Sample records for larger scale testing

  1. Assignment of boundary conditions in embedded ground water flow models

    USGS Publications Warehouse

    Leake, S.A.

    1998-01-01

    Many small-scale ground water models are too small to incorporate distant aquifer boundaries. If a larger-scale model exists for the area of interest, flow and head values can be specified for boundaries in the smaller-scale model using values from the larger-scale model. Flow components along rows and columns of a large-scale block-centered finite-difference model can be interpolated to compute horizontal flow across any segment of a perimeter of a small-scale model. Head at cell centers of the larger-scale model can be interpolated to compute head at points on a model perimeter. Simple linear interpolation is proposed for horizontal interpolation of horizontal-flow components. Bilinear interpolation is proposed for horizontal interpolation of head values. The methods of interpolation provided satisfactory boundary conditions in tests using models of hypothetical aquifers.Many small-scale ground water models are too small to incorporate distant aquifer boundaries. If a larger-scale model exists for the area of interest, flow and head values can be specified for boundaries in the smaller-scale model using values from the larger-scale model. Flow components along rows and columns of a large-scale block-centered finite-difference model can be interpolated to compute horizontal flow across any segment of a perimeter of a small-scale model. Head at cell centers of the larger.scale model can be interpolated to compute head at points on a model perimeter. Simple linear interpolation is proposed for horizontal interpolation of horizontal-flow components. Bilinear interpolation is proposed for horizontal interpolation of head values. The methods of interpolation provided satisfactory boundary conditions in tests using models of hypothetical aquifers.

  2. Measure Twice, Build Once: Bench-Scale Testing to Evaluate Bioretention Media Design

    EPA Science Inventory

    The paper discusses the utility of conducting bench-scale testing on selected bioretention media and media amendments to validate hydrologic properties before installing media and amendments in larger pilot- or full-scale rain garden installations. The bench-scale study conclude...

  3. Field-scale effective matrix diffusion coefficient for fractured rock: results from literature survey.

    PubMed

    Zhou, Quanlin; Liu, Hui-Hai; Molz, Fred J; Zhang, Yingqi; Bodvarsson, Gudmundur S

    2007-08-15

    Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D(m)(e), a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale D(m)(e) values were calculated, either directly using data reported in the literature, or by reanalyzing the corresponding field tracer tests. The reanalysis was conducted for the selected tracer tests using analytic or semi-analytic solutions for tracer transport in linear, radial, or interwell flow fields. Surveyed data show that the scale factor of the effective matrix diffusion coefficient (defined as the ratio of D(m)(e) to the lab-scale matrix diffusion coefficient, D(m), of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate, on average trend toward systematic increase in the scale factor with observation scale. This trend suggests that the effective matrix diffusion coefficient is likely to be statistically scale-dependent. The scale-factor value ranges from 0.5 to 884 for observation scales from 5 to 2000 m. At a given scale, the scale factor varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different geologic sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity) may have significant implications for assessing long-term, large-scale radionuclide and contaminant transport events in fractured rock, both for nuclear waste disposal and contaminant remediation.

  4. Transfer of movement sequences: bigger is better.

    PubMed

    Dean, Noah J; Kovacs, Attila J; Shea, Charles H

    2008-02-01

    Experiment 1 was conducted to determine if proportional transfer from "small to large" scale movements is as effective as transferring from "large to small." We hypothesize that the learning of larger scale movement will require the participant to learn to manage the generation, storage, and dissipation of forces better than when practicing smaller scale movements. Thus, we predict an advantage for transfer of larger scale movements to smaller scale movements relative to transfer from smaller to larger scale movements. Experiment 2 was conducted to determine if adding a load to a smaller scale movement would enhance later transfer to a larger scale movement sequence. It was hypothesized that the added load would require the participants to consider the dynamics of the movement to a greater extent than without the load. The results replicated earlier findings of effective transfer from large to small movements, but consistent with our hypothesis, transfer was less effective from small to large (Experiment 1). However, when a load was added during acquisition transfer from small to large was enhanced even though the load was removed during the transfer test. These results are consistent with the notion that the transfer asymmetry noted in Experiment 1 was due to factors related to movement dynamics that were enhanced during practice of the larger scale movement sequence, but not during the practice of the smaller scale movement sequence. The findings that the movement structure is unaffected by transfer direction but the movement dynamics are influenced by transfer direction is consistent with hierarchal models of sequence production.

  5. A performance evaluation of various coatings, substrate materials, and solar collector systems

    NASA Technical Reports Server (NTRS)

    Dolan, F. J.

    1976-01-01

    An experimental apparatus was constructed and utilized in conjunction with both a solar simulator and actual sunlight to test and evaluate various solar panel coatings, panel designs, and scaled-down collector subsystems. Data were taken by an automatic digital data acquisition system and reduced and printed by a computer system. The solar collector test setup, data acquisition system, and data reduction and printout systems were considered to have operated very satisfactorily. Test data indicated that there is a practical or useful limit in scaling down beyond which scaled-down testing cannot produce results comparable to results of larger scale tests. Test data are presented as are schematics and pictures of test equipment and test hardware.

  6. Enrichment scale determines herbivore control of primary producers.

    PubMed

    Gil, Michael A; Jiao, Jing; Osenberg, Craig W

    2016-03-01

    Anthropogenic nutrient enrichment stimulates primary production and threatens natural communities worldwide. Herbivores may counteract deleterious effects of enrichment by increasing their consumption of primary producers. However, field tests of herbivore control are often done by adding nutrients at small (e.g., sub-meter) scales, while enrichment in real systems often occurs at much larger scales (e.g., kilometers). Therefore, experimental results may be driven by processes that are not relevant at larger scales. Using a mathematical model, we show that herbivores can control primary producer biomass in experiments by concentrating their foraging in small enriched plots; however, at larger, realistic scales, the same mechanism may not lead to herbivore control of primary producers. Instead, other demographic mechanisms are required, but these are not examined in most field studies (and may not operate in many systems). This mismatch between experiments and natural processes suggests that many ecosystems may be less resilient to degradation via enrichment than previously believed.

  7. Variability in Soil Properties at Different Spatial Scales (1 m to 1 km) in a Deciduous Forest Ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garten Jr, Charles T; Kang, S.; Brice, Deanne Jane

    2007-01-01

    The purpose of this research was to test the hypothesis that variability in 11 soil properties, related to soil texture and soil C and N, would increase from small (1 m) to large (1 km) spatial scales in a temperate, mixed-hardwood forest ecosystem in east Tennessee, USA. The results were somewhat surprising and indicated that a fundamental assumption in geospatial analysis, namely that variability increases with increasing spatial scale, did not apply for at least five of the 11 soil properties measured over a 0.5-km2 area. Composite mineral soil samples (15 cm deep) were collected at 1, 5, 10, 50,more » 250, and 500 m distances from a center point along transects in a north, south, east, and westerly direction. A null hypothesis of equal variance at different spatial scales was rejected (P{le}0.05) for mineral soil C concentration, silt content, and the C-to-N ratios in particulate organic matter (POM), mineral-associated organic matter (MOM), and whole surface soil. Results from different tests of spatial variation, based on coefficients of variation or a Mantel test, led to similar conclusions about measurement variability and geographic distance for eight of the 11 variables examined. Measurements of mineral soil C and N concentrations, C concentrations in MOM, extractable soil NH{sub 4}-N, and clay contents were just as variable at smaller scales (1-10 m) as they were at larger scales (50-500 m). On the other hand, measurement variation in mineral soil C-to-N ratios, MOM C-to-N ratios, and the fraction of soil C in POM clearly increased from smaller to larger spatial scales. With the exception of extractable soil NH4-N, measured soil properties in the forest ecosystem could be estimated (with 95% confidence) to within 15% of their true mean with a relatively modest number of sampling points (n{le}25). For some variables, scaling up variation from smaller to larger spatial domains within the ecosystem could be relatively easy because small-scale variation may be indicative of variation at larger scales.« less

  8. A Comparison of Traditional Test Blueprinting and Item Development to Assessment Engineering in a Licensure Context

    ERIC Educational Resources Information Center

    Masters, James S.

    2010-01-01

    With the need for larger and larger banks of items to support adaptive testing and to meet security concerns, large-scale item generation is a requirement for many certification and licensure programs. As part of the mass production of items, it is critical that the difficulty and the discrimination of the items be known without the need for…

  9. Impact Testing of Composites for Aircraft Engine Fan Cases

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Revilock, Duane M.; Binienda, Wieslaw K.; Nie, Walter Z.; Mackenzie, S. Ben; Todd, Kevin B.

    2001-01-01

    Before composite materials can be considered for use in the fan case of a commercial jet engine, the performance of a composite structure under blade-out loads needs to be demonstrated. The objective of this program is to develop an efficient test and analysis method for evaluating potential composite case concepts. Ballistic impact tests were performed on laminated glass/epoxy composites in order to identify potential failure modes and to provide data for analysis. Flat 7x7 in. panels were impacted with cylindrical titanium projectiles, and 15 in. diameter half-rings were impacted with wedge-shaped titanium projectiles. Composite failure involved local fiber fracture as well as tearing and delamination on a larger scale. A 36 in. diameter full-ring subcomponent was proposed for larger scale testing. Explicit, transient, finite element analyses were used to evaluate impact dynamics and subsequent global deformation for the proposed full-ring subcomponent test. Analyses on half-ring and quarter ring configurations indicated that less expensive smaller scale tests could be used to screen potential composite concepts when evaluation of local impact damage is the primary concern.

  10. Development and Initial Testing of the Tiltrotor Test Rig

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.; Sheikman, A. L.

    2018-01-01

    The NASA Tiltrotor Test Rig (TTR) is a new, large-scale proprotor test system, developed jointly with the U.S. Army and Air Force, to develop a new, large-scale proprotor test system for the National Full-Scale Aerodynamics Complex (NFAC). The TTR is designed to test advanced proprotors up to 26 feet in diameter at speeds up to 300 knots, and even larger rotors at lower airspeeds. This combination of size and speed is unprecedented and is necessary for research into 21st-century tiltrotors and other advanced rotorcraft concepts. The TTR will provide critical data for validation of state-of-the-art design and analysis tools.

  11. A study of the adequacy of quasi-geostrophic dynamics for modeling the effect of frontal cyclones on the larger scale flow

    NASA Technical Reports Server (NTRS)

    Mudrick, S.

    1985-01-01

    The validity of quasi-geostrophic (QG) dynamics were tested on compared to primitive equation (PE) dynamics, for modeling the effect of cyclone waves on the larger scale flow. The formation of frontal cyclones and the dynamics of occluded frontogenesis were studied. Surface friction runs with the PE model and the wavelength of maximum instability is described. Also fine resolution PE simulation of a polar low is described.

  12. Large-Scale Hybrid Motor Testing. Chapter 10

    NASA Technical Reports Server (NTRS)

    Story, George

    2006-01-01

    Hybrid rocket motors can be successfully demonstrated at a small scale virtually anywhere. There have been many suitcase sized portable test stands assembled for demonstration of hybrids. They show the safety of hybrid rockets to the audiences. These small show motors and small laboratory scale motors can give comparative burn rate data for development of different fuel/oxidizer combinations, however questions that are always asked when hybrids are mentioned for large scale applications are - how do they scale and has it been shown in a large motor? To answer those questions, large scale motor testing is required to verify the hybrid motor at its true size. The necessity to conduct large-scale hybrid rocket motor tests to validate the burn rate from the small motors to application size has been documented in several place^'^^.^. Comparison of small scale hybrid data to that of larger scale data indicates that the fuel burn rate goes down with increasing port size, even with the same oxidizer flux. This trend holds for conventional hybrid motors with forward oxidizer injection and HTPB based fuels. While the reason this is occurring would make a great paper or study or thesis, it is not thoroughly understood at this time. Potential causes include the fact that since hybrid combustion is boundary layer driven, the larger port sizes reduce the interaction (radiation, mixing and heat transfer) from the core region of the port. This chapter focuses on some of the large, prototype sized testing of hybrid motors. The largest motors tested have been AMROC s 250K-lbf thrust motor at Edwards Air Force Base and the Hybrid Propulsion Demonstration Program s 250K-lbf thrust motor at Stennis Space Center. Numerous smaller tests were performed to support the burn rate, stability and scaling concepts that went into the development of those large motors.

  13. Train-to-Train Impact Test of Crash-Energy Management Passenger Rail Equipment: Structural Results

    DOT National Transportation Integrated Search

    2006-01-01

    On March 23, 2006, a full-scale test was conducted on a : passenger rail train retrofitted with newly developed cab end : and non-cab end crush zone designs. This test was conducted : as part of a larger testing program to establish the degree of : e...

  14. Train-to-train impact test of crash energy management passenger rail equipment.

    DOT National Transportation Integrated Search

    2007-02-01

    On March 23, 2006, a full-scale test was conducted on a passenger rail train retrofitted with newly developed cab and coach car crush zone designs. This test was conducted as part of a larger testing program to establish the degree of enhanced perfor...

  15. SITE TECHNOLOGY CAPSULE: SONOTECH PULSE COMBUSTION SYSTEM

    EPA Science Inventory

    Sonotech has targeted waste incineration as a potential application for this technology. Based on bench-scale rotary-kiln simulator tests, Sonotech proposed a demonstration under the SITE program to evaluate the Sonotech pulse combustion system on a larger scale at EPA's IRF in J...

  16. Crash Energy Management Crush Zone Designs : Features, Functions and Forms

    DOT National Transportation Integrated Search

    2007-03-13

    On March 23, 2006, a full-scale test was conducted on a passenger train retrofitted with newly developed cab and coach car crush zone designs. This test was conducted as part of a larger testing program to establish the degree of enhanced performance...

  17. Multi-scale Slip Inversion Based on Simultaneous Spatial and Temporal Domain Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Liu, W.; Yao, H.; Yang, H. Y.

    2017-12-01

    Finite fault inversion is a widely used method to study earthquake rupture processes. Some previous studies have proposed different methods to implement finite fault inversion, including time-domain, frequency-domain, and wavelet-domain methods. Many previous studies have found that different frequency bands show different characteristics of the seismic rupture (e.g., Wang and Mori, 2011; Yao et al., 2011, 2013; Uchide et al., 2013; Yin et al., 2017). Generally, lower frequency waveforms correspond to larger-scale rupture characteristics while higher frequency data are representative of smaller-scale ones. Therefore, multi-scale analysis can help us understand the earthquake rupture process thoroughly from larger scale to smaller scale. By the use of wavelet transform, the wavelet-domain methods can analyze both the time and frequency information of signals in different scales. Traditional wavelet-domain methods (e.g., Ji et al., 2002) implement finite fault inversion with both lower and higher frequency signals together to recover larger-scale and smaller-scale characteristics of the rupture process simultaneously. Here we propose an alternative strategy with a two-step procedure, i.e., firstly constraining the larger-scale characteristics with lower frequency signals, and then resolving the smaller-scale ones with higher frequency signals. We have designed some synthetic tests to testify our strategy and compare it with the traditional one. We also have applied our strategy to study the 2015 Gorkha Nepal earthquake using tele-seismic waveforms. Both the traditional method and our two-step strategy only analyze the data in different temporal scales (i.e., different frequency bands), while the spatial distribution of model parameters also shows multi-scale characteristics. A more sophisticated strategy is to transfer the slip model into different spatial scales, and then analyze the smooth slip distribution (larger scales) with lower frequency data firstly and more detailed slip distribution (smaller scales) with higher frequency data subsequently. We are now implementing the slip inversion using both spatial and temporal domain wavelets. This multi-scale analysis can help us better understand frequency-dependent rupture characteristics of large earthquakes.

  18. The first PANDA tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreier, J.; Huggenberger, M.; Aubert, C.

    1996-08-01

    The PANDA test facility at PSI in Switzerland is used to study the long-term Simplified Boiling Water Reactor (SBWR) Passive Containment Cooling System (PCCS) performance. The PANDA tests demonstrate performance on a larger scale than previous tests and examine the effects of any non-uniform spatial distributions of steam and non-condensables in the system. The PANDA facility has a 1:1 vertical scale, and 1:25 ``system`` scale (volume, power, etc.). Steady-state PCCS condenser performance tests and extensive facility characterization tests have been completed. Transient system behavior tests were conducted late in 1995; results from the first three transient tests (M3 series) aremore » reviewed. The first PANDA tests showed that the overall global behavior of the SBWR containment was globally repeatable and very favorable; the system exhibited great ``robustness.``« less

  19. Organelle Size Scaling of the Budding Yeast Vacuole by Relative Growth and Inheritance.

    PubMed

    Chan, Yee-Hung M; Reyes, Lorena; Sohail, Saba M; Tran, Nancy K; Marshall, Wallace F

    2016-05-09

    It has long been noted that larger animals have larger organs compared to smaller animals of the same species, a phenomenon termed scaling [1]. Julian Huxley proposed an appealingly simple model of "relative growth"-in which an organ and the whole body grow with their own intrinsic rates [2]-that was invoked to explain scaling in organs from fiddler crab claws to human brains. Because organ size is regulated by complex, unpredictable pathways [3], it remains unclear whether scaling requires feedback mechanisms to regulate organ growth in response to organ or body size. The molecular pathways governing organelle biogenesis are simpler than organogenesis, and therefore organelle size scaling in the cell provides a more tractable case for testing Huxley's model. We ask the question: is it possible for organelle size scaling to arise if organelle growth is independent of organelle or cell size? Using the yeast vacuole as a model, we tested whether mutants defective in vacuole inheritance, vac8Δ and vac17Δ, tune vacuole biogenesis in response to perturbations in vacuole size. In vac8Δ/vac17Δ, vacuole scaling increases with the replicative age of the cell. Furthermore, vac8Δ/vac17Δ cells continued generating vacuole at roughly constant rates even when they had significantly larger vacuoles compared to wild-type. With support from computational modeling, these results suggest there is no feedback between vacuole biogenesis rates and vacuole or cell size. Rather, size scaling is determined by the relative growth rates of the vacuole and the cell, thus representing a cellular version of Huxley's model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Multiview Drawing Instruction: A Two-Location Experiment

    ERIC Educational Resources Information Center

    Connolly, Patrick; Holliday-Darr, Kathryn; Blasko, Dawn G.

    2006-01-01

    Several methods have been developed, presented, and discussed at recent ASEE and EDGD conferences on the topic of computer-based multiview drawing instruction. While small-scale and localized testing of these instruments and methods has been undertaken, no larger-scale or multi-location experiments have been attempted. This paper describes an…

  1. Comparative Laboratory-Scale Testing of Dispersant Effectiveness of 23 Crude Oils Using Four Different Testing Protocols

    EPA Science Inventory

    A controlled laboratory study was conducted to measure the dispersion effectiveness of Corexit 9500 on 20 different crude oils. This study was a part of a larger project initiated by the Bureau of Safety and Environmental Enforcement (BSEE) testing 20 oils to compare the predict...

  2. Experimental feasibility study of the application of magnetic suspension techniques to large-scale aerodynamic test facilities

    NASA Technical Reports Server (NTRS)

    Zapata, R. N.; Humphris, R. R.; Henderson, K. C.

    1974-01-01

    Based on the premises that (1) magnetic suspension techniques can play a useful role in large-scale aerodynamic testing and (2) superconductor technology offers the only practical hope for building large-scale magnetic suspensions, an all-superconductor three-component magnetic suspension and balance facility was built as a prototype and was tested successfully. Quantitative extrapolations of design and performance characteristics of this prototype system to larger systems compatible with existing and planned high Reynolds number facilities have been made and show that this experimental technique should be particularly attractive when used in conjunction with large cryogenic wind tunnels.

  3. Development of a superconductor magnetic suspension and balance prototype facility for studying the feasibility of applying this technique to large scale aerodynamic testing

    NASA Technical Reports Server (NTRS)

    Zapata, R. N.; Humphris, R. R.; Henderson, K. C.

    1975-01-01

    The basic research and development work towards proving the feasibility of operating an all-superconductor magnetic suspension and balance device for aerodynamic testing is presented. The feasibility of applying a quasi-six-degree-of freedom free support technique to dynamic stability research was studied along with the design concepts and parameters for applying magnetic suspension techniques to large-scale aerodynamic facilities. A prototype aerodynamic test facility was implemented. Relevant aspects of the development of the prototype facility are described in three sections: (1) design characteristics; (2) operational characteristics; and (3) scaling to larger facilities.

  4. Experimental feasibility study of the application of magnetic suspension techniques to large-scale aerodynamic test facilities. [cryogenic traonics wind tunnel

    NASA Technical Reports Server (NTRS)

    Zapata, R. N.; Humphris, R. R.; Henderson, K. C.

    1975-01-01

    Based on the premises that magnetic suspension techniques can play a useful role in large scale aerodynamic testing, and that superconductor technology offers the only practical hope for building large scale magnetic suspensions, an all-superconductor 3-component magnetic suspension and balance facility was built as a prototype and tested sucessfully. Quantitative extrapolations of design and performance characteristics of this prototype system to larger systems compatible with existing and planned high Reynolds number facilities at Langley Research Center were made and show that this experimental technique should be particularly attractive when used in conjunction with large cryogenic wind tunnels.

  5. SRIM User’s Manual Release 2.0

    DTIC Science & Technology

    1986-03-01

    scale factor :512 Complex image file : test.ci Complex image maximum magnitude : 0.142081E+01 User scified scaling factor 0.512000E+03 Comands : [F...larger (in space dimensions) blocks being used to represent the image. This is similar to grain size in photographic film . If a fine grain image is

  6. Evaluation of Alternative Altitude Scaling Methods for Thermal Ice Protection System in NASA Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Addy, Harold E. Jr.; Broeren, Andy P.; Orchard, David M.

    2017-01-01

    A test was conducted at NASA Icing Research Tunnel to evaluate altitude scaling methods for thermal ice protection system. Two new scaling methods based on Weber number were compared against a method based on Reynolds number. The results generally agreed with the previous set of tests conducted in NRCC Altitude Icing Wind Tunnel where the three methods of scaling were also tested and compared along with reference (altitude) icing conditions. In those tests, the Weber number-based scaling methods yielded results much closer to those observed at the reference icing conditions than the Reynolds number-based icing conditions. The test in the NASA IRT used a much larger, asymmetric airfoil with an ice protection system that more closely resembled designs used in commercial aircraft. Following the trends observed during the AIWT tests, the Weber number based scaling methods resulted in smaller runback ice than the Reynolds number based scaling, and the ice formed farther upstream. The results show that the new Weber number based scaling methods, particularly the Weber number with water loading scaling, continue to show promise for ice protection system development and evaluation in atmospheric icing tunnels.

  7. The Search for the Holy Grail: Content-Referenced Score Interpretations from Large-Scale Tests

    ERIC Educational Resources Information Center

    Marion, Scott F.

    2015-01-01

    The measurement industry is in crisis. The public outcry against "over testing" and the opt-out movement are symptoms of a larger sociopolitical battle being fought over Common Core, teacher evaluation, federal intrusion, and a host of other issues, but much of the vitriol is directed at the tests and the testing industry. If we, as…

  8. Evaluation of constant-Weber-number scaling for icing tests

    NASA Technical Reports Server (NTRS)

    Anderson, David N.

    1996-01-01

    Previous studies showed that for conditions simulating an aircraft encountering super-cooled water droplets the droplets may splash before freezing. Other surface effects dependent on the water surface tension may also influence the ice accretion process. Consequently, the Weber number appears to be important in accurately scaling ice accretion. A scaling method which uses a constant-Weber-number approach has been described previously; this study provides an evaluation of this scaling method. Tests are reported on cylinders of 2.5 to 15-cm diameter and NACA 0012 airfoils with chords of 18 to 53 cm in the NASA Lewis Icing Research Tunnel (IRT). The larger models were used to establish reference ice shapes, the scaling method was applied to determine appropriate scaled test conditions using the smaller models, and the ice shapes were compared. Icing conditions included warm glaze, horn glaze and mixed. The smallest size scaling attempted was 1/3, and scale and reference ice shapes for both cylinders and airfoils indicated that the constant-Weber-number scaling method was effective for the conditions tested.

  9. Development of thermal stratification and destratification scaling concepts. Volume 1: Definition of thermal stratification scaling parameters and experimental investigations

    NASA Technical Reports Server (NTRS)

    Lovrich, T. N.; Schwartz, S. H.

