory is managed by the operating system. Data belonging to one process can be distributed arbitrarily across
Memory, Sleep and Dreaming: Experiencing Consolidation
Wamsley, Erin J.; Stickgold, Robert
2010-01-01
Synopsis It is now well established that post-learning sleep is beneficial for human memory performance. At the same time, it has long been known that learning experiences influence the content of subsequent sleep mentation (i.e., “dreaming”). Here, we review evidence that newly encoded memories are reactivated and consolidated in the sleeping brain, and that this process is directly reflected in the content of concomitant sleep mentation, providing a valuable window into the mnemonic functions of sleep. PMID:21516215
Vicarious extinction learning during reconsolidation neutralizes fear memory.
Golkar, Armita; Tjaden, Cathelijn; Kindt, Merel
2017-05-01
Previous studies have suggested that fear memories can be updated when recalled, a process referred to as reconsolidation. Given the beneficial effects of model-based safety learning (i.e. vicarious extinction) in preventing the recovery of short-term fear memory, we examined whether consolidated long-term fear memories could be updated with safety learning accomplished through vicarious extinction learning initiated within the reconsolidation time-window. We assessed this in a final sample of 19 participants that underwent a three-day within-subject fear-conditioning design, using fear-potentiated startle as our primary index of fear learning. On day 1, two fear-relevant stimuli (reinforced CSs) were paired with shock (US) and a third stimulus served as a control (CS). On day 2, one of the two previously reinforced stimuli (the reminded CS) was presented once in order to reactivate the fear memory 10 min before vicarious extinction training was initiated for all CSs. The recovery of the fear memory was tested 24 h later. Vicarious extinction training conducted within the reconsolidation time window specifically prevented the recovery of the reactivated fear memory (p = 0.03), while leaving fear-potentiated startle responses to the non-reactivated cue intact (p = 0.62). These findings are relevant to both basic and clinical research, suggesting that a safe, non-invasive model-based exposure technique has the potential to enhance the efficiency and durability of anxiolytic therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Cahan, Sorel; Mor, Yaniv
2007-01-01
This article challenges Yaakov Kareev's (1995a, 2000) argument regarding the positive bias of intuitive correlation estimates due to working memory capacity limitations and its adaptive value. The authors show that, under narrow window theory's primacy effect assumption, there is a considerable between-individual variability of the effects of…
Reading Time Allocation Strategies and Working Memory Using Rapid Serial Visual Presentation
ERIC Educational Resources Information Center
Busler, Jessica N.; Lazarte, Alejandro A.
2017-01-01
Rapid serial visual presentation (RSVP) is a useful method for controlling the timing of text presentations and studying how readers' characteristics, such as working memory (WM) and reading strategies for time allocation, influence text recall. In the current study, a modified version of RSVP (Moving Window RSVP [MW-RSVP]) was used to induce…
ERIC Educational Resources Information Center
Razook, Nim
2009-01-01
The author began teaching at the University of Oklahoma in the late 1970s. In this article, the author shares two memories of those times on campus. The first was looking out his office window and seeing Iranian students marching on campus, shouting, "The Shah is a Fascist Pig." The second memory provoked this paper. It made the author…
Proper Analytic Point Spread Function for Lateral Modulation
NASA Astrophysics Data System (ADS)
Chikayoshi Sumi,; Kunio Shimizu,; Norihiko Matsui,
2010-07-01
For ultrasonic lateral modulation for the imaging and measurement of tissue motion, better envelope shapes of the point spread function (PSF) than of a parabolic function are searched for within analytic functions or windows on the basis of the knowledge of the ideal shape of PSF previously obtained, i.e., having a large full width at half maximum and short feet. Through simulation of displacement vector measurement, better shapes are determined. As a better shape, a new window is obtained from a Turkey window by changing Hanning windows by power functions with an order larger than the second order. The order of measurement accuracies obtained is as follows, the new window > rectangular window > power function with a higher order > parabolic function > Akaike window.
CMOS VLSI Active-Pixel Sensor for Tracking
NASA Technical Reports Server (NTRS)
Pain, Bedabrata; Sun, Chao; Yang, Guang; Heynssens, Julie
2004-01-01
An architecture for a proposed active-pixel sensor (APS) and a design to implement the architecture in a complementary metal oxide semiconductor (CMOS) very-large-scale integrated (VLSI) circuit provide for some advanced features that are expected to be especially desirable for tracking pointlike features of stars. The architecture would also make this APS suitable for robotic- vision and general pointing and tracking applications. CMOS imagers in general are well suited for pointing and tracking because they can be configured for random access to selected pixels and to provide readout from windows of interest within their fields of view. However, until now, the architectures of CMOS imagers have not supported multiwindow operation or low-noise data collection. Moreover, smearing and motion artifacts in collected images have made prior CMOS imagers unsuitable for tracking applications. The proposed CMOS imager (see figure) would include an array of 1,024 by 1,024 pixels containing high-performance photodiode-based APS circuitry. The pixel pitch would be 9 m. The operations of the pixel circuits would be sequenced and otherwise controlled by an on-chip timing and control block, which would enable the collection of image data, during a single frame period, from either the full frame (that is, all 1,024 1,024 pixels) or from within as many as 8 different arbitrarily placed windows as large as 8 by 8 pixels each. A typical prior CMOS APS operates in a row-at-a-time ( grolling-shutter h) readout mode, which gives rise to exposure skew. In contrast, the proposed APS would operate in a sample-first/readlater mode, suppressing rolling-shutter effects. In this mode, the analog readout signals from the pixels corresponding to the windows of the interest (which windows, in the star-tracking application, would presumably contain guide stars) would be sampled rapidly by routing them through a programmable diagonal switch array to an on-chip parallel analog memory array. The diagonal-switch and memory addresses would be generated by the on-chip controller. The memory array would be large enough to hold differential signals acquired from all 8 windows during a frame period. Following the rapid sampling from all the windows, the contents of the memory array would be read out sequentially by use of a capacitive transimpedance amplifier (CTIA) at a maximum data rate of 10 MHz. This data rate is compatible with an update rate of almost 10 Hz, even in full-frame operation
Organic memory device with self-assembly monolayered aptamer conjugated nanoparticles
NASA Astrophysics Data System (ADS)
Oh, Sewook; Kim, Minkeun; Kim, Yejin; Jung, Hunsang; Yoon, Tae-Sik; Choi, Young-Jin; Jung Kang, Chi; Moon, Myeong-Ju; Jeong, Yong-Yeon; Park, In-Kyu; Ho Lee, Hyun
2013-08-01
An organic memory structure using monolayered aptamer conjugated gold nanoparticles (Au NPs) as charge storage nodes was demonstrated. Metal-pentacene-insulator-semiconductor device was adopted for the non-volatile memory effect through self assembly monolayer of A10-aptamer conjugated Au NPs, which was formed on functionalized insulator surface with prostate-specific membrane antigen protein. The capacitance versus voltage (C-V) curves obtained for the monolayered Au NPs capacitor exhibited substantial flat-band voltage shift (ΔVFB) or memory window of 3.76 V under (+/-)7 V voltage sweep. The memory device format can be potentially expanded to a highly specific capacitive sensor for the aptamer-specific biomolecule detection.
NASA Astrophysics Data System (ADS)
Kazanskiy, Nikolay; Protsenko, Vladimir; Serafimovich, Pavel
2016-03-01
This research article contains an experiment with implementation of image filtering task in Apache Storm and IBM InfoSphere Streams stream data processing systems. The aim of presented research is to show that new technologies could be effectively used for sliding window filtering of image sequences. The analysis of execution was focused on two parameters: throughput and memory consumption. Profiling was performed on CentOS operating systems running on two virtual machines for each system. The experiment results showed that IBM InfoSphere Streams has about 1.5 to 13.5 times lower memory footprint than Apache Storm, but could be about 2.0 to 2.5 slower on a real hardware.
Managing coherence via put/get windows
Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton on Hudson, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Hoenicke, Dirk [Ossining, NY; Ohmacht, Martin [Yorktown Heights, NY
2011-01-11
A method and apparatus for managing coherence between two processors of a two processor node of a multi-processor computer system. Generally the present invention relates to a software algorithm that simplifies and significantly speeds the management of cache coherence in a message passing parallel computer, and to hardware apparatus that assists this cache coherence algorithm. The software algorithm uses the opening and closing of put/get windows to coordinate the activated required to achieve cache coherence. The hardware apparatus may be an extension to the hardware address decode, that creates, in the physical memory address space of the node, an area of virtual memory that (a) does not actually exist, and (b) is therefore able to respond instantly to read and write requests from the processing elements.
Managing coherence via put/get windows
Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton on Hudson, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Hoenicke, Dirk [Ossining, NY; Ohmacht, Martin [Yorktown Heights, NY
2012-02-21
A method and apparatus for managing coherence between two processors of a two processor node of a multi-processor computer system. Generally the present invention relates to a software algorithm that simplifies and significantly speeds the management of cache coherence in a message passing parallel computer, and to hardware apparatus that assists this cache coherence algorithm. The software algorithm uses the opening and closing of put/get windows to coordinate the activated required to achieve cache coherence. The hardware apparatus may be an extension to the hardware address decode, that creates, in the physical memory address space of the node, an area of virtual memory that (a) does not actually exist, and (b) is therefore able to respond instantly to read and write requests from the processing elements.
Rossignoli, Matheus Teixeira; Lopes-Aguiar, Cleiton; Ruggiero, Rafael Naime; Do Val da Silva, Raquel Araujo; Bueno-Junior, Lezio Soares; Kandratavicius, Ludmyla; Peixoto-Santos, José Eduardo; Crippa, José Alexandre; Cecilio Hallak, Jaime Eduardo; Zuardi, Antonio Waldo; Szawka, Raphael Escorsim; Anselmo-Franci, Janete; Leite, João Pereira; Romcy-Pereira, Rodrigo Neves
2017-05-14
The prefrontal cortex (PFC), amygdala and hippocampus display a coordinated activity during acquisition of associative fear memories. Evidence indicates that PFC engagement in aversive memory formation does not progress linearly as previously thought. Instead, it seems to be recruited at specific time windows after memory acquisition, which has implications for the treatment of post-traumatic stress disorders. Cannabidiol (CBD), the major non-psychotomimetic phytocannabinoid of the Cannabis sativa plant, is known to modulate contextual fear memory acquisition in rodents. However, it is still not clear how CBD interferes with PFC-dependent processes during post-training memory consolidation. Here, we tested whether intra-PFC infusions of CBD immediately after or 5h following contextual fear conditioning was able to interfere with memory consolidation. Neurochemical and cellular correlates of the CBD treatment were evaluated by the quantification of extracellular levels of dopamine (DA), serotonin, and their metabolites in the PFC and by measuring the cellular expression of activity-dependent transcription factors in cortical and limbic regions. Our results indicate that bilateral intra-PFC CBD infusion impaired contextual fear memory consolidation when applied 5h after conditioning, but had no effect when applied immediately after it. This effect was associated with a reduction in DA turnover in the PFC following retrieval 5days after training. We also observed that post-conditioning infusion of CBD reduced c-fos and zif-268 protein expression in the hippocampus, PFC, and thalamus. Our findings support that CBD interferes with contextual fear memory consolidation by reducing PFC influence on cortico-limbic circuits. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Long Memory in STOCK Market Volatility: the International Evidence
NASA Astrophysics Data System (ADS)
Yang, Chunxia; Hu, Sen; Xia, Bingying; Wang, Rui
2012-08-01
It is still a hot topic to catch the auto-dependence behavior of volatility. Here, based on the measurement of average volatility, under different observation window size, we investigated the dependence of successive volatility of several main stock indices and their simulated GARCH(1, 1) model, there were obvious linear auto-dependence in the logarithm of volatility under a small observation window size and nonlinear auto-dependence under a big observation. After calculating the correlation and mutual information of the logarithm of volatility for Dow Jones Industrial Average during different periods, we find that some influential events can change the correlation structure and the volatilities of different periods have distinct influence on that of the remote future. Besides, GARCH model could produce similar behavior of dependence as real data and long memory property. But our analyses show that the auto-dependence of volatility in GARCH is different from that in real data, and the long memory is undervalued by GARCH.
Using chaotic artificial neural networks to model memory in the brain
NASA Astrophysics Data System (ADS)
Aram, Zainab; Jafari, Sajad; Ma, Jun; Sprott, Julien C.; Zendehrouh, Sareh; Pham, Viet-Thanh
2017-03-01
In the current study, a novel model for human memory is proposed based on the chaotic dynamics of artificial neural networks. This new model explains a biological fact about memory which is not yet explained by any other model: There are theories that the brain normally works in a chaotic mode, while during attention it shows ordered behavior. This model uses the periodic windows observed in a previously proposed model for the brain to store and then recollect the information.
Perceived Spaciousness and Preference in Sequential Experience.
Bokharaei, Saleheh; Nasar, Jack L
2016-11-01
We assessed the perceived spaciousness and preference for a destination space in relation to six attributes (size, lighting, window size, texture, wall mural, and amount of furniture) of it and of the space experienced before it. Studies have examined effects of these attributes but not for dynamic experience or preference. We created 24 virtual reality walks between each possible pair of two levels of each attribute. For each destination space, 31 students (13 men, 18 women) rated spaciousness and 30 students (16 men, 14 women) rated preference. We conducted separate 2 × 2 repeated-measure ANOVAs across each condition for perceived spaciousness and preference. Participants judged the space that was larger, was more brightly lit, with a larger window, or with less furniture as the more spacious. These attributes also increased preference. Consonant with adaptation-level theory, participants judged offices as higher in spaciousness and preference if preceded by a space that was smaller, was more dimly lit, or had smaller windows. The findings suggest that perceived spaciousness varies with size, lightness, window size, and amount of furniture but that perception also depends on the size, lightness, and size of the space experienced before. Designers could use the findings to manipulate features to make a space appear larger or more desirable. © 2016, Human Factors and Ergonomics Society.
An Evaluation of TCP with Larger Initial Windows
NASA Technical Reports Server (NTRS)
Allman, Mark; Hayes, Christopher; Ostermann, Shawn
1998-01-01
Transmission Control Protocol (TCP's) slow start algorithm gradually increases the amount of data a sender injects into the network, which prevents the sender from overwhelming the network with an inappropriately large burst of traffic. However, the slow start algorithm can make poor use of the available band-width for transfers which are small compared to the bandwidth-delay product of the link, such as file transfers up to few thousand characters over satellite links or even transfers of several hundred bytes over local area networks. This paper evaluates a proposed performance enhancement that raises the initial window used by TCP from 1 MSS-sized segment to roughly 4 KB. The paper evaluates the impact of using larger initial windows on TCP transfers over both the shared Internet and dialup modem links.
Miyata, Ryota; Ota, Keisuke; Aonishi, Toru
2013-01-01
Recently reported experimental findings suggest that the hippocampal CA1 network stores spatio-temporal spike patterns and retrieves temporally reversed and spread-out patterns. In this paper, we explore the idea that the properties of the neural interactions and the synaptic plasticity rule in the CA1 network enable it to function as a hetero-associative memory recalling such reversed and spread-out spike patterns. In line with Lengyel’s speculation (Lengyel et al., 2005), we firstly derive optimally designed spike-timing-dependent plasticity (STDP) rules that are matched to neural interactions formalized in terms of phase response curves (PRCs) for performing the hetero-associative memory function. By maximizing object functions formulated in terms of mutual information for evaluating memory retrieval performance, we search for STDP window functions that are optimal for retrieval of normal and doubly spread-out patterns under the constraint that the PRCs are those of CA1 pyramidal neurons. The system, which can retrieve normal and doubly spread-out patterns, can also retrieve reversed patterns with the same quality. Finally, we demonstrate that purposely designed STDP window functions qualitatively conform to typical ones found in CA1 pyramidal neurons. PMID:24204822
Li, Man; Peng, Jun; Wang, Meng-Die; Song, Yan-Ling; Mei, Yuan-Wu; Fang, Yuan
2014-02-01
Passive movement has been found to improve evidently ischemic stroke patients' impaired capacity of learning and memory, but the optimal time window of initiating the therapy and the underlying mechanism are not fully understood. In this study, the effect of passive movement at different time windows on learning and memory of rats with cerebral infarction was detected. The results showed that the expression of caspase-3 and escape latency in the passive movement group were all considerably lower than those in the model group (P < 0.05), while the expression of Bcl-2 mRNA was significantly higher than those in the model group (P < 0.05). Moreover, we found that there were most significant changes of escape latency and expressions of Bcl-2 mRNA and caspase-3 when the therapy started at 24 h after focal cerebral infarction. These results suggest that passive movement is able to contribute to the recovery of learning and memory of rats with cerebral infarction, which is partially mediated by inhibiting neuron cell apoptosis, and the optimal therapeutic time is at 24 h after cerebral infarction.
The role of nitrogen doping in ALD Ta2O5 and its influence on multilevel cell switching in RRAM
NASA Astrophysics Data System (ADS)
Sedghi, N.; Li, H.; Brunell, I. F.; Dawson, K.; Potter, R. J.; Guo, Y.; Gibbon, J. T.; Dhanak, V. R.; Zhang, W. D.; Zhang, J. F.; Robertson, J.; Hall, S.; Chalker, P. R.
2017-03-01
The role of nitrogen doping on the stability and memory window of resistive state switching in N-doped Ta2O5 deposited by atomic layer deposition is elucidated. Nitrogen incorporation increases the stability of resistive memory states which is attributed to neutralization of electronic defect levels associated with oxygen vacancies. The density functional simulations with the screened exchange hybrid functional approximation show that the incorporation of nitrogen dopant atoms in the oxide network removes the O vacancy midgap defect states, thus nullifying excess defects and eliminating alternative conductive paths. By effectively reducing the density of vacancy-induced defect states through N doping, 3-bit multilevel cell switching is demonstrated, consisting of eight distinctive resistive memory states achieved by either controlling the set current compliance or the maximum voltage during reset. Nitrogen doping has a threefold effect: widening the switching memory window to accommodate the more intermediate states, improving the stability of states, and providing a gradual reset for multi-level cell switching during reset. The N-doped Ta2O5 devices have relatively small set and reset voltages (< 1 V) with reduced variability due to doping.
NASA Astrophysics Data System (ADS)
Tong, Qiujie; Wang, Qianqian; Li, Xiaoyang; Shan, Bin; Cui, Xuntai; Li, Chenyu; Peng, Zhong
2016-11-01
In order to satisfy the requirements of the real-time and generality, a laser target simulator in semi-physical simulation system based on RTX+LabWindows/CVI platform is proposed in this paper. Compared with the upper-lower computers simulation platform architecture used in the most of the real-time system now, this system has better maintainability and portability. This system runs on the Windows platform, using Windows RTX real-time extension subsystem to ensure the real-time performance of the system combining with the reflective memory network to complete some real-time tasks such as calculating the simulation model, transmitting the simulation data, and keeping real-time communication. The real-time tasks of simulation system run under the RTSS process. At the same time, we use the LabWindows/CVI to compile a graphical interface, and complete some non-real-time tasks in the process of simulation such as man-machine interaction, display and storage of the simulation data, which run under the Win32 process. Through the design of RTX shared memory and task scheduling algorithm, the data interaction between the real-time tasks process of RTSS and non-real-time tasks process of Win32 is completed. The experimental results show that this system has the strongly real-time performance, highly stability, and highly simulation accuracy. At the same time, it also has the good performance of human-computer interaction.
Wang, Xue-Feng; Tian, He; Zhao, Hai-Ming; Zhang, Tian-Yu; Mao, Wei-Quan; Qiao, Yan-Cong; Pang, Yu; Li, Yu-Xing; Yang, Yi; Ren, Tian-Ling
2018-01-01
Metal oxide-based resistive random access memory (RRAM) has attracted a lot of attention for its scalability, temperature robustness, and potential to achieve machine learning. However, a thick oxide layer results in relatively high program voltage while a thin one causes large leakage current and a small window. Owing to these fundamental limitations, by optimizing the oxide layer itself a novel interface engineering idea is proposed to reduce the programming voltage, increase the uniformity and on/off ratio. According to this idea, a molybdenum disulfide (MoS 2 )-palladium nanoparticles hybrid structure is used to engineer the oxide/electrode interface of hafnium oxide (HfO x )-based RRAM. Through its interface engineering, the set voltage can be greatly lowered (from -3.5 to -0.8 V) with better uniformity under a relatively thick HfO x layer (≈15 nm), and a 30 times improvement of the memory window can be obtained. Moreover, due to the atomic thickness of MoS 2 film and high transmittance of ITO, the proposed RRAM exhibits high transparency in visible light. As the proposed interface-engineering RRAM exhibits good transparency, low SET voltage, and a large resistive switching window, it has huge potential in data storage in transparent circuits and wearable electronics with relatively low supply voltage. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Han, Pi-Guo; Han, Lei; Bian, Yu-Long; Tian, Yu; Xu, Min-Xia; Gao, Feng-Qiang
2017-01-01
Prospective memory (PM) is the process associated with the task of realizing delayed intentions in the future. Researchers distinguish two types of PM, namely time-based PM (tbPM) and event-based PM (ebPM). Experiment 1 investigated the developmental trajectory of 3- to 5-year-old preschool children's PM ability, and the occurrence of delayed retrieval (children execute the PM task in a larger window of opportunity) in both tbPM and ebPM tasks. Results revealed that the 5-year-old children outperformed the 3- and 4-year-old children in PM. Moreover, delayed retrieval was more likely to occur in tbPM task than in ebPM task. In Experiment 2, the influence of ongoing task (OT) difficulty on PM performance was investigated with a sample of 5-year-old children. Results revealed no significant effect of OT difficulty on PM performance. In Experiment 3, we improved children's motivation level to complete the OT, then explored the influence of OT difficulty on children's PM performance. Results revealed that the effect of OT difficulty on PM performance became significant after increasing the children's motivation to complete the OT. These results provide insights into the mechanism of attentional resource allocation in PM tasks and have crucial educational and social implications.
Age-related effects on perceptual and semantic encoding in memory.
Kuo, M C C; Liu, K P Y; Ting, K H; Chan, C C H
2014-03-07
This study examined the age-related subsequent memory effect (SME) in perceptual and semantic encoding using event-related potentials (ERPs). Seventeen younger adults and 17 older adults studied a series of Chinese characters either perceptually (by inspecting orthographic components) or semantically (by determining whether the depicted object makes sounds). The two tasks had similar levels of difficulty. The participants made studied or unstudied judgments during the recognition phase. Younger adults performed better in both conditions, with significant SMEs detected in the time windows of P2, N3, P550, and late positive component (LPC). In the older group, SMEs were observed in the P2 and N3 latencies in both conditions but were only detected in the P550 in the semantic condition. Between-group analyses showed larger frontal and central SMEs in the younger sample in the LPC latency regardless of encoding type. Aging effect appears to be stronger on influencing perceptual than semantic encoding processes. The effects seem to be associated with a decline in updating and maintaining representations during perceptual encoding. The age-related decline in the encoding function may be due in part to changes in frontal lobe function. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Foldable and Disposable Memory on Paper
Lee, Byung-Hyun; Lee, Dong-Il; Bae, Hagyoul; Seong, Hyejeong; Jeon, Seung-Bae; Seol, Myung-Lok; Han, Jin-Woo; Meyyappan, M.; Im, Sung-Gap; Choi, Yang-Kyu
2016-01-01
Foldable organic memory on cellulose nanofibril paper with bendable and rollable characteristics is demonstrated by employing initiated chemical vapor deposition (iCVD) for polymerization of the resistive switching layer and inkjet printing of the electrode, where iCVD based on all-dry and room temperature process is very suitable for paper electronics. This memory exhibits a low operation voltage of 1.5 V enabling battery operation compared to previous reports and wide memory window. The memory performance is maintained after folding tests, showing high endurance. Furthermore, the quick and complete disposable nature demonstrated here is attractive for security applications. This work provides an effective platform for green, foldable and disposable electronics based on low cost and versatile materials. PMID:27922094
Event-induced theta responses as a window on the dynamics of memory.
Bastiaansen, Marcel; Hagoort, Peter
2003-01-01
An important, but often ignored distinction in the analysis of EEG signals is that between evoked activity and induced activity. Whereas evoked activity reflects the summation of transient post-synaptic potentials triggered by an event, induced activity, which is mainly oscillatory in nature, is thought to reflect changes in parameters controlling dynamic interactions within and between brain structures. We hypothesize that induced activity may yield information about the dynamics of cell assembly formation, activation and subsequent uncoupling, which may play a prominent role in different types of memory operations. We then describe a number of analysis tools that can be used to study the reactivity of induced rhythmic activity, both in terms of amplitude changes and of phase variability. We briefly discuss how alpha, gamma and theta rhythms are thought to be generated, paying special attention to the hypothesis that the theta rhythm reflects dynamic interactions between the hippocampal system and the neocortex. This hypothesis would imply that studying the reactivity of scalp-recorded theta may provide a window on the contribution of the hippocampus to memory functions. We review studies investigating the reactivity of scalp-recorded theta in paradigms engaging episodic memory, spatial memory and working memory. In addition, we review studies that relate theta reactivity to processes at the interface of memory and language. Despite many unknowns, the experimental evidence largely supports the hypothesis that theta activity plays a functional role in cell assembly formation, a process which may constitute the neural basis of memory formation and retrieval. The available data provide only highly indirect support for the hypothesis that scalp-recorded theta yields information about hippocampal functioning. It is concluded that studying induced rhythmic activity holds promise as an additional important way to study brain function.
Managing coherence via put/get windows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blumrich, Matthias A; Chen, Dong; Coteus, Paul W
A method and apparatus for managing coherence between two processors of a two processor node of a multi-processor computer system. Generally the present invention relates to a software algorithm that simplifies and significantly speeds the management of cache coherence in a message passing parallel computer, and to hardware apparatus that assists this cache coherence algorithm. The software algorithm uses the opening and closing of put/get windows to coordinate the activated required to achieve cache coherence. The hardware apparatus may be an extension to the hardware address decode, that creates, in the physical memory address space of the node, an areamore » of virtual memory that (a) does not actually exist, and (b) is therefore able to respond instantly to read and write requests from the processing elements.« less
Focusing on attention: the effects of working memory capacity and load on selective attention.
Ahmed, Lubna; de Fockert, Jan W
2012-01-01
Working memory (WM) is imperative for effective selective attention. Distractibility is greater under conditions of high (vs. low) concurrent working memory load (WML), and in individuals with low (vs. high) working memory capacity (WMC). In the current experiments, we recorded the flanker task performance of individuals with high and low WMC during low and high WML, to investigate the combined effect of WML and WMC on selective attention. In Experiment 1, distractibility from a distractor at a fixed distance from the target was greater when either WML was high or WMC was low, but surprisingly smaller when both WML was high and WMC low. Thus we observed an inverted-U relationship between reductions in WM resources and distractibility. In Experiment 2, we mapped the distribution of spatial attention as a function of WMC and WML, by recording distractibility across several target-to-distractor distances. The pattern of distractor effects across the target-to-distractor distances demonstrated that the distribution of the attentional window becomes dispersed as WM resources are limited. The attentional window was more spread out under high compared to low WML, and for low compared to high WMC individuals, and even more so when the two factors co-occurred (i.e., under high WML in low WMC individuals). The inverted-U pattern of distractibility effects in Experiment 1, replicated in Experiment 2, can thus be explained by differences in the spread of the attentional window as a function of WM resource availability. The current findings show that limitations in WM resources, due to either WML or individual differences in WMC, affect the spatial distribution of attention. The difference in attentional constraining between high and low WMC individuals demonstrated in the current experiments helps characterise the nature of previously established associations between WMC and controlled attention.
NASA Astrophysics Data System (ADS)
Yu, Jie; Chen, Kun-ji; Ma, Zhong-yuan; Zhang, Xin-xin; Jiang, Xiao-fan; Wu, Yang-qing; Huang, Xin-fan; Oda, Shunri
2016-09-01
Based on the charge storage mode, it is important to investigate the scaling dependence of memory performance in silicon nanocrystal (Si-NC) nonvolatile memory (NVM) devices for its scaling down limit. In this work, we made eight kinds of test key cells with different gate widths and lengths by 0.13-μm node complementary metal oxide semiconductor (CMOS) technology. It is found that the memory windows of eight kinds of test key cells are almost the same of about 1.64 V @ ± 7 V/1 ms, which are independent of the gate area, but mainly determined by the average size (12 nm) and areal density (1.8 × 1011/cm2) of Si-NCs. The program/erase (P/E) speed characteristics are almost independent of gate widths and lengths. However, the erase speed is faster than the program speed of test key cells, which is due to the different charging behaviors between electrons and holes during the operation processes. Furthermore, the data retention characteristic is also independent of the gate area. Our findings are useful for further scaling down of Si-NC NVM devices to improve the performance and on-chip integration. Project supported by the State Key Development Program for Basic Research of China (Grant No. 2010CB934402) and the National Natural Science Foundation of China (Grant Nos. 11374153, 61571221, and 61071008).
Klaver, Peter; Talsma, Durk
2013-11-01
We recorded ERPs to investigate whether the visual memory load can bias visual selective attention. Participants memorized one or four letters and then responded to memory-matching letters presented in a relevant color while ignoring distractor letters or letters in an irrelevant color. Stimuli in the relevant color elicited larger frontal selection positivities (FSP) and occipital selection negativities (OSN) compared to irrelevant color stimuli. Only distractors elicited a larger FSP in the high than in the low memory load task. Memory load prolonged the OSN for all letters. Response mapping complexity was also modulated but did not affect the FSP and OSN. Together, the FSP data suggest that high memory load increased distractability. The OSN data suggest that memory load sustained attention to letters in a relevant color until working memory processing was completed, independently of whether the letters were in working memory or not. Copyright © 2013 Society for Psychophysiological Research.
Bipolar resistive switching in Cu/AlN/Pt nonvolatile memory device
NASA Astrophysics Data System (ADS)
Chen, C.; Yang, Y. C.; Zeng, F.; Pan, F.
2010-08-01
Highly stable and reproducible bipolar resistive switching effects are reported on Cu/AlN/Pt devices. Memory characteristics including large memory window of 103, long retention time of >106 s and good endurance of >103 were demonstrated. It is concluded that the reset current decreases as compliance current decreases, which provides an approach to suppress power consumption. The dominant conduction mechanisms of low resistance state and high resistance state were verified by Ohmic behavior and trap-controlled space charge limited current, respectively. The memory effect is explained by the model concerning redox reaction mediated formation and rupture of the conducting filament in AlN films.
Ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory
NASA Astrophysics Data System (ADS)
Han, Jinhua; Wang, Wei; Ying, Jun; Xie, Wenfa
2014-01-01
An ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory was demonstrated, with discrete distributed gold nanoparticles, tetratetracontane (TTC), pentacene as the floating-gate layer, tunneling layer, and active layer, respectively. The electron traps at the TTC/pentacene interface were significantly suppressed, which resulted in an ambipolar operation in present memory. As both electrons and holes were supplied in the channel and trapped in the floating-gate by programming/erasing operations, respectively, i.e., one type of charge carriers was used to overwrite the other, trapped, one, a large memory window, extending on both sides of the initial threshold voltage, was realized.
Low-voltage all-inorganic perovskite quantum dot transistor memory
NASA Astrophysics Data System (ADS)
Chen, Zhiliang; Zhang, Yating; Zhang, Heng; Yu, Yu; Song, Xiaoxian; Zhang, Haiting; Cao, Mingxuan; Che, Yongli; Jin, Lufan; Li, Yifan; Li, Qingyan; Dai, Haitao; Yang, Junbo; Yao, Jianquan
2018-05-01
An all-inorganic cesium lead halide quantum dot (QD) based Au nanoparticle (NP) floating-gate memory with a solution processed layer-by-layer method is demonstrated. Easy synthesis at room temperature and excellent stability make all-inorganic CsPbBr3 perovskite QDs suitable as a semiconductor layer in low voltage nonvolatile transistor memory. The bipolarity of QDs has both electrons and holes stored in the Au NP floating gate, resulting in bidirectional shifts of initial threshold voltage according to the applied programing and erasing pulses. Under low operation voltage (±5 V), the memory achieved a great memory window (˜2.4 V), long retention time (>105 s), and stable endurance properties after 200 cycles. So the proposed memory device based on CsPbBr3 perovskite QDs has a great potential in the flash memory market.
Multi-layered nanocomposite dielectrics for high density organic memory devices
NASA Astrophysics Data System (ADS)
Kang, Moonyeong; Chung, Kyungwha; Baeg, Kang-Jun; Kim, Dong Ha; Kim, Choongik
2015-01-01
We fabricated organic memory devices with metal-pentacene-insulator-silicon structure which contain double dielectric layers comprising 3D pattern of Au nanoparticles (Au NPs) and block copolymer (PS-b-P2VP). The role of Au NPs is to charge/discharge carriers upon applied voltage, while block copolymer helps to form highly ordered Au NP patterns in the dielectric layer. Double-layered nanocomposite dielectrics enhanced the charge trap density (i.e., trapped charge per unit area) by Au NPs, resulting in increase of the memory window (ΔVth).
Chen, Tzu-Ching; Kuo, Wen-Jui; Chiang, Ming-Chang; Tseng, Yi-Jhan; Lin, Yung-Yang
2013-08-01
We evaluated the subsequent memory and forgotten effects for Chinese using event-related fMRI. Sixteen normal subjects were recruited and performing incidental memory tasks where semantic decision was required during memory encoding. Consistent with previous studies, our results showed bilateral frontal regions as the main locus for the subsequent memory effect. However, contrast between miss and hit responses revealed larger activation in bilateral superior temporal gyrus. We proposed that larger activation in the superior temporal gyrus may reflect alteration of self-monitoring process which resulted in unsuccessful memory encoding for the miss items. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, L.; Xu, J. P.; Ji, F.; Chen, J. X.; Lai, P. T.
2012-07-01
Charge-trapping memory capacitor with nitrided gadolinium oxide (GdO) as charge storage layer (CSL) is fabricated, and the influence of post-deposition annealing in NH3 on its memory characteristics is investigated. Transmission electron microscopy, x-ray photoelectron spectroscopy, and x-ray diffraction are used to analyze the cross-section and interface quality, composition, and crystallinity of the stack gate dielectric, respectively. It is found that nitrogen incorporation can improve the memory window and achieve a good trade-off among the memory properties due to NH3-annealing-induced reasonable distribution profile of a large quantity of deep-level bulk traps created in the nitrided GdO film and reduction of shallow traps near the CSL/SiO2 interface.
Counter tube window and X-ray fluorescence analyzer study
NASA Technical Reports Server (NTRS)
Hertel, R.; Holm, M.
1973-01-01
A study was performed to determine the best design tube window and X-ray fluorescence analyzer for quantitative analysis of Venusian dust and condensates. The principal objective of the project was to develop the best counter tube window geometry for the sensing element of the instrument. This included formulation of a mathematical model of the window and optimization of its parameters. The proposed detector and instrument has several important features. The instrument will perform a near real-time analysis of dust in the Venusian atmosphere, and is capable of measuring dust layers less than 1 micron thick. In addition, wide dynamic measurement range will be provided to compensate for extreme variations in count rates. An integral pulse-height analyzer and memory accumulate data and read out spectra for detail computer analysis on the ground.
Multi-Window Controllers for Autonomous Space Systems
NASA Technical Reports Server (NTRS)
Lurie, B, J.; Hadaegh, F. Y.
1997-01-01
Multi-window controllers select between elementary linear controllers using nonlinear windows based on the amplitude and frequency content of the feedback error. The controllers are relatively simple to implement and perform much better than linear controllers. The commanders for such controllers only order the destination point and are freed from generating the command time-profiles. The robotic missions rely heavily on the tasks of acquisition and tracking. For autonomous and optimal control of the spacecraft, the control bandwidth must be larger while the feedback can (and, therefore, must) be reduced.. Combining linear compensators via multi-window nonlinear summer guarantees minimum phase character of the combined transfer function. It is shown that the solution may require using several parallel branches and windows. Several examples of multi-window nonlinear controller applications are presented.
A thesis investigating the impact of energy related environmental factors on domestic window design
NASA Astrophysics Data System (ADS)
McEvoy, Michael Edward
In recent years the extent of glazing in houses has been tightly controlled by the Building Regulations in order to save energy. In addition guidelines derived from passive solar principles prescribe the distribution of domestic windows between elevations according to their orientation. This thesis studies the impact of these energy-related environmental factors on domestic window design. The first of these investigations determined the degree to which limitations on the area and arrangement of windows are significant in terms of daylighting. The experiments measured the effect that passive solar requirements and detailed aspects of window design have on the quality of daylighting in houses. The volume of background ventilation required for domestic accommodation has recently been increased. As a result, in a well-sealed construction, heat loss due to background ventilation becomes a larger part of the total heat loss and larger air movements become a potential cause of draughts. The ventilation experiment sought to establish the impact of these more onerous requirements on comfort within rooms. The third experiment combines these factors and asks the question: Could windows be actively involved in overcoming some of these difficulties by being used to preheat ventilation air in order to diminish the extent of heat loss and to alleviate the problem of cold draughts? Also by designing the window to reclaim heat from the room might it be possible to offset the window's thermal inadequacy? Through analysis of responses to a questionnaire and the use of optimisation techniques, scenarios were suggested for the future modification of windows in relation to energy and health expectations. The conclusions form a commentary on recent and future revisions to the Building Regulations and determine whether or not the Regulations facilitate the environmental engineering of windows as an active component of a building's whole environmental system.
Starc, Martina; Anticevic, Alan; Repovš, Grega
2017-05-01
Pupillometry provides an accessible option to track working memory processes with high temporal resolution. Several studies showed that pupil size increases with the number of items held in working memory; however, no study has explored whether pupil size also reflects the quality of working memory representations. To address this question, we used a spatial working memory task to investigate the relationship of pupil size with spatial precision of responses and indicators of reliance on generalized spatial categories. We asked 30 participants (15 female, aged 19-31) to remember the position of targets presented at various locations along a hidden radial grid. After a delay, participants indicated the remembered location with a high-precision joystick providing a parametric measure of trial-to-trial accuracy. We recorded participants' pupil dilations continuously during task performance. Results showed a significant relation between pupil dilation during preparation/early encoding and the precision of responses, possibly reflecting the attentional resources devoted to memory encoding. In contrast, pupil dilation at late maintenance and response predicted larger shifts of responses toward prototypical locations, possibly reflecting larger reliance on categorical representation. On an intraindividual level, smaller pupil dilations during encoding predicted larger dilations during late maintenance and response. On an interindividual level, participants relying more on categorical representation also produced larger precision errors. The results confirm the link between pupil size and the quality of spatial working memory representation. They suggest compensatory strategies of spatial working memory performance-loss of precise spatial representation likely increases reliance on generalized spatial categories. © 2017 Society for Psychophysiological Research.
Validation Test Report for the Automated Optical Processing System (AOPS) Version 4.8
2013-06-28
be familiar with UNIX; BASH shell programming; and remote sensing, particularly regarding computer processing of satellite data. The system memory ...and storage requirements are difficult to gauge. The amount of memory needed is dependent upon the amount and type of satellite data you wish to...process; the larger the area, the larger the memory requirement. For example, the entire Atlantic Ocean will require more processing power than the
Assessing Server Fault Tolerance and Disaster Recovery Implementation in Thin Client Architectures
2007-09-01
server • Windows 2003 server Processor AMD Geode GX Memory 512MB Flash/256MB DDR RAM I/O/Peripheral Support • VGA-type video output (DB-15...2000 Advanced Server Processor AMD Geode NX 1500 Memory • 256MB or 512MB or 1GB DDR SDRAM • 1GB or 512MB Flash I/O/Peripheral Support • SiS741 GX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Yao-Feng, E-mail: yfchang@utexas.edu; Zhou, Fei; Chen, Ying-Chen
2016-01-18
Self-compliance characteristics and reliability optimization are investigated in intrinsic unipolar silicon oxide (SiO{sub x})-based resistive switching (RS) memory using TiW/SiO{sub x}/TiW device structures. The program window (difference between SET voltage and RESET voltage) is dependent on external series resistance, demonstrating that the SET process is due to a voltage-triggered mechanism. The program window has been optimized for program/erase disturbance immunity and reliability for circuit-level applications. The SET and RESET transitions have also been characterized using a dynamic conductivity method, which distinguishes the self-compliance behavior due to an internal series resistance effect (filament) in SiO{sub x}-based RS memory. By using amore » conceptual “filament/resistive gap (GAP)” model of the conductive filament and a proton exchange model with appropriate assumptions, the internal filament resistance and GAP resistance can be estimated for high- and low-resistance states (HRS and LRS), and are found to be independent of external series resistance. Our experimental results not only provide insights into potential reliability issues but also help to clarify the switching mechanisms and device operating characteristics of SiO{sub x}-based RS memory.« less
DeMaster, Dana; Pathman, Thanujeni; Lee, Joshua K; Ghetti, Simona
2014-11-01
The hippocampus is critically involved in episodic memory, yet relatively little is known about how the development of this structure contributes to the development of episodic memory during middle to late childhood. Previous research has inconsistently reported associations between hippocampal volume and episodic memory performance during this period. We argue that this inconsistency may be due to assessing the hippocampus as a whole, and propose to examine associations separately for subregions along the longitudinal axis of the hippocampus. In the present study, we examined age-related differences in volumes of the hippocampal head, body, and tail, and collected episodic memory measures in children ages 8-11 years and young adults (N = 62). We found that adults had a smaller right hippocampal head, larger hippocampal body bilaterally, and smaller right hippocampal tail compared with children. In adults, but not in children, better episodic memory performance was associated with smaller right hippocampal head and larger hippocampal body. In children, but not in adults, better episodic memory was associated with larger left hippocampal tail. Overall, the results suggest that protracted development of hippocampal subregions contribute to age-related differences in episodic memory. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Cour-Palais, B. G.; Kessler, D. J.; Zook, H. A.; Clanton, U. S.
1985-01-01
The possibility that the pitting that occurred in the STS-8 Orbiter windows was caused by dust from the El Chichon volcano eruption in March-April 1982 is considered. The pit density was more than 30/sq cm, most being 2.5-5 microns deep, and showed no evidence of impact melting. An 'alley' of higher incidence of pits in one window coincided with the line of a seam between TPS tiles. The particles causing the sandblasting were concluded to have arrived in parallel and could not be attributed to the ET, SRBs or a dust storm. The sulfuric gas-rich El Chichon plume injected sufficient material into the atmosphere so that the globe was soon encircled. Most of the resulting particulates (480-8400 tons) stayed in the Northern Hemisphere, and H2SO4 and ash concentrations were high during the STS-8 mission. The Orbiter cut through the debris layer at 19.8 km altitude at a 10 deg angle of attack, which matches the particle crater impact angle in the Orbiter windows. Since the passage was at night, larger H2SO4 droplets may have coalesced and formed larger particles on available solid nuclei, thus producing the 20-40 microns cratering observed in the windows.
Zion-Golumbic, Elana; Kutas, Marta; Bentin, Shlomo
2010-02-01
Prior semantic knowledge facilitates episodic recognition memory for faces. To examine the neural manifestation of the interplay between semantic and episodic memory, we investigated neuroelectric dynamics during the creation (study) and the retrieval (test) of episodic memories for famous and nonfamous faces. Episodic memory effects were evident in several EEG frequency bands: theta (4-8 Hz), alpha (9-13 Hz), and gamma (40-100 Hz). Activity in these bands was differentially modulated by preexisting semantic knowledge and by episodic memory, implicating their different functional roles in memory. More specifically, theta activity and alpha suppression were larger for old compared to new faces at test regardless of fame, but were both larger for famous faces during study. This pattern of selective semantic effects suggests that the theta and alpha responses, which are primarily associated with episodic memory, reflect utilization of semantic information only when it is beneficial for task performance. In contrast, gamma activity decreased between the first (study) and second (test) presentation of a face, but overall was larger for famous than nonfamous faces. Hence, the gamma rhythm seems to be primarily related to activation of preexisting neural representations that may contribute to the formation of new episodic traces. Taken together, these data provide new insights into the complex interaction between semantic and episodic memory for faces and the neural dynamics associated with mnemonic processes.
Dopaminergic inputs in the dentate gyrus direct the choice of memory encoding.
Du, Huiyun; Deng, Wei; Aimone, James B; Ge, Minyan; Parylak, Sarah; Walch, Keenan; Zhang, Wei; Cook, Jonathan; Song, Huina; Wang, Liping; Gage, Fred H; Mu, Yangling
2016-09-13
Rewarding experiences are often well remembered, and such memory formation is known to be dependent on dopamine modulation of the neural substrates engaged in learning and memory; however, it is unknown how and where in the brain dopamine signals bias episodic memory toward preceding rather than subsequent events. Here we found that photostimulation of channelrhodopsin-2-expressing dopaminergic fibers in the dentate gyrus induced a long-term depression of cortical inputs, diminished theta oscillations, and impaired subsequent contextual learning. Computational modeling based on this dopamine modulation indicated an asymmetric association of events occurring before and after reward in memory tasks. In subsequent behavioral experiments, preexposure to a natural reward suppressed hippocampus-dependent memory formation, with an effective time window consistent with the duration of dopamine-induced changes of dentate activity. Overall, our results suggest a mechanism by which dopamine enables the hippocampus to encode memory with reduced interference from subsequent experience.
Dopaminergic inputs in the dentate gyrus direct the choice of memory encoding
Du, Huiyun; Deng, Wei; Aimone, James B.; Ge, Minyan; Parylak, Sarah; Walch, Keenan; Zhang, Wei; Cook, Jonathan; Song, Huina; Wang, Liping; Gage, Fred H.; Mu, Yangling
2016-01-01
Rewarding experiences are often well remembered, and such memory formation is known to be dependent on dopamine modulation of the neural substrates engaged in learning and memory; however, it is unknown how and where in the brain dopamine signals bias episodic memory toward preceding rather than subsequent events. Here we found that photostimulation of channelrhodopsin-2–expressing dopaminergic fibers in the dentate gyrus induced a long-term depression of cortical inputs, diminished theta oscillations, and impaired subsequent contextual learning. Computational modeling based on this dopamine modulation indicated an asymmetric association of events occurring before and after reward in memory tasks. In subsequent behavioral experiments, preexposure to a natural reward suppressed hippocampus-dependent memory formation, with an effective time window consistent with the duration of dopamine-induced changes of dentate activity. Overall, our results suggest a mechanism by which dopamine enables the hippocampus to encode memory with reduced interference from subsequent experience. PMID:27573822
Effects of Age and Environmental Support for Rehearsal on Visuospatial Working Memory
Lilienthal, Lindsey; Hale, Sandra; Myerson, Joel
2016-01-01
The present study investigated whether older adults’ visuospatial working memory shows effects of environmental support for rehearsal similar to those observed in young adults (Lilienthal, Hale, & Myerson, 2014). When the duration of inter-item intervals was 4 s and participants had sufficient time to rehearse, location memory spans were larger in both age groups when environmental support was present than when support was absent. Critically, however, the age-related difference in memory was actually larger when support was provided, suggesting that young and older adults may differ in their rehearsal of to-be-remembered locations. PMID:26950223
Martin, C E; Brandmeyer, E A; Ross, R D
2013-01-01
Leaf temperatures were lower when light entry at the leaf tip window was prevented through covering the window with reflective tape, relative to leaf temperatures of plants with leaf tip windows covered with transparent tape. This was true when leaf temperatures were measured with an infrared thermometer, but not with a fine-wire thermocouple. Leaf tip windows of Lithops growing in high-rainfall regions of southern Africa were larger than the windows of plants (numerous individuals of 17 species) growing in areas with less rainfall and, thus, more annual insolation. The results of this study indicate that leaf tip windows of desert plants with an underground growth habit can allow entry of supra-optimal levels of radiant energy, thus most likely inhibiting photosynthetic activity. Consequently, the size of the leaf tip windows correlates inversely with habitat solar irradiance, minimising the probability of photoinhibition, while maximising the absorption of irradiance in cloudy, high-rainfall regions. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
Solution processed molecular floating gate for flexible flash memories
NASA Astrophysics Data System (ADS)
Zhou, Ye; Han, Su-Ting; Yan, Yan; Huang, Long-Biao; Zhou, Li; Huang, Jing; Roy, V. A. L.
2013-10-01
Solution processed fullerene (C60) molecular floating gate layer has been employed in low voltage nonvolatile memory device on flexible substrates. We systematically studied the charge trapping mechanism of the fullerene floating gate for both p-type pentacene and n-type copper hexadecafluorophthalocyanine (F16CuPc) semiconductor in a transistor based flash memory architecture. The devices based on pentacene as semiconductor exhibited both hole and electron trapping ability, whereas devices with F16CuPc trapped electrons alone due to abundant electron density. All the devices exhibited large memory window, long charge retention time, good endurance property and excellent flexibility. The obtained results have great potential for application in large area flexible electronic devices.
A model of attention-guided visual perception and recognition.
Rybak, I A; Gusakova, V I; Golovan, A V; Podladchikova, L N; Shevtsova, N A
1998-08-01
A model of visual perception and recognition is described. The model contains: (i) a low-level subsystem which performs both a fovea-like transformation and detection of primary features (edges), and (ii) a high-level subsystem which includes separated 'what' (sensory memory) and 'where' (motor memory) structures. Image recognition occurs during the execution of a 'behavioral recognition program' formed during the primary viewing of the image. The recognition program contains both programmed attention window movements (stored in the motor memory) and predicted image fragments (stored in the sensory memory) for each consecutive fixation. The model shows the ability to recognize complex images (e.g. faces) invariantly with respect to shift, rotation and scale.
Solution processed molecular floating gate for flexible flash memories
Zhou, Ye; Han, Su-Ting; Yan, Yan; Huang, Long-Biao; Zhou, Li; Huang, Jing; Roy, V. A. L.
2013-01-01
Solution processed fullerene (C60) molecular floating gate layer has been employed in low voltage nonvolatile memory device on flexible substrates. We systematically studied the charge trapping mechanism of the fullerene floating gate for both p-type pentacene and n-type copper hexadecafluorophthalocyanine (F16CuPc) semiconductor in a transistor based flash memory architecture. The devices based on pentacene as semiconductor exhibited both hole and electron trapping ability, whereas devices with F16CuPc trapped electrons alone due to abundant electron density. All the devices exhibited large memory window, long charge retention time, good endurance property and excellent flexibility. The obtained results have great potential for application in large area flexible electronic devices. PMID:24172758
Rauh, R. David; Boudreau, Robert A.
1983-06-14
A photoelectrochemical cell comprising a sealed container having a light-transmitting window for admitting light into the container across a light-admitting plane, an electrolyte in the container, a photoelectrode in the container having a light-absorbing surface arranged to receive light from the window and in contact with the electrolyte, the surface having a plurality of spaced portions oblique to the plane, each portion having dimensions at least an order of magnitude larger than the maximum wavelength of incident sunlight, the total surface area of the surface being larger than the area of the plane bounded by the container, and a counter electrode in the container in contact with the electrolyte.
Mechanic, Mindy B.; Resick, Patricia A.; Griffin, Michael G.
2010-01-01
This study assessed memories for sexual trauma in a nontreatment-seeking sample of recent rape victims and considered competing explanations for failed recall. Participants were 92 female rape victims assessed within 2 weeks of the rape; 62 were also assessed 3 months postassault. Memory deficits for parts of the rape were common 2 weeks postassault (37%) but improved over the 3-month window studied (16% still partially amnesic). Hypotheses evaluated competing models of explanation that may account for reported recall deficits. Results are most consistent with information-processing models of traumatic memory. PMID:9874908
Scale up of large ALON® and spinel windows
NASA Astrophysics Data System (ADS)
Goldman, Lee M.; Kashalikar, Uday; Ramisetty, Mohan; Jha, Santosh; Sastri, Suri
2017-05-01
Aluminum Oxynitride (ALON® Transparent Ceramic) and Magnesia Aluminate Spinel (Spinel) combine broadband transparency with excellent mechanical properties. Their cubic structure means that they are transparent in their polycrystalline form, allowing them to be manufactured by conventional powder processing techniques. Surmet has scaled up its ALON® production capability to produce and deliver windows as large as 4.4 sq ft. We have also produced our first 6 sq ft window. We are in the process of producing 7 sq ft ALON® window blanks for armor applications; and scale up to even larger, high optical quality blanks for Recce window applications is underway. Surmet also produces spinel for customers that require superior transmission at the longer wavelengths in the mid wave infra-red (MWIR). Spinel windows have been limited to smaller sizes than have been achieved with ALON. To date the largest spinel window produced is 11x18-in, and windows 14x20-in size are currently in process. Surmet is now scaling up its spinel processing capability to produce high quality window blanks as large as 19x27-in for sensor applications.
Flash memory management system and method utilizing multiple block list windows
NASA Technical Reports Server (NTRS)
Chow, James (Inventor); Gender, Thomas K. (Inventor)
2005-01-01
The present invention provides a flash memory management system and method with increased performance. The flash memory management system provides the ability to efficiently manage and allocate flash memory use in a way that improves reliability and longevity, while maintaining good performance levels. The flash memory management system includes a free block mechanism, a disk maintenance mechanism, and a bad block detection mechanism. The free block mechanism provides efficient sorting of free blocks to facilitate selecting low use blocks for writing. The disk maintenance mechanism provides for the ability to efficiently clean flash memory blocks during processor idle times. The bad block detection mechanism provides the ability to better detect when a block of flash memory is likely to go bad. The flash status mechanism stores information in fast access memory that describes the content and status of the data in the flash disk. The new bank detection mechanism provides the ability to automatically detect when new banks of flash memory are added to the system. Together, these mechanisms provide a flash memory management system that can improve the operational efficiency of systems that utilize flash memory.
Comorbidities confounding the outcomes of surgery for third window syndrome: Outlier analysis
Mackay‐Promitas, Heather T.; Demirel, Shaban; Gianoli, Gerard J.; Gizzi, Martin S.; Carter, Dale M.; Siker, David A.