    1975-01-01

    The dimensionless parameters associated with the thermal stratification and pressure history of a heated container of liquid and its vapor were examined. The Modified Grashof number, the Fourier number, and an Interface number were parameterized using a single test liquid, Freon 113. Cylindrical test tanks with spherical dome end caps were built. Blanket heaters covered the tanks and thermocouples monitored the temperatures of the liquid, the ullage, the tank walls, and the foam insulation encapsulating the tank. A centrifuge was used for the 6 inch tank to preserve the same scaling parameter values between it and the larger tanks. Tests were conducted over a range of Gr* values and the degree of scaling was checked by comparing the dimensionless pressures and temperatures for each scaled pair of tests. Results indicate that the bulk liquid temperature, the surface temperature of the liquid, and the tank pressure can be scaled with the three dimensionless parameters. Some deviation was, however, found in the detailed temperature profiles between the scaled pairs of tests.

  10. Crash Testing of Helicopter Airframe Fittings

    NASA Technical Reports Server (NTRS)

    Clarke, Charles W.; Townsend, William; Boitnott, Richard

    2004-01-01

    As part of the Rotary Wing Structures Technology Demonstration (RWSTD) program, a surrogate RAH-66 seat attachment fitting was dynamically tested to assess its response to transient, crash impact loads. The dynamic response of this composite material fitting was compared to the performance of an identical fitting subjected to quasi-static loads of similar magnitude. Static and dynamic tests were conducted of both smaller bench level and larger full-scale test articles. At the bench level, the seat fitting was supported in a steel fixture, and in the full-scale tests, the fitting was integrated into a surrogate RAH-66 forward fuselage. Based upon the lessons learned, an improved method to design, analyze, and test similar composite material fittings is proposed.

  11. Testing and Validation of the Dynamic Interia Measurement Method

    NASA Technical Reports Server (NTRS)

    Chin, Alexander; Herrera, Claudia; Spivey, Natalie; Fladung, William; Cloutier, David

    2015-01-01

    This presentation describes the DIM method and how it measures the inertia properties of an object by analyzing the frequency response functions measured during a ground vibration test (GVT). The DIM method has been in development at the University of Cincinnati and has shown success on a variety of small scale test articles. The NASA AFRC version was modified for larger applications.

  12. Development of the Attributed Dignity Scale.

    PubMed

    Jacelon, Cynthia S; Dixon, Jane; Knafl, Kathleen A

    2009-07-01

    A sequential, multi-method approach to instrument development beginning with concept analysis, followed by (a) item generation from qualitative data, (b) review of items by expert and lay person panels, (c) cognitive appraisal interviews, (d) pilot testing, and (e) evaluating construct validity was used to develop a measure of attributed dignity in older adults. The resulting positively scored, 23-item scale has three dimensions: Self-Value, Behavioral Respect-Self, and Behavioral Respect-Others. Item-total correlations in the pilot study ranged from 0.39 to 0.85. Correlations between the Attributed Dignity Scale (ADS) and both Rosenberg's Self-Esteem Scale (0.17) and Crowne and Marlowe's Social Desirability Scale (0.36) were modest and in the expected direction, indicating attributed dignity is a related but independent concept. Next steps include testing the ADS with a larger sample to complete factor analysis, test-retest stability, and further study of the relationships between attributed dignity and other concepts.

  13. [Reliability and validity of depression scales of Chinese version: a systematic review].

    PubMed

    Sun, X Y; Li, Y X; Yu, C Q; Li, L M

    2017-01-10

    Objective: Through systematically reviewing the reliability and validity of depression scales of Chinese version in adults in China to evaluate the psychometric properties of depression scales for different groups. Methods: Eligible studies published before 6 May 2016 were retrieved from the following database: CNKI, Wanfang, PubMed and Embase. The HSROC model of the diagnostic test accuracy (DTA) for Meta-analysis was used to calculate the pooled sensitivity and specificity of the PHQ-9. Results: A total of 44 papers evaluating the performance of depression scales were included. Results showed that the reliability and validity of the common depression scales were eligible, including the Beck depression inventory (BDI), the Hamilton depression scale (HAMD), the center epidemiological studies depression scale (CES-D), the patient health questionnaire (PHQ) and the Geriatric depression scale (GDS). The Cronbach' s coefficient of most tools were larger than 0.8, while the test-retest reliability and split-half reliability were larger than 0.7, indicating good internal consistency and stability. The criterion validity, convergent validity, discrimination validity and screening validity were acceptable though different cut-off points were recommended by different studies. The pooled sensitivity of the 11 studies evaluating PHQ-9 was 0.88 (95 %CI : 0.85-0.91) while the pooled specificity was 0.89 (95 %CI : 0.82-0.94), which demonstrated the applicability of PHQ-9 in screening depression. Conclusion: The reliability and validity of different depression scales of Chinese version are acceptable. The characteristics of different tools and study population should be taken into consideration when choosing a specific scale.

  14. Fiber-optic-based laser vapor screen flow visualization system for aerodynamic research in larger scale subsonic and transonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Inenaga, Andrew S.

    1994-01-01

    Laser vapor screen (LVS) flow visualization systems that are fiber-optic based were developed and installed for aerodynamic research in the Langley 8-Foot Transonic Pressure Tunnel and the Langley 7- by 10-Foot High Speed Tunnel. Fiber optics are used to deliver the laser beam through the plenum shell that surrounds the test section of each facility and to the light-sheet-generating optics positioned in the ceiling window of the test section. Water is injected into the wind tunnel diffuser section to increase the relative humidity and promote condensation of the water vapor in the flow field about the model. The condensed water vapor is then illuminated with an intense sheet of laser light to reveal features of the flow field. The plenum shells are optically sealed; therefore, video-based systems are used to observe and document the flow field. Operational experience shows that the fiber-optic-based systems provide safe, reliable, and high-quality off-surface flow visualization in smaller and larger scale subsonic and transonic wind tunnels. The design, the installation, and the application of the Langley Research Center (LaRC) LVS flow visualization systems in larger scale wind tunnels are highlighted. The efficiency of the fiber optic LVS systems and their insensitivity to wind tunnel vibration, the tunnel operating temperature and pressure variations, and the airborne contaminants are discussed.

  15. Noise characteristics of upper surface blown configurations. Experimental program and results

    NASA Technical Reports Server (NTRS)

    Brown, W. H.; Searle, N.; Blakney, D. F.; Pennock, A. P.; Gibson, J. S.

    1977-01-01

    An experimental data base was developed from the model upper surface blowing (USB) propulsive lift system hardware. While the emphasis was on far field noise data, a considerable amount of relevant flow field data were also obtained. The data were derived from experiments in four different facilities resulting in: (1) small scale static flow field data; (2) small scale static noise data; (3) small scale simulated forward speed noise and load data; and (4) limited larger-scale static noise flow field and load data. All of the small scale tests used the same USB flap parts. Operational and geometrical variables covered in the test program included jet velocity, nozzle shape, nozzle area, nozzle impingement angle, nozzle vertical and horizontal location, flap length, flap deflection angle, and flap radius of curvature.

  16. Cascade heterogeneous face sketch-photo synthesis via dual-scale Markov Network

    NASA Astrophysics Data System (ADS)

    Yao, Saisai; Chen, Zhenxue; Jia, Yunyi; Liu, Chengyun

    2018-03-01

    Heterogeneous face sketch-photo synthesis is an important and challenging task in computer vision, which has widely applied in law enforcement and digital entertainment. According to the different synthesis results based on different scales, this paper proposes a cascade sketch-photo synthesis method via dual-scale Markov Network. Firstly, Markov Network with larger scale is used to synthesise the initial sketches and the local vertical and horizontal neighbour search (LVHNS) method is used to search for the neighbour patches of test patches in training set. Then, the initial sketches and test photos are jointly entered into smaller scale Markov Network. Finally, the fine sketches are obtained after cascade synthesis process. Extensive experimental results on various databases demonstrate the superiority of the proposed method compared with several state-of-the-art methods.

  17. Research and Development of High-performance Explosives

    PubMed Central

    Cornell, Rodger; Wrobel, Erik; Anderson, Paul E.

    2016-01-01

    Developmental testing of high explosives for military applications involves small-scale formulation, safety testing, and finally detonation performance tests to verify theoretical calculations. small-scale For newly developed formulations, the process begins with small-scale mixes, thermal testing, and impact and friction sensitivity. Only then do subsequent larger scale formulations proceed to detonation testing, which will be covered in this paper. Recent advances in characterization techniques have led to unparalleled precision in the characterization of early-time evolution of detonations. The new technique of photo-Doppler velocimetry (PDV) for the measurement of detonation pressure and velocity will be shared and compared with traditional fiber-optic detonation velocity and plate-dent calculation of detonation pressure. In particular, the role of aluminum in explosive formulations will be discussed. Recent developments led to the development of explosive formulations that result in reaction of aluminum very early in the detonation product expansion. This enhanced reaction leads to changes in the detonation velocity and pressure due to reaction of the aluminum with oxygen in the expanding gas products. PMID:26966969

  18. Assessment of the Reliability and Validity of a Stress Questionnaire for Pharmacy Administration Graduate Students

    ERIC Educational Resources Information Center

    Konduri, Niranjan; Gupchup, Gireesh V.; Borrego, Matthew E.; Worley-Louis, Marcia

    2006-01-01

    The purpose of this study was to test and assess the reliability and validity of a modified stress scale in a sample of pharmacy graduate students. The modified stress scale was used as part of a larger, nationwide, study whose aim was to investigate the association of stress, perceived academic success and health-related quality of life among…

  19. Is orbital volume associated with eyeball and visual cortex volume in humans?

    PubMed

    Pearce, Eiluned; Bridge, Holly

    2013-01-01

    In humans orbital volume increases linearly with absolute latitude. Scaling across mammals between visual system components suggests that these larger orbits should translate into larger eyes and visual cortices in high latitude humans. Larger eyes at high latitudes may be required to maintain adequate visual acuity and enhance visual sensitivity under lower light levels. To test the assumption that orbital volume can accurately index eyeball and visual cortex volumes specifically in humans. Structural Magnetic Resonance Imaging (MRI) techniques are employed to measure eye and orbit (n = 88) and brain and visual cortex (n = 99) volumes in living humans. Facial dimensions and foramen magnum area (a proxy for body mass) were also measured. A significant positive linear relationship was found between (i) orbital and eyeball volumes, (ii) eyeball and visual cortex grey matter volumes and (iii) different visual cortical areas, independently of overall brain volume. In humans the components of the visual system scale from orbit to eye to visual cortex volume independently of overall brain size. These findings indicate that orbit volume can index eye and visual cortex volume in humans, suggesting that larger high latitude orbits do translate into larger visual cortices.

  20. Is orbital volume associated with eyeball and visual cortex volume in humans?

    PubMed Central

    Pearce, Eiluned; Bridge, Holly

    2013-01-01

    Background In humans orbital volume increases linearly with absolute latitude. Scaling across mammals between visual system components suggests that these larger orbits should translate into larger eyes and visual cortices in high latitude humans. Larger eyes at high latitudes may be required to maintain adequate visual acuity and enhance visual sensitivity under lower light levels. Aim To test the assumption that orbital volume can accurately index eyeball and visual cortex volumes specifically in humans. Subjects & Methods Structural Magnetic Resonance Imaging (MRI) techniques are employed to measure eye and orbit (N=88), and brain and visual cortex (N=99) volumes in living humans. Facial dimensions and foramen magnum area (a proxy for body mass) were also measured. Results A significant positive linear relationship was found between (i) orbital and eyeball volumes, (ii) eyeball and visual cortex grey matter volumes, (iii) different visual cortical areas, independently of overall brain volume. Conclusion In humans the components of the visual system scale from orbit to eye to visual cortex volume independently of overall brain size. These findings indicate that orbit volume can index eye and visual cortex volume in humans, suggesting that larger high latitude orbits do translate into larger visual cortices. PMID:23879766

  1. Interpretation of hydraulic conductivity in a fractured-rock aquifer over increasingly larger length dimensions

    USGS Publications Warehouse

    Shapiro, Allen M.; Ladderud, Jeffery; Yager, Richard M.

    2015-01-01

    A comparison of the hydraulic conductivity over increasingly larger volumes of crystalline rock was conducted in the Piedmont physiographic region near Bethesda, Maryland, USA. Fluid-injection tests were conducted on intervals of boreholes isolating closely spaced fractures. Single-hole tests were conducted by pumping in open boreholes for approximately 30 min, and an interference test was conducted by pumping a single borehole over 3 days while monitoring nearby boreholes. An estimate of the hydraulic conductivity of the rock over hundreds of meters was inferred from simulating groundwater inflow into a kilometer-long section of a Washington Metropolitan Area Transit Authority tunnel in the study area, and a groundwater modeling investigation over the Rock Creek watershed provided an estimate of the hydraulic conductivity over kilometers. The majority of groundwater flow is confined to relatively few fractures at a given location. Boreholes installed to depths of approximately 50 m have one or two highly transmissive fractures; the transmissivity of the remaining fractures ranges over five orders of magnitude. Estimates of hydraulic conductivity over increasingly larger rock volumes varied by less than half an order of magnitude. While many investigations point to increasing hydraulic conductivity as a function of the measurement scale, a comparison with selected investigations shows that the effective hydraulic conductivity estimated over larger volumes of rock can either increase, decrease, or remain stable as a function of the measurement scale. Caution needs to be exhibited in characterizing effective hydraulic properties in fractured rock for the purposes of groundwater management.

  2. Numerical computation of hurricane effects on historic coastal hydrology in Southern Florida

    USGS Publications Warehouse

    Swain, Eric D.; Krohn, M. Dennis; Langtimm, Catherine A.

    2015-01-01

    The hindcast simulation estimated hydrologic processes for the 1926 to 1932 period. It shows promise as a simulator in long-term ecological studies to test hypotheses based on theoretical or empirical-based studies at larger landscape scales.

  3. Impact Testing and Analysis of Composites for Aircraft Engine Fan Cases

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Revilock, Duane M.; Binienda, Wieslaw K.; Nie, Walter Z.; Mackenzie, S. Ben; Todd, Kevin B.

    2002-01-01

    The fan case in a jet engine is a heavy structure because of its size and because of the requirement that it contain a blade released during engine operation. Composite materials offer the potential for reducing the weight of the case. Efficient design, test, and analysis methods are needed to efficiently evaluate the large number of potential composite materials and design concepts. The type of damage expected in a composite case under blade-out conditions was evaluated using a subscale test in which a glass/epoxy composite half-ring target was impacted with a wedge-shaped titanium projectile. Fiber shearing occurred near points of contact between the projectile and target. Delamination and tearing occurred on a larger scale. These damage modes were reproduced in a simpler test in which flat glass/epoxy composites were impacted with a blunt cylindrical projectile. A surface layer of ceramic eliminated fiber shear fracture but did not reduce delamination. Tests on 3D woven carbon/epoxy composites indicated that transverse reinforcement is effective in reducing delamination. A 91 cm (36 in.) diameter full-ring sub-component was proposed for larger scale testing of these and other composite concepts. Explicit, transient, finite element analyses indicated that a full-ring test is needed to simulate complete impact dynamics, but simpler tests using smaller ring sections are adequate when evaluation of initial impact damage is the primary concern.

  4. Does an inter-flaw length control the accuracy of rupture forecasting in geological materials?

    NASA Astrophysics Data System (ADS)

    Vasseur, Jérémie; Wadsworth, Fabian B.; Heap, Michael J.; Main, Ian G.; Lavallée, Yan; Dingwell, Donald B.

    2017-10-01

    Multi-scale failure of porous materials is an important phenomenon in nature and in material physics - from controlled laboratory tests to rockbursts, landslides, volcanic eruptions and earthquakes. A key unsolved research question is how to accurately forecast the time of system-sized catastrophic failure, based on observations of precursory events such as acoustic emissions (AE) in laboratory samples, or, on a larger scale, small earthquakes. Until now, the length scale associated with precursory events has not been well quantified, resulting in forecasting tools that are often unreliable. Here we test the hypothesis that the accuracy of the forecast failure time depends on the inter-flaw distance in the starting material. We use new experimental datasets for the deformation of porous materials to infer the critical crack length at failure from a static damage mechanics model. The style of acceleration of AE rate prior to failure, and the accuracy of forecast failure time, both depend on whether the cracks can span the inter-flaw length or not. A smooth inverse power-law acceleration of AE rate to failure, and an accurate forecast, occurs when the cracks are sufficiently long to bridge pore spaces. When this is not the case, the predicted failure time is much less accurate and failure is preceded by an exponential AE rate trend. Finally, we provide a quantitative and pragmatic correction for the systematic error in the forecast failure time, valid for structurally isotropic porous materials, which could be tested against larger-scale natural failure events, with suitable scaling for the relevant inter-flaw distances.

  5. The void spectrum in two-dimensional numerical simulations of gravitational clustering

    NASA Technical Reports Server (NTRS)

    Kauffmann, Guinevere; Melott, Adrian L.

    1992-01-01

    An algorithm for deriving a spectrum of void sizes from two-dimensional high-resolution numerical simulations of gravitational clustering is tested, and it is verified that it produces the correct results where those results can be anticipated. The method is used to study the growth of voids as clustering proceeds. It is found that the most stable indicator of the characteristic void 'size' in the simulations is the mean fractional area covered by voids of diameter d, in a density field smoothed at its correlation length. Very accurate scaling behavior is found in power-law numerical models as they evolve. Eventually, this scaling breaks down as the nonlinearity reaches larger scales. It is shown that this breakdown is a manifestation of the undesirable effect of boundary conditions on simulations, even with the very large dynamic range possible here. A simple criterion is suggested for deciding when simulations with modest large-scale power may systematically underestimate the frequency of larger voids.

  6. Impact force as a scaling parameter

    NASA Technical Reports Server (NTRS)

    Poe, Clarence C., Jr.; Jackson, Wade C.

    1994-01-01

    The Federal Aviation Administration (FAR PART 25) requires that a structure carry ultimate load with nonvisible impact damage and carry 70 percent of limit flight loads with discrete damage. The Air Force has similar criteria (MIL-STD-1530A). Both civilian and military structures are designed by a building block approach. First, critical areas of the structure are determined, and potential failure modes are identified. Then, a series of representative specimens are tested that will fail in those modes. The series begins with tests of simple coupons, progresses through larger and more complex subcomponents, and ends with a test on a full-scale component, hence the term 'building block.' In order to minimize testing, analytical models are needed to scale impact damage and residual strength from the simple coupons to the full-scale component. Using experiments and analysis, the present paper illustrates that impact damage can be better understood and scaled using impact force than just kinetic energy. The plate parameters considered are size and thickness, boundary conditions, and material, and the impact parameters are mass, shape, and velocity.

  7. Experimental Validation of the Dynamic Inertia Measurement Method to Find the Mass Properties of an Iron Bird Test Article

    NASA Technical Reports Server (NTRS)

    Chin, Alexander; Herrera, Claudia; Spivey, Natalie; Fladung, William; Cloutier, David

    2015-01-01

    This presentation describes the DIM method and how it measures the inertia properties of an object by analyzing the frequency response functions measured during a ground vibration test (GVT). The DIM method has been in development at the University of Cincinnati and has shown success on a variety of small scale test articles. The NASA AFRC version was modified for larger applications.

  8. Safer Aviation Materials Tested

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    2001-01-01

    A series of thermally stable polymer samples were tested. These materials are called low heat release materials and are designed for aircraft interior decorative materials. The materials are designed to give off a minimum amount of noxious gases when heated, which increases the possibility that people can escape from a burning aircraft. New cabin materials have suitably low heat release so that fire does not spread, toxic chemicals are not given off, and the fire-emergency escape time for crew and passengers is lengthened. These low heat-release materials have a variety of advantages and applications: interiors for ground-based facilities, interiors of space vehicles, and many commercial fire-protection environments. A microscale combustion calorimeter at the Federal Aviation Administration's (FAA) Technical Center tested NASA Langley Research Center materials samples. The calorimeter is shown. A sharp, quantitative, and reproducible heat-release-rate peak is obtained in the microscale heat-release-rate test. The newly tested NASA materials significantly reduced the heat release capacity and total heat release. The thermal stability and flammability behavior of the samples was very good. The new materials demonstrated a factor of 4 reduction in total heat release over ULTEM (a currently used material). This information is provided in the following barchart. In other tests, the materials showed greater than a factor 9 reduction in heat-release capacity over ULTEM. The newly tested materials were developed for low dielectric constant, low color, and good solubility. A scale up of the material samples is needed to determine the repeatability of the performance in larger samples. Larger panels composed of the best candidate materials will be tested in a larger scale FAA Technical Center fire facility. The NASA Glenn Research Center, Langley (Jeff Hinkley), and the FAA Technical Center (Richard Lyon) cooperatively tested these materials for the Accident Mitigation aspects of Fire Prevention under NASA's Aviation Safety Program.

  9. Validation Test Report for WAVEWATCH III

    DTIC Science & Technology

    2012-11-30

    scales relevant to operation of a zodiac , to larger length-scales, relevant to activities on the largest ships, such as ship-to-ship transfer of...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data...display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  10. Assessment of Scaled Rotors for Wind Tunnel Experiments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maniaci, David Charles; Kelley, Christopher Lee; Chiu, Phillip

    2015-07-01

    Rotor design and analysis work has been performed to support the conceptualization of a wind tunnel test focused on studying wake dynamics. This wind tunnel test would serve as part of a larger model validation campaign that is part of the Department of Energy Wind and Water Power Program’s Atmosphere to electrons (A2e) initiative. The first phase of this effort was directed towards designing a functionally scaled rotor based on the same design process and target full-scale turbine used for new rotors for the DOE/SNL SWiFT site. The second phase focused on assessing the capabilities of an already available rotor,more » the G1, designed and built by researchers at the Technical University of München.« less

  11. Results of Large-Scale Spacecraft Flammability Tests

    NASA Technical Reports Server (NTRS)

    Ferkul, Paul; Olson, Sandra; Urban, David L.; Ruff, Gary A.; Easton, John; T'ien, James S.; Liao, Ta-Ting T.; Fernandez-Pello, A. Carlos; Torero, Jose L.; Eigenbrand, Christian; hide

    2017-01-01

    For the first time, a large-scale fire was intentionally set inside a spacecraft while in orbit. Testing in low gravity aboard spacecraft had been limited to samples of modest size: for thin fuels the longest samples burned were around 15 cm in length and thick fuel samples have been even smaller. This is despite the fact that fire is a catastrophic hazard for spaceflight and the spread and growth of a fire, combined with its interactions with the vehicle cannot be expected to scale linearly. While every type of occupied structure on earth has been the subject of full scale fire testing, this had never been attempted in space owing to the complexity, cost, risk and absence of a safe location. Thus, there is a gap in knowledge of fire behavior in spacecraft. The recent utilization of large, unmanned, resupply craft has provided the needed capability: a habitable but unoccupied spacecraft in low earth orbit. One such vehicle was used to study the flame spread over a 94 x 40.6 cm thin charring solid (fiberglasscotton fabric). The sample was an order of magnitude larger than anything studied to date in microgravity and was of sufficient scale that it consumed 1.5 of the available oxygen. The experiment which is called Saffire consisted of two tests, forward or concurrent flame spread (with the direction of flow) and opposed flame spread (against the direction of flow). The average forced air speed was 20 cms. For the concurrent flame spread test, the flame size remained constrained after the ignition transient, which is not the case in 1-g. These results were qualitatively different from those on earth where an upward-spreading flame on a sample of this size accelerates and grows. In addition, a curious effect of the chamber size is noted. Compared to previous microgravity work in smaller tunnels, the flame in the larger tunnel spread more slowly, even for a wider sample. This is attributed to the effect of flow acceleration in the smaller tunnels as a result of hot gas expansion. These results clearly demonstrate the unique features of purely forced flow in microgravity on flame spread, the dependence of flame behavior on the scale of the experiment, and the importance of full-scale testing for spacecraft fire safety.

  12. Experimental Evaluation of Suitability of Selected Multi-Criteria Decision-Making Methods for Large-Scale Agent-Based Simulations.

    PubMed

    Tučník, Petr; Bureš, Vladimír

    2016-01-01

    Multi-criteria decision-making (MCDM) can be formally implemented by various methods. This study compares suitability of four selected MCDM methods, namely WPM, TOPSIS, VIKOR, and PROMETHEE, for future applications in agent-based computational economic (ACE) models of larger scale (i.e., over 10 000 agents in one geographical region). These four MCDM methods were selected according to their appropriateness for computational processing in ACE applications. Tests of the selected methods were conducted on four hardware configurations. For each method, 100 tests were performed, which represented one testing iteration. With four testing iterations conducted on each hardware setting and separated testing of all configurations with the-server parameter de/activated, altogether, 12800 data points were collected and consequently analyzed. An illustrational decision-making scenario was used which allows the mutual comparison of all of the selected decision making methods. Our test results suggest that although all methods are convenient and can be used in practice, the VIKOR method accomplished the tests with the best results and thus can be recommended as the most suitable for simulations of large-scale agent-based models.