2017-01-01
Objective Patients with third window syndrome and superior semicircular canal dehiscence (SSCD) symptoms whose surgical outcomes placed them as outliers were systematically studied to determine comorbidities that were responsible for their poor outcomes due to these confounding factors. Study Design Observational analytic case‐control study in a tertiary referral center. Methods Twelve adult patients with clinical SSCD syndrome underwent surgical management and had outcomes that did not resolve all of their subjective symptoms. In addition to one of the neurotologists, 2 neurologists (one specializing in migraine and the other a neuro‐ophthalmologist), and a psychologist clinician‐investigator completed comprehensive evaluations. Neuropsychology test batteries included: the Millon Behavioral Medicine Diagnostic; Patient Health Questionnaire (PHQ‐9) and Generalized Anxiety Disorder Screener (GAD‐7); Adverse Childhood Experiences Scale; the Wide Range Assessment of Memory and Learning, including the 3 domains of verbal memory, visual memory, and attention/concentration; Wechsler Adult Intelligence Scale; and the Delis‐Kaplan Executive Function System. The control cohort was comprised of 17 participants who previously underwent surgery for third window syndrome that resulted in the expected outcomes of resolution of their third window syndrome symptoms and cognitive dysfunction. Results There was a high rate of psychological comorbidity (n = 6) in the outlier cohort; multiple traumatic brain injuries were also a confounding element (n = 10). One patient had elevated cerebrospinal fluid (CSF) pressure requiring ventriculoperitoneal shunting to control the recurrence of dehiscence and one patient with a drug‐induced Parkinson‐like syndrome and idiopathic progressive neurological degenerative process. Conclusions Components of the Millon Behavioral Medicine Diagnostic, PHQ‐9 and GAD‐7 results suggest that these instruments would be useful as screening tools preoperatively to identify psychological comorbidities that could confound outcomes. The identification of these comorbid psychological as well as other neurological degenerative disease processes led to alternate clinical management pathways for these patients. Level of Evidence 2b. PMID:29094067
Han, Pi-guo; Han, Lei; Bian, Yu-long; Tian, Yu; Xu, Min-xia; Gao, Feng-qiang
2017-01-01
Prospective memory (PM) is the process associated with the task of realizing delayed intentions in the future. Researchers distinguish two types of PM, namely time-based PM (tbPM) and event-based PM (ebPM). Experiment 1 investigated the developmental trajectory of 3- to 5-year-old preschool children’s PM ability, and the occurrence of delayed retrieval (children execute the PM task in a larger window of opportunity) in both tbPM and ebPM tasks. Results revealed that the 5-year-old children outperformed the 3- and 4-year-old children in PM. Moreover, delayed retrieval was more likely to occur in tbPM task than in ebPM task. In Experiment 2, the influence of ongoing task (OT) difficulty on PM performance was investigated with a sample of 5-year-old children. Results revealed no significant effect of OT difficulty on PM performance. In Experiment 3, we improved children’s motivation level to complete the OT, then explored the influence of OT difficulty on children’s PM performance. Results revealed that the effect of OT difficulty on PM performance became significant after increasing the children’s motivation to complete the OT. These results provide insights into the mechanism of attentional resource allocation in PM tasks and have crucial educational and social implications. PMID:28203212
Effects of age and environmental support for rehearsal on visuospatial working memory.
Lilienthal, Lindsey; Hale, Sandra; Myerson, Joel
2016-05-01
The present study investigated whether older adults' visuospatial working memory shows effects of environmental support for rehearsal similar to those observed in young adults (Lilienthal, Hale, & Myerson, 2014). When the duration of interitem intervals was 4 s and participants had sufficient time to rehearse, location memory spans were larger in both age groups when environmental support was present than when support was absent. Critically, however, the age-related difference in memory was actually larger when support was provided, suggesting that young and older adults may differ in their rehearsal of to-be-remembered locations. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Ibrahim, Ahmad M.; Wilson, Paul P.H.; Sawan, Mohamed E.; ...
2015-06-30
The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as muchmore » geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, eliminating the need for a world-class super computer.« less
Hippocampal-prefrontal input supports spatial encoding in working memory.
Spellman, Timothy; Rigotti, Mattia; Ahmari, Susanne E; Fusi, Stefano; Gogos, Joseph A; Gordon, Joshua A
2015-06-18
Spatial working memory, the caching of behaviourally relevant spatial cues on a timescale of seconds, is a fundamental constituent of cognition. Although the prefrontal cortex and hippocampus are known to contribute jointly to successful spatial working memory, the anatomical pathway and temporal window for the interaction of these structures critical to spatial working memory has not yet been established. Here we find that direct hippocampal-prefrontal afferents are critical for encoding, but not for maintenance or retrieval, of spatial cues in mice. These cues are represented by the activity of individual prefrontal units in a manner that is dependent on hippocampal input only during the cue-encoding phase of a spatial working memory task. Successful encoding of these cues appears to be mediated by gamma-frequency synchrony between the two structures. These findings indicate a critical role for the direct hippocampal-prefrontal afferent pathway in the continuous updating of task-related spatial information during spatial working memory.
NASA Astrophysics Data System (ADS)
Lee, Sejoon; Song, Emil B.; Kim, Sungmin; Seo, David H.; Seo, Sunae; Won Kang, Tae; Wang, Kang L.
2012-01-01
Graphene-based non-volatile memory devices composed of a single-layer graphene channel and an Al2O3/HfOx/Al2O3 charge-storage layer exhibit memory functionality. The impact of the gate material's work-function (Φ) on the memory characteristics is investigated using different types of metals [Ti (ΦTi = 4.3 eV) and Ni (ΦNi = 5.2 eV)]. The ambipolar carrier conduction of graphene results in an enlargement of memory window (ΔVM), which is ˜4.5 V for the Ti-gate device and ˜9.1 V for the Ni-gate device. The increase in ΔVM is attributed to the change in the flat-band condition and the suppression of electron back-injection within the gate stack.
NASA Astrophysics Data System (ADS)
Lee, Young Tack; Hwang, Do Kyung; Choi, Won Kook
2016-10-01
Two-dimensional (2D) van der Waals (vdW) atomic crystals have been extensively studied and significant progress has been made. The newest 2D vdW material, called black phosphorus (BP), has attracted considerable attention due to its unique physical properties, such as its being a singlecomponent material like graphene, and its having a high mobility and direct band gap. Here, we report on a high-performance BP nanosheet based ferroelectric field effect transistor (FeFET) with a poly(vinylidenefluoride-trifluoroethylene) top-gate insulator for a nonvolatile memory application. The BP FeFETs show the highest linear hole mobility of 563 cm2/Vs and a clear memory window of more than 15 V. For more advanced nonvolatile memory circuit applications, two different types of resistive-load and complementary ferroelectric memory inverters were implemented, which showed distinct memory on/off switching characteristics.
NASA Astrophysics Data System (ADS)
Li, S.; Guérin, D.; Lenfant, S.; Lmimouni, K.
2018-02-01
Pentacene based double nano-floating gate memories (NFGM) by using gold nanoparticles (Au NPs) and reduced graphene oxide (rGO) sheets as charge trapping layers are prepared and demonstrated. Particularly, the NFGM chemically treated by 2,3,4,5,6-pentafluorobenzenethiol (PFBT) self-assembled monolayers (SAM) exhibits excellent memory performances, including high mobility of 0.23 cm2V-1s-1, the large memory window of 51 V, and the stable retention property more than 108 s. Comparing the performances of NFGM without treating with PFBT SAM, the improving performances of the memory devices by SAM modification are explained by the increase of charge injection, which could be further investigated by XPS and UPS. In particular, the results highlight the utility of SAM modulations and controlling of charge transport in the development of organic transistor memories.
Large capacity temporary visual memory.
Endress, Ansgar D; Potter, Mary C
2014-04-01
Visual working memory (WM) capacity is thought to be limited to 3 or 4 items. However, many cognitive activities seem to require larger temporary memory stores. Here, we provide evidence for a temporary memory store with much larger capacity than past WM capacity estimates. Further, based on previous WM research, we show that a single factor--proactive interference--is sufficient to bring capacity estimates down to the range of previous WM capacity estimates. Participants saw a rapid serial visual presentation of 5-21 pictures of familiar objects or words presented at rates of 4/s or 8/s, respectively, and thus too fast for strategies such as rehearsal. Recognition memory was tested with a single probe item. When new items were used on all trials, no fixed memory capacities were observed, with estimates of up to 9.1 retained pictures for 21-item lists, and up to 30.0 retained pictures for 100-item lists, and no clear upper bound to how many items could be retained. Further, memory items were not stored in a temporally stable form of memory but decayed almost completely after a few minutes. In contrast, when, as in most WM experiments, a small set of items was reused across all trials, thus creating proactive interference among items, capacity remained in the range reported in previous WM experiments. These results show that humans have a large-capacity temporary memory store in the absence of proactive interference, and raise the question of whether temporary memory in everyday cognitive processing is severely limited, as in WM experiments, or has the much larger capacity found in the present experiments.
Toshiba TDF-500 High Resolution Viewing And Analysis System
NASA Astrophysics Data System (ADS)
Roberts, Barry; Kakegawa, M.; Nishikawa, M.; Oikawa, D.
1988-06-01
A high resolution, operator interactive, medical viewing and analysis system has been developed by Toshiba and Bio-Imaging Research. This system provides many advanced features including high resolution displays, a very large image memory and advanced image processing capability. In particular, the system provides CRT frame buffers capable of update in one frame period, an array processor capable of image processing at operator interactive speeds, and a memory system capable of updating multiple frame buffers at frame rates whilst supporting multiple array processors. The display system provides 1024 x 1536 display resolution at 40Hz frame and 80Hz field rates. In particular, the ability to provide whole or partial update of the screen at the scanning rate is a key feature. This allows multiple viewports or windows in the display buffer with both fixed and cine capability. To support image processing features such as windowing, pan, zoom, minification, filtering, ROI analysis, multiplanar and 3D reconstruction, a high performance CPU is integrated into the system. This CPU is an array processor capable of up to 400 million instructions per second. To support the multiple viewer and array processors' instantaneous high memory bandwidth requirement, an ultra fast memory system is used. This memory system has a bandwidth capability of 400MB/sec and a total capacity of 256MB. This bandwidth is more than adequate to support several high resolution CRT's and also the fast processing unit. This fully integrated approach allows effective real time image processing. The integrated design of viewing system, memory system and array processor are key to the imaging system. It is the intention to describe the architecture of the image system in this paper.
Short-term total sleep deprivation alters delay-conditioned memory in the rat.
Tripathi, Shweta; Jha, Sushil K
2016-06-01
Short-term sleep deprivation soon after training may impair memory consolidation. Also, a particular sleep stage or its components increase after learning some tasks, such as negative and positive reinforcement tasks, avoidance tasks, and spatial learning tasks, and so forth. It suggests that discrete memory types may require specific sleep stage or its components for their optimal processing. The classical conditioning paradigms are widely used to study learning and memory but the role of sleep in a complex conditioned learning is unclear. Here, we have investigated the effects of short-term sleep deprivation on the consolidation of delay-conditioned memory and the changes in sleep architecture after conditioning. Rats were trained for the delay-conditioned task (for conditioning, house-light [conditioned stimulus] was paired with fruit juice [unconditioned stimulus]). Animals were divided into 3 groups: (a) sleep deprived (SD); (b) nonsleep deprived (NSD); and (c) stress control (SC) groups. Two-way ANOVA revealed a significant interaction between groups and days (training and testing) during the conditioned stimulus-unconditioned stimulus presentation. Further, Tukey post hoc comparison revealed that the NSD and SC animals exhibited significant increase in performances during testing. The SD animals, however, performed significantly less during testing. Further, we observed that wakefulness and NREM sleep did not change after training and testing. Interestingly, REM sleep increased significantly on both days compared to baseline more specifically during the initial 4-hr time window after conditioning. Our results suggest that the consolidation of delay-conditioned memory is sleep-dependent and requires augmented REM sleep during an explicit time window soon after training. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Focusing on Attention: The Effects of Working Memory Capacity and Load on Selective Attention
Ahmed, Lubna; de Fockert, Jan W.
2012-01-01
Background Working memory (WM) is imperative for effective selective attention. Distractibility is greater under conditions of high (vs. low) concurrent working memory load (WML), and in individuals with low (vs. high) working memory capacity (WMC). In the current experiments, we recorded the flanker task performance of individuals with high and low WMC during low and high WML, to investigate the combined effect of WML and WMC on selective attention. Methodology/Principal Findings In Experiment 1, distractibility from a distractor at a fixed distance from the target was greater when either WML was high or WMC was low, but surprisingly smaller when both WML was high and WMC low. Thus we observed an inverted-U relationship between reductions in WM resources and distractibility. In Experiment 2, we mapped the distribution of spatial attention as a function of WMC and WML, by recording distractibility across several target-to-distractor distances. The pattern of distractor effects across the target-to-distractor distances demonstrated that the distribution of the attentional window becomes dispersed as WM resources are limited. The attentional window was more spread out under high compared to low WML, and for low compared to high WMC individuals, and even more so when the two factors co-occurred (i.e., under high WML in low WMC individuals). The inverted-U pattern of distractibility effects in Experiment 1, replicated in Experiment 2, can thus be explained by differences in the spread of the attentional window as a function of WM resource availability. Conclusions/Significance The current findings show that limitations in WM resources, due to either WML or individual differences in WMC, affect the spatial distribution of attention. The difference in attentional constraining between high and low WMC individuals demonstrated in the current experiments helps characterise the nature of previously established associations between WMC and controlled attention. PMID:22952636
NASA Astrophysics Data System (ADS)
Devulder, Wouter; Opsomer, Karl; Franquet, Alexis; Meersschaut, Johan; Belmonte, Attilio; Muller, Robert; De Schutter, Bob; Van Elshocht, Sven; Jurczak, Malgorzata; Goux, Ludovic; Detavernier, Christophe
2014-02-01
In this paper, we investigate the influence of the carbon content on the Cu-Te phase formation and on the resistive switching behavior in carbon alloyed Cu0.6Te0.4 based conductive bridge random access memory (CBRAM) cells. Carbon alloying of copper-tellurium inhibits the crystallization, while attractive switching behavior is preserved when using the material as Cu-supply layer in CBRAM cells. The phase formation is first investigated in a combinatorial way. With increasing carbon content, an enlargement of the temperature window in which the material stays amorphous was observed. Moreover, if crystalline phases are formed, subsequent phase transformations are inhibited. The electrical switching behavior of memory cells with different carbon contents is then investigated by implementing them in 580 μm diameter dot TiN/Cu0.6Te0.4-C/Al2O3/Si memory cells. Reliable switching behavior is observed for carbon contents up to 40 at. %, with a resistive window of more than 2 orders of magnitude, whereas for 50 at. % carbon, a higher current in the off state and only a small resistive window are present after repeated cycling. This degradation can be ascribed to the higher thermal and lower drift contribution to the reset operation due to a lower Cu affinity towards the supply layer, leading cycle-after-cycle to an increasing amount of Cu in the switching layer, which contributes to the current. The thermal diffusion of Cu into Al2O3 under annealing also gives an indication of the Cu affinity of the source layer. Time of flight secondary ion mass spectroscopy was used to investigate this migration depth in Al2O3 before and after annealing, showing a higher Cu, Te, and C migration for high carbon contents.
Homogeneous-oxide stack in IGZO thin-film transistors for multi-level-cell NAND memory application
NASA Astrophysics Data System (ADS)
Ji, Hao; Wei, Yehui; Zhang, Xinlei; Jiang, Ran
2017-11-01
A nonvolatile charge-trap-flash memory that is based on amorphous indium-gallium-zinc-oxide thin film transistors was fabricated with a homogeneous-oxide structure for a multi-level-cell application. All oxide layers, i.e., tunneling layer, charge trapping layer, and blocking layer, were fabricated with Al2O3 films. The fabrication condition (including temperature and deposition method) of the charge trapping layer was different from those of the other oxide layers. This device demonstrated a considerable large memory window of 4 V between the states fully erased and programmed with the operation voltage less than 14 V. This kind of device shows a good prospect for multi-level-cell memory applications.
Enhanced switching stability in Ta2O5 resistive RAM by fluorine doping
NASA Astrophysics Data System (ADS)
Sedghi, N.; Li, H.; Brunell, I. F.; Dawson, K.; Guo, Y.; Potter, R. J.; Gibbon, J. T.; Dhanak, V. R.; Zhang, W. D.; Zhang, J. F.; Hall, S.; Robertson, J.; Chalker, P. R.
2017-08-01
The effect of fluorine doping on the switching stability of Ta2O5 resistive random access memory devices is investigated. It shows that the dopant serves to increase the memory window and improve the stability of the resistive states due to the neutralization of oxygen vacancies. The ability to alter the current in the low resistance state with set current compliance coupled with large memory window makes multilevel cell switching more favorable. The devices have set and reset voltages of <1 V with improved stability due to the fluorine doping. Density functional modeling shows that the incorporation of fluorine dopant atoms at the two-fold O vacancy site in the oxide network removes the defect state in the mid bandgap, lowering the overall density of defects capable of forming conductive filaments. This reduces the probability of forming alternative conducting paths and hence improves the current stability in the low resistance states. The doped devices exhibit more stable resistive states in both dc and pulsed set and reset cycles. The retention failure time is estimated to be a minimum of 2 years for F-doped devices measured by temperature accelerated and stress voltage accelerated retention failure methods.
Fast and Efficient XML Data Access for Next-Generation Mass Spectrometry.
Röst, Hannes L; Schmitt, Uwe; Aebersold, Ruedi; Malmström, Lars
2015-01-01
In mass spectrometry-based proteomics, XML formats such as mzML and mzXML provide an open and standardized way to store and exchange the raw data (spectra and chromatograms) of mass spectrometric experiments. These file formats are being used by a multitude of open-source and cross-platform tools which allow the proteomics community to access algorithms in a vendor-independent fashion and perform transparent and reproducible data analysis. Recent improvements in mass spectrometry instrumentation have increased the data size produced in a single LC-MS/MS measurement and put substantial strain on open-source tools, particularly those that are not equipped to deal with XML data files that reach dozens of gigabytes in size. Here we present a fast and versatile parsing library for mass spectrometric XML formats available in C++ and Python, based on the mature OpenMS software framework. Our library implements an API for obtaining spectra and chromatograms under memory constraints using random access or sequential access functions, allowing users to process datasets that are much larger than system memory. For fast access to the raw data structures, small XML files can also be completely loaded into memory. In addition, we have improved the parsing speed of the core mzML module by over 4-fold (compared to OpenMS 1.11), making our library suitable for a wide variety of algorithms that need fast access to dozens of gigabytes of raw mass spectrometric data. Our C++ and Python implementations are available for the Linux, Mac, and Windows operating systems. All proposed modifications to the OpenMS code have been merged into the OpenMS mainline codebase and are available to the community at https://github.com/OpenMS/OpenMS.
Fast and Efficient XML Data Access for Next-Generation Mass Spectrometry
Röst, Hannes L.; Schmitt, Uwe; Aebersold, Ruedi; Malmström, Lars
2015-01-01
Motivation In mass spectrometry-based proteomics, XML formats such as mzML and mzXML provide an open and standardized way to store and exchange the raw data (spectra and chromatograms) of mass spectrometric experiments. These file formats are being used by a multitude of open-source and cross-platform tools which allow the proteomics community to access algorithms in a vendor-independent fashion and perform transparent and reproducible data analysis. Recent improvements in mass spectrometry instrumentation have increased the data size produced in a single LC-MS/MS measurement and put substantial strain on open-source tools, particularly those that are not equipped to deal with XML data files that reach dozens of gigabytes in size. Results Here we present a fast and versatile parsing library for mass spectrometric XML formats available in C++ and Python, based on the mature OpenMS software framework. Our library implements an API for obtaining spectra and chromatograms under memory constraints using random access or sequential access functions, allowing users to process datasets that are much larger than system memory. For fast access to the raw data structures, small XML files can also be completely loaded into memory. In addition, we have improved the parsing speed of the core mzML module by over 4-fold (compared to OpenMS 1.11), making our library suitable for a wide variety of algorithms that need fast access to dozens of gigabytes of raw mass spectrometric data. Availability Our C++ and Python implementations are available for the Linux, Mac, and Windows operating systems. All proposed modifications to the OpenMS code have been merged into the OpenMS mainline codebase and are available to the community at https://github.com/OpenMS/OpenMS. PMID:25927999
Reduced electron back-injection in Al2O3/AlOx/Al2O3/graphene charge-trap memory devices
NASA Astrophysics Data System (ADS)
Lee, Sejoon; Song, Emil B.; Min Kim, Sung; Lee, Youngmin; Seo, David H.; Seo, Sunae; Wang, Kang L.
2012-12-01
A graphene charge-trap memory is devised using a single-layer graphene channel with an Al2O3/AlOx/Al2O3 oxide stack, where the ion-bombarded AlOx layer is intentionally added to create an abundance of charge-trap sites. The low dielectric constant of AlOx compared to Al2O3 reduces the potential drop in the control oxide Al2O3 and suppresses the electron back-injection from the gate to the charge-storage layer, allowing the memory window of the device to be further extended. This shows that the usage of a lower dielectric constant in the charge-storage layer compared to that of the control oxide layer improves the memory performance for graphene charge-trap memories.
3D gate-all-around bandgap-engineered SONOS flash memory in vertical silicon pillar with metal gate
NASA Astrophysics Data System (ADS)
Oh, Jae-Sub; Yang, Seong-Dong; Lee, Sang-Youl; Kim, Young-Su; Kang, Min-Ho; Lim, Sung-Kyu; Lee, Hi-Deok; Lee, Ga-Won
2013-08-01
In this paper, a gate-all-around bandgap-engineered silicon-oxide-nitride-oxide-silicon device with a vertical silicon pillar structure and a Ti metal gate are demonstrated for a potential solution to overcome the scaling-down of flash memory device. The devices were fabricated using CMOS-compatible technology and exhibited well-behaved memory characteristics in terms of the program/erase window, retention, and endurance properties. Moreover, the integration of the Ti metal gate demonstrated a significant improvement in the erase characteristics due to the efficient suppression of the electron back tunneling through the blocking oxide.
Electric-field-controlled interface dipole modulation for Si-based memory devices.
Miyata, Noriyuki
2018-05-31
Various nonvolatile memory devices have been investigated to replace Si-based flash memories or emulate synaptic plasticity for next-generation neuromorphic computing. A crucial criterion to achieve low-cost high-density memory chips is material compatibility with conventional Si technologies. In this paper, we propose and demonstrate a new memory concept, interface dipole modulation (IDM) memory. IDM can be integrated as a Si field-effect transistor (FET) based memory device. The first demonstration of this concept employed a HfO 2 /Si MOS capacitor where the interface monolayer (ML) TiO 2 functions as a dipole modulator. However, this configuration is unsuitable for Si-FET-based devices due to its large interface state density (D it ). Consequently, we propose, a multi-stacked amorphous HfO 2 /1-ML TiO 2 /SiO 2 IDM structure to realize a low D it and a wide memory window. Herein we describe the quasi-static and pulse response characteristics of multi-stacked IDM MOS capacitors and demonstrate flash-type and analog memory operations of an IDM FET device.
Identification of a Functional Connectome for Long-Term Fear Memory in Mice
Wheeler, Anne L.; Teixeira, Cátia M.; Wang, Afra H.; Xiong, Xuejian; Kovacevic, Natasa; Lerch, Jason P.; McIntosh, Anthony R.; Parkinson, John; Frankland, Paul W.
2013-01-01
Long-term memories are thought to depend upon the coordinated activation of a broad network of cortical and subcortical brain regions. However, the distributed nature of this representation has made it challenging to define the neural elements of the memory trace, and lesion and electrophysiological approaches provide only a narrow window into what is appreciated a much more global network. Here we used a global mapping approach to identify networks of brain regions activated following recall of long-term fear memories in mice. Analysis of Fos expression across 84 brain regions allowed us to identify regions that were co-active following memory recall. These analyses revealed that the functional organization of long-term fear memories depends on memory age and is altered in mutant mice that exhibit premature forgetting. Most importantly, these analyses indicate that long-term memory recall engages a network that has a distinct thalamic-hippocampal-cortical signature. This network is concurrently integrated and segregated and therefore has small-world properties, and contains hub-like regions in the prefrontal cortex and thalamus that may play privileged roles in memory expression. PMID:23300432
Dopaminergic inputs in the dentate gyrus direct the choice of memory encoding
Du, Huiyun; Deng, Wei; Aimone, James B.; ...
2016-09-13
Rewarding experiences are often well remembered, and such memory formation is known to be dependent on dopamine modulation of the neural substrates engaged in learning and memory; however, it is unknown how and where in the brain dopamine signals bias episodic memory toward preceding rather than subsequent events. Here we found that photostimulation of channelrhodopsin-2–expressing dopaminergic fibers in the dentate gyrus induced a long-term depression of cortical inputs, diminished theta oscillations, and impaired subsequent contextual learning. Computational modeling based on this dopamine modulation indicated an asymmetric association of events occurring before and after reward in memory tasks. In subsequent behavioralmore » experiments, preexposure to a natural reward suppressed hippocampus-dependent memory formation, with an effective time window consistent with the duration of dopamine-induced changes of dentate activity. Altogether, our results suggest a mechanism by which dopamine enables the hippocampus to encode memory with reduced interference from subsequent experience.« less
Dopaminergic inputs in the dentate gyrus direct the choice of memory encoding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Huiyun; Deng, Wei; Aimone, James B.
Rewarding experiences are often well remembered, and such memory formation is known to be dependent on dopamine modulation of the neural substrates engaged in learning and memory; however, it is unknown how and where in the brain dopamine signals bias episodic memory toward preceding rather than subsequent events. Here we found that photostimulation of channelrhodopsin-2–expressing dopaminergic fibers in the dentate gyrus induced a long-term depression of cortical inputs, diminished theta oscillations, and impaired subsequent contextual learning. Computational modeling based on this dopamine modulation indicated an asymmetric association of events occurring before and after reward in memory tasks. In subsequent behavioralmore » experiments, preexposure to a natural reward suppressed hippocampus-dependent memory formation, with an effective time window consistent with the duration of dopamine-induced changes of dentate activity. Altogether, our results suggest a mechanism by which dopamine enables the hippocampus to encode memory with reduced interference from subsequent experience.« less
2006-09-25
Ames and Moffett Field (MFA) historical sites and memorials Entry of building N-210 Ames Flight System Research Laboratory architectural detail. Eastside showing NACA brass inset wing over front doors, light fixtures flanking the doors and glass brick window wall above the doors
2006-09-25
Ames and Moffett Field (MFA) historical sites and memorials Entry of building N-210 Ames Flight System Research Laboratory architectural detail. Eastside showing NACA brass inset wing over front doors, light fixtures flanking the doors and glass brick window wall above the doors
Large capacity temporary visual memory
Endress, Ansgar D.; Potter, Mary C.
2014-01-01
Visual working memory (WM) capacity is thought to be limited to three or four items. However, many cognitive activities seem to require larger temporary memory stores. Here, we provide evidence for a temporary memory store with much larger capacity than past WM capacity estimates. Further, based on previous WM research, we show that a single factor — proactive interference — is sufficient to bring capacity estimates down to the range of previous WM capacity estimates. Participants saw a rapid serial visual presentation (RSVP) of 5 to 21 pictures of familiar objects or words presented at rates of 4/s or 8/s, respectively, and thus too fast for strategies such as rehearsal. Recognition memory was tested with a single probe item. When new items were used on all trials, no fixed memory capacities were observed, with estimates of up to 9.1 retained pictures for 21-item lists, and up to 30.0 retained pictures for 100-item lists, and no clear upper bound to how many items could be retained. Further, memory items were not stored in a temporally stable form of memory, but decayed almost completely after a few minutes. In contrast, when, as in most WM experiments, a small set of items was reused across all trials, thus creating proactive interference among items, capacity remained in the range reported in previous WM experiments. These results show that humans have a large-capacity temporary memory store in the absence of proactive interference, and raise the question of whether temporary memory in everyday cognitive processing is severely limited as in WM experiments, or has the much larger capacity found in the present experiments. PMID:23937181
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei, E-mail: wwei99@jlu.edu.cn; Han, Jinhua; Ying, Jun
2014-09-22
Two types of floating-gate based organic thin-film transistor nonvolatile memories (FG-OTFT-NVMs) were demonstrated, with poly(methyl methacrylate co glycidyl methacrylate) (P(MMA-GMA)) and tetratetracontane (TTC) as the tunneling layer, respectively. Their device performances were measured and compared. In the memory with a P(MMA-GMA) tunneling layer, typical unipolar hole transport was obtained with a relatively small mobility of 0.16 cm{sup 2}/V s. The unidirectional shift of turn-on voltage (V{sub on}) due to only holes trapped/detrapped in/from the floating gate resulted in a small memory window of 12.5 V at programming/erasing voltages (V{sub P}/V{sub E}) of ±100 V and a nonzero reading voltage. Benefited from the well-ordered moleculemore » orientation and the trap-free surface of TTC layer, a considerably high hole mobility of 1.7 cm{sup 2}/V s and a visible feature of electrons accumulated in channel and trapped in floating-gate were achieved in the memory with a TTC tunneling layer. High hole mobility resulted in a high on current and a large memory on/off ratio of 600 at the V{sub P}/V{sub E} of ±100 V. Both holes and electrons were injected into floating-gate and overwritten each other, which resulted in a bidirectional V{sub on} shift. As a result, an enlarged memory window of 28.6 V at the V{sub P}/V{sub E} of ±100 V and a zero reading voltage were achieved. Based on our results, a strategy is proposed to optimize FG-OTFT-NVMs by choosing a right tunneling layer to improve the majority carrier mobility and realize ambipolar carriers injecting and trapping in the floating-gate.« less
Liu, Chunsen; Yan, Xiao; Wang, Jianlu; Ding, Shijin; Zhou, Peng; Zhang, David Wei
2017-05-01
Atomic crystal charge trap memory, as a new concept of nonvolatile memory, possesses an atomic level flatness interface, which makes them promising candidates for replacing conventional FLASH memory in the future. Here, a 2D material WSe 2 and a 3D Al 2 O 3 /HfO 2 /Al 2 O 3 charge-trap stack are combined to form a charge-trap memory device with a separation of control gate and memory stack. In this device, the charges are erased/written by built-in electric field, which significantly enhances the write speed to 1 µs. More importantly, owing to the elaborate design of the energy band structure, the memory only captures electrons with a large electron memory window over 20 V and trap selectivity about 13, both of them are the state-of-the-art values ever reported in FLASH memory based on 2D materials. Therefore, it is demonstrated that high-performance charge trap memory based on WSe 2 without the fatal overerase issue in conventional FLASH memory can be realized to practical application. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Van Strien, Jan W; Langeslag, Sandra J E; Strekalova, Nadja J; Gootjes, Liselotte; Franken, Ingmar H A
2009-01-28
To examine whether valence and arousal influence recognition memory during early automatic or during more sustained processes, event-related brain potentials (ERPs) of 21 women were recorded while they made old/new judgments in a continuous recognition task with pictures from the International Affective Picture System. The pictures were presented twice and differed in emotional valence and arousal. The P1 peak and four time windows were investigated: 200-300 ms, 300-400 ms, 400-600 ms, and 750-1000 ms after stimulus onset. There was a robust old/new effect starting in the 200-300 ms epoch and lasting all time windows. The valence effect was mainly present in the P1 peak and the 200-400 ms epoch, whereas the arousal effect was found in the 300-1000 ms epoch. Exploratory sLORETA analyses dissociated valence-dependent ventromedial prefrontal activity and arousal-dependent occipital activity in the 350-380 ms time window. Valence interacted with the 200-400 ms old/new effect at central and frontal sites. Arousal interacted with the 750-1000 ms old/new effect at posterior sites. It is concluded that valence influences fast recognition memory, while arousal may influence sustained encoding.
Optical performance of segmented aperture windows for solar tower receivers
NASA Astrophysics Data System (ADS)
Buck, Reiner
2017-06-01
Segmented quartz windows are a concept to build larger windows for receivers that require a closed aperture. Reflection losses are a significant loss factor for such solar receivers. Without any additional measures, the reflection loss can reach about 12%. One important measure to improve transmission is the application of anti-reflective coatings, which is beneficial in any case. Another option is modifying the window geometry, especially the edge surfaces of the glass segments. A certain fraction of the reflection losses are caused by a light-guide effect in the glass body, for rays entering through the front surface. Changing the cut surfaces in a way reducing the light-guide effect can significantly improve transmission of a segmented window. Several possible configurations are evaluated and discussed. The results of ray-tracing simulations verify the improvement. The final selection of the window configuration depends on the optical properties and on mechanical strength, manufacturing and cost considerations. This has to be evaluated for any specific receiver design.
NASA Astrophysics Data System (ADS)
Nedic, Stanko; Tea Chun, Young; Hong, Woong-Ki; Chu, Daping; Welland, Mark
2014-01-01
A high performance ferroelectric non-volatile memory device based on a top-gate ZnO nanowire (NW) transistor fabricated on a glass substrate is demonstrated. The ZnO NW channel was spin-coated with a poly (vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE)) layer acting as a top-gate dielectric without buffer layer. Electrical conductance modulation and memory hysteresis are achieved by a gate electric field induced reversible electrical polarization switching of the P(VDF-TrFE) thin film. Furthermore, the fabricated device exhibits a memory window of ˜16.5 V, a high drain current on/off ratio of ˜105, a gate leakage current below ˜300 pA, and excellent retention characteristics for over 104 s.
Protect sensitive data with lightweight memory encryption
NASA Astrophysics Data System (ADS)
Zhou, Hongwei; Yuan, Jinhui; Xiao, Rui; Zhang, Kai; Sun, Jingyao
2018-04-01
Since current commercial processor is not able to deal with the data in the cipher text, the sensitive data have to be exposed in the memory. It leaves a window for the adversary. To protect the sensitive data, a direct idea is to encrypt the data when the processor does not access them. On the observation, we have developed a lightweight memory encryption, called LeMe, to protect the sensitive data in the application. LeMe marks the sensitive data in the memory with the page table entry, and encrypts the data in their free time. LeMe is built on the Linux with a 3.17.6 kernel, and provides four user interfaces as dynamic link library. Our evaluations show LeMe is effective to protect the sensitive data and incurs an acceptable performance overhead.
Event boundaries and memory improvement.
Pettijohn, Kyle A; Thompson, Alexis N; Tamplin, Andrea K; Krawietz, Sabine A; Radvansky, Gabriel A
2016-03-01
The structure of events can influence later memory for information that is embedded in them, with evidence indicating that event boundaries can both impair and enhance memory. The current study explored whether the presence of event boundaries during encoding can structure information to improve memory. In Experiment 1, memory for a list of words was tested in which event structure was manipulated by having participants walk through a doorway, or not, halfway through the word list. In Experiment 2, memory for lists of words was tested in which event structure was manipulated using computer windows. Finally, in Experiments 3 and 4, event structure was manipulated by having event shifts described in narrative texts. The consistent finding across all of these methods and materials was that memory was better when the information was distributed across two events rather than combined into a single event. Moreover, Experiment 4 demonstrated that increasing the number of event boundaries from one to two increased the memory benefit. These results are interpreted in the context of the Event Horizon Model of event cognition. Copyright © 2015 Elsevier B.V. All rights reserved.
Human Genomic Signatures of Brain Oscillations During Memory Encoding.
Berto, Stefano; Wang, Guang-Zhong; Germi, James; Lega, Bradley C; Konopka, Genevieve
2018-05-01
Memory encoding is an essential step for all learning. However, the genetic and molecular mechanisms underlying human memory encoding remain poorly understood, and how this molecular framework permits the emergence of specific patterns of brain oscillations observed during mnemonic processing is unknown. Here, we directly compare intracranial electroencephalography recordings from the neocortex in individuals performing an episodic memory task with human gene expression from the same areas. We identify genes correlated with oscillatory memory effects across 6 frequency bands. These genes are enriched for autism-related genes and have preferential expression in neurons, in particular genes encoding synaptic proteins and ion channels, supporting the idea that the genes regulating voltage gradients are involved in the modulation of oscillatory patterns during successful memory encoding across brain areas. Memory-related genes are distinct from those correlated with other forms of cognitive processing and resting state fMRI. These data are the first to identify correlations between gene expression and active human brain states as well as provide a molecular window into memory encoding oscillations in the human brain.
Components of working memory and visual selective attention.
Burnham, Bryan R; Sabia, Matthew; Langan, Catherine
2014-02-01
Load theory (Lavie, N., Hirst, A., De Fockert, J. W., & Viding, E. [2004]. Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133, 339-354.) proposes that control of attention depends on the amount and type of load that is imposed by current processing. Specifically, perceptual load should lead to efficient distractor rejection, whereas working memory load (dual-task coordination) should hinder distractor rejection. Studies support load theory's prediction that working memory load will lead to larger distractor effects; however, these studies used secondary tasks that required only verbal working memory and the central executive. The present study examined which other working memory components (visual, spatial, and phonological) influence visual selective attention. Subjects completed an attentional capture task alone (single-task) or while engaged in a working memory task (dual-task). Results showed that along with the central executive, visual and spatial working memory influenced selective attention, but phonological working memory did not. Specifically, attentional capture was larger when visual or spatial working memory was loaded, but phonological working memory load did not affect attentional capture. The results are consistent with load theory and suggest specific components of working memory influence visual selective attention. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Hippocampal brain-network coordination during volitional exploratory behavior enhances learning
Voss, Joel L.; Gonsalves, Brian D.; Federmeier, Kara D.; Tranel, Daniel; Cohen, Neal J.
2010-01-01
Exploratory behaviors during learning determine what is studied and when, helping to optimize subsequent memory performance. We manipulated how much control subjects had over the position of a moving window through which they studied objects and their locations, in order to elucidate the cognitive and neural determinants of exploratory behaviors. Our behavioral, neuropsychological, and neuroimaging data indicate volitional control benefits memory performance, and is linked to a brain network centered on the hippocampus. Increases in correlated activity between the hippocampus and other areas were associated with specific aspects of memory, suggesting that volitional control optimizes interactions among specialized neural systems via the hippocampus. Memory is therefore an active process intrinsically linked to behavior. Furthermore, brain structures typically seen as passive participants in memory encoding (e.g., the hippocampus) are actually part of an active network that controls behavior dynamically as it unfolds. PMID:21102449
A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement
Kim, Jaemin; Son, Donghee; Lee, Mincheol; Song, Changyeong; Song, Jun-Kyul; Koo, Ja Hoon; Lee, Dong Jun; Shim, Hyung Joon; Kim, Ji Hoon; Lee, Minbaek; Hyeon, Taeghwan; Kim, Dae-Hyeong
2016-01-01
Strategies for efficient charge confinement in nanocrystal floating gates to realize high-performance memory devices have been investigated intensively. However, few studies have reported nanoscale experimental validations of charge confinement in closely packed uniform nanocrystals and related device performance characterization. Furthermore, the system-level integration of the resulting devices with wearable silicon electronics has not yet been realized. We introduce a wearable, fully multiplexed silicon nonvolatile memory array with nanocrystal floating gates. The nanocrystal monolayer is assembled over a large area using the Langmuir-Blodgett method. Efficient particle-level charge confinement is verified with the modified atomic force microscopy technique. Uniform nanocrystal charge traps evidently improve the memory window margin and retention performance. Furthermore, the multiplexing of memory devices in conjunction with the amplification of sensor signals based on ultrathin silicon nanomembrane circuits in stretchable layouts enables wearable healthcare applications such as long-term data storage of monitored heart rates. PMID:26763827
Hippocampal brain-network coordination during volitional exploratory behavior enhances learning.
Voss, Joel L; Gonsalves, Brian D; Federmeier, Kara D; Tranel, Daniel; Cohen, Neal J
2011-01-01
Exploratory behaviors during learning determine what is studied and when, helping to optimize subsequent memory performance. To elucidate the cognitive and neural determinants of exploratory behaviors, we manipulated the control that human subjects had over the position of a moving window through which they studied objects and their locations. Our behavioral, neuropsychological and neuroimaging data indicate that volitional control benefits memory performance and is linked to a brain network that is centered on the hippocampus. Increases in correlated activity between the hippocampus and other areas were associated with specific aspects of memory, which suggests that volitional control optimizes interactions among specialized neural systems through the hippocampus. Memory is therefore an active process that is intrinsically linked to behavior. Furthermore, brain structures that are typically seen as passive participants in memory encoding (for example, the hippocampus) are actually part of an active network that controls behavior dynamically as it unfolds.
A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement.
Kim, Jaemin; Son, Donghee; Lee, Mincheol; Song, Changyeong; Song, Jun-Kyul; Koo, Ja Hoon; Lee, Dong Jun; Shim, Hyung Joon; Kim, Ji Hoon; Lee, Minbaek; Hyeon, Taeghwan; Kim, Dae-Hyeong
2016-01-01
Strategies for efficient charge confinement in nanocrystal floating gates to realize high-performance memory devices have been investigated intensively. However, few studies have reported nanoscale experimental validations of charge confinement in closely packed uniform nanocrystals and related device performance characterization. Furthermore, the system-level integration of the resulting devices with wearable silicon electronics has not yet been realized. We introduce a wearable, fully multiplexed silicon nonvolatile memory array with nanocrystal floating gates. The nanocrystal monolayer is assembled over a large area using the Langmuir-Blodgett method. Efficient particle-level charge confinement is verified with the modified atomic force microscopy technique. Uniform nanocrystal charge traps evidently improve the memory window margin and retention performance. Furthermore, the multiplexing of memory devices in conjunction with the amplification of sensor signals based on ultrathin silicon nanomembrane circuits in stretchable layouts enables wearable healthcare applications such as long-term data storage of monitored heart rates.
Measuring Memory Reactivation With Functional MRI: Implications for Psychological Theory.
Levy, Benjamin J; Wagner, Anthony D
2013-01-01
Environmental cues often remind us of earlier experiences by triggering the reactivation of memories of events past. Recent evidence suggests that memory reactivation can be observed using functional MRI and that distributed pattern analyses can even provide evidence of reactivation on individual trials. The ability to measure memory reactivation offers unique and powerful leverage on theoretical issues of long-standing interest in cognitive psychology, providing a means to address questions that have proven difficult to answer with behavioral data alone. In this article, we consider three instances. First, reactivation measures can indicate whether memory-based inferences (i.e., generalization) arise through the encoding of integrated cross-event representations or through the flexible expression of separable event memories. Second, online measures of memory reactivation may inform theories of forgetting by providing information about when competing memories are reactivated during competitive retrieval situations. Finally, neural reactivation may provide a window onto the role of replay in memory consolidation. The ability to track memory reactivation, including at the individual trial level, provides unique leverage that is not afforded by behavioral measures and thus promises to shed light on such varied topics as generalization, integration, forgetting, and consolidation. © The Author(s) 2013.
Recognition Memory for Braille or Spoken Words: An fMRI study in Early Blind
Burton, Harold; Sinclair, Robert J.; Agato, Alvin
2012-01-01
We examined cortical activity in early blind during word recognition memory. Nine participants were blind at birth and one by 1.5 yrs. In an event-related design, we studied blood oxygen level-dependent responses to studied (“old”) compared to novel (“new”) words. Presentation mode was in Braille or spoken. Responses were larger for identified “new” words read with Braille in bilateral lower and higher tier visual areas and primary somatosensory cortex. Responses to spoken “new” words were larger in bilateral primary and accessory auditory cortex. Auditory cortex was unresponsive to Braille words and occipital cortex responded to spoken words but not differentially with “old”/“new” recognition. Left dorsolateral prefrontal cortex had larger responses to “old” words only with Braille. Larger occipital cortex responses to “new” Braille words suggested verbal memory based on the mechanism of recollection. A previous report in sighted noted larger responses for “new” words studied in association with pictures that created a distinctiveness heuristic source factor which enhanced recollection during remembering. Prior behavioral studies in early blind noted an exceptional ability to recall words. Utilization of this skill by participants in the current study possibly engendered recollection that augmented remembering “old” words. A larger response when identifying “new” words possibly resulted from exhaustive recollecting the sensory properties of “old” words in modality appropriate sensory cortices. The uniqueness of a memory role for occipital cortex is in its cross-modal responses to coding tactile properties of Braille. The latter possibly reflects a “sensory echo” that aids recollection. PMID:22251836
Recognition memory for Braille or spoken words: an fMRI study in early blind.
Burton, Harold; Sinclair, Robert J; Agato, Alvin
2012-02-15
We examined cortical activity in early blind during word recognition memory. Nine participants were blind at birth and one by 1.5years. In an event-related design, we studied blood oxygen level-dependent responses to studied ("old") compared to novel ("new") words. Presentation mode was in Braille or spoken. Responses were larger for identified "new" words read with Braille in bilateral lower and higher tier visual areas and primary somatosensory cortex. Responses to spoken "new" words were larger in bilateral primary and accessory auditory cortex. Auditory cortex was unresponsive to Braille words and occipital cortex responded to spoken words but not differentially with "old"/"new" recognition. Left dorsolateral prefrontal cortex had larger responses to "old" words only with Braille. Larger occipital cortex responses to "new" Braille words suggested verbal memory based on the mechanism of recollection. A previous report in sighted noted larger responses for "new" words studied in association with pictures that created a distinctiveness heuristic source factor which enhanced recollection during remembering. Prior behavioral studies in early blind noted an exceptional ability to recall words. Utilization of this skill by participants in the current study possibly engendered recollection that augmented remembering "old" words. A larger response when identifying "new" words possibly resulted from exhaustive recollecting the sensory properties of "old" words in modality appropriate sensory cortices. The uniqueness of a memory role for occipital cortex is in its cross-modal responses to coding tactile properties of Braille. The latter possibly reflects a "sensory echo" that aids recollection. Copyright © 2011 Elsevier B.V. All rights reserved.
Flash Memory Featuring Low-Voltage Operation by Crystalline ZrTiO4 Charge-Trapping Layer
NASA Astrophysics Data System (ADS)
Shen, Yung-Shao; Chen, Kuen-Yi; Chen, Po-Chun; Chen, Teng-Chuan; Wu, Yung-Hsien
2017-03-01
Crystalline ZrTiO4 (ZTO) in orthorhombic phase with different plasma treatments was explored as the charge-trapping layer for low-voltage operation flash memory. For ZTO without any plasma treatment, even with a high k value of 45.2, it almost cannot store charges due the oxygen vacancies-induced shallow-level traps that make charges easy to tunnel back to Si substrate. With CF4 plasma treatment, charge storage is still not improved even though incorporated F atoms could introduce additional traps since the F atoms disappear during the subsequent thermal annealing. On the contrary, nevertheless the k value degrades to 40.8, N2O plasma-treated ZTO shows promising performance in terms of 5-V hysteresis memory window by ±7-V sweeping voltage, 2.8-V flatband voltage shift by programming at +7 V for 100 μs, negligible memory window degradation with 105 program/erase cycles and 81.8% charge retention after 104 sec at 125 °C. These desirable characteristics are ascribed not only to passivation of oxygen vacancies-related shallow-level traps but to introduction of a large amount of deep-level bulk charge traps which have been proven by confirming thermally excited process as the charge loss mechanism and identifying traps located at energy level beneath ZTO conduction band by 0.84 eV~1.03 eV.
Flash Memory Featuring Low-Voltage Operation by Crystalline ZrTiO4 Charge-Trapping Layer.
Shen, Yung-Shao; Chen, Kuen-Yi; Chen, Po-Chun; Chen, Teng-Chuan; Wu, Yung-Hsien
2017-03-08
Crystalline ZrTiO 4 (ZTO) in orthorhombic phase with different plasma treatments was explored as the charge-trapping layer for low-voltage operation flash memory. For ZTO without any plasma treatment, even with a high k value of 45.2, it almost cannot store charges due the oxygen vacancies-induced shallow-level traps that make charges easy to tunnel back to Si substrate. With CF 4 plasma treatment, charge storage is still not improved even though incorporated F atoms could introduce additional traps since the F atoms disappear during the subsequent thermal annealing. On the contrary, nevertheless the k value degrades to 40.8, N 2 O plasma-treated ZTO shows promising performance in terms of 5-V hysteresis memory window by ±7-V sweeping voltage, 2.8-V flatband voltage shift by programming at +7 V for 100 μs, negligible memory window degradation with 10 5 program/erase cycles and 81.8% charge retention after 10 4 sec at 125 °C. These desirable characteristics are ascribed not only to passivation of oxygen vacancies-related shallow-level traps but to introduction of a large amount of deep-level bulk charge traps which have been proven by confirming thermally excited process as the charge loss mechanism and identifying traps located at energy level beneath ZTO conduction band by 0.84 eV~1.03 eV.
Windows Memory Forensic Data Visualization
2014-06-12
clustering characteristics (Bastian, et al, 2009). The software is written in Java and utilizes the OpenGL library for rendering graphical content...Toolkit 2 nd ed. Burlington MA: Syngress. D3noob. (2013, February 8). Using a MYSQL database as a source of data. Message posted to http
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brad Oberg
2010-12-31
IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.
NASA Astrophysics Data System (ADS)
Wang, Tai-Min; Chien, Wei-Yu; Hsu, Chia-Ling; Lin, Chrong Jung; King, Ya-Chin
2018-04-01
In this paper, we present a new differential p-channel multiple-time programmable (MTP) memory cell that is fully compatible with advanced 16 nm CMOS fin field-effect transistors (FinFET) logic processes. This differential MTP cell stores complementary data in floating gates coupled by a slot contact structure, which make different read currents possible on a single cell. In nanoscale CMOS FinFET logic processes, the gate dielectric layer becomes too thin to retain charges inside floating gates for nonvolatile data storage. By using a differential architecture, the sensing window of the cell can be extended and maintained by an advanced blanket boost scheme. The charge retention problem in floating gate cells can be improved by periodic restoring lost charges when significant read window narrowing occurs. In addition to high programming efficiency, this p-channel MTP cells also exhibit good cycling endurance as well as disturbance immunity. The blanket boost scheme can remedy the charge loss problem under thin gate dielectrics.
Chen, Min-Cheng; Chen, Hao-Yu; Lin, Chia-Yi; Chien, Chao-Hsin; Hsieh, Tsung-Fan; Horng, Jim-Tong; Qiu, Jian-Tai; Huang, Chien-Chao; Ho, Chia-Hua; Yang, Fu-Liang
2012-01-01
This paper reports a versatile nano-sensor technology using “top-down” poly-silicon nanowire field-effect transistors (FETs) in the conventional Complementary Metal-Oxide Semiconductor (CMOS)-compatible semiconductor process. The nanowire manufacturing technique reduced nanowire width scaling to 50 nm without use of extra lithography equipment, and exhibited superior device uniformity. These n type polysilicon nanowire FETs have positive pH sensitivity (100 mV/pH) and sensitive deoxyribonucleic acid (DNA) detection ability (100 pM) at normal system operation voltages. Specially designed oxide-nitride-oxide buried oxide nanowire realizes an electrically Vth-adjustable sensor to compensate device variation. These nanowire FETs also enable non-volatile memory application for a large and steady Vth adjustment window (>2 V Programming/Erasing window). The CMOS-compatible manufacturing technique of polysilicon nanowire FETs offers a possible solution for commercial System-on-Chip biosensor application, which enables portable physiology monitoring and in situ recording. PMID:22666012
Investigation of multilayer WS2 flakes as charge trapping stack layers in non-volatile memories
NASA Astrophysics Data System (ADS)
Wang, Hong; Ren, Deliang; Lu, Chao; Yan, Xiaobing
2018-06-01
In this study, the non-volatile flash memory devices utilize tungsten sulfide flakes as the charge trapping stack layers were fabricated. The sandwiched structure of Pd/ZHO/WS2/ZHO/WS2/SiO2/Si manifests a memory window of 2.26 V and a high density of trapped charges 4.88 × 1012/cm2 under a ±5 V gate sweeping voltage. Moreover, the data retention results of as-fabricated non-volatile memories demonstrate that the high and low capacitance states are enhanced by 3.81% and 3.11%, respectively, after a measurement duration of 1.20 × 104 s. These remarkable achievements are probably attributed to the defects and band gap of WS2 flakes. Besides, the proposed memory fabrication is not only compatible with CMOS manufacturing processes but also gets rid of the high-temperature annealing process. Overall, this proposed non-volatile memory is highly attractive for low voltage, long data retention applications.
Prince, Toni-Moi; Wimmer, Mathieu; Choi, Jennifer; Havekes, Robbert; Aton, Sara; Abel, Ted
2014-01-01
Sleep deprivation disrupts hippocampal function and plasticity. In particular, long-term memory consolidation is impaired by sleep deprivation, suggesting that a specific critical period exists following learning during which sleep is necessary. To elucidate the impact of sleep deprivation on long-term memory consolidation and synaptic plasticity, long-term memory was assessed when mice were sleep deprived following training in the hippocampus-dependent object place recognition task. We found that 3 hours of sleep deprivation significantly impaired memory when deprivation began 1 hour after training. In contrast, 3 hours of deprivation beginning immediately post-training did not impair spatial memory. Furthermore, a 3-hour sleep deprivation beginning 1 hour after training impaired hippocampal long-term potentiation (LTP), whereas sleep deprivation immediately after training did not affect LTP. Together, our findings define a specific 3-hour critical period, extending from 1 to 4 hours after training, during which sleep deprivation impairs hippocampal function. PMID:24380868
Vetere, Gisella; Restivo, Leonardo; Cole, Christina J.; Ross, P. Joel; Ammassari-Teule, Martine; Josselyn, Sheena A.; Frankland, Paul W.
2011-01-01
Remodeling of cortical connectivity is thought to allow initially hippocampus-dependent memories to be expressed independently of the hippocampus at remote time points. Consistent with this, consolidation of a contextual fear memory is associated with dendritic spine growth in neurons of the anterior cingulate cortex (aCC). To directly test whether such cortical structural remodeling is necessary for memory consolidation, we disrupted spine growth in the aCC at different times following contextual fear conditioning in mice. We took advantage of previous studies showing that the transcription factor myocyte enhancer factor 2 (MEF2) negatively regulates spinogenesis both in vitro and in vivo. We found that increasing MEF2-dependent transcription in the aCC during a critical posttraining window (but not at later time points) blocked both the consolidation-associated dendritic spine growth and subsequent memory expression. Together, these data strengthen the causal link between cortical structural remodeling and memory consolidation and, further, identify MEF2 as a key regulator of these processes. PMID:21531906
How long-term memory and accentuation interact during spoken language comprehension.
Li, Xiaoqing; Yang, Yufang
2013-04-01
Spoken language comprehension requires immediate integration of different information types, such as semantics, syntax, and prosody. Meanwhile, both the information derived from speech signals and the information retrieved from long-term memory exert their influence on language comprehension immediately. Using EEG (electroencephalogram), the present study investigated how the information retrieved from long-term memory interacts with accentuation during spoken language comprehension. Mini Chinese discourses were used as stimuli, with an interrogative or assertive context sentence preceding the target sentence. The target sentence included one critical word conveying new information. The critical word was either highly expected or lowly expected given the information retrieved from long-term memory. Moreover, the critical word was either consistently accented or inconsistently de-accented. The results revealed that for lowly expected new information, inconsistently de-accented words elicited a larger N400 and larger theta power increases (4-6 Hz) than consistently accented words. In contrast, for the highly expected new information, consistently accented words elicited a larger N400 and larger alpha power decreases (8-14 Hz) than inconsistently de-accented words. The results suggest that, during spoken language comprehension, the effect of accentuation interacted with the information retrieved from long-term memory immediately. Moreover, our results also have important consequences for our understanding of the processing nature of the N400. The N400 amplitude is not only enhanced for incorrect information (new and de-accented word) but also enhanced for correct information (new and accented words). Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sleiman, A.; Rosamond, M. C.; Alba Martin, M.; Ayesh, A.; Al Ghaferi, A.; Gallant, A. J.; Mabrook, M. F.; Zeze, D. A.