  13. Tests of Full-Scale Helicopter Rotors at High Advancing Tip Mach Numbers and Advance Ratios

    NASA Technical Reports Server (NTRS)

    Biggers, James C.; McCloud, John L., III; Stroub, Robert H.

    2015-01-01

    As a continuation of the studies of reference 1, three full-scale helicopter rotors have been tested in the Ames Research Center 40- by SO-foot wind tunnel. All three of them were two-bladed, teetering rotors. One of the rotors incorporated the NACA 0012 airfoil section over the entire length of the blade. This rotor was tested at advance ratios up to 1.05. Both of the other rotors were tapered in thickness and incorporated leading-edge camber over the outer 20 percent of the blade radius. The larger of these rotors was tested at advancing tip Mach numbers up to 1.02. Data were obtained for a wide range of lift and propulsive force, and are presented without discussion.

  14. Similarity Rules for Scaling Solar Sail Systems

    NASA Technical Reports Server (NTRS)

    Canfield, Stephen L.; Peddieson, John; Garbe, Gregory

    2010-01-01

    Future science missions will require solar sails on the order of 200 square meters (or larger). However, ground demonstrations and flight demonstrations must be conducted at significantly smaller sizes, due to limitations of ground-based facilities and cost and availability of flight opportunities. For this reason, the ability to understand the process of scalability, as it applies to solar sail system models and test data, is crucial to the advancement of this technology. This paper will approach the problem of scaling in solar sail models by developing a set of scaling laws or similarity criteria that will provide constraints in the sail design process. These scaling laws establish functional relationships between design parameters of a prototype and model sail that are created at different geometric sizes. This work is applied to a specific solar sail configuration and results in three (four) similarity criteria for static (dynamic) sail models. Further, it is demonstrated that even in the context of unique sail material requirements and gravitational load of earth-bound experiments, it is possible to develop appropriate scaled sail experiments. In the longer term, these scaling laws can be used in the design of scaled experimental tests for solar sails and in analyzing the results from such tests.

  15. Sequential Progressions in a Theory of Mind Scale: Longitudinal Perspectives

    PubMed Central

    Wellman, Henry M.; Fuxi, Fang; Peterson, Candida C.

    2011-01-01

    Consecutive re-testings of 92 U.S. preschoolers (n = 30), Chinese preschoolers (n = 31), and deaf children (n = 31) examined whether the sequences of development apparent in cross-sectional results with a theory-of-mind scale also appeared in longitudinal assessment. Longitudinal data confirmed that theory-of-mind progressions apparent in cross-sectional scaling data also characterized longitudinal sequences of understanding for individual children. The match between cross-sectional and longitudinal sequences appeared for children who exhibit different progressions across cultures (U.S. vs. China) and for children with substantial delays (deaf children of hearing parents). Moreover, greater scale distances reflected larger longitudinal age differences. PMID:21428982

  16. Laboratory simulation of cratering on small bodies

    NASA Technical Reports Server (NTRS)

    Schmidt, Robert M.

    1991-01-01

    A new technique using external pressure was developed to simulate the lithostatic pressure due to self-gravity of small bodies. A 13-in. diameter cylindrical test chamber with L/D of 1 was fabricated to accommodate firing explosive charges with gas overpressures of up to 6000 psi. The chamber was hydrotested to 9000 psi. The method allows much larger scale factors that can be obtained with existing centrifuges and has the correct spherical geometry of self gravity. A simulant for jointed rock to be used in this fixture was developed using weakly cemented basalt. Various strength/pressure scaling theories can now be examined and tested.

  17. The Mach number of the cosmic flow - A critical test for current theories

    NASA Technical Reports Server (NTRS)

    Ostriker, Jeremiah P.; Suto, Yusushi

    1990-01-01

    A new cosmological, self-contained test using the ratio of mean velocity and the velocity dispersion in the mean flow frame of a group of test objects is presented. To allow comparison with linear theory, the velocity field must first be smoothed on a suitable scale. In the context of linear perturbation theory, the Mach number M(R) which measures the ratio of power on scales larger than to scales smaller than the patch size R, is independent of the perturbation amplitude and also of bias. An apparent inconsistency is found for standard values of power-law index n = 1 and cosmological density parameter Omega = 1, when comparing values of M(R) predicted by popular models with tentative available observations. Nonstandard models based on adiabatic perturbations with either negative n or small Omega value also fail, due to creation of unacceptably large microwave background fluctuations.

  18. Containment of composite fan blades

    NASA Technical Reports Server (NTRS)

    Stotler, C. L.; Coppa, A. P.

    1979-01-01

    A lightweight containment was developed for turbofan engine fan blades. Subscale ballistic-type tests were first run on a number of concepts. The most promising configuration was selected and further evaluated by larger scale tests in a rotating test rig. Weight savings made possible by the use of this new containment system were determined and extrapolated to a CF6-size engine. An analytical technique was also developed to predict the released blades motion when involved in the blade/casing interaction process. Initial checkout of this procedure was accomplished using several of the tests run during the program.

  19. Industrial technology for the economic and viable encapsulation for large-scale solar panels (technologie industrielle d'encapsulation economique et fiable pour panneaux solaires de grandes dimensions). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anguet, J.; Salles, Y.

    The aim of the work is to apply the laminated glass technology used in buildings and car windscreens to the encapsulation of solar panels so as to form a glass-polyvinylbutyral-glass 'sandwich'. Based on small-scale experimental panels, the following studies were made: (1) adhesion techniques; (2) structure studies to find the most suitable means for maintaining the mechanical stability of the cells; (3) types of connections for the solar panels and (4) climatic tests and humidity resistance. Mechanical and climatic tests with the minimodules gave encouraging results, whereupon larger scale models were designed. The results obtained with these confirmed those obtainedmore » with the mini-modules.« less

  20. Southern Impact Testing Alliance (SITA)

    NASA Technical Reports Server (NTRS)

    Hubbs, Whitney; Roebuck, Brian; Zwiener, Mark; Wells, Brian

    2009-01-01

    Efforts to form this Alliance began in 2008 to showcase the impact testing capabilities within the southern United States. Impact testing customers can utilize SITA partner capabilities to provide supporting data during all program phases-materials/component/ flight hardware design, development, and qualification. This approach would allow programs to reduce risk by providing low cost testing during early development to flush out possible problems before moving on to larger scale1 higher cost testing. Various SITA partners would participate in impact testing depending on program phase-materials characterization, component/subsystem characterization, full-scale system testing for qualification. SITA partners would collaborate with the customer to develop an integrated test approach during early program phases. Modeling and analysis validation can start with small-scale testing to ensure a level of confidence for the next step large or full-scale conclusive test shots. Impact Testing Facility (ITF) was established and began its research in spacecraft debris shielding in the early 1960's and played a malor role in the International Space Station debris shield development. As a result of return to flight testing after the loss of STS-107 (Columbia) MSFC ITF realized the need to expand their capabilities beyond meteoroid and space debris impact testing. MSFC partnered with the Department of Defense and academic institutions as collaborative efforts to gain and share knowledge that would benefit the Space Agency as well as the DoD. MSFC ITF current capabilities include: Hypervelocity impact testing, ballistic impact testing, and environmental impact testing.

  1. Scaling trace organic contaminant adsorption capacity by granular activated carbon.

    PubMed

    Corwin, Christopher J; Summers, R Scott

    2010-07-15

    The role of particle size on the reduction of granular activated carbon (GAC) adsorption capacity for trace organic contaminants by dissolved organic matter (DOM) is examined and applied to performance scale-up. The adsorption capacity reduction, termed fouling, must be scalable in order to use bench scale tests, such as the rapid small-scale column test (RSSCT) to predict full-scale breakthrough. Equilibrium adsorption capacity tests with GAC preloaded with DOM and RSSCT breakthrough curves at three different GAC particle sizes indicate that GAC adsorption capacity is dependent on GAC particle size when DOM is present. Thus, the RSSCT cannot be expected to match full-scale results regardless of which RSSCT design approach is used (constant or proportional diffusivity), unless a scaling factor is applied to the results. Proportional diffusivity RSSCT breakthrough curves demonstrate that surface concentration of DOM is not a good measure of fouling. It is hypothesized that pore blockage is the mechanism responsible for the dependence on particle size. As GAC particle size increases, the microporous surface area behind a constricted pore also increases. The result is lower adsorption capacity per mass of adsorbent in the larger GAC particles. A scaling methodology for equilibrium and breakthrough data is presented that accounts for the dependence of NOM preloading effects on GAC particle diameter.

  2. Human Factors in the Large: Experiences from Denmark, Finland and Canada in Moving Towards Regional and National Evaluations of Health Information System Usability. Contribution of the IMIA Human Factors Working Group.

    PubMed

    Kushniruk, A; Kaipio, J; Nieminen, M; Hyppönen, H; Lääveri, T; Nohr, C; Kanstrup, A M; Berg Christiansen, M; Kuo, M-H; Borycki, E

    2014-08-15

    The objective of this paper is to explore approaches to understanding the usability of health information systems at regional and national levels. Several different methods are discussed in case studies from Denmark, Finland and Canada. They range from small scale qualitative studies involving usability testing of systems to larger scale national level questionnaire studies aimed at assessing the use and usability of health information systems by entire groups of health professionals. It was found that regional and national usability studies can complement smaller scale usability studies, and that they are needed in order to understand larger trends regarding system usability. Despite adoption of EHRs, many health professionals rate the usability of the systems as low. A range of usability issues have been noted when data is collected on a large scale through use of widely distributed questionnaires and websites designed to monitor user perceptions of usability. As health information systems are deployed on a widespread basis, studies that examine systems used regionally or nationally are required. In addition, collection of large scale data on the usability of specific IT products is needed in order to complement smaller scale studies of specific systems.

  3. Human Factors in the Large: Experiences from Denmark, Finland and Canada in Moving Towards Regional and National Evaluations of Health Information System Usability

    PubMed Central

    Kaipio, J.; Nieminen, M.; Hyppönen, H.; Lääveri, T.; Nohr, C.; Kanstrup, A. M.; Berg Christiansen, M.; Kuo, M.-H.; Borycki, E.

    2014-01-01

    Summary Objectives The objective of this paper is to explore approaches to understanding the usability of health information systems at regional and national levels. Methods Several different methods are discussed in case studies from Denmark, Finland and Canada. They range from small scale qualitative studies involving usability testing of systems to larger scale national level questionnaire studies aimed at assessing the use and usability of health information systems by entire groups of health professionals. Results It was found that regional and national usability studies can complement smaller scale usability studies, and that they are needed in order to understand larger trends regarding system usability. Despite adoption of EHRs, many health professionals rate the usability of the systems as low. A range of usability issues have been noted when data is collected on a large scale through use of widely distributed questionnaires and websites designed to monitor user perceptions of usability. Conclusion As health information systems are deployed on a widespread basis, studies that examine systems used regionally or nationally are required. In addition, collection of large scale data on the usability of specific IT products is needed in order to complement smaller scale studies of specific systems. PMID:25123725

  4. Process, pattern and scale: hydrogeomorphology and plant diversity in forested wetlands across multiple spatial scales

    NASA Astrophysics Data System (ADS)

    Alexander, L.; Hupp, C. R.; Forman, R. T.

    2002-12-01

    Many geodisturbances occur across large spatial scales, spanning entire landscapes and creating ecological phenomena in their wake. Ecological study at large scales poses special problems: (1) large-scale studies require large-scale resources, and (2) sampling is not always feasible at the appropriate scale, and researchers rely on data collected at smaller scales to interpret patterns across broad regions. A criticism of landscape ecology is that findings at small spatial scales are "scaled up" and applied indiscriminately across larger spatial scales. In this research, landscape scaling is addressed through process-pattern relationships between hydrogeomorphic processes and patterns of plant diversity in forested wetlands. The research addresses: (1) whether patterns and relationships between hydrogeomorphic, vegetation, and spatial variables can transcend scale; and (2) whether data collected at small spatial scales can be used to describe patterns and relationships across larger spatial scales. Field measurements of hydrologic, geomorphic, spatial, and vegetation data were collected or calculated for 15- 1-ha sites on forested floodplains of six (6) Chesapeake Bay Coastal Plain streams over a total area of about 20,000 km2. Hydroperiod (day/yr), floodplain surface elevation range (m), discharge (m3/s), stream power (kg-m/s2), sediment deposition (mm/yr), relative position downstream and other variables were used in multivariate analyses to explain differences in species richness, tree diversity (Shannon-Wiener Diversity Index H'), and plant community composition at four spatial scales. Data collected at the plot (400-m2) and site- (c. 1-ha) scales are applied to and tested at the river watershed and regional spatial scales. Results indicate that plant species richness and tree diversity (Shannon-Wiener diversity index H') can be described by hydrogeomorphic conditions at all scales, but are best described at the site scale. Data collected at plot and site scales are tested for spatial heterogeneity across the Chesapeake Bay Coastal Plain using a geostatistical variogram, and multiple regression analysis is used to relate plant diversity, spatial, and hydrogeomorphic variables across Coastal Plain regions and hydrologic regimes. Results indicate that relationships between hydrogeomorphic processes and patterns of plant diversity at finer scales can proxy relationships at coarser scales in some, not all, cases. Findings also suggest that data collected at small scales can be used to describe trends across broader scales under limited conditions.

  5. Manufacturing Challenges and Benefits when Scaling the HIAD Stacked-Torus Aeroshell to a 15m Class System

    NASA Technical Reports Server (NTRS)

    Cheatwood, F. McNeil; Swanson, Gregory T.; Johnson, R. Keith; Hughes, Stephen; Calomino, Anthony; Gilles, Brian; Anderson, Paul; Bond, Bruce

    2016-01-01

    Over a decade of work has been conducted in the development of NASA's Hypersonic Inflatable Aerodynamic Decelerator (HIAD) deployable aeroshell technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD project's second generation (Gen-2) aeroshell system. The HIAD project team has developed, fabricated, and tested stacked-torus inflatable structures (IS) with flexible thermal protection systems (F-TPS) ranging in diameters from 3-6m, with cone angles of 60 and 70 deg. To meet NASA and commercial near term objectives, the HIAD team must scale the current technology up to 12-15m in diameter. The HIAD project's experience in scaling the technology has reached a critical juncture. Growing from a 6m to a 15m class system will introduce many new structural and logistical challenges to an already complicated manufacturing process. Although the general architecture and key aspects of the HIAD design scale well to larger vehicles, details of the technology will need to be reevaluated and possibly redesigned for use in a 15m-class HIAD system. These include: layout and size of the structural webbing that transfers load throughout the IS, inflatable gas barrier design, torus diameter and braid construction, internal pressure and inflation line routing, adhesives used for coating and bonding, and F-TPS gore design and seam fabrication. The logistics of fabricating and testing the IS and the F-TPS also become more challenging with increased scale. Compared to the 6m aeroshell (the largest HIAD built to date), a 12m aeroshell has four times the cross-sectional area, and a 15m one has over six times the area. This means that fabrication and test procedures will need to be reexamined to account for the sheer size and weight of the aeroshell components. This will affect a variety of steps in the manufacturing process, such as: stacking the tori during assembly, stitching the structural webbing, initial inflation of tori, and stitching of F-TPS gores. Additionally, new approaches and hardware will be required for handling and ground testing of both individual tori and the fully assembled HIADs. There are also noteworthy benefits of scaling up the HIAD aeroshell to 15m-class system. Two complications in working with handmade textiles structures are the non-linearity of the materials and the role of human accuracy during fabrication. Larger, more capable, HIAD structures should see much larger operational loads, potentially bringing the structural response of the materials out of the non-linear regime and into the preferred linear response range. Also, making the reasonable assumption that the magnitude of fabrication accuracy remains constant as the structures grow, the relative effect of fabrication errors should decrease as a percentage of the textile component size. Combined, these two effects improve the predictive capability and the uniformity of the structural response for a 12-15m class HIAD. In this paper, the challenges and associated mitigation plans related to scaling up the HIAD stacked-torus aeroshell to a 15m class system will be discussed. In addition, the benefits of enlarging the structure will be further explored.

  6. Exploration of EEG features of Alzheimer's disease using continuous wavelet transform.

    PubMed

    Ghorbanian, Parham; Devilbiss, David M; Hess, Terry; Bernstein, Allan; Simon, Adam J; Ashrafiuon, Hashem

    2015-09-01

    We have developed a novel approach to elucidate several discriminating EEG features of Alzheimer's disease. The approach is based on the use of a variety of continuous wavelet transforms, pairwise statistical tests with multiple comparison correction, and several decision tree algorithms, in order to choose the most prominent EEG features from a single sensor. A pilot study was conducted to record EEG signals from Alzheimer's disease (AD) patients and healthy age-matched control (CTL) subjects using a single dry electrode device during several eyes-closed (EC) and eyes-open (EO) resting conditions. We computed the power spectrum distribution properties and wavelet and sample entropy of the wavelet coefficients time series at scale ranges approximately corresponding to the major brain frequency bands. A predictive index was developed using the results from statistical tests and decision tree algorithms to identify the most reliable significant features of the AD patients when compared to healthy controls. The three most dominant features were identified as larger absolute mean power and larger standard deviation of the wavelet scales corresponding to 4-8 Hz (θ) during EO and lower wavelet entropy of the wavelet scales corresponding to 8-12 Hz (α) during EC, respectively. The fourth reliable set of distinguishing features of AD patients was lower relative power of the wavelet scales corresponding to 12-30 Hz (β) followed by lower skewness of the wavelet scales corresponding to 2-4 Hz (upper δ), both during EO. In general, the results indicate slowing and lower complexity of EEG signal in AD patients using a very easy-to-use and convenient single dry electrode device.

  7. Manufacturing Challenges and Benefits when Scaling the HIAD Stacked-Torus Aeroshell to a 15m-Class System

    NASA Technical Reports Server (NTRS)

    Swanson, Gregory; Cheatwood, Neil; Johnson, Keith; Calomino, Anthony; Gilles, Brian; Anderson, Paul; Bond, Bruce

    2016-01-01

    Over a decade of work has been conducted in the development of NASAs Hypersonic Inflatable Aerodynamic Decelerator (HIAD) deployable aeroshell technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD projects second generation (Gen-2) aeroshell system. The HIAD project team has developed, fabricated, and tested stacked-torus inflatable structures (IS) with flexible thermal protection systems (F-TPS) ranging in diameters from 3-6m, with cone angles of 60 and 70 deg. To meet NASA and commercial near term objectives, the HIAD team must scale the current technology up to 12-15m in diameter. Therefore, the HIAD projects experience in scaling the technology has reached a critical juncture. Growing from a 6m to a 15m-class system will introduce many new structural and logistical challenges to an already complicated manufacturing process.Although the general architecture and key aspects of the HIAD design scale well to larger vehicles, details of the technology will need to be reevaluated and possibly redesigned for use in a 15m-class HIAD system. These include: layout and size of the structural webbing that transfers load throughout the IS, inflatable gas barrier design, torus diameter and braid construction, internal pressure and inflation line routing, adhesives used for coating and bonding, and F-TPS gore design and seam fabrication. The logistics of fabricating and testing the IS and the F-TPS also become more challenging with increased scale. Compared to the 6m aeroshell (the largest HIAD built to date), a 12m aeroshell has four times the cross-sectional area, and a 15m one has over six times the area. This means that fabrication and test procedures will need to be reexamined to ac-count for the sheer size and weight of the aeroshell components. This will affect a variety of steps in the manufacturing process, such as: stacking the tori during assembly, stitching the structural webbing, initial inflation of tori, and stitching of F-TPS gores. Additionally, new approaches and hardware will be required for handling and ground testing of both individual tori and the fully assembled HIADs.There are also noteworthy benefits of scaling up the HIAD aeroshell to a 15m-class system. Two complications in working with handmade textile structures are the non-linearity of the material components and the role of human accuracy during fabrication. Larger, more capable, HIAD structures should see much larger operational loads, potentially bringing the structural response of the material components out of the non-linear regime and into the preferred linear response range. Also, making the reasonable assumption that the magnitude of fabrication accuracy remains constant as the structures grow, the relative effect of fabrication errors should decrease as a percentage of the textile component size. Combined, these two effects improve the predictive capability and the uniformity of the structural response for a 12-15m HIAD.In this presentation, a handful of the challenges and associated mitigation plans will be discussed, as well as an update on current 12m aeroshell manufacturing and testing that is addressing these challenges

  8. Manufacturing Challenges and Benefits When Scaling the HIAD Stacked-Torus Aeroshell to a 15 Meter Class System

    NASA Technical Reports Server (NTRS)

    Swanson, G. T.; Cheatwood, F. M.; Johnson, R. K.; Hughes, S. J.; Calomino, A. M.

    2016-01-01

    Over a decade of work has been conducted in the development of NASA's Hypersonic Inflatable Aerodynamic Decelerator (HIAD) deployable aeroshell technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD project's second generation (Gen-2) aeroshell system. The HIAD project team has developed, fabricated, and tested stacked-torus inflatable structures (IS) with flexible thermal protection systems (F-TPS) ranging in diameters from 3-6 meters, with cone angles of 60 and 70 degrees. To meet NASA and commercial near-term objectives, the HIAD team must scale the current technology up to 12-15 meters in diameter. Therefore, the HIAD project's experience in scaling the technology has reached a critical juncture. Growing from a 6-meter to a 15-meter class system will introduce many new structural and logistical challenges to an already complicated manufacturing process. Although the general architecture and key aspects of the HIAD design scale well to larger vehicles, details of the technology will need to be reevaluated and possibly redesigned for use in a 15-meter-class HIAD system. These include: layout and size of the structural webbing that transfers load throughout the IS, inflatable gas barrier design, torus diameter and braid construction, internal pressure and inflation line routing, adhesives used for coating and bonding, and F-TPS gore design and seam fabrication. The logistics of fabricating and testing the IS and the F-TPS also become more challenging with increased scale. Compared to the 6-meter aeroshell (the largest HIAD built to date), a 12-meter aeroshell has four times the cross-sectional area, and a 15-meter one has over six times the area. This means that fabrication and test procedures will need to be reexamined to account for the sheer size and weight of the aeroshell components. This will affect a variety of steps in the manufacturing process, such as: stacking the tori during assembly, stitching the structural webbing, initial inflation of tori, and stitching of F-TPS gores. Additionally, new approaches and hardware will be required for handling and ground testing of both individual tori and the fully assembled HIADs. There are also noteworthy benefits of scaling up the HIAD aeroshell to a 15m-class system. Two complications in working with handmade textile structures are the non-linearity of the material components and the role of human accuracy during fabrication. Larger, more capable, HIAD structures should see much larger operational loads, potentially bringing the structural response of the material components out of the non-linear regime and into the preferred linear response range. Also, making the reasonable assumption that the magnitude of fabrication accuracy remains constant as the structures grow, the relative effect of fabrication errors should decrease as a percentage of the textile component size. Combined, these two effects improve the predictive capability and the uniformity of the structural response for a 12-15-meter HIAD. In this presentation, a handful of the challenges and associated mitigation plans will be discussed, as well as an update on current manufacturing and testing that addressing these challenges.

  9. The relation of close friends to cognitive performance in old age: the mediating role of leisure activities.

    PubMed

    Ihle, Andreas; Oris, Michel; Baeriswyl, Marie; Kliegel, Matthias

    2018-06-01

    ABSTRACTBackground:From a conceptual point of view, close friends are an important resource for promoting activity engagement in old age. Leisure activity engagement in turn is a key predictor of cognitive performance. Empirically, it remains unclear so far whether leisure activity engagement mediates between having close friends on the one hand and cognitive performance on the other, which we investigated in a large sample of older adults. We assessed cognitive performance (Mill Hill vocabulary scale and Trail Making Test (TMT) parts A and B) in 2,812 older adults. Participants reported information on leisure activity engagement and close friends. A larger number of leisure activities and a larger number of close friends were significantly related to better cognitive performance in the Mill Hill vocabulary scale and TMT parts A and B. A larger number of close friends were significantly related to a larger number of leisure activities. The number of leisure activities mediated more than half of the relation of the number of close friends to performance in all three cognitive measures. Having close friends may be helpful to stimulate and promote activity participation in old age. By enhancing individuals' cognitive reserve, this may finally preserve their cognitive performance level in old age.

  10. The Effect of Reduction Gearing on Propeller-body Interference as Shown by Full-Scale Wind-Tunnel Tests

    NASA Technical Reports Server (NTRS)

    Weick, Fred E

    1931-01-01

    This report presents the results of full-scale tests made on a 10-foot 5-inch propeller on a geared J-5 engine and also on a similar 8-foot 11-inch propeller on a direct-drive J-5 engine. Each propeller was tested at two different pitch settings, and with a large and a small fuselage. The investigation was made in such a manner that the propeller-body interference factors were isolated, and it was found that, considering this interference only, the geared propellers had an appreciable advantage in propulsive efficiency, partially due to the larger diameter of the propellers with respect to the bodies, and partially because the geared propellers were located farther ahead of the engines and bodies.