2012-01-01
A pentacene-based organic metal-insulator-semiconductor memory device, utilizing single walled carbon nanotubes (SWCNTs) for charge storage is reported. SWCNTs were embedded, between SU8 and polymethylmethacrylate to achieve an efficient encapsulation. The devices exhibit capacitance-voltage clockwise hysteresis with a 6 V memory window at ± 30 V sweep voltage, attributed to charging and discharging of SWCNTs. As the applied gate voltage exceeds the SU8 breakdown voltage, charge leakage is induced in SU8 to allow more charges to be stored in the SWCNT nodes. The devices exhibited high storage density (˜9.15 × 1011 cm-2) and demonstrated 94% charge retention due to the superior encapsulation.
Recirculating cross-correlation detector
Andrews, W.H. Jr.; Roberts, M.J.
1985-01-18
A digital cross-correlation detector is provided in which two time-varying signals are correlated by repetitively comparing data samples stored in digital form to detect correlation between the two signals. The signals are sampled at a selected rate converted to digital form, and stored in separate locations in separate memories. When the memories are filled, the data samples from each memory are first fed word-by-word through a multiplier and summing circuit and each result is compared to the last in a peak memory circuit and if larger than the last is retained in the peak memory. Then the address line to leading signal memory is offset by one byte to affect one sample period delay of a known amount in that memory and the data in the two memories are then multiplied word-by-word once again and summed. If a new result is larger than a former sum, it is saved in the peak memory together with the time delay. The recirculating process continues with the address of the one memory being offset one additional byte each cycle until the address is shifted through the length of the memory. The correlation between the two signals is indicated by the peak signal stored in the peak memory together with the delay time at which the peak occurred. The circuit is faster and considerably less expensive than comparable accuracy correlation detectors.
Does working memory load facilitate target detection?
Fruchtman-Steinbok, Tom; Kessler, Yoav
2016-02-01
Previous studies demonstrated that increasing working memory (WM) load delays performance of a concurrent task, by distracting attention and thus interfering with encoding and maintenance processes. The present study used a version of the change detection task with a target detection requirement during the retention interval. In contrast to the above prediction, target detection was faster following a larger set-size, specifically when presented shortly after the memory array (up to 400 ms). The effect of set-size on target detection was also evident when no memory retention was required. The set-size effect was also found using different modalities. Moreover, it was only observed when the memory array was presented simultaneously, but not sequentially. These results were explained by increased phasic alertness exerted by the larger visual display. The present study offers new evidence of ongoing attentional processes in the commonly-used change detection paradigm. Copyright © 2015 Elsevier B.V. All rights reserved.
Effect of the time window on the heat-conduction information filtering model
NASA Astrophysics Data System (ADS)
Guo, Qiang; Song, Wen-Jun; Hou, Lei; Zhang, Yi-Lu; Liu, Jian-Guo
2014-05-01
Recommendation systems have been proposed to filter out the potential tastes and preferences of the normal users online, however, the physics of the time window effect on the performance is missing, which is critical for saving the memory and decreasing the computation complexity. In this paper, by gradually expanding the time window, we investigate the impact of the time window on the heat-conduction information filtering model with ten similarity measures. The experimental results on the benchmark dataset Netflix indicate that by only using approximately 11.11% recent rating records, the accuracy could be improved by an average of 33.16% and the diversity could be improved by 30.62%. In addition, the recommendation performance on the dataset MovieLens could be preserved by only considering approximately 10.91% recent records. Under the circumstance of improving the recommendation performance, our discoveries possess significant practical value by largely reducing the computational time and shortening the data storage space.
Brain reserve and cognitive reserve protect against cognitive decline over 4.5 years in MS
Rocca, Maria A.; Leavitt, Victoria M.; Dackovic, Jelena; Mesaros, Sarlota; Drulovic, Jelena; DeLuca, John; Filippi, Massimo
2014-01-01
Objective: Based on the theories of brain reserve and cognitive reserve, we investigated whether larger maximal lifetime brain growth (MLBG) and/or greater lifetime intellectual enrichment protect against cognitive decline over time. Methods: Forty patients with multiple sclerosis (MS) underwent baseline and 4.5-year follow-up evaluations of cognitive efficiency (Symbol Digit Modalities Test, Paced Auditory Serial Addition Task) and memory (Selective Reminding Test, Spatial Recall Test). Baseline and follow-up MRIs quantified disease progression: percentage brain volume change (cerebral atrophy), percentage change in T2 lesion volume. MLBG (brain reserve) was estimated with intracranial volume; intellectual enrichment (cognitive reserve) was estimated with vocabulary. We performed repeated-measures analyses of covariance to investigate whether larger MLBG and/or greater intellectual enrichment moderate/attenuate cognitive decline over time, controlling for disease progression. Results: Patients with MS declined in cognitive efficiency and memory (p < 0.001). MLBG moderated decline in cognitive efficiency (p = 0.031, ηp2 = 0.122), with larger MLBG protecting against decline. MLBG did not moderate memory decline (p = 0.234, ηp2 = 0.039). Intellectual enrichment moderated decline in cognitive efficiency (p = 0.031, ηp2 = 0.126) and memory (p = 0.037, ηp2 = 0.115), with greater intellectual enrichment protecting against decline. MS disease progression was more negatively associated with change in cognitive efficiency and memory among patients with lower vs higher MLBG and intellectual enrichment. Conclusion: We provide longitudinal support for theories of brain reserve and cognitive reserve in MS. Larger MLBG protects against decline in cognitive efficiency, and greater intellectual enrichment protects against decline in cognitive efficiency and memory. Consideration of these protective factors should improve prediction of future cognitive decline in patients with MS. PMID:24748670
An onboard data analysis method to track the seasonal polar caps on Mars
NASA Technical Reports Server (NTRS)
Wagstaff, Kiri L.; Castano, Rebecca; Chien, Steve; Ivanov, Anton B.; Pounders, Erik; Titus, Timothy N.
2005-01-01
In this paper, we evaluate our method on uncalibrated THEMIS data and find 1) agreement with manual cap edge identifications to within 28.2 km, and 2) high accuracy even with a reduced context window, yielding large reductions in memory requirements.
Looking Ahead: A Report on the Latest Survey Results.
ERIC Educational Resources Information Center
Technology & Learning, 1995
1995-01-01
Reports on the results of a survey of software publishers and market researchers for educators that was conducted to determine development, purchasing, and upgrading plans for educational computer technology. Highlights include operating systems, including Macintosh, DOS, and Windows; equipment needs, including memory, monitors, and special…
2013-11-01
may be considered moderately suspicious. [20, 21, 22 and 23] PID 1580 (jqs.exe) is using port 5152, a port associated to with Java Quick Starter [26...spoolsv.exe 0x01000000 True False True \\WINDOWS\\system32\\spoolsv.exe 1580 jqs.exe 0x00400000 True False True \\Program Files\\ Java \\jre6\\bin\\jqs.exe 1664...Files\\ Java \\ Java Update\\jusched.exe 1816 VMUpgradeHelp er 0x00400000 True False True \\Program Files\\VMware\\VMware Tools\\VMUpgradeHelper.exe 1872
Vibration of middle ear with shape memory prosthesis - Experimental and numerical study
NASA Astrophysics Data System (ADS)
Rafal, Rusinek; Szymanski, Marcin; Lajmert, Pawel
2018-01-01
The paper presents experimental investigations of ossicular chain vibrations using a Laser Doppler Vibrometer (LDV) for the intact middle ear and a reconstructed one by means of the new designed shape memory prosthesis. Vibrations of the round window are measured with the Laser Doppler vibrometer and studied classically by the transfer function analysis. Moreover, the recurrence plot technique and the Hilbert vibration decomposition method are used to extend the classical analysis. The new methods show additional vibrations components and provide more information about middle ear behaviour.
An electrophysiological signature for proactive interference resolution in working memory.
Du, Yingchun; Xiao, Zhuangwei; Song, Yan; Fan, Silu; Wu, Renhua; Zhang, John X
2008-08-01
We used event-related potentials (ERPs) to study the temporal dynamics of proactive interference in working memory. Participants performed a Sternberg item-recognition task to determine whether a probe was in a target memory set. Familiar negative probes were found to be more difficult to reject than less familiar ones. A fronto-central N2 component peaking around 300 ms post-probe-onset differentiated among target probes, familiar and less familiar non-target probes. The study identifies N2 as the ERP signature for proactive interference resolution. It also indicates that the resolution process occurs in the same time window as target/non-target discrimination and provides the first piece of electrophysiological evidence supporting a recent interference resolution model based on localization data [Jonides, J., Nee, D.E., 2006. Brain mechanisms of proactive interference in working memory. Neuroscience 139, 181-193].
Meneses, Alfredo
2003-01-01
Recent studies using both invertebrates and mammals have revealed that endogenous serotonin (5-hydroxytryptamine [5-HT]) modulates plasticity processes, including learning and memory. However, little is currently known about the mechanisms, loci, or time window of the actions of 5-HT. The aim of this review is to discuss some recent results on the effects of systemic administration of selective agonists and antagonists of 5-HT on associative learning in a Pavlovian/instrumental autoshaping (P/I-A) task in rats. The results indicate that pharmacological manipulation of 5-HT1-7 receptors or 5-HT reuptake sites might modulate memory consolidation, which is consistent with the emerging notion that 5-HT plays a key role in memory formation. PMID:14557609
Hughes, Nicola; Bennett, Michael I; Johnson, Mark I
2013-02-01
Strong nonpainful transcutaneous electrical nerve stimulation (TENS) is prerequisite to a successful analgesic outcome although the ease with which this sensation is achieved is likely to depend on the magnitude of current amplitude (mA) between sensory detection threshold (SDT) and pain threshold, that is, the current window. To measure the current window and participant's perception of the comfort of the TENS sensation at different body sites. A repeated measure cross-over study was conducted using 30 healthy adult volunteers. Current amplitudes (mA) of TENS [2 pulses per second (pps); 30 pps; 80 pps] at SDT, pain threshold, and strong nonpainful intensities were measured at the tibia (bone), knee joint (connective tissue), lower back [paraspinal (skeletal) muscle], volar surface of forearm (nerve) and waist (fat). The amplitude to achieve a strong nonpainful intensity was represented as a percentage of the current window. Data were analyzed using repeated measures analysis of variance. Effects were detected for body site and frequency for SDT (P<0.001, P=0.018, respectively), current window (P<0.001, P<0.001, respectively), and strong nonpainful TENS as a percentage of the current window (P=0.002, P<0.001, respectively). The current window was larger for the knee joint compared with tibia (difference [95% confidence interval]=12.76 mA [4.25, 21.28]; P=0.001) and forearm (10.33 mA [2.62, 18.40]; P=0.006), and for the lower back compared with tibia (12.10 mA [1.65, 22.52]; P=0.015) and forearm (9.65 mA [1.06, 18.24]; P=0.019). The current window was larger for 2 pps compared with 30 pps (P<0.001) and 80 pps (P<0.001). Participants rated strong nonpainful TENS as most comfortable at the lower back (P<0.001) and least comfortable at the tibia and forearm (P<0.001). TENS is most comfortable and easiest to titrate to a strong nonpainful intensity when applied over areas of muscle and soft tissue.
NASA Astrophysics Data System (ADS)
Di Luzio, Luca; Mescia, Federico; Nardi, Enrico
2017-01-01
A major goal of axion searches is to reach inside the parameter space region of realistic axion models. Currently, the boundaries of this region depend on somewhat arbitrary criteria, and it would be desirable to specify them in terms of precise phenomenological requirements. We consider hadronic axion models and classify the representations RQ of the new heavy quarks Q . By requiring that (i) the Q 's are sufficiently short lived to avoid issues with long-lived strongly interacting relics, (ii) no Landau poles are induced below the Planck scale; 15 cases are selected which define a phenomenologically preferred axion window bounded by a maximum (minimum) value of the axion-photon coupling about 2 times (4 times) larger than is commonly assumed. Allowing for more than one RQ, larger couplings, as well as complete axion-photon decoupling, become possible.
NASA Astrophysics Data System (ADS)
Chen, Daniel; Chen, Damian; Yen, Ray; Cheng, Mingjen; Lan, Andy; Ghaskadvi, Rajesh
2008-11-01
Identifying hotspots--structures that limit the lithography process window--become increasingly important as the industry relies heavily on RET to print sub-wavelength designs. KLA-Tencor's patented Process Window Qualification (PWQ) methodology has been used for this purpose in various fabs. PWQ methodology has three key advantages (a) PWQ Layout--to obtain the best sensitivity (b) Design Based Binning--for pattern repeater analysis (c) Intelligent sampling--for the best DOI sampling rate. This paper evaluates two different analysis strategies for SEM review sampling successfully deployed at Inotera Memories, Inc. We propose a new approach combining the location repeater and pattern repeaters. Based on a recent case study the new sampling flow reduces the data analysis and sampling time from 6 hours to 1.5 hour maintaining maximum DOI sample rate.
Design strategies to minimize the radiative efficiency of global warming molecules
Bera, Partha P.; Francisco, Joseph S.; Lee, Timothy J.
2010-01-01
A strategy is devised to screen molecules based on their radiative efficiency. The methodology should be useful as one additional constraint when determining the best molecule to use for an industrial application. The strategy is based on the results of a recent study where we examined molecular properties of global warming molecules using ab initio electronic structure methods to determine which fundamental molecular properties are important in assessing the radiative efficiency of a molecule. Six classes of perfluorinated compounds are investigated. For similar numbers of fluorine atoms, their absorption of radiation in the IR window decreases according to perfluoroethers > perfluorothioethers ≈ sulfur/carbon compounds > perfluorocarbons > perfluoroolefins > carbon/nitrogen compounds. Perfluoroethers and hydrofluorethers are shown to possess a large absorption in the IR window due to (i) the C─O bonds are very polar, (ii) the C-O stretches fall within the IR window and have large IR intensity due to their polarity, and (iii) the IR intensity for C-F stretches in which the fluorine atom is bonded to the carbon that is bonded to the oxygen atom is enhanced due to a larger C─F bond polarity. Lengthening the carbon chain leads to a larger overall absorption in the IR window, though the IR intensity per bond is smaller. Finally, for a class of partially fluorinated compounds with a set number of electronegative atoms, the overall absorption in the IR window can vary significantly, as much as a factor of 2, depending on how the fluorine atoms are distributed within the molecule. PMID:20439762
False Recognition in DRM Lists with Low Association: A Normative Study
ERIC Educational Resources Information Center
Cadavid, Sara; Beato, María Soledad
2017-01-01
A wide array of studies have explored memory distortions with the Deese/Roediger-McDermott (DRM) paradigm, where participants study lists of words (e.g., "door," "glass," "pane," "shade," "ledge," etc.) that are associated to another nonpresented critical word (e.g., WINDOW). On a subsequent memory…
Dunning, Darren L; Westgate, Briony; Adlam, Anna-Lynne R
2016-10-01
To establish the magnitude of deficits in working memory (WM) and short-term memory (STM) in those with moderate-to-severe traumatic brain injury (TBI) relative to age-matched, healthy controls and to explore the moderating effects of time since injury and age at injury on these impairments. Twenty-one studies that compared the WM and/or STM abilities of individuals with at least a moderate TBI relative to healthy controls were included in a random effects meta-analysis. Measures used to examine memory performance were categorized by modality (visuospatial, verbal) and memory system (WM, STM). Individuals with TBI had significant deficits in verbal STM (Cohen's d = .41), visuospatial WM (Cohen's d = .69), and verbal WM (Cohen's d = .37) relative to controls. Greater decrements in verbal STM and verbal WM skills were associated with longer time postinjury. Larger deficits were observed in verbal WM abilities in individuals with older age at injury. Evidence for WM impairments following TBI is consistent with previous research. Larger verbal STM and verbal WM deficits were related to a longer time postinjury, suggesting that these aspects of memory do not "recover" over time and instead, individuals might show increased rates of cognitive decline. Age at injury was associated with the severity of verbal WM impairments, with larger deficits evident for injuries that occurred later in life. Further research needs to chart the long-term effects of TBI on WM and to compare the effects of injury on verbal relative to visuospatial memory. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Pilot case-control study of paediatric falls from windows.
Johnston, Brian D; Quistberg, D Alexander; Shandro, Jamie R; Partridge, Rebecca L; Song, Hyun Rae; Ebel, Beth E
2011-12-01
Unintentional falls from windows are an important cause of paediatric morbidity. There have been no controlled studies to identify modifiable environmental risk factors for window falls in young children. The authors have piloted a case-control study to test procedures for case identification, subject enrolment, and environmental data collection. Case windows were identified when a child 0-9 years old presented for care after a fall from that window. Control windows were identified (1) from the child's home and (2) from the home of an age- and gender-matched child seeking care for an injury diagnosis not related to a window fall. Study staff visited enrolled homes to collect window measurements and conduct window screen performance tests. The authors enrolled and collected data on 18 case windows, 18 in-home controls, and 14 matched community controls. Six potential community controls were contacted for every one enrolled. Families who completed the home visit viewed study procedures positively. Case windows were more likely than community controls to be horizontal sliders (100% vs 50%), to have deeper sills (6.28 vs 4.31 inches), to be higher above the exterior surface (183 vs 82 inches), and to have screens that failed below a threshold derived from the static pressure of a 3-year-old leaning against the mesh (60.0% vs 16.7%). Case windows varied very little from in-home controls. Case-control methodology can be used to study risk factors for paediatric falls from windows. Recruitment of community controls is challenging but essential, because in-home controls tend to be over-matched on important variables. A home visit allows direct measurement of window type, height, sill depth, and screen performance. These variables should all be investigated in subsequent, larger studies covering major housing markets.
High performance sapphire windows
NASA Technical Reports Server (NTRS)
Bates, Stephen C.; Liou, Larry
1993-01-01
High-quality, wide-aperture optical access is usually required for the advanced laser diagnostics that can now make a wide variety of non-intrusive measurements of combustion processes. Specially processed and mounted sapphire windows are proposed to provide this optical access to extreme environment. Through surface treatments and proper thermal stress design, single crystal sapphire can be a mechanically equivalent replacement for high strength steel. A prototype sapphire window and mounting system have been developed in a successful NASA SBIR Phase 1 project. A large and reliable increase in sapphire design strength (as much as 10x) has been achieved, and the initial specifications necessary for these gains have been defined. Failure testing of small windows has conclusively demonstrated the increased sapphire strength, indicating that a nearly flawless surface polish is the primary cause of strengthening, while an unusual mounting arrangement also significantly contributes to a larger effective strength. Phase 2 work will complete specification and demonstration of these windows, and will fabricate a set for use at NASA. The enhanced capabilities of these high performance sapphire windows will lead to many diagnostic capabilities not previously possible, as well as new applications for sapphire.
High performance sapphire windows
NASA Astrophysics Data System (ADS)
Bates, Stephen C.; Liou, Larry
1993-02-01
High-quality, wide-aperture optical access is usually required for the advanced laser diagnostics that can now make a wide variety of non-intrusive measurements of combustion processes. Specially processed and mounted sapphire windows are proposed to provide this optical access to extreme environment. Through surface treatments and proper thermal stress design, single crystal sapphire can be a mechanically equivalent replacement for high strength steel. A prototype sapphire window and mounting system have been developed in a successful NASA SBIR Phase 1 project. A large and reliable increase in sapphire design strength (as much as 10x) has been achieved, and the initial specifications necessary for these gains have been defined. Failure testing of small windows has conclusively demonstrated the increased sapphire strength, indicating that a nearly flawless surface polish is the primary cause of strengthening, while an unusual mounting arrangement also significantly contributes to a larger effective strength. Phase 2 work will complete specification and demonstration of these windows, and will fabricate a set for use at NASA. The enhanced capabilities of these high performance sapphire windows will lead to many diagnostic capabilities not previously possible, as well as new applications for sapphire.
Post-Retrieval Extinction Attenuates Cocaine Memories
Sartor, Gregory C; Aston-Jones, Gary
2014-01-01
Recent studies have shown that post-retrieval extinction training attenuates fear and reward-related memories in both humans and rodents. This noninvasive, behavioral approach has the potential to be used in clinical settings to treat maladaptive memories that underlie several psychiatric disorders, including drug addiction. However, few studies to date have used a post-retrieval extinction approach to attenuate addiction-related memories. In the current study, we attempted to disrupt cocaine-related memories by using the post-retrieval extinction paradigm in male Sprague Dawley rats. Results revealed that starting extinction training 1 h after cocaine contextual memory was retrieved significantly attenuated cocaine-primed reinstatement of conditioned place preference (CPP) and relapse of cocaine CPP (drug-free and cocaine-primed) following 30 days of abstinence. However, animals that did not retrieve the contextual cocaine memory before extinction training, or animals that began extinction training 24 h after retrieval (outside of the reconsolidation window), demonstrated normal cocaine CPP. Conversely, animals that received additional CPP conditioning, rather than extinction training, 1 h after reactivation of cocaine memory showed enhanced cocaine CPP compared with animals that did not reactivate the cocaine memory before conditioning. These results reveal that a behavioral manipulation that takes advantage of reconsolidation and extinction of drug memories may be useful in decreasing preference for, and abuse of, cocaine. PMID:24257156
NASA Astrophysics Data System (ADS)
Sordillo, Laura A.; Pu, Yang; Sordillo, P. P.; Budansky, Yury; Alfano, Robert R.
2014-03-01
Near-infrared (NIR) light in the wavelengths of 700 nm to 2,000 nm has three NIR optical, or therapeutic, windows, which allow for deeper depth penetration in scattering tissue media. Microfractures secondary to repetitive stress, particularly in the lower extremities, are an important problem for military recruits and athletes. They also frequently occur in the elderly, or in patients taking bisphosphonates or denosumab. Microfractures can be early predictors of a major bone fracture. Using the second and third NIR therapeutic windows, we investigated the results from images of chicken bone and human tibial bone with microfractures and non-displaced fractures with and without overlying tissues of various thicknesses. Images of bone with microfractures and non-displaced fractures with tissue show scattering photons in the third NIR window with wavelengths between 1,650 nm and 1,870 nm are diminished and absorption is increased slightly from and second NIR windows. Results from images of fractured bones show the attenuation length of light through tissue in the third optical window to be larger than in the second therapeutic window. Use of these windows may aid in the detection of bone microfractures, and thus reduce the incidence of major bone fracture in susceptible groups.
Twin-bit via resistive random access memory in 16 nm FinFET logic technologies
NASA Astrophysics Data System (ADS)
Shih, Yi-Hong; Hsu, Meng-Yin; King, Ya-Chin; Lin, Chrong Jung
2018-04-01
A via resistive random access memory (RRAM) cell fully compatible with the standard CMOS logic process has been successfully demonstrated for high-density logic nonvolatile memory (NVM) modules in advanced FinFET circuits. In this new cell, the transition metal layers are formed on both sides of a via, given two storage bits per via. In addition to its compact cell area (1T + 14 nm × 32 nm), the twin-bit via RRAM cell features a low operation voltage, a large read window, good data retention, and excellent cycling capability. As fine alignments between mask layers become possible, the twin-bit via RRAM cell is expected to be highly scalable in advanced FinFET technology.
Cognition and Language: From Apprehension to Judgment -- Quantum Conjectures
NASA Astrophysics Data System (ADS)
Arecchi, F. T.
2014-12-01
We critically discuss the two moments of human cognition, namely, apprehension (A), whereby a coherent perception emerges from the recruitment of neuronal groups, and judgment (B), that entails the comparison of two apprehensions acquired at different times, coded in a suitable language and recalled by memory. (B) requires selfconsciousness, in so far as the agent who expresses the judgment must be aware that the two apprehensions are submitted to his/her own scrutiny and that it is his/her duty to extract a mutual relation. Since (B) lasts around 3 seconds, the semantic value of the pieces under comparison must be decided within this time. This implies a fast search of the memory contents. As a fact, exploring human subjects with sequences of simple words, we find evidence of a limited time window, corresponding to the memory retrieval of a linguistic item in order to match it with the next one in a text flow (be it literary, or musical,or figurative). Classifying the information content of spike trains, an uncertainty relation emerges between the bit size of a word and its duration. This uncertainty is ruled by a constant that can be given a numerical value and that has nothing to do with Planck's constant. A "quantum conjecture" in the above sense might explain the onset and decay of the memory window connecting successive pieces of a linguistic text. The conjecture here formulated is applicable to other reported evidences of quantum effects in human cognitive processes, so far lacking a plausible framework since no efforts to assign a quantum constant have been associated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramalingam, Balavinayagam; Zheng, Haisheng; Gangopadhyay, Shubhra, E-mail: gangopadhyays@missouri.edu
In this work, we demonstrate multi-level operation of a non-volatile memory metal oxide semiconductor capacitor by controlled layer-by-layer charging of platinum nanoparticle (PtNP) floating gate devices with defined gate voltage bias ranges. The device consists of two layers of ultra-fine, sub-2 nm PtNPs integrated between Al{sub 2}O{sub 3} tunneling and separation layers. PtNP size and interparticle distance were varied to control the particle self-capacitance and associated Coulomb charging energy. Likewise, the tunneling layer thicknesses were also varied to control electron tunneling to the first and second PtNP layers. The final device configuration with optimal charging behavior and multi-level programming was attainedmore » with a 3 nm Al{sub 2}O{sub 3} initial tunneling layer, initial PtNP layer with particle size 0.54 ± 0.12 nm and interparticle distance 4.65 ± 2.09 nm, 3 nm Al{sub 2}O{sub 3} layer to separate the PtNP layers, and second particle layer with 1.11 ± 0.28 nm PtNP size and interparticle distance 2.75 ± 1.05 nm. In this device, the memory window of the first PtNP layer saturated over a programming bias range of 7 V to 14 V, after which the second PtNP layer starts charging, exhibiting a multi-step memory window with layer-by-layer charging.« less
Memory Binding Test Predicts Incident Amnestic Mild Cognitive Impairment.
Mowrey, Wenzhu B; Lipton, Richard B; Katz, Mindy J; Ramratan, Wendy S; Loewenstein, David A; Zimmerman, Molly E; Buschke, Herman
2016-07-14
The Memory Binding Test (MBT), previously known as Memory Capacity Test, has demonstrated discriminative validity for distinguishing persons with amnestic mild cognitive impairment (aMCI) and dementia from cognitively normal elderly. We aimed to assess the predictive validity of the MBT for incident aMCI. In a longitudinal, community-based study of adults aged 70+, we administered the MBT to 246 cognitively normal elderly adults at baseline and followed them annually. Based on previous work, a subtle reduction in memory binding at baseline was defined by a Total Items in the Paired (TIP) condition score of ≤22 on the MBT. Cox proportional hazards models were used to assess the predictive validity of the MBT for incident aMCI accounting for the effects of covariates. The hazard ratio of incident aMCI was also assessed for different prediction time windows ranging from 4 to 7 years of follow-up, separately. Among 246 controls who were cognitively normal at baseline, 48 developed incident aMCI during follow-up. A baseline MBT reduction was associated with an increased risk for developing incident aMCI (hazard ratio (HR) = 2.44, 95% confidence interval: 1.30-4.56, p = 0.005). When varying the prediction window from 4-7 years, the MBT reduction remained significant for predicting incident aMCI (HR range: 2.33-3.12, p: 0.0007-0.04). Persons with poor performance on the MBT are at significantly greater risk for developing incident aMCI. High hazard ratios up to seven years of follow-up suggest that the MBT is sensitive to early disease.
Consolidation of Long-Term Memory: Evidence and Alternatives
ERIC Educational Resources Information Center
Meeter, Martijn; Murre, Jaap M. J.
2004-01-01
Memory loss in retrograde amnesia has long been held to be larger for recent periods than for remote periods, a pattern usually referred to as the Ribot gradient. One explanation for this gradient is consolidation of long-term memories. Several computational models of such a process have shown how consolidation can explain characteristics of…
Sleep stages, memory and learning.
Dotto, L
1996-01-01
Learning and memory can be impaired by sleep loss during specific vulnerable "windows" for several days after new tasks have been learned. Different types of tasks are differentially vulnerable to the loss of different stages of sleep. Memory required to perform cognitive procedural tasks is affected by the loss of rapid-eye-movement (REM) sleep on the first night after learning occurs and again on the third night after learning. REM-sleep deprivation on the second night after learning does not produce memory deficits. Declarative memory, which is used for the recall of specific facts, is not similarly affected by REM-sleep loss. The learning of procedural motor tasks, including those required in many sports, is impaired by the loss of stage 2 sleep, which occurs primarily in the early hours of the morning. These findings have implications for the academic and athletic performance of students and for anyone whose work involves ongoing learning and demands high standards of performance. Images p1194-a PMID:8612256
Flexible graphene-PZT ferroelectric nonvolatile memory.
Lee, Wonho; Kahya, Orhan; Toh, Chee Tat; Ozyilmaz, Barbaros; Ahn, Jong-Hyun
2013-11-29
We report the fabrication of a flexible graphene-based nonvolatile memory device using Pb(Zr0.35,Ti0.65)O3 (PZT) as the ferroelectric material. The graphene and PZT ferroelectric layers were deposited using chemical vapor deposition and sol–gel methods, respectively. Such PZT films show a high remnant polarization (Pr) of 30 μC cm−2 and a coercive voltage (Vc) of 3.5 V under a voltage loop over ±11 V. The graphene–PZT ferroelectric nonvolatile memory on a plastic substrate displayed an on/off current ratio of 6.7, a memory window of 6 V and reliable operation. In addition, the device showed one order of magnitude lower operation voltage range than organic-based ferroelectric nonvolatile memory after removing the anti-ferroelectric behavior incorporating an electrolyte solution. The devices showed robust operation in bent states of bending radii up to 9 mm and in cycling tests of 200 times. The devices exhibited remarkable mechanical properties and were readily integrated with plastic substrates for the production of flexible circuits.
NASA Astrophysics Data System (ADS)
Ghoneim, M. T.; Hussain, M. M.
2015-08-01
Flexible memory can enable industrial, automobile, space, and smart grid centered harsh/extreme environment focused electronics application(s) for enhanced operation, safety, and monitoring where bent or complex shaped infrastructures are common and state-of-the-art rigid electronics cannot be deployed. Therefore, we report on the physical-mechanical-electrical characteristics of a flexible ferroelectric memory based on lead zirconium titanate as a key memory material and flexible version of bulk mono-crystalline silicon (100). The experimented devices show a bending radius down to 1.25 cm corresponding to 0.16% nominal strain (high pressure of ˜260 MPa), and full functionality up to 225 °C high temperature in ambient gas composition (21% oxygen and 55% relative humidity). The devices showed unaltered data retention and fatigue properties under harsh conditions, still the reduced memory window (20% difference between switching and non-switching currents at 225 °C) requires sensitive sense circuitry for proper functionality and is the limiting factor preventing operation at higher temperatures.
Cheng, Xue-Feng; Hou, Xiang; Qian, Wen-Hu; He, Jing-Hui; Xu, Qing-Feng; Li, Hua; Li, Na-Jun; Chen, Dong-Yun; Lu, Jian-Mei
2017-08-23
Herein, for the first time, quaternary resistive memory based on an organic molecule is achieved via surface engineering. A layer of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) was inserted between the indium tin oxide (ITO) electrode and the organic layer (squaraine, SA-Bu) to form an ITO/PEDOT-PSS/SA-Bu/Al architecture. The modified resistive random-access memory (RRAM) devices achieve quaternary memory switching with the highest yield (∼41%) to date. Surface morphology, crystallinity, and mosaicity of the deposited organic grains are greatly improved after insertion of a PEDOT-PSS interlayer, which provides better contacts at the grain boundaries as well as the electrode/active layer interface. The PEDOT-PSS interlayer also reduces the hole injection barrier from the electrode to the active layer. Thus, the threshold voltage of each switching is greatly reduced, allowing for more quaternary switching in a certain voltage window. Our results provide a simple yet powerful strategy as an alternative to molecular design to achieve organic quaternary resistive memory.
NASA Astrophysics Data System (ADS)
Levine, Zachary H.; Pintar, Adam L.
2015-11-01
A simple algorithm for averaging a stochastic sequence of 1D arrays in a moving, expanding window is provided. The samples are grouped in bins which increase exponentially in size so that a constant fraction of the samples is retained at any point in the sequence. The algorithm is shown to have particular relevance for a class of Monte Carlo sampling problems which includes one characteristic of iterative reconstruction in computed tomography. The code is available in the CPC program library in both Fortran 95 and C and is also available in R through CRAN.
Formation of visual memories controlled by gamma power phase-locked to alpha oscillations.
Park, Hyojin; Lee, Dong Soo; Kang, Eunjoo; Kang, Hyejin; Hahm, Jarang; Kim, June Sic; Chung, Chun Kee; Jiang, Haiteng; Gross, Joachim; Jensen, Ole
2016-06-16
Neuronal oscillations provide a window for understanding the brain dynamics that organize the flow of information from sensory to memory areas. While it has been suggested that gamma power reflects feedforward processing and alpha oscillations feedback control, it remains unknown how these oscillations dynamically interact. Magnetoencephalography (MEG) data was acquired from healthy subjects who were cued to either remember or not remember presented pictures. Our analysis revealed that in anticipation of a picture to be remembered, alpha power decreased while the cross-frequency coupling between gamma power and alpha phase increased. A measure of directionality between alpha phase and gamma power predicted individual ability to encode memory: stronger control of alpha phase over gamma power was associated with better memory. These findings demonstrate that encoding of visual information is reflected by a state determined by the interaction between alpha and gamma activity.
Inducing amnesia through systemic suppression
Hulbert, Justin C.; Henson, Richard N.; Anderson, Michael C.
2016-01-01
Hippocampal damage profoundly disrupts the ability to store new memories of life events. Amnesic windows might also occur in healthy people due to disturbed hippocampal function arising during mental processes that systemically reduce hippocampal activity. Intentionally suppressing memory retrieval (retrieval stopping) reduces hippocampal activity via control mechanisms mediated by the lateral prefrontal cortex. Here we show that when people suppress retrieval given a reminder of an unwanted memory, they are considerably more likely to forget unrelated experiences from periods surrounding suppression. This amnesic shadow follows a dose-response function, becomes more pronounced after practice suppressing retrieval, exhibits characteristics indicating disturbed hippocampal function, and is predicted by reduced hippocampal activity. These findings indicate that stopping retrieval engages a suppression mechanism that broadly compromises hippocampal processes and that hippocampal stabilization processes can be interrupted strategically. Cognitively triggered amnesia constitutes an unrecognized forgetting process that may account for otherwise unexplained memory lapses following trauma. PMID:26977589
Formation of visual memories controlled by gamma power phase-locked to alpha oscillations
Park, Hyojin; Lee, Dong Soo; Kang, Eunjoo; Kang, Hyejin; Hahm, Jarang; Kim, June Sic; Chung, Chun Kee; Jiang, Haiteng; Gross, Joachim; Jensen, Ole
2016-01-01
Neuronal oscillations provide a window for understanding the brain dynamics that organize the flow of information from sensory to memory areas. While it has been suggested that gamma power reflects feedforward processing and alpha oscillations feedback control, it remains unknown how these oscillations dynamically interact. Magnetoencephalography (MEG) data was acquired from healthy subjects who were cued to either remember or not remember presented pictures. Our analysis revealed that in anticipation of a picture to be remembered, alpha power decreased while the cross-frequency coupling between gamma power and alpha phase increased. A measure of directionality between alpha phase and gamma power predicted individual ability to encode memory: stronger control of alpha phase over gamma power was associated with better memory. These findings demonstrate that encoding of visual information is reflected by a state determined by the interaction between alpha and gamma activity. PMID:27306959
Formation of visual memories controlled by gamma power phase-locked to alpha oscillations
NASA Astrophysics Data System (ADS)
Park, Hyojin; Lee, Dong Soo; Kang, Eunjoo; Kang, Hyejin; Hahm, Jarang; Kim, June Sic; Chung, Chun Kee; Jiang, Haiteng; Gross, Joachim; Jensen, Ole
2016-06-01
Neuronal oscillations provide a window for understanding the brain dynamics that organize the flow of information from sensory to memory areas. While it has been suggested that gamma power reflects feedforward processing and alpha oscillations feedback control, it remains unknown how these oscillations dynamically interact. Magnetoencephalography (MEG) data was acquired from healthy subjects who were cued to either remember or not remember presented pictures. Our analysis revealed that in anticipation of a picture to be remembered, alpha power decreased while the cross-frequency coupling between gamma power and alpha phase increased. A measure of directionality between alpha phase and gamma power predicted individual ability to encode memory: stronger control of alpha phase over gamma power was associated with better memory. These findings demonstrate that encoding of visual information is reflected by a state determined by the interaction between alpha and gamma activity.
NASA Astrophysics Data System (ADS)
Chen, Jianhui; Chen, Bingbing; Shen, Yanjiao; Guo, Jianxin; Liu, Baoting; Dai, Xiuhong; Xu, Ying; Mai, Yaohua
2017-11-01
A hysteresis loop of minority carrier lifetime vs voltage is found in polystyrenesulfonate (PSS)/Si organic-inorganic hybrid heterojunctions, implying an interfacial memory effect. Capacitance-voltage and conductance-voltage hysteresis loops are observed and reveal a memory window. A switchable interface state, which can be controlled by charge transfer based on an electrochemical oxidation/deoxidation process, is suggested to be responsible for this hysteresis effect. We perform first-principle total-energy calculations on the influence of external electric fields and electrons or holes, which are injected into interface states on the adsorption energy of PSS on Si. It is demonstrated that the dependence of the interface adsorption energy difference on the electric field is the origin of this two-state switching. These results offer a concept of organic-inorganic hybrid interface memory being optically or electrically readable, low-cost, and compatible with the flexible organic electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jer-Chyi, E-mail: jcwang@mail.cgu.edu.tw; Chang, Wei-Cheng; Lai, Chao-Sung, E-mail: cslai@mail.cgu.edu.tw
Data retention characteristics of tungsten nanocrystal (W-NC) memory devices using an oxygen plasma immersion ion implantation (PIII) treatment are investigated. With an increase of oxygen PIII bias voltage and treatment time, the capacitance–voltage hysteresis memory window is increased but the data retention characteristics become degraded. High-resolution transmission electron microscopy images show that this poor data retention is a result of plasma damage on the tunneling oxide layer, which can be prevented by lowering the bias voltage to 7 kV. In addition, by using the elevated temperature retention measurement technique, the effective charge trapping level of the WO{sub 3} film surrounding themore » W-NCs can be extracted. This measurement reveals that a higher oxygen PIII bias voltage and treatment time induces more shallow traps within the WO{sub 3} film, degrading the retention behavior of the W-NC memory.« less
From episodic to habitual prospective memory: ERP-evidence for a linear transition
Meier, Beat; Matter, Sibylle; Baumann, Brigitta; Walter, Stefan; Koenig, Thomas
2014-01-01
Performing a prospective memory task repeatedly changes the nature of the task from episodic to habitual. The goal of the present study was to investigate the neural basis of this transition. In two experiments, we contrasted event-related potentials (ERPs) evoked by correct responses to prospective memory targets in the first, more episodic part of the experiment with those of the second, more habitual part of the experiment. Specifically, we tested whether the early, middle, or late ERP-components, which are thought to reflect cue detection, retrieval of the intention, and post-retrieval processes, respectively, would be changed by routinely performing the prospective memory task. The results showed a differential ERP effect in the middle time window (450–650 ms post-stimulus). Source localization using low resolution brain electromagnetic tomography analysis suggests that the transition was accompanied by an increase of activation in the posterior parietal and occipital cortex. These findings indicate that habitual prospective memory involves retrieval processes guided more strongly by parietal brain structures. In brief, the study demonstrates that episodic and habitual prospective memory tasks recruit different brain areas. PMID:25071519
Ambipolar nonvolatile memory based on a quantum-dot transistor with a nanoscale floating gate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Che, Yongli; Zhang, Yating, E-mail: yating@tju.edu.cn; Song, Xiaoxian
2016-07-04
Using only solution processing methods, we developed ambipolar quantum-dot (QD) transistor floating-gate memory (FGM) that uses Au nanoparticles as a floating gate. Because of the bipolarity of the active channel of PbSe QDs, the memory could easily trap holes or electrons in the floating gate by programming/erasing (P/E) operations, which could shift the threshold voltage both up and down. As a result, the memory exhibited good programmable memory characteristics: a large memory window (ΔV{sub th} ∼ 15 V) and a long retention time (>10{sup 5 }s). The magnitude of ΔV{sub th} depended on both P/E voltages and the bias voltage (V{sub DS}): ΔV{sub th}more » was a cubic function to V{sub P/E} and linearly depended on V{sub DS}. Therefore, this FGM based on a QD transistor is a promising alternative to its inorganic counterparts owing to its advantages of bipolarity, high mobility, low cost, and large-area production.« less
Direct Observation of a Carbon Filament in Water-Resistant Organic Memory.
Lee, Byung-Hyun; Bae, Hagyoul; Seong, Hyejeong; Lee, Dong-Il; Park, Hongkeun; Choi, Young Joo; Im, Sung-Gap; Kim, Sang Ouk; Choi, Yang-Kyu
2015-07-28
The memory for the Internet of Things (IoT) requires versatile characteristics such as flexibility, wearability, and stability in outdoor environments. Resistive random access memory (RRAM) to harness a simple structure and organic material with good flexibility can be an attractive candidate for IoT memory. However, its solution-oriented process and unclear switching mechanism are critical problems. Here we demonstrate iCVD polymer-intercalated RRAM (i-RRAM). i-RRAM exhibits robust flexibility and versatile wearability on any substrate. Stable operation of i-RRAM, even in water, is demonstrated, which is the first experimental presentation of water-resistant organic memory without any waterproof protection package. Moreover, the direct observation of a carbon filament is also reported for the first time using transmission electron microscopy, which puts an end to the controversy surrounding the switching mechanism. Therefore, reproducibility is feasible through comprehensive modeling. Furthermore, a carbon filament is superior to a metal filament in terms of the design window and selection of the electrode material. These results suggest an alternative to solve the critical issues of organic RRAM and an optimized memory type suitable for the IoT era.
NASA Astrophysics Data System (ADS)
Chien, W. C.; Chen, Y. C.; Lai, E. K.; Lee, F. M.; Lin, Y. Y.; Chuang, Alfred T. H.; Chang, K. P.; Yao, Y. D.; Chou, T. H.; Lin, H. M.; Lee, M. H.; Shih, Y. H.; Hsieh, K. Y.; Lu, Chih-Yuan
2011-03-01
Tungsten oxide (WO X ) resistive memory (ReRAM), a two-terminal CMOS compatible nonvolatile memory, has shown promise to surpass the existing flash memory in terms of scalability, switching speed, and potential for 3D stacking. The memory layer, WO X , can be easily fabricated by down-stream plasma oxidation (DSPO) or rapid thermal oxidation (RTO) of W plugs universally used in CMOS circuits. Results of conductive AFM (C-AFM) experiment suggest the switching mechanism is dominated by the REDOX (Reduction-oxidation) reaction—the creation of conducting filaments leads to a low resistance state and the rupturing of the filaments results in a high resistance state. Our experimental results show that the reactions happen at the TE/WO X interface. With this understanding in mind, we proposed two approaches to boost the memory performance: (i) using DSPO to treat the RTO WO X surface and (ii) using Pt TE, which forms a Schottky barrier with WO X . Both approaches, especially the latter, significantly reduce the forming current and enlarge the memory window.
Short-term plasticity as a neural mechanism supporting memory and attentional functions.
Jääskeläinen, Iiro P; Ahveninen, Jyrki; Andermann, Mark L; Belliveau, John W; Raij, Tommi; Sams, Mikko
2011-11-08
Based on behavioral studies, several relatively distinct perceptual and cognitive functions have been defined in cognitive psychology such as sensory memory, short-term memory, and selective attention. Here, we review evidence suggesting that some of these functions may be supported by shared underlying neuronal mechanisms. Specifically, we present, based on an integrative review of the literature, a hypothetical model wherein short-term plasticity, in the form of transient center-excitatory and surround-inhibitory modulations, constitutes a generic processing principle that supports sensory memory, short-term memory, involuntary attention, selective attention, and perceptual learning. In our model, the size and complexity of receptive fields/level of abstraction of neural representations, as well as the length of temporal receptive windows, increases as one steps up the cortical hierarchy. Consequently, the type of input (bottom-up vs. top down) and the level of cortical hierarchy that the inputs target, determine whether short-term plasticity supports purely sensory vs. semantic short-term memory or attentional functions. Furthermore, we suggest that rather than discrete memory systems, there are continuums of memory representations from short-lived sensory ones to more abstract longer-duration representations, such as those tapped by behavioral studies of short-term memory. Copyright © 2011 Elsevier B.V. All rights reserved.
Tsivilis, Dimitris; Allan, Kevin; Roberts, Jenna; Williams, Nicola; Downes, John Joseph; El-Deredy, Wael
2015-01-01
Understanding the electrophysiological correlates of recognition memory processes has been a focus of research in recent years. This study investigated the effects of retention interval on recognition memory by comparing memory for objects encoded four weeks (remote) or 5 min (recent) before testing. In Experiment 1, event related potentials (ERPs) were acquired while participants performed a yes-no recognition memory task involving remote, recent and novel objects. Relative to correctly rejected new items, remote and recent hits showed an attenuated frontal negativity from 300–500 ms post-stimulus. This effect, also known as the FN400, has been previously associated with familiarity memory. Recent and remote recognition ERPs did not differ from each other at this time-window. By contrast, recent but not remote recognition showed increased parietal positivity from around 500 ms post-stimulus. This late parietal effect (LPE), which is considered a correlate of recollection-related processes, also discriminated between recent and remote memories. A second, behavioral experiment confirmed that remote memories unlike recent memories were based almost exclusively on familiarity. These findings support the idea that the FN400 and LPE are indices of familiarity and recollection memory, respectively and show that remote and recent memories are functionally and anatomically distinct. PMID:26528163
Padovani, Tullia; Koenig, Thomas; Eckstein, Doris; Perrig, Walter J
2013-01-01
Memory formation is commonly thought to rely on brain activity following an event. Yet, recent research has shown that even brain activity previous to an event can predict later recollection (subsequent memory effect, SME). In order to investigate the attentional sources of the SME, event-related potentials (ERPs) elicited by task cues preceding target words were recorded in a switched task paradigm that was followed by a surprise recognition test. Stay trials, that is, those with the same task as the previous trial, were contrasted with switch trials, which included a task switch compared to the previous trial. The underlying assumption was that sustained attention would be dominant in stay trials and that transient attentional reconfiguration processes would be dominant in switch trials. To determine the SME, local and global statistics of scalp electric fields were used to identify differences between subsequently remembered and forgotten items. Results showed that the SME in stay trials occurred in a time window from 2 to 1 sec before target onset, whereas the SME in switch trials occurred subsequently, in a time window from 1 to 0 sec before target onset. Both SMEs showed a frontal negativity resembling the topography of previously reported effects, which suggests that sustained and transient attentional processes contribute to the prestimulus SME in consecutive time periods. PMID:24381815
Padovani, Tullia; Koenig, Thomas; Eckstein, Doris; Perrig, Walter J
2013-07-01
Memory formation is commonly thought to rely on brain activity following an event. Yet, recent research has shown that even brain activity previous to an event can predict later recollection (subsequent memory effect, SME). In order to investigate the attentional sources of the SME, event-related potentials (ERPs) elicited by task cues preceding target words were recorded in a switched task paradigm that was followed by a surprise recognition test. Stay trials, that is, those with the same task as the previous trial, were contrasted with switch trials, which included a task switch compared to the previous trial. The underlying assumption was that sustained attention would be dominant in stay trials and that transient attentional reconfiguration processes would be dominant in switch trials. To determine the SME, local and global statistics of scalp electric fields were used to identify differences between subsequently remembered and forgotten items. Results showed that the SME in stay trials occurred in a time window from 2 to 1 sec before target onset, whereas the SME in switch trials occurred subsequently, in a time window from 1 to 0 sec before target onset. Both SMEs showed a frontal negativity resembling the topography of previously reported effects, which suggests that sustained and transient attentional processes contribute to the prestimulus SME in consecutive time periods.
Ariza, Pedro; Solesio-Jofre, Elena; Martínez, Johann H.; Pineda-Pardo, José A.; Niso, Guiomar; Maestú, Fernando; Buldú, Javier M.
2015-01-01
In this study we used graph theory analysis to investigate age-related reorganization of functional networks during the active maintenance of information that is interrupted by external interference. Additionally, we sought to investigate network differences before and after averaging network parameters between both maintenance and interference windows. We compared young and older adults by measuring their magnetoencephalographic recordings during an interference-based working memory task restricted to successful recognitions. Data analysis focused on the topology/temporal evolution of functional networks during both the maintenance and interference windows. We observed that: (a) Older adults require higher synchronization between cortical brain sites in order to achieve a successful recognition, (b) The main differences between age groups arise during the interference window, (c) Older adults show reduced ability to reorganize network topology when interference is introduced, and (d) Averaging network parameters leads to a loss of sensitivity to detect age differences. PMID:26029079
Shot boundary detection and label propagation for spatio-temporal video segmentation
NASA Astrophysics Data System (ADS)
Piramanayagam, Sankaranaryanan; Saber, Eli; Cahill, Nathan D.; Messinger, David
2015-02-01
This paper proposes a two stage algorithm for streaming video segmentation. In the first stage, shot boundaries are detected within a window of frames by comparing dissimilarity between 2-D segmentations of each frame. In the second stage, the 2-D segments are propagated across the window of frames in both spatial and temporal direction. The window is moved across the video to find all shot transitions and obtain spatio-temporal segments simultaneously. As opposed to techniques that operate on entire video, the proposed approach consumes significantly less memory and enables segmentation of lengthy videos. We tested our segmentation based shot detection method on the TRECVID 2007 video dataset and compared it with block-based technique. Cut detection results on the TRECVID 2007 dataset indicate that our algorithm has comparable results to the best of the block-based methods. The streaming video segmentation routine also achieves promising results on a challenging video segmentation benchmark database.
Diary of a Conversion--Lotus 1-2-3 to Symphony 1.1.
ERIC Educational Resources Information Center
Dunnewin, Larry
1986-01-01
Describes the uses of Lotus 1-2-3 (a spreadsheet-graphics-database program created by Lotus Development Corporation) and Symphony 1.1 (a refinement and expansion of Symphony 1.01 providing memory efficiency, speed, ease of use, greater file compatibility). Spreadsheet and graphics capabilities, the use of windows, database environment, and…
A Real-Time Image Acquisition And Processing System For A RISC-Based Microcomputer
NASA Astrophysics Data System (ADS)
Luckman, Adrian J.; Allinson, Nigel M.
1989-03-01
A low cost image acquisition and processing system has been developed for the Acorn Archimedes microcomputer. Using a Reduced Instruction Set Computer (RISC) architecture, the ARM (Acorn Risc Machine) processor provides instruction speeds suitable for image processing applications. The associated improvement in data transfer rate has allowed real-time video image acquisition without the need for frame-store memory external to the microcomputer. The system is comprised of real-time video digitising hardware which interfaces directly to the Archimedes memory, and software to provide an integrated image acquisition and processing environment. The hardware can digitise a video signal at up to 640 samples per video line with programmable parameters such as sampling rate and gain. Software support includes a work environment for image capture and processing with pixel, neighbourhood and global operators. A friendly user interface is provided with the help of the Archimedes Operating System WIMP (Windows, Icons, Mouse and Pointer) Manager. Windows provide a convenient way of handling images on the screen and program control is directed mostly by pop-up menus.
BE-PLUS: a new base editing tool with broadened editing window and enhanced fidelity.
Jiang, Wen; Feng, Songjie; Huang, Shisheng; Yu, Wenxia; Li, Guanglei; Yang, Guang; Liu, Yajing; Zhang, Yu; Zhang, Lei; Hou, Yu; Chen, Jia; Chen, Jieping; Huang, Xingxu
2018-06-06
Base editor (BE), containing a cytidine deaminase and catalytically defective Cas9, has been widely used to perform base editing. However, the narrow editing window of BE limits its utility. Here, we developed a new editing technology named as base editor for programming larger C to U (T) scope (BE-PLUS) by fusing 10 copies of GCN4 peptide to nCas9(D10A) for recruiting scFv-APOBEC-UGI-GB1 to the target sites. The new system achieves base editing with a broadened window, resulting in an increased genome-targeting scope. Interestingly, the new system yielded much fewer unwanted indels and non-C-to-T conversions. We also demonstrated its potential use in gene disruption across the whole genome through induction of stop codons (iSTOP). Taken together, the BE-PLUS system offers a new editing tool with increased editing window and enhanced fidelity.
L2 Working Memory Capacity and L2 Reading Skill.
ERIC Educational Resources Information Center
Harrington, Mike; Sawyer, Mark
1992-01-01
Examines the sensitivity of second-language (L2) working memory (ability to store and process information simultaneously) to differences in reading skills among advanced L2 learners. Subjects with larger L2 working memory capacities scored higher on measures of L2 reading skills, but no correlation was found between reading and passive short-term…
Discrete Resource Allocation in Visual Working Memory
ERIC Educational Resources Information Center
Barton, Brian; Ester, Edward F.; Awh, Edward
2009-01-01
Are resources in visual working memory allocated in a continuous or a discrete fashion? On one hand, flexible resource models suggest that capacity is determined by a central resource pool that can be flexibly divided such that items of greater complexity receive a larger share of resources. On the other hand, if capacity in working memory is…
Grain Size of Recall Practice for Lengthy Text Material: Fragile and Mysterious Effects on Memory
ERIC Educational Resources Information Center
Wissman, Kathryn T.; Rawson, Katherine A.
2015-01-01
The current research evaluated the extent to which the grain size of recall practice for lengthy text material affects recall during practice and subsequent memory. The "grain size hypothesis" states that a smaller vs. larger grain size will increase retrieval success during practice that in turn will enhance subsequent memory for…
NASA Astrophysics Data System (ADS)
Shih, Chien-Chung; Lee, Wen-Ya; Chiu, Yu-Cheng; Hsu, Han-Wen; Chang, Hsuan-Chun; Liu, Cheng-Liang; Chen, Wen-Chang
2016-02-01
Nano-floating gate memory devices (NFGM) using metal nanoparticles (NPs) covered with an insulating polymer have been considered as a promising electronic device for the next-generation nonvolatile organic memory applications NPs. However, the transparency of the device with metal NPs is restricted to 60~70% due to the light absorption in the visible region caused by the surface plasmon resonance effects of metal NPs. To address this issue, we demonstrate a novel NFGM using the blends of hole-trapping poly (9-(4-vinylphenyl) carbazole) (PVPK) and electron-trapping ZnO NPs as the charge storage element. The memory devices exhibited a remarkably programmable memory window up to 60 V during the program/erase operations, which was attributed to the trapping/detrapping of charge carriers in ZnO NPs/PVPK composite. Furthermore, the devices showed the long-term retention time (>105 s) and WRER test (>200 cycles), indicating excellent electrical reliability and stability. Additionally, the fabricated transistor memory devices exhibited a relatively high transparency of 90% at the wavelength of 500 nm based on the spray-coated PEDOT:PSS as electrode, suggesting high potential for transparent organic electronic memory devices.
Understanding GRETINA using angular correlation method
NASA Astrophysics Data System (ADS)
Austin, Madeline
2015-10-01
The ability to trace the path of gamma rays through germanium is not only necessary for taking full advantage of GRETINA but also a promising possibility for homeland security defense against nuclear threats. This research tested the current tracking algorithm using the angular correlation method by comparing results from raw and tracked data to the theoretical model for Co-60. It was found that the current tracking method is unsuccessful in reproducing angular correlation. Variations to the tracking algorithm were made in the FM value, tracking angle, number of angles of separation observed, and window of coincidence in attempt to improve correlation results. From these variations it was observed that having a larger FM improved results, reducing the number of observational angles worsened correlation, and that overall larger tracking angles improved with larger windows of coincidence and vice-verse. Future research would be to refine the angle of measurement for raw data and to explore the possibility of an energy dependence by testing other elements. This work is supported by the United States Department of Energy, Office of Science, under Contract Number DE-AC02-06CH11357
Marsh, John E.; Pilgrim, Lea K.; Sörqvist, Patrik
2013-01-01
Serial short-term memory is impaired by irrelevant sound, particularly when the sound changes acoustically. This acoustic effect is larger when the sound is presented to the left compared to the right ear (a left-ear disadvantage). Serial memory appears relatively insensitive to distraction from the semantic properties of a background sound. In contrast, short-term free recall of semantic-category exemplars is impaired by the semantic properties of background speech and is relatively insensitive to the sound's acoustic properties. This semantic effect is larger when the sound is presented to the right compared to the left ear (a right-ear disadvantage). In this paper, we outline a speculative neurocognitive fine-coarse model of these hemispheric differences in relation to short-term memory and selective attention, and explicate empirical directions in which this model can be critically evaluated. PMID:24399988
Preisach modeling of piezoceramic and shape memory alloy hysteresis
NASA Astrophysics Data System (ADS)
Hughes, Declan; Wen, John T.
1997-06-01
Smart materials such as piezoceramics, magnetostrictive materials, and shape memory alloys exhibit hysteresis, and the larger the input signal the larger the effect. Hysteresis can lead to unwanted harmonics, inaccuracy in open loop control, and instability in closed loop control. The Preisach independent domain hysteresis model has been shown to capture the major features of hysteresis arising in ferromagnetic materials. Noting the similarity between the microscopic domain kinematics that generate static hysteresis effects in ferromagnetics, piezoceramics, and shape memory alloys (SMAs), we apply the Preisach model for the hysteresis in piezoceramic and shape memory alloy materials. This paper reviews the basic properties of the Preisach model, discusses control-theoretic issues such as identification, simulation, and inversion, and presents experimental results for piezoceramic sheet actuators bonded to a flexible aluminum beam, and a Nitinol SMA wire muscle that applies a bending force to the end of a beam.
Broster, Lucas S; Jenkins, Shonna L; Holmes, Sarah D; Edwards, Matthew G; Jicha, Gregory A; Jiang, Yang
2018-05-07
Forms of implicit memory, including repetition effects, are preserved relative to explicit memory in clinical Alzheimer's disease. Consequently, cognitive interventions for persons with Alzheimer's disease have been developed that leverage this fact. However, despite the clinical robustness of behavioral repetition effects, altered neural mechanisms of repetition effects are studied as biomarkers of both clinical Alzheimer's disease and pre-morbid Alzheimer's changes in the brain. We hypothesized that the clinical preservation of behavioral repetition effects results in part from concurrent operation of discrete memory systems. We developed two experiments that included probes of emotional repetition effects differing in that one included an embedded working memory task. We found that neural repetition effects manifested in patients with amnestic mild cognitive impairment, the earliest form of clinical Alzheimer's disease, during emotional working memory tasks, but they did not manifest during the task that lacked the embedded working memory manipulation. Specifically, the working memory task evoked neural repetition effects in the P600 time-window, but the same neural mechanism was only minimally implicated in the task without a working memory component. We also found that group differences in behavioral repetition effects were smaller in the experiment with a working memory task. We suggest that cross-domain cognitive challenge can expose "defunct" neural capabilities of individuals with amnestic mild cognitive impairment. Copyright © 2018. Published by Elsevier Ltd.
Aging, memory, and nonhierarchical energy landscape of spin jam
NASA Astrophysics Data System (ADS)
Samarakoon, Anjana; Sato, Taku J.; Chen, Tianran; Chern, Gai-Wei; Yang, Junjie; Klich, Israel; Sinclair, Ryan; Zhou, Haidong; Lee, Seung-Hun
2016-10-01
The notion of complex energy landscape underpins the intriguing dynamical behaviors in many complex systems ranging from polymers, to brain activity, to social networks and glass transitions. The spin glass state found in dilute magnetic alloys has been an exceptionally convenient laboratory frame for studying complex dynamics resulting from a hierarchical energy landscape with rugged funnels. Here, we show, by a bulk susceptibility and Monte Carlo simulation study, that densely populated frustrated magnets in a spin jam state exhibit much weaker memory effects than spin glasses, and the characteristic properties can be reproduced by a nonhierarchical landscape with a wide and nearly flat but rough bottom. Our results illustrate that the memory effects can be used to probe different slow dynamics of glassy materials, hence opening a window to explore their distinct energy landscapes.
60. Interior view, passage, north elevation. Though made larger over ...
60. Interior view, passage, north elevation. Though made larger over time, this circulation space was present since the house's earliest manifestation. The attic stair and closet date from phase II construction (After the mid-1740's). Similarly to the study chamber, the closet on the right was fitted into a former exterior window opening. - John Bartram House & Garden, House, 54th Street & Lindbergh Boulevard, Philadelphia, Philadelphia County, PA
Memory: Organization and Control
Eichenbaum, Howard
2017-01-01
A major goal of memory research is to understand how cognitive processes in memory are supported at the level of brain systems and network representations. Especially promising in this direction are new findings in humans and animals that converge in indicating a key role for the hippocampus in the systematic organization of memories. New findings also indicate that the prefrontal cortex may play an equally important role in the active control of memory organization during both encoding and retrieval. Observations about the dialog between the hippocampus and prefrontal cortex provide new insights into the operation of the larger brain system that serves memory. PMID:27687117
Social Transmission of False Memory in Small Groups and Large Networks.
Maswood, Raeya; Rajaram, Suparna
2018-05-21
Sharing information and memories is a key feature of social interactions, making social contexts important for developing and transmitting accurate memories and also false memories. False memory transmission can have wide-ranging effects, including shaping personal memories of individuals as well as collective memories of a network of people. This paper reviews a collection of key findings and explanations in cognitive research on the transmission of false memories in small groups. It also reviews the emerging experimental work on larger networks and collective false memories. Given the reconstructive nature of memory, the abundance of misinformation in everyday life, and the variety of social structures in which people interact, an understanding of transmission of false memories has both scientific and societal implications. © 2018 Cognitive Science Society, Inc.
NASA Astrophysics Data System (ADS)
Yang, Ji-Hee; Yun, Da-Jeong; Seo, Gi-Ho; Kim, Seong-Min; Yoon, Myung-Han; Yoon, Sung-Min
2018-03-01
For flexible memory device applications, we propose memory thin-film transistors using an organic ferroelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] gate insulator and an amorphous In-Ga-Zn-O (a-IGZO) active channel. The effects of electrode materials and their deposition methods on the characteristics of memory devices exploiting the ferroelectric field effect were investigated for the proposed ferroelectric memory thin-film transistors (Fe-MTFTs) at flat and bending states. It was found that the plasma-induced sputtering deposition and mechanical brittleness of the indium-tin oxide (ITO) markedly degraded the ferroelectric-field-effect-driven memory window and bending characteristics of the Fe-MTFTs. The replacement of ITO electrodes with metal aluminum (Al) electrodes prepared by plasma-free thermal evaporation greatly enhanced the memory device characteristics even under bending conditions owing to their mechanical ductility. Furthermore, poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) was introduced to achieve robust bending performance under extreme mechanical stress. The Fe-MTFTs using PEDOT:PSS source/drain electrodes were successfully fabricated and showed the potential for use as flexible memory devices. The suitable choice of electrode materials employed for the Fe-MTFTs is concluded to be one of the most important control parameters for highly functional flexible Fe-MTFTs.
Perceptual Load Affects Eyewitness Accuracy and Susceptibility to Leading Questions.
Murphy, Gillian; Greene, Ciara M
2016-01-01
Load Theory (Lavie, 1995, 2005) states that the level of perceptual load in a task (i.e., the amount of information involved in processing task-relevant stimuli) determines the efficiency of selective attention. There is evidence that perceptual load affects distractor processing, with increased inattentional blindness under high load. Given that high load can result in individuals failing to report seeing obvious objects, it is conceivable that load may also impair memory for the scene. The current study is the first to assess the effect of perceptual load on eyewitness memory. Across three experiments (two video-based and one in a driving simulator), the effect of perceptual load on eyewitness memory was assessed. The results showed that eyewitnesses were less accurate under high load, in particular for peripheral details. For example, memory for the central character in the video was not affected by load but memory for a witness who passed by the window at the edge of the scene was significantly worse under high load. High load memories were also more open to suggestion, showing increased susceptibility to leading questions. High visual perceptual load also affected recall for auditory information, illustrating a possible cross-modal perceptual load effect on memory accuracy. These results have implications for eyewitness memory researchers and forensic professionals.
Perceptual Load Affects Eyewitness Accuracy and Susceptibility to Leading Questions
Murphy, Gillian; Greene, Ciara M.
2016-01-01
Load Theory (Lavie, 1995, 2005) states that the level of perceptual load in a task (i.e., the amount of information involved in processing task-relevant stimuli) determines the efficiency of selective attention. There is evidence that perceptual load affects distractor processing, with increased inattentional blindness under high load. Given that high load can result in individuals failing to report seeing obvious objects, it is conceivable that load may also impair memory for the scene. The current study is the first to assess the effect of perceptual load on eyewitness memory. Across three experiments (two video-based and one in a driving simulator), the effect of perceptual load on eyewitness memory was assessed. The results showed that eyewitnesses were less accurate under high load, in particular for peripheral details. For example, memory for the central character in the video was not affected by load but memory for a witness who passed by the window at the edge of the scene was significantly worse under high load. High load memories were also more open to suggestion, showing increased susceptibility to leading questions. High visual perceptual load also affected recall for auditory information, illustrating a possible cross-modal perceptual load effect on memory accuracy. These results have implications for eyewitness memory researchers and forensic professionals. PMID:27625628
Zhou, Ye; Han, Su-Ting; Xu, Zong-Xiang; Roy, V A L
2013-03-07
The strain and temperature dependent memory effect of organic memory transistors on plastic substrates has been investigated under ambient conditions. The gold (Au) nanoparticle monolayer was prepared and embedded in an atomic layer deposited aluminum oxide (Al(2)O(3)) as the charge trapping layer. The devices exhibited low operation voltage, reliable memory characteristics and long data retention time. Experimental analysis of the programming and erasing behavior at various bending states showed the relationship between strain and charging capacity. Thermal-induced effects on these memory devices have also been analyzed. The mobility shows ~200% rise and the memory window increases from 1.48 V to 1.8 V when the temperature rises from 20 °C to 80 °C due to thermally activated transport. The retention capability of the devices decreases with the increased working temperature. Our findings provide a better understanding of flexible organic memory transistors under various operating temperatures and validate their applications in various areas such as temperature sensors, temperature memory or advanced electronic circuits. Furthermore, the low temperature processing procedures of the key elements (Au nanoparticle monolayer and Al(2)O(3) dielectric layer) could be potentially integrated with large area flexible electronics.
Gilbert, Kathleen M.; Woodruff, William; Blossom, Sarah J.
2014-01-01
Developmental exposure to environmental toxicants may induce immune system alterations that contribute to adult stage autoimmune disease. We have shown that continuous exposure of MRL+/+ mice to trichloroethylene (TCE) from gestational day (GD) 0 to postnatal day (PND) 49 alters several aspects of CD4+ T cell function. This window of exposure corresponds to conception-adolescence/young adulthood in humans. More narrowly defining the window of TCE developmental exposure causes immunotoxicity that would establish the stage at which avoidance and/or intervention would be most effective. The current study divided continuous TCE exposure into two separate windows, namely, gestation only (GD0 to birth (PND0)) and early-life only (PND0-PND49). The mice were examined for specific alterations in CD4+ T cell function at PND49. One potentially long-lasting effect of developmental exposure, alterations in retrotransposon expression indicative of epigenetic alterations, was found in peripheral CD4+ T cells from both sets of developmentally exposed mice. Interestingly, certain other effects, such as alterations in thymus cellularity, were only found in mice exposed to TCE during gestation. In contrast, expansion of memory/activation cell subset of peripheral CD4+ T cells were only found in mice exposed to TCE during early life. Different windows of developmental TCE exposure can have different functional consequences. PMID:24696780
Developmental gains in visuospatial memory predict gains in mathematics achievement.
Li, Yaoran; Geary, David C
2013-01-01
Visuospatial competencies are related to performance in mathematical domains in adulthood, but are not consistently related to mathematics achievement in children. We confirmed the latter for first graders and demonstrated that children who show above average first-to-fifth grade gains in visuospatial memory have an advantage over other children in mathematics. The study involved the assessment of the mathematics and reading achievement of 177 children in kindergarten to fifth grade, inclusive, and their working memory capacity and processing speed in first and fifth grade. Intelligence was assessed in first grade and their second to fourth grade teachers reported on their in-class attentive behavior. Developmental gains in visuospatial memory span (d = 2.4) were larger than gains in the capacity of the central executive (d = 1.6) that in turn were larger than gains in phonological memory span (d = 1.1). First to fifth grade gains in visuospatial memory and in speed of numeral processing predicted end of fifth grade mathematics achievement, as did first grade central executive scores, intelligence, and in-class attentive behavior. The results suggest there are important individual differences in the rate of growth of visuospatial memory during childhood and that these differences become increasingly important for mathematics learning.
Developmental Gains in Visuospatial Memory Predict Gains in Mathematics Achievement
Li, Yaoran; Geary, David C.
2013-01-01
Visuospatial competencies are related to performance in mathematical domains in adulthood, but are not consistently related to mathematics achievement in children. We confirmed the latter for first graders and demonstrated that children who show above average first-to-fifth grade gains in visuospatial memory have an advantage over other children in mathematics. The study involved the assessment of the mathematics and reading achievement of 177 children in kindergarten to fifth grade, inclusive, and their working memory capacity and processing speed in first and fifth grade. Intelligence was assessed in first grade and their second to fourth grade teachers reported on their in-class attentive behavior. Developmental gains in visuospatial memory span (d = 2.4) were larger than gains in the capacity of the central executive (d = 1.6) that in turn were larger than gains in phonological memory span (d = 1.1). First to fifth grade gains in visuospatial memory and in speed of numeral processing predicted end of fifth grade mathematics achievement, as did first grade central executive scores, intelligence, and in-class attentive behavior. The results suggest there are important individual differences in the rate of growth of visuospatial memory during childhood and that these differences become increasingly important for mathematics learning. PMID:23936154
NASA Technical Reports Server (NTRS)
Owen, A. K.
1994-01-01
The laser anemometer has provided the fluid dynamicist with a powerful tool for nonintrusively measuring fluid velocities. One of the more common types of laser anemometers, the laser fringe anemometer, divides a single laser beam into two parallel beams and then focuses them on a point in space called the "probe volume" (PV) where the fluid velocity is measured. Many applications using this method for measuring fluid velocities require the observation of fluids through a window. The passage of the laser beams through materials having different indices of refraction has the following effects: 1) the position of the probe volume will change; 2) the beams will uncross, i.e., no longer lie in the same plane at the probe volume location; and 3) for nonflat plate windows, the crossing angle of the two beams will change. OPTMAIN uses a ray tracing technique, which is not restricted to special cases, to study the changes in probe volume geometry and position due to refraction effects caused by both flat and general smooth windows. Input parameters are the indices of refraction on both sides of the window and of the window itself, the window shape, the assumed position of the probe volume and the actual position of the focusing lens relative to the window, the orientation of the plane which contains the laser beams, the beam crossing angle, and the laser beam wavelength. OPTMAIN is written in FORTRAN 77 for interactive execution. It has been implemented on a DEC VAX 11/780 under VMS 5.0 with a virtual memory requirement of 50K. OPTMAIN was developed in 1987.
ERIC Educational Resources Information Center
Unsworth, Nash; Engle, Randall W.
2006-01-01
Complex (working memory) span tasks have generally shown larger and more consistent correlations with higher-order cognition than have simple (or short-term memory) span tasks. The relation between verbal complex and simple verbal span tasks to fluid abilities as a function of list-length was examined. The results suggest that the simple…
Retention interval affects visual short-term memory encoding.
Bankó, Eva M; Vidnyánszky, Zoltán
2010-03-01
Humans can efficiently store fine-detailed facial emotional information in visual short-term memory for several seconds. However, an unresolved question is whether the same neural mechanisms underlie high-fidelity short-term memory for emotional expressions at different retention intervals. Here we show that retention interval affects the neural processes of short-term memory encoding using a delayed facial emotion discrimination task. The early sensory P100 component of the event-related potentials (ERP) was larger in the 1-s interstimulus interval (ISI) condition than in the 6-s ISI condition, whereas the face-specific N170 component was larger in the longer ISI condition. Furthermore, the memory-related late P3b component of the ERP responses was also modulated by retention interval: it was reduced in the 1-s ISI as compared with the 6-s condition. The present findings cannot be explained based on differences in sensory processing demands or overall task difficulty because there was no difference in the stimulus information and subjects' performance between the two different ISI conditions. These results reveal that encoding processes underlying high-precision short-term memory for facial emotional expressions are modulated depending on whether information has to be stored for one or for several seconds.
Endocannabinoid signaling and memory dynamics: A synaptic perspective.
Drumond, Ana; Madeira, Natália; Fonseca, Rosalina
2017-02-01
Memory acquisition is a key brain feature in which our human nature relies on. Memories evolve over time. Initially after learning, memories are labile and sensitive to disruption by the interference of concurrent events. Later on, after consolidation, memories are resistant to disruption. However, reactivation of previously consolidated memories renders them again in an unstable state and therefore susceptible to perturbation. Additionally, and depending on the characteristics of the stimuli, a parallel process may be initiated which ultimately leads to the extinction of the previously acquired response. This dynamic aspect of memory maintenance opens the possibility for an updating of previously acquired memories but it also creates several conceptual challenges. What is the time window for memory updating? What determines whether reconsolidation or extinction is triggered? In this review, we tried to re-examine the relationship between consolidation, reconsolidation and extinction, aiming for a unifying view of memory dynamics. Since cellular models of memory share common principles, we present the evidence that similar rules apply to the maintenance of synaptic plasticity. Recently, a new function of the endocannabinoid (eCB) signaling system has been described for associative forms of synaptic plasticity in amygdala synapses. The eCB system has emerged as a key modulator of memory dynamics by adjusting the outcome to stimuli intensity. We propose a key function of eCB in discriminative forms of learning by restricting associative plasticity in amygdala synapses. Since many neuropsychiatric disorders are associated with a dysregulation in memory dynamics, understanding the rules underlying memory maintenance paves the path to better clinical interventions. Copyright © 2016 Elsevier Inc. All rights reserved.
Translational Approaches Targeting Reconsolidation
Kroes, Marijn C.W.; LeDoux, Joseph E.; Phelps, Elizabeth A.
2017-01-01
Maladaptive learned responses and memories contribute to psychiatric disorders that constitute a significant socio-economic burden. Primary treatment methods teach patients to inhibit maladaptive responses, but do not get rid of the memory itself, which explains why many patients experience a return of symptoms even after initially successful treatment. This highlights the need to discover more persistent and robust techniques to diminish maladaptive learned behaviours. One potentially promising approach is to alter the original memory, as opposed to inhibiting it, by targeting memory reconsolidation. Recent research shows that reactivating an old memory results in a period of memory flexibility and requires restorage, or reconsolidation, for the memory to persist. This reconsolidation period allows a window for modification of a specific old memory. Renewal of memory flexibility following reactivation holds great clinical potential as it enables targeting reconsolidation and changing of specific learned responses and memories that contribute to maladaptive mental states and behaviours. Here, we will review translational research on non-human animals, healthy human subjects, and clinical populations aimed at altering memories by targeting reconsolidation using biological treatments (electrical stimulation, noradrenergic antagonists) or behavioural interference (reactivation–extinction paradigm). Both approaches have been used successfully to modify aversive and appetitive memories, yet effectiveness in treating clinical populations has been limited. We will discuss that memory flexibility depends on the type of memory tested and the brain regions that underlie specific types of memory. Further, when and how we can most effectively reactivate a memory and induce flexibility is largely unclear. Finally, the development of drugs that can target reconsolidation and are safe for use in humans would optimize cross-species translations. Increasing the understanding of the mechanism and limitations of memory flexibility upon reactivation should help optimize efficacy of treatments for psychiatric patients. PMID:27240676
Recollecting, recognizing, and other acts of remembering: an overview of human memory.
LaVoie, Donna J; Cobia, Derin J
2007-09-01
The question of whether memory is important to human existence is simple to answer: life without memory would be devoid of any meaning. The question of what memory is, however, is much more difficult to answer. The main purpose of this article is to provide an overview of memory function, by drawing distinctions between different memory systems, specifically declarative (ie, conscious) versus nondeclarative (ie, nonconscious) memory systems. To distinguish between these larger systems and their various components, we include discussion of deficits in memory that occur as a consequence of brain injury and normative aging processes. Included in these descriptions is discussion of the neuroanatomical correlates of each memory component described to illustrate the importance of particular brain regions to different aspects of memory function.
Window-based method for approximating the Hausdorff in three-dimensional range imagery
Koch, Mark W [Albuquerque, NM
2009-06-02
One approach to pattern recognition is to use a template from a database of objects and match it to a probe image containing the unknown. Accordingly, the Hausdorff distance can be used to measure the similarity of two sets of points. In particular, the Hausdorff can measure the goodness of a match in the presence of occlusion, clutter, and noise. However, existing 3D algorithms for calculating the Hausdorff are computationally intensive, making them impractical for pattern recognition that requires scanning of large databases. The present invention is directed to a new method that can efficiently, in time and memory, compute the Hausdorff for 3D range imagery. The method uses a window-based approach.
Combined effects of marijuana and nicotine on memory performance and hippocampal volume.
Filbey, Francesca M; McQueeny, Tim; Kadamangudi, Shrinath; Bice, Collette; Ketcherside, Ariel
2015-10-15
Combined use of marijuana (MJ) and tobacco is highly prevalent in today's population. Individual use of either substance is linked to structural brain changes and altered cognitive function, especially with consistent reports of hippocampal volume deficits and poorer memory performance. However, the combined effects of MJ and tobacco on hippocampal structure and on learning and memory processes remain unknown. In this study, we examined both the individual and combined effects of MJ and tobacco on hippocampal volumes and memory performance in four groups of adults taken from two larger studies: MJ-only users (n=36), nicotine-only (Nic-only, n=19), combined marijuana and nicotine users (MJ+Nic, n=19) and non-using healthy controls (n=16). Total bilateral hippocampal volumes and memory performance (WMS-III logical memory) were compared across groups controlling for total brain size and recent alcohol use. Results found MJ and MJ+Nic groups had smaller total hippocampal volumes compared to Nic-only and controls. No significant difference between groups was found between immediate and delayed story recall. However, the controls showed a trend for larger hippocampal volumes being associated with better memory scores, while MJ+Nic users showed a unique inversion, whereby smaller hippocampal volume was associated with better memory. Overall, results suggest abnormalities in the brain-behavior relationships underlying memory processes with combined use of marijuana and nicotine use. Further research will need to address these complex interactions between MJ and nicotine. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Dissociable effects of surprising rewards on learning and memory.
Rouhani, Nina; Norman, Kenneth A; Niv, Yael
2018-03-19
Reward-prediction errors track the extent to which rewards deviate from expectations, and aid in learning. How do such errors in prediction interact with memory for the rewarding episode? Existing findings point to both cooperative and competitive interactions between learning and memory mechanisms. Here, we investigated whether learning about rewards in a high-risk context, with frequent, large prediction errors, would give rise to higher fidelity memory traces for rewarding events than learning in a low-risk context. Experiment 1 showed that recognition was better for items associated with larger absolute prediction errors during reward learning. Larger prediction errors also led to higher rates of learning about rewards. Interestingly we did not find a relationship between learning rate for reward and recognition-memory accuracy for items, suggesting that these two effects of prediction errors were caused by separate underlying mechanisms. In Experiment 2, we replicated these results with a longer task that posed stronger memory demands and allowed for more learning. We also showed improved source and sequence memory for items within the high-risk context. In Experiment 3, we controlled for the difficulty of reward learning in the risk environments, again replicating the previous results. Moreover, this control revealed that the high-risk context enhanced item-recognition memory beyond the effect of prediction errors. In summary, our results show that prediction errors boost both episodic item memory and incremental reward learning, but the two effects are likely mediated by distinct underlying systems. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Memory for pure tone sequences without contour.
Lefebvre, Christine; Jolicœur, Pierre
2016-06-01
We presented pure tones interspersed with white noise sounds to disrupt contour perception in an acoustic short-term memory (ASTM) experiment during which we recorded the electroencephalogram. The memory set consisted of seven stimuli, 0, 1, 2, 3, or 4 of which were to-be-remembered tones. We estimated each participant׳s capacity, K, for each set size and measured the amplitude of the SAN (sustained anterior negativity, an ERP related to acoustic short-term memory). We correlated their K slopes with their SAN amplitude slopes as a function of set size, and found a significant link between performance and the SAN: a larger increase in SAN amplitude was linked with a larger number of stimuli maintained in ASTM. The SAN decreased in amplitude in the later portion of the silent retention interval, but the correlation between the SAN and capacity remained strong. These results show the SAN is not an index of contour but rather an index of the maintenance of individual objects in STM. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2016 Elsevier B.V. All rights reserved.
Aging, Estrogens, and Episodic Memory in Women
Henderson, Victor W.
2009-01-01
Objective To review the relation in midlife and beyond between estrogen exposures and episodic memory in women. Background Episodic memory performance declines with usual aging, and impairments in episodic memory often portend the development of Alzheimer's disease. In the laboratory, estradiol influences hippocampal function and animal learning. However, it is controversial whether estrogens affect memory after a woman's reproductive years. Method Focused literature review, including a summary of a systematic search of clinical trials of estrogens in which outcomes included an objective measure of episodic memory. Results The natural menopause transition is not associated with objective changes in episodic memory. Strong clinical trial evidence indicates that initiating estrogen-containing hormone therapy after about age 60 years does not benefit episodic memory. Clinical trial findings in middle-age women before age 60 are limited by smaller sample sizes and shorter treatment durations, but these also do not indicate substantial memory effects. Limited short-term evidence, however, suggests that estrogens may improve verbal memory after surgical menopause. Although hormone therapy initiation in old age increases dementia risk, observational studies raise the question of an early critical window during which midlife estrogen therapy reduces late-life Alzheimer's disease. However, almost no data address whether midlife estrogen therapy affects episodic memory in old age. Conclusions Episodic memory is not substantially impacted by the natural menopause transition or improved by use of estrogen-containing hormone therapy after age 60. Further research is needed to determine whether outcomes differ after surgical menopause or whether episodic memory later in life is modified by midlife estrogenic exposures. PMID:19996872
Improving prospective memory in persons with Parkinson disease: A randomized controlled trial
Foster, Erin R.; McDaniel, Mark A.; Rendell, Peter G.
2017-01-01
Background Prospective memory is essential for productive and independent living and necessary for compliance with prescribed health behaviors. Parkinson disease (PD) can cause prospective memory deficits that are associated with activity limitations and reduced quality of life. Forming implementation intentions is an encoding strategy that may improve prospective memory in this population. Objective To determine the effect of implementation intentions on prospective memory performance in PD. Methods This was a laboratory-based randomized controlled trial. Participants with mild to moderate PD without dementia (N = 62) performed a computerized prospective memory test (Virtual Week) under standard instructions. One week later they were randomly allocated to perform it again while using either implementation intentions or a rehearsal encoding strategy. Results Prospective memory performance was better with the use of both strategies relative to standard instructions. This effect was larger for tasks with event-based compared to time-based cues. In addition, implementation intentions resulted in a larger effect than rehearsal for the non-repeated tasks. Conclusions Strategies that support full encoding of prospective memory cues and actions can improve prospective memory performance among people with PD, particularly for tasks with cues that are readily available in the environment. Implementation intentions may be more effective than rehearsal for non-repeated tasks, but this finding warrants verification. Future work should address transfer of strategy use from the laboratory to everyday life. Targeted strategies to manage prospective memory impairment could improve function and quality of life and significantly impact clinical care for people with PD. (NCT01469741) PMID:28176547
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yang; Yun, Dong Yeol; Kim, Tae Whan, E-mail: twk@hanyang.ac.kr
2014-12-08
Nonvolatile memory devices based on CuInS{sub 2} (CIS) quantum dots (QDs) embedded in a polymethylmethacrylate (PMMA) layer were fabricated using spin-coating method. The memory window widths of the capacitance-voltage (C-V) curves for the Al/CIS QDs embedded in PMMA layer/p-Si devices were 0.3, 0.6, and 1.0 V for sweep voltages of ±3, ±5, and ±7 V, respectively. Capacitance-cycle data demonstrated that the charge-trapping capability of the devices with an ON/OFF ratio value of 2.81 × 10{sup −10} was maintained for 8 × 10{sup 3} cycles without significant degradation and that the extrapolation of the ON/OFF ratio value to 1 × 10{sup 6} cycles converged to 2.40 × 10{sup −10}, indicative ofmore » the good stability of the devices. The memory mechanisms for the devices are described on the basis of the C-V curves and the energy-band diagrams.« less
Learning to remember: The early ontogeny of episodic memory☆
Mullally, Sinéad L.; Maguire, Eleanor A.
2014-01-01
Over the past 60 years the neural correlates of human episodic memory have been the focus of intense neuroscientific scrutiny. By contrast, neuroscience has paid substantially less attention to understanding the emergence of this neurocognitive system. In this review we consider how the study of memory development has evolved. In doing so, we concentrate primarily on the first postnatal year because it is within this time window that the most dramatic shifts in scientific opinion have occurred. Moreover, this time frame includes the critical age (∼9 months) at which human infants purportedly first begin to demonstrate rudimentary hippocampal-dependent memory. We review the evidence for and against this assertion, note the lack of direct neurocognitive data speaking to this issue, and question how demonstrations of exuberant relational learning and memory in infants as young as 3-months old can be accommodated within extant models. Finally, we discuss whether current impasses in the infant memory literature could be leveraged by making greater use of neuroimaging techniques, such as magnetic resonance imaging (MRI), which have been deployed so successfully in adults. PMID:24480487
A hybrid ferroelectric-flash memory cells
NASA Astrophysics Data System (ADS)
Park, Jae Hyo; Byun, Chang Woo; Seok, Ki Hwan; Kim, Hyung Yoon; Chae, Hee Jae; Lee, Sol Kyu; Son, Se Wan; Ahn, Donghwan; Joo, Seung Ki
2014-09-01
A ferroelectric-flash (F-flash) memory cells having a metal-ferroelectric-nitride-oxynitride-silicon structure are demonstrated, and the ferroelectric materials were perovskite-dominated Pb(Zr,Ti)O3 (PZT) crystallized by Pt gate electrode. The PZT thin-film as a blocking layer improves electrical and memorial performance where programming and erasing mechanism are different from the metal-ferroelectric-insulator-semiconductor device or the conventional silicon-oxide-nitride-oxide-silicon device. F-flash cells exhibit not only the excellent electrical transistor performance, having 442.7 cm2 V-1 s-1 of field-effect mobility, 190 mV dec-1 of substhreshold slope, and 8 × 105 on/off drain current ratio, but also a high reliable memory characteristics, having a large memory window (6.5 V), low-operating voltage (0 to -5 V), faster P/E switching speed (50/500 μs), long retention time (>10 years), and excellent fatigue P/E cycle (>105) due to the boosting effect, amplification effect, and energy band distortion of nitride from the large polarization. All these characteristics correspond to the best performances among conventional flash cells reported so far.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghoneim, M. T.; Hussain, M. M., E-mail: muhammadmustafa.hussain@kaust.edu.sa
Flexible memory can enable industrial, automobile, space, and smart grid centered harsh/extreme environment focused electronics application(s) for enhanced operation, safety, and monitoring where bent or complex shaped infrastructures are common and state-of-the-art rigid electronics cannot be deployed. Therefore, we report on the physical-mechanical-electrical characteristics of a flexible ferroelectric memory based on lead zirconium titanate as a key memory material and flexible version of bulk mono-crystalline silicon (100). The experimented devices show a bending radius down to 1.25 cm corresponding to 0.16% nominal strain (high pressure of ∼260 MPa), and full functionality up to 225 °C high temperature in ambient gas composition (21% oxygenmore » and 55% relative humidity). The devices showed unaltered data retention and fatigue properties under harsh conditions, still the reduced memory window (20% difference between switching and non-switching currents at 225 °C) requires sensitive sense circuitry for proper functionality and is the limiting factor preventing operation at higher temperatures.« less
NASA Astrophysics Data System (ADS)
Wang, Xiao Lin; Liu, Zhen; Wen, Chao; Liu, Yang; Wang, Hong Zhe; Chen, T. P.; Zhang, Hai Yan
2018-06-01
With self-prepared nickel acetate based solution, NiO thin films with different thicknesses have been fabricated by spin coating followed by thermal annealing. By forming a two-terminal Ag/NiO/ITO structure on glass, write-once-read-many-times (WORM) memory devices are realized. The WORM memory behavior is based on a permanent switching from an initial high-resistance state (HRS) to an irreversible low-resistance state (LRS) under the application of a writing voltage, due to the formation of a solid bridge across Ag and ITO electrodes by conductive filaments (CFs). The memory performance is investigated as a function of the NiO film thickness, which is determined by the number of spin-coated NiO layers. For devices with 4 and 6 NiO layers, data retention up to 104 s and endurance of 103 reading operations in the measurement range have been obtained with memory window maintained above four orders for both HRS and LRS. Before and after writing, the devices show the hopping and ohmic conduction behaviors, respectively, confirming that the CF formation could be the mechanism responsible for writing in the WORM memory devices.
Motor Skills Enhance Procedural Memory Formation and Protect against Age-Related Decline
Müller, Nils C. J.; Genzel, Lisa; Konrad, Boris N.; Pawlowski, Marcel; Neville, David; Fernández, Guillén; Steiger, Axel
2016-01-01
The ability to consolidate procedural memories declines with increasing age. Prior knowledge enhances learning and memory consolidation of novel but related information in various domains. Here, we present evidence that prior motor experience–in our case piano skills–increases procedural learning and has a protective effect against age-related decline for the consolidation of novel but related manual movements. In our main experiment, we tested 128 participants with a sequential finger-tapping motor task during two sessions 24 hours apart. We observed enhanced online learning speed and offline memory consolidation for piano players. Enhanced memory consolidation was driven by a strong effect in older participants, whereas younger participants did not benefit significantly from prior piano experience. In a follow up independent control experiment, this compensatory effect of piano experience was not visible after a brief offline period of 30 minutes, hence requiring an extended consolidation window potentially involving sleep. Through a further control experiment, we rejected the possibility that the decreased effect in younger participants was caused by training saturation. We discuss our results in the context of the neurobiological schema approach and suggest that prior experience has the potential to rescue memory consolidation from age-related cognitive decline. PMID:27333186
Atmospheric Science Data Center
2013-04-16
... View Larger Image Within that narrow window during a solar eclipse where an observer on Earth can watch the Moon's shadow obscure ... of the imagery acquired during Terra orbit 20920. The panels cover an area of about 380 kilometers x 2909 kilometers and use data ...
Framewise phoneme classification with bidirectional LSTM and other neural network architectures.
Graves, Alex; Schmidhuber, Jürgen
2005-01-01
In this paper, we present bidirectional Long Short Term Memory (LSTM) networks, and a modified, full gradient version of the LSTM learning algorithm. We evaluate Bidirectional LSTM (BLSTM) and several other network architectures on the benchmark task of framewise phoneme classification, using the TIMIT database. Our main findings are that bidirectional networks outperform unidirectional ones, and Long Short Term Memory (LSTM) is much faster and also more accurate than both standard Recurrent Neural Nets (RNNs) and time-windowed Multilayer Perceptrons (MLPs). Our results support the view that contextual information is crucial to speech processing, and suggest that BLSTM is an effective architecture with which to exploit it.
The effect of different oxygen exchange layers on TaO x based RRAM devices
NASA Astrophysics Data System (ADS)
Alamgir, Zahiruddin; Holt, Joshua; Beckmann, Karsten; Cady, Nathaniel C.
2018-01-01
In this work, we investigated the effect of the oxygen exchange layer (OEL) on the resistive switching properties of TaO x based memory cells. It was found that the forming voltage, SET-RESET voltage, R off, R on and retention properties are strongly correlated with the oxygen scavenging ability of the OEL, and the resulting oxygen vacancy formation ability of this layer. Higher forming voltage was observed for OELs having lower electronegativity/lower Gibbs free energy for oxide formation, and devices fabricated with these OELs exhibited an increased memory window, when using similar SET-RESET voltage range.
Key Technologies of Phone Storage Forensics Based on ARM Architecture
NASA Astrophysics Data System (ADS)
Zhang, Jianghan; Che, Shengbing
2018-03-01
Smart phones are mainly running Android, IOS and Windows Phone three mobile platform operating systems. The android smart phone has the best market shares and its processor chips are almost ARM software architecture. The chips memory address mapping mechanism of ARM software architecture is different with x86 software architecture. To forensics to android mart phone, we need to understand three key technologies: memory data acquisition, the conversion mechanism from virtual address to the physical address, and find the system’s key data. This article presents a viable solution which does not rely on the operating system API for a complete solution to these three issues.
Tsiouris, Κostas Μ; Pezoulas, Vasileios C; Zervakis, Michalis; Konitsiotis, Spiros; Koutsouris, Dimitrios D; Fotiadis, Dimitrios I
2018-05-17
The electroencephalogram (EEG) is the most prominent means to study epilepsy and capture changes in electrical brain activity that could declare an imminent seizure. In this work, Long Short-Term Memory (LSTM) networks are introduced in epileptic seizure prediction using EEG signals, expanding the use of deep learning algorithms with convolutional neural networks (CNN). A pre-analysis is initially performed to find the optimal architecture of the LSTM network by testing several modules and layers of memory units. Based on these results, a two-layer LSTM network is selected to evaluate seizure prediction performance using four different lengths of preictal windows, ranging from 15 min to 2 h. The LSTM model exploits a wide range of features extracted prior to classification, including time and frequency domain features, between EEG channels cross-correlation and graph theoretic features. The evaluation is performed using long-term EEG recordings from the open CHB-MIT Scalp EEG database, suggest that the proposed methodology is able to predict all 185 seizures, providing high rates of seizure prediction sensitivity and low false prediction rates (FPR) of 0.11-0.02 false alarms per hour, depending on the duration of the preictal window. The proposed LSTM-based methodology delivers a significant increase in seizure prediction performance compared to both traditional machine learning techniques and convolutional neural networks that have been previously evaluated in the literature. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustavsen Ph.D., Arild; Goudey, Howdy; Kohler, Christian
2010-06-17
While window frames typically represent 20-30percent of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows which incorporate very low conductance glazings. Developing low-conductance window frames requires accurate simulation tools for product research and development. The Passivhaus Institute in Germany states that windows (glazing and frames, combined) should have U-values not exceeding 0.80 W/(m??K). This has created a niche market for highly insulating frames, with frame U-values typically around 0.7-1.0 W/(m2 cdot K). The U-values reported are often based on numerical simulationsmore » according to international simulation standards. It is prudent to check the accuracy of these calculation standards, especially for high performance products before more manufacturers begin to use them to improve other product offerings. In this paper the thermal transmittance of five highly insulating window frames (three wooden frames, one aluminum frame and one PVC frame), found from numerical simulations and experiments, are compared. Hot box calorimeter results are compared with numerical simulations according to ISO 10077-2 and ISO 15099. In addition CFD simulations have been carried out, in order to use the most accurate tool available to investigate the convection and radiation effects inside the frame cavities. Our results show that available tools commonly used to evaluate window performance, based on ISO standards, give good overall agreement, but specific areas need improvement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Eleanor S.; Fernandes, Luis L.; Goudey, Chad Howdy
Chromogenic glazing materials are emerging technologies that tint reversibly from a clear to dark tinted state either passively in response to environmental conditions or actively in response to a command from a switch or building automation system. Switchable coatings on glass manage solar radiation and visible light while enabling unobstructed views to the outdoors. Building energy simulations estimate that actively controlled, near-term chromogenic glazings can reduce perimeter zone heating, ventilation, and airconditioning (HVAC) and lighting energy use by 10-20% and reduce peak electricity demand by 20-30%, achieving energy use levels that are lower than an opaque, insulated wall. This projectmore » demonstrates the use of two types of chromogenic windows: thermochromic and electrochromic windows. By 2013, these windows will begin production in the U.S. by multiple vendors at high-volume manufacturing plants, enabling lower cost and larger area window products to be specified. Both technologies are in the late R&D stage of development, where cost reductions and performance improvements are underway. Electrochromic windows have been installed in numerous buildings over the past four years, but monitored energy-efficiency performance has been independently evaluated in very limited applications. Thermochromic windows have been installed in one other building with an independent evaluation, but results have not yet been made public.« less
Eternal Sunshine of the Spotless Machine: Protecting Privacy with Ephemeral Channels
Dunn, Alan M.; Lee, Michael Z.; Jana, Suman; Kim, Sangman; Silberstein, Mark; Xu, Yuanzhong; Shmatikov, Vitaly; Witchel, Emmett
2014-01-01
Modern systems keep long memories. As we show in this paper, an adversary who gains access to a Linux system, even one that implements secure deallocation, can recover the contents of applications’ windows, audio buffers, and data remaining in device drivers—long after the applications have terminated. We design and implement Lacuna, a system that allows users to run programs in “private sessions.” After the session is over, all memories of its execution are erased. The key abstraction in Lacuna is an ephemeral channel, which allows the protected program to talk to peripheral devices while making it possible to delete the memories of this communication from the host. Lacuna can run unmodified applications that use graphics, sound, USB input devices, and the network, with only 20 percentage points of additional CPU utilization. PMID:24755709
Aging, memory, and nonhierarchical energy landscape of spin jam
Samarakoon, Anjana; Sato, Taku J.; Chen, Tianran; Chern, Gai-Wei; Yang, Junjie; Klich, Israel; Sinclair, Ryan; Zhou, Haidong; Lee, Seung-Hun
2016-01-01
The notion of complex energy landscape underpins the intriguing dynamical behaviors in many complex systems ranging from polymers, to brain activity, to social networks and glass transitions. The spin glass state found in dilute magnetic alloys has been an exceptionally convenient laboratory frame for studying complex dynamics resulting from a hierarchical energy landscape with rugged funnels. Here, we show, by a bulk susceptibility and Monte Carlo simulation study, that densely populated frustrated magnets in a spin jam state exhibit much weaker memory effects than spin glasses, and the characteristic properties can be reproduced by a nonhierarchical landscape with a wide and nearly flat but rough bottom. Our results illustrate that the memory effects can be used to probe different slow dynamics of glassy materials, hence opening a window to explore their distinct energy landscapes. PMID:27698141
Jones, Emma K; Sünram-Lea, Sandra I; Wesnes, Keith A
2012-02-01
The role of carbohydrates on mood and cognition is fairly well established, however research examining the behavioural effects of the other macronutrients is limited. The current study compared the effects of a 25 g glucose drink to energetically matched protein and fat drinks and an inert placebo. Following a blind, placebo-controlled, randomised crossover design, 18 healthy young adults consumed drinks containing fat, glucose, protein and placebo. Cognitive performance was examined at baseline and again 15- and 60 min post drink. Mood was assessed at baseline and then 10-, 35- and 80 min post drink. Attention and speed were enhanced 15 min following fat or glucose ingestion and working memory was enhanced 15 min following protein ingestion. Sixty minutes post drink memory enhancements were observed after protein and memory impairment was observed following glucose. All drinks increased ratings of alertness. The findings suggest that macronutrients: (i) have different windows of opportunity for effects (ii) target different cognitive domains. Copyright © 2012 Elsevier B.V. All rights reserved.
Wang, Wei; Hwang, Sun Kak; Kim, Kang Lib; Lee, Ju Han; Cho, Suk Man; Park, Cheolmin
2015-05-27
The core components of a floating-gate organic thin-film transistor nonvolatile memory (OTFT-NVM) include the semiconducting channel layer, tunneling layer, floating-gate layer, and blocking layer, besides three terminal electrodes. In this study, we demonstrated OTFT-NVMs with all four constituent layers made of polymers based on consecutive spin-coating. Ambipolar charges injected and trapped in a polymer electret charge-controlling layer upon gate program and erase field successfully allowed for reliable bistable channel current levels at zero gate voltage. We have observed that the memory performance, in particular the reliability of a device, significantly depends upon the thickness of both blocking and tunneling layers, and with an optimized layer thickness and materials selection, our device exhibits a memory window of 15.4 V, on/off current ratio of 2 × 10(4), read and write endurance cycles over 100, and time-dependent data retention of 10(8) s, even when fabricated on a mechanically flexible plastic substrate.
Thermal performance of complex fenestration systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, S.C.; Elmahdy, A.H.
1994-12-31
The thermal performance (i.e., U-factor) of four complex fenestration systems is examined using computer simulation tools and guarded hot box testing. The systems include a flat glazed skylight, a domed or bubble skylight, a greenhouse window, and a curtain wall. The extra care required in performing simulation and testing of these complex products is described. There was good agreement (within 10%) between test and simulation for two of the four products. The agreement was slightly poorer (maximum difference of 16%) for the two high-heat-transfer products: the domed skylight and the greenhouse window. Possible causes for the larger discrepancy in thesemore » projecting window products are uncertainties in the inside and outside film coefficients and lower warm-side air temperatures because of stagnant airflow.« less
Bezu, M; Shanmugasundaram, B; Lubec, G; Korz, V
2016-10-01
Cognition enhancing drugs often target the dopaminergic system, which is involved in learning and memory, including working memory that in turn involves mainly the prefrontal cortex and the hippocampus. In most animal models for modulations of working memory animals are pre-trained to a certain criterion and treated then acutely to test drugs effects on working memory. Thus, little is known regarding subchronic or chronic application of cognition enhancing drugs and working memory performance. Therefore we trained male rats over six days in a rewarded alternation test in a T-maze. Rats received daily injections of either modafinil or Levodopa (L-Dopa) at a lower and a higher dose 30min before training. Levodopa but not modafinil increased working memory performance during early training significantly at day 3 when compared to vehicle controls. Both drugs induced dose dependent differences in working memory with significantly better performance at low doses compared to high doses for modafinil, in contrast to L-Dopa where high dose treated rats performed better than low dose rats. Strikingly, these effects appeared only at day 3 for both drugs, followed by a decline in behavioral performance. Thus, a critical drug independent time window for dopaminergic effects upon working memory could be revealed. Evaluating the underlying mechanisms contributes to the understanding of temporal effects of dopamine on working memory performance. Copyright © 2016 Elsevier B.V. All rights reserved.
Della-Maggiore, Valeria; Villalta, Jorge I; Kovacevic, Natasa; McIntosh, Anthony Randal
2017-03-01
Adaptation learning is crucial to maintain precise motor control in face of environmental perturbations. Although much progress has been made in understanding the psychophysics and neurophysiology of sensorimotor adaptation (SA), the time course of memory consolidation remains elusive. The lack of a reproducible gradient of memory resistance using protocols of retrograde interference has even led to the proposal that memories produced through SA do not consolidate. Here, we pursued an alternative approach using resting-state fMRI to track changes in functional connectivity (FC) induced by learning. Given that consolidation leads to long-term memory, we hypothesized that a change in FC that predicted long-term memory but not short-term memory would provide indirect evidence for memory stabilization. Six scans were acquired before, 15 min, 1, 3, 5.5, and 24 h after training on a center-out task under veridical or distorted visual feedback. The experimental group showed an increment in FC of a network including motor, premotor, posterior parietal cortex, cerebellum, and putamen that peaked at 5.5 h. Crucially, the strengthening of this network correlated positively with long-term retention but negatively with short-term retention. Our work provides evidence, suggesting that adaptation memories stabilize within a 6-h window, and points to different mechanisms subserving short- and long-term memory. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Reconsolidation and update of morphine-associated contextual memory in mice.
Escosteguy-Neto, Joao Carlos; Varela, Patricia; Correa-Neto, Nelson Francisco; Coelho, Laura Segismundo; Onaivi, Emmanuel S; Santos-Junior, Jair Guilherme
2016-04-01
Drug addiction can be viewed as a pathological memory that is constantly retrieved and reconsolidated. Since drug abuse takes place in different contexts, it could be considered that reconsolidation plays a role in memory updating. There is consistent evidence supporting the role of reconsolidation in the strength and maintenance of contextual memories induced by drugs of abuse. However, this role is not well established in memory update. The purpose of the current study was to assess the reconsolidation process over memory update. C57BL6 mice were subjected to a morphine-induced, conditioned place preference (CPP) paradigm. Based on CPP results, animals were divided into distinct experimental groups, according to the contextual characteristics of the re-exposure and a second CPP Test. Re-exposure in the original context was important for memory maintenance and re-exposure under discrete contextual changes resulted in memory updating, although original memory was maintained. Interestingly, cycloheximide, an inhibitor of protein synthesis, had different outcomes in our protocol. When the re-exposure was done under discrete contextual changes, cycloheximide treatment just after re-exposure blocked memory updating, without changes in memory maintenance. When re-exposure was done under the original context, only two subsequent cycloheximide injections (3 and 6h) disrupted later CPP expression. Considering the temporal window of protein synthesis in consolidation and reconsolidation, these findings suggest that re-exposure, according to the contextual characteristics in our protocol, could trigger both phenomena. Furthermore, when new information is present on retrieval, reconsolidation plays a pivotal role in memory updating. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Davy, Nicholas C.; Sezen-Edmonds, Melda; Gao, Jia; Lin, Xin; Liu, Amy; Yao, Nan; Kahn, Antoine; Loo, Yueh-Lin
2017-08-01
Current smart window technologies offer dynamic control of the optical transmission of the visible and near-infrared portions of the solar spectrum to reduce lighting, heating and cooling needs in buildings and to improve occupant comfort. Solar cells harvesting near-ultraviolet photons could satisfy the unmet need of powering such smart windows over the same spatial footprint without competing for visible or infrared photons, and without the same aesthetic and design constraints. Here, we report organic single-junction solar cells that selectively harvest near-ultraviolet photons, produce open-circuit voltages eclipsing 1.6 V and exhibit scalability in power generation, with active layers (10 cm2) substantially larger than those typical of demonstration organic solar cells (0.04-0.2 cm2). Integration of these solar cells with a low-cost, polymer-based electrochromic window enables intelligent management of the solar spectrum, with near-ultraviolet photons powering the regulation of visible and near-infrared photons for natural lighting and heating purposes.
An Evaluation Methodology for Protocol Analysis Systems
2007-03-01
Main Memory Requirement NS: Needham-Schroeder NSL: Needham-Schroeder-Lowe OCaml : Objective Caml POSIX: Portable Operating System...methodology is needed. A. PROTOCOL ANALYSIS FIELD As with any field, there is a specialized language used within the protocol analysis community. Figure...ProVerif requires that Objective Caml ( OCaml ) be installed on the system, OCaml version 3.09.3 was installed. C. WINDOWS CONFIGURATION OS
Real-Time, Polyphase-FFT, 640-MHz Spectrum Analyzer
NASA Technical Reports Server (NTRS)
Zimmerman, George A.; Garyantes, Michael F.; Grimm, Michael J.; Charny, Bentsian; Brown, Randy D.; Wilck, Helmut C.
1994-01-01
Real-time polyphase-fast-Fourier-transform, polyphase-FFT, spectrum analyzer designed to aid in detection of multigigahertz radio signals in two 320-MHz-wide polarization channels. Spectrum analyzer divides total spectrum of 640 MHz into 33,554,432 frequency channels of about 20 Hz each. Size and cost of polyphase-coefficient memory substantially reduced and much of processing loss of windowed FFTs eliminated.
Large reversible magnetocaloric effect in a Ni-Co-Mn-In magnetic shape memory alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, L.; Cong, D. Y.; Ma, L.
Reversibility of the magnetocaloric effect in materials with first-order magnetostructural transformation is of vital significance for practical magnetic refrigeration applications. Here, we report a large reversible magnetocaloric effect in a Ni49.8Co1.2Mn33.5In15.5 magnetic shape memory alloy. A large reversible magnetic entropy change of 14.6 J/(kg K) and a broad operating temperature window of 18 K under 5 T were simultaneously achieved, correlated with the low thermal hysteresis (-8 K) and large magnetic-field-induced shift of transformation temperatures (4.9 K/T) that lead to a narrow magnetic hysteresis (1.1 T) and small average magnetic hysteresis loss (48.4 J/kg under 5 T) as well. Furthermore,more » a large reversible effective refrigeration capacity (76.6 J/kg under 5 T) was obtained, as a result of the large reversible magnetic entropy change, broad operating temperature window, and small magnetic hysteresis loss. The large reversible magnetic entropy change and large reversible effective refrigeration capacity are important for improving the magnetocaloric performance, and the small magnetic hysteresis loss is beneficial to reducing energy dissipation during magnetic field cycle in potential applications.« less
Meiran, Nachshon; Hsieh, Shulan; Chang, Chi-Chih
2011-09-01
A major challenge for task switching is maintaining a balance between high task readiness and effectively ignoring irrelevant task rules. This calls for finely tuned inhibition that targets only the source of interference without adversely influencing other task-related representations. The authors show that irrelevant task rules generating response conflict are inhibited, causing their inefficient execution on the next trial (indicating the presence of competitor rule suppression[CRS];Meiran, Hsieh, & Dimov, Journal of Experimental Psychology: Learning, Memory and Cognition, 36, 992-1002, 2010). To determine whether CRS influences task rules, rather than target stimuli or responses, the authors focused on the processing of the task cue before the target stimulus was presented and before the response could be chosen. As was predicted, CRS was found in the event-related potentials in two time windows during task cue processing. It was also found in three time windows after target presentation. Source localization analyses suggest the involvement of the right dorsal prefrontal cortex in all five time windows.