  11. Experimental Evaluation of Suitability of Selected Multi-Criteria Decision-Making Methods for Large-Scale Agent-Based Simulations

    PubMed Central

    2016-01-01

    Multi-criteria decision-making (MCDM) can be formally implemented by various methods. This study compares suitability of four selected MCDM methods, namely WPM, TOPSIS, VIKOR, and PROMETHEE, for future applications in agent-based computational economic (ACE) models of larger scale (i.e., over 10 000 agents in one geographical region). These four MCDM methods were selected according to their appropriateness for computational processing in ACE applications. Tests of the selected methods were conducted on four hardware configurations. For each method, 100 tests were performed, which represented one testing iteration. With four testing iterations conducted on each hardware setting and separated testing of all configurations with the–server parameter de/activated, altogether, 12800 data points were collected and consequently analyzed. An illustrational decision-making scenario was used which allows the mutual comparison of all of the selected decision making methods. Our test results suggest that although all methods are convenient and can be used in practice, the VIKOR method accomplished the tests with the best results and thus can be recommended as the most suitable for simulations of large-scale agent-based models. PMID:27806061

  12. Monitoring the ground water level change during the pump test by using the Electric resistivity tomography

    NASA Astrophysics Data System (ADS)

    Hsu, H.; Chang, P. Y.; Yao, H. J.

    2017-12-01

    For hydrodynamics study of the unconfined aquifer in gravel formation, a pumping test was established to estimate the hydraulic conductivity in the midstream of Zhoushui River in Taiwan. The hydraulic parameters and the cone of depression could be estimated by monitoring the groundwater drawdown in an observation well which was in a short distance far from the pumping well. In this study we carried out the electric resistivity image monitoring during the whole pumping test. The electric resistivity data was measured with the surface and downhole electrodes which would produce a clear subsurface image of groundwater level through a larger distance than the distance between pumping and observation wells. The 2D electric image could also describe how a cone of depression truly created at subsurface. The continuous records could also show the change of groundwater level during the whole pumping test which could give a larger scale of the hydraulic parameters.

  13. A Preliminary Assessment of 3-Nitro-1,2,4-Triazol-5-One (NTO) as an Insensitive High Explosive

    DTIC Science & Technology

    1989-07-01

    consisted of balled agglomerates of microfine NTO needles (Fig. 2b). Handling properties5 were poor. A final larger scale recrystallisation (20 g NTO...specification for the ERDE T of I test. Samples of 200 mg in glass test tubes were heated at 5"C/min till ignition occurred. Ignition was defined by...duplicate samples. Vacuum Thermal Stability 1251 The test procedure consisted of placing duplicate 5 g samples in glass sample tubes , attaching to a mercury

  14. Anticipation of Body-Scaled Action Is Modified in Anorexia Nervosa

    ERIC Educational Resources Information Center

    Guardia, Dewi; Lafargue, Gilles; Thomas, Pierre; Dodin, Vincent; Cottencin, Olivier; Luyat, Marion

    2010-01-01

    Patients with anorexia nervosa frequently believe they are larger than they really are. The precise nature of this bias is not known: is it a false belief related to the patient's aesthetic and emotional attitudes towards her body? Or could it also reflect abnormal processing of the representation of the body in action? We tested this latter…

  15. Studies on scaling of flow noise received at the stagnation point of an axisymmetric body

    NASA Astrophysics Data System (ADS)

    Arakeri, V. H.; Satyanarayana, S. G.; Mani, K.; Sharma, S. D.

    1991-05-01

    A description of the studies related to the problem of scaling of flow noise received at the stagnation point of axisymmetric bodies is provided. The source of flow noise under consideration is the transitional/turbulent regions of the boundary layer flow on the axisymmetric body. Lauchle has recently shown that the noise measured in the laminar region (including the stagnation point) corresponds closely to the noise measured in the transition region, provided that the acoustic losses due to diffraction are accounted for. The present study includes experimental measurement of flow noise at the stagnation point of three different shaped axisymmetric headforms. One of the body shapes chosen is that used by Lauchle in similar studies. This was done to establish the effect of body size on flow noise. The results of the experimental investigations clearly show that the flow noise received at the stagnation point is a strong function of free stream velocity, a moderately strong function of body scale but a weak function of boundary layer thickness. In addition, there is evidence that when body scale change is involved, flow noise amplitude scales but no frequency shift is involved. A scaling procedure is proposed based on the present observations along with those of Lauchle. At a given frequency, the amplitude of noise level obtained under model testing conditions is first scaled to account for differences in the velocity and size corresponding to the prototype conditions; then a correction to this is applied to account for losses due to diffraction, which are estimated on the basis of the geometric theory of diffraction (GTD) with the source being located at the predicted position of turbulent transition. Use of the proposed scaling law to extrapolate presently obtained noise levels to two other conditions involving larger-scale bodies show good agreement with actually measured levels, in particular at higher frequencies. Since model scale results have been used successfully to predict levels on larger-sized bodies tested in a totally different environment, the present data along with the proposed scaling procedure can be used to predict the expected flow noise levels at prototype scales during preliminary design studies.

  16. An Investigation of the Performance of Various Reaction Control Devices

    NASA Technical Reports Server (NTRS)

    Hunter, Paul A.

    1959-01-01

    An investigation of a small-scale reaction control devices in still air with both subsonic and supersonic internal flows has shown that lateral forces approaching 70 percent of the resultant force of the undeflected jet can be obtained. These results were obtained with a tilted extension at a deflection of 40 deg. The tests of tilted extensions indicated an optimum length-to-diameter ratio of approximately 0.75 to 1.00, dependent upon the deflection angle. For the two geometric types of spoiler tabs tested, blockage-area ratio appears to be the only variable affecting the lateral force developed. Usable values of lateral force were developed by the full-eyelid type of device with reasonably small losses in the thrust and weight flow. Somewhat larger values of lateral force were developed by injecting a secondary flow normal to the primary jet, but for conditions of these tests the losses in thrust and weight flow were large. Relatively good agreement with other investigations was obtained for several of the devices. The agreement of the present results with those of an investigation made with larger-scale equipment indicates that Reynolds number may not be critical for these tests. In as much as the effects of external flow could influence the performance and other factors affecting the choice of a reaction control for a specific use, it would appear desirable to make further tests of the devices described in this report in the presence of external flow.

  17. Biodiversity-ecosystem functioning relationships in long-term time series and palaeoecological records: deep sea as a test bed.

    PubMed

    Yasuhara, Moriaki; Doi, Hideyuki; Wei, Chih-Lin; Danovaro, Roberto; Myhre, Sarah E

    2016-05-19

    The link between biodiversity and ecosystem functioning (BEF) over long temporal scales is poorly understood. Here, we investigate biological monitoring and palaeoecological records on decadal, centennial and millennial time scales from a BEF framework by using deep sea, soft-sediment environments as a test bed. Results generally show positive BEF relationships, in agreement with BEF studies based on present-day spatial analyses and short-term manipulative experiments. However, the deep-sea BEF relationship is much noisier across longer time scales compared with modern observational studies. We also demonstrate with palaeoecological time-series data that a larger species pool does not enhance ecosystem stability through time, whereas higher abundance as an indicator of higher ecosystem functioning may enhance ecosystem stability. These results suggest that BEF relationships are potentially time scale-dependent. Environmental impacts on biodiversity and ecosystem functioning may be much stronger than biodiversity impacts on ecosystem functioning at long, decadal-millennial, time scales. Longer time scale perspectives, including palaeoecological and ecosystem monitoring data, are critical for predicting future BEF relationships on a rapidly changing planet. © 2016 The Author(s).

  18. Multi-scale hydrometeorological observation and modelling for flash flood understanding

    NASA Astrophysics Data System (ADS)

    Braud, I.; Ayral, P.-A.; Bouvier, C.; Branger, F.; Delrieu, G.; Le Coz, J.; Nord, G.; Vandervaere, J.-P.; Anquetin, S.; Adamovic, M.; Andrieu, J.; Batiot, C.; Boudevillain, B.; Brunet, P.; Carreau, J.; Confoland, A.; Didon-Lescot, J.-F.; Domergue, J.-M.; Douvinet, J.; Dramais, G.; Freydier, R.; Gérard, S.; Huza, J.; Leblois, E.; Le Bourgeois, O.; Le Boursicaud, R.; Marchand, P.; Martin, P.; Nottale, L.; Patris, N.; Renard, B.; Seidel, J.-L.; Taupin, J.-D.; Vannier, O.; Vincendon, B.; Wijbrans, A.

    2014-09-01

    This paper presents a coupled observation and modelling strategy aiming at improving the understanding of processes triggering flash floods. This strategy is illustrated for the Mediterranean area using two French catchments (Gard and Ardèche) larger than 2000 km2. The approach is based on the monitoring of nested spatial scales: (1) the hillslope scale, where processes influencing the runoff generation and its concentration can be tackled; (2) the small to medium catchment scale (1-100 km2), where the impact of the network structure and of the spatial variability of rainfall, landscape and initial soil moisture can be quantified; (3) the larger scale (100-1000 km2), where the river routing and flooding processes become important. These observations are part of the HyMeX (HYdrological cycle in the Mediterranean EXperiment) enhanced observation period (EOP), which will last 4 years (2012-2015). In terms of hydrological modelling, the objective is to set up regional-scale models, while addressing small and generally ungauged catchments, which represent the scale of interest for flood risk assessment. Top-down and bottom-up approaches are combined and the models are used as "hypothesis testing" tools by coupling model development with data analyses in order to incrementally evaluate the validity of model hypotheses. The paper first presents the rationale behind the experimental set-up and the instrumentation itself. Second, we discuss the associated modelling strategy. Results illustrate the potential of the approach in advancing our understanding of flash flood processes on various scales.

  19. Multi-scale hydrometeorological observation and modelling for flash-flood understanding

    NASA Astrophysics Data System (ADS)

    Braud, I.; Ayral, P.-A.; Bouvier, C.; Branger, F.; Delrieu, G.; Le Coz, J.; Nord, G.; Vandervaere, J.-P.; Anquetin, S.; Adamovic, M.; Andrieu, J.; Batiot, C.; Boudevillain, B.; Brunet, P.; Carreau, J.; Confoland, A.; Didon-Lescot, J.-F.; Domergue, J.-M.; Douvinet, J.; Dramais, G.; Freydier, R.; Gérard, S.; Huza, J.; Leblois, E.; Le Bourgeois, O.; Le Boursicaud, R.; Marchand, P.; Martin, P.; Nottale, L.; Patris, N.; Renard, B.; Seidel, J.-L.; Taupin, J.-D.; Vannier, O.; Vincendon, B.; Wijbrans, A.

    2014-02-01

    This paper presents a coupled observation and modelling strategy aiming at improving the understanding of processes triggering flash floods. This strategy is illustrated for the Mediterranean area using two French catchments (Gard and Ardèche) larger than 2000 km2. The approach is based on the monitoring of nested spatial scales: (1) the hillslope scale, where processes influencing the runoff generation and its concentration can be tackled; (2) the small to medium catchment scale (1-100 km2) where the impact of the network structure and of the spatial variability of rainfall, landscape and initial soil moisture can be quantified; (3) the larger scale (100-1000 km2) where the river routing and flooding processes become important. These observations are part of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) Enhanced Observation Period (EOP) and lasts four years (2012-2015). In terms of hydrological modelling the objective is to set up models at the regional scale, while addressing small and generally ungauged catchments, which is the scale of interest for flooding risk assessment. Top-down and bottom-up approaches are combined and the models are used as "hypothesis testing" tools by coupling model development with data analyses, in order to incrementally evaluate the validity of model hypotheses. The paper first presents the rationale behind the experimental set up and the instrumentation itself. Second, we discuss the associated modelling strategy. Results illustrate the potential of the approach in advancing our understanding of flash flood processes at various scales.

  20. Computational Issues in Damping Identification for Large Scale Problems

    NASA Technical Reports Server (NTRS)

    Pilkey, Deborah L.; Roe, Kevin P.; Inman, Daniel J.

    1997-01-01

    Two damping identification methods are tested for efficiency in large-scale applications. One is an iterative routine, and the other a least squares method. Numerical simulations have been performed on multiple degree-of-freedom models to test the effectiveness of the algorithm and the usefulness of parallel computation for the problems. High Performance Fortran is used to parallelize the algorithm. Tests were performed using the IBM-SP2 at NASA Ames Research Center. The least squares method tested incurs high communication costs, which reduces the benefit of high performance computing. This method's memory requirement grows at a very rapid rate meaning that larger problems can quickly exceed available computer memory. The iterative method's memory requirement grows at a much slower pace and is able to handle problems with 500+ degrees of freedom on a single processor. This method benefits from parallelization, and significant speedup can he seen for problems of 100+ degrees-of-freedom.

  1. Jet-Surface Interaction - High Aspect Ratio Nozzle Test: Test Summary

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2016-01-01

    The Jet-Surface Interaction High Aspect Ratio Nozzle Test was conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center in the fall of 2015. There were four primary goals specified for this test: (1) extend the current noise database for rectangular nozzles to higher aspect ratios, (2) verify data previously acquired at small-scale with data from a larger model, (3) acquired jet-surface interaction noise data suitable for creating verifying empirical noise models and (4) investigate the effect of nozzle septa on the jet-mixing and jet-surface interaction noise. These slides give a summary of the test with representative results for each goal.

  2. A U.S. Army CH-47 Chinook helicopter slowly lowers the X-40 sub-scale technology demonstrator to the ground under the watchful eyes of ground crew at the conclusion of a captive-carry test flight

    NASA Image and Video Library

    2000-12-08

    A U.S. Army CH-47 Chinook helicopter slowly lowers the X-40 sub-scale technology demonstrator to the ground under the watchful eyes of ground crew at the conclusion of a captive-carry test flight at NASA's Dryden Flight Research Center, Edwards, California. Several captive-carry flights were conducted to check out all operating systems and procedures before the X-40 made its first free flight at Edwards, gliding to a fully-autonomous approach and landing on the Edwards runway. The X-40 is an unpowered 82 percent scale version of the X-37, a Boeing-developed spaceplane designed to demonstrate various advanced technologies for development of future lower-cost access to space vehicles. Flight tests of the X-40 are designed to reduce the risks associated with research flights of the larger, more complex X-37.

  3. The Child-care Food and Activity Practices Questionnaire (CFAPQ): development and first validation steps.

    PubMed

    Gubbels, Jessica S; Sleddens, Ester Fc; Raaijmakers, Lieke Ch; Gies, Judith M; Kremers, Stef Pj

    2016-08-01

    To develop and validate a questionnaire to measure food-related and activity-related practices of child-care staff, based on existing, validated parenting practices questionnaires. A selection of items from the Comprehensive Feeding Practices Questionnaire (CFPQ) and the Preschooler Physical Activity Parenting Practices (PPAPP) questionnaire was made to include items most suitable for the child-care setting. The converted questionnaire was pre-tested among child-care staff during cognitive interviews and pilot-tested among a larger sample of child-care staff. Factor analyses with Varimax rotation and internal consistencies were used to examine the scales. Spearman correlations, t tests and ANOVA were used to examine associations between the scales and staff's background characteristics (e.g. years of experience, gender). Child-care centres in the Netherlands. The qualitative pre-test included ten child-care staff members. The quantitative pilot test included 178 child-care staff members. The new questionnaire, the Child-care Food and Activity Practices Questionnaire (CFAPQ), consists of sixty-three items (forty food-related and twenty-three activity-related items), divided over twelve scales (seven food-related and five activity-related scales). The CFAPQ scales are to a large extent similar to the original CFPQ and PPAPP scales. The CFAPQ scales show sufficient internal consistency with Cronbach's α ranging between 0·53 and 0·96, and average corrected item-total correlations within acceptable ranges (0·30-0·89). Several of the scales were significantly associated with child-care staff's background characteristics. Scale psychometrics of the CFAPQ indicate it is a valid questionnaire that assesses child-care staff's practices related to both food and activities.

  4. Status report on GELNG (gelled LNG)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudnicki, M.; Hoffman, L.C.; Vander Wall, E.M.

    1980-01-01

    Over the past 2 years, Aerojet's research on characterizing the process, flow, and use properties of gelled LNG has covered (1) its safety-enhancement potential, (2) the economics and preliminary design of an industrial-scale gelation system, and (3) the design of a portable gelator for larger scale (40 m/sup 3/) spill tests. The technical results thus far continue to support the conclusion that GELNG would substantially reduce spill hazards. Operating parameters would not be significantly changed by gelation, and the cost impact on delivered LNG appears to be small (about 5%).

  5. From research plots to prototype biomass plantations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenney, W.A.; Vanstone, B.J.; Gambles, R.L.

    1993-12-31

    The development of biomass energy plantations is now expanding from the research plot phase into the next level of development at larger scale plantings. This is necessary to provide: more accurate information on biomass yields, realistic production cost figures, venues to test harvesting equipment, demonstration sites for potential producers, and a supply of feedstock for prototype conversion facilities. The paper will discuss some of these objectives and some of the challenges encountered in the scale-up process associated with a willow prototype plantation project currently under development in Eastern Canada.

  6. Early language screening in city and Hackney: the concurrent validity of a measure designed for use with 2 1/2-year-olds.

    PubMed

    Law, J

    1994-01-01

    This paper reports data relating to the development of a screening test for language impairment in 2 1/2-year-old children. The screening test itself has previously been described. The results of a pilot study and a larger community study are reported. In all, 34 children were included in the pilot study and 1015 in the community study. The reference test selected was the Reynell Developmental Language Scales and the cut-off adopted 1.5 standard deviations below the mean for either the expressive or the receptive scale of the test concerned. The pass mark on the screening test was ascertained using receiver operating characteristics (ROC). The validity is reported given the cut-off identified. The specificity, sensitivity and both positive and negative predictive abilities are reported for both the pilot and the subsequent study. The application of the test is discussed in the context of the current debate about early identification.

  7. Evidence for size-selective mortality after the first summer of ocean growth by pink salmon

    USGS Publications Warehouse

    Moss, J.H.; Beauchamp, D.A.; Cross, A.D.; Myers, K.W.; Farley, Edward V.; Murphy, J.M.; Helle, J.H.

    2005-01-01

    Pink salmon Onchorhynchus gorbuscha with identifiable thermal otolith marks from Prince William Sound hatchery release groups during 2001 were used to test the hypothesis that faster-growing fish during their first summer in the ocean had higher survival rates than slower-growing fish. Marked juvenile pink salmon were sampled monthly in Prince William Sound and the Gulf of Alaska, and adults that survived to maturity were recovered at hatchery release sites the following year. Surviving fish exhibited significantly wider circuli spacing on the region of the scale formed during early marine residence than did juveniles collected at sea during their first ocean summer, indicating that marine survival after the first growing season was related to increases in early marine growth. At the same circuli, a significantly larger average scale radius for returning adults than for juveniles from the same hatchery would suggest that larger, faster-growing juveniles had a higher survival rate and that significant size-selective mortality occurred after the juveniles were sampled. Growth patterns inferred from intercirculi spacing on scales varied among hatchery release groups, suggesting that density-dependent processes differed among release groups and occurred across Prince William Sound and the coastal Gulf of Alaska. These observations support other studies that have found that larger, faster-growing fish are more likely to survive until maturity. ?? Copyright by the American Fisheries Society 2005.

  8. Acoustic characteristics of 1/20-scale model helicopter rotors

    NASA Technical Reports Server (NTRS)

    Shenoy, Rajarama K.; Kohlhepp, Fred W.; Leighton, Kenneth P.

    1986-01-01

    A wind tunnel test to study the effects of geometric scale on acoustics and to investigate the applicability of very small scale models for the study of acoustic characteristics of helicopter rotors was conducted in the United Technologies Research Center Acoustic Research Tunnel. The results show that the Reynolds number effects significantly alter the Blade-Vortex-Interaction (BVI) Noise characteristics by enhancing the lower frequency content and suppressing the higher frequency content. In the time domain this is observed as an inverted thickness noise impulse rather than the typical positive-negative impulse of BVI noise. At higher advance ratio conditions, in the absence of BVI, the 1/20 scale model acoustic trends with Mach number follow those of larger scale models. However, the 1/20 scale model acoustic trends appear to indicate stall at higher thrust and advance ratio conditions.

  9. Analysis of streamflow distribution of non-point source nitrogen export from long-term urban-rural catchments to guide watershed management in the Chesapeake Bay watershed

    NASA Astrophysics Data System (ADS)

    Duncan, J. M.; Band, L. E.; Groffman, P.

    2017-12-01

    Discharge, land use, and watershed management practices (stream restoration and stormwater control measures) have been found to be important determinants of nitrogen (N) export to receiving waters. We used long-term water quality stations from the Baltimore Ecosystem Study Long-Term Ecological Research (BES LTER) Site to quantify nitrogen export across streamflow conditions at the small watershed scale. We calculated nitrate and total nitrogen fluxes using methodology that allows for changes over time; weighted regressions on time, discharge, and seasonality. Here we tested the hypotheses that a) while the largest N stream fluxes occur during storm events, there is not a clear relationship between N flux and discharge and b) N export patterns are aseasonal in developed watersheds where sources are larger and retention capacity is lower. The goal is to scale understanding from small watersheds to larger ones. Developing a better understanding of hydrologic controls on nitrogen export is essential for successful adaptive watershed management at societally meaningful spatial scales.

  10. The Imaging Properties of a Silicon Wafer X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Joy, M. K.; Kolodziejczak, J. J.; Weisskopf, M. C.; Fair, S.; Ramsey, B. D.

    1994-01-01

    Silicon wafers have excellent optical properties --- low microroughness and good medium-scale flatness --- which Make them suitable candidates for inexpensive flat-plate grazing-incidence x-ray mirrors. On short spatial scales (less than 3 mm) the surface quality of silicon wafers rivals that expected of the Advanced X-Ray Astrophysics Facility (AXAF) high-resolution optics. On larger spatial scales, however, performance may be degraded by the departure from flatness of the wafer and by distortions induced by the mounting scheme. In order to investigate such effects, we designed and constructed a prototype silicon-wafer x-ray telescope. The device was then tested in both visible light and x rays. The telescope module consists of 94 150-mm-diameter wafers, densely packed into the first stage of a Kirkpatrick-Baez configuration. X-ray tests at three energies (4.5, 6.4, and 8.0 keV) showed an energy-independent line spread function with full width at half maximum (FWHM) of 150 arcseconds, dominated by deviations from large-scale flatness.

  11. Effect of ambient light on monoclonal antibody product quality during small-scale mammalian cell culture process in clear glass bioreactors.

    PubMed

    Mallaney, Mary; Wang, Szu-Han; Sreedhara, Alavattam

    2014-01-01

    During a small-scale cell culture process producing a monoclonal antibody, a larger than expected difference was observed in the charge variants profile of the harvested cell culture fluid (HCCF) between the 2 L and larger scales (e.g., 400 L and 12 kL). Small-scale studies performed at the 2 L scale consistently showed an increase in acidic species when compared with the material made at larger scale. Since the 2 L bioreactors were made of clear transparent glass while the larger scale reactors are made of stainless steel, the effect of ambient laboratory light on cell culture process in 2 L bioreactors as well as handling the HCCF was carefully evaluated. Photoreactions in the 2 L glass bioreactors including light mediated increase in acidic variants in HCCF and formulation buffers were identified and carefully analyzed. While the acidic variants comprised of a mixture of sialylated, reduced disulfide, crosslinked (nonreducible), glycated, and deamidated forms, an increase in the nonreducible forms, deamidation and Met oxidation was predominantly observed under light stress. The monoclonal antibody produced in glass bioreactors that were protected from light behaved similar to the one produced in the larger scale. Our data clearly indicate that care should be taken when glass bioreactors are used in cell culture studies during monoclonal antibody production. © 2014 American Institute of Chemical Engineers.

  12. WIPP Intermediate Scale Borehole Test. A pretest analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Argueello, J.G.

    A three-dimensional finite element structural analysis of the Intermediate Scale Borehole Test at the WIPP has been performed. The analysis provides insight into how a relatively new excavation in a creeping medium responds when introduced into an existing pillar which has been undergoing stress redistribution for 5.7 years. The stress field of the volume of material in the immediate vicinity of the borehole changes significantly when the hole is drilled. Closure of the hole is predicted to be larger in the vertical direction than in the horizontal direction, leading to an ovaling of the hole. The relatively high stresses nearmore » the hole persist even at the end of the simulation, 2 years after the hole is drilled.« less

  13. Soil properties differently influence estimates of soil CO2 efflux from three chamber-based measurement systems

    Treesearch

    John R. Butnor; Kurt H. Johnsen; Chris A. Maier

    2005-01-01

    Soil C02 efflux is a major component of net ecosystem productivity (NEP) of forest systems. Combining data from multiple researchers for larger-scale modeling and assessment will only be valid if their methodologies provide directly comparable results. We conducted a series of laboratory and field tests to assess the presence and magnitude of...