Fjell, Anders M; Sneve, Markus H; Storsve, Andreas B; Grydeland, Håkon; Yendiki, Anastasia; Walhovd, Kristine B
2016-03-01
Episodic memories are established and maintained by close interplay between hippocampus and other cortical regions, but degradation of a fronto-striatal network has been suggested to be a driving force of memory decline in aging. We wanted to directly address how changes in hippocampal-cortical versus striatal-cortical networks over time impact episodic memory with age. We followed 119 healthy participants (20-83 years) for 3.5 years with repeated tests of episodic verbal memory and magnetic resonance imaging for quantification of functional and structural connectivity and regional brain atrophy. While hippocampal-cortical functional connectivity predicted memory change in young, changes in cortico-striatal functional connectivity were related to change in recall in older adults. Within each age group, effects of functional and structural connectivity were anatomically closely aligned. Interestingly, the relationship between functional connectivity and memory was strongest in the age ranges where the rate of reduction of the relevant brain structure was lowest, implying selective impacts of the different brain events on memory. Together, these findings suggest a partly sequential and partly simultaneous model of brain events underlying cognitive changes in aging, where different functional and structural events are more or less important in various time windows, dismissing a simple uni-factorial view on neurocognitive aging. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Digital Equipment Corporation VAX/VMS Version 4.3
1986-07-30
operating system performs process-oriented paging that allows execution of programs that may be larger than the physical memory allocated to them... to higher privileged modes. (For an explanation of how the four access modes provide memory access protection see page 9, "Memory Management".) A... to optimize program performance for real-time applications or interactive environments. July 30, 1986 - 4 - Final Evaluation Report Digital VAX/VMS
BLACKCOMB2: Hardware-software co-design for non-volatile memory in exascale systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudge, Trevor
This work was part of a larger project, Blackcomb2, centered at Oak Ridge National Labs (Jeff Vetter PI) to investigate the opportunities for replacing or supplementing DRAM main memory with nonvolatile memory (NVmemory) in Exascale memory systems. The goal was to reduce the energy consumed by in future supercomputer memory systems and to improve their resiliency. Building on the accomplishments of the original Blackcomb Project, funded in 2010, the goal for Blackcomb2 was to identify, evaluate, and optimize the most promising emerging memory technologies, architecture hardware and software technologies, which are essential to provide the necessary memory capacity, performance, resilience,more » and energy efficiency in Exascale systems. Capacity and energy are the key drivers.« less
Development and characterization of a ferroelectric non-volatile memory for flexible electronics
NASA Astrophysics Data System (ADS)
Mao, Duo
Flexible electronics have received significant attention recently because of the potential applications in displays, sensors, radio frequency identification (RFID) tags and other integrated circuits. Electrically addressable non-volatile memory is a key component for these applications. The major challenges are to fabricate the memory at a low temperature compatible with plastic substrates while maintaining good device reliability, by being compatible with process as needed to integrate with other electronic components for system-on-chip applications. In this work, ferroelectric capacitors fabricated at low temperature were developed. Based on that, a ferroelectric random access memory (FRAM) for flexible electronics was developed and characterized. Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer was used as a ferroelectric material and a photolithographic process was developed to fabricate ferroelectric capacitors. Different characterization methods including atomic force microscopy, x-ray diffraction and Fourier-transform infrared reflection-absorption spectroscopy were used to study the material properties of the P(VDF-TrFE) film. The material properties were correlated with the electrical characteristics of the ferroelectric capacitors. To understand the polarization switching behavior of the P(VDF-TrFE) ferroelectric capacitors, a Nucleation-Limited-Switching (NLS) model was used to study the switching kinetics. The switching kinetics were characterized over the temperature range from -60 °C to 100 °C. Fatigue characteristics were studied at different electrical stress voltages and frequencies to evaluate the reliability of the ferroelectric capacitor. The degradation mechanism is attributed to the increase of the activation field and the suppression of the switchable polarization. To develop a FRAM circuit for flexible electronics, an n-channel thin film transistor (TFT) based on CdS as the semiconductor was integrated with a P(VDF-TrFE) ferroelectric capacitor for a one-transistor-one-capacitor (1T1C) memory cell. The 1T1C devices were fabricated at low temperature and demonstrated a memory window (DeltaVBL) of 2.3 V and 3.5 V, depending on the device dimensions. Next, FRAM arrays (4-bit, 16-bit and 64-bit) based on the two-transistor-two-capacitor (2T2C) memory cell architecture were designed and fabricated using a photolithographic process with 9 masks. The fabricated FRAM arrays were packaged in 28-pin ceramic packages. The read/write schemes were developed and the FRAM arrays show successful program and erase with a memory window of approximately 1 V at the output of the sense amplifier.
Data entry and error embedding system
NASA Technical Reports Server (NTRS)
Woo, Daniel N. (Inventor); Woo, Jr., John (Inventor)
1998-01-01
A data entry and error embedding system in which, first, a document is bitmapped and recorded in a first memory. Then, it is displayed, and portions of it to be replicated by data entry are underlayed by a window, into which window replicated data is entered in location and size such that it is juxtaposed just below that which is replicated, enhancing the accuracy of replication. Second, with this format in place, selected portions of the replicated data are altered by the insertion of character or word substitutions, thus the embedding of errors. Finally, a proofreader would endeavor to correct the error embedded data and a record of his or her changes recorded. In this manner, the skill level of the proofreader and accuracy of the data are computed.
NASA Astrophysics Data System (ADS)
UŻarowska, E.; Czajkowski, Rafał; Konopka, W.
2014-11-01
We aim to create a set of genetic tools where permanent opsin expression (ChR or NpHR) is precisely limited to the population of neurons that express immediate early gene c-fos during a specific temporal window of behavioral training. Since the c-fos gene is only expressed in neurons that form experience-dependent ensemble, this approach will result in specific labeling of a small subset of cells that create memory trace for the learned behavior. To this end we employ two alternative inducible gene expression systems: Tet Expression System and Cre/lox System. In both cases, the temporal window for opsin induction is controlled pharmacologically, by doxycycline or tamoxifen, respectively. Both systems will be used for creating lines of transgenic animals.
A 640-MHz 32-megachannel real-time polyphase-FFT spectrum analyzer
NASA Technical Reports Server (NTRS)
Zimmerman, G. A.; Garyantes, M. F.; Grimm, M. J.; Charny, B.
1991-01-01
A polyphase fast Fourier transform (FFT) spectrum analyzer being designed for NASA's Search for Extraterrestrial Intelligence (SETI) Sky Survey at the Jet Propulsion Laboratory is described. By replacing the time domain multiplicative window preprocessing with polyphase filter processing, much of the processing loss of windowed FFTs can be eliminated. Polyphase coefficient memory costs are minimized by effective use of run length compression. Finite word length effects are analyzed, producing a balanced system with 8 bit inputs, 16 bit fixed point polyphase arithmetic, and 24 bit fixed point FFT arithmetic. Fixed point renormalization midway through the computation is seen to be naturally accommodated by the matrix FFT algorithm proposed. Simulation results validate the finite word length arithmetic analysis and the renormalization technique.
Repeated Labilization-Reconsolidation Processes Strengthen Declarative Memory in Humans
Forcato, Cecilia; Rodríguez, María L. C.; Pedreira, María E.
2011-01-01
The idea that memories are immutable after consolidation has been challenged. Several reports have shown that after the presentation of a specific reminder, reactivated old memories become labile and again susceptible to amnesic agents. Such vulnerability diminishes with the progress of time and implies a re-stabilization phase, usually referred to as reconsolidation. To date, the main findings describe the mechanisms associated with the labilization-reconsolidation process, but little is known about its functionality from a biological standpoint. Indeed, two functions have been proposed. One suggests that destabilization of the original memory after the reminder allows the integration of new information into the background of the original memory (memory updating), and the other suggests that the labilization-reconsolidation process strengthens the original memory (memory strengthening). We have previously reported the reconsolidation of human declarative memories, demonstrating memory updating in the framework of reconsolidation. Here we deal with the strengthening function attributed to the reconsolidation process. We triggered labilization-reconsolidation processes successively by repeated presentations of the proper reminder. Participants learned an association between five cue-syllables and their respective response-syllables. Twenty-four hours later, the paired-associate verbal memory was labilized by exposing the subjects to one, two or four reminders. The List-memory was evaluated on Day 3 showing that the memory was improved when at least a second reminder was presented in the time window of the first labilization-reconsolidation process prompted by the earlier reminder. However, the improvement effect was revealed on Day 3, only when at least two reminders were presented on Day2 and not as a consequence of only retrieval. Therefore, we propose central concepts for the reconsolidation process, emphasizing its biological role and the parametrical constrains for this function to be operative. PMID:21850268
Lange, Rael T; Chelune, Gordon J
2006-05-01
Analysis of the discrepancy between memory and intellectual ability has received some support as a means for evaluating memory impairment. Recently, comprehensive base rate tables for General Ability Index (GAI) minus memory discrepancy scores (i.e., GAI-memory) were developed using the WAIS-III/WMS-III standardization sample (Lange, Chelune, & Tulsky, in press). The purpose of this study was to evaluate the clinical utility of GAI-memory discrepancy scores to identify memory impairment in 34 patients with Alzheimer's type dementia (DAT) versus a sample of 34 demographically matched healthy participants. On average, patients with DAT obtained significantly lower scores on all WAIS-III and WMS-III indexes and had larger GAI-memory discrepancy scores. Clinical outcome analyses revealed that GAI-memory scores were useful at identifying memory impairment in patients with DAT versus matched healthy participants. However, GAI-memory discrepancy scores failed to provide unique interpretive information beyond that which is gained from the memory indexes alone. Implications and future research directions are discussed.
A large format membrane-based x-ray mask for microfluidic chip fabrication
NASA Astrophysics Data System (ADS)
Wang, Lin; Zhang, Min; Desta, Yohannes; Melzak, J.; Wu, C. H.; Peng, Zhengchun
2006-02-01
X-ray lithography is a very good option for the fabrication of micro-devices especially when high aspect ratio patterns are required. Membrane-based x-ray masks are commonly used for high-resolution x-ray lithography. A thin layer of silicon nitride (Si3N4) or silicon carbide (SiC) film (1-2 µm) is normally used as the membrane material for x-ray mask fabrication (Wells G M, Reilly M, Nachman R, Cerrina F, El-Khakani M A and Chaker M 1993 Mater. Res. Soc. Conf. Proc. 306 81-9 Shoki T, Nagasawa H, Kosuga H, Yamaguchi Y, Annaka N, Amemiya I and Nagarekawa O 1993 SPIE Proc. 1924 450-6). The freestanding membrane window of an x-ray mask, which defines the exposing area of the x-ray mask, can be obtained by etching a pre-defined area on a silicon wafer from the backside (Wang L, Desta Y, Fettig R K, Goettert J, Hein H, Jakobs P and Chulz J 2004 J. Micromech. Microeng. 14 722-6). Usually, the window size of an x-ray mask is around 20 × 20 mm because of the low tensile stress of the membrane (10-100 MPa), and the larger window dimension of an x-ray mask may cause the deformation of membranes and lower the mask quality. However, x-ray masks with larger windows are preferred for micro-device fabrication in order to increase the productivity. We analyzed the factors which influence the flatness of large format x-ray masks and fabricated x-ray masks with a window size of 55 × 55 mm and 46 × 65 mm on 1 µm thick membranes by increasing the tensile stress of the membranes (>300 MPa) and optimizing the stress of the absorber layer. The large format x-ray mask was successfully applied for the fabrication of microfluidic chips.
NASA Astrophysics Data System (ADS)
Zhu, Keyong; Huang, Yong; Pruvost, Jeremy; Legrand, Jack; Pilon, Laurent
2017-06-01
This study aims to quantify systematically the effect of non-absorbing cap-shaped droplets condensed on the backside of transparent windows on their directional-hemispherical transmittance and reflectance. Condensed water droplets have been blamed to reduce light transfer through windows in greenhouses, solar desalination plants, and photobioreactors. Here, the directional-hemispherical transmittance was predicted by Monte Carlo ray-tracing method. For the first time, both monodisperse and polydisperse droplets were considered, with contact angle between 0 and 180°, arranged either in an ordered hexagonal pattern or randomly distributed on the window backside with projected surface area coverage between 0 and 90%. The directional-hemispherical transmittance was found to be independent of the size and spatial distributions of the droplets. Instead, it depended on (i) the incident angle, (ii) the optical properties of the window and droplets, and on (iii) the droplet contact angle and (iv) projected surface area coverage. In fact, the directional-hemispherical transmittance decreased with increasing incident angle. Four optical regimes were identified in the normal-hemispherical transmittance. It was nearly constant for droplet contact angles either smaller than the critical angle θcr (predicted by Snell's law) for total internal reflection at the droplet/air interface or larger than 180°-θcr. However, between these critical contact angles, the normal-hemispherical transmittance decreased rapidly to reach a minimum at 90° and increased rapidly with increasing contact angles up to 180°-θcr. This was attributed to total internal reflection at the droplet/air interface which led to increasing reflectance. In addition, the normal-hemispherical transmittance increased slightly with increasing projected surface area coverage for contact angle was smaller than θcr. However, it decreased monotonously with increasing droplet projected surface area coverage for contact angle larger than θcr. These results can be used to select the material or surface coating with advantageous surface properties for applications when dropwise condensation may otherwise have a negative effect on light transmittance.
Colonius, Hans; Diederich, Adele
2011-07-01
The concept of a "time window of integration" holds that information from different sensory modalities must not be perceived too far apart in time in order to be integrated into a multisensory perceptual event. Empirical estimates of window width differ widely, however, ranging from 40 to 600 ms depending on context and experimental paradigm. Searching for theoretical derivation of window width, Colonius and Diederich (Front Integr Neurosci 2010) developed a decision-theoretic framework using a decision rule that is based on the prior probability of a common source, the likelihood of temporal disparities between the unimodal signals, and the payoff for making right or wrong decisions. Here, this framework is extended to the focused attention task where subjects are asked to respond to signals from a target modality only. Evoking the framework of the time-window-of-integration (TWIN) model, an explicit expression for optimal window width is obtained. The approach is probed on two published focused attention studies. The first is a saccadic reaction time study assessing the efficiency with which multisensory integration varies as a function of aging. Although the window widths for young and older adults differ by nearly 200 ms, presumably due to their different peripheral processing speeds, neither of them deviates significantly from the optimal values. In the second study, head saccadic reactions times to a perfectly aligned audiovisual stimulus pair had been shown to depend on the prior probability of spatial alignment. Intriguingly, they reflected the magnitude of the time-window widths predicted by our decision-theoretic framework, i.e., a larger time window is associated with a higher prior probability.
First 65nm tape-out using inverse lithography technology (ILT)
NASA Astrophysics Data System (ADS)
Hung, Chi-Yuan; Zhang, Bin; Tang, Deming; Guo, Eric; Pang, Linyong; Liu, Yong; Moore, Andrew; Wang, Kechang
2005-11-01
This paper presents SMIC's first 65nm tape out results, in particularly, using ILT. ILT mathematically determines the mask features that produce the desired on-wafer results with best wafer pattern fidelity, largest process window or both. SMIC applied it to its first 65nm tape-out to study ILT performance and benefits for deep sub-wavelength lithography. SMIC selected 3 SRAM designs as the first test case, because SRAM bit-cells contain features which are challenging lithographically. Mask patterns generated from both conventional OPC and ILT were placed on the mask side-by-side. Mask manufacturability (including fracturing, writing time, inspection, and metrology) and wafer print performance of ILT were studied. The results demonstrated that ILT achieved better CD accuracy, produced substantially larger process window than conventional OPC, and met SMIC's 65nm process window requirements.
Massand, Esha; Bowler, Dermot M
2015-02-01
Individuals with autism spectrum disorder (ASD) show atypicalities in episodic memory (Boucher et al. in Psychological Bulletin, 138 (3), 458-496, 2012). We asked participants to recall the colours of a set of studied line drawings (episodic judgement), or to recognize line drawings alone (semantic judgement). Cycowicz et al. (Journal of Experimental Child Psychology, 65, 171-237, 2001) found early (300 ms onset) posterior old-new event-related potential effects for semantic judgements in typically developing (TD) individuals, and occipitally focused negativity (800 ms onset) for episodic judgements. Our results replicated findings in TD individuals and demonstrate attenuated early old-new effects in ASD. Late posterior negativity was present in the ASD group, but was not specific to this time window. This non-specificity may contribute to the atypical episodic memory judgements characteristic of individuals with ASD.
KITTEN Lightweight Kernel 0.1 Beta
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedretti, Kevin; Levenhagen, Michael; Kelly, Suzanne
2007-12-12
The Kitten Lightweight Kernel is a simplified OS (operating system) kernel that is intended to manage a compute node's hardware resources. It provides a set of mechanisms to user-level applications for utilizing hardware resources (e.g., allocating memory, creating processes, accessing the network). Kitten is much simpler than general-purpose OS kernels, such as Linux or Windows, but includes all of the esssential functionality needed to support HPC (high-performance computing) MPI, PGAS and OpenMP applications. Kitten provides unique capabilities such as physically contiguous application memory, transparent large page support, and noise-free tick-less operation, which enable HPC applications to obtain greater efficiency andmore » scalability than with general purpose OS kernels.« less
Analysis towards VMEM File of a Suspended Virtual Machine
NASA Astrophysics Data System (ADS)
Song, Zheng; Jin, Bo; Sun, Yongqing
With the popularity of virtual machines, forensic investigators are challenged with more complicated situations, among which discovering the evidences in virtualized environment is of significant importance. This paper mainly analyzes the file suffixed with .vmem in VMware Workstation, which stores all pseudo-physical memory into an image. The internal file structure of .vmem file is studied and disclosed. Key information about processes and threads of a suspended virtual machine is revealed. Further investigation into the Windows XP SP3 heap contents is conducted and a proof-of-concept tool is provided. Different methods to obtain forensic memory images are introduced, with both advantages and limits analyzed. We conclude with an outlook.
Learning to Decode Nonverbal Cues in Cross-Cultural Interactions
2009-06-01
iPhones support Mac OS X v10.4.10 or later operating system, as well as Windows Vista and XP, and iTunes 7.5 or later. Apple has designed the iPhones to be...Processor; 1G RAM, 1G HD, Direct X9/ATI Radeon 9800 card with dedicated memory; Noise-canceling headset w/ microphone. Apple video iPod (can be
ERIC Educational Resources Information Center
Tremblay, Sebastien; Saint-Aubin, Jean
2009-01-01
In the present study, the authors offer a window onto the mechanisms that drive the Hebb repetition effect through the analysis of eye movement and recall performance. In a spatial serial recall task in which sequences of dots are to be remembered in order, when one particular series is repeated every 4 trials, memory performance markedly improves…
Host-Based Systemic Network Obfuscation System for Windows
2011-06-01
speed, CPU speed, and memory size. These additional parameters are control variables and do not change throughout the experiment. The applications...physical median that passes the network traffic, such as a wireless signal or Ethernet cable and does not need obfuscation. The colored layers in Figure...Gul09] Ron Gula, “ Enchanced Operating System Identification with Nessus.” [Online]. Available: http://blog.tenablesecurity.com/2009/02
Working memory affects false memory production for emotional events.
Mirandola, Chiara; Toffalini, Enrico; Ciriello, Alfonso; Cornoldi, Cesare
2017-01-01
Whereas a link between working memory (WM) and memory distortions has been demonstrated, its influence on emotional false memories is unclear. In two experiments, a verbal WM task and a false memory paradigm for negative, positive or neutral events were employed. In Experiment 1, we investigated individual differences in verbal WM and found that the interaction between valence and WM predicted false recognition, with negative and positive material protecting high WM individuals against false remembering; the beneficial effect of negative material disappeared in low WM participants. In Experiment 2, we lowered the WM capacity of half of the participants with a double task request, which led to an overall increase in false memories; furthermore, consistent with Experiment 1, the increase in negative false memories was larger than that of neutral or positive ones. It is concluded that WM plays a critical role in determining false memory production, specifically influencing the processing of negative material.
The dissociable effects of stereotype threat on older adults’ memory encoding and retrieval
Krendl, Anne C.; Ambady, Nalini; Kensinger, Elizabeth A.
2015-01-01
The present study asks how subliminal exposure to negative stereotypes about age-related memory deficits affects older adults’ memory performance. Whereas prior research has focused on the effect of “stereotype threat” on older adults’ memory for neutral material, the present study additionally examines the effect on memory for positive and negative words, as well as whether the subliminal “threat” has a larger impact on memory performance when it occurs prior to encoding or prior to retrieval (as compared to a control condition). Results revealed that older adults’ memory impairments were most pronounced when the threat was placed prior to retrieval as compared to when the threat was placed prior to encoding or no threat occurred. Moreover, the threat specifically increased false memory rates, particularly for neutral items compared to positive and negative ones. These results emphasize that stereotype threat effects vary depending upon the phase of memory it impacts. PMID:26029498
Ecstasy (MDMA) and memory function: a meta-analytic update.
Laws, Keith R; Kokkalis, Joy
2007-08-01
A meta-analysis was conducted to examine the impact of recreational ecstasy use on short-term memory (STM), long-term memory (LTM), verbal and visual memory. We located 26 studies containing memory data for ecstasy and non-ecstasy users from which effect sizes could be derived. The analyses provided measures of STM and LTM in 610 and 439 ecstasy users and revealed moderate-to-large effect sizes (Cohen's d) of d = -0.63 and d = -0.87, respectively. The difference between STM versus LTM was non-significant. The effect size for verbal memory was large (d = -1.00) and significantly larger than the small effect size for visual memory (d = -0.27). Indeed, our analyses indicate that visual memory may be affected more by concurrent cannabis use. Finally, we found that the total lifetime number of ecstasy tablets consumed did not significantly predict memory performance. Copyright 2007 John Wiley & Sons, Ltd.
Aydin, Emel; Hritcu, Lucian; Dogan, Gulden; Hayta, Sukru; Bagci, Eyup
2016-11-01
In the present study, we identified the effects of inhaled Pimpinella peregrina essential oil (1 and 3 %, for 21 continuous days) on scopolamine-induced memory impairment, anxiety, and depression in laboratory rats. Y-maze and radial arm-maze tests were used for assessing memory processes. Also, the anxiety and depressive responses were studied by means of the elevated plus-maze and forced swimming tests. The scopolamine alone-treated rats exhibited the following: decrease of the spontaneous alternation percentage in Y-maze test, increase of the number of working and reference memory errors in radial arm-maze test, along with decrease of the exploratory activity, the percentage of the time spent and the number of entries in the open arm within elevated plus-maze test and decrease of swimming time and increase of immobility time within forced swimming test. Inhalation of the P. peregrina essential oil significantly improved memory formation and exhibited anxiolytic- and antidepressant-like effects in scopolamine-treated rats. Our results suggest that the P. peregrina essential oil inhalation ameliorates scopolamine-induced memory impairment, anxiety, and depression. Moreover, studies on the P. peregrina essential oil may open a new therapeutic window for the prevention of neurological abnormalities closely related to Alzheimer's disease.
NASA Astrophysics Data System (ADS)
Chen, Ying-Chih; Huang, Chun-Yuan; Yu, Hsin-Chieh; Su, Yan-Kuin
2012-08-01
The nonvolatile memory thin film transistors (TFTs) using a core/shell CdSe/ZnS quantum dot (QD)-poly(methyl methacrylate) (PMMA) composite layer as the floating gate have been demonstrated, with the device configuration of n+-Si gate/SiO2 insulator/QD-PMMA composite layer/pentacene channel/Au source-drain being proposed. To achieve the QD-PMMA composite layer, a two-step spin coating technique was used to successively deposit QD-PMMA composite and PMMA on the insulator. After the processes, the variation of crystal quality and surface morphology of the subsequent pentacene films characterized by x-ray diffraction spectra and atomic force microscopy was correlated to the two-step spin coating. The crystalline size of pentacene was improved from 147.9 to 165.2 Å, while the degree of structural disorder was decreased from 4.5% to 3.1% after the adoption of this technique. In pentacene-based TFTs, the improvement of the performance was also significant, besides the appearances of strong memory characteristics. The memory behaviors were attributed to the charge storage/discharge effect in QD-PMMA composite layer. Under the programming and erasing operations, programmable memory devices with the memory window (Δ Vth) = 23 V and long retention time were obtained.
Xiang, Lanyi; Wang, Wei; Xie, Wenfa
2016-01-01
Poly(vinylidene fluoride–trifluoroethylene) has been widely used as a dielectric of the ferroelectric organic field-effect transistor (FE-OFET) nonvolatile memory (NVM). Some critical issues, including low mobility and high operation voltage, existed in these FE-OFET NVMs, should be resolved before considering to their commercial application. In this paper, we demonstrated low-voltage operating FE-OFET NVMs based on a ferroelectric terpolymer poly(vinylidene-fluoride-trifluoroethylene-chlorotrifluoroethylene) [P(VDF-TrFE-CTFE)] owed to its low coercive field. By applying an ultraviolet-ozone (UVO) treatment to modify the surface of P(VDF-TrFE-CTFE) films, the growth model of the pentacene film was changed, which improved the pentacene grain size and the interface morphology of the pentacene/P(VDF-TrFE-CTFE). Thus, the mobility of the FE-OFET was significantly improved. As a result, a high performance FE-OFET NVM, with a high mobility of 0.8 cm2 V−1 s−1, large memory window of 15.4~19.2, good memory on/off ratio of 103, the reliable memory endurance over 100 cycles and stable memory retention ability, was achieved at a low operation voltage of ±15 V. PMID:27824101
The memory state heuristic: A formal model based on repeated recognition judgments.
Castela, Marta; Erdfelder, Edgar
2017-02-01
The recognition heuristic (RH) theory predicts that, in comparative judgment tasks, if one object is recognized and the other is not, the recognized one is chosen. The memory-state heuristic (MSH) extends the RH by assuming that choices are not affected by recognition judgments per se, but by the memory states underlying these judgments (i.e., recognition certainty, uncertainty, or rejection certainty). Specifically, the larger the discrepancy between memory states, the larger the probability of choosing the object in the higher state. The typical RH paradigm does not allow estimation of the underlying memory states because it is unknown whether the objects were previously experienced or not. Therefore, we extended the paradigm by repeating the recognition task twice. In line with high threshold models of recognition, we assumed that inconsistent recognition judgments result from uncertainty whereas consistent judgments most likely result from memory certainty. In Experiment 1, we fitted 2 nested multinomial models to the data: an MSH model that formalizes the relation between memory states and binary choices explicitly and an approximate model that ignores the (unlikely) possibility of consistent guesses. Both models provided converging results. As predicted, reliance on recognition increased with the discrepancy in the underlying memory states. In Experiment 2, we replicated these results and found support for choice consistency predictions of the MSH. Additionally, recognition and choice latencies were in agreement with the MSH in both experiments. Finally, we validated critical parameters of our MSH model through a cross-validation method and a third experiment. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Bråthen, Anne Cecilie Sjøli; Rohani, Darius A.; Grydeland, Håkon; Fjell, Anders M.; Walhovd, Kristine B.
2017-01-01
Abstract Age differences in human brain plasticity are assumed, but have not been systematically investigated. In this longitudinal study, we investigated changes in white matter (WM) microstructure in response to memory training relative to passive and active control conditions in 183 young and older adults. We hypothesized that (i) only the training group would show improved memory performance and microstructural alterations, (ii) the young adults would show larger memory improvement and a higher degree of microstructural alterations as compared to the older adults, and (iii) changes in memory performance would relate to microstructural alterations. The results showed that memory improvement was specific to the training group, and that both the young and older participants improved their performance. The young group improved their memory to a larger extent compared to the older group. In the older sample, the training group showed less age‐related decline in WM microstructure compared to the control groups, in areas overlapping the corpus callosum, the cortico‐spinal tract, the cingulum bundle, the superior longitudinal fasciculus, and the anterior thalamic radiation. Less microstructural decline was related to a higher degree of memory improvement. Despite individual adaptation securing sufficient task difficulty, no training‐related group differences in microstructure were found in the young adults. The observed divergence of behavioral and microstructural responses to memory training with age is discussed within a supply‐demand framework. The results demonstrate that plasticity is preserved into older age, and that microstructural alterations may be part of a neurobiological substrate for behavioral improvements in older adults. Hum Brain Mapp 38:5666–5680, 2017. © 2018 The Authors Human Brain Mapping Published byWiley Periodicals, Inc. PMID:28782901
Memory destabilization is critical for the success of the reactivation-extinction procedure.
Piñeyro, Marcelo E; Ferrer Monti, Roque I; Alfei, Joaquín M; Bueno, Adrián M; Urcelay, Gonzalo P
2013-12-18
It has been suggested that, unlike pure extinction which typically results in the return of the fear response under a variety of circumstances, memory reactivation followed by extinction can attenuate the reemergence of conditioned fear. The reactivation-extinction procedure has attracted the attention of basic and clinical researchers due to its potential clinical value for the treatment of psychiatric conditions, such as anxiety and drug abuse disorders. However, mixed results have been achieved so far in replicating and understanding this paradigm. It has been proposed that memory destabilization could be critical in this sense. Using contextual fear conditioning in rats and midazolam as an amnesic agent, we first determined what reactivation conditions are necessary to destabilize the mnemonic trace. After establishing the conditions for memory destabilization, a series of experiments was conducted to determine if destabilization is critical for the success of the reactivation-extinction procedure. Data confirmed the importance of memory destabilization prior to extinction inside the reconsolidation window to attenuate spontaneous recovery and retard reacquisition of conditioned fear. The present report offers a candidate explanation of the discrepancy in results obtained with the reactivation-extinction procedure by different laboratories.
NASA Astrophysics Data System (ADS)
Uk Lee, Dong; Jun Lee, Hyo; Kyu Kim, Eun; You, Hee-Wook; Cho, Won-Ju
2012-02-01
A WSi2 nanocrystal nonvolatile memory device was fabricated with an Al2O3/HfO2/Al2O3 (AHA) tunnel layer and its electrical characteristics were evaluated at 25, 50, 70, 100, and 125 °C. The program/erase (P/E) speed at 125 °C was approximately 500 μs under threshold voltage shifts of 1 V during voltage sweeping of 8 V/-8 V. When the applied pulse voltage was ±9 V for 1 s for the P/E conditions, the memory window at 125 °C was approximately 1.25 V after 105 s. The activation energies for the charge losses of 5%, 10%, 15%, 20%, 25%, 30%, and 35% were approximately 0.05, 0.11, 0.17, 0.21, 0.23, 0.23, and 0.23 eV, respectively. The charge loss mechanisms were direct tunneling and Pool-Frenkel emission between the WSi2 nanocrystals and the AHA barrier engineered tunneling layer. The WSi2 nanocrystal memory device with multi-stacked high-K tunnel layers showed strong potential for applications in nonvolatile memory devices.
Memory destabilization is critical for the success of the reactivation–extinction procedure
Piñeyro, Marcelo E.; Ferrer Monti, Roque I.; Alfei, Joaquín M.; Bueno, Adrián M.; Urcelay, Gonzalo P.
2014-01-01
It has been suggested that, unlike pure extinction which typically results in the return of the fear response under a variety of circumstances, memory reactivation followed by extinction can attenuate the reemergence of conditioned fear. The reactivation–extinction procedure has attracted the attention of basic and clinical researchers due to its potential clinical value for the treatment of psychiatric conditions, such as anxiety and drug abuse disorders. However, mixed results have been achieved so far in replicating and understanding this paradigm. It has been proposed that memory destabilization could be critical in this sense. Using contextual fear conditioning in rats and midazolam as an amnesic agent, we first determined what reactivation conditions are necessary to destabilize the mnemonic trace. After establishing the conditions for memory destabilization, a series of experiments was conducted to determine if destabilization is critical for the success of the reactivation–extinction procedure. Data confirmed the importance of memory destabilization prior to extinction inside the reconsolidation window to attenuate spontaneous recovery and retard reacquisition of conditioned fear. The present report offers a candidate explanation of the discrepancy in results obtained with the reactivation–extinction procedure by different laboratories. PMID:24353292
Low-power resistive random access memory by confining the formation of conducting filaments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yi-Jen; Lee, Si-Chen, E-mail: sclee@ntu.edu.tw; Shen, Tzu-Hsien
2016-06-15
Owing to their small physical size and low power consumption, resistive random access memory (RRAM) devices are potential for future memory and logic applications in microelectronics. In this study, a new resistive switching material structure, TiO{sub x}/silver nanoparticles/TiO{sub x}/AlTiO{sub x}, fabricated between the fluorine-doped tin oxide bottom electrode and the indium tin oxide top electrode is demonstrated. The device exhibits excellent memory performances, such as low operation voltage (<±1 V), low operation power, small variation in resistance, reliable data retention, and a large memory window. The current-voltage measurement shows that the conducting mechanism in the device at the high resistancemore » state is via electron hopping between oxygen vacancies in the resistive switching material. When the device is switched to the low resistance state, conducting filaments are formed in the resistive switching material as a result of accumulation of oxygen vacancies. The bottom AlTiO{sub x} layer in the device structure limits the formation of conducting filaments; therefore, the current and power consumption of device operation are significantly reduced.« less
NASA Astrophysics Data System (ADS)
Joo, Beom Soo; Kim, Hyunseung; Jang, Seunghun; Han, Dongwoo; Han, Moonsup
2018-08-01
We investigated nano-floating gate memory having a charge trap layer (CTL) composed of cobalt germanide nanostructure (ns-CoGe). A tunneling oxide layer; a CTL containing Co, Ge, and Si; and a blocking oxide layer were sequentially deposited on a p-type silicon substrate by RF magnetron sputtering and low-pressure chemical vapor deposition. We optimized the CTL formation conditions by rapid thermal annealing at a somewhat low temperature (about 830 °C) by considering the differences in Gibbs free energy and chemical enthalpy among the components. To characterize the charge storage properties, capacitance-voltage (C-V) measurements were performed. Further, we used X-ray photoelectron spectroscopy for chemical analysis of the CTL. In this work, we not only report that the C-V measurement shows a remarkable opening of the memory window for the ns-CoGe compared with those of nanostructures composed of Co or Ge alone, but also clarify that the improvement in the memory characteristics originates in the nanostructure formation, which consists mainly of Co-Ge bonds. We expect ns-CoGe to be a strong candidate for fabrication of next-generation memory devices.
Ferroelectric memory based on molybdenum disulfide and ferroelectric hafnium oxide
NASA Astrophysics Data System (ADS)
Yap, Wui Chung; Jiang, Hao; Xia, Qiangfei; Zhu, Wenjuan
Recently, ferroelectric hafnium oxide (HfO2) was discovered as a new type of ferroelectric material with the advantages of high coercive field, excellent scalability (down to 2.5 nm), and good compatibility with CMOS processing. In this work, we demonstrate, for the first time, 2D ferroelectric memories with molybdenum disulfide (MoS2) as the channel material and aluminum doped HfO2 as the ferroelectric gate dielectric. A 16 nm thick layer of HfO2, doped with 5.26% aluminum, was deposited via atomic layer deposition (ALD), then subjected to rapid thermal annealing (RTA) at 1000 °C, and the polarization-voltage characteristics of the resulting metal-ferroelectric-metal (MFM) capacitors were measured, showing a remnant polarization of 0.6 μC/cm2. Ferroelectric memories with embedded ferroelectric hafnium oxide stacks and monolayer MoS2 were fabricated. The transfer characteristics after program and erase pulses revealed a clear ferroelectric memory window. In addition, endurance (up to 10,000 cycles) of the devices were tested and effects associated with ferroelectric materials, such as the wake-up effect and polarization fatigue, were observed. This research can potentially lead to advances of 2D materials in low-power logic and memory applications.
Quaedflieg, Conny W E M; Schwabe, Lars; Meyer, Thomas; Smeets, Tom
2013-12-01
Stress can exert profound effects on memory encoding. Here, we investigated whether (sub)cortical information processing during encoding and memory retrieval at a 24 h delayed test are affected by the temporal proximity between stress and memory encoding. Sixty-four participants engaged in the Maastricht Acute Stress Test (MAST) or a no-stress control condition either immediately before (i.e., proximate condition) or 30 min before (i.e., distant condition) a picture encoding task. In general, stress decreased the number of freely recalled and recognized pictures and increased the number of false alarms. However, timing of stress exposure did not differentially affect picture recall, recognition or selective attention processes (i.e., LPP). Nevertheless, stress-induced cortisol responses and correctly recognized neutral pictures were positively associated within the proximate stress condition but negatively associated within the distant stress condition. These findings suggest that the time at which a stressor is applied might differentially impact the association between stress-induced cortisol elevations and memory formation and indicate the need for a finer delineation of the time window during which glucocorticoids affect memory formation processes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Jaffe-Dax, Sagi; Frenkel, Or; Ahissar, Merav
2017-01-01
Dyslexia is a prevalent reading disability whose underlying mechanisms are still disputed. We studied the neural mechanisms underlying dyslexia using a simple frequency-discrimination task. Though participants were asked to compare the two tones in each trial, implicit memory of previous trials affected their responses. We hypothesized that implicit memory decays faster among dyslexics. We tested this by increasing the temporal intervals between consecutive trials, and by measuring the behavioral impact and ERP responses from the auditory cortex. Dyslexics showed a faster decay of implicit memory effects on both measures, with similar time constants. Finally, faster decay of implicit memory also characterized the impact of sound regularities in benefitting dyslexics' oral reading rate. Their benefit decreased faster as a function of the time interval from the previous reading of the same non-word. We propose that dyslexics’ shorter neural adaptation paradoxically accounts for their longer reading times, since it reduces their temporal window of integration of past stimuli, resulting in noisier and less reliable predictions for both simple and complex stimuli. Less reliable predictions limit their acquisition of reading expertise. DOI: http://dx.doi.org/10.7554/eLife.20557.001 PMID:28115055
Capacitance-voltage measurement in memory devices using ferroelectric polymer
NASA Astrophysics Data System (ADS)
Nguyen, Chien A.; Lee, Pooi See
2006-01-01
Application of thin polymer film as storing mean for non-volatile memory devices is investigated. Capacitance-voltage (C-V) measurement of metal-ferroelectric-metal device using ferroelectric copolymer P(VDF-TrFE) as dielectric layer shows stable 'butter-fly' curve. The two peaks in C-V measurement corresponding to the largest capacitance are coincidental at the coercive voltages that give rise to zero polarization in the polarization hysteresis measurement. By comparing data of C-V and P-E measurement, a correlation between two types of hysteresis is established in which it reveals simultaneous electrical processes occurring inside the device. These processes are caused by the response of irreversible and reversible polarization to the applied electric field that can be used to present a memory window. The memory effect of ferroelectric copolymer is further demonstrated for fabricating polymeric non-volatile memory devices using metal-ferroelectric-insulator-semiconductor structure (MFIS). By applying different sweeping voltages at the gate, bidirectional flat-band voltage shift is observed in the ferroelectric capacitor. The asymmetrical shift after negative sweeping is resulted from charge accumulation at the surface of Si substrate caused by the dipole direction in the polymer layer. The effect is reversed for positive voltage sweeping.
Xie, Weizhen; Zhang, Weiwei
2018-01-01
To test how preexisting long-term memory influences visual STM, this study takes advantage of individual differences in participants' prior familiarity with Pokémon characters and uses an ERP component, the contralateral delay activity (CDA), to assess whether observers' prior stimulus familiarity affects STM consolidation and storage capacity. In two change detection experiments, consolidation speed, as indexed by CDA fractional area latency and/or early-window (500-800 msec) amplitude, was significantly associated with individual differences in Pokémon familiarity. In contrast, the number of remembered Pokémon stimuli, as indexed by Cowan's K and late-window (1500-2000 msec) CDA amplitude, was significantly associated with individual differences in Pokémon familiarity when STM consolidation was incomplete because of a short presentation of Pokémon stimuli (500 msec, Experiment 2), but not when STM consolidation was allowed to complete given sufficient encoding time (1000 msec, Experiment 1). Similar findings were obtained in between-group analyses when participants were separated into high-familiarity and low-familiarity groups based on their Pokémon familiarity ratings. Together, these results suggest that stimulus familiarity, as a proxy for the strength of preexisting long-term memory, primarily speeds up STM consolidation, which may subsequently lead to an increase in the number of remembered stimuli if consolidation is incomplete. These findings thus highlight the importance of research assessing how effects on representations (e.g., STM capacity) are in general related to (or even caused by) effects on processes (e.g., STM consolidation) in cognition.
NASA Astrophysics Data System (ADS)
Reece, Timothy James
Ferroelectric field effect transistors (FeFETs) have attracted much attention recently because of their ability to combine high speed, low power consumption, and fast nondestructive readout with the potential for high density nonvolatile memory. The polarization of the ferroelectric is used to switch the channel at the silicon surface between states of high and low conductance. Among the ferroelectric thin films used in FET devices; the ferroelectric copolymer of Polyvinylidene fluoride, PVDF (C2H2F 2), with trifluoroethylene, TrFE (C2HF3), has distinct advantages, including low dielectric constant, low processing temperature, low cost and compatibility with organic semiconductors. By employing the Langmuir-Blodgett technique, films as thin as 1.8 nm can be deposited, reducing the operating voltage. An MFIS structure consisting of aluminum, 170 nm P(VDF-TrFE), 100 nm silicon oxide and n-type silicon exhibited low leakage current (˜1x10 -8 A/cm2), a large memory window (4.2 V) and operated at 35 Volts. The operating voltage was lowered through use of high k insulators like cerium oxide. A sample consisting of 25 nm P(VDF-TrFE), 30 nm cerium oxide and p-type silicon exhibited a 1.9 V window with 7 Volt gate amplitude. The leakage current in this case was considerably higher (1x10 -6 A/cm2). The characterization, modeling, and fabrication of metal-ferroelectricinsulator semiconductor (MFIS) structures based on these films are discussed.
The nucleus accumbens and learning and memory.
Setlow, B
1997-09-01
Recent research on the nucleus accumbens (NA) indicates that this brain region is involved in learning and memory processes in a way that is separable from its other well-known roles in behavior, such as motivation, reward, and locomotor activity. These findings have suggested that 1) the NA may be involved in declarative, or hippocampal formation-dependent learning and memory, and not in several other non-declarative forms of learning and memory, and 2) the NA may be selectively involved in certain stages of learning and memory. These characteristics suggest that the NA may be part of a larger striatal system which subserves acquisition and consolidation, but is not a site of long-term storage, of different forms of learning and memory.
Post-error Brain Activity Correlates With Incidental Memory for Negative Words
Senderecka, Magdalena; Ociepka, Michał; Matyjek, Magdalena; Kroczek, Bartłomiej
2018-01-01
The present study had three main objectives. First, we aimed to evaluate whether short-duration affective states induced by negative and positive words can lead to increased error-monitoring activity relative to a neutral task condition. Second, we intended to determine whether such an enhancement is limited to words of specific valence or is a general response to arousing material. Third, we wanted to assess whether post-error brain activity is associated with incidental memory for negative and/or positive words. Participants performed an emotional stop-signal task that required response inhibition to negative, positive or neutral nouns while EEG was recorded. Immediately after the completion of the task, they were instructed to recall as many of the presented words as they could in an unexpected free recall test. We observed significantly greater brain activity in the error-positivity (Pe) time window in both negative and positive trials. The error-related negativity amplitudes were comparable in both the neutral and emotional arousing trials, regardless of their valence. Regarding behavior, increased processing of emotional words was reflected in better incidental recall. Importantly, the memory performance for negative words was positively correlated with the Pe amplitude, particularly in the negative condition. The source localization analysis revealed that the subsequent memory recall for negative words was associated with widespread bilateral brain activity in the dorsal anterior cingulate cortex and in the medial frontal gyrus, which was registered in the Pe time window during negative trials. The present study has several important conclusions. First, it indicates that the emotional enhancement of error monitoring, as reflected by the Pe amplitude, may be induced by stimuli with symbolic, ontogenetically learned emotional significance. Second, it indicates that the emotion-related enhancement of the Pe occurs across both negative and positive conditions, thus it is preferentially driven by the arousal content of an affective stimuli. Third, our findings suggest that enhanced error monitoring and facilitated recall of negative words may both reflect responsivity to negative events. More speculatively, they can also indicate that post-error activity of the medial prefrontal cortex may selectively support encoding for negative stimuli and contribute to their privileged access to memory. PMID:29867408
No Role for Motor Affordances in Visual Working Memory
ERIC Educational Resources Information Center
Pecher, Diane
2013-01-01
Motor affordances have been shown to play a role in visual object identification and categorization. The present study explored whether working memory is likewise supported by motor affordances. Use of motor affordances should be disrupted by motor interference, and this effect should be larger for objects that have motor affordances than for…
ERIC Educational Resources Information Center
Horst, Carol
2010-01-01
Memento. Memoir. Memorable. Memory. Memorial. Commemorate. In Memoriam. These words may remind a person of stone monuments, or larger-than-life heroes and loved ones far distanced by space and time. The act of remembering, though, also belongs in the world of the everyday and the ordinary, and has a valuable place in an art classroom. In this…
Postretrieval new learning does not reliably induce human memory updating via reconsolidation.
Hardwicke, Tom E; Taqi, Mahdi; Shanks, David R
2016-05-10
Reconsolidation theory proposes that retrieval can destabilize an existing memory trace, opening a time-dependent window during which that trace is amenable to modification. Support for the theory is largely drawn from nonhuman animal studies that use invasive pharmacological or electroconvulsive interventions to disrupt a putative postretrieval restabilization ("reconsolidation") process. In human reconsolidation studies, however, it is often claimed that postretrieval new learning can be used as a means of "updating" or "rewriting" existing memory traces. This proposal warrants close scrutiny because the ability to modify information stored in the memory system has profound theoretical, clinical, and ethical implications. The present study aimed to replicate and extend a prominent 3-day motor-sequence learning study [Walker MP, Brakefield T, Hobson JA, Stickgold R (2003) Nature 425(6958):616-620] that is widely cited as a convincing demonstration of human reconsolidation. However, in four direct replication attempts (n = 64), we did not observe the critical impairment effect that has previously been taken to indicate disruption of an existing motor memory trace. In three additional conceptual replications (n = 48), we explored the broader validity of reconsolidation-updating theory by using a declarative recall task and sequences similar to phone numbers or computer passwords. Rather than inducing vulnerability to interference, memory retrieval appeared to aid the preservation of existing sequence knowledge relative to a no-retrieval control group. These findings suggest that memory retrieval followed by new learning does not reliably induce human memory updating via reconsolidation.
Jung, Ji Hyung; Kim, Sunghwan; Kim, Hyeonjung; Park, Jongnam; Oh, Joon Hak
2015-10-07
Nano-floating gate memory (NFGM) devices are transistor-type memory devices that use nanostructured materials as charge trap sites. They have recently attracted a great deal of attention due to their excellent performance, capability for multilevel programming, and suitability as platforms for integrated circuits. Herein, novel NFGM devices have been fabricated using semiconducting cobalt ferrite (CoFe2O4) nanoparticles (NPs) as charge trap sites and pentacene as a p-type semiconductor. Monodisperse CoFe2O4 NPs with different diameters have been synthesized by thermal decomposition and embedded in NFGM devices. The particle size effects on the memory performance have been investigated in terms of energy levels and particle-particle interactions. CoFe2O4 NP-based memory devices exhibit a large memory window (≈73.84 V), a high read current on/off ratio (read I(on)/I(off)) of ≈2.98 × 10(3), and excellent data retention. Fast switching behaviors are observed due to the exceptional charge trapping/release capability of CoFe2O4 NPs surrounded by the oleate layer, which acts as an alternative tunneling dielectric layer and simplifies the device fabrication process. Furthermore, the NFGM devices show excellent thermal stability, and flexible memory devices fabricated on plastic substrates exhibit remarkable mechanical and electrical stability. This study demonstrates a viable means of fabricating highly flexible, high-performance organic memory devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Experience and information loss in auditory and visual memory.
Gloede, Michele E; Paulauskas, Emily E; Gregg, Melissa K
2017-07-01
Recent studies show that recognition memory for sounds is inferior to memory for pictures. Four experiments were conducted to examine the nature of auditory and visual memory. Experiments 1-3 were conducted to evaluate the role of experience in auditory and visual memory. Participants received a study phase with pictures/sounds, followed by a recognition memory test. Participants then completed auditory training with each of the sounds, followed by a second memory test. Despite auditory training in Experiments 1 and 2, visual memory was superior to auditory memory. In Experiment 3, we found that it is possible to improve auditory memory, but only after 3 days of specific auditory training and 3 days of visual memory decay. We examined the time course of information loss in auditory and visual memory in Experiment 4 and found a trade-off between visual and auditory recognition memory: Visual memory appears to have a larger capacity, while auditory memory is more enduring. Our results indicate that visual and auditory memory are inherently different memory systems and that differences in visual and auditory recognition memory performance may be due to the different amounts of experience with visual and auditory information, as well as structurally different neural circuitry specialized for information retention.
Role of nanorods insertion layer in ZnO-based electrochemical metallization memory cell
NASA Astrophysics Data System (ADS)
Mangasa Simanjuntak, Firman; Singh, Pragya; Chandrasekaran, Sridhar; Juanda Lumbantoruan, Franky; Yang, Chih-Chieh; Huang, Chu-Jie; Lin, Chun-Chieh; Tseng, Tseung-Yuen
2017-12-01
An engineering nanorod array in a ZnO-based electrochemical metallization device for nonvolatile memory applications was investigated. A hydrothermally synthesized nanorod layer was inserted into a Cu/ZnO/ITO device structure. Another device was fabricated without nanorods for comparison, and this device demonstrated a diode-like behavior with no switching behavior at a low current compliance (CC). The switching became clear only when the CC was increased to 75 mA. The insertion of a nanorods layer induced switching characteristics at a low operation current and improve the endurance and retention performances. The morphology of the nanorods may control the switching characteristics. A forming-free electrochemical metallization memory device having long switching cycles (>104 cycles) with a sufficient memory window (103 times) for data storage application, good switching stability and sufficient retention was successfully fabricated by adjusting the morphology and defect concentration of the inserted nanorod layer. The nanorod layer not only contributed to inducing resistive switching characteristics but also acted as both a switching layer and a cation diffusion control layer.
Li, Qian; Zhang, Xuchen; Liang, Xitong; Zhang, Fang; Wang, Lianzhang; Zhong, Yi
2016-01-01
Translocation of signaling molecules, MAPK in particular, from the cytosol to nucleus represents a universal key element in initiating the gene program that determines memory consolidation. Translocation mechanisms and their behavioral impact, however, remain to be determined. Here, we report that a highly conserved nuclear transporter, Drosophila importin-7 (DIM-7), regulates import of training-activated MAPK for consolidation of long-term memory (LTM). We show that silencing DIM-7 functions results in impaired LTM, whereas overexpression of DIM-7 enhances LTM. This DIM-7–dependent regulation of LTM is confined to a consolidation time window and in mushroom body neurons. Image data show that bidirectional alteration in DIM-7 expression results in proportional changes in the intensity of training-activated MAPK accumulated within the nuclei of mushroom body neurons during LTM consolidation. Such DIM-7–regulated nuclear accumulation of activated MAPK is observed only in the training specified for LTM induction and determines the amplitude, but not the time course, of memory consolidation. PMID:26929354
Learned together, extinguished apart: reducing fear to complex stimuli
Jones, Carolyn E.; Ringuet, Stephanie; Monfils, Marie-H.
2013-01-01
Pairing a previously neutral conditioned stimulus (CS; e.g., a tone) to an aversive unconditioned stimulus (US; e.g., a footshock) leads to associative learning such that the tone alone comes to elicit a conditioned response (e.g., freezing). We have previously shown that an extinction session that occurs within the reconsolidation window attenuates fear responding and prevents the return of fear in pure tone Pavlovian fear conditioning. Here we sought to examine whether this effect also applies to a more complex fear memory. First, we show that after fear conditioning to the simultaneous presentation of a tone and a light (T+L) coterminating with a shock, the compound memory that ensues is more resistant to fear extinction than simple tone-shock pairings. Next, we demonstrate that the compound memory can be disrupted by interrupting the reconsolidation of the two individual components using a sequential retrieval+extinction paradigm, provided the stronger compound component is retrieved first. These findings provide insight into how compound memories are encoded, and could have important implications for PTSD treatment. PMID:24241750
NASA Technical Reports Server (NTRS)
Yost, William T.; Cramer, K. Elliott; Estes, Linda R.; Salem, Jonathan A.; Lankford, James, Jr.; Lesniak, Jon
2011-01-01
A commercially available grey-field polariscope (GFP) instrument for photoelastic examination is used to assess impact damage inflicted upon the outermost pane of the orbiter windows. Four categories of damage: hyper-velocity impacts that occur during space-flight (HVI); hypervelocity impacts artificially made at the Hypervelocity Impact Technology Facility (HIT-F); impacts made by larger objects falling onto the pane surface to simulate dropped items on the window during service/storage of vehicle (Bruises); and light scratches from dull objects designed to mimic those that might occur by dragging a dull object across the glass surface (Chatter Checks) are examined. The damage sites are cored from fused silica window carcasses, examined with the GFP and other methodologies, and broken using the ASTM Standard C1499-09 to measure the fracture strength. A correlation is made between the fracture strength and damage-site measurements including geometrical measurements and GFP measurements of photoelastic retardation (stress patterns) surrounding the damage sites. An analytical damage model to predict fracture strength from photoelastic retardation measurements is presented and compared with experimental results.
Nutrients, Microglia Aging, and Brain Aging.
Wu, Zhou; Yu, Janchun; Zhu, Aiqin; Nakanishi, Hiroshi
2016-01-01
As the life expectancy continues to increase, the cognitive decline associated with Alzheimer's disease (AD) becomes a big major issue in the world. After cellular activation upon systemic inflammation, microglia, the resident immune cells in the brain, start to release proinflammatory mediators to trigger neuroinflammation. We have found that chronic systemic inflammatory challenges induce differential age-dependent microglial responses, which are in line with the impairment of learning and memory, even in middle-aged animals. We thus raise the concept of "microglia aging." This concept is based on the fact that microglia are the key contributor to the acceleration of cognitive decline, which is the major sign of brain aging. On the other hand, inflammation induces oxidative stress and DNA damage, which leads to the overproduction of reactive oxygen species by the numerous types of cells, including macrophages and microglia. Oxidative stress-damaged cells successively produce larger amounts of inflammatory mediators to promote microglia aging. Nutrients are necessary for maintaining general health, including the health of brain. The intake of antioxidant nutrients reduces both systemic inflammation and neuroinflammation and thus reduces cognitive decline during aging. We herein review our microglia aging concept and discuss systemic inflammation and microglia aging. We propose that a nutritional approach to controlling microglia aging will open a new window for healthy brain aging.
Nutrients, Microglia Aging, and Brain Aging
Wu, Zhou; Yu, Janchun; Zhu, Aiqin; Nakanishi, Hiroshi
2016-01-01
As the life expectancy continues to increase, the cognitive decline associated with Alzheimer's disease (AD) becomes a big major issue in the world. After cellular activation upon systemic inflammation, microglia, the resident immune cells in the brain, start to release proinflammatory mediators to trigger neuroinflammation. We have found that chronic systemic inflammatory challenges induce differential age-dependent microglial responses, which are in line with the impairment of learning and memory, even in middle-aged animals. We thus raise the concept of “microglia aging.” This concept is based on the fact that microglia are the key contributor to the acceleration of cognitive decline, which is the major sign of brain aging. On the other hand, inflammation induces oxidative stress and DNA damage, which leads to the overproduction of reactive oxygen species by the numerous types of cells, including macrophages and microglia. Oxidative stress-damaged cells successively produce larger amounts of inflammatory mediators to promote microglia aging. Nutrients are necessary for maintaining general health, including the health of brain. The intake of antioxidant nutrients reduces both systemic inflammation and neuroinflammation and thus reduces cognitive decline during aging. We herein review our microglia aging concept and discuss systemic inflammation and microglia aging. We propose that a nutritional approach to controlling microglia aging will open a new window for healthy brain aging. PMID:26941889
Non-Attended Representations are Perceptual Rather than Unconscious in Nature
Fahrenfort, Johannes J.; Ambroziak, Klaudia B.; Lamme, Victor A. F.
2012-01-01
Introspectively we experience a phenomenally rich world. In stark contrast, many studies show that we can only report on the few items that we happen to attend to. So what happens to the unattended objects? Are these consciously processed as our first person perspective would have us believe, or are they – in fact – entirely unconscious? Here, we attempt to resolve this question by investigating the perceptual characteristics of visual sensory memory. Sensory memory is a fleeting, high-capacity form of memory that precedes attentional selection and working memory. We found that memory capacity benefits from figural information induced by the Kanizsa illusion. Importantly, this benefit was larger for sensory memory than for working memory and depended critically on the illusion, not on the stimulus configuration. This shows that pre-attentive sensory memory contains representations that have a genuinely perceptual nature, suggesting that non-attended representations are phenomenally experienced rather than unconscious. PMID:23209639
Expectations about Memory Change Across the Life Span Are Impacted By Aging Stereotypes
Lineweaver, Tara T.; Berger, Andrea K.; Hertzog, Christopher
2008-01-01
This study examined whether expectations about memory change with age vary for different personality types. Four adjectives from each of Hummert’s age-stereotype trait sets were selected to create 11 adjective clusters varying in both valence (positive versus negative) and relevance to memory functioning. Three hundred and seventy three participants in three age groups rated the memory abilities of target adults, defined by the adjective clusters, across the adult life span. Consistent with past studies, participants believed in age-related memory decline. However, participants rated target adults with positive personality traits as having better memory ability and less age-related memory decline than target adults with negative personality traits. This effect was larger when the traits were relevant to memory than when they were not. Finally, older participants were more strongly influenced by both the valence and the relevance of the personality descriptions than younger participants. PMID:19290748
Mechanisms of Memory Dysfunction during High Altitude Hypoxia Training in Military Aircrew.
Nation, Daniel A; Bondi, Mark W; Gayles, Ellis; Delis, Dean C
2017-01-01
Cognitive dysfunction from high altitude exposure is a major cause of civilian and military air disasters. Pilot training improves recognition of the early symptoms of altitude exposure so that countermeasures may be taken before loss of consciousness. Little is known regarding the nature of cognitive impairments manifesting within this critical window when life-saving measures may still be taken. Prior studies evaluating cognition during high altitude simulation have predominantly focused on measures of reaction time and other basic attention or motor processes. Memory encoding, retention, and retrieval represent critical cognitive functions that may be vulnerable to acute hypoxic/ischemic events and could play a major role in survival of air emergencies, yet these processes have not been studied in the context of high altitude simulation training. In a series of experiments, military aircrew underwent neuropsychological testing before, during, and after brief (15 min) exposure to high altitude simulation (20,000 ft) in a pressure-controlled chamber. Acute exposure to high altitude simulation caused rapid impairment in learning and memory with relative preservation of basic visual and auditory attention. Memory dysfunction was predominantly characterized by deficiencies in memory encoding, as memory for information learned during high altitude exposure did not improve after washout at sea level. Retrieval and retention of memories learned shortly before altitude exposure were also impaired, suggesting further impairment in memory retention. Deficits in memory encoding and retention are rapidly induced upon exposure to high altitude, an effect that could impact life-saving situational awareness and response. (JINS, 2017, 23, 1-10).
Visualization Development of the Ballistic Threat Geospatial Optimization
2015-07-01
topographic globes, Keyhole Markup Language (KML), and Collada files. World Wind gives the user the ability to import 3-D models and navigate...present. After the first person view window is closed , the images stored in memory are then converted to a QuickTime movie (.MOV). The video will be...processing unit HPC high-performance computing JOGL Java implementation of OpenGL KML Keyhole Markup Language NASA National Aeronautics and Space
Realtime Compositing of Procedural Facade Textures on the Gpu
NASA Astrophysics Data System (ADS)
Krecklau, L.; Kobbelt, L.
2011-09-01
The real time rendering of complex virtual city models has become more important in the last few years for many practical applications like realistic navigation or urban planning. For maximum rendering performance, the complexity of the geometry or textures can be reduced by decreasing the resolution until the data set can fully reside on the memory of the graphics card. This typically results in a low quality of the virtual city model. Alternatively, a streaming algorithm can load the high quality data set from the hard drive. However, this approach requires a large amount of persistent storage providing several gigabytes of static data. We present a system that uses a texture atlas containing atomic tiles like windows, doors or wall patterns, and that combines those elements on-the-fly directly on the graphics card. The presented approach benefits from a sophisticated randomization approach that produces lots of different facades while the grammar description itself remains small. By using a ray casting apporach, we are able to trace through transparent windows revealing procedurally generated rooms which further contributes to the realism of the rendering. The presented method enables real time rendering of city models with a high level of detail for facades while still relying on a small memory footprint.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojahn, Christopher K.
2015-10-20
This HDL code (hereafter referred to as "software") implements circuitry in Xilinx Virtex-5QV Field Programmable Gate Array (FPGA) hardware. This software allows the device to self-check the consistency of its own configuration memory for radiation-induced errors. The software then provides the capability to correct any single-bit errors detected in the memory using the device's inherent circuitry, or reload corrupted memory frames when larger errors occur that cannot be corrected with the device's built-in error correction and detection scheme.
Development and Evaluation of a Casualty Evacuation Model for a European Conflict.
1985-12-01
EVAC, the computer code which implements our technique, has been used to solve a series of test problems in less time and requiring less memory than...the order of 1/K the amount of main memory for a K-commodity problem, so it can solve significantly larger problems than MCNF. I . 10 CHAPTER II A...technique may require only half the memory of the general L.P. package [6]. These advances are due to the efficient data structures which have been
User's manual for the Gaussian windows program
NASA Technical Reports Server (NTRS)
Jaeckel, Louis A.
1992-01-01
'Gaussian Windows' is a method for exploring a set of multivariate data, in order to estimate the shape of the underlying density function. The method can be used to find and describe structural features in the data. The method is described in two earlier papers. I assume that the reader has access to both of these papers, so I will not repeat material from them. The program described herein is written in BASIC and it runs on an IBM PC or PS/2 with the DOS 3.3 operating system. Although the program is slow and has limited memory space, it is adequate for experimenting with the method. Since it is written in BASIC, it is relatively easy to modify. The program and some related files are available on a 3-inch diskette. A listing of the program is also available. This user's manual explains the use of the program. First, it gives a brief tutorial, illustrating some of the program's features with a set of artificial data. Then, it describes the results displayed after the program does a Gaussian window, and it explains each of the items on the various menus.
Multi-alternative decision-making with non-stationary inputs.
Nunes, Luana F; Gurney, Kevin
2016-08-01
One of the most widely implemented models for multi-alternative decision-making is the multihypothesis sequential probability ratio test (MSPRT). It is asymptotically optimal, straightforward to implement, and has found application in modelling biological decision-making. However, the MSPRT is limited in application to discrete ('trial-based'), non-time-varying scenarios. By contrast, real world situations will be continuous and entail stimulus non-stationarity. In these circumstances, decision-making mechanisms (like the MSPRT) which work by accumulating evidence, must be able to discard outdated evidence which becomes progressively irrelevant. To address this issue, we introduce a new decision mechanism by augmenting the MSPRT with a rectangular integration window and a transparent decision boundary. This allows selection and de-selection of options as their evidence changes dynamically. Performance was enhanced by adapting the window size to problem difficulty. Further, we present an alternative windowing method which exponentially decays evidence and does not significantly degrade performance, while greatly reducing the memory resources necessary. The methods presented have proven successful at allowing for the MSPRT algorithm to function in a non-stationary environment.
A Simulation Study of Paced TCP
NASA Technical Reports Server (NTRS)
Kulik, Joanna; Coulter, Robert; Rockwell, Dennis; Partridge, Craig
2000-01-01
In this paper, we study the performance of paced TCP, a modified version of TCP designed especially for high delay- bandwidth networks. In typical networks, TCP optimizes its send-rate by transmitting increasingly large bursts, or windows, of packets, one burst per round-trip time, until it reaches a maximum window-size, which corresponds to the full capacity of the network. In a network with a high delay-bandwidth product, however, Transmission Control Protocol's (TCPs) maximum window-size may be larger than the queue size of the intermediate routers, and routers will begin to drop packets as soon as the windows become too large for the router queues. The TCP sender then concludes that the bottleneck capacity of the network has been reached, and it limits its send-rate accordingly. Partridge proposed paced TCP as a means of solving the problem of queueing bottlenecks. A sender using paced TCP would release packets in multiple, small bursts during a round-trip time in which ordinary TCP would release a single, large burst of packets. This approach allows the sender to increase its send-rate to the maximum window size without encountering queueing bottlenecks. This paper describes the performance of paced TCP in a simulated network and discusses implementation details that can affect the performance of paced TCP.
Concealed semantic and episodic autobiographical memory electrified.
Ganis, Giorgio; Schendan, Haline E
2012-01-01
Electrophysiology-based concealed information tests (CIT) try to determine whether somebody possesses concealed information about a crime-related item (probe) by comparing event-related potentials (ERPs) between this item and comparison items (irrelevants). Although the broader field is sometimes referred to as "memory detection," little attention has been paid to the precise type of underlying memory involved. This study begins addressing this issue by examining the key distinction between semantic and episodic memory in the autobiographical domain within a CIT paradigm. This study also addresses the issue of whether multiple repetitions of the items over the course of the session habituate the brain responses. Participants were tested in a 3-stimulus CIT with semantic autobiographical probes (their own date of birth) and episodic autobiographical probes (a secret date learned just before the study). Results dissociated these two memory conditions on several ERP components. Semantic probes elicited a smaller frontal N2 than episodic probes, consistent with the idea that the frontal N2 decreases with greater pre-existing knowledge about the item. Likewise, semantic probes elicited a smaller central N400 than episodic probes. Semantic probes also elicited a larger P3b than episodic probes because of their richer meaning. In contrast, episodic probes elicited a larger late positive complex (LPC) than semantic probes, because of the recent episodic memory associated with them. All these ERPs showed a difference between probes and irrelevants in both memory conditions, except for the N400, which showed a difference only in the semantic condition. Finally, although repetition affected the ERPs, it did not reduce the difference between probes and irrelevants. These findings show that the type of memory associated with a probe has both theoretical and practical importance for CIT research.
Concealed semantic and episodic autobiographical memory electrified
Ganis, Giorgio; Schendan, Haline E.
2013-01-01
Electrophysiology-based concealed information tests (CIT) try to determine whether somebody possesses concealed information about a crime-related item (probe) by comparing event-related potentials (ERPs) between this item and comparison items (irrelevants). Although the broader field is sometimes referred to as “memory detection,” little attention has been paid to the precise type of underlying memory involved. This study begins addressing this issue by examining the key distinction between semantic and episodic memory in the autobiographical domain within a CIT paradigm. This study also addresses the issue of whether multiple repetitions of the items over the course of the session habituate the brain responses. Participants were tested in a 3-stimulus CIT with semantic autobiographical probes (their own date of birth) and episodic autobiographical probes (a secret date learned just before the study). Results dissociated these two memory conditions on several ERP components. Semantic probes elicited a smaller frontal N2 than episodic probes, consistent with the idea that the frontal N2 decreases with greater pre-existing knowledge about the item. Likewise, semantic probes elicited a smaller central N400 than episodic probes. Semantic probes also elicited a larger P3b than episodic probes because of their richer meaning. In contrast, episodic probes elicited a larger late positive complex (LPC) than semantic probes, because of the recent episodic memory associated with them. All these ERPs showed a difference between probes and irrelevants in both memory conditions, except for the N400, which showed a difference only in the semantic condition. Finally, although repetition affected the ERPs, it did not reduce the difference between probes and irrelevants. These findings show that the type of memory associated with a probe has both theoretical and practical importance for CIT research. PMID:23355816
Effects of penetrating traumatic brain injury on event segmentation and memory.
Zacks, Jeffrey M; Kurby, Christopher A; Landazabal, Claudia S; Krueger, Frank; Grafman, Jordan
2016-01-01
Penetrating traumatic brain injury (pTBI) is associated with deficits in cognitive tasks including comprehension and memory, and also with impairments in tasks of daily living. In naturalistic settings, one important component of cognitive task performance is event segmentation, the ability to parse the ongoing stream of behavior into meaningful units. Event segmentation ability is associated with memory performance and with action control, but is not well assessed by standard neuropsychological assessments or laboratory tasks. Here, we measured event segmentation and memory in a sample of 123 male military veterans aged 59-81 who had suffered a traumatic brain injury as young men, and 34 demographically similar controls. Participants watched movies of everyday activities and segmented them to identify fine-grained or coarse-grained events, and then completed tests of recognition memory for pictures from the movies and of memory for the temporal order of actions in the movies. Lesion location and volume were assessed with computed tomography (CT) imaging. Patients with traumatic brain injury were impaired on event segmentation. Those with larger lesions had larger impairments for fine segmentation and also impairments for both memory measures. Further, the degree of memory impairment was statistically mediated by the degree of event segmentation impairment. There was some evidence that lesions to the ventromedial prefrontal cortex (vmPFC) selectively impaired coarse segmentation; however, lesions outside of a priori regions of interest also were associated with impaired segmentation. One possibility is that the effect of vmPFC damage reflects the role of prefrontal event knowledge representations in ongoing comprehension. These results suggest that assessment of naturalistic event comprehension can be a valuable component of cognitive assessment in cases of traumatic brain injury, and that interventions aimed at event segmentation could be clinically helpful. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vermeij, Anouk; van Beek, Arenda H E A; Reijs, Babette L R; Claassen, Jurgen A H R; Kessels, Roy P C
2014-01-01
Older adults show more bilateral prefrontal activation during cognitive performance than younger adults, who typically show unilateral activation. This over-recruitment has been interpreted as compensation for declining structure and function of the brain. Here we examined how the relationship between behavioral performance and prefrontal activation is modulated by different levels of working-memory load. Eighteen healthy older adults (70.8 ± 5.0 years; MMSE 29.3 ± 0.9) performed a spatial working-memory task (n-back). Oxygenated ([O2Hb]) and deoxygenated ([HHb]) hemoglobin concentration changes were registered by two functional Near-Infrared Spectroscopy (fNIRS) channels located over the left and right prefrontal cortex. Increased working-memory load resulted in worse performance compared to the control condition. [O2Hb] increased with rising working-memory load in both fNIRS channels. Based on the performance in the high working-memory load condition, the group was divided into low and high performers. A significant interaction effect of performance level and hemisphere on [O2Hb] increase was found, indicating that high performers were better able to keep the right prefrontal cortex engaged under high cognitive demand. Furthermore, in the low performers group, individuals with a larger decline in task performance from the control to the high working-memory load condition had a larger bilateral increase of [O2Hb]. The high performers did not show a correlation between performance decline and working-memory load related prefrontal activation changes. Thus, additional bilateral prefrontal activation in low performers did not necessarily result in better cognitive performance. Our study showed that bilateral prefrontal activation may not always be successfully compensatory. Individual behavioral performance should be taken into account to be able to distinguish successful and unsuccessful compensation or declined neural efficiency.
The generalizability of working-memory capacity in the sport domain.
Buszard, Tim; Masters, Rich Sw; Farrow, Damian
2017-08-01
Working-memory capacity has been implicated as an influential variable when performing and learning sport-related skills. In this review, we critically evaluate evidence linking working-memory capacity with performing under pressure, tactical decision making, motor skill acquisition, and sport expertise. Laboratory experiments link low working-memory capacity with poorer performance under pressure and poorer decision making when required to inhibit distractions or resolve conflict. However, the generalizability of these findings remains unknown. While working-memory capacity is associated with the acquisition of simple motor skills, there is no such evidence from the available data for complex motor skills. Likewise, currently there is no evidence to suggest that a larger working-memory capacity facilitates the attainment of sport expertise. Copyright © 2017 Elsevier Ltd. All rights reserved.
Working-Memory Load and Temporal Myopia in Dynamic Decision Making
ERIC Educational Resources Information Center
Worthy, Darrell A.; Otto, A. Ross; Maddox, W. Todd
2012-01-01
We examined the role of working memory (WM) in dynamic decision making by having participants perform decision-making tasks under single-task or dual-task conditions. In 2 experiments participants performed dynamic decision-making tasks in which they chose 1 of 2 options on each trial. The decreasing option always gave a larger immediate reward…
Schools of the Past: A Treasury of Photographs. Fastback 80.
ERIC Educational Resources Information Center
Davis, O. L., Jr.
The experience of schooling in America is recalled through a memory-sharing essay and an album of photographs. The intent of the article is to prompt readers to remember their personal schooling experiences and relate them to the larger framework of national memories. The essay, focusing on schools at the turn of the 20th century, discusses…
Characteristics of Reduced Graphene Oxide Quantum Dots for a Flexible Memory Thin Film Transistor.
Kim, Yo-Han; Lee, Eun Yeol; Lee, Hyun Ho; Seo, Tae Seok
2017-05-17
Reduced graphene oxide quantum dot (rGOQD) devices in formats of capacitor and thin film transistor (TFT) were demonstrated and examined as the first trial to achieve nonambipolar channel property. In addition, through a gold nanoparticle (Au NP) layer embedded between the rGOQD active channel and dielectric layer, memory capacitor and TFT performances were realized by capacitance-voltage (C-V) hysteresis and gate program, erase, and reprogram biases. First, capacitor structure of the rGOQD memory device was constructed to examine memory charging effect featured in hysteretic C-V behavior with a 30 nm dielectric layer of cross-linked poly(vinyl alcohol). For the intervening Au NP charging layer, self-assembled monolayer (SAM) formation of the Au NP was executed to utilize electrostatic interaction by a dip-coating process under ambient environments with a conformal fabrication uniformity. Second, the rGOQD memory TFT device was also constructed in the same format of the Au NPs SAMs on a flexible substrate. Characteristics of the rGOQD TFT output showed novel saturation curves unlike typical graphene-based TFTs. However, The rGOQD TFT device reveals relatively low on/off ratio of 10 1 and mobility of 5.005 cm 2 /V·s. For the memory capacitor, the flat-band voltage shift (ΔV FB ) was measured as 3.74 V for ±10 V sweep, and for the memory TFT, the threshold voltage shift (ΔV th ) by the Au NP charging was detected as 7.84 V. In summary, it was concluded that the rGOQD memory device could accomplish an ideal graphene-based memory performance, which could have provided a wide memory window and saturated output characteristics.
De Vito, David; Ferrey, Anne E; Fenske, Mark J; Al-Aidroos, Naseem
2018-06-01
Ignoring visual stimuli in the external environment leads to decreased liking of those items, a phenomenon attributed to the affective consequences of attentional inhibition. Here we investigated the generality of this "distractor devaluation" phenomenon by asking whether ignoring stimuli represented internally within visual working memory has the same affective consequences. In two experiments we presented participants with two or three visual stimuli and then, after the stimuli were no longer visible, provided an attentional cue indicating which item in memory was the target they would have to later recall, and which were task-irrelevant distractors. Participants subsequently judged how much they liked these stimuli. Previously-ignored distractors were consistently rated less favorably than targets, replicating prior findings of distractor devaluation. To gain converging evidence, in Experiment 2, we also examined the electrophysiological processes associated with devaluation by measuring individual differences in attention (N2pc) and working memory (CDA) event-related potentials following the attention cue. Larger amplitude of an N2pc-like component was associated with greater devaluation, suggesting that individuals displaying more effective selection of memory targets-an act aided by distractor inhibition-displayed greater levels of distractor devaluation. Individuals showing a larger post-cue CDA amplitude (but not pre-cue CDA amplitude) also showed greater distractor devaluation, supporting prior evidence that visual working-memory resources have a functional role in effecting devaluation. Together, these findings demonstrate that ignoring working-memory representations has affective consequences, and adds to the growing evidence that the contribution of selective-attention mechanisms to a wide range of human thoughts and behaviors leads to devaluation.
Pattern Discovery and Change Detection of Online Music Query Streams
NASA Astrophysics Data System (ADS)
Li, Hua-Fu
In this paper, an efficient stream mining algorithm, called FTP-stream (Frequent Temporal Pattern mining of streams), is proposed to find the frequent temporal patterns over melody sequence streams. In the framework of our proposed algorithm, an effective bit-sequence representation is used to reduce the time and memory needed to slide the windows. The FTP-stream algorithm can calculate the support threshold in only a single pass based on the concept of bit-sequence representation. It takes the advantage of "left" and "and" operations of the representation. Experiments show that the proposed algorithm only scans the music query stream once, and runs significant faster and consumes less memory than existing algorithms, such as SWFI-stream and Moment.
An automatic analyzer of solid state nuclear track detectors using an optic RAM as image sensor
NASA Astrophysics Data System (ADS)
Staderini, Enrico Maria; Castellano, Alfredo
1986-02-01
An optic RAM is a conventional digital random access read/write dynamic memory device featuring a quartz windowed package and memory cells regularly ordered on the chip. Such a device is used as an image sensor because each cell retains data stored in it for a time depending on the intensity of the light incident on the cell itself. The authors have developed a system which uses an optic RAM to acquire and digitize images from electrochemically etched CR39 solid state nuclear track detectors (SSNTD) in the track count rate up to 5000 cm -2. On the digital image so obtained, a microprocessor, with appropriate software, performs image analysis, filtering, tracks counting and evaluation.
Finding of increased caudate nucleus in patients with Alzheimer's disease.
Persson, K; Bohbot, V D; Bogdanovic, N; Selbaek, G; Braekhus, A; Engedal, K
2018-02-01
A recently published study using an automated MRI volumetry method (NeuroQuant®) unexpectedly demonstrated larger caudate nucleus volume in patients with Alzheimer's disease dementia (AD) compared to patients with subjective and mild cognitive impairment (SCI and MCI). The aim of this study was to explore this finding. The caudate nucleus and the hippocampus volumes were measured (both expressed as ratios of intracranial volume) in a total of 257 patients with SCI and MCI according to the Winblad criteria and AD according to ICD-10 criteria. Demographic data, cognitive measures, and APOE-ɛ4 status were collected. Compared with non-dementia patients (SCI and MCI), AD patients were older, more of them were female, and they had a larger caudate nucleus volume and smaller hippocampus volume (P<.001). In multiple linear regression analysis, age and female sex were associated with larger caudate nucleus volume, but neither diagnosis nor memory function was. Age, gender, and memory function were associated with hippocampus volume, and age and memory function were associated with caudate nucleus/hippocampus ratio. A larger caudate nucleus volume in AD patients was partly explained by older age and being female. These results are further discussed in the context of (1) the caudate nucleus possibly serving as a mechanism for temporary compensation; (2) methodological properties of automated volumetry of this brain region; and (3) neuropathological alterations. Further studies are needed to fully understand the role of the caudate nucleus in AD. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Collective input/output under memory constraints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Yin; Chen, Yong; Zhuang, Yu
2014-12-18
Compared with current high-performance computing (HPC) systems, exascale systems are expected to have much less memory per node, which can significantly reduce necessary collective input/output (I/O) performance. In this study, we introduce a memory-conscious collective I/O strategy that takes into account memory capacity and bandwidth constraints. The new strategy restricts aggregation data traffic within disjointed subgroups, coordinates I/O accesses in intranode and internode layers, and determines I/O aggregators at run time considering memory consumption among processes. We have prototyped the design and evaluated it with commonly used benchmarks to verify its potential. The evaluation results demonstrate that this strategy holdsmore » promise in mitigating the memory pressure, alleviating the contention for memory bandwidth, and improving the I/O performance for projected extreme-scale systems. Given the importance of supporting increasingly data-intensive workloads and projected memory constraints on increasingly larger scale HPC systems, this new memory-conscious collective I/O can have a significant positive impact on scientific discovery productivity.« less
Xie, Li-Hong; Tang, Jie; Miao, Wen-Jie; Tang, Xiang-Long; Li, Heng; Tang, An-Zhou
2018-06-01
We evaluated the risk of cochlear implantation through the round window membrane in the facial recess through a preoperative analysis of the angle between the facial nerve-round window and the cranial midline using high-resolution temporal bone CT. Temporal bone CT films of 176 patients with profound sensorineural hearing loss at our hospital from 2013 to 2015 were reviewed. The preoperative temporal bone CT scans of the patients were retrospectively analysed. The vertical distance (d value) from the leading edge of the facial nerve to the posterior wall of the external auditory canal and the angle (α value) between the line from the leading edge of the facial nerve to the midpoint of the round window membrane and the median sagittal line on the round window membrane plane were measured. Based on intraoperative observation, the round window membrane was divided into complete round window membrane exposure (group A), partial exposure (group B), and unexposed (group C) groups, and statistical analysis was performed. The α value could be effectively measured for all 176 patients (62.60 ± 7.12), and the d value could be effectively measured for 95 cases (5.53 ± 1.00). An analysis of the correlation between the α and d values of these 95 cases found a negative correlation. Of the 176 cases, one-way analysis of variance (ANOVA) showed that the differences among the groups were significant [P = 0.000 (< 0.05)]. The angle (α value) between the line connecting the leading edge of the facial nerve to the midpoint of the round window and the median sagittal line measured in preoperative CT scans was associated with the difficulty of intraoperatively exposing the round window membrane. When the α value was larger than a certain degree, the difficulty of exposing the round window membrane was increased. In such cases, the surgeon should fully expose the round window membrane during surgery, which could result decrease the likelihood of complications.
Lumping, Splitting and the Integration of Museum Studies with LIS
ERIC Educational Resources Information Center
Latham, Kiersten F.
2015-01-01
This paper is an attempt to support and promote education programs that cover the entire cultural heritage landscape (libraries, archives, museums) as an integrated, larger meta-discipline. By taking a larger picture approach, professionals who do the work of memory institutions can be more effective in their work, in the promotion of that…
Costanzi, Marco; Cannas, Sara; Saraulli, Daniele; Rossi-Arnaud, Clelia; Cestari, Vincenzo
2011-01-01
Long-lasting memories of adverse experiences are essential for individuals' survival but are also involved, in the form of recurrent recollections of the traumatic experience, in the aetiology of anxiety diseases (e.g., post-traumatic stress disorder [PTSD]). Extinction-based erasure of fear memories has long been pursued as a behavioral way to treat anxiety disorders; yet, such a procedure turns out to be transient, context-dependent, and ineffective unless it is applied immediately after trauma. Recent evidence indicates that, in both rats and humans, extinction training can prevent the return of fear if administered within the reconsolidation window, when memories become temporarily labile and susceptible of being updated. Here, we show that the reconsolidation-extinction procedure fails to prevent the spontaneous recovery of a remote contextual fear memory in a mouse model of PTSD, as well as the long-lasting behavioral abnormalities induced by traumatic experience on anxiety and in both social and cognitive domains (i.e., social withdrawal and spatial learning deficits). Such a failure appears to be related to the ineffectiveness of the reconsolidation-extinction procedure in targeting the pathogenic process of fear sensitization, a nonassociative component of traumatic memory that causes animals to react aberrantly to harmless stimuli. This indicates fear sensitization as a major target for treatments aimed at mitigating anxiety and the behavioral outcomes of traumatic experiences.
Cheng, Shun-Wen; Han, Ting; Huang, Teng-Yung; Chang Chien, Yu-Hsin; Liu, Cheng-Liang; Tang, Ben Zhong; Liou, Guey-Sheng
2018-05-30
A novel aggregation enhanced emission (AEE)-active polyamide TPA-CN-TPE with a high photoluminesence characteristic was successfully synthesized by the direct polymerization of 4-cyanotriphenyl diamine (TPA-CN) and tetraphenylethene (TPE)-containing dicarboxylic acid. The obtained luminescent polyamide plays a significant role as the polymer electret layer in organic field-effect transistors (OFETs)-type memory. The strong green emission of TPA-CN-TPE under ultraviolet (UV) irradiation can be directly absorbed by the pentacene channel, displaying a light-induced programming and voltage-driven erasing organic phototransistor-based nonvolatile memory. Memory window can be effectively manipulated between the programming and erasing states by applying UV light illumination and electrical field, respectively. The photoinduced memory behavior can be maintained for over 10 4 s between these two states with an on/off ratio of 10 4 , and the memory switching can be steadily operated for many cycles. With high photoresponsivity ( R) and photosensitivity ( S), this organic phototransistor integrated with AEE-active polyamide electret layer could serve as an excellent candidate for UV photodetectors in optical applications. For comparison, an AEE-inactive aromatic polyimide TPA-PIS electret with much weaker solid-state emission was also applied in the same OFETs device architecture, but this device did not show any UV-sensitive and UV-induced memory characteristics, which further confirmed the significance of the light-emitting capability of the electret layer.
Short term memory for single surface features and bindings in ageing: A replication study.
Isella, Valeria; Molteni, Federica; Mapelli, Cristina; Ferrarese, Carlo
2015-06-01
In the present study we replicated a previous experiment investigating visuo-spatial short term memory binding in young and older healthy individuals, in the attempt to verify the pattern of impairment that can be observed in normal elderly for short term memory for single items vs short term memory for bindings. Assessing a larger sample size (25 young and 25 older subjects), using a more appropriate measure of accuracy for a change detection task (A'), and adding the evaluation of speed of performance, we confirmed that old normals show a decline in short term memory for bindings of shape and colour that is of comparable extent, and not major, to the decline in memory for single shapes and single colours. The absence of a specific deficit of short term memory for conjunctions of surface features seems to distinguish cognitive ageing from Alzheimer's Disease. Copyright © 2015 Elsevier Inc. All rights reserved.
Working memory capacity and task goals modulate error-related ERPs.
Coleman, James R; Watson, Jason M; Strayer, David L
2018-03-01
The present study investigated individual differences in information processing following errant behavior. Participants were initially classified as high or as low working memory capacity using the Operation Span Task. In a subsequent session, they then performed a high congruency version of the flanker task under both speed and accuracy stress. We recorded ERPs and behavioral measures of accuracy and response time in the flanker task with a primary focus on processing following an error. The error-related negativity was larger for the high working memory capacity group than for the low working memory capacity group. The positivity following an error (Pe) was modulated to a greater extent by speed-accuracy instruction for the high working memory capacity group than for the low working memory capacity group. These data help to explicate the neural bases of individual differences in working memory capacity and cognitive control. © 2017 Society for Psychophysiological Research.
Volume of the human septal forebrain region is a predictor of source memory accuracy.
Butler, Tracy; Blackmon, Karen; Zaborszky, Laszlo; Wang, Xiuyuan; DuBois, Jonathan; Carlson, Chad; Barr, William B; French, Jacqueline; Devinsky, Orrin; Kuzniecky, Ruben; Halgren, Eric; Thesen, Thomas
2012-01-01
Septal nuclei, components of basal forebrain, are strongly and reciprocally connected with hippocampus, and have been shown in animals to play a critical role in memory. In humans, the septal forebrain has received little attention. To examine the role of human septal forebrain in memory, we acquired high-resolution magnetic resonance imaging scans from 25 healthy subjects and calculated septal forebrain volume using recently developed probabilistic cytoarchitectonic maps. We indexed memory with the California Verbal Learning Test-II. Linear regression showed that bilateral septal forebrain volume was a significant positive predictor of recognition memory accuracy. More specifically, larger septal forebrain volume was associated with the ability to recall item source/context accuracy. Results indicate specific involvement of septal forebrain in human source memory, and recall the need for additional research into the role of septal nuclei in memory and other impairments associated with human diseases.
A wide bandwidth CCD buffer memory system
NASA Technical Reports Server (NTRS)
Siemens, K.; Wallace, R. W.; Robinson, C. R.
1978-01-01
A prototype system was implemented to demonstrate that CCD's can be applied advantageously to the problem of low power digital storage and particularly to the problem of interfacing widely varying data rates. CCD shift register memories (8K bit) were used to construct a feasibility model 128 K-bit buffer memory system. Serial data that can have rates between 150 kHz and 4.0 MHz can be stored in 4K-bit, randomly-accessible memory blocks. Peak power dissipation during a data transfer is less than 7 W, while idle power is approximately 5.4 W. The system features automatic data input synchronization with the recirculating CCD memory block start address. System expansion to accommodate parallel inputs or a greater number of memory blocks can be performed in a modular fashion. Since the control logic does not increase proportionally to increase in memory capacity, the power requirements per bit of storage can be reduced significantly in a larger system.
Naik, Aijaz A.; Patro, Ishan K.; Patro, Nisha
2015-01-01
Environmental stressors including protein malnutrition (PMN) during pre-, neo- and post-natal age have been documented to affect cognitive development and cause increased susceptibility to neuropsychiatric disorders. Most studies have addressed either of the three windows and that does not emulate the clinical conditions of intra-uterine growth restriction (IUGR). Such data fail to provide a complete picture of the behavioral alterations in the F1 generation. The present study thus addresses the larger window from gestation to F1 generation, a new model of intra-generational PMN. Naive Sprague Dawley (SD) dams pre-gestationally switched to LP (8% protein) or HP (20% protein) diets for 45 days were bred and maintained throughout gestation on same diets. Pups born (HP/LP dams) were maintained on the respective diets post-weaningly. The present study aimed to show the sex specific differences in the neurobehavioral evolution and behavioral phenotype of the HP/LP F1 generation pups. A battery of neurodevelopmental reflex tests, behavioral (Open field and forelimb gripstrength test), and cognitive [Elevated plus maze (EPM) and Morris water maze (MWM)] assays were performed. A decelerated growth curve with significantly restricted body and brain weight, delays in apparition of neuro-reflexes and poor performance in the LP group rats was recorded. Intra-generational PMN induced poor habituation-with-time in novel environment exploration, low anxiety and hyperactive like profile in open field test in young and adult rats. The study revealed poor forelimb neuromuscular strength in LP F1 pups till adulthood. Group occupancy plots in MWM test revealed hyperactivity with poor learning, impaired memory retention and integration, thus modeling the signs of early onset Alzehemier phenotype. In addition, a gender specific effect of LP diet with severity in males and favoring female sex was also noticed. PMID:26696810
Sumowski, James F.; Rocca, Maria A.; Leavitt, Victoria M.; Riccitelli, Gianna; Meani, Alessandro; Comi, Giancarlo; Filippi, Massimo
2016-01-01
Consistent with basic research on enriched environments and the cognitive reserve literature, greater engagement in cognitive leisure activities during early adulthood has been linked to preserved memory and larger hippocampal volume in persons with multiple sclerosis (MS). Herein we investigated which specific types of cognitive leisure activities contribute to reserve. Reading-writing activities were positively linked to (a) hippocampal volume within independent samples of Italian (n=187) and American (n=55) MS patients, and (b) memory in subsamples of Italian (n=97) and American (n=53) patients with memory data. Art-music and games-hobbies did not contribute. Findings directly inform the development of targeted evidence-based enrichment programs aiming to bolster reserve against memory decline. PMID:26920377
Combined Cognitive Training vs. Memory Strategy Training in Healthy Older Adults.
Li, Bing; Zhu, Xinyi; Hou, Jianhua; Chen, Tingji; Wang, Pengyun; Li, Juan
2016-01-01
As mnemonic utilization deficit in older adults associates with age-related decline in executive function, we hypothesized that memory strategy training combined with executive function training might induce larger training effect in memory and broader training effects in non-memory outcomes than pure memory training. The present study compared the effects of combined cognitive training (executive function training plus memory strategy training) to pure memory strategy training. Forty healthy older adults were randomly assigned to a combined cognitive training group or a memory strategy training group. A control group receiving no training was also included. Combined cognitive training group received 16 sessions of training (eight sessions of executive function training followed by eight sessions of memory strategy training). Memory training group received 16 sessions of memory strategy training. The results partly supported our hypothesis in that indeed improved performance on executive function was only found in combined training group, whereas memory performance increased less in combined training compared to memory strategy group. Results suggest that combined cognitive training may be less efficient than pure memory training in memory outcomes, though the influences from insufficient training time and less closeness between trained executive function and working memory could not be excluded; however it has broader training effects in non-memory outcomes. www.chictr.org.cn, identifier ChiCTR-OON-16007793.
Late Protein Synthesis-Dependent Phases in CTA Long-Term Memory: BDNF Requirement
Martínez-Moreno, Araceli; Rodríguez-Durán, Luis F.; Escobar, Martha L.
2011-01-01
It has been proposed that long-term memory (LTM) persistence requires a late protein synthesis-dependent phase, even many hours after memory acquisition. Brain-derived neurotrophic factor (BDNF) is an essential protein synthesis product that has emerged as one of the most potent molecular mediators for long-term synaptic plasticity. Studies in the rat hippocampus have been shown that BDNF is capable to rescue the late-phase of long-term potentiation as well as the hippocampus-related LTM when protein synthesis was inhibited. Our previous studies on the insular cortex (IC), a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA), have demonstrated that intracortical delivery of BDNF reverses the deficit in CTA memory caused by the inhibition of IC protein synthesis due to anisomycin administration during early acquisition. In this work, we first analyze whether CTA memory storage is protein synthesis-dependent in different time windows. We observed that CTA memory become sensible to protein synthesis inhibition 5 and 7 h after acquisition. Then, we explore the effect of BDNF delivery (2 μg/2 μl per side) in the IC during those late protein synthesis-dependent phases. Our results show that BDNF reverses the CTA memory deficit produced by protein synthesis inhibition in both phases. These findings support the notion that recurrent rounds of consolidation-like events take place in the neocortex for maintenance of CTA memory trace and that BDNF is an essential component of these processes. PMID:21960964
Memory Corruption Mitigations and Their Implementation Progress in Third-Party Windows Applications
2012-09-01
coverage in the news, which helped the public recognize the importance of computers in everyday life and, more importantly, the challenges in securing...Media Players Winamp, VLC Media Player, Quicktime Player, iTunes, Real Player Instant Messaging Applications mIRC, Yahoo Messenger, AIM, Nimbuzz...as cell phones and tablets, may boost this ratio in the upcoming years. In such a highly connected world, it is becoming more and more challenging
Ensuring a C2 Level of Trust and Interoperability in a Networked Windows NT Environment
1996-09-01
addition, it should be noted that the device drivers, microkernel , memory manager, and Hardware Abstraction Layer are all hardware dependent. a. The...Executive The executive is further divided into three conceptual layers which are referred to as-the Hardware Abstraction Layer (HAL), the Microkernel , and...Subsystem Executive Subsystems Manager I/O Manager Cache Manager File Systems Microkernel Device Driver Hardware Abstraction Layer F HARDWARE Figure 3
Maddox, Stephanie A.; Watts, Casey S.; Doyère, Valérie; Schafe, Glenn E.
2013-01-01
The study of the cellular and molecular mechanisms underlying the consolidation and reconsolidation of traumatic fear memories has progressed rapidly in recent years, yet few compounds have emerged that are readily useful in a clinical setting for the treatment of anxiety disorders such as post-traumatic stress disorder (PTSD). Here, we use a combination of biochemical, behavioral, and neurophysiological methods to systematically investigate the ability of garcinol, a naturally-occurring histone acetyltransferase (HAT) inhibitor derived from the rind of the fruit of the Kokum tree (Garcina indica), to disrupt the consolidation and reconsolidation of Pavlovian fear conditioning, a widely studied rodent model of PTSD. We show that local infusion of garcinol into the rat lateral amygdala (LA) impairs the training and retrieval-related acetylation of histone H3 in the LA. Further, we show that either intra-LA or systemic administration of garcinol within a narrow window after either fear conditioning or fear memory retrieval significantly impairs the consolidation and reconsolidation of a Pavlovian fear memory and associated neural plasticity in the LA. Our findings suggest that a naturally-occurring compound derived from the diet that regulates chromatin function may be useful in the treatment of newly acquired or recently reactivated traumatic memories. PMID:23349897
Graphene - ferroelectric and MoS2 - ferroelectric heterostructures for memory applications
NASA Astrophysics Data System (ADS)
Lipatov, Alexey; Sharma, Pankaj; Gruverman, Alexei; Sinitskii, Alexander
In recent years there has been an unprecedented interest in two-dimensional (2D) materials with unique physical and chemical properties that cannot be found in their three-dimensional (3D) counterparts. One of the important advantages of 2D materials is that they can be easily integrated with other 2D materials and functional films, resulting in multilayered structures with new properties. We fabricated and tested electronic and memory properties of field-effect transistors (FETs) based on a single-layer graphene combined with lead zirconium titanate (PZT) substrate. Previously studied graphene-PZT devices exhibited an unusual electronic behavior such as clockwise hysteresis of electronic transport, in contradiction with counterclockwise polarization dependence of PZT. We investigated how the interplay of polarization and interfacial phenomena affects the electronic behavior and memory characteristics of graphene-PZT FETs, explain the origin of unusual clockwise hysteresis and experimentally demonstrate a reversed polarization-dependent hysteresis of electronic transport. In addition we fabricated and tested properties of MoS2-PZT FETs which exhibit a large hysteresis of electronic transport with high ON/OFF ratios. We demonstrate that MoS2-PZT memories have a number of advantages over commercial FeRAMs, such as nondestructive data readout, low operation voltage, wide memory window and the possibility to write and erase them both electrically and optically.
Franzmeier, Nicolai; Buerger, Katharina; Teipel, Stefan; Stern, Yaakov; Dichgans, Martin; Ewers, Michael
2017-02-01
Cognitive reserve (CR) shows protective effects on cognitive function in older adults. Here, we focused on the effects of CR at the functional network level. We assessed in patients with amnestic mild cognitive impairment (aMCI) whether higher CR moderates the association between low internetwork cross-talk on memory performance. In 2 independent aMCI samples (n = 76 and 93) and healthy controls (HC, n = 36), CR was assessed via years of education and intelligence (IQ). We focused on the anti-correlation between the dorsal attention network (DAN) and an anterior and posterior default mode network (DMN), assessed via sliding time window analysis of resting-state functional magnetic resonance imaging (fMRI). The DMN-DAN anti-correlation was numerically but not significantly lower in aMCI compared to HC. However, in aMCI, lower anterior DMN-DAN anti-correlation was associated with lower memory performance. This association was moderated by CR proxies, where the association between the internetwork anti-correlation and memory performance was alleviated at higher levels of education or IQ. In conclusion, lower DAN-DMN cross-talk is associated with lower memory in aMCI, where such effects are buffered by higher CR. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, Lanyi; Ying, Jun; Han, Jinhua
2016-04-25
In this letter, we demonstrate a high reliable and stable organic field-effect transistor (OFET) based nonvolatile memory (NVM) with a polymer poly(4-vinyl phenol) (PVP) as the charge trapping layer. In the unipolar OFETs, the inreversible shifts of the turn-on voltage (V{sub on}) and severe degradation of the memory window (ΔV{sub on}) at programming (P) and erasing (E) voltages, respectively, block their application in NVMs. The obstacle is overcome by using a pn-heterojunction as the active layer in the OFET memory, which supplied a holes and electrons accumulating channel at the supplied P and E voltages, respectively. Both holes and electronsmore » transferring from the channels to PVP layer and overwriting the trapped charges with an opposite polarity result in the reliable bidirectional shifts of V{sub on} at P and E voltages, respectively. The heterojunction OFET exhibits excellent nonvolatile memory characteristics, with a large ΔV{sub on} of 8.5 V, desired reading (R) voltage at 0 V, reliable P/R/E/R dynamic endurance over 100 cycles and a long retention time over 10 years.« less
Larsson, Maria; Hedner, Margareta; Papenberg, Goran; Seubert, Janina; Bäckman, Lars; Laukka, Erika J
2016-02-01
The neuroanatomical organization that underlies olfactory memory is different from that of other memory types. The present work examines olfactory memory in an elderly population-based sample (Swedish National Study on Aging and Care in Kungsholmen) aged 60-100 years (n = 2280). We used structural equation modeling to investigate whether olfactory memory in old age is best conceptualized as a distinct category, differentiated from episodic and semantic memory. Further, potential olfactory dedifferentiation and genetic associations (APOE) to olfactory function in late senescence were investigated. Results are in support of a 3-factor solution where olfactory memory, as indexed by episodic odor recognition and odor identification, is modeled separately from episodic and semantic memory for visual and verbal information. Increasing age was associated with poorer olfactory memory performance, and observed age-related deficits were further exacerbated for carriers of the APOE ε4 allele; these effects tended to be larger for olfactory memory compared to episodic and semantic memory pertaining to other sensory systems (vision, auditory). Finally, stronger correlations between olfactory and episodic memory, indicating dedifferentiation, were observed in the older age groups. Copyright © 2016 Elsevier Inc. All rights reserved.
Musical Memories: Snapshots of a Chinese Family in Singapore
ERIC Educational Resources Information Center
Lum, Chee-Hoo
2009-01-01
This paper examines music in the home of a Chinese family in Singapore with specific attention to the children (aged five and seven) of the household: an exploration of what constitutes the lived 'musical' memory of a family enmeshed in the technology and media of a globalised world. The study is part of a larger ethnographic study on the musical…
Programmable resistive-switch nanowire transistor logic circuits.
Shim, Wooyoung; Yao, Jun; Lieber, Charles M
2014-09-10
Programmable logic arrays (PLA) constitute a promising architecture for developing increasingly complex and functional circuits through nanocomputers from nanoscale building blocks. Here we report a novel one-dimensional PLA element that incorporates resistive switch gate structures on a semiconductor nanowire and show that multiple elements can be integrated to realize functional PLAs. In our PLA element, the gate coupling to the nanowire transistor can be modulated by the memory state of the resistive switch to yield programmable active (transistor) or inactive (resistor) states within a well-defined logic window. Multiple PLA nanowire elements were integrated and programmed to yield a working 2-to-4 demultiplexer with long-term retention. The well-defined, controllable logic window and long-term retention of our new one-dimensional PLA element provide a promising route for building increasingly complex circuits with nanoscale building blocks.
Sumowski, James F; Rocca, Maria A; Leavitt, Victoria M; Riccitelli, Gianna; Meani, Alessandro; Comi, Giancarlo; Filippi, Massimo
2016-10-01
Engagement in cognitive leisure activities during early adulthood has been linked to preserved memory and larger hippocampal volume in persons with multiple sclerosis (MS). To investigate which specific types of cognitive leisure activities contribute to hippocampal volume and memory. We investigated links between three types of cognitive activities (Reading-Writing, Art-Music, Games-Hobbies) and (a) hippocampal volume within independent samples of Italian (n=187) and American (n=55) MS patients and (b) memory in subsamples of Italian (n=97) and American (n=53) patients. Reading-Writing was the only predictor of hippocampal volume (rp=.204, p=.002), and the best predictor of memory (rp=.288, p=.001). Findings inform the development of targeted evidence-based enrichment programs aiming to bolster reserve against memory decline. © The Author(s), 2016.
Perilymph composition in scala tympani of the cochlea: influence of cerebrospinal fluid.
Hara, A; Salt, A N; Thalmann, R
1989-11-01
A commonly used technique to obtain cochlear perilymph for analysis has been the aspiration of samples through the round window membrane. The present study has investigated the influence of the volume withdrawn on sample composition in the guinea pig. Samples of less than 200 nl in volume taken through the round window showed relatively high glycine content, comparable to the level found in samples taken from scala vestibuli. If larger volumes are withdrawn, lower glycine levels are observed. This is consistent with cerebrospinal fluid (having a low glycine content) being drawn into scala tympani through the cochlear aqueduct and contaminating the sample. The existence of a concentration difference for glycine between scala tympani perilymph and cerebrospinal fluid suggests the physiologic communication across the cochlear aqueduct is relatively small in this species. The observation of considerable exchange between cerebrospinal fluid and perilymph, as reported in some studies, is more likely to be an artifact of the experimental procedures, rather than of physiologic significance. Alternative sampling procedures have been evaluated which allow larger volumes of uncontaminated scala tympani perilymph to be collected.
Evaluation of Equivalent Vision Technologies for Supersonic Aircraft Operations
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Williams, Steven P.; Wilz, Susan P.; Arthur, Jarvis J., III; Bailey, Randall E.
2009-01-01
Twenty-four air transport-rated pilots participated as subjects in a fixed-based simulation experiment to evaluate the use of Synthetic/Enhanced Vision (S/EV) and eXternal Vision System (XVS) technologies as enabling technologies for future all-weather operations. Three head-up flight display concepts were evaluated a monochromatic, collimated Head-up Display (HUD) and a color, non-collimated XVS display with a field-of-view (FOV) equal to and also, one significantly larger than the collimated HUD. Approach, landing, departure, and surface operations were conducted. Additionally, the apparent angle-of-attack (AOA) was varied (high/low) to investigate the vertical field-of-view display requirements and peripheral, side window visibility was experimentally varied. The data showed that lateral approach tracking performance and lateral landing position were excellent regardless of the display type and AOA condition being evaluated or whether or not there were peripheral cues in the side windows. Longitudinal touchdown and glideslope tracking were affected by the display concepts. Larger FOV display concepts showed improved longitudinal touchdown control, superior glideslope tracking, significant situation awareness improvements and workload reductions compared to smaller FOV display concepts.
NASA Astrophysics Data System (ADS)
Dong, Sunghee; Jeong, Jichai
2018-02-01
Objective. Memory is formed by the interaction of various brain functions at the item and task level. Revealing individual and combined effects of item- and task-related processes on retrieving episodic memory is an unsolved problem because of limitations in existing neuroimaging techniques. To investigate these issues, we analyze fast and slow optical signals measured from a custom-built continuous wave functional near-infrared spectroscopy (CW-fNIRS) system. Approach. In our work, we visually encode the words to the subjects and let them recall the words after a short rest. The hemodynamic responses evoked by the episodic memory are compared with those evoked by the semantic memory in retrieval blocks. In the fast optical signal, we compare the effects of old and new items (previously seen and not seen) to investigate the item-related process in episodic memory. The Kalman filter is simultaneously applied to slow and fast optical signals in different time windows. Main results. A significant task-related HbR decrease was observed in the episodic memory retrieval blocks. Mean amplitude and peak latency of a fast optical signal are dependent upon item types and reaction time, respectively. Moreover, task-related hemodynamic and item-related fast optical responses are correlated in the right prefrontal cortex. Significance. We demonstrate that episodic memory is retrieved from the right frontal area by a functional connectivity between the maintained mental state through retrieval and item-related transient activity. To the best of our knowledge, this demonstration of functional NIRS research is the first to examine the relationship between item- and task-related memory processes in the prefrontal area using single modality.
Dong, Sunghee; Jeong, Jichai
2018-02-01
Memory is formed by the interaction of various brain functions at the item and task level. Revealing individual and combined effects of item- and task-related processes on retrieving episodic memory is an unsolved problem because of limitations in existing neuroimaging techniques. To investigate these issues, we analyze fast and slow optical signals measured from a custom-built continuous wave functional near-infrared spectroscopy (CW-fNIRS) system. In our work, we visually encode the words to the subjects and let them recall the words after a short rest. The hemodynamic responses evoked by the episodic memory are compared with those evoked by the semantic memory in retrieval blocks. In the fast optical signal, we compare the effects of old and new items (previously seen and not seen) to investigate the item-related process in episodic memory. The Kalman filter is simultaneously applied to slow and fast optical signals in different time windows. A significant task-related HbR decrease was observed in the episodic memory retrieval blocks. Mean amplitude and peak latency of a fast optical signal are dependent upon item types and reaction time, respectively. Moreover, task-related hemodynamic and item-related fast optical responses are correlated in the right prefrontal cortex. We demonstrate that episodic memory is retrieved from the right frontal area by a functional connectivity between the maintained mental state through retrieval and item-related transient activity. To the best of our knowledge, this demonstration of functional NIRS research is the first to examine the relationship between item- and task-related memory processes in the prefrontal area using single modality.
Controlling the volatility of the written optical state in electrochromic DNA liquid crystals
NASA Astrophysics Data System (ADS)
Liu, Kai; Varghese, Justin; Gerasimov, Jennifer Y.; Polyakov, Alexey O.; Shuai, Min; Su, Juanjuan; Chen, Dong; Zajaczkowski, Wojciech; Marcozzi, Alessio; Pisula, Wojciech; Noheda, Beatriz; Palstra, Thomas T. M.; Clark, Noel A.; Herrmann, Andreas
2016-05-01
Liquid crystals are widely used in displays for portable electronic information display. To broaden their scope for other applications like smart windows and tags, new material properties such as polarizer-free operation and tunable memory of a written state become important. Here, we describe an anhydrous nanoDNA-surfactant thermotropic liquid crystal system, which exhibits distinctive electrically controlled optical absorption, and temperature-dependent memory. In the liquid crystal isotropic phase, electric field-induced colouration and bleaching have a switching time of seconds. Upon transition to the smectic liquid crystal phase, optical memory of the written state is observed for many hours without applied voltage. The reorientation of the DNA-surfactant lamellar layers plays an important role in preventing colour decay. Thereby, the volatility of optoelectronic state can be controlled simply by changing the phase of the material. This research may pave the way for developing a new generation of DNA-based, phase-modulated, photoelectronic devices.