  14. Testing the Theory of Successful Intelligence in Teaching Grade 4 Language Arts, Mathematics, and Science

    ERIC Educational Resources Information Center

    Sternberg, Robert J.; Jarvin, Linda; Birney, Damian P.; Naples, Adam; Stemler, Steven E.; Newman, Tina; Otterbach, Renate; Parish, Carolyn; Randi, Judy; Grigorenko, Elena L.

    2014-01-01

    This study addressed whether prior successes with educational interventions grounded in the theory of successful intelligence could be replicated on a larger scale as the primary basis for instruction in language arts, mathematics, and science. A total of 7,702 4th-grade students in the United States, drawn from 223 elementary school classrooms in…

  15. Review and Assessment of Commercial Vendors/Options for Feeding and Pumping Biomass Slurries for Hydrothermal Liquefaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berglin, Eric J.; Enderlin, Carl W.; Schmidt, Andrew J.

    2012-11-01

    The National Advanced Biofuels Consortium is working to develop improved methods for producing high-value hydrocarbon fuels. The development of one such method, the hydrothermal liquefaction (HTL) process, is being led by the Pacific Northwest National Laboratory (PNNL). The HTL process uses a wet biomass slurry at elevated temperatures (i.e., 300 to 360°C [570 to 680°F]) and pressures above the vapor pressure of water (i.e., 15 to 20 MPa [2200 to 3000 psi] at these temperatures) to facilitate a condensed-phase reaction medium. The process has been successfully tested at bench-scale and development and testing at a larger scale is required tomore » prove the viability of the process at production levels. Near-term development plans include a pilot-scale system on the order of 0.5 to 40 gpm, followed by a larger production-scale system on the order of 2000 dry metric tons per day (DMTPD). A significant challenge to the scale-up of the HTL process is feeding a highly viscous fibrous biomass wood/corn stover feedstock into a pump system that provides the required 3000 psi of pressure for downstream processing. In October 2011, PNNL began investigating commercial feed and pumping options that would meet these HTL process requirements. Initial efforts focused on generating a HTL feed and pump specification and then providing the specification to prospective vendors to determine the suitability of their pumps for the pilot-scale and production-scale plants. Six vendors were identified that could provide viable equipment to meet HTL feed and/or pump needs. Those six vendors provided options consisting three types of positive displacement pumps (i.e., diaphragm, piston, and lobe pumps). Vendors provided capabilities and equipment related to HTL application. This information was collected, assessed, and summarized and is provided as appendices to this report.« less

  16. Social networks and health-related quality of life: a population based study among older adults.

    PubMed

    Gallegos-Carrillo, Katia; Mudgal, Jyoti; Sánchez-García, Sergio; Wagner, Fernando A; Gallo, Joseph J; Salmerón, Jorge; García-Peña, Carmen

    2009-01-01

    To examine the relationship between components of social networks and health-related quality of life (HRQL) in older adults with and without depressive symptoms. Comparative cross-sectional study with data from the cohort study 'Integral Study of Depression', carried out in Mexico City during 2004. The sample was selected through a multi-stage probability design. HRQL was measured with the SF-36. Geriatric Depression Scale (GDS) and the Short Anxiety Screening Test (SAST) determined depressive symptoms and anxiety. T-test and multiple linear regressions were conducted. Older adults with depressive symptoms had the lowest scores in all HRQL scales. A larger network of close relatives and friends was associated with better HRQL on several scales. Living alone did not significantly affect HRQL level, in either the study or comparison group. A positive association between some components of social networks and good HRQL exists even in older adults with depressive symptoms.

  17. Brief Report: Theory of Mind, Relational Reasoning, and Social Responsiveness in Children With and Without Autism: Demonstration of Feasibility for a Larger-Scale Study

    PubMed Central

    Kandala, Sridhar; Petersen, Steven E.; Povinelli, Daniel J.

    2015-01-01

    Understanding the underpinnings of social responsiveness and theory of mind (ToM) will enhance our knowledge of autism spectrum disorder (ASD). We hypothesize that higher-order relational reasoning (higher-order RR: reasoning necessitating integration of relationships among multiple variables) is necessary but not sufficient for ToM, and that social responsiveness varies independently of higher-order RR. A pilot experiment tested these hypotheses in n = 17 children, 3–14, with and without ASD. No child failing 2nd-order RR passed a false belief ToM test. Contrary to prediction, Social Responsiveness Scale scores did correlate with 2nd-order RR performance, likely due to sample characteristics. It is feasible to translate this comparative cognition-inspired line of inquiry for full-scale studies of ToM, higher-order RR, and social responsiveness in ASD. PMID:25630898

  18. Brief Report: Theory of Mind, Relational Reasoning, and Social Responsiveness in Children With and Without Autism: Demonstration of Feasibility for a Larger-Scale Study.

    PubMed

    Pruett, John R; Kandala, Sridhar; Petersen, Steven E; Povinelli, Daniel J

    2015-07-01

    Understanding the underpinnings of social responsiveness and theory of mind (ToM) will enhance our knowledge of autism spectrum disorder (ASD). We hypothesize that higher-order relational reasoning (higher-order RR: reasoning necessitating integration of relationships among multiple variables) is necessary but not sufficient for ToM, and that social responsiveness varies independently of higher-order RR. A pilot experiment tested these hypotheses in n = 17 children, 3-14, with and without ASD. No child failing 2nd-order RR passed a false belief ToM test. Contrary to prediction, Social Responsiveness Scale scores did correlate with 2nd-order RR performance, likely due to sample characteristics. It is feasible to translate this comparative cognition-inspired line of inquiry for full-scale studies of ToM, higher-order RR, and social responsiveness in ASD.

  19. Transport and attenuation of carboxylate-modified latex microspheres in fractured rock laboratory and field tracer tests

    USGS Publications Warehouse

    Becker, M.W.; Reimus, P.W.; Vilks, P.

    1999-01-01

    Understanding colloid transport in ground water is essential to assessing the migration of colloid-size contaminants, the facilitation of dissolved contaminant transport by colloids, in situ bioremediation, and the health risks of pathogen contamination in drinking water wells. Much has been learned through laboratory and field-scale colloid tracer tests, but progress has been hampered by a lack of consistent tracer testing methodology at different scales and fluid velocities. This paper presents laboratory and field tracer tests in fractured rock that use the same type of colloid tracer over an almost three orders-of-magnitude range in scale and fluid velocity. Fluorescently-dyed carboxylate-modified latex (CML) microspheres (0.19 to 0.98 ??m diameter) were used as tracers in (1) a naturally fractured tuff sample, (2) a large block of naturally fractured granite, (3) a fractured granite field site, and (4) another fractured granite/schist field site. In all cases, the mean transport time of the microspheres was shorter than the solutes, regardless of detection limit. In all but the smallest scale test, only a fraction of the injected microsphere mass was recovered, with the smaller microspheres being recovered to a greater extent than the larger microspheres. Using existing theory, we hypothesize that the observed microsphere early arrival was due to volume exclusion and attenuation was due to aggregation and/or settling during transport. In most tests, microspheres were detected using flow cytometry, which proved to be an excellent method of analysis. CML microspheres appear to be useful tracers for fractured rock in forced gradient and short-term natural gradient tests, but longer residence times may result in small microsphere recoveries.Understanding colloid transport in ground water is essential to assessing the migration of colloid-size contaminants, the facilitation of dissolved contaminant transport by colloids, in situ bioremediation, and the health risks of pathogen contamination in drinking water wells. Much has been learned through laboratory and field-scale colloid tracer tests, but progress has been hampered by a lack of consistent tracer testing methodology at different scales and fluid velocities. This paper presents laboratory and field tracer tests in fractured rock that use the same type of colloid tracer over an almost three orders-of-magnitude range in scale and fluid velocity. Fluorescently-dyed carboxylate-modified latex (CML) microspheres (0.19 to 0.98 ??m diameter) were used as tracers in (1) a naturally fractured tuff sample, (2) a large block of naturally fractured granite, (3) a fractured granite field site, and (4) another fractured granite/schist field site. In all cases, the mean transport time of the microspheres was shorter than the solutes, regardless of detection limit. In all but the smallest scale test, only a fraction of the injected microsphere mass was recovered, with the smaller microspheres being recovered to a greater extent than the larger microspheres. Using existing theory, we hypothesize that the observed microsphere early arrival was due to volume exclusion and attenuation was due to aggregation and/or settling during transport. In most tests, microspheres were detected using flow cytometry, which proved to be an excellent method of analysis. CML microspheres appear to be useful tracers for fractured rock in forced gradient and short-term natural gradient tests, but longer residence times may result in small microsphere recoveries.

  20. Small scale mechanical characterization of thin foil materials via pin load microtesting

    DOE PAGES

    Wheeler, Robert; Pandey, Amit; Shyam, Amit; ...

    2015-05-06

    In situ scanning electron microscope (SEM) experiments, where small-scale mechanical tests are conducted on micro- and nanosized specimens, allow direct visualization of elastic and plastic responses over the entirety of the volume being deformed. This enables precise spatial and temporal correlation of slip events contributing to the plastic flow evidenced in a stress–strain curve. A new pin-loading methodology has been employed, in situ within the SEM, to conduct microtensile tests on thin polycrystalline metal foils. This approach can be tailored to a specific foil whose particular grain size may range from microns to tens of microns. Manufacture of the specializedmore » pin grip was accomplished via silicon photolithography-based processing followed by subsequent focused ion beam finishing. Microtensile specimen preparation was achieved by combining a stencil mask methodology employing broad ion beam sputtering along with focused ion beam milling in the study of several metallic foil materials. Finite-element analyses were performed to characterize the stress and strain distributions in the pin grip and micro-specimen under load. Furthermore, under appropriately conceived test conditions, uniaxial stress–strain responses measured within these foils by pin-load microtensile testing exhibit properties consistent with larger scale tests.« less

  1. Evaluation of quartz melt rate furnace with the nitric-glycolic flowsheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, M. S.; Miller, D. H.

    The Savannah River National Laboratory (SRNL) was tasked to support validation of the Defense Waste Processing Facility (DWPF) melter offgas flammability model for the Nitric-Glycolic (NG) flowsheet. The work is supplemental to the Cold Cap Evaluation Furnace (CEF) testing conducted in 20141 and the Slurry-fed Melt Rate Furnace (SMRF) testing conducted in 20162 that supported Deliverable 4 of the DWPF & Saltstone Facility Engineering Technical Task Request (TTR).3 The Quartz Melt Rate Furnace (QMRF) was evaluated as a bench-scale scoping tool to potentially be used in lieu of or simply prior to the use of the larger-scale SMRF or CEF.more » The QMRF platform has been used previously to evaluate melt rate behavior and offgas compositions of DWPF glasses prepared from the Nitric-Formic (NF) flowsheet but not for the NG flowsheet and not with continuous feeding.4 The overall objective of the 2016-2017 testing was to evaluate the efficacy of the QMRF as a lab-scale platform for steady state, continuously fed melter testing with the NG flowsheet as an alternative to more expensive and complex testing with the SMRF or CEF platforms.« less

  2. Impaired or Not Impaired, That Is the Question: Navigating the Challenges Associated with Using Canadian Normative Data in a Comprehensive Test Battery That Contains American Tests

    PubMed Central

    Chevalier, Thérèse M.; Stewart, Garth; Nelson, Monty; McInerney, Robert J.; Brodie, Norman

    2016-01-01

    It has been well documented that IQ scores calculated using Canadian norms are generally 2–5 points lower than those calculated using American norms on the Wechsler IQ scales. However, recent findings have demonstrated that the difference may be significantly larger for individuals with certain demographic characteristics, and this has prompted discussion about the appropriateness of using the Canadian normative system with a clinical population in Canada. This study compared the interpretive effects of applying the American and Canadian normative systems in a clinical sample. We used a multivariate analysis of variance (ANOVA) to calculate differences between IQ and Index scores in a clinical sample, and mixed model ANOVAs to assess the pattern of differences across age and ability level. As expected, Full Scale IQ scores calculated using Canadian norms were systematically lower than those calculated using American norms, but differences were significantly larger for individuals classified as having extremely low or borderline intellectual functioning when compared with those who scored in the average range. Implications of clinically different conclusions for up to 52.8% of patients based on these discrepancies highlight a unique dilemma facing Canadian clinicians, and underscore the need for caution when choosing a normative system with which to interpret WAIS-IV results in the context of a neuropsychological test battery in Canada. Based on these findings, we offer guidelines for best practice for Canadian clinicians when interpreting data from neuropsychological test batteries that include different normative systems, and suggestions to assist with future test development. PMID:27246955

  3. Binary constructs of forensic psychiatric nursing: a pilot study.

    PubMed

    Mason, T; Dulson, J; King, L

    2009-03-01

    The aim was to develop an Information Gathering Schedule (IGS) relevant to forensic psychiatric nursing in order to establish the perceived differences in the three levels of security, high, medium and low. Perceived differences in the role constructs of forensic psychiatric nursing is said to exist but the evidence is qualitative or anecdotal. This paper sets out a pilot study beginning in 2004 relating to the development of two rating scales for inclusion into an IGS to acquire data on the role constructs of nurses working in these environments. Following a thematic analysis from the literature two sets of binary frameworks were constructed and a number of questions/statements relating to them were tested. The Thurstone Scaling test was applied to compute medians resulting in a reduction to 48 and 20 items for each respective framework. Two 7-point Likert scales were constructed and test-retest procedures were applied on a sample population of forensic psychiatric nurses. Student's t-test was conducted on the data and the results suggest that the IGS is now suitable for application on a larger study. The IGS was piloted on a small sample of forensic psychiatric nurses. The two scales were validated to coefficient values ranging from 0.7 to 0.9. Amendments were made and the IGS was considered acceptable.

  4. The small-scale treatability study sample exemption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coalgate, J.

    1991-01-01

    In 1981, the Environmental Protection Agency (EPA) issued an interim final rule that conditionally exempted waste samples collected solely for the purpose of monitoring or testing to determine their characteristics or composition'' from RCRA Subtitle C hazardous waste regulations. This exemption (40 CFR 261.4(d)) apples to the transportation of samples between the generator and testing laboratory, temporary storage of samples at the laboratory prior to and following testing, and storage at a laboratory for specific purposes such as an enforcement action. However, the exclusion did not include large-scale samples used in treatability studies or other testing at pilot plants ormore » other experimental facilities. As a result of comments received by the EPA subsequent to the issuance of the interim final rule, the EPA reopened the comment period on the interim final rule on September 18, 1987, and specifically requested comments on whether or not the sample exclusion should be expanded to include waste samples used in small-scale treatability studies. Almost all responders commented favorably on such a proposal. As a result, the EPA issued a final rule (53 FR 27290, July 19, 1988) conditionally exempting waste samples used in small-scale treatability studies from full regulation under Subtitle C of RCRA. The question of whether or not to extend the exclusion to larger scale as proposed by the Hazardous Waste Treatment Council was deferred until a later date. This information Brief summarizes the requirements of the small-scale treatability exemption.« less

  5. Young Children's Participation and Environment Measure: Swedish Cultural Adaptation.

    PubMed

    Åström, Frida Marie; Khetani, Mary; Axelsson, Anna Karin

    2018-08-01

    To culturally adapt and evaluate the psychometric properties of the Young Children's Participation and Environment Measure (YC-PEM) for use by caregivers of Swedish children with and without disabilities, aged 2-5 years. Thirteen cognitive interviews and two focus groups with caregivers of children with and without disabilities were conducted to evaluate the cultural relevance of YC-PEM content for use in Sweden. Per participant feedback, a revised version of the Swedish YC-PEM was created and pilot tested with caregivers of children with disabilities (n = 11) and children with typical development (n = 22). User feedback informed content revisions to 7% of items. Internal consistency estimates of the Swedish YC-PEM pilot version were acceptable and ranged from .70 to .92 for all but two of the YC-PEM scales. Mean percentage agreement between raters ranged from 47% to 93% across YC-PEM scales for inter-rater, and 44% to 86% for test-retest. One of twelve YC-PEM scales revealed significant group differences between young children with and without disabilities. This study contributes preliminary evidence for the use of some scales within a culturally adapted YC-PEM in Sweden. Further validation with larger samples will allow for parametric testing to evaluate its psychometric properties.

  6. A Critique of Carver and White's (1994) Behavioral Inhibition Scale (BIS) for Investigating Lykken's (1995) Theory of Primary Psychopathy

    PubMed Central

    Poythress, Norman G.; Edens, John F.; Landfield, Kristin; Lilienfeld, Scott O.; Skeem, Jennifer L.; Douglas, Kevin S.

    2008-01-01

    In a 1995 monograph, Lykken asserted that an innate fearless temperament underpins the development of primary psychopathy as described by Cleckley (1941). To embed this insight in a larger theory of behavior, Lykken embraced constructs from Gray’s (1982) reinforcement sensitivity theory (RST). Specifically, he hypothesized that in primary psychopaths the behavioral inhibition system (BIS) lacks normal sensitivity to cues of conditioned punishment or non-reward. Subsequent researchers have embraced Carver and White’s (1994) BIS scale as the instrument of choice for testing Lykken’s theory of primary psychopathy, a practice that this review calls into question. We note (a) a dearth of research using the BIS scales in offender samples, where more psychopathic individuals are likely to be found and (b) limited BIS scale coverage of the functions attributed to the behavioral inhibition system in RST. In addition, (c) we review literature suggesting that rather than assessing the fear sensitivity function critical to Lykken’s theory, the BIS scale instead functions primarily as an index of negative emotionality. We recommend a moratorium on the use of the BIS scale to test Lykken’s theory of primary psychopathy. PMID:19727321

  7. How large is large enough for insects? Forest fragmentation effects at three spatial scales

    NASA Astrophysics Data System (ADS)

    Ribas, C. R.; Sobrinho, T. G.; Schoereder, J. H.; Sperber, C. F.; Lopes-Andrade, C.; Soares, S. M.

    2005-02-01

    Several mechanisms may lead to species loss in fragmented habitats, such as edge and shape effects, loss of habitat and heterogeneity. Ants and crickets were sampled in 18 forest remnants in south-eastern Brazil, to test whether a group of small remnants maintains the same insect species richness as similar sized large remnants, at three spatial scales. We tested hypotheses about alpha and gamma diversity to explain the results. Groups of remnants conserve as many species of ants as a single one. Crickets, however, showed a scale-dependent pattern: at small scales there was no significant or important difference between groups of remnants and a single one, while at the larger scale the group of remnants maintained more species. Alpha diversity (local species richness) was similar in a group of remnants and in a single one, at the three spatial scales, both for ants and crickets. Gamma diversity, however, varied both with taxa (ants and crickets) and spatial scale, which may be linked to insect mobility, remnant isolation, and habitat heterogeneity. Biological characteristics of the organisms involved have to be considered when studying fragmentation effects, as well as spatial scale at which it operates. Mobility of the organisms influences fragmentation effects, and consequently conservation strategies.

  8. The ratio and allometric scaling of speed, power, and strength in elite male rugby union players.

    PubMed

    Crewther, Blair T; McGuigan, Mike R; Gill, Nicholas D

    2011-07-01

    This study compared the effectiveness of ratio and allometric scaling for normalizing speed, power, and strength in elite male rugby union players. Thirty rugby players (body mass [BM] 107.1 ± 10.1 kg, body height [BH] 187.8 ± 7.1 cm) were assessed for sprinting speed, peak power during countermovement jumps and squat jumps, and horizontal jumping distance. One-repetition maximum strength was assessed during a bench press, chin-up, and back squat. Performance was normalized using ratio and allometric scaling (Y/X), where Y is the performance, X, the body size variable (i.e., BM or BH), and b is the power exponent. An exponent of 1.0 was used during ratio scaling. Allometric scaling was applied using proposed exponents and derived exponents for each data set. The BM and BH variables were significantly related, or close to, performance during the speed, power and/or strength tests (p < 0.001-0.066). Ratio scaling and allometric scaling using proposed exponents were effective in normalizing performance (i.e., no significant correlations) for some of these tests. Allometric scaling with derived exponents normalized performance across all the tests undertaken, thereby removing the confounding effects of BM and BH. In terms of practical applications, allometric scaling with derived exponents may be used to normalize performance between larger rugby forwards and smaller rugby backs, and could provide additional information on rugby players of similar body size. Ratio scaling may provide the best predictive measure of performance (i.e., strongest correlations).

  9. Power spectrum, correlation function, and tests for luminosity bias in the CfA redshift survey

    NASA Astrophysics Data System (ADS)

    Park, Changbom; Vogeley, Michael S.; Geller, Margaret J.; Huchra, John P.

    1994-08-01

    We describe and apply a method for directly computing the power spectrum for the galaxy distribution in the extension of the Center for Astrophysics Redshift Survey. Tests show that our technique accurately reproduces the true power spectrum for k greater than 0.03 h Mpc-1. The dense sampling and large spatial coverage of this survey allow accurate measurement of the redshift-space power spectrum on scales from 5 to approximately 200 h-1 Mpc. The power spectrum has slope n approximately equal -2.1 on small scales (lambda less than or equal 25 h-1 Mpc) and n approximately -1.1 on scales 30 less than lambda less than 120 h-1 Mpc. On larger scales the power spectrum flattens somewhat, but we do not detect a turnover. Comparison with N-body simulations of cosmological models shows that an unbiased, open universe CDM model (OMEGA h = 0.2) and a nonzero cosmological constant (CDM) model (OMEGA h = 0.24, lambdazero = 0.6, b = 1.3) match the CfA power spectrum over the wavelength range we explore. The standard biased CDM model (OMEGA h = 0.5, b = 1.5) fails (99% significance level) because it has insufficient power on scales lambda greater than 30 h-1 Mpc. Biased CDM with a normalization that matches the Cosmic Microwave Background (CMB) anisotropy (OMEGA h = 0.5, b = 1.4, sigma8 (mass) = 1) has too much power on small scales to match the observed galaxy power spectrum. This model with b = 1 matches both Cosmic Background Explorer Satellite (COBE) and the small-scale power spect rum but has insufficient power on scales lambda approximately 100 h-1 Mpc. We derive a formula for the effect of small-scale peculiar velocities on the power spectrum and combine this formula with the linear-regime amplification described by Kaiser to compute an estimate of the real-space power spectrum. Two tests reveal luminosity bias in the galaxy distribution: First, the amplitude of the power spectrum is approximately 40% larger for the brightest 50% of galaxies in volume-limited samples that have Mlim greater than M*. This bias in the power spectrum is independent of scale, consistent with the peaks-bias paradigm for galaxy formation. Second, the distribution of local density around galaxies shows that regions of moderate and high density contain both very bright (M less than M* = -19.2 + 5 log h) and fainter galaxies, but that voids preferentially harbor fainter galaxies (approximately 2 sigma significance level).

  10. Reliability of perceived neighbourhood conditions and the effects of measurement error on self-rated health across urban and rural neighbourhoods.

    PubMed

    Pruitt, Sandi L; Jeffe, Donna B; Yan, Yan; Schootman, Mario

    2012-04-01

    Limited psychometric research has examined the reliability of self-reported measures of neighbourhood conditions, the effect of measurement error on associations between neighbourhood conditions and health, and potential differences in the reliabilities between neighbourhood strata (urban vs rural and low vs high poverty). We assessed overall and stratified reliability of self-reported perceived neighbourhood conditions using five scales (social and physical disorder, social control, social cohesion, fear) and four single items (multidimensional neighbouring). We also assessed measurement error-corrected associations of these conditions with self-rated health. Using random-digit dialling, 367 women without breast cancer (matched controls from a larger study) were interviewed twice, 2-3 weeks apart. Test-retest (intraclass correlation coefficients (ICC)/weighted κ) and internal consistency reliability (Cronbach's α) were assessed. Differences in reliability across neighbourhood strata were tested using bootstrap methods. Regression calibration corrected estimates for measurement error. All measures demonstrated satisfactory internal consistency (α ≥ 0.70) and either moderate (ICC/κ=0.41-0.60) or substantial (ICC/κ=0.61-0.80) test-retest reliability in the full sample. Internal consistency did not differ by neighbourhood strata. Test-retest reliability was significantly lower among rural (vs urban) residents for two scales (social control, physical disorder) and two multidimensional neighbouring items; test-retest reliability was higher for physical disorder and lower for one multidimensional neighbouring item among the high (vs low) poverty strata. After measurement error correction, the magnitude of associations between neighbourhood conditions and self-rated health were larger, particularly in the rural population. Research is needed to develop and test reliable measures of perceived neighbourhood conditions relevant to the health of rural populations.

  11. Modeling habitat for Marbled Murrelets on the Siuslaw National Forest, Oregon, using lidar data

    USGS Publications Warehouse

    Hagar, Joan C.; Aragon, Ramiro; Haggerty, Patricia; Hollenbeck, Jeff P.

    2018-03-28

    Habitat models using lidar-derived variables that quantify fine-scale variation in vegetation structure can improve the accuracy of occupancy estimates for canopy-dwelling species over models that use variables derived from other remote sensing techniques. However, the ability of models developed at such a fine spatial scale to maintain accuracy at regional or larger spatial scales has not been tested. We tested the transferability of a lidar-based habitat model for the threatened Marbled Murrelet (Brachyramphus marmoratus) between two management districts within a larger regional conservation zone in coastal western Oregon. We compared the performance of the transferred model against models developed with data from the application location. The transferred model had good discrimination (AUC = 0.73) at the application location, and model performance was further improved by fitting the original model with coefficients from the application location dataset (AUC = 0.79). However, the model selection procedure indicated that neither of these transferred models were considered competitive with a model trained on local data. The new model trained on data from the application location resulted in the selection of a slightly different set of lidar metrics from the original model, but both transferred and locally trained models consistently indicated positive relationships between the probability of occupancy and lidar measures of canopy structural complexity. We conclude that while the locally trained model had superior performance for local application, the transferred model could reasonably be applied to the entire conservation zone.

  12. Tabulated pressure measurements on an executive-type jet transport model with a supercritical wing

    NASA Technical Reports Server (NTRS)

    Bartlett, D. W.

    1975-01-01

    A 1/9 scale model of an existing executive type jet transport refitted with a supercritical wing was tested on in the 8 foot transonic pressure tunnel. The supercritical wing had the same sweep as the original airplane wing but had maximum thickness chord ratios 33 percent larger at the mean geometric chord and almost 50 percent larger at the wing-fuselage juncture. Wing pressure distributions and fuselage pressure distributions in the vicinity of the left nacelle were measured at Mach numbers from 0.25 to 0.90 at angles of attack that generally varied from -2 deg to 10 deg. Results are presented in tabular form without analysis.

  13. Theoretical Re-evaluations of Scaling Relations between SMBHs and Their Host Galaxies - 2. Importance of AGN Feedback Suggested by Stellar Age - Velocity Dispersion Relation

    NASA Astrophysics Data System (ADS)

    Shirakata, Hikari; Kawaguchi, Toshihiro; Okamoto, Takashi; Ishiyama, Tomoaki

    2017-09-01

    We present the galactic stellar age - velocity dispersion relation obtained from a semi-analytic model of galaxy formation. We divide galaxies into two populations: galaxies which have over-massive/under-massive black holes (BHs) against the best-fitting BH mass - velocity dispersion relation. We find that galaxies with larger velocity dispersion have older stellar ages. We also find that galaxies with over-massive BHs have older stellar ages. These results are consistent with observational results obtained from Martin-Navarro et al. (2016). We tested the model with weak AGN feedback and find that galaxies with larger velocity dispersion have a younger stellar age.

  14. Optimising mobility outcome measures in Huntington's disease.

    PubMed

    Busse, Monica; Quinn, Lori; Khalil, Hanan; McEwan, Kirsten

    2014-01-01

    Many of the performance-based mobility measures that are currently used in Huntington's disease (HD) were developed for assessment in other neurological conditions such as stroke. We aimed to assess the individual item-response of commonly used performance-based mobility measures, with a view to optimizing the scales for specific application in Huntington's Disease (HD). Data from a larger multicentre, observational study were used. Seventy-five people with HD (11 pre-manifest & 64 manifest) were assessed on the Six-Minute Walk Test, 10-Meter Walk Test, Timed "Up & Go" Test (TUG), Berg Balance Scale (BBS), Physical Performance Test (PPT), Four Square Step Test, and Tinetti Mobility Test (TMT). The Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, Functional Assessment Scale and Total Functional Capacity scores were recorded, alongside cognitive measures. Standard regression analysis was used to assess predictive validity. Individual item responses were investigated using a sequence of approaches to allow for gradual removal of items and the subsequent creation of shortened versions. Psychometric properties (reliability and discriminant ability) of the shortened scales were assessed. TUG (β 0.46, CI 0.20-3.47), BBS (β -0.35, CI -2.10-0.14), and TMT (β -0.45, CI -3.14-0.64) were good disease-specific mobility measures. PPT was the best measure of functional performance (β 0.42, CI 0.00-0.43 for TFC & β 0.57 CI 0.15-0.81 for FAS). Shortened versions of BBS and TMT were developed based on item analysis. The resultant BBS and TMT shortened scales were reliable for use in manifest HD. ROC analysis showed that shortened scales were able to discriminate between manifest and pre-manifest disease states. Our data suggests that the PPT is appropriate as a general measure of function in individuals with HD, and we have identified shortened versions of the BBS and TMT that measure the unique gait and balance impairments in HD. These scales, alongside the TUG, may therefore be important measures to consider in future clinical trials.

  15. The Zero Boil-Off Tank Experiment Contributions to the Development of Cryogenic Fluid Management

    NASA Technical Reports Server (NTRS)

    Chato, David J.; Kassemi, Mohammad

    2015-01-01

    The Zero Boil-Off Technology (ZBOT) Experiment involves performing a small scale ISS experiment to study tank pressurization and pressure control in microgravity. The ZBOT experiment consists of a vacuum jacketed test tank filled with an inert fluorocarbon simulant liquid. Heaters and thermo-electric coolers are used in conjunction with an axial jet mixer flow loop to study a range of thermal conditions within the tank. The objective is to provide a high quality database of low gravity fluid motions and thermal transients which will be used to validate Computational Fluid Dynamic (CFD) modeling. This CFD can then be used in turn to predict behavior in larger systems with cryogens. This paper will discuss the current status of the ZBOT experiment as it approaches its flight to installation on the International Space Station, how its findings can be scaled to larger and more ambitious cryogenic fluid management experiments, as well as ideas for follow-on investigations using ZBOT like hardware to study other aspects of cryogenic fluid management.

  16. Fear of predation drives stable and differentiated social relationships in guppies

    PubMed Central

    Heathcote, Robert J. P.; Darden, Safi K.; Franks, Daniel W.; Ramnarine, Indar W.; Croft, Darren P.

    2017-01-01

    Social relationships can have important consequences for fitness in animals. Whilst numerous studies have shown that individuals often join larger groups in response to perceived predation risk (i.e. fear of predation), the importance of predation risk in driving the formation and stability of social relationships within groups has been relatively ignored. We experimentally tested how predation threat influenced fine-scale social network structure using Trinidadian guppies (Poecilia reticulata). When perceived predation risk was high, individuals developed stable and more differentiated social ties compared to when perceived risk was low. Intriguingly, social differentiation coincided with shoals being somewhat smaller under high-perceived risk, suggesting a possible conflict between forming stable social relationships and larger social groups. Individuals most at risk of predation (large and bold individuals) showed the most exaggerated responses in several social measures. Taken together, we provide the first experimental evidence that proximate risk of predation can increase the intensity of social relationships and fine-scale social structure in animal populations. PMID:28150706

  17. Fear of predation drives stable and differentiated social relationships in guppies.

    PubMed

    Heathcote, Robert J P; Darden, Safi K; Franks, Daniel W; Ramnarine, Indar W; Croft, Darren P

    2017-02-02

    Social relationships can have important consequences for fitness in animals. Whilst numerous studies have shown that individuals often join larger groups in response to perceived predation risk (i.e. fear of predation), the importance of predation risk in driving the formation and stability of social relationships within groups has been relatively ignored. We experimentally tested how predation threat influenced fine-scale social network structure using Trinidadian guppies (Poecilia reticulata). When perceived predation risk was high, individuals developed stable and more differentiated social ties compared to when perceived risk was low. Intriguingly, social differentiation coincided with shoals being somewhat smaller under high-perceived risk, suggesting a possible conflict between forming stable social relationships and larger social groups. Individuals most at risk of predation (large and bold individuals) showed the most exaggerated responses in several social measures. Taken together, we provide the first experimental evidence that proximate risk of predation can increase the intensity of social relationships and fine-scale social structure in animal populations.

  18. Experiments on a Tail-wheel Shimmy

    NASA Technical Reports Server (NTRS)

    Harling, R; Dietz, O

    1954-01-01

    Model tests on the "running belt" and tests with a full-scale tail wheel were made on a rotating drum as well as on a runway in order to investigate the causes of the undesirable shimmy phenomena frequently occurring on airplane tail wheels, and the means of avoiding them. The small model (scale 1:10) permitted simulation of the mass, moments of inertia, and fuselage stiffness of the airplane and determination of their influence on the shimmy, whereas by means of the larger model with pneumatic tires (scale 1:2) more accurate investigations were made on the tail wheel itself. The results of drum and road tests show good agreement with one another and with model values. Detailed investigations were made regarding the dependence of the shimmy tendency on trail, rolling speed, load, size of tires, ground friction,and inclination of the swivel axis; furthermore, regarding the influence of devices with restoring effect on the tail wheel, and the friction damping required for prevention of shimmy. Finally observations from slow-motion pictures are reported and conclusions drawn concerning the influence of tire deformation.

  19. An Empirical Non-TNT Approach to Launch Vehicle Explosion Modeling

    NASA Technical Reports Server (NTRS)

    Blackwood, James M.; Skinner, Troy; Richardson, Erin H.; Bangham, Michal E.

    2015-01-01

    In an effort to increase crew survivability from catastrophic explosions of Launch Vehicles (LV), a study was conducted to determine the best method for predicting LV explosion environments in the near field. After reviewing such methods as TNT equivalence, Vapor Cloud Explosion (VCE) theory, and Computational Fluid Dynamics (CFD), it was determined that the best approach for this study was to assemble all available empirical data from full scale launch vehicle explosion tests and accidents. Approximately 25 accidents or full-scale tests were found that had some amount of measured blast wave, thermal, or fragment explosion environment characteristics. Blast wave overpressure was found to be much lower in the near field than predicted by most TNT equivalence methods. Additionally, fragments tended to be larger, fewer, and slower than expected if the driving force was from a high explosive type event. In light of these discoveries, a simple model for cryogenic rocket explosions is presented. Predictions from this model encompass all known applicable full scale launch vehicle explosion data. Finally, a brief description of on-going analysis and testing to further refine the launch vehicle explosion environment is discussed.

  20. A Tour de Force by Hawaii's invasive mammals: establishment, takeover, ecosystem restoration through eradication

    USGS Publications Warehouse

    Hess, Steve

    2016-01-01

    nesting seabirds. Rodenticides that have been tested and registered for hand and aerial broadcast in Hawai'i have been used to eradicate rats from small offshore islands to protect nesting seabirds and are now being applied to montane environment of larger islands to protect forest birds. Forward-looking infrared radar is also being applied to locate cryptic wild ungulates that were more recently introduced to some islands. All invasive mammals have been eradicated from some smaller islands, resulting in the restoration of some ecosystem processes such as natural forest regeneration, but changes in other processes such as fire regimes and nutrient cycling remain more difficult to reverse at larger landscape scales. It may soon be possible to manage areas on larger islands to be free of invasive mammals at least during seasonally important periods for native species, but at the same time, new mammal introductions continue to occur.

  1. Mars Sample Return and Flight Test of a Small Bimodal Nuclear Rocket and ISRU Plant

    NASA Technical Reports Server (NTRS)

    George, Jeffrey A.; Wolinsky, Jason J.; Bilyeu, Michael B.; Scott, John H.

    2014-01-01

    A combined Nuclear Thermal Rocket (NTR) flight test and Mars Sample Return mission (MSR) is explored as a means of "jump-starting" NTR development. Development of a small-scale engine with relevant fuel and performance could more affordably and quickly "pathfind" the way to larger scale engines. A flight test with subsequent inflight postirradiation evaluation may also be more affordable and expedient compared to ground testing and associated facilities and approvals. Mission trades and a reference scenario based upon a single expendable launch vehicle (ELV) are discussed. A novel "single stack" spacecraft/lander/ascent vehicle concept is described configured around a "top-mounted" downward firing NTR, reusable common tank, and "bottom-mount" bus, payload and landing gear. Requirements for a hypothetical NTR engine are described that would be capable of direct thermal propulsion with either hydrogen or methane propellant, and modest electrical power generation during cruise and Mars surface insitu resource utilization (ISRU) propellant production.

  2. Do Performance-Safety Tradeoffs Cause Hypometric Metabolic Scaling in Animals?

    PubMed

    Harrison, Jon F

    2017-09-01

    Hypometric scaling of aerobic metabolism in animals has been widely attributed to constraints on oxygen (O 2 ) supply in larger animals, but recent findings demonstrate that O 2 supply balances with need regardless of size. Larger animals also do not exhibit evidence of compensation for O 2 supply limitation. Because declining metabolic rates (MRs) are tightly linked to fitness, this provides significant evidence against the hypothesis that constraints on supply drive hypometric scaling. As an alternative, ATP demand might decline in larger animals because of performance-safety tradeoffs. Larger animals, which typically reproduce later, exhibit risk-reducing strategies that lower MR. Conversely, smaller animals are more strongly selected for growth and costly neurolocomotory performance, elevating metabolism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. LES Modeling of Lateral Dispersion in the Ocean on Scales of 10 m to 10 km

    DTIC Science & Technology

    2015-10-20

    ocean on scales of 0.1-10 km that can be implemented in larger-scale ocean models. These parameterizations will incorporate the effects of local...ocean on scales of 0.1-10 km that can be implemented in larger-scale ocean models. These parameterizations will incorporate the effects of local...www.fields.utoronto.ca/video-archive/static/2013/06/166-1766/mergedvideo.ogv) and at the Nonlinear Effects in Internal Waves Conference held at Cornell University

  4. A Study on Mutil-Scale Background Error Covariances in 3D-Var Data Assimilation

    NASA Astrophysics Data System (ADS)

    Zhang, Xubin; Tan, Zhe-Min

    2017-04-01

    The construction of background error covariances is a key component of three-dimensional variational data assimilation. There are different scale background errors and interactions among them in the numerical weather Prediction. However, the influence of these errors and their interactions cannot be represented in the background error covariances statistics when estimated by the leading methods. So, it is necessary to construct background error covariances influenced by multi-scale interactions among errors. With the NMC method, this article firstly estimates the background error covariances at given model-resolution scales. And then the information of errors whose scales are larger and smaller than the given ones is introduced respectively, using different nesting techniques, to estimate the corresponding covariances. The comparisons of three background error covariances statistics influenced by information of errors at different scales reveal that, the background error variances enhance particularly at large scales and higher levels when introducing the information of larger-scale errors by the lateral boundary condition provided by a lower-resolution model. On the other hand, the variances reduce at medium scales at the higher levels, while those show slight improvement at lower levels in the nested domain, especially at medium and small scales, when introducing the information of smaller-scale errors by nesting a higher-resolution model. In addition, the introduction of information of larger- (smaller-) scale errors leads to larger (smaller) horizontal and vertical correlation scales of background errors. Considering the multivariate correlations, the Ekman coupling increases (decreases) with the information of larger- (smaller-) scale errors included, whereas the geostrophic coupling in free atmosphere weakens in both situations. The three covariances obtained in above work are used in a data assimilation and model forecast system respectively, and then the analysis-forecast cycles for a period of 1 month are conducted. Through the comparison of both analyses and forecasts from this system, it is found that the trends for variation in analysis increments with information of different scale errors introduced are consistent with those for variation in variances and correlations of background errors. In particular, introduction of smaller-scale errors leads to larger amplitude of analysis increments for winds at medium scales at the height of both high- and low- level jet. And analysis increments for both temperature and humidity are greater at the corresponding scales at middle and upper levels under this circumstance. These analysis increments improve the intensity of jet-convection system which includes jets at different levels and coupling between them associated with latent heat release, and these changes in analyses contribute to the better forecasts for winds and temperature in the corresponding areas. When smaller-scale errors are included, analysis increments for humidity enhance significantly at large scales at lower levels to moisten southern analyses. This humidification devotes to correcting dry bias there and eventually improves forecast skill of humidity. Moreover, inclusion of larger- (smaller-) scale errors is beneficial for forecast quality of heavy (light) precipitation at large (small) scales due to the amplification (diminution) of intensity and area in precipitation forecasts but tends to overestimate (underestimate) light (heavy) precipitation .

  5. Advanced Fuel Cycle Technology: Special Session in Honor of Dr. Michael Lineberry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.M. Wachs; N. Woolstenhulme

    2014-06-01

    The US DOE recently initiated an effort to develop accident tolerant fuel designs for potential use in commercial power reactors. Evaluation of various fuel design concepts will require a broad array of testing that will include performance attributes at both steady state and transient irradiation conditions. The first stage of the transient testing program is intended to establish the relative performance limits of each proposed concept and to support development of first-draft fuel performance models. It is anticipated that this data can subsequently be used as the basis for larger scale qualification testing. This initial stage of the testing programmore » is outlined in this paper.« less

  6. Interactive initialization of heat flux parameters for numerical models using satellite temperature measurements

    NASA Technical Reports Server (NTRS)

    Carlson, T. N. (Principal Investigator)

    1981-01-01

    Efforts were made (1) to bring the image processing and boundary layer model operation into a completely interactive mode and (2) to test a method for determining the surface energy budget and surface moisture availability and thermal inertia on a scale appreciably larger than that of the city. A region a few hundred kilometers on a side centered over southern Indiana was examined.

  7. Low Activity Waste Pretreatment System Bench-Scale Testing: Supporting Integrated Testing and Facility Safety Analyses - 17171

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schonewill, Philip P.; Russell, Renee L.; Daniel, Richard C.

    The Low Activity Waste Pretreatment System (LAWPS) is being designed to enable the direct feed of waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) facility to be immobilized. Prior to construction of the LAWPS, pilot-scale integrated testing of the key unit operations (crossflow filtration, ion exchange using spherical resorcinol-formaldehyde (sRF) resin) will be conducted by a team led by Washington River Protection Solutions (WRPS) to increase the technology maturation level of the facility’s critical technology elements. As a part of this effort, Pacific Northwest National Laboratory (PNNL) has conducted a series of bench-scalemore » (or engineering-scale) tests to perform two major objectives: (1) support pilot-scale integrated testing of the LAWPS by supplying information or performance data in advance of operating the pilot-scale facility; and (2) collect data needed to establish or confirm assumptions/approaches planned for implementation in the LAWPS safety basis. The first objective was focused in two technical areas: developing simulants that are representative of expected waste feed and can be produced at larger scales, and using these simulants in a bench-scale crossflow filter to establish expected solid-liquid separation performance. The crossflow filter was also used to observe the efficacy (with respect to filter production rate) of selected operational strategies. The second objective also included two technical areas: measuring the effect of sRF resin on hydrogen generation rate under irradiation, and demonstrating that the planned hydrogen management approach is effective and robust. The hydrogen management strategy involves fluidization of the sRF resin bed in the ion exchange columns and recirculating the liquid, a scenario that is planned for testing at full column height. The full height tests at PNNL also supported full-scale IX column testing conducted as part of the technology maturation plan. The experimental approaches used at PNNL in these four technical areas are summarized and selected key preliminary results are provided.« less

  8. Are Psychotic Experiences Related to Poorer Reflective Reasoning?

    PubMed Central

    Mækelæ, Martin J.; Moritz, Steffen; Pfuhl, Gerit

    2018-01-01

    Background: Cognitive biases play an important role in the formation and maintenance of delusions. These biases are indicators of a weak reflective mind, or reduced engaging in reflective and deliberate reasoning. In three experiments, we tested whether a bias to accept non-sense statements as profound, treat metaphorical statements as literal, and suppress intuitive responses is related to psychotic-like experiences. Methods: We tested deliberate reasoning and psychotic-like experiences in the general population and in patients with a former psychotic episode. Deliberate reasoning was assessed with the bullshit receptivity scale, the ontological confabulation scale and the cognitive reflection test (CRT). We also measured algorithmic performance with the Berlin numeracy test and the wordsum test. Psychotic-like experiences were measured with the Community Assessment of Psychic Experience (CAPE-42) scale. Results: Psychotic-like experiences were positively correlated with a larger receptivity toward bullshit, more ontological confabulations, and also a lower score on the CRT but not with algorithmic task performance. In the patient group higher psychotic-like experiences significantly correlated with higher bullshit receptivity. Conclusion: Reduced deliberate reasoning may contribute to the formation of delusions, and be a general thinking bias largely independent of a person's general intelligence. Acceptance of bullshit may be facilitated the more positive symptoms a patient has, contributing to the maintenance of the delusions. PMID:29483886

  9. Preferential flow from pore to landscape scales

    NASA Astrophysics Data System (ADS)

    Koestel, J. K.; Jarvis, N.; Larsbo, M.

    2017-12-01

    In this presentation, we give a brief personal overview of some recent progress in quantifying preferential flow in the vadose zone, based on our own work and those of other researchers. One key challenge is to bridge the gap between the scales at which preferential flow occurs (i.e. pore to Darcy scales) and the scales of interest for management (i.e. fields, catchments, regions). We present results of recent studies that exemplify the potential of 3-D non-invasive imaging techniques to visualize and quantify flow processes at the pore scale. These studies should lead to a better understanding of how the topology of macropore networks control key state variables like matric potential and thus the strength of preferential flow under variable initial and boundary conditions. Extrapolation of this process knowledge to larger scales will remain difficult, since measurement technologies to quantify macropore networks at these larger scales are lacking. Recent work suggests that the application of key concepts from percolation theory could be useful in this context. Investigation of the larger Darcy-scale heterogeneities that generate preferential flow patterns at the soil profile, hillslope and field scales has been facilitated by hydro-geophysical measurement techniques that produce highly spatially and temporally resolved data. At larger regional and global scales, improved methods of data-mining and analyses of large datasets (machine learning) may help to parameterize models as well as lead to new insights into the relationships between soil susceptibility to preferential flow and site attributes (climate, land uses, soil types).

  10. The physics behind the larger scale organization of DNA in eukaryotes.

    PubMed

    Emanuel, Marc; Radja, Nima Hamedani; Henriksson, Andreas; Schiessel, Helmut

    2009-07-01

    In this paper, we discuss in detail the organization of chromatin during a cell cycle at several levels. We show that current experimental data on large-scale chromatin organization have not yet reached the level of precision to allow for detailed modeling. We speculate in some detail about the possible physics underlying the larger scale chromatin organization.

  11. Repeatability of automated perimetry: a comparison between standard automated perimetry with stimulus size III and V, matrix, and motion perimetry.

    PubMed

    Wall, Michael; Woodward, Kimberly R; Doyle, Carrie K; Artes, Paul H

    2009-02-01

    Standard automated perimetry (SAP) shows a marked increase in variability in damaged areas of the visual field. This study was conducted to test the hypothesis that larger stimuli are associated with more uniform variability, by investigating the retest variability of four perimetry tests: standard automated perimetry size III (SAP III), with the SITA standard strategy; SAP size V (SAP V), with the full-threshold strategy; Matrix (FDT II), and Motion perimetry. One eye each of 120 patients with glaucoma was examined on the same day with these four perimetric tests and retested 1 to 8 weeks later. The decibel scales were adjusted to make the test's scales numerically similar. Retest variability was examined by establishing the distributions of retest threshold estimates, for each threshold level observed at the first test. The 5th and 95th percentiles of the retest distribution were used as point-wise limits of retest variability. Regression analyses were performed to quantify the relationship between visual field sensitivity and variability. With SAP III, the retest variability increased substantially with reducing sensitivity. Corresponding increases with SAP V, Matrix, and Motion perimetry were considerably smaller or absent. With SAP III, sensitivity explained 22% of the retest variability (r(2)), whereas corresponding data for SAP V, Matrix, and Motion perimetry were 12%, 2%, and 2%, respectively. Variability of Matrix and Motion perimetry does not increase as substantially as that of SAP III in damaged areas of the visual field. Increased sampling with the larger stimuli of these techniques is the likely explanation for this finding. These properties may make these stimuli excellent candidates for early detection of visual field progression.