Memory effect in M ≥ 6 earthquakes of South-North Seismic Belt, Mainland China
NASA Astrophysics Data System (ADS)
Wang, Jeen-Hwa
2013-07-01
The M ≥ 6 earthquakes occurred in the South-North Seismic Belt, Mainland China, during 1901-2008 are taken to study the possible existence of memory effect in large earthquakes. The fluctuation analysis technique is applied to analyze the sequences of earthquake magnitude and inter-event time represented in the natural time domain. Calculated results show that the exponents of scaling law of fluctuation versus window length are less than 0.5 for the sequences of earthquake magnitude and inter-event time. The migration of earthquakes in study is taken to discuss the possible correlation between events. The phase portraits of two sequent magnitudes and two sequent inter-event times are also applied to explore if large (or small) earthquakes are followed by large (or small) events. Together with all kinds of given information, we conclude that the earthquakes in study is short-term correlated and thus the short-term memory effect would be operative.
NASA Astrophysics Data System (ADS)
Lee, Young Tack; Hwang, Do Kyung; Im, Seongil
2015-11-01
Two-dimensional (2D) van der Waals (vdWs) materials are a class of new materials due to their unique physical properties. Of the many 2D vdWs materials, molybdenum disulfide (MoS2) is a representative n-type transition-metal dichalcogenide (TMD) semiconductor. Here, we report on a high-performance MoS2 nanosheet-based nonvolatile memory transistor with a poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) ferroelectric top gate insulator. In order to enhance the ohmic contact property, we use graphene flakes as source/drain electrodes prepared by using the direct imprinting method with an elastomer stamp. The MoS2 ferroelectric field-effect transistor (FeFET) shows the highest linear electron mobility value of 175 cm2/Vs with a high on/off current ratio of more than 107, and a very clear memory window of more than 15 V. The program and erase dynamics and the static retention properties are also well demonstrated.
Modelling the time behaviour of a self-organized seismic region: a cellular automaton with memory
NASA Astrophysics Data System (ADS)
Cisternas, A.; Rivera, L.; Munoz, D.
2003-04-01
The range of a cumulative sequence of earthquake moments in a seismic region varies according to Hurst's law, namely a power law in the length of the time window. The range allows for an estimation of Mmax in a seismic zone. In the case of an independent process, the Hurst exponent H is 0.5. Memory implies 0.5
NASA Astrophysics Data System (ADS)
Lim, Jae-Gab; Yang, Seung-Dong; Yun, Ho-Jin; Jung, Jun-Kyo; Park, Jung-Hyun; Lim, Chan; Cho, Gyu-seok; Park, Seong-gye; Huh, Chul; Lee, Hi-Deok; Lee, Ga-Won
2018-02-01
In this paper, SONOS-type flash memory device with highly improved charge-trapping efficiency is suggested by using silicon nanocrystals (Si-NCs) embedded in silicon nitride (SiNX) charge trapping layer. The Si-NCs were in-situ grown by PECVD without additional post annealing process. The fabricated device shows high program/erase speed and retention property which is suitable for multi-level cell (MLC) application. Excellent performance and reliability for MLC are demonstrated with large memory window of ∼8.5 V and superior retention characteristics of 7% charge loss for 10 years. High resolution transmission electron microscopy image confirms the Si-NC formation and the size is around 1-2 nm which can be verified again in X-ray photoelectron spectroscopy (XPS) where pure Si bonds increase. Besides, XPS analysis implies that more nitrogen atoms make stable bonds at the regular lattice point. Photoluminescence spectra results also illustrate that Si-NCs formation in SiNx is an effective method to form deep trap states.
A novel configurable VLSI architecture design of window-based image processing method
NASA Astrophysics Data System (ADS)
Zhao, Hui; Sang, Hongshi; Shen, Xubang
2018-03-01
Most window-based image processing architecture can only achieve a certain kind of specific algorithms, such as 2D convolution, and therefore lack the flexibility and breadth of application. In addition, improper handling of the image boundary can cause loss of accuracy, or consume more logic resources. For the above problems, this paper proposes a new VLSI architecture of window-based image processing operations, which is configurable and based on consideration of the image boundary. An efficient technique is explored to manage the image borders by overlapping and flushing phases at the end of row and the end of frame, which does not produce new delay and reduce the overhead in real-time applications. Maximize the reuse of the on-chip memory data, in order to reduce the hardware complexity and external bandwidth requirements. To perform different scalar function and reduction function operations in pipeline, this can support a variety of applications of window-based image processing. Compared with the performance of other reported structures, the performance of the new structure has some similarities to some of the structures, but also superior to some other structures. Especially when compared with a systolic array processor CWP, this structure at the same frequency of approximately 12.9% of the speed increases. The proposed parallel VLSI architecture was implemented with SIMC 0.18-μm CMOS technology, and the maximum clock frequency, power consumption, and area are 125Mhz, 57mW, 104.8K Gates, respectively, furthermore the processing time is independent of the different window-based algorithms mapped to the structure
Extreme Quantum Memory Advantage for Rare-Event Sampling
NASA Astrophysics Data System (ADS)
Aghamohammadi, Cina; Loomis, Samuel P.; Mahoney, John R.; Crutchfield, James P.
2018-02-01
We introduce a quantum algorithm for memory-efficient biased sampling of rare events generated by classical memoryful stochastic processes. Two efficiency metrics are used to compare quantum and classical resources for rare-event sampling. For a fixed stochastic process, the first is the classical-to-quantum ratio of required memory. We show for two example processes that there exists an infinite number of rare-event classes for which the memory ratio for sampling is larger than r , for any large real number r . Then, for a sequence of processes each labeled by an integer size N , we compare how the classical and quantum required memories scale with N . In this setting, since both memories can diverge as N →∞ , the efficiency metric tracks how fast they diverge. An extreme quantum memory advantage exists when the classical memory diverges in the limit N →∞ , but the quantum memory has a finite bound. We then show that finite-state Markov processes and spin chains exhibit memory advantage for sampling of almost all of their rare-event classes.
Slobounov, Semyon M.; Zhang, K.; Pennell, D.; Ray, W.; Johnson, B.; Sebastianelli, W.
2010-01-01
Memory problems are one of the most common symptoms of sport-related mild traumatic brain injury (MTBI), known as concussion. Surprisingly, little research has examined spatial memory in concussed athletes given its importance in athletic environments. Here, we combine functional magnetic resonance imaging (fMRI) with a virtual reality (VR) paradigm designed to investigate the possibility of residual functional deficits in recently concussed but asymptomatic individuals. Specifically, we report performance of spatial memory navigation tasks in a VR environment and fMRI data in 15 athletes suffering from MTBI and 15 neurologically normal, athletically active age matched controls. No differences in performance were observed between these two groups of subjects in terms of success rate (94 and 92%) and time to complete the spatial memory navigation tasks (mean = 19.5 and 19.7 s). Whole brain analysis revealed that similar brain activation patterns were observed during both encoding and retrieval among the groups. However, concussed athletes showed larger cortical networks with additional increases in activity outside of the shared region of interest (ROI) during encoding. Quantitative analysis of blood oxygen level dependent (BOLD) signal revealed that concussed individuals had a significantly larger cluster size during encoding at parietal cortex, right dorsolateral prefrontal cortex, and right hippocampus. In addition, there was a significantly larger BOLD signal percent change at the right hippocampus. Neither cluster size nor BOLD signal percent change at shared ROIs was different between groups during retrieval. These major findings are discussed with respect to current hypotheses regarding the neural mechanism responsible for alteration of brain functions in a clinical setting. PMID:20039023
Sensory, Cognitive, and Sensorimotor Learning Effects in Recognition Memory for Music.
Mathias, Brian; Tillmann, Barbara; Palmer, Caroline
2016-08-01
Recent research suggests that perception and action are strongly interrelated and that motor experience may aid memory recognition. We investigated the role of motor experience in auditory memory recognition processes by musicians using behavioral, ERP, and neural source current density measures. Skilled pianists learned one set of novel melodies by producing them and another set by perception only. Pianists then completed an auditory memory recognition test during which the previously learned melodies were presented with or without an out-of-key pitch alteration while the EEG was recorded. Pianists indicated whether each melody was altered from or identical to one of the original melodies. Altered pitches elicited a larger N2 ERP component than original pitches, and pitches within previously produced melodies elicited a larger N2 than pitches in previously perceived melodies. Cortical motor planning regions were more strongly activated within the time frame of the N2 following altered pitches in previously produced melodies compared with previously perceived melodies, and larger N2 amplitudes were associated with greater detection accuracy following production learning than perception learning. Early sensory (N1) and later cognitive (P3a) components elicited by pitch alterations correlated with predictions of sensory echoic and schematic tonality models, respectively, but only for the perception learning condition, suggesting that production experience alters the extent to which performers rely on sensory and tonal recognition cues. These findings provide evidence for distinct time courses of sensory, schematic, and motoric influences within the same recognition task and suggest that learned auditory-motor associations influence responses to out-of-key pitches.
An ERP Study on Decisions between Attractive Females and Money
Zhang, Qinglin
2012-01-01
To investigate the neural processes of decision-makings between attractive females and money, we recorded 18 male participants' brain event-related potentials (ERPs) when they performed a novel task of deciding between viewing an attractive female's fuzzy picture in clear and gaining a certain amount of money. Two types of attractive females were included: sexy females and beautiful females. Several new electrophysiological discoveries were obtained as following. First, the beautiful females vs. money task (task B) elicited a larger positive ERP deflection (P2) than the sexy females vs. money task (task S) between 290 and 340 ms, and this probably related to the perception matching process between a visual input and an internal representation or expectation. Second, task S evoked greater negative ERP waves (N2) than task B during the time window of 340–390 ms, and this might relate to response conflict and cognitive monitoring for impulsive tendency. Third, the ERP positivity in task S was larger than task B in the time interval of 550–1000 ms, reflecting that sexy female images may have higher decision value for males than beautiful female images. Fourth, compared with choosing to gain money, choosing to view an attractive female evoked a larger late positive component (LPC) during the same time window, possibly because attractive females are more direct and evolutionarily earlier rewards for males than money amounts. PMID:23077499
An ERP study on decisions between attractive females and money.
Zeng, Jianmin; Wang, Yujiao; Zhang, Qinglin
2012-01-01
To investigate the neural processes of decision-makings between attractive females and money, we recorded 18 male participants' brain event-related potentials (ERPs) when they performed a novel task of deciding between viewing an attractive female's fuzzy picture in clear and gaining a certain amount of money. Two types of attractive females were included: sexy females and beautiful females. Several new electrophysiological discoveries were obtained as following. First, the beautiful females vs. money task (task B) elicited a larger positive ERP deflection (P2) than the sexy females vs. money task (task S) between 290 and 340 ms, and this probably related to the perception matching process between a visual input and an internal representation or expectation. Second, task S evoked greater negative ERP waves (N2) than task B during the time window of 340-390 ms, and this might relate to response conflict and cognitive monitoring for impulsive tendency. Third, the ERP positivity in task S was larger than task B in the time interval of 550-1000 ms, reflecting that sexy female images may have higher decision value for males than beautiful female images. Fourth, compared with choosing to gain money, choosing to view an attractive female evoked a larger late positive component (LPC) during the same time window, possibly because attractive females are more direct and evolutionarily earlier rewards for males than money amounts.
Lapse time and frequency-dependent coda wave attenuation for Delhi and its surrounding regions
NASA Astrophysics Data System (ADS)
Das, Rabin; Mukhopadhyay, Sagarika; Singh, Ravi Kant; Baidya, Pushap R.
2018-07-01
Attenuation of seismic wave energy of Delhi and its surrounding regions has been estimated using coda of local earthquakes. Estimated quality factor (Qc) values are strongly dependent on frequency and lapse time. Frequency dependence of Qc has been estimated from the relationship Qc(f) = Q0fn for different lapse time window lengths. Q0 and n values vary from 73 to 453 and 0.97 to 0.63 for lapse time window lengths of 15 s to 90 s respectively. Average estimated frequency dependent relation is, Qc(f) = 135 ± 8f0.96±0.02 for the entire region for a window length of 30 s, where the average Qc value varies from 200 at 1.5 Hz to 1962 at 16 Hz. These values show that the region is seismically active and highly heterogeneous. The entire study region is divided into two sub-regions according to the geology of the area to investigate if there is a spatial variation in attenuation characteristics in this region. It is observed that at smaller lapse time both regions have similar Qc values. However, at larger lapse times the rate of increase of Qc with frequency is larger for Region 2 compared to Region 1. This is understandable, as it is closer to the tectonically more active Himalayan ranges and seismically more active compared to Region 1. The difference in variation of Qc with frequencies for the two regions is such that at larger lapse time and higher frequencies Region 2 shows higher Qc compared to Region 1. For lower frequencies the opposite situation is true. This indicates that there is a systematic variation in attenuation characteristics from the south (Region 1) to the north (Region 2) in the deeper part of the study area. This variation can be explained in terms of an increase in heat flow and a decrease in the age of the rocks from south to north.
Compound windows of the Hénon-map
NASA Astrophysics Data System (ADS)
Lorenz, Edward N.
2008-08-01
For the two-parameter second-order Hénon map, the shapes and locations of the periodic windows-continua of parameter values for which solutions x0,x1,… can be stably periodic, embedded in larger regions where chaotic solutions or solutions of other periods prevail-are found by a random searching procedure and displayed graphically. Many windows have a typical shape, consisting of a central “body” from which four narrow “antennae” extend. Such windows, to be called compound windows, are often arranged in bands, to be called window streets, that are made up largely of small detected but poorly resolved compound windows. For each fundamental subwindow-the portion of a window where a fundamental period prevails-a stability measure U is introduced; where the solution is stable, |U|<1. Curves of constant U are found by numerical integration. Along one line in parameter space the Hénon-map reduces to the one-parameter first-order logistic map, and two antennae from each compound window intersect this line. The curves where U=1 and U=-1 that bound either antenna are close together within these intersections, but, as either curve with U=-1 leaves the line, it diverges from the curve where U=1, crosses the other curve where U=-1, and nears the other curve where U=1, forming another antenna. The region bounded by the numerically determined curves coincides with the subwindow as found by random searching. A fourth-degree equation for an idealized curve of constant U is established. Points in parameter space producing periodic solutions where x0=xm=0, for given values of m, are found to lie on Cantor sets of curves that closely fit the window streets. Points producing solutions where x0=xm=0 and satisfying a third condition, approximating the condition that xn be bounded as n→-∞, lie on curves, to be called street curves of order m, that approximate individual members of the Cantor set and individual window streets. Compound windows of period m+m‧ tend to occur near the intersections of street curves of orders m and m‧. Some exceptions to what appear to be fairly general results are noted. The exceptions render it difficult to establish general theorems.
Implementing Audio-CASI on Windows’ Platforms
Cooley, Philip C.; Turner, Charles F.
2011-01-01
Audio computer-assisted self interviewing (Audio-CASI) technologies have recently been shown to provide important and sometimes dramatic improvements in the quality of survey measurements. This is particularly true for measurements requiring respondents to divulge highly sensitive information such as their sexual, drug use, or other sensitive behaviors. However, DOS-based Audio-CASI systems that were designed and adopted in the early 1990s have important limitations. Most salient is the poor control they provide for manipulating the video presentation of survey questions. This article reports our experiences adapting Audio-CASI to Microsoft Windows 3.1 and Windows 95 platforms. Overall, our Windows-based system provided the desired control over video presentation and afforded other advantages including compatibility with a much wider array of audio devices than our DOS-based Audio-CASI technologies. These advantages came at the cost of increased system requirements --including the need for both more RAM and larger hard disks. While these costs will be an issue for organizations converting large inventories of PCS to Windows Audio-CASI today, this will not be a serious constraint for organizations and individuals with small inventories of machines to upgrade or those purchasing new machines today. PMID:22081743
Theoretical and experimental investigation on magneto-hydrodynamics of plasma window
Wang, S. Z.; Zhu, K.; Huang, S.; ...
2016-01-05
As a new device, we designed plasma window to use plasma discharge to separate atmosphere from vacuum with high difference of pressure. It has many excellent properties, being able to be used as available passage for ion beam with negligible energy loss, also impervious to radiation damage and thermal damage. Normally beam focusing by accelerators is not that easy to achieve within channel of small cross section. 10 mm diameter plasma window's experimental realization could contribute to its further application in accelerator system. In this paper, 10 mm diameter 60 mm long plasma window has first been designed and managedmore » to generate arc discharge with argon gas experimentally. Our result proves that it has the ability to separate at least 28.8 kPa (not the upper limit) from 360 Pa with 50 A direct current and 2.5 kW power supplied. Current increase leads to linear inlet pressure increase obviously, while it has less impact on outlet pressure and voltage, coming to the conclusion that the higher current of plasma discharge, the larger pressure difference it creates. Furthermore, theoretical analysis of 10 mm diameter plasma window in axis symmetrical configuration using argon also has been provided, in which a numerical 2D FLUENT-based magneto-hydrodynamic simulation model is settled. It has a good agreement with experimental result on voltage and mass flow rate when inlet pressure is increased.« less
Kundu, Souvik; Maurya, Deepam; Clavel, Michael; Zhou, Yuan; Halder, Nripendra N.; Hudait, Mantu K.; Banerji, Pallab; Priya, Shashank
2015-01-01
We introduce a novel lead-free ferroelectric thin film (1-x)BaTiO3-xBa(Cu1/3Nb2/3)O3 (x = 0.025) (BT-BCN) integrated on to HfO2 buffered Si for non-volatile memory (NVM) applications. Piezoelectric force microscopy (PFM), x-ray diffraction, and high resolution transmission electron microscopy were employed to establish the ferroelectricity in BT-BCN thin films. PFM study reveals that the domains reversal occurs with 180° phase change by applying external voltage, demonstrating its effectiveness for NVM device applications. X-ray photoelectron microscopy was used to investigate the band alignments between atomic layer deposited HfO2 and pulsed laser deposited BT-BCN films. Programming and erasing operations were explained on the basis of band-alignments. The structure offers large memory window, low leakage current, and high and low capacitance values that were easily distinguishable even after ~106 s, indicating strong charge storage potential. This study explains a new approach towards the realization of ferroelectric based memory devices integrated on Si platform and also opens up a new possibility to embed the system within current complementary metal-oxide-semiconductor processing technology. PMID:25683062
Something worth remembering: visual discrimination in sharks.
Fuss, Theodora; Schluessel, Vera
2015-03-01
This study investigated memory retention capabilities of juvenile gray bamboo sharks (Chiloscyllium griseum) using two-alternative forced-choice experiments. The sharks had previously been trained in a range of visual discrimination tasks, such as distinguishing between squares, triangles and lines, and their corresponding optical illusions (i.e., the Kanizsa figures or Müller-Lyer illusions), and in the present study, we tested them for memory retention. Despite the absence of reinforcement, sharks remembered the learned information for a period of up to 50 weeks, after which testing was terminated. In fish, as in other vertebrates, memory windows vary in duration depending on species and task; while it may seem beneficial to retain some information for a long time or even indefinitely, other information may be forgotten more easily to retain flexibility and save energy. The results of this study indicate that sharks are capable of long-term memory within the framework of selected cognitive skills. These could aid sharks in activities such as food retrieval, predator avoidance, mate choice or habitat selection and therefore be worth being remembered for extended periods of time. As in other cognitive tasks, intraspecific differences reflected the behavioral breadth of the species.
NASA Astrophysics Data System (ADS)
Hamzah, Afiq; Ezaila Alias, N.; Ismail, Razali
2018-06-01
The aim of this study is to investigate the memory performances of gate-all-around floating gate (GAA-FG) memory cell implementing engineered tunnel barrier concept of variable oxide thickness (VARIOT) of low-k/high-k for several high-k (i.e., Si3N4, Al2O3, HfO2, and ZrO2) with low-k SiO2 using three-dimensional (3D) simulator Silvaco ATLAS. The simulation work is conducted by initially determining the optimized thickness of low-k/high-k barrier-stacked and extracting their Fowler–Nordheim (FN) coefficients. Based on the optimized parameters the device performances of GAA-FG for fast program operation and data retention are assessed using benchmark set by 6 and 8 nm SiO2 tunnel layer respectively. The programming speed has been improved and wide memory window with 30% increment from conventional SiO2 has been obtained using SiO2/Al2O3 tunnel layer due to its thin low-k dielectric thickness. Furthermore, given its high band edges only 1% of charge-loss is expected after 10 years of ‑3.6/3.6 V gate stress.
Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision.
Shi, Junxing; Wen, Haiguang; Zhang, Yizhen; Han, Kuan; Liu, Zhongming
2018-05-01
The human visual cortex extracts both spatial and temporal visual features to support perception and guide behavior. Deep convolutional neural networks (CNNs) provide a computational framework to model cortical representation and organization for spatial visual processing, but unable to explain how the brain processes temporal information. To overcome this limitation, we extended a CNN by adding recurrent connections to different layers of the CNN to allow spatial representations to be remembered and accumulated over time. The extended model, or the recurrent neural network (RNN), embodied a hierarchical and distributed model of process memory as an integral part of visual processing. Unlike the CNN, the RNN learned spatiotemporal features from videos to enable action recognition. The RNN better predicted cortical responses to natural movie stimuli than the CNN, at all visual areas, especially those along the dorsal stream. As a fully observable model of visual processing, the RNN also revealed a cortical hierarchy of temporal receptive window, dynamics of process memory, and spatiotemporal representations. These results support the hypothesis of process memory, and demonstrate the potential of using the RNN for in-depth computational understanding of dynamic natural vision. © 2018 Wiley Periodicals, Inc.
Using the false memory paradigm to test two key elements of alcohol expectancy theory.
Reich, Richard R; Goldman, Mark S; Noll, Jane A
2004-05-01
Two key aspects of alcohol expectancy theory--(a) that memories about alcohol effects are stored as relatively cohesive templates of information and (b) that these templates are automatically activated in alcohol-related contexts--were tested using the Deese-Roediger- McDermott false memory paradigm. Alcohol expectancy adjectives were studied, and false memory for expectancy target words was tested in neutral and alcohol contexts. Results indicated that in the alcohol context heavier drinkers showed more false memory for alcohol expectancy words than they did in a neutral context. Differences were not found for lighter drinkers. These results were consistent with alcohol expectancy theory, which was then compared with various forms of association theory in explaining these results and larger issues in the addiction field. ((c) 2004 APA, all rights reserved)
Cahan, Sorel; Mor, Yaniv
2007-03-01
This article challenges Yaakov Kareev's (1995a, 2000) argument regarding the positive bias of intuitive correlation estimates due to working memory capacity limitations and its adaptive value. The authors show that, under narrow window theory's primacy effect assumption, there is a considerable between-individual variability of the effects of capacity limitations on the intuitive assessment of correlation, in terms of both sign and magnitude: Limited capacity acts as an amplifier for some individuals and as a silencer for others. Furthermore, the average amount of attenuation exceeds the average amount of amplification, and the more so, the smaller the capacity. Implications regarding the applicability and contribution of the bias notion in this context and the evaluation of the adaptive value of capacity limitations are discussed.
Simplifying and speeding the management of intra-node cache coherence
Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton on Hudson, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Phillip [Cortlandt Manor, NY; Hoenicke, Dirk [Ossining, NY; Ohmacht, Martin [Yorktown Heights, NY
2012-04-17
A method and apparatus for managing coherence between two processors of a two processor node of a multi-processor computer system. Generally the present invention relates to a software algorithm that simplifies and significantly speeds the management of cache coherence in a message passing parallel computer, and to hardware apparatus that assists this cache coherence algorithm. The software algorithm uses the opening and closing of put/get windows to coordinate the activated required to achieve cache coherence. The hardware apparatus may be an extension to the hardware address decode, that creates, in the physical memory address space of the node, an area of virtual memory that (a) does not actually exist, and (b) is therefore able to respond instantly to read and write requests from the processing elements.
Analysis of the influence of memory content of auditory stimuli on the memory content of EEG signal
Namazi, Hamidreza; Kulish, Vladimir V.
2016-01-01
One of the major challenges in brain research is to relate the structural features of the auditory stimulus to structural features of Electroencephalogram (EEG) signal. Memory content is an important feature of EEG signal and accordingly the brain. On the other hand, the memory content can also be considered in case of stimulus. Beside all works done on analysis of the effect of stimuli on human EEG and brain memory, no work discussed about the stimulus memory and also the relationship that may exist between the memory content of stimulus and the memory content of EEG signal. For this purpose we consider the Hurst exponent as the measure of memory. This study reveals the plasticity of human EEG signals in relation to the auditory stimuli. For the first time we demonstrated that the memory content of an EEG signal shifts towards the memory content of the auditory stimulus used. The results of this analysis showed that an auditory stimulus with higher memory content causes a larger increment in the memory content of an EEG signal. For the verification of this result, we benefit from approximate entropy as indicator of time series randomness. The capability, observed in this research, can be further investigated in relation to human memory. PMID:27528219
Analysis of the influence of memory content of auditory stimuli on the memory content of EEG signal.
Namazi, Hamidreza; Khosrowabadi, Reza; Hussaini, Jamal; Habibi, Shaghayegh; Farid, Ali Akhavan; Kulish, Vladimir V
2016-08-30
One of the major challenges in brain research is to relate the structural features of the auditory stimulus to structural features of Electroencephalogram (EEG) signal. Memory content is an important feature of EEG signal and accordingly the brain. On the other hand, the memory content can also be considered in case of stimulus. Beside all works done on analysis of the effect of stimuli on human EEG and brain memory, no work discussed about the stimulus memory and also the relationship that may exist between the memory content of stimulus and the memory content of EEG signal. For this purpose we consider the Hurst exponent as the measure of memory. This study reveals the plasticity of human EEG signals in relation to the auditory stimuli. For the first time we demonstrated that the memory content of an EEG signal shifts towards the memory content of the auditory stimulus used. The results of this analysis showed that an auditory stimulus with higher memory content causes a larger increment in the memory content of an EEG signal. For the verification of this result, we benefit from approximate entropy as indicator of time series randomness. The capability, observed in this research, can be further investigated in relation to human memory.
Centripetal force draws the eyes, not memory of the target, toward the center.
Kerzel, Dirk
2003-05-01
Many observers believe that a target will continue on a curved trajectory after exiting a spiral tube. Similarly, when observers were asked to localize the final position of a target moving on a circular orbit, displacement of the judged position in the direction of forward motion ("representational momentum") and toward the center of the orbit was observed (cf. T. L. Hubbard, 1996). The present study shows that memory displacement of targets on a circular orbit is affected by eye movements. Forward displacement was larger with ocular pursuit of the target, whereas inward displacement was larger with motionless eyes. The results challenge an account attributing forward and inward displacement to mental analogues of momentum and centripetal force, respectively.
ERIC Educational Resources Information Center
Tine, Michele; Gotlieb, Rebecca
2013-01-01
This study compared the relative impact of gender-, race-, and income-based stereotype threat and examined if individuals with multiple stigmatized aspects of identity experience a larger stereotype threat effect on math performance and working memory function than people with one stigmatized aspect of identity. Seventy-one college students of the…
Verbal Learning and Memory in Cannabis and Alcohol Users: An Event-Related Potential Investigation
Smith, Janette L.; De Blasio, Frances M.; Iredale, Jaimi M.; Matthews, Allison J.; Bruno, Raimondo; Dwyer, Michelle; Batt, Tessa; Fox, Allison M.; Solowij, Nadia; Mattick, Richard P.
2017-01-01
Aims: Long-term heavy use of cannabis and alcohol are known to be associated with memory impairments. In this study, we used event-related potentials to examine verbal learning and memory processing in a commonly used behavioral task. Method: We conducted two studies: first, a small pilot study of adolescent males, comprising 13 Drug-Naive Controls (DNC), 12 heavy drinkers (HD) and 8 cannabis users (CU). Second, a larger study of young adults, comprising 45 DNC (20 female), 39 HD (16 female), and 20 CU (9 female). In both studies, participants completed a modified verbal learning task (the Rey Auditory Verbal Learning Test, RAVLT) while brain electrical activity was recorded. ERPs were calculated for words which were subsequently remembered vs. those which were not remembered, and for presentations of learnt words, previously seen words, and new words in a subsequent recognition test. Pre-planned principal components analyses (PCA) were used to quantify the ERP components in these recall and recognition phases separately for each study. Results: Memory performance overall was slightly lower than published norms using the standardized RAVLT delivery, but was generally similar and showed the expected changes over trials. Few differences in performance were observed between groups; a notable exception was markedly poorer delayed recall in HD relative to DNC (Study 2). PCA identified components expected from prior research using other memory tasks. At encoding, there were no between-group differences in the usual P2 recall effect (larger for recalled than not-recalled words). However, alcohol-related differences were observed in a larger P540 (indexing recollection) in HD than DNC, and cannabis-related differences were observed in a smaller N340 (indexing familiarity) and a lack of previously seen > new words effect for P540 in Study 2. Conclusions: This study is the first examination of ERPs in the RAVLT in healthy control participants, as well as substance-using individuals, and represents an important advance in methodology. The results indicate alterations in recognition memory processing, which even if not manifesting in overt behavioral impairment, underline the potential for brain dysfunction with early exposure to alcohol and cannabis. PMID:29276495
Combined Cognitive Training vs. Memory Strategy Training in Healthy Older Adults
Li, Bing; Zhu, Xinyi; Hou, Jianhua; Chen, Tingji; Wang, Pengyun; Li, Juan
2016-01-01
As mnemonic utilization deficit in older adults associates with age-related decline in executive function, we hypothesized that memory strategy training combined with executive function training might induce larger training effect in memory and broader training effects in non-memory outcomes than pure memory training. The present study compared the effects of combined cognitive training (executive function training plus memory strategy training) to pure memory strategy training. Forty healthy older adults were randomly assigned to a combined cognitive training group or a memory strategy training group. A control group receiving no training was also included. Combined cognitive training group received 16 sessions of training (eight sessions of executive function training followed by eight sessions of memory strategy training). Memory training group received 16 sessions of memory strategy training. The results partly supported our hypothesis in that indeed improved performance on executive function was only found in combined training group, whereas memory performance increased less in combined training compared to memory strategy group. Results suggest that combined cognitive training may be less efficient than pure memory training in memory outcomes, though the influences from insufficient training time and less closeness between trained executive function and working memory could not be excluded; however it has broader training effects in non-memory outcomes. Clinical Trial Registration: www.chictr.org.cn, identifier ChiCTR-OON-16007793. PMID:27375521
Can Changes in Eye Movement Scanning Alter the Age-Related Deficit in Recognition Memory?
Chan, Jessica P. K.; Kamino, Daphne; Binns, Malcolm A.; Ryan, Jennifer D.
2011-01-01
Older adults typically exhibit poorer face recognition compared to younger adults. These recognition differences may be due to underlying age-related changes in eye movement scanning. We examined whether older adults’ recognition could be improved by yoking their eye movements to those of younger adults. Participants studied younger and older faces, under free viewing conditions (bases), through a gaze-contingent moving window (own), or a moving window which replayed the eye movements of a base participant (yoked). During the recognition test, participants freely viewed the faces with no viewing restrictions. Own-age recognition biases were observed for older adults in all viewing conditions, suggesting that this effect occurs independently of scanning. Participants in the bases condition had the highest recognition accuracy, and participants in the yoked condition were more accurate than participants in the own condition. Among yoked participants, recognition did not depend on age of the base participant. These results suggest that successful encoding for all participants requires the bottom-up contribution of peripheral information, regardless of the locus of control of the viewer. Although altering the pattern of eye movements did not increase recognition, the amount of sampling of the face during encoding predicted subsequent recognition accuracy for all participants. Increased sampling may confer some advantages for subsequent recognition, particularly for people who have declining memory abilities. PMID:21687460
Sliding Window Generalized Kernel Affine Projection Algorithm Using Projection Mappings
NASA Astrophysics Data System (ADS)
Slavakis, Konstantinos; Theodoridis, Sergios
2008-12-01
Very recently, a solution to the kernel-based online classification problem has been given by the adaptive projected subgradient method (APSM). The developed algorithm can be considered as a generalization of a kernel affine projection algorithm (APA) and the kernel normalized least mean squares (NLMS). Furthermore, sparsification of the resulting kernel series expansion was achieved by imposing a closed ball (convex set) constraint on the norm of the classifiers. This paper presents another sparsification method for the APSM approach to the online classification task by generating a sequence of linear subspaces in a reproducing kernel Hilbert space (RKHS). To cope with the inherent memory limitations of online systems and to embed tracking capabilities to the design, an upper bound on the dimension of the linear subspaces is imposed. The underlying principle of the design is the notion of projection mappings. Classification is performed by metric projection mappings, sparsification is achieved by orthogonal projections, while the online system's memory requirements and tracking are attained by oblique projections. The resulting sparsification scheme shows strong similarities with the classical sliding window adaptive schemes. The proposed design is validated by the adaptive equalization problem of a nonlinear communication channel, and is compared with classical and recent stochastic gradient descent techniques, as well as with the APSM's solution where sparsification is performed by a closed ball constraint on the norm of the classifiers.
A memory structure adapted simulated annealing algorithm for a green vehicle routing problem.
Küçükoğlu, İlker; Ene, Seval; Aksoy, Aslı; Öztürk, Nursel
2015-03-01
Currently, reduction of carbon dioxide (CO2) emissions and fuel consumption has become a critical environmental problem and has attracted the attention of both academia and the industrial sector. Government regulations and customer demands are making environmental responsibility an increasingly important factor in overall supply chain operations. Within these operations, transportation has the most hazardous effects on the environment, i.e., CO2 emissions, fuel consumption, noise and toxic effects on the ecosystem. This study aims to construct vehicle routes with time windows that minimize the total fuel consumption and CO2 emissions. The green vehicle routing problem with time windows (G-VRPTW) is formulated using a mixed integer linear programming model. A memory structure adapted simulated annealing (MSA-SA) meta-heuristic algorithm is constructed due to the high complexity of the proposed problem and long solution times for practical applications. The proposed models are integrated with a fuel consumption and CO2 emissions calculation algorithm that considers the vehicle technical specifications, vehicle load, and transportation distance in a green supply chain environment. The proposed models are validated using well-known instances with different numbers of customers. The computational results indicate that the MSA-SA heuristic is capable of obtaining good G-VRPTW solutions within a reasonable amount of time by providing reductions in fuel consumption and CO2 emissions.
Tough times call for bigger brains
Pravosudov, Vladimir V
2009-01-01
Memory is crucial for survival in many animals. Spatial memory in particular is important for food-caching species and may be influenced by selective pressures such as climate. The influence of climate on memory may be facilitated through the hippocampus (Hp), the part of the brain responsible in part for spatial memory. In a recent paper, we conducted the first large-scale test of the relationship between memory, the climate and the brain in a single food-caching species, the black-capped chickadee (Poecile atricapillus). We found that birds from more harsh northern climates had significantly larger hippocampal volumes and more neurons than those from more mild southern latitudes. This work suggests that environmental pressures are capable of influencing specific brain regions, which may result in enhanced memory, and hence survival, in harsh climates. This work gives us a better understanding of how the brain responds to different environments and how animals can adapt to their environment in general. PMID:19641741
Autobiographical memory bias in social anxiety.
Krans, Julie; de Bree, June; Bryant, Richard A
2014-01-01
In social anxiety the psychological self is closely related to the feared stimulus. Socially anxious individuals are, by definition, concerned about how the self is perceived and evaluated by others. As autobiographical memory is strongly related to views of the self it follows that biases in autobiographical memory play an important role in social anxiety. In the present study high (n = 19) and low (n = 29) socially anxious individuals were compared on autobiographical memory bias, current goals, and self-discrepancy. Individuals high in social anxiety showed a bias towards recalling more negative and more social anxiety-related autobiographical memories, reported more current goals related to overcoming social anxiety, and showed larger self-discrepancies. The pattern of results is largely in line with earlier research in individuals with PTSD and complicated grief. This suggests that the relation between autobiographical memory bias and the self is a potentially valuable trans-diagnostic factor.
Remembering Places in Space: A Human Analog Study of the Morris Water Maze
NASA Astrophysics Data System (ADS)
Fitting, Sylvia; Allen, Gary L.; Wedell, Douglas H.
We conducted a human analog study of the Morris Water Maze, with individuals indicating a remembered location in a 3 m diameter arena over different intervals of time and with different memory loads. The primary focus of the study was to test a theory of how varying cue location and number of cues affects memory for spatial location. As expected, memory performance, as measured by proximity to the actual location, was negatively affected by increasing memory load, increasing delay interval, and decreasing the number of cues. As memory performance decremented, bias effects increased and were in accordance with the cue-based memory model described by Fitting, Wedell and Allen (2005). Specifically, remembered locations were biased toward the nearest cue and error decreased with more cues. These results demonstrate that localization processes that apply to small two-dimensional task fields may generalize to a larger traversable task field.
Sparse distributed memory and related models
NASA Technical Reports Server (NTRS)
Kanerva, Pentti
1992-01-01
Described here is sparse distributed memory (SDM) as a neural-net associative memory. It is characterized by two weight matrices and by a large internal dimension - the number of hidden units is much larger than the number of input or output units. The first matrix, A, is fixed and possibly random, and the second matrix, C, is modifiable. The SDM is compared and contrasted to (1) computer memory, (2) correlation-matrix memory, (3) feet-forward artificial neural network, (4) cortex of the cerebellum, (5) Marr and Albus models of the cerebellum, and (6) Albus' cerebellar model arithmetic computer (CMAC). Several variations of the basic SDM design are discussed: the selected-coordinate and hyperplane designs of Jaeckel, the pseudorandom associative neural memory of Hassoun, and SDM with real-valued input variables by Prager and Fallside. SDM research conducted mainly at the Research Institute for Advanced Computer Science (RIACS) in 1986-1991 is highlighted.
Sumner, Jennifer A.; Griffith, James W.; Mineka, Susan; Rekart, Kathleen Newcomb; Zinbarg, Richard E.; Craske, Michelle G.
2012-01-01
This study investigated whether overgeneral autobiographical memory (OGM) predicts the course of depression in adolescents. As part of a larger longitudinal study of risk for emotional disorders, 55 adolescents with a past history of major depressive disorder or minor depressive disorder completed the Autobiographical Memory Test. Fewer specific memories predicted the subsequent onset of a major depressive episode (MDE) over a 16-month follow-up period, even when covarying baseline depressive symptoms. This main effect was qualified by an interaction between specific memories and chronic interpersonal stress: Fewer specific memories predicted greater risk of MDE onset over follow-up at high (but not low) levels of chronic interpersonal stress. Thus, our findings suggest that OGM, in interaction with chronic interpersonal stress, predicts the course of depression among adolescents, and highlight the importance of measuring interpersonal stress in OGM research. PMID:21432666
Episodic memory impairment in systemic lupus erythematosus: involvement of thalamic structures.
Zimmermann, Nicolle; Corrêa, Diogo Goulart; Netto, Tania Maria; Kubo, Tadeu; Pereira, Denis Batista; Fonseca, Rochele Paz; Gasparetto, Emerson Leandro
2015-02-01
Episodic memory deficits in systemic lupus erythematosus (SLE) have been frequently reported in the literature; however, little is known about the neural correlates of these deficits. We investigated differences in the volumes of different brain structures of SLE patients with and without episodic memory impairments diagnosed by the Rey Auditory Verbal Learning Test (RAVLT). Groups were paired based on age, education, sex, Mini Mental State Examination score, accumulation of disease burden (SLICC), and focused attention dimension score. Patients underwent magnetic resonance imaging (MRI). Cortical volumetric reconstruction and segmentation of the MR images were performed with the FreeSurfer software program. SLE patients with episodic memory deficits presented shorter time of diagnosis than SLE patients without episodic memory deficits. ANOVA revealed that SLE patients with episodic memory deficits had a larger third ventricle volume than SLE patients without episodic memory deficits and controls. Additionally, covariance analysis indicated group effects on the bilateral thalamus and on the third ventricle. Our findings indicate that episodic memory may be impaired in SLE patients with normal hippocampal volume. In addition, the thalamus may undergo volumetric changes associated with episodic memory loss in SLE.
Randomized Controlled Trial Considering Varied Exercises for Reducing Proactive Memory Interference.
Frith, Emily; Sng, Eveleen; Loprinzi, Paul D
2018-06-11
We evaluated the effects of exercise on proactive memory interference. Study 1 ( n = 88) employed a 15-min treadmill walking protocol, while Study 2 ( n = 88) included a 15-min bout of progressive maximal exertion treadmill exercise. Each study included four distinct groups, in which groups of 22 participants each were randomly assigned to: (a) exercise before memory encoding, (b) a control group with no exercise, (c) exercise during memory encoding, and (d) exercise after memory encoding (i.e., during memory consolidation). We used the Rey Auditory Verbal Learning Test (RAVLT) to assess proactive memory interference. In both studies, the group that exercised prior to memory encoding recalled the most words from list B (distractor list) of the RAVLT, though group differences were not statistically significant for Study 1 (walking exercise) ( p = 0.521) or Study 2 (high-intensity exercise) ( p = 0.068). In this sample of young adults, high intensity exercise prior to memory encoding showed a non-significant tendency to attenuate impairments in recall attributable to proactive memory interference. Thus, future work with larger samples is needed to clarify potential beneficial effects of exercise for reducing proactive memory interference.
BIPV-powered smart windows utilizing photovoltaic and electrochromic devices.
Ma, Rong-Hua; Chen, Yu-Chia
2012-01-01
A BIPV-powered smart window comprising a building-integrated photovoltaic (BIPV) panel and an all-solid-state electrochromic (EC) stack is proposed. In the proposed device, the output voltage of the BIPV panel varies in accordance with the intensity of the incident light and is modulated in such a way as to generate the EC stack voltage required to maintain the indoor illuminance within a specified range. Two different EC stacks are fabricated and characterized, namely one stack comprising ITO/WO(3)/Ta(2)O(5)/ITO and one stack comprising ITO/WO(3)/lithium-polymer electrolyte/ITO. It is shown that of the two stacks, the ITO/WO(3)/lithium-polymer electrolyte/ITO stack has a larger absorptance (i.e., approximately 99% at a driving voltage of 3.5 V). The experimental results show that the smart window incorporating an ITO/WO(3)/lithium-polymer electrolyte/ITO stack with an electrolyte thickness of 1.0 μm provides an indoor illuminance range of 750-1,500 Lux under typical summertime conditions in Taiwan.
Percutaneous window chamber method for chronic intravital microscopy of sensor-tissue interactions.
Koschwanez, Heidi E; Klitzman, Bruce; Reichert, W Monty
2008-11-01
A dorsal, two-sided skin-fold window chamber model was employed previously by Gough in glucose sensor research to characterize poorly understood physiological factors affecting sensor performance. We have extended this work by developing a percutaneous one-sided window chamber model for the rodent dorsum that offers both a larger subcutaneous area and a less restrictive tissue space than previous animal models. A surgical procedure for implanting a sensor into the subcutis beneath an acrylic window (15 mm diameter) is presented. Methods to quantify changes in the microvascular network and red blood cell perfusion around the sensors using noninvasive intravital microscopy and laser Doppler flowmetry are described. The feasibility of combining interstitial glucose monitoring from an implanted sensor with intravital fluorescence microscopy was explored using a bolus injection of fluorescein and dextrose to observe real-time mass transport of a small molecule at the sensor-tissue interface. The percutaneous window chamber provides an excellent model for assessing the influence of different sensor modifications, such as surface morphologies, on neovascularization using real-time monitoring of the microvascular network and tissue perfusion. However, the tissue response to an implanted sensor was variable, and some sensors migrated entirely out of the field of view and could not be observed adequately. A percutaneous optical window provides direct, real-time images of the development and dynamics of microvascular networks, microvessel patency, and fibrotic encapsulation at the tissue-sensor interface. Additionally, observing microvessels following combined bolus injections of a fluorescent dye and glucose in the local sensor environment demonstrated a valuable technique to visualize mass transport at the sensor surface.
Sikka, Kapil; Kairo, Arvind; Singh, Chirom Amit; Roy, T S; Lalwani, Sanjeev; Kumar, Rakesh; Thakar, Alok; Sharma, Suresh C
2017-09-01
To evaluate the extent of intracochlear damage by histologic assessment of cadaveric temporal bones after insertion of cochlear implants by: round window approach and cochleostomy approach. Cochlear implantation was performed by transmastoid facial recess approach in 10 human cadaveric temporal bones. In 5 temporal bones, electrode insertion was acheieved by round window approach and in the remaining 5 bones, by cochleostomy approach. The bones were fixed, decalcified, sectioned and studied histologically. Grading of insertion trauma was assessed. In the round window insertion group, 2 bones had to be excluded from the study: one was damaged during handling with electrode extrusion and another bone did not show any demonstrable identifiable cochlear structure. Out of the 3 temporal bones, a total of 35 sections were examined: 24 demonstrated normal cochlea, 4 had basilar membrane bulging and 7 had fracture of bony spiral lamina. In the cochleostomy group, histology of 2 bones had to be discarded due to lack of any identifiable inner ear structures. Out of the 3 bones studied, 18 sections were examined: only 3 were normal, 4 sections had some bulge in spiral lamina and 11 had fracture of bony spiral lamina. The fracture of spiral lamina and bulge of basement membrane proportion is relatively higher if we perform cochleostomy as compared to round window approach. Therefore, round window insertion is relatively less traumatic as compared to cochleostomy. However, our sample size was very small and a study with a larger sample is required to further validate these findings.
The Impact of Changing Cloud Cover on the High Arctic's Primary Cooling-to-space Windows
NASA Astrophysics Data System (ADS)
Mariani, Zen; Rowe, Penny; Strong, Kimberly; Walden, Von; Drummond, James
2014-05-01
In the Arctic, most of the infrared energy emitted by the surface escapes to space in two atmospheric windows at 10 and 20 μm. As the Arctic warms, the 20 μm cooling-to-space window becomes increasingly opaque (or "closed"), trapping more surface infrared radiation in the atmosphere, with implications for the Arctic's radiative energy balance. Since 2006, the Canadian Network for the Detection of Atmospheric Change (CANDAC) has measured downwelling infrared radiance with an Atmospheric Emitted Radiance Interferometer (AERI) at the Polar Environment Atmospheric Research Laboratory (PEARL) at Eureka, Canada, providing the first long-term measurements of the 10 and 20 μm windows in the high Arctic. In this work, measurements of the distribution of downwelling 10 and 20 µm brightness temperatures at Eureka are separated based on cloud cover, providing a comparison to an existing climatology from the Southern Great Plains (SGP). Measurements of the downwelling radiance at both 10 and 20 μm exhibit strong seasonal variability as a result of changes in temperature and water vapour, in addition to variability with cloud cover. When separated by season, brightness temperatures in the 20 µm window are found to be independent of cloud thickness in the summertime, indicating that this window is closed in the summer. Radiance trends in three-month averages are positive and are significantly larger (factor > 5) than the trends detected at the SGP, indicating that changes in the downwelling radiance are accelerated in the high Arctic compared to lower latitudes. This statistically significant increase (> 5% / yr) in radiance at 10 μm occurs only when the 20 μm window is mostly transparent, or "open" (i.e., in all seasons except summer), and may have long-term consequences, particularly as warmer temperatures and increased water vapour "close" the dirty window for a prolonged period. These surface-based measurements of radiative forcing can be used to quantify changes in the high-Arctic energy budget and evaluate general circulation model simulations.
Yanagawa, Masahiro; Kusumoto, Masahiko; Johkoh, Takeshi; Noguchi, Masayuki; Minami, Yuko; Sakai, Fumikazu; Asamura, Hisao; Tomiyama, Noriyuki
2018-05-01
Measuring the size of invasiveness on computed tomography (CT) for the T descriptor size was deemed important in the 8th edition of the TNM lung cancer classification. We aimed to correlate the maximal dimensions of the solid portions using both lung and mediastinal window settings on CT imaging with the pathologic invasiveness (> 0.5 cm) in lung adenocarcinoma patients. The study population consisted of 378 patients with a histologic diagnosis of adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), invasive adenocarcinoma (IVA)-lepidic, IVA-acinar and/or IVA-papillary, and IVA-micropapillary and/or solid adenocarcinoma. A panel of 15 radiologists was divided into 2 groups (group A, 9 radiologists; and group B, 6 radiologists). The 2 groups independently measured the maximal and perpendicular dimensions of the solid components and entire tumors on the lung and mediastinal window settings. The solid proportion of nodule was calculated by dividing the solid portion size (lung and mediastinal window settings) by the nodule size (lung window setting). The maximal dimensions of the invasive focus were measured on the corresponding pathologic specimens by 2 pathologists. The solid proportion was larger in the following descending order: IVA-micropapillary and/or solid, IVA-acinar and/or papillary, IVA-lepidic, MIA, and AIS. For both groups A and B, a solid portion > 0.8 cm in the lung window setting or > 0.6 cm in the mediastinal window setting on CT was a significant indicator of pathologic invasiveness > 0.5 cm (P < .001; receiver operating characteristic analysis using Youden's index). A solid portion > 0.8 cm on the lung window setting or solid portion > 0.6 cm on the mediastinal window setting on CT predicts for histopathologic invasiveness to differentiate IVA from MIA and AIS. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
McKendrick, Ryan; Shaw, Tyler; de Visser, Ewart; Saqer, Haneen; Kidwell, Brian; Parasuraman, Raja
2014-05-01
Assess team performance within a net-worked supervisory control setting while manipulating automated decision aids and monitoring team communication and working memory ability. Networked systems such as multi-unmanned air vehicle (UAV) supervision have complex properties that make prediction of human-system performance difficult. Automated decision aid can provide valuable information to operators, individual abilities can limit or facilitate team performance, and team communication patterns can alter how effectively individuals work together. We hypothesized that reliable automation, higher working memory capacity, and increased communication rates of task-relevant information would offset performance decrements attributed to high task load. Two-person teams performed a simulated air defense task with two levels of task load and three levels of automated aid reliability. Teams communicated and received decision aid messages via chat window text messages. Task Load x Automation effects were significant across all performance measures. Reliable automation limited the decline in team performance with increasing task load. Average team spatial working memory was a stronger predictor than other measures of team working memory. Frequency of team rapport and enemy location communications positively related to team performance, and word count was negatively related to team performance. Reliable decision aiding mitigated team performance decline during increased task load during multi-UAV supervisory control. Team spatial working memory, communication of spatial information, and team rapport predicted team success. An automated decision aid can improve team performance under high task load. Assessment of spatial working memory and the communication of task-relevant information can help in operator and team selection in supervisory control systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
San Emeterio Alvarez, L.; Lacoste, B.; Rodmacq, B.
2014-05-07
Field-current phase diagrams were measured on in-plane anisotropy Co{sub 60}Fe{sub 20}B{sub 20} magnetic tunnel junctions to obtain the spin transfer torque (STT) field-current switching window. These measurements were used to characterise junctions with varying free layer thicknesses from 2.5 down to 1.1 nm having a reduced effective demagnetizing field due to the perpendicular magnetic anisotropy at CoFeB/MgO interface. Diagrams were obtained with 100 ns current pulses, of either same or alternating polarity. When consecutive pulses have the same polarity, it is possible to realize the STT switching even for conditions having a low switching probability. This was evidenced in diagrams with consecutivemore » pulses of alternating polarity, with 100% switching obtained at 4.7 MA/cm{sup 2}, compared to the lower 3.4 MA/cm{sup 2} value for same polarity pulses. Although the low level of the current density window is higher in alternating polarity diagrams, the field window in both diagrams is the same and therefore independent of the pulse polarity sequence.« less
Berti, Stefan
2016-01-01
The flexible access to information in working memory is crucial for adaptive behavior. It is assumed that this is realized by switching the focus of attention within working memory. Switching of attention is mirrored in the P3a component of the human event-related brain potential (ERP) and it has been argued that the processes reflected by the P3a are also relevant for selecting information within working memory. The aim of the present study was to further evaluate whether the P3a mirrors genuine switching of attention within working memory by applying an object switching task: Participants updated a memory list of four digits either by replacing one item with another digit or by processing the stored digit. ERPs were computed separately for two types of trials: (1) trials in which an object was repeated and (2) trials in which a switch to a new object was required in order to perform the task. Object-switch trials showed increased response times compared with repetition trials in both task conditions. In addition, switching costs were increased in the processing compared with the replacement condition. Pronounced P3a’s were obtained in switching trials but there were no difference between the two updating tasks (replacement or processing). These results were qualified by the finding that the magnitude of the visual location shift also affects the ERPs in the P3a time window. Taken together, the present pattern of results suggest that the P3a reflects an initial process of selecting information in working memory but not the memory updating itself. PMID:26779009
Memory in Elementary School Children Is Improved by an Unrelated Novel Experience.
Ballarini, Fabricio; Martínez, María Cecilia; Díaz Perez, Magdalena; Moncada, Diego; Viola, Haydée
2013-01-01
Education is the most traditional means with formative effect on the human mind, learning and memory being its fundamental support. For this reason, it is essential to find different strategies to improve the studentś performance. Based on previous work, we hypothesized that a novel experience could exert an enhancing effect on learning and memory within the school environment. Here we show that novel experience improved the memory of literary or graphical activities when it is close to these learning sessions. We found memory improvements in groups of students who had experienced a novel science lesson 1 hour before or after the reading of a story, but not when these events were 4 hours apart. Such promoting effect on long-term memory (LTM) was also reproduced with another type of novelty (a music lesson) and also after another type of learning task (a visual memory). Interestingly, when the lesson was familiar, it failed to enhance the memory of the other task. Our results show that educationally relevant novel events experienced during normal school hours can improve LTM for tasks/activities learned during regular school lessons. This effect is restricted to a critical time window around learning and is particularly dependent on the novel nature of the associated experience. These findings provide a tool that could be easily transferred to the classroom by the incorporation of educationally novel events in the school schedule as an extrinsic adjuvant of other information acquired some time before or after it. This approach could be a helpful tool for the consolidation of certain types of topics that generally demand a great effort from the children.