  12. Fine-pore aeration diffusers: accelerated membrane ageing studies.

    PubMed

    Kaliman, An; Rosso, Diego; Leu, Shao-Yuan; Stenstrom, Michael K

    2008-01-01

    Polymeric membranes are widely used in aeration systems for biological treatment. These membranes may degrade over time and are sensitive to fouling and scaling. Membrane degradation is reflected in a decline in operating performance and higher headloss, resulting in increased energy costs. Mechanical property parameters, such as membrane hardness, Young's modulus, and orifice creep, were used to characterize the performance of membranes over time in operation and to predict their failure. Used diffusers from municipal wastewater treatment plants were collected and tested for efficiency and headloss, and then dissected to facilitate measurements of Young's modulus, hardness, and orifice creep. Higher degree of membrane fouling corresponded consistently with larger orifice creep. A lab-scale membrane ageing simulation was performed with polyurethane and four different ethylene-propylene-diene (EPDM) membrane diffusers by subjecting them to chemical ageing cycles and periodic testing. The results confirmed full-scale plant results and showed the superiority of orifice creep over Young's modulus and hardness in predicting diffuser deterioration.

  13. MODFLOW-LGR: Practical application to a large regional dataset

    NASA Astrophysics Data System (ADS)

    Barnes, D.; Coulibaly, K. M.

    2011-12-01

    In many areas of the US, including southwest Florida, large regional-scale groundwater models have been developed to aid in decision making and water resources management. These models are subsequently used as a basis for site-specific investigations. Because the large scale of these regional models is not appropriate for local application, refinement is necessary to analyze the local effects of pumping wells and groundwater related projects at specific sites. The most commonly used approach to date is Telescopic Mesh Refinement or TMR. It allows the extraction of a subset of the large regional model with boundary conditions derived from the regional model results. The extracted model is then updated and refined for local use using a variable sized grid focused on the area of interest. MODFLOW-LGR, local grid refinement, is an alternative approach which allows model discretization at a finer resolution in areas of interest and provides coupling between the larger "parent" model and the locally refined "child." In the present work, these two approaches are tested on a mining impact assessment case in southwest Florida using a large regional dataset (The Lower West Coast Surficial Aquifer System Model). Various metrics for performance are considered. They include: computation time, water balance (as compared to the variable sized grid), calibration, implementation effort, and application advantages and limitations. The results indicate that MODFLOW-LGR is a useful tool to improve local resolution of regional scale models. While performance metrics, such as computation time, are case-dependent (model size, refinement level, stresses involved), implementation effort, particularly when regional models of suitable scale are available, can be minimized. The creation of multiple child models within a larger scale parent model makes it possible to reuse the same calibrated regional dataset with minimal modification. In cases similar to the Lower West Coast model, where a model is larger than optimal for direct application as a parent grid, a combination of TMR and LGR approaches should be used to develop a suitable parent grid.

  14. Fuel alcohol production from agricultural lignocellulosic feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farina, G.E.; Barrier, J.W.; Forsythe, M.L.

    1988-01-01

    A two-stage, low-temperature, ambient pressure, acid hydrolysis process that utilizes separate unit operations to convert hemicellulose and cellulose in agricultural residues and crops to fermentable sugars is being developed and tested. Based on the results of the bench-scale tests, an acid hydrolysis experimental plant to demonstrate the concepts of low-temperature acid hydrolysis on a much larger scale was built. Plant tests using corn stover have been conducted for more that a year and conversion efficiences have equaled those achieved in the laboratory. Laboratory tests to determine the potential for low-temperature acid hydrolysis of other feedstocks - including red clover, alfalfa,more » kobe lespedeza, winter rape, and rye grass - are being conducted. Where applicable, process modifications to include extraction before or after hydrolysis also are being studied. This paper describes the experimental plant and process, results obtained in the plant, results of alternative feedstocks testing in the laboratory, and a plan for an integrated system that will produce other fuels, feed, and food from crops grown on marginal land.« less

  15. Mobile CARS - IRS Instrument for Simultaneous Spectroscopic Measurement of Multiple Properties in Gaseous Flows

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel; Lee, Joseph W.; Jones, Stephen B.; Tedder, Sarah A.; Danehy, Paul M.; Weikl, M. C.; Magnotti, G.; Cutler, Andrew D.

    2007-01-01

    This paper describes a measurement system based on the dual-pump coherent anti-Stokes Raman spectroscopy (CARS) and interferometric Rayleigh scattering (IRS) methods. The IRS measurement is performed simultaneously with the CARS measurement using a common green laser beam as a narrow-band light source. The mobile CARS-IRS instrument is designed for the use both in laboratories as well as in ground-based combustion test facilities. Furthermore, it is designed to be easily transported between laboratory and test facility. It performs single-point spatially and temporally resolved simultaneous measurements of temperature, species mole fraction of N2, O2, and H2, and two-components of velocity. A mobile laser system can be placed inside or outside the test facility, while a beam receiving and monitoring system is placed near the measurement location. Measurements in a laboratory small-scale Mach 1.6 H2-air combustion-heated supersonic jet were performed to test the capability of the system. Final setup and pretests of a larger scale reacting jet are ongoing at NASA Langley Research Center s Direct Connect Supersonic Combustor Test Facility (DCSCTF).

  16. Particle accelerators inside spinning black holes.

    PubMed

    Lake, Kayll

    2010-05-28

    On the basis of the Kerr metric as a model for a spinning black hole accreting test particles from rest at infinity, I show that the center-of-mass energy for a pair of colliding particles is generically divergent at the inner horizon. This shows not only that classical black holes are internally unstable, but also that Planck-scale physics is a characteristic feature within black holes at scales much larger that the Planck length. The novel feature of the divergence discussed here is that the phenomenon is present only for black holes with rotation, and in this sense it is distinct from the well-known Cauchy horizon instability.

  17. Significance of dual polarized long wavelength radar for terrain analysis

    NASA Technical Reports Server (NTRS)

    Macdonald, H. C.; Waite, W. P.

    1978-01-01

    Long wavelength systems with improved penetration capability have been considered to have the potential for minimizing the vegetation contribution and enhancing the surface return variations. L-band imagery of the Arkansas geologic test site provides confirmatory evidence of this effect. However, the increased wavelength increases the sensitivity to larger scale structure at relatively small incidence angles. The regularity of agricultural and urban scenes provides large components in the low frequency-large scale portion of the roughness spectrum that are highly sensitive to orientation. The addition of a cross polarized channel is shown to enable the interpreter to distinguish vegetation and orientational perturbations in the surface return.

  18. Solar stills for agricultural purposes

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.; Tran, V. V.

    1975-01-01

    Basic concepts of using desalinated water for agricultural purposes are outlined. A mathematical model describing heat and mass transfer in a system combining a solar still with a greenhouse, its solution, and test results of a small-scale unit built at the Middle East Technical University, Ankara, Turkey, are discussed. The unit was employed to demonstrate the technical feasibility of the system. Further development and modifications are necessary for larger-scale operations. The basis of an optimization study which is underway at the Brace Research Institute of McGill University in Montreal, Canada, aimed at finding the best combination of design and operation parameters is also presented.

  19. WIPP (Waste Isolation Pilot Plant) intermediate scale borehole test: A pretest analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Argueello, J.G.

    A three-dimensional finite element structural analysis of the Intermediate Scale Borehole Test at the Waste Isolation Pilot Plant (WIPP) has been performed. The analysis provides insight into how a relatively new excavation in a creeping medium responds when introduced into an existing pillar which has been undergoing stress redistribution for 5.7 years. The stress field of the volume of material in the immediate vicinity of the borehole changes significantly when the hole is drilled. Closure of the hole is predicted to be larger in the vertical direction than in the horizontal direction, leading to an ovaling of the hole. Themore » relatively high stresses near the hole persist even at the end of the simulation, 2 years after the hole is drilled. 12 ref., 10 figs.« less

  20. Testing for periodicity of extinction

    NASA Technical Reports Server (NTRS)

    Raup, David M.; Sepkoski, J. J., Jr.

    1988-01-01

    The statistical techniques used by Raup and Sepkoski (1984 and 1986) to identify a 26-Myr periodicity in the biological extinction record for the past 250 Myr are reexamined, responding in detail to the criticisms of Stigler and Wagner (1987). It is argued that evaluation of a much larger set of extinction data using a time scale with 51 sampling intervals supports the finding of periodicity. In a reply by Sigler and Wagner, the preference for a 26-Myr period is attributed to a numerical quirk in the Harland et al. (1982) time scale, in which the subinterval boundaries are not linear interpolations between the stage boundaries but have 25-Myr periodicity. It is stressed that the results of the stringent statistical tests imposed do not disprove periodicity but rather indicate that the evidence and analyses presented so far are inadequate.

  1. Design of scaled down structural models

    NASA Technical Reports Server (NTRS)

    Simitses, George J.

    1994-01-01

    In the aircraft industry, full scale and large component testing is a very necessary, time consuming, and expensive process. It is essential to find ways by which this process can be minimized without loss of reliability. One possible alternative is the use of scaled down models in testing and use of the model test results in order to predict the behavior of the larger system, referred to herein as prototype. This viewgraph presentation provides justifications and motivation for the research study, and it describes the necessary conditions (similarity conditions) for two structural systems to be structurally similar with similar behavioral response. Similarity conditions provide the relationship between a scaled down model and its prototype. Thus, scaled down models can be used to predict the behavior of the prototype by extrapolating their experimental data. Since satisfying all similarity conditions simultaneously is in most cases impractical, distorted models with partial similarity can be employed. Establishment of similarity conditions, based on the direct use of the governing equations, is discussed and their use in the design of models is presented. Examples include the use of models for the analysis of cylindrical bending of orthotropic laminated beam plates, of buckling of symmetric laminated rectangular plates subjected to uniform uniaxial compression and shear, applied individually, and of vibrational response of the same rectangular plates. Extensions and future tasks are also described.

  2. Design of scaled down structural models

    NASA Astrophysics Data System (ADS)

    Simitses, George J.

    1994-07-01

    In the aircraft industry, full scale and large component testing is a very necessary, time consuming, and expensive process. It is essential to find ways by which this process can be minimized without loss of reliability. One possible alternative is the use of scaled down models in testing and use of the model test results in order to predict the behavior of the larger system, referred to herein as prototype. This viewgraph presentation provides justifications and motivation for the research study, and it describes the necessary conditions (similarity conditions) for two structural systems to be structurally similar with similar behavioral response. Similarity conditions provide the relationship between a scaled down model and its prototype. Thus, scaled down models can be used to predict the behavior of the prototype by extrapolating their experimental data. Since satisfying all similarity conditions simultaneously is in most cases impractical, distorted models with partial similarity can be employed. Establishment of similarity conditions, based on the direct use of the governing equations, is discussed and their use in the design of models is presented. Examples include the use of models for the analysis of cylindrical bending of orthotropic laminated beam plates, of buckling of symmetric laminated rectangular plates subjected to uniform uniaxial compression and shear, applied individually, and of vibrational response of the same rectangular plates. Extensions and future tasks are also described.

  3. Influence of liquid medium on the activity of a low-alpha Fischer-Tropsch catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gormley, R.J.; Zarochak, M.F.; Deffenbaugh, P.W.

    1995-12-31

    The purpose of this research was to measure activity, selectivity, and the maintenance of these properties in slurry autoclave experiments with a Fischer-Tropsch (FT) catalyst that was used in the {open_quotes}FT II{close_quotes} bubble-column test, conducted at the Alternative Fuels Development Unit (AFDU) at LaPorte, Texas during May 1994. The catalyst contained iron, copper, and potassium and was formulated to produce mainly hydrocarbons in the gasoline range with lesser production of diesel-range products and wax. The probability of chain growth was thus deliberately kept low. Principal goals of the autoclave work have been to find the true activity of this catalystmore » in a stirred tank reactor, unhindered by heat or mass transfer effects, and to obtain a steady conversion and selectivity over the approximately 15 days of each test. Slurry autoclave testing of the catalyst in heavier waxes also allows insight into operation of larger slurry bubble column reactors. The stability of reactor operation in these experiments, particularly at loadings exceeding 20 weight %, suggests the likely stability of operations on a larger scale.« less

  4. Freeze-drying process monitoring using a cold plasma ionization device.

    PubMed

    Mayeresse, Y; Veillon, R; Sibille, P H; Nomine, C

    2007-01-01

    A cold plasma ionization device has been designed to monitor freeze-drying processes in situ by monitoring lyophilization chamber moisture content. This plasma device, which consists of a probe that can be mounted directly on the lyophilization chamber, depends upon the ionization of nitrogen and water molecules using a radiofrequency generator and spectrometric signal collection. The study performed on this probe shows that it is steam sterilizable, simple to integrate, reproducible, and sensitive. The limitations include suitable positioning in the lyophilization chamber, calibration, and signal integration. Sensitivity was evaluated in relation to the quantity of vials and the probe positioning, and correlation with existing methods, such as microbalance, was established. These tests verified signal reproducibility through three freeze-drying cycles. Scaling-up studies demonstrated a similar product signature for the same product using pilot-scale and larger-scale equipment. On an industrial scale, the method efficiently monitored the freeze-drying cycle, but in a larger industrial freeze-dryer the signal was slightly modified. This was mainly due to the positioning of the plasma device, in relation to the vapor flow pathway, which is not necessarily homogeneous within the freeze-drying chamber. The plasma tool is a relevant method for monitoring freeze-drying processes and may in the future allow the verification of current thermodynamic freeze-drying models. This plasma technique may ultimately represent a process analytical technology (PAT) approach for the freeze-drying process.

  5. Aquatic therapy versus conventional land-based therapy for Parkinson's disease: an open-label pilot study.

    PubMed

    Vivas, Jamile; Arias, Pablo; Cudeiro, Javier

    2011-08-01

    To assess and compare 2 different protocols of physiotherapy (land or water therapy) for people with Parkinson's disease (PD) focused on postural stability and self-movement, and to provide methodological information regarding progression within the program for a future larger trial. Randomized, controlled, open-label pilot trial. Outpatients, Parkinson's disease Center of Ferrol-Galicia (Spain). Individuals (N=11) with idiopathic PD in stages 2 or 3 according to the Hoehn and Yahr Scale completed the investigation (intervention period plus follow-up). After baseline evaluations, participants were randomly assigned to a land-based therapy (active control group) or a water-based therapy (experimental group). Participants underwent individual sessions for 4 weeks, twice a week, for 45 minutes per session. Both interventions were matched in terms of exercise features, which were structured in stages with clear objectives and progression criteria to pass to the next phase. Participants underwent a first baseline assessment, a posttest immediately after 4 weeks of intervention, and a follow-up assessment after 17 days. Evaluations were performed OFF-dose after withholding medication for 12 hours. Functional assessments included the Functional Reach Test (FRT), the Berg Balance Scale (BBS), the UPDRS, the 5-m walk test, and the Timed Up and Go test. A main effect of both therapies was seen for the FRT. Only the aquatic therapy group improved in the BBS and the UPDRS. In this pilot study, physiotherapy protocols produced improvement in postural stability in PD that was significantly larger after aquatic therapy. The intervention protocols are shown to be feasible and seem to be of value in amelioration of postural stability-related impairments in PD. Some of the methodological aspects detailed here can be used to design larger controlled trials. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  6. Electrical Characterization of 4H-SiC JFET Wafer: DC Parameter Variations for Extreme Temperature IC Design

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Chen, Liangyu; Spry, David J.; Beheim, Glenn M.; Chang, Carl W.

    2014-01-01

    This work reports DC electrical characterization of a 76 mm diameter 4H-SiC JFET test wafer fabricated as part of NASA's on-going efforts to realize medium-scale ICs with prolonged and stable circuit operation at temperatures as high as 500 degC. In particular, these measurements provide quantitative parameter ranges for use in JFET IC design and simulation. Larger than expected parameter variations were observed both as a function of position across the wafer as well as a function of ambient testing temperature from 23 degC to 500 degC.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart Zweben; Samuel Cohen; Hantao Ji

    Small ''concept exploration'' experiments have for many years been an important part of the fusion research program at the Princeton Plasma Physics Laboratory (PPPL). this paper describes some of the present and planned fusion concept exploration experiments at PPPL. These experiments are a University-scale research level, in contrast with the larger fusion devices at PPPL such as the National Spherical Torus Experiment (NSTX) and the Tokamak Fusion Test Reactor (TFTR), which are at ''proof-of-principle'' and ''proof-of-performance'' levels, respectively.

  8. Access-in-turn test architecture for low-power test application

    NASA Astrophysics Data System (ADS)

    Wang, Weizheng; Wang, JinCheng; Wang, Zengyun; Xiang, Lingyun

    2017-03-01

    This paper presents a novel access-in-turn test architecture (AIT-TA) for testing of very large scale integrated (VLSI) designs. In the proposed scheme, each scan cell in a chain receives test data from shift-in line in turn while pushing its test response to the shift-out line. It solves the power problem of conventional scan architecture to a great extent and suppresses significantly the switching activity during shift and capture operation with acceptable hardware overhead. Thus, it can help to implement the test at much higher operation frequencies resulting shorter test application time. The proposed test approach enhances the architecture of conventional scan flip-flops and backward compatible with existing test pattern generation and simulation techniques. Experimental results obtained for some larger ISCAS'89 and ITC'99 benchmark circuits illustrate effectiveness of the proposed low-power test application scheme.

  9. Beta-diversity of ectoparasites at two spatial scales: nested hierarchy, geography and habitat type.

    PubMed

    Warburton, Elizabeth M; van der Mescht, Luther; Stanko, Michal; Vinarski, Maxim V; Korallo-Vinarskaya, Natalia P; Khokhlova, Irina S; Krasnov, Boris R

    2017-06-01

    Beta-diversity of biological communities can be decomposed into (a) dissimilarity of communities among units of finer scale within units of broader scale and (b) dissimilarity of communities among units of broader scale. We investigated compositional, phylogenetic/taxonomic and functional beta-diversity of compound communities of fleas and gamasid mites parasitic on small Palearctic mammals in a nested hierarchy at two spatial scales: (a) continental scale (across the Palearctic) and (b) regional scale (across sites within Slovakia). At each scale, we analyzed beta-diversity among smaller units within larger units and among larger units with partitioning based on either geography or ecology. We asked (a) whether compositional, phylogenetic/taxonomic and functional dissimilarities of flea and mite assemblages are scale dependent; (b) how geographical (partitioning of sites according to geographic position) or ecological (partitioning of sites according to habitat type) characteristics affect phylogenetic/taxonomic and functional components of dissimilarity of ectoparasite assemblages and (c) whether assemblages of fleas and gamasid mites differ in their degree of dissimilarity, all else being equal. We found that compositional, phylogenetic/taxonomic, or functional beta-diversity was greater on a continental rather than a regional scale. Compositional and phylogenetic/taxonomic components of beta-diversity were greater among larger units than among smaller units within larger units, whereas functional beta-diversity did not exhibit any consistent trend regarding site partitioning. Geographic partitioning resulted in higher values of beta-diversity of ectoparasites than ecological partitioning. Compositional and phylogenetic components of beta-diversity were higher in fleas than mites but the opposite was true for functional beta-diversity in some, but not all, traits.

  10. Large-scale, on-site confirmatory, and varietal testing of a methyl bromide quarantine treatment to control codling moth (Lepidoptera: Tortricidae) in nectarines exported to Japan.

    PubMed

    Yokoyama, V Y; Miller, G T; Hartsell, P L; Leesch, J G

    2000-06-01

    In total, 30,491 codling moth, Cydia pomonella (L.), 1-d-old eggs on May Grand nectarines in two large-scale tests, and 17,410 eggs on Royal Giant nectarines in four on-site confirmatory tests were controlled with 100% mortality after fumigation with a methyl bromide quarantine treatment (48 g3 for 2 h at > or = 21 degrees C and 50% volume chamber load) on fruit in shipping containers for export to Japan. Ranges (mean +/- SEM) were for percentage sorption 34.7 +/- 6.2 to 46.5 +/- 2.5, and for concentration multiplied by time products 54.3 +/- 0.9 to 74.5 +/- 0.6 g.h/m3 in all tests. In large-scale tests with May Grand nectarines, inorganic bromide residues 48 h after fumigation ranged from 6.8 +/- 0.7 to 6.9 +/- 0.5 ppm, which were below the U.S. Environmental Protection Agency tolerance of 20 ppm; and, organic bromide residues were < 0.01 ppm after 1 d and < 0.001 ppm after 3 d in storage at 0-1 degree C. After completion of larger-scale and on-site confirmatory test requirements, fumigation of 10 nectarine cultivars in shipping containers for export to Japan was approved in 1995. Comparison of LD50s developed for methyl bromide on 1-d-old codling moth eggs on May Grand and Summer Grand nectarines in 1997 versus those developed for nine cultivars in the previous 11 yr showed no significant differences in codling moth response among the cultivars.

  11. Materials for Advanced Ultra-supercritical (A-USC) Steam Turbines – A-USC Component Demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purgert, Robert; Phillips, Jeffrey; Hendrix, Howard

    The work by the United States Department of Energy (U.S. DOE)/Ohio Coal Development Office (OCDO) advanced ultra-supercritical (A-USC) Steam Boiler and Turbine Materials Consortia from 2001 through September 2015 was primarily focused on lab scale and pilot scale materials testing. This testing included air- or steam-cooled “loops” that were inserted into existing utility boilers to gain exposure of these materials to realistic conditions of high temperature and corrosion due to the constituents in the coal. Successful research and development resulted in metallic alloy materials and fabrication processes suited for power generation applications with metal temperatures up to approximately 1472°F (800°C).more » These materials or alloys have shown, in extensive laboratory tests and shop fabrication studies, to have excellent applicability for high-efficiency low CO 2 transformational power generation technologies previously mentioned. However, as valuable as these material loops have been for obtaining information, their scale is significantly below that required to minimize the risk associated with a power company building a multi-billion dollar A-USC power plant. To decrease the identified risk barriers to full-scale implementation of these advanced materials, the U.S. DOE/OCDO A-USC Steam Boiler and Turbine Materials Consortia identified the key areas of the technology that need to be tested at a larger scale. Based upon the recommendations and outcome of a Consortia-sponsored workshop with the U.S.’s leading utilities, a Component Test (ComTest) Program for A-USC was proposed. The A-USC ComTest program would define materials performance requirements, plan for overall advanced system integration, design critical component tests, fabricate components for testing from advanced materials, and carry out the tests. The AUSC Component Test was premised on the program occurring at multiple facilities, with the operating temperatures, pressure and/or size of these components determining the optimum test location. The first step of the ComTest, the steam turbine test, was determined best suited for a site in Youngstown, Ohio. Efforts were also undertaken to identify and evaluate other potential sites for high pressure testing.« less

  12. Desiccant humidity control system. [for space shuttle cabins

    NASA Technical Reports Server (NTRS)

    Lunde, P. J.; Kester, F. L.

    1975-01-01

    A water vapor and carbon dioxide sorbent material (designated HS-C) was developed for potential application to the space shuttle and tested at full scale. Capacities of two percent for carbon dioxide and four percent for water vapor were achieved using space shuttle cabin adsorption conditions and a space vacuum for desorption. Performance testing shows that water vapor can be controlled by varying the air process flow, while maintaining the ability to remove carbon dioxide. A 2000 hour life test was successfully completed, as were tests for sensitivity to cleaning solvent vapors, vibration resistance, and flammability. A system design for the space shuttle shows a 200 pound weight advantage over competitive systems and an even larger advantage for longer missions.

  13. Power spectrum, correlation function, and tests for luminosity bias in the CfA redshift survey

    NASA Technical Reports Server (NTRS)

    Park, Changbom; Vogeley, Michael S.; Geller, Margaret J.; Huchra, John P.

    1994-01-01

    We describe and apply a method for directly computing the power spectrum for the galaxy distribution in the extension of the Center for Astrophysics Redshift Survey. Tests show that our technique accurately reproduces the true power spectrum for k greater than 0.03 h Mpc(exp -1). The dense sampling and large spatial coverage of this survey allow accurate measurement of the redshift-space power spectrum on scales from 5 to approximately 200 h(exp -1) Mpc. The power spectrum has slope n approximately equal -2.1 on small scales (lambda less than or equal 25 h(exp -1) Mpc) and n approximately -1.1 on scales 30 less than lambda less than 120 h(exp -1) Mpc. On larger scales the power spectrum flattens somewhat, but we do not detect a turnover. Comparison with N-body simulations of cosmological models shows that an unbiased, open universe CDM model (OMEGA h = 0.2) and a nonzero cosmological constant (CDM) model (OMEGA h = 0.24, lambda(sub zero) = 0.6, b = 1.3) match the CfA power spectrum over the wavelength range we explore. The standard biased CDM model (OMEGA h = 0.5, b = 1.5) fails (99% significance level) because it has insufficient power on scales lambda greater than 30 h(exp -1) Mpc. Biased CDM with a normalization that matches the Cosmic Microwave Background (CMB) anisotropy (OMEGA h = 0.5, b = 1.4, sigma(sub 8) (mass) = 1) has too much power on small scales to match the observed galaxy power spectrum. This model with b = 1 matches both Cosmic Background Explorer Satellite (COBE) and the small-scale power spect rum but has insufficient power on scales lambda approximately 100 h(exp -1) Mpc. We derive a formula for the effect of small-scale peculiar velocities on the power spectrum and combine this formula with the linear-regime amplification described by Kaiser to compute an estimate of the real-space power spectrum. Two tests reveal luminosity bias in the galaxy distribution: First, the amplitude of the pwer spectrum is approximately 40% larger for the brightest 50% of galaxies in volume-limited samples that have M(sub lim) greater than M*. This bias in the power spectrum is independent of scale, consistent with the peaks-bias paradigm for galaxy formation. Second, the distribution of local density around galaxies shows that regions of moderate and high density contain both very bright (M less than M* = -19.2 + 5 log h) and fainter galaxies, but that voids preferentially harbor fainter galaxies (approximately 2 sigma significance level).