Svenningsen, Helle; Egerod, Ingrid; Dreyer, Pia
2016-10-01
To describe the content of former intensive care unit patients' memories of delusions. Intensive care unit patients often have strange and frightening experiences during the critical stage of illness. Earlier studies have provided small-sample in-depth descriptions of patient experiences in intensive care unit, but large-scale studies are also needed to inform intensive care unit follow-up. The study had a qualitative design using phenomenological hermeneutic analysis inspired by Ricoeur's interpretive theory. Patients were assessed with Confusion Assessment Method of the Intensive Care Unit for delirium in intensive care unit, and after discharge, memories of delusions were described by 114 of 325 patients in face-to-face (after two weeks) and telephone interviews (after two and six months) using the Intensive Care Unit Memory Tool. Four themes emerged: the ever-present family, dynamic spaces, surviving challenges and constant motion. Memories of delusions were a vivid mix of fact and fiction, demonstrating dynamic shifts in time, place and motion, but not dependent on the presence of delirium assessed by Confusion Assessment Method of the Intensive Care Unit. Analysis based on Ricoeurian phenomenological hermeneutics provided insights into themes in intensive care unit patients' memories of delusions. More studies are needed to understand the meaning of memories of delusions, the commonality of themes and the association between delusions and delirium after an intensive care unit stay. Understanding patients' memories of delusions is beneficial to nurses caring for patients that are anxious, upset or agitated. It opens a window to the world of the patient who is unable to communicate due to intubation and general weakness. We recommend the provision of nurse-led intensive care unit follow-up enabling patients to describe and discuss their intensive care unit experiences. © 2016 John Wiley & Sons Ltd.
In Search of Decay in Verbal Short-Term Memory
Berman, Marc G.; Jonides, John; Lewis, Richard L.
2014-01-01
Is forgetting in the short term due to decay with the mere passage of time, interference from other memoranda, or both? Past research on short-term memory has revealed some evidence for decay and a plethora of evidence showing that short-term memory is worsened by interference. However, none of these studies has directly contrasted decay and interference in short-term memory in a task that rules out the use of rehearsal processes. In this article the authors present a series of studies using a novel paradigm to address this problem directly, by interrogating the operation of decay and interference in short-term memory without rehearsal confounds. The results of these studies indicate that short-term memories are subject to very small decay effects with the mere passage of time but that interference plays a much larger role in their degradation. The authors discuss the implications of these results for existing models of memory decay and interference. PMID:19271849
In search of decay in verbal short-term memory.
Berman, Marc G; Jonides, John; Lewis, Richard L
2009-03-01
Is forgetting in the short term due to decay with the mere passage of time, interference from other memoranda, or both? Past research on short-term memory has revealed some evidence for decay and a plethora of evidence showing that short-term memory is worsened by interference. However, none of these studies has directly contrasted decay and interference in short-term memory in a task that rules out the use of rehearsal processes. In this article the authors present a series of studies using a novel paradigm to address this problem directly, by interrogating the operation of decay and interference in short-term memory without rehearsal confounds. The results of these studies indicate that short-term memories are subject to very small decay effects with the mere passage of time but that interference plays a much larger role in their degradation. The authors discuss the implications of these results for existing models of memory decay and interference. (c) 2009 APA, all rights reserved
Opportunities for nonvolatile memory systems in extreme-scale high-performance computing
Vetter, Jeffrey S.; Mittal, Sparsh
2015-01-12
For extreme-scale high-performance computing systems, system-wide power consumption has been identified as one of the key constraints moving forward, where DRAM main memory systems account for about 30 to 50 percent of a node's overall power consumption. As the benefits of device scaling for DRAM memory slow, it will become increasingly difficult to keep memory capacities balanced with increasing computational rates offered by next-generation processors. However, several emerging memory technologies related to nonvolatile memory (NVM) devices are being investigated as an alternative for DRAM. Moving forward, NVM devices could offer solutions for HPC architectures. Researchers are investigating how to integratemore » these emerging technologies into future extreme-scale HPC systems and how to expose these capabilities in the software stack and applications. In addition, current results show several of these strategies could offer high-bandwidth I/O, larger main memory capacities, persistent data structures, and new approaches for application resilience and output postprocessing, such as transaction-based incremental checkpointing and in situ visualization, respectively.« less
MacNamara, Annmarie; Schmidt, Joseph; Zelinsky, Gregory J; Hajcak, Greg
2012-12-01
Working memory load reduces the late positive potential (LPP), consistent with the notion that functional activation of the DLPFC attenuates neural indices of sustained attention. Visual attention also modulates the LPP. In the present study, we sought to determine whether working memory load might exert its influence on ERPs by reducing fixations to arousing picture regions. We simultaneously recorded eye-tracking and EEG while participants performed a working memory task interspersed with the presentation of task-irrelevant fearful and neutral faces. As expected, fearful compared to neutral faces elicited larger N170 and LPP amplitudes; in addition, working memory load reduced the N170 and the LPP. Participants made more fixations to arousing regions of neutral faces and faces presented under high working memory load. Therefore, working memory load did not induce avoidance of arousing picture regions and visual attention cannot explain load effects on the N170 and LPP. Copyright © 2012 Elsevier B.V. All rights reserved.
Fairfield, Beth; Mammarella, Nicola; Franzago, Marica; Di Domenico, Alberto; Stuppia, Liborio; Gatta, Valentina
2018-02-01
Cannabinoid receptor 1 gene (CNR1) variants have been related to affective information processing and, in particular, to stress release. Here, we aimed to examine whether the endocannabinoid system via CNR1 signaling modulates affective working memory, the memory system that transiently maintains and manipulates emotionally charged material. We focused on rs2180619 (A > G) polymorphism and examined genotype data collected from 231 healthy females. Analyses showed how a general positivity bias in working memory (i.e., better memory for positive words) emerged as task strings lengthened only in carriers of the major allele (AA/AG). Differently, GG carriers showed better memory for affective items in general (i.e., positive and negative words). These findings are some of the first to directly highlight the role of variant on promoter of the CNR1 gene in affective working memory and to evidence a differentiation among CNR1 genotypes in terms of larger difficulties in disengaging from negative stimuli in GG carriers.
Heterogeneous memory in restitution of action potential duration in pig ventricles.
Jing, Linyuan; Chourasia, Sonam; Patwardhan, Abhijit
2010-01-01
Restitution of action potential duration and memory importantly affect electrical stability in ventricles. Studies have reported heterogeneous restitution among different regions of the ventricles. However, existence of heterogeneity in memory is not as well investigated. Transmembrane potentials were recorded in endocardial and epicardial tissues from both ventricles of farm pigs. Pacing protocols with sinusoidally changing diastolic intervals were used to reveal hysteresis in restitution, from which quantitative measures of memory were calculated. Larger measures of hysteresis were observed in the endocardium than the epicardium (P < .05): loop thickness (in milliseconds), 26.9 vs 16.2; overall tilt, 0.376 vs 0.249; and loop area (in square milliseconds), 7288 vs 4146. Except for overall tilt, no significant differences in these measures were observed between ventricles. Heterogeneity in memory exists in pig ventricles. Because regions with the steepest restitution may also have the largest memory, our results suggest that heterogeneity in memory should also be factored in when predicting electrical stability. Copyright 2010 Elsevier Inc. All rights reserved.
Smeets, Monique A M; Dijs, M Willem; Pervan, Iva; Engelhard, Iris M; van den Hout, Marcel A
2012-01-01
The time-course of changes in vividness and emotionality of unpleasant autobiographical memories associated with making eye movements (eye movement desensitisation and reprocessing, EMDR) was investigated. Participants retrieved unpleasant autobiographical memories and rated their vividness and emotionality prior to and following 96 seconds of making eye movements (EM) or keeping eyes stationary (ES); at 2, 4, 6, and 10 seconds into the intervention; then followed by regular larger intervals throughout the 96-second intervention. Results revealed a significant drop compared to the ES group in emotionality after 74 seconds compared to a significant drop in vividness at only 2 seconds into the intervention. These results support that emotionality becomes reduced only after vividness has dropped. The results are discussed in light of working memory theory and visual imagery theory, following which the regular refreshment of the visual memory needed to maintain it in working memory is interfered with by eye movements that also tax working memory, which affects vividness first.
Tunneling current in HfO2 and Hf0.5Zr0.5O2-based ferroelectric tunnel junction
NASA Astrophysics Data System (ADS)
Dong, Zhipeng; Cao, Xi; Wu, Tong; Guo, Jing
2018-03-01
Ferroelectric tunnel junctions (FTJs) have been intensively explored for future low power data storage and information processing applications. Among various ferroelectric (FE) materials studied, HfO2 and H0.5Zr0.5O2 (HZO) have the advantage of CMOS process compatibility. The validity of the simple effective mass approximation, for describing the tunneling process in these materials, is examined by computing the complex band structure from ab initio simulations. The results show that the simple effective mass approximation is insufficient to describe the tunneling current in HfO2 and HZO materials, and quantitative accurate descriptions of the complex band structures are indispensable for calculation of the tunneling current. A compact k . p Hamiltonian is parameterized to and validated by ab initio complex band structures, which provides a method for efficiently and accurately computing the tunneling current in HfO2 and HZO. The device characteristics of a metal/FE/metal structure and a metal/FE/semiconductor (M-F-S) structure are investigated by using the non-equilibrium Green's function formalism with the parameterized effective Hamiltonian. The result shows that the M-F-S structure offers a larger resistance window due to an extra barrier in the semiconductor region at off-state. A FTJ utilizing M-F-S structure is beneficial for memory design.
Radiation-Hardened Solid-State Drive
NASA Technical Reports Server (NTRS)
Sheldon, Douglas J.
2010-01-01
A method is provided for a radiationhardened (rad-hard) solid-state drive for space mission memory applications by combining rad-hard and commercial off-the-shelf (COTS) non-volatile memories (NVMs) into a hybrid architecture. The architecture is controlled by a rad-hard ASIC (application specific integrated circuit) or a FPGA (field programmable gate array). Specific error handling and data management protocols are developed for use in a rad-hard environment. The rad-hard memories are smaller in overall memory density, but are used to control and manage radiation-induced errors in the main, and much larger density, non-rad-hard COTS memory devices. Small amounts of rad-hard memory are used as error buffers and temporary caches for radiation-induced errors in the large COTS memories. The rad-hard ASIC/FPGA implements a variety of error-handling protocols to manage these radiation-induced errors. The large COTS memory is triplicated for protection, and CRC-based counters are calculated for sub-areas in each COTS NVM array. These counters are stored in the rad-hard non-volatile memory. Through monitoring, rewriting, regeneration, triplication, and long-term storage, radiation-induced errors in the large NV memory are managed. The rad-hard ASIC/FPGA also interfaces with the external computer buses.
Memory training interventions for older adults: a meta-analysis.
Gross, Alden L; Parisi, Jeanine M; Spira, Adam P; Kueider, Alexandra M; Ko, Jean Y; Saczynski, Jane S; Samus, Quincy M; Rebok, George W
2012-01-01
A systematic review and meta-analysis of memory training research was conducted to characterize the effect of memory strategies on memory performance among cognitively intact, community-dwelling older adults, and to identify characteristics of individuals and of programs associated with improved memory. The review identified 402 publications, of which 35 studies met criteria for inclusion. The overall effect size estimate, representing the mean standardized difference in pre-post change between memory-trained and control groups, was 0.31 standard deviations (SD; 95% confidence interval (CI): 0.22, 0.39). The pre-post training effect for memory-trained interventions was 0.43 SD (95% CI: 0.29, 0.57) and the practice effect for control groups was 0.06 SD (95% CI: 0.05, 0.16). Among 10 distinct memory strategies identified in studies, meta-analytic methods revealed that training multiple strategies was associated with larger training gains (p=0.04), although this association did not reach statistical significance after adjusting for multiple comparisons. Treatment gains among memory-trained individuals were not better after training in any particular strategy, or by the average age of participants, session length, or type of control condition. These findings can inform the design of future memory training programs for older adults.
Memory improvement via slow-oscillatory stimulation during sleep in older adults.
Westerberg, Carmen E; Florczak, Susan M; Weintraub, Sandra; Mesulam, M-Marsel; Marshall, Lisa; Zee, Phyllis C; Paller, Ken A
2015-09-01
We examined the intriguing but controversial idea that disrupted sleep-dependent consolidation contributes to age-related memory decline. Slow-wave activity during sleep may help strengthen neural connections and provide memories with long-term stability, in which case decreased slow-wave activity in older adults could contribute to their weaker memories. One prediction from this account is that age-related memory deficits should be reduced by artificially enhancing slow-wave activity. In young adults, applying transcranial current oscillating at a slow frequency (0.75 Hz) during sleep improves memory. Here, we tested whether this procedure can improve memory in older adults. In 2 sessions separated by 1 week, we applied either slow-oscillatory stimulation or sham stimulation during an afternoon nap in a double-blind, crossover design. Memory tests were administered before and after sleep. A larger improvement in word-pair recall and higher slow-wave activity was observed with slow-oscillatory stimulation than with sham stimulation. This is the first demonstration that this procedure can improve memory in older adults, suggesting that declarative memory performance in older adults is partly dependent on slow-wave activity during sleep. Copyright © 2015 Elsevier Inc. All rights reserved.
Greater Working Memory Load Results in Greater Medial Temporal Activity at Retrieval
Quiroz, Yakeel T.; Hasselmo, Michael E.; Stern, Chantal E.
2009-01-01
Most functional magnetic resonance imaging (fMRI) studies examining working memory (WM) load have focused on the prefrontal cortex (PFC) and have demonstrated increased prefrontal activity with increased load. Here we examined WM load effects in the medial temporal lobe (MTL) using an fMRI Sternberg task with novel complex visual scenes. Trials consisted of 3 sequential events: 1) sample presentation (encoding), 2) delay period (maintenance), and 3) probe period (retrieval). During sample encoding, subjects saw either 2 or 4 pictures consecutively. During retrieval, subjects indicated whether the probe picture matched one of the sample pictures. Results revealed that activity in the left anterior hippocampal formation, bilateral retrosplenial area, and left amygdala was greater at retrieval for trials with larger memory load, whereas activity in the PFC was greater at encoding for trials with larger memory load. There was no load effect during the delay. When encoding, maintenance, and retrieval periods were compared with fixation, activity was present in the hippocampal body/tail and fusiform gyrus bilaterally during encoding and retrieval, but not maintenance. Bilateral dorsolateral prefrontal activity was present during maintenance, but not during encoding or retrieval. The results support models of WM predicting that activity in the MTL should be modulated by WM load. PMID:19224975
Generation and the subjective feeling of "aha!" are independently related to learning from insight.
Kizilirmak, Jasmin M; Galvao Gomes da Silva, Joana; Imamoglu, Fatma; Richardson-Klavehn, Alan
2016-11-01
It has been proposed that sudden insight into the solutions of problems can enhance long-term memory for those solutions. However, the nature of insight has been operationalized differently across studies. Here, we examined two main aspects of insight problem-solving-the generation of a solution and the subjective "aha!" experience-and experimentally evaluated their respective relationships to long-term memory formation (encoding). Our results suggest that generation (generated solution vs. presented solution) and the "aha!" experience ("aha!" vs. no "aha!") are independently related to learning from insight, as well as to the emotional response towards understanding the solution during encoding. Moreover, we analyzed the relationship between generation and the "aha!" experience and two different kinds of later memory tests, direct (intentional) and indirect (incidental). Here, we found that the generation effect was larger for indirect testing, reflecting more automatic retrieval processes, while the relationship with the occurrence of an "aha!" experience was somewhat larger for direct testing. Our results suggest that both the generation of a solution and the subjective experience of "aha!" indicate processes that benefit long-term memory formation, though differently. This beneficial effect is possibly due to the intrinsic reward associated with sudden comprehension and the detection of schema-consistency, i.e., that novel information can be easily integrated into existing knowledge.
Novel fMRI working memory paradigm accurately detects cognitive impairment in Multiple Sclerosis
Nelson, Flavia; Akhtar, Mohammad A.; Zúñiga, Edward; Perez, Carlos A.; Hasan, Khader M.; Wilken, Jeffrey; Wolinsky, Jerry S.; Narayana, Ponnada A.; Steinberg, Joel L.
2016-01-01
Background Cognitive impairment (CI) cannot be diagnosed by MRI. Functional MRI (fMRI) paradigms such as the immediate/delayed memory task (I/DMT), detect varying degrees of working memory. Preliminary findings using I/DMT, showed differences in Blood Oxygenation Level Dependent (BOLD) activation between impaired (MSCI, n=12) and non-impaired (MSNI, n=9) MS patients. Objectives To confirm CI detection based on I/DMT’ BOLD activation in a larger cohort of MS patients. The role of T2 lesion volume (LV) and EDSS in magnitude of BOLD signal were also sought. Methods Fifty patients [EDSS mean (m) = 3.2, DD m =12 yr., age m =40yr.] underwent the Minimal Assessment of Cognitive Function in MS (MACFIMS) and the I/DMT. Working-memory activation (WMa) represents BOLD signal during DMT minus signal during IMT. CI was based on MACFIMS. Results 10 MSNI, 30 MSCI and 4 borderline patients were included in analyses. ANOVA showed MSNI had significantly greater WMa than MSCI, in the left (L) prefrontal cortex and L supplementary motor area (p = 0.032). Regression analysis showed significant inverse correlations between WMa and T2 LV/EDSS in similar areas (p = 0.005, 0.004 respectively). Conclusion I/DMT-based BOLD activation detects CI in MS, larger studies are needed to confirm these findings. PMID:27613119
Stuellein, Nicole; Radach, Ralph R; Jacobs, Arthur M; Hofmann, Markus J
2016-05-15
Computational models of word recognition already successfully used associative spreading from orthographic to semantic levels to account for false memories. But can they also account for semantic effects on event-related potentials in a recognition memory task? To address this question, target words in the present study had either many or few semantic associates in the stimulus set. We found larger P200 amplitudes and smaller N400 amplitudes for old words in comparison to new words. Words with many semantic associates led to larger P200 amplitudes and a smaller N400 in comparison to words with a smaller number of semantic associations. We also obtained inverted response time and accuracy effects for old and new words: faster response times and fewer errors were found for old words that had many semantic associates, whereas new words with a large number of semantic associates produced slower response times and more errors. Both behavioral and electrophysiological results indicate that semantic associations between words can facilitate top-down driven lexical access and semantic integration in recognition memory. Our results support neurophysiologically plausible predictions of the Associative Read-Out Model, which suggests top-down connections from semantic to orthographic layers. Copyright © 2016 Elsevier B.V. All rights reserved.
Selective memory biases for words reflecting sex-specific body image concerns.
Unterhalter, Gina; Farrell, Simon; Mohr, Christine
2007-08-01
Women show "fear of fatness" and men a "drive for muscularity." Moreover, women perceive themselves as larger and men more muscular than they actually are. We tested potential memory biases congruent with these sex-specific body image concerns. Free recall performance for weight-related and muscle-related positive and negative words was assessed in 40 healthy undergraduate students (20 men). Men revealed a recall advantage for positive muscle words, while women showed a general advantage for positive and negative weight-related words. Thus, men revealed a memory bias congruent with their personal preference (more muscular), while women showed a general memory bias for weight information independent of their personal preference of being thinner. The absence of a positive memory bias in women might explain the higher incidence of body dissatisfaction and eating disorders in this population.
Dos Santos, Alex Santana; Valle, Marcos Eduardo
2018-04-01
Autoassociative morphological memories (AMMs) are robust and computationally efficient memory models with unlimited storage capacity. In this paper, we present the max-plus and min-plus projection autoassociative morphological memories (PAMMs) as well as their compositions. Briefly, the max-plus PAMM yields the largest max-plus combination of the stored vectors which is less than or equal to the input. Dually, the vector recalled by the min-plus PAMM corresponds to the smallest min-plus combination which is larger than or equal to the input. Apart from unlimited absolute storage capacity and one step retrieval, PAMMs and their compositions exhibit an excellent noise tolerance. Furthermore, the new memories yielded quite promising results in classification problems with a large number of features and classes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ferroelectric FET for nonvolatile memory application with two-dimensional MoSe2 channels
NASA Astrophysics Data System (ADS)
Wang, Xudong; Liu, Chunsen; Chen, Yan; Wu, Guangjian; Yan, Xiao; Huang, Hai; Wang, Peng; Tian, Bobo; Hong, Zhenchen; Wang, Yutao; Sun, Shuo; Shen, Hong; Lin, Tie; Hu, Weida; Tang, Minghua; Zhou, Peng; Wang, Jianlu; Sun, Jinglan; Meng, Xiangjian; Chu, Junhao; Li, Zheng
2017-06-01
Graphene and other two-dimensional materials have received considerable attention regarding their potential applications in nano-electronics. Here, we report top-gate nonvolatile memory field-effect transistors (FETs) with different layers of MoSe2 nanosheets channel gated by ferroelectric film. The conventional gate dielectric of FETs was replaced by a ferroelectric thin film that provides a ferroelectric polarization electric field, and therefore defined as an Fe-FET where the poly (vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) was used as the gate dielectric. Among the devices with MoSe2 channels of different thicknesses, the device with a single layer of MoSe2 exhibited a large hysteresis of electronic transport with an over 105 write/erase ratio, and displayed excellent retention and endurance performance. The possible mechanism of the device’s good properties was qualitatively analyzed using band theory. Additionally, a comprehensive study comparing the memory properties of MoSe2 channels of different thicknesses is presented. Increasing the numbers of MoSe2 layers was found to cause a reduced memory window. However, MoSe2 thickness of 5 nm yielded a write/erase ratio of more than 103. The results indicate that, based on a Fe-FET structure, the combination of two-dimensional semiconductors and organic ferroelectric gate dielectrics shows good promise for future applications in nonvolatile ferroelectric memory.
Fernandez-Rey, Jose; Gonzalez-Gonzalez, Daniel; Redondo, Jaime
2018-06-07
Standard extinction procedures seem to imply an inhibition of the fear response, but not a modification of the original fear-memory trace, which remains intact (Bouton, 2002, 2004). Typically, the behavioral procedure used to modify this trace is the so-called postretrieval extinction, consisting of fear-memory reactivation followed by extinction applied within the reconsolidation window. However, the application of this technique yields mixed results, probably due to a series of boundary conditions that limit the effectiveness of postretrieval-extinction effects. In this study a number of potential, and hitherto unexplored, moderators of such effects are considered. Using an interval of 48 hr between extinction and re-extinction, the findings show a spontaneous recovery similar to that found in studies that use a 24-hr interval. Also, the use of intervals of 10 and 20 min between reactivation and extinction led to a similar fear return. Finally, the burst of white noise used as an unconditioned stimulus (US) here was shown to be as effective as the electric shock normally used in the study of fear-memory reconsolidation. These findings suggest that postretrieval extinction is an effective behavioral technique for modifying the original fear memory and for the elimination of the fear return. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
James, Ella L; Lau-Zhu, Alex; Tickle, Hannah; Horsch, Antje; Holmes, Emily A
2016-12-01
Visuospatial working memory (WM) tasks performed concurrently or after an experimental trauma (traumatic film viewing) have been shown to reduce subsequent intrusive memories (concurrent or retroactive interference, respectively). This effect is thought to arise because, during the time window of memory consolidation, the film memory is labile and vulnerable to interference by the WM task. However, it is not known whether tasks before an experimental trauma (i.e. proactive interference) would also be effective. Therefore, we tested if a visuospatial WM task given before a traumatic film reduced intrusions. Findings are relevant to the development of preventative strategies to reduce intrusive memories of trauma for groups who are routinely exposed to trauma (e.g. emergency services personnel) and for whom tasks prior to trauma exposure might be beneficial. Participants were randomly assigned to 1 of 2 conditions. In the Tetris condition (n = 28), participants engaged in the computer game for 11 min immediately before viewing a 12-min traumatic film, whereas those in the Control condition (n = 28) had no task during this period. Intrusive memory frequency was assessed using an intrusion diary over 1-week and an Intrusion Provocation Task at 1-week follow-up. Recognition memory for the film was also assessed at 1-week. Compared to the Control condition, participants in the Tetris condition did not report statistically significant difference in intrusive memories of the trauma film on either measure. There was also no statistically significant difference in recognition memory scores between conditions. The study used an experimental trauma paradigm and findings may not be generalizable to a clinical population. Compared to control, playing Tetris before viewing a trauma film did not lead to a statistically significant reduction in the frequency of later intrusive memories of the film. It is unlikely that proactive interference, at least with this task, effectively influences intrusive memory development. WM tasks administered during or after trauma stimuli, rather than proactively, may be a better focus for intrusive memory amelioration. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Aerobic Fitness is Associated With Hippocampal Volume in Elderly Humans
Erickson, Kirk I.; Prakash, Ruchika S.; Voss, Michelle W.; Chaddock, Laura; Hu, Liang; Morris, Katherine S.; White, Siobhan M.; Wójcicki, Thomas R.; McAuley, Edward; Kramer, Arthur F.
2010-01-01
Deterioration of the hippocampus occurs in elderly individuals with and without dementia, yet individual variation exists in the degree and rate of hippocampal decay. Determining the factors that influence individual variation in the magnitude and rate of hippocampal decay may help promote lifestyle changes that prevent such deterioration from taking place. Aerobic fitness and exercise are effective at preventing cortical decay and cognitive impairment in older adults and epidemiological studies suggest that physical activity can reduce the risk for developing dementia. However, the relationship between aerobic fitness and hippocampal volume in elderly humans is unknown. In this study, we investigated whether individuals with higher levels of aerobic fitness displayed greater volume of the hippocampus and better spatial memory performance than individuals with lower fitness levels. Furthermore, in exploratory analyses, we assessed whether hippocampal volume mediated the relationship between fitness and spatial memory. Using a region-of-interest analysis on magnetic resonance images in 165 nondemented older adults, we found a triple association such that higher fitness levels were associated with larger left and right hippocampi after controlling for age, sex, and years of education, and larger hippocampi and higher fitness levels were correlated with better spatial memory performance. Furthermore, we demonstrated that hippocampal volume partially mediated the relationship between higher fitness levels and enhanced spatial memory. Our results clearly indicate that higher levels of aerobic fitness are associated with increased hippocampal volume in older humans, which translates to better memory function. PMID:19123237
Manipulations of attention during eating and their effects on later snack intake.
Higgs, Suzanne
2015-09-01
Manipulation of attention during eating has been reported to affect later consumption via changes in meal memory. The aim of the present studies was to examine the robustness of these effects and investigate moderating factors. Across three studies, attention to eating was manipulated via distraction (via a computer game or TV watching) or focusing of attention to eating, and effects on subsequent snack consumption and meal memory were assessed. The participants were predominantly lean, young women students and the designs were between-subjects. Distraction increased later snack intake and this effect was larger when participants were more motivated to engage with the distracter and were offset when the distractor included food-related cues. Attention to eating reduced later snacking and this effect was larger when participants imagined eating from their own perspective than when they imagined eating from a third person perspective. Meal memory was impaired after distraction but focusing on eating did not affect later meal memory, possibly explained by ceiling effects for the memory measure. The pattern of results suggests that attention manipulations during eating have robust effects on later eating and the effect sizes are medium to large. The data are consistent with previous reports and add to the literature by suggesting that type of attention manipulation is important in determining effects on later eating. The results further suggest that attentive eating may be a useful target in interventions to help with appetite control. Copyright © 2015 Elsevier Ltd. All rights reserved.
Parkes, Marie V.; Demir, Hakan; Teich-McGoldrick, Stephanie L.; ...
2014-03-28
Molecular dynamics simulations were used to investigate trends in noble gas (Ar, Kr, Xe) diffusion in the metal-organic frameworks HKUST-1 and ZIF-8. Diffusion occurs primarily through inter-cage jump events, with much greater diffusion of guest atoms in HKUST-1 compared to ZIF-8 due to the larger cage and window sizes in the former. We compare diffusion coefficients calculated for both rigid and flexible frameworks. For rigid framework simulations, in which the framework atoms were held at their crystallographic or geometry optimized coordinates, sometimes dramatic differences in guest diffusion were seen depending on the initial framework structure or the choice of frameworkmore » force field parameters. When framework flexibility effects were included, argon and krypton diffusion increased significantly compared to rigid-framework simulations using general force field parameters. Additionally, for argon and krypton in ZIF-8, guest diffusion increased with loading, demonstrating that guest-guest interactions between cages enhance inter-cage diffusion. No inter-cage jump events were seen for xenon atoms in ZIF-8 regardless of force field or initial structure, and the loading dependence of xenon diffusion in HKUST-1 is different for rigid and flexible frameworks. Diffusion of krypton and xenon in HKUST-1 depends on two competing effects: the steric effect that decreases diffusion as loading increases, and the “small cage effect” that increases diffusion as loading increases. Finally, a detailed analysis of the window size in ZIF-8 reveals that the window increases beyond its normal size to permit passage of a (nominally) larger krypton atom.« less
Compensation for Blur Requires Increase in Field of View and Viewing Time
Kwon, MiYoung; Liu, Rong; Chien, Lillian
2016-01-01
Spatial resolution is an important factor for human pattern recognition. In particular, low resolution (blur) is a defining characteristic of low vision. Here, we examined spatial (field of view) and temporal (stimulus duration) requirements for blurry object recognition. The spatial resolution of an image such as letter or face, was manipulated with a low-pass filter. In experiment 1, studying spatial requirement, observers viewed a fixed-size object through a window of varying sizes, which was repositioned until object identification (moving window paradigm). Field of view requirement, quantified as the number of “views” (window repositions) for correct recognition, was obtained for three blur levels, including no blur. In experiment 2, studying temporal requirement, we determined threshold viewing time, the stimulus duration yielding criterion recognition accuracy, at six blur levels, including no blur. For letter and face recognition, we found blur significantly increased the number of views, suggesting a larger field of view is required to recognize blurry objects. We also found blur significantly increased threshold viewing time, suggesting longer temporal integration is necessary to recognize blurry objects. The temporal integration reflects the tradeoff between stimulus intensity and time. While humans excel at recognizing blurry objects, our findings suggest compensating for blur requires increased field of view and viewing time. The need for larger spatial and longer temporal integration for recognizing blurry objects may further challenge object recognition in low vision. Thus, interactions between blur and field of view should be considered for developing low vision rehabilitation or assistive aids. PMID:27622710
Ranganath, Charan
2010-11-01
There is currently an intense debate about the nature of recognition memory and about the roles of medial temporal lobe subregions in recognition memory processes. At a larger level, this debate has been about whether it is appropriate to propose unified theories to explain memory at neural, functional, and phenomenological levels of analysis. Here, I review findings from physiology, functional imaging, and lesion studies in humans, monkeys, and rodents relevant to the roles of medial temporal lobe subregions in recognition memory, as well as in short-term memory and perception. The results from these studies are consistent with the idea that there is functional heterogeneity in the medial temporal lobes, although the differences among medial temporal lobe subregions do not precisely correspond to different types of memory tasks, cognitive processes, or states of awareness. Instead, the evidence is consistent with the idea that medial temporal lobe subregions differ in terms of the kind of information they process and represent, and that these regions collectively support episodic memory by binding item and context information. © 2010 Wiley-Liss, Inc.
Electronic shift register memory based on molecular electron-transfer reactions
NASA Technical Reports Server (NTRS)
Hopfield, J. J.; Onuchic, Jose Nelson; Beratan, David N.
1989-01-01
The design of a shift register memory at the molecular level is described in detail. The memory elements are based on a chain of electron-transfer molecules incorporated on a very large scale integrated (VLSI) substrate, and the information is shifted by photoinduced electron-transfer reactions. The design requirements for such a system are discussed, and several realistic strategies for synthesizing these systems are presented. The immediate advantage of such a hybrid molecular/VLSI device would arise from the possible information storage density. The prospect of considerable savings of energy per bit processed also exists. This molecular shift register memory element design solves the conceptual problems associated with integrating molecular size components with larger (micron) size features on a chip.
Spectrum Savings from High Performance Recording and Playback Onboard the Test Article
2013-02-20
execute within a Windows 7 environment, and data is recorded on SSDs. The underlying database is implemented using MySQL . Figure 1 illustrates the... MySQL database. This is effectively the time at which the recorded data are available for retransmission. CPU and Memory utilization were collected...17.7% MySQL avg. 3.9% EQDR Total avg. 21.6% Table 1 CPU Utilization with260 Mbits/sec Load The difference between the total System CPU (27.8
2006-09-01
spiral development cycle involved transporting the software processes from a Windows XP / MATLAB environment to a Linux / C++ environment. This...tested on. Additionally, in the case of the GUMSTIX PC boards, the LINUX operating system is burned into the read-only memory. Lastly, both PC-104 and...both the real-time environment and the post-processed en - vironment. When the system operates in real-time mode, an output file is generated which
Alkam, Tursun; Kim, Hyoung-Chun; Mamiya, Takayoshi; Yamada, Kiyofumi; Hiramatsu, Masayuki; Nabeshima, Toshitaka
2013-12-01
Gestational nicotine exposure is associated with cognitive abnormalities in young offspring. However, practical strategies for prevention or treatment of impaired cognitive behaviors of offspring are not available due to the lack of systematic investigation of underlying mechanism. Therefore, this study aimed at examining the effects of gestational and/or perinatal nicotine exposure (GPNE) on cognitive behaviors in offspring of C57BL/6J mice to provide systematic behavioral data. Pregnant mice were exposed to nicotine via sweetened drinking water during six time-windows, including gestational day 0 to day 13 (G0-G13), G14-postnatal day 0 (P0), G0-P0, G14-P7, G0-P7, and P0-P7. During P42-P56 days, both male and female offspring were given a battery of behavioral tests. Depending on the time of exposure, GPNE impaired working memory, object-based attention, and prepulse inhibition in male and female offspring to different extents. Nicotine exposure during G14-P0 also decreased norepinephrine turnover in the prefrontal cortex on P28 and P56. Overall results indicate that nicotine exposure during any time-windows of development impairs cognitive behaviors in offspring, and suggest that certain time-windows, e.g., G14-P0, should be selected for further studies on the underlying neurochemical or molecular mechanisms.
Elaborating the Teacher's Role--Towards a Professional Language
ERIC Educational Resources Information Center
Siemon, Dianne; Virgona, Jo; Lasso, Maria; Parsons, Vanessa; Cathcart, Juli
2004-01-01
As part of a larger project on effective numeracy teaching practice a number of teachers took turns to teach a small group of students in front of their peers who were located on the other side of a one-way window. Observing teachers were asked to comment on what they noticed "in-the-moment" and suggest labels or metaphors that captured the…
Lee, Junghee; Green, Michael F.; Calkins, Monica E.; Greenwood, Tiffany A.; Gur, Raquel E.; Gur, Ruben C.; Lazzeroni, Laura C.; Light, Gregory A.; Nuechterlein, Keith H.; Radant, Allen D.; Seidman, Larry J.; Siever, Larry J.; Silverman, Jeremy M.; Sprock, Joyce; Stone, William S.; Sugar, Catherine A.; Swerdlow, Neal R.; Tsuang, Debby W.; Tsuang, Ming T.; Turetsky, Bruce I.; Braff, David L.
2014-01-01
Objectives Working memory impairment has been extensively studied in schizophrenia, but less is known about moderators of the impairment. Using the Consortium on the Genetics of Schizophrenia case-control study (COGS-2), we examined smoking status, types of antipsychotic medication, and history of substance as moderators for working memory impairment in schizophrenia. Methods From 5 sites, 1377 patients with schizophrenia or schizoaffective, depressed type and 1037 healthy controls completed the Letter-Number Span (LNS) Task. The LNS uses intermixed letter and digit stimuli that increase from 2 up to 8 stimuli. In the Forward condition, participants repeated the letters and numbers in the order they were presented. In the Reorder condition, participants repeated the digits in ascending order followed by letters in alphabetical order. Results Schizophrenia patients performed more poorly than controls, with a larger difference on Reorder than Forward conditions. Deficits were associated with symptoms, functional capacity, and functional outcome. Patients who smoked showed larger impairment than nonsmoking patients, primarily due to deficits on the Reorder condition. The impairing association of smoking was more pronounced among patients taking first-generation than those taking second-generation antipsychotic medications. Correlations between working memory and community functioning were stronger for nonsmokers. History of substance use did not moderate working memory impairment. Conclusions Results confirm the working memory impairment in schizophrenia, and indicate smoking status as an important moderator for these deficits. The greater impairment in smokers may reflect added burden of smoking on general health or that patients with greater deficits are more likely to smoke. PMID:25248939
Lee, Junghee; Green, Michael F; Calkins, Monica E; Greenwood, Tiffany A; Gur, Raquel E; Gur, Ruben C; Lazzeroni, Laura C; Light, Gregory A; Nuechterlein, Keith H; Radant, Allen D; Seidman, Larry J; Siever, Larry J; Silverman, Jeremy M; Sprock, Joyce; Stone, William S; Sugar, Catherine A; Swerdlow, Neal R; Tsuang, Debby W; Tsuang, Ming T; Turetsky, Bruce I; Braff, David L
2015-04-01
Working memory impairment has been extensively studied in schizophrenia, but less is known about moderators of the impairment. Using the Consortium on the Genetics of Schizophrenia case-control study (COGS-2), we examined smoking status, types of antipsychotic medication, and history of substance as moderators for working memory impairment in schizophrenia. From 5 sites, 1377 patients with schizophrenia or schizoaffective, depressed type and 1037 healthy controls completed the letter-number span (LNS) task. The LNS uses intermixed letter and digit stimuli that increase from 2 up to 8 stimuli. In the forward condition, participants repeated the letters and numbers in the order they were presented. In the reorder condition, participants repeated the digits in ascending order followed by letters in alphabetical order. Schizophrenia patients performed more poorly than controls, with a larger difference on reorder than forward conditions. Deficits were associated with symptoms, functional capacity, and functional outcome. Patients who smoked showed larger impairment than nonsmoking patients, primarily due to deficits on the reorder condition. The impairing association of smoking was more pronounced among patients taking first-generation than those taking second-generation antipsychotic medications. Correlations between working memory and community functioning were stronger for nonsmokers. History of substance use did not moderate working memory impairment. Results confirm the working memory impairment in schizophrenia, and indicate smoking status as an important moderator for these deficits. The greater impairment in smokers may reflect added burden of smoking on general health or that patients with greater deficits are more likely to smoke. Copyright © 2014 Elsevier B.V. All rights reserved.
Theoretical and experimental investigation on magneto-hydrodynamics of plasma window
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, S. Z.; Zhu, K., E-mail: zhukun@pku.edu.cn; Huang, S.
2016-01-15
As a new device, plasma window has been designed to use plasma discharge to separate atmosphere from vacuum with high difference of pressure. It has many excellent properties, being able to be used as available passage for ion beam with negligible energy loss, also impervious to radiation damage and thermal damage. Normally beam focusing by accelerators is not that easy to achieve within channel of small cross section. 10 mm diameter plasma window's experimental realization could contribute to its further application in accelerator system. In this paper, 10 mm diameter 60 mm long plasma window has first been designed and managed to generatemore » arc discharge with argon gas experimentally. The result proves that it has the ability to separate at least 28.8 kPa (not the upper limit) from 360 Pa with 50 A direct current and 2.5 kW power supplied. Current increase leads to linear inlet pressure increase obviously, while it has less impact on outlet pressure and voltage, coming to the conclusion that the higher current of plasma discharge, the larger pressure difference it creates. Theoretical analysis of 10 mm diameter plasma window in axis symmetrical configuration using argon also has been provided, in which a numerical 2D FLUENT-based magneto-hydrodynamic simulation model is settled. It has a good agreement with experimental result on voltage and mass flow rate when inlet pressure is increased.« less
Technical improvements in 19th century Belgian window glass production
NASA Astrophysics Data System (ADS)
Lauriks, Leen; Collette, Quentin; Wouters, Ine; Belis, Jan
Glass was used since the Roman age in the building envelope, but it became widely applied together with iron since the 19th century. Belgium was a major producer of window glass during the nineteenth century and the majority of the produced window glass was exported all over the world. Investigating the literature on the development of 19th century Belgian window glass production is therefore internationally relevant. In the 17th century, wood was replaced as a fuel by coal. In the 19th century, the regenerative tank furnace applied gas as a fuel in a continuous glass production process. The advantages were a clean production, a more constant and higher temperature in the furnace and a fuel saving. The French chemist Nicolas Leblanc (1787-1793) and later the Belgian chemist Ernest Solvay (1863) invented processes to produce alkali out of common salt. The artificial soda ash improved the quality and aesthetics of the glass plates. During the 19th century, the glass production was industrialized, influencing the operation of furnaces, the improvement of raw materials as well as the applied energy sources. Although the production process was industrialized, glassblowing was still the work of an individual. By improving his work tools, he was able to create larger glass plates. The developments in the annealing process followed this evolution. The industry had to wait until the invention of the drawn glass in the beginning of the 20th century to fully industrialise the window glass manufacture process.
Qu, Xingda
2014-10-27
Though it is well recognized that gait characteristics are affected by concurrent cognitive tasks, how different working memory components contribute to dual task effects on gait is still unknown. The objective of the present study was to investigate dual-task effects on gait characteristics, specifically the application of cognitive tasks involving different working memory components. In addition, we also examined age-related differences in such dual-task effects. Three cognitive tasks (i.e. 'Random Digit Generation', 'Brooks' Spatial Memory', and 'Counting Backward') involving different working memory components were examined. Twelve young (6 males and 6 females, 20 ~ 25 years old) and 12 older participants (6 males and 6 females, 60 ~ 72 years old) took part in two phases of experiments. In the first phase, each cognitive task was defined at three difficulty levels, and perceived difficulty was compared across tasks. The cognitive tasks perceived to be equally difficult were selected for the second phase. In the second phase, four testing conditions were defined, corresponding to a baseline and the three equally difficult cognitive tasks. Participants walked on a treadmill at their self-selected comfortable speed in each testing condition. Body kinematics were collected during treadmill walking, and gait characteristics were assessed using spatial-temporal gait parameters. Application of the concurrent Brooks' Spatial Memory task led to longer step times compared to the baseline condition. Larger step width variability was observed in both the Brooks' Spatial Memory and Counting Backward dual-task conditions than in the baseline condition. In addition, cognitive task effects on step width variability differed between two age groups. In particular, the Brooks' Spatial Memory task led to significantly larger step width variability only among older adults. These findings revealed that cognitive tasks involving the visuo-spatial sketchpad interfered with gait more severely in older versus young adults. Thus, dual-task training, in which a cognitive task involving the visuo-spatial sketchpad (e.g. the Brooks' Spatial Memory task) is concurrently performed with walking, could be beneficial to mitigate impairments in gait among older adults.
Mousavi-Nasab, S-M-Hossein; Kormi-Nouri, Reza; Sundström, Anna; Nilsson, Lars-Göran
2012-02-01
The present study examined the influences of marital status on different episodic and semantic memory tasks. A total of 1882 adult men and women participated in a longitudinal project (Betula) on memory, health and aging. The participants were grouped into two age cohorts, 35-60 and 65-85, and studied over a period of 5 years. Episodic memory tasks concerned recognition and recall, whereas semantic memory tasks concerned knowledge and fluency. The results showed, after controlling for education, some diseases, chronological age and leisure activity as covariates, that there were significant differences between married and single individuals in episodic memory, but not in semantic memory. Married people showed significantly better memory performances than singles in both subsystems of episodic memory, that is, recall and recognition. Also, the rate of decline in episodic memory was significantly larger for singles and widowed than other groups over the 5-year time period in both age groups. The findings demonstrate that the positive relation found between marriage and health can be extended to the relation between marriage and cognitive performance. This effect might be explained by the role played by cognitive stimulation in memory and cognition. © 2011 The Authors. Scandinavian Journal of Psychology © 2011 The Scandinavian Psychological Associations.
Hara, Yoko; Naveh-Benjamin, Moshe
2015-01-01
Previous research indicates that relative to younger adults, older adults show a larger decline in long-term memory (LTM) for associations than for the components that make up these associations. The purpose of the present study was to investigate whether we can impair associative memory performance in young adults by reducing their working memory (WM) resources, hence providing potential clues regarding the underlying causes of the associative memory deficit in older adults. With two experiments, we investigated whether we can reduce younger adults' long-term associative memory using secondary tasks in which either storage or processing WM loads were manipulated, while participants learned name-face pairs and then remembered the names, the faces, and the name-face associations. Results show that reducing either the storage or the processing resources of WM produced performance patterns of an associative long-term memory deficit in young adults. Furthermore, younger adults' associative memory deficit was a function of their performance on a working memory span task. These results indicate that one potential reason older adults have an associative deficit is a reduction in their WM resources but further research is needed to assess the mechanisms involved in age-related associative memory deficits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruse, J. E.; Doundoulakis, G.; Institute of Electronic Structure and Laser, Foundation for Research and Technology–Hellas, N. Plastira 100, 70013 Heraklion
2016-06-14
We analyze a method to selectively grow straight, vertical gallium nitride nanowires by plasma-assisted molecular beam epitaxy (MBE) at sites specified by a silicon oxide mask, which is thermally grown on silicon (111) substrates and patterned by electron-beam lithography and reactive-ion etching. The investigated method requires only one single molecular beam epitaxy MBE growth process, i.e., the SiO{sub 2} mask is formed on silicon instead of on a previously grown GaN or AlN buffer layer. We present a systematic and analytical study involving various mask patterns, characterization by scanning electron microscopy, transmission electron microscopy, and photoluminescence spectroscopy, as well asmore » numerical simulations, to evaluate how the dimensions (window diameter and spacing) of the mask affect the distribution of the nanowires, their morphology, and alignment, as well as their photonic properties. Capabilities and limitations for this method of selective-area growth of nanowires have been identified. A window diameter less than 50 nm and a window spacing larger than 500 nm can provide single nanowire nucleation in nearly all mask windows. The results are consistent with a Ga diffusion length on the silicon dioxide surface in the order of approximately 1 μm.« less
Dye laser amplifier including an improved window configuration for its dye beam
O'Neil, R.W.; Davin, J.M.
1992-12-01
A dye laser amplifier in which a continuously replenished supply of dye is excited with a first light beam in order to amplify the intensity of a second different light beam passing therethrough is disclosed herein. This amplifier includes a cell though which a continuous stream of the dye is caused to pass, and means for directing the first beam into the cell while the second beam is directed into and through the same cell. There is also disclosed herein a specific improvement to this amplifier which resides in the use of a pair of particularly configured windows through which the second beam passes along fixed paths as the second beam enters and exits the dye cell. Each of these windows has a relatively thick main section which is substantially larger in dimensions transverse to its beam path than the cross section of the second beam itself, whereby to add structural integrity to the overall window. At the same time, the latter includes a second section which is disposed entirely within the confines of the main section and through which the second beam is intended to pass in its entirety. This second section is made substantially thinner than the main section in order to reduce optical distortion as the second beam passes therethrough. 4 figs.
Dye laser amplifier including an improved window configuration for its dye beam
O'Neil, Richard W.; Davin, James M.
1992-01-01
A dye laser amplifier in which a continuously replenished supply of dye is excited with a first light beam in order to amplify the intensity of a second different light beam passing therethrough is disclosed herein. This amplifier includes a cell though which a continuous stream of the dye is caused to pass, and means for directing the first beam into the cell while the second beam is directed into and through the same cell. There is also disclosed herein a specific improvement to this amplifier which resides in the use of a pair of particularly configured windows through which the second beam passes along fixed paths as the second beam enters and exits the dye cell. Each of these windows has a relatively thick main section which is substantially larger in dimensions transverse to its beam path than the cross section of the second beam itself, whereby to add structural integrity to the overall window. At the same time, the latter includes a second section which is disposed entirely within the confines of the main section and through which the second beam is intended to pass in its entirety. This second section is made substantially thinner than the main section in order to reduce optical distortion as the second beam passes therethrough.
Event-related brain potential correlates of two states of conscious awareness in memory
Düzel, Emrah; Yonelinas, Andrew P.; Mangun, George R.; Heinze, Hans-Jochen; Tulving, Endel
1997-01-01
We report an event-related potential (ERP) experiment of human recognition memory that explored the relation between conscious awareness and electrophysiological activity of the brain. We recorded ERPs from healthy adults while they made “remember” and “know” recognition judgments about previously seen words. These two kinds of judgments reflect “autonoetic” and “noetic” awareness, respectively. The ERP effects differed between the two kinds of awareness while they were similar for “true” and “false” recognition. Noetic awareness was associated with a temporoparietal positivity in the N400 range (325–600 ms) and a late (600–1,000 ms) frontocentral negativity, whereas autonoetic awareness was associated with a widespread, late, bifrontal and left parietotemporal (600–1000 ms) positivity. In the very late (1,300–1,900 ms) time window, a right frontal positivity was observed for both remember and know judgments of both true and false targets. These results provide physiological evidence for two types of conscious awareness in episodic memory retrieval. PMID:9159185
Interplay between Short- and Long-Term Plasticity in Cell-Assembly Formation
Hiratani, Naoki; Fukai, Tomoki
2014-01-01
Various hippocampal and neocortical synapses of mammalian brain show both short-term plasticity and long-term plasticity, which are considered to underlie learning and memory by the brain. According to Hebb’s postulate, synaptic plasticity encodes memory traces of past experiences into cell assemblies in cortical circuits. However, it remains unclear how the various forms of long-term and short-term synaptic plasticity cooperatively create and reorganize such cell assemblies. Here, we investigate the mechanism in which the three forms of synaptic plasticity known in cortical circuits, i.e., spike-timing-dependent plasticity (STDP), short-term depression (STD) and homeostatic plasticity, cooperatively generate, retain and reorganize cell assemblies in a recurrent neuronal network model. We show that multiple cell assemblies generated by external stimuli can survive noisy spontaneous network activity for an adequate range of the strength of STD. Furthermore, our model predicts that a symmetric temporal window of STDP, such as observed in dopaminergic modulations on hippocampal neurons, is crucial for the retention and integration of multiple cell assemblies. These results may have implications for the understanding of cortical memory processes. PMID:25007209
NASA Astrophysics Data System (ADS)
Mangasa Simanjuntak, Firman; Chandrasekaran, Sridhar; Pattanayak, Bhaskar; Lin, Chun-Chieh; Tseng, Tseung-Yuen
2017-09-01
We explore the use of cubic-zinc peroxide (ZnO2) as a switching material for electrochemical metallization memory (ECM) cell. The ZnO2 was synthesized with a simple peroxide surface treatment. Devices made without surface treatment exhibits a high leakage current due to the self-doped nature of the hexagonal-ZnO material. Thus, its switching behavior can only be observed when a very high current compliance is employed. The synthetic ZnO2 layer provides a sufficient resistivity to the Cu/ZnO2/ZnO/ITO devices. The high resistivity of ZnO2 encourages the formation of a conducting bridge to activate the switching behavior at a lower operation current. Volatile and non-volatile switching behaviors with sufficient endurance and an adequate memory window are observed in the surface-treated devices. The room temperature retention of more than 104 s confirms the non-volatility behavior of the devices. In addition, our proposed device structure is able to work at a lower operation current among other reported ZnO-based ECM cells.
Wang, Zhenwen; Zhao, Jun; Chen, Min; Yang, Minhao; Tang, Luyang; Dang, Zhi-Min; Chen, Fenghua; Huang, Miaoming; Dong, Xia
2014-11-26
In this work, electrically and thermally actuated triple shape memory polymers (SMPs) of chemically cross-linked polycyclooctene (PCO)-multiwalled carbon nanotube (MWCNT)/polyethylene (PE) nanocomposites with co-continuous structure and selective distribution of fillers in PCO phase are prepared. We systematically studied not only the microstructure including morphology and fillers' selective distribution in one phase of the PCO/PE blends, but also the macroscopic properties including thermal, mechanical, and electrical properties. The co-continuous window of the immiscible PCO/PE blends is found to be the volume fraction of PCO (vPCO) of ca. 40-70 vol %. The selective distribution of fillers in one phase of co-continuous blends is obtained by a masterbatch technique. The prepared triple SMP materials show pronounced triple shape memory effects (SMEs) on the dynamic mechanical thermal analysis (DMTA) and the visual observation by both thermal and electric actuations. Such polyolefin samples with well-defined microstructure, electrical actuation, and triple SMEs might have potential applications as, for example, multiple autochoke elements for engines, self-adjusting orthodontic wires, and ophthalmic devices.
Weaver, Anne M; Parveen, Shahana; Goswami, Doli; Crabtree-Ide, Christina; Rudra, Carole; Yu, Jihnhee; Mu, Lina; Fry, Alicia M; Sharmin, Iffat; Luby, Stephen P; Ram, Pavani K
2017-08-01
Fine particulate matter (PM 2.5 ) is a risk factor for pneumonia; ventilation may be protective. We tested behavioral and structural ventilation interventions on indoor PM 2.5 in Dhaka, Bangladesh. We recruited 59 good ventilation (window or door in ≥ 3 walls) and 29 poor ventilation (no window, one door) homes. We monitored baseline indoor and outdoor PM 2.5 for 48 hours. We asked all participants to increase ventilation behavior, including opening windows and doors, and operating fans. Where permitted, we installed windows in nine poor ventilation homes, then repeated PM 2.5 monitoring. We estimated effects using linear mixed-effects models and conducted qualitative interviews regarding motivators and barriers to ventilation. Compared with poor ventilation homes, good ventilation homes were larger, their residents wealthier and less likely to use biomass fuel. In multivariable linear mixed-effects models, ventilation structures and opening a door or window were inversely associated with the number of hours PM 2.5 concentrations exceeded 100 and 250 μg/m 3 . Outdoor air pollution was positively associated with the number of hours PM 2.5 concentrations exceeded 100 and 250 μg/m 3 . Few homes accepted window installation, due to landlord refusal and fear of theft. Motivators for ventilation behavior included cooling of the home and sunlight; barriers included rain, outdoor odors or noise, theft risk, mosquito entry, and, for fan use, perceptions of wasting electricity or unavailability of electricity. We concluded that ventilation may reduce indoor PM 2.5 concentrations but, there are barriers to increasing ventilation and, in areas with high ambient PM 2.5 concentrations, indoor concentrations may remain above recommended levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanford, J.W.; Huang, Y.J.
The energy performance of skylights is similar to that of windows in admitting solar heat gain, while at the same time providing a pathway for convective and conductive heat transfer through the building envelope. Since skylights are typically installed at angles ranging from 0{degrees} to 45{degrees}, and differ from windows in both their construction and operation, their conductive and convective heat gains or losses, as well as solar heat gain, will differ for the same rough opening and thermal characteristics. The objective of this work is to quantify the impact of solar gain through skylights on building heating and coolingmore » loads in 45 climates, and to develop a method for including these data into the SP53 residential loads data base previously developed by LBL in support of DOE`s Automated Residential Energy Standard (ARES) program. The authors used the DOE-2.1C program to simulate the heating and cooling loads of a prototypical residential building while varying the size and solar characteristics of skylights and windows. The results are presented as Skylight Solar Loads, which are the contribution of solar gains through skylights to the overall building heating and cooling loads, and as Skylight Solar Load Ratios, which are the ratios of skylight solar loads to those for windows with the same orientation. The study shows that skylight solar loads are larger than those for windows in both heating and cooling. Skylight solar cooling loads are from three to four times greater than those for windows regardless of the skylight tilt, except for those facing north. These cooling loads are largest for south-facing skylights at a tilt angle of approximately 20{degrees}, and drop off at higher tilts and other orientations.« less