  14. Test Plan - Solids Accumulation Scouting Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duignan, M. R.; Steeper, T. J.; Steimke, J. L.

    This plan documents the highlights of the Solids Accumulations Scouting Studies test; a project, from Washington River Protection Solutions (WRPS), that began on February 1, 2012. During the last 12 weeks considerable progress has been made to design and plan methods that will be used to estimate the concentration and distribution of heavy fissile solids in accumulated solids in the Hanford double-shell tank (DST) 241-AW-105 (AW-105), which is the primary goal of this task. This DST will be one of the several waste feed delivery staging tanks designated to feed the Pretreatment Facility (PTF) of the Waste Treatment and Immobilizationmore » Plant (WTP). Note that over the length of the waste feed delivery mission AW-105 is currently identified as having the most fill empty cycles of any DST feed tanks, which is the reason for modeling this particular tank. At SRNL an existing test facility, the Mixing Demonstration Tank, which will be modified for the present work, will use stainless steel particles in a simulant that represents Hanford waste to perform mock staging tanks transfers that will allow solids to accumulate in the tank heel. The concentration and location of the mock fissile particles will be measured in these scoping studies to produce information that will be used to better plan larger scaled tests. Included in these studies is a secondary goal of developing measurement methods to accomplish the primary goal. These methods will be evaluated for use in the larger scale experiments. Included in this plan are the several pretest activities that will validate the measurement techniques that are currently in various phases of construction. Aspects of each technique, e.g., particle separations, volume determinations, topographical mapping, and core sampling, have been tested in bench-top trials, as discussed herein, but the actual equipment to be employed during the full test will need evaluation after fabrication and integration into the test facility.« less

  15. Ethanol production in small- to medium-size facilities

    NASA Astrophysics Data System (ADS)

    Hiler, E. A.; Coble, C. G.; Oneal, H. P.; Sweeten, J. M.; Reidenbach, V. G.; Schelling, G. T.; Lawhon, J. T.; Kay, R. D.; Lepori, W. A.; Aldred, W. H.

    1982-04-01

    In early 1980 system design criteria were developed for a small-scale ethanol production plant. The plant was eventually installed on November 1, 1980. It has a production capacity of 30 liters per hour; this can be increased easily (if desired) to 60 liters per hour with additional fermentation tanks. Sixty-six test runs were conducted to date in the alcohol production facility. Feedstocks evaluated in these tests include: corn (28 runs); grain sorghum (33 runs); grain sorghum grits (1 run); half corn/half sorghum (1 run); and sugarcane juice (3 runs). In addition, a small bench-scale fermentation and distillation system was used to evaluate sugarcane and sweet sorghum feedstocks prior to their evaluation in the larger unit. In each of these tests, evaluation of the following items was conducted: preprocessing requirements; operational problems; conversion efficiency (for example, liters of alcohol produced per kilogram of feedstock); energy balance and efficiency; nutritional recovery from stillage; solids separation by screw press; chemical characterization of stillage including liquid and solids fractions; wastewater requirements; and air pollution potential.

  16. Characterization of metal oxide absorbents for regenerative carbon dioxide and water vapor removal for advanced portable life support systems

    NASA Technical Reports Server (NTRS)

    Kast, Timothy P.; Nacheff-Benedict, Maurena S.; Chang, Craig H.; Cusick, Robert J.

    1990-01-01

    Characterization of the performance of a silver-oxide-based absorbent in terms of its ability to remove both gaseous CO2 and water vapor in an astronaut portable life support systems (PLSS) is discussed. Attention is focused on regeneration of the absorbent from the carbonite state of the oxide state, preconditioning of the absorbent using a humidified gas stream, and absorption breakthrough testing. Based on the results of bench-scale experiments, a test plan is carried out to further characterize the silver-oxide-based absorbent on a larger scale; it calls for examination of the absorbent in both an adiabatic packed bed and a near-isothermal cooled bed configuration. It is demonstrated that the tested absorbent can be utilized in a way that removes substantial amounts of CO2 and water vapor during an 8-hour extravehicular activity mission, and that applying the absorbent to PLSS applications can simplify the ventilation loop.

  17. Scaling of Foraminifera Parent and Offspring Size through the Phanerozoic

    NASA Astrophysics Data System (ADS)

    Guo, D.; Holme, F.; Payne, J.; Skotheim, J.

    2011-12-01

    Since before the 1940s, scientists have studied the scaling of body mass with metabolic rate, heart rate, fecundity, cardiac cycling rate, and numerous other traits. Like these traits, offspring mass scales with parent body mass for plants and animals. However, the relationship is not well documented in single-celled organisms. In our study, we examined how adult size scales with embryo size in fusulinid foraminifera. Fusulinids, and most other foraminifera, are an exceptional study group because the proloculus (the initial shell chamber) can be used to measure the size of the daughter cell at the time it became independent of its parent. We find that proloculus size increases with adult test size across fusulinid species. This pattern may result because the genomic sizes and the cellular machinery necessary for a larger adult size place limits on how small the initial daughter cell can be.

  18. Scale Up of Malonic Acid Fermentation Process: Cooperative Research and Development Final Report, CRADA Number CRD-16-612

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schell, Daniel J

    The goal of this work is to use the large fermentation vessels in the National Renewable Energy Laboratory's (NREL) Integrated Biorefinery Research Facility (IBRF) to scale-up Lygos' biological-based process for producing malonic acid and to generate performance data. Initially, work at the 1 L scale validated successful transfer of Lygos' fermentation protocols to NREL using a glucose substrate. Outside of the scope of the CRADA with NREL, Lygos tested their process on lignocellulosic sugars produced by NREL at Lawrence Berkeley National Laboratory's (LBNL) Advanced Biofuels Process Development Unit (ABPDU). NREL produced these cellulosic sugar solutions from corn stover using amore » separate cellulose/hemicellulose process configuration. Finally, NREL performed fermentations using glucose in large fermentors (1,500- and 9,000-L vessels) to intermediate product and to demonstrate successful performance of Lygos' technology at larger scales.« less

  19. The Spanish version of the Emotional Labour Scale (ELS): a validation study.

    PubMed

    Picardo, Juan M; López-Fernández, Consuelo; Hervás, María José Abellán

    2013-10-01

    To validate the Spanish version of the Emotional Labour Scale (ELS), an instrument widely used to understand how professionals working with people face emotional labor in their daily job. An observational, cross-sectional and multicenter survey was used. Nursing students and their clinical tutors (n=211) completed the self-reported ELS when the clinical practice period was over. First order and second order Confirmatory Factor Analyses (CFA) were estimated in order to test the factor structure of the scale. The results of the CFA confirm a factor structure of the scale with six first order factors (duration, frequency, intensity, variety, surface acting and deep acting) and two larger second order factors named Demands (duration, frequency, intensity and variety) and Acting (surface acting and deep acting) establishing the validity of the Spanish version of the ELS. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Scaling-up NLP Pipelines to Process Large Corpora of Clinical Notes.

    PubMed

    Divita, G; Carter, M; Redd, A; Zeng, Q; Gupta, K; Trautner, B; Samore, M; Gundlapalli, A

    2015-01-01

    This article is part of the Focus Theme of Methods of Information in Medicine on "Big Data and Analytics in Healthcare". This paper describes the scale-up efforts at the VA Salt Lake City Health Care System to address processing large corpora of clinical notes through a natural language processing (NLP) pipeline. The use case described is a current project focused on detecting the presence of an indwelling urinary catheter in hospitalized patients and subsequent catheter-associated urinary tract infections. An NLP algorithm using v3NLP was developed to detect the presence of an indwelling urinary catheter in hospitalized patients. The algorithm was tested on a small corpus of notes on patients for whom the presence or absence of a catheter was already known (reference standard). In planning for a scale-up, we estimated that the original algorithm would have taken 2.4 days to run on a larger corpus of notes for this project (550,000 notes), and 27 days for a corpus of 6 million records representative of a national sample of notes. We approached scaling-up NLP pipelines through three techniques: pipeline replication via multi-threading, intra-annotator threading for tasks that can be further decomposed, and remote annotator services which enable annotator scale-out. The scale-up resulted in reducing the average time to process a record from 206 milliseconds to 17 milliseconds or a 12- fold increase in performance when applied to a corpus of 550,000 notes. Purposely simplistic in nature, these scale-up efforts are the straight forward evolution from small scale NLP processing to larger scale extraction without incurring associated complexities that are inherited by the use of the underlying UIMA framework. These efforts represent generalizable and widely applicable techniques that will aid other computationally complex NLP pipelines that are of need to be scaled out for processing and analyzing big data.

  1. Is the system really the solution? Operating costs in hospital systems.

    PubMed

    Burns, Lawton Robert; McCullough, Jeffrey S; Wholey, Douglas R; Kruse, Gregory; Kralovec, Peter; Muller, Ralph

    2015-06-01

    Hospital system formation has recently accelerated. Executives emphasize scale economies that lower operating costs, a claim unsupported in academic research. Do systems achieve lower costs than freestanding facilities, and, if so, which system types? We test hypotheses about the relationship of cost with membership in systems, larger systems, and centralized and local hub-and-spoke systems. We also test whether these relationships have changed over time. Examining 4,000 U.S. hospitals during 1998 to 2010, we find no evidence that system members exhibit lower costs. However, members of smaller systems are lower cost than larger systems, and hospitals in centralized systems are lower cost than everyone else. There is no evidence that the system's spatial configuration is associated with cost, although national system hospitals exhibit higher costs. Finally, these results hold over time. We conclude that while systems in general may not be the solution to lower costs, some types of systems are. © The Author(s) 2015.

  2. Construction of the Propulsion Systems Laboratory No. 1 and 2

    NASA Image and Video Library

    1951-01-21

    Construction of the Propulsion Systems Laboratory No. 1 and 2 at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. When it began operation in late 1952, the Propulsion Systems Laboratory was the NACA’s most powerful facility for testing full-scale engines at simulated flight altitudes. The facility contained two altitude simulating test chambers which were a technological combination of the static sea-level test stands and the complex Altitude Wind Tunnel, which recreated actual flight conditions on a larger scale. NACA Lewis began designing the new facility in 1947 as part of a comprehensive plan to improve the altitude testing capabilities across the lab. The exhaust, refrigeration, and combustion air systems from all the major test facilities were linked. In this way, different facilities could be used to complement the capabilities of one another. Propulsion Systems Laboratory construction began in late summer 1949 with the installation of an overhead exhaust pipe connecting the facility to the Altitude Wind Tunnel and Engine Research Building. The large test section pieces arriving in early 1951, when this photograph was taken. The two primary coolers for the altitude exhaust are in place within the framework near the center of the photograph.

  3. Role of natural analogs in performance assessment of nuclear waste repositories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagar, B.; Wittmeyer, G.W.

    1995-09-01

    Mathematical models of the flow of water and transport of radionuclides in porous media will be used to assess the ability of deep geologic repositories to safely contain nuclear waste. These models must, in some sense, be validated to ensure that they adequately describe the physical processes occurring within the repository and its geologic setting. Inasmuch as the spatial and temporal scales over which these models must be applied in performance assessment are very large, validation of these models against laboratory and small-scale field experiments may be considered inadequate. Natural analogs may provide validation data that are representative of physico-chemicalmore » processes that occur over spatial and temporal scales as large or larger than those relevant to repository design. The authors discuss the manner in which natural analog data may be used to increase confidence in performance assessment models and conclude that, while these data may be suitable for testing the basic laws governing flow and transport, there is insufficient control of boundary and initial conditions and forcing functions to permit quantitative validation of complex, spatially distributed flow and transport models. The authors also express their opinion that, for collecting adequate data from natural analogs, resources will have to be devoted to them that are much larger than are devoted to them at present.« less

  4. Development and psychometric testing of the Nursing Workplace Relational Environment Scale (NWRES).

    PubMed

    Duddle, Maree; Boughton, Maureen

    2009-03-01

    The aim of this study was to develop and test the psychometric properties of the Nursing Workplace Relational Environment Scale (NWRES). A positive relational environment in the workplace is characterised by a sense of connectedness and belonging, support and cooperation among colleagues, open communication and effectively managed conflict. A poor relational environment in the workplace may contribute to job dissatisfaction and early turnover of staff. Quantitative survey. A three-stage process was used to design and test the NWRES. In Stage 1, an extensive literature review was conducted on professional working relationships and the nursing work environment. Three key concepts; collegiality, workplace conflict and job satisfaction were identified and defined. In Stage 2, a pool of items was developed from the dimensions of each concept and formulated into a 35-item scale which was piloted on a convenience sample of 31 nurses. In Stage 3, the newly refined 28-item scale was administered randomly to a convenience sample of 150 nurses. Psychometric testing was conducted to establish the construct validity and reliability of the scale. Exploratory factor analysis resulted in a 22-item scale. The factor analysis indicated a four-factor structure: collegial behaviours, relational atmosphere, outcomes of conflict and job satisfaction which explained 68.12% of the total variance. Cronbach's alpha coefficient for the NWRES was 0.872 and the subscales ranged from 0.781-0.927. The results of the study confirm the reliability and validity of the NWRES. Replication of this study with a larger sample is indicated to determine relationships among the subscales. The results of this study have implications for health managers in terms of understanding the impact of the relational environment of the workplace on job satisfaction and retention.

  5. Bypassing the Kohn-Sham equations with machine learning.

    PubMed

    Brockherde, Felix; Vogt, Leslie; Li, Li; Tuckerman, Mark E; Burke, Kieron; Müller, Klaus-Robert

    2017-10-11

    Last year, at least 30,000 scientific papers used the Kohn-Sham scheme of density functional theory to solve electronic structure problems in a wide variety of scientific fields. Machine learning holds the promise of learning the energy functional via examples, bypassing the need to solve the Kohn-Sham equations. This should yield substantial savings in computer time, allowing larger systems and/or longer time-scales to be tackled, but attempts to machine-learn this functional have been limited by the need to find its derivative. The present work overcomes this difficulty by directly learning the density-potential and energy-density maps for test systems and various molecules. We perform the first molecular dynamics simulation with a machine-learned density functional on malonaldehyde and are able to capture the intramolecular proton transfer process. Learning density models now allows the construction of accurate density functionals for realistic molecular systems.Machine learning allows electronic structure calculations to access larger system sizes and, in dynamical simulations, longer time scales. Here, the authors perform such a simulation using a machine-learned density functional that avoids direct solution of the Kohn-Sham equations.

  6. Cross-correlations between crude oil and agricultural commodity markets

    NASA Astrophysics Data System (ADS)

    Liu, Li

    2014-02-01

    In this paper, we investigate cross-correlations between crude oil and agricultural commodity markets. Based on a popular statistical test proposed by Podobnik et al. (2009), we find that the linear return cross-correlations are significant at larger lag lengths and the volatility cross-correlations are highly significant at all of the lag lengths under consideration. Using a detrended cross-correlation analysis (DCCA), we find that the return cross-correlations are persistent for corn and soybean and anti-persistent for oat and soybean. The volatility cross-correlations are strongly persistent. Using a nonlinear cross-correlation measure, our results show that cross-correlations are relatively weak but they are significant for smaller time scales. For larger time scales, the cross-correlations are not significant. The reason may be that information transmission from crude oil market to agriculture markets can complete within a certain period of time. Finally, based on multifractal extension of DCCA, we find that the cross-correlations are multifractal and high oil prices partly contribute to food crisis during the period of 2006-mid-2008.

  7. SuperCDMS Prototype Detector Design and Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, Allison Blair

    A substantial amount of astrophysical evidence indicates that approximately a quarter of all energy in the universe is composed of a nonluminous, and nonbaryonic \\dark" matter. Of the potential dark matter particle candidates, Weakly Interacting Massive Particles, or WIMPs, is particularly well motivated. As a means to directly detect WIMP interactions with baryonic matter, the Cryogenic Dark Matter Search (CDMS) project was established, operating at the Soudan Underground Laboratory from 2003 - 2015, under the CDMS II and SuperCDMS Soudan experiments. CDMS detectors simultaneously measure the ionization and phonon energies of recoil events in Si and Ge crystals kept atmore » cryogenic temperatures in a low-background environment. The ratio of ionization energy to recoil energy serves as a discrimination parameter to separate nuclear recoil events from the electron-recoil background. The next installation, SuperCDMS SNOLAB, is preparing for future operation, with an initial payload of eighteen Ge and six Si, 100 mm diameter, 33 mm thick detectors. Of this initial payload, eight Ge and four Si detectors will operate in a high-voltage ( 100 V) mode, which have an increased sensitivity to low-mass WIMPs due to decreased energy thresholds. The SuperCDMS test facility at University of Minnesota aids in the detector R&D and characterization of prototype detectors, as part of the scale-up eort for Super- CDMS SNOLAB. This thesis presents the rst full ionization and phonon characterization study of a 100 mm diameter, 33 mm thick prototype Ge detector with interleaved phonon and ionization channels. Measurements include ionization collection eciency, surface event rejection capabilities, and successful demonstration of nuclear recoil event discrimination. Results indicate that 100 mm diameter, interleaved Ge detectors show potential for use in SuperCDMS SNOLAB. As part of detector R&D, the Minnesota test facility also looks beyond the next stage of SuperCDMS, investigating larger individual detectors as a means to easily scale up the sensitive mass of future searches. This thesis presents the design and initial testing results of a prototype 150 mm diameter, 33 mm thick silicon ionization detector, which is 5.2 times larger than those used in SuperCDMS at Soudan and 2.25 times larger than those planned for use at SuperCDMS SNOLAB. In addition, the detector was operated with contact-free ionization electrodes to minimize bias leakage currents, which can limit operation at high bias voltages. The results show promise for the operation of both large volume silicon detectors and contact-free ionization electrodes for scaling up detector mass and bias.« less

  8. Using borehole flow logging to optimize hydraulic-test procedures in heterogeneous fractured aquifers

    USGS Publications Warehouse

    Paillet, F.L.

    1995-01-01

    Hydraulic properties of heterogeneous fractured aquifers are difficult to characterize, and such characterization usually requires equipment-intensive and time-consuming applications of hydraulic testing in situ. Conventional coring and geophysical logging techniques provide useful and reliable information on the distribution of bedding planes, fractures and solution openings along boreholes, but it is often unclear how these locally permeable features are organized into larger-scale zones of hydraulic conductivity. New boreholes flow-logging equipment provides techniques designed to identify hydraulically active fractures intersecting boreholes, and to indicate how these fractures might be connected to larger-scale flow paths in the surrounding aquifer. Potential complications in interpreting flowmeter logs include: 1) Ambient hydraulic conditions that mask the detection of hydraulically active fractures; 2) Inability to maintain quasi-steady drawdowns during aquifer tests, which causes temporal variations in flow intensity to be confused with inflows during pumping; and 3) Effects of uncontrolled background variations in hydraulic head, which also complicate the interpretation of inflows during aquifer tests. Application of these techniques is illustrated by the analysis of cross-borehole flowmeter data from an array of four bedrock boreholes in granitic schist at the Mirror Lake, New Hampshire, research site. Only two days of field operations were required to unambiguously identify the few fractures or fracture zones that contribute most inflow to boreholes in the CO borehole array during pumping. Such information was critical in the interpretation of water-quality data. This information also permitted the setting of the available string of two packers in each borehole so as to return the aquifer as close to pre-drilling conditions as possible with the available equipment.

  9. Alternative High-Performance Motors with Non-Rare Earth Materials, Final Publishable Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galioto, Steven; Johnson, Francis

    Electric drive systems, which include electric machines and power electronics, are a key enabling technology for advanced vehicle propulsion systems that reduce the petroleum dependence of the transportation sector. To have significant effect, electric drive technologies must be economical in terms of cost, weight, and size while meeting performance and reliability expectations. The goal of the project is to develop traction motors that reduce or eliminate the use of rare-earth materials and meet the DoE specifications for such a traction motor. This is accomplished by evaluating and developing multiple motor topologies in conjunction with advanced materials. Eight non-permanent magnet motormore » topologies and two reduced or non-rare earth motor topologies are analyzed and compared using a common set of requirements. Five of the motors are built and tested to validate the analysis. This paper provides a detailed quantitative comparison of the different machine topologies that reduce or eliminate rare-earth materials. Conclusions are drawn from the analysis and test data to show the tradeoffs related to selecting each of the motor topologies with the hope of providing practicing engineers and researchers in the field enough guidelines for choosing the “optimum” machine topology that suits their applications and set of performance requirements. Four materials technologies were investigated for their ability to enable a reduced rare earth electric motor. Two of the technologies were soft magnetic materials, one was a non-rare-earth containing permanent magnet technology, and the last was an insulation material. These processing and performance of these materials were first demonstrated in small coupons. The coupon tests justified proceeding to larger scale processing for two of the materials technologies: 1) a dual-phase soft magnetic material for use in rotor laminates and 2) a high temperature insulation material for use as a slot liner in the stator. The dual phase soft magnetic material was produced at a scale sufficient to build and test a sub-scale motor prototype. The high temperature insulation material was first evaluated in a series of “statorettes” before being demonstrated in the stator of one of the full-scale motor prototypes. Testing of the dual phase material revealed issues with process variability in larger production volumes that are being addressed in a subsequent project. The performance of the high-temperature slot liner insulation was demonstrated during the operation of a full-scale prototype. Furthermore, the insulation material was shown to survive aging tests of 2000 hours and 280 °C and 800 hours at 300 °C. This program provides analysis and data to accelerate the introduction of hybrid electric vehicles into the U.S. road vehicle fleet and bring the added benefits of reduced fuel consumption and environmental impacts« less

  10. Laboratory-Scale Column Testing Using IONSIV IE-911 for Removing Cesium from Acidic Tank Waste Simulant. 2: Determination of Cesium Exchange Capacity and Effective Mass Transfer Coefficient from a 500-cm3 Column Experiement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T.J. Tranter; R.D. Tillotson; T.A. Todd

    2005-04-01

    A semi-scale column test was performed using a commercial form of crystalline silicotitanate (CST) for removing radio-cesium from a surrogate acidic tank solution, which represents liquid waste stored at the Idaho National Engineering and Environmental Laboratory (INEEL). The engineered form of CST ion exchanger, known as IONSIVtmIE-911 (UOP, Mt. Laurel,NJ, USA), was tested in a 500-cm3 column to obtain a cesium breakthrough curve. The cesium exchange capacity of this column matched that obtained from previous testing with a 15-mc3 column. A numerical algorithm using implicit finite difference approximations was developed to solve the governing mass transport equations for the CSTmore » columns. An effective mass transfer coefficient was derived from solving these equations for previously reported 15 cm3 tests. The effective mass transfer coefficient was then used to predict the cesium breakthrough curve for the 500-cm3 column and compared to the experimental data reported in this paper. The calculated breakthrough curve showed excellent agreement with the data from the 500-cm3 column even though the interstitial velocity was a factor of two greater. Thus, this approach should provide a reasonable method for scale up to larger columns for treating actual tank waste.« less

  11. Testing ΛCDM cosmology at turnaround: where to look for violations of the bound?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanoglidis, D.; Pavlidou, V.; Tomaras, T.N., E-mail: dtanogl@physics.uoc.gr, E-mail: pavlidou@physics.uoc.gr, E-mail: tomaras@physics.uoc.gr

    In ΛCDM cosmology, structure formation is halted shortly after dark energy dominates the mass/energy budget of the Universe. A manifestation of this effect is that in such a cosmology the turnaround radius—the non-expanding mass shell furthest away from the center of a structure— has an upper bound. Recently, a new, local, test for the existence of dark energy in the form of a cosmological constant was proposed based on this turnaround bound. Before designing an experiment that, through high-precision determination of masses and —independently— turnaround radii, will challenge ΛCDM cosmology, we have to answer two important questions: first, when turnaround-scalemore » structures are predicted to be close enough to their maximum size, so that a possible violation of the bound may be observable. Second, which is the best mass scale to target for possible violations of the bound. These are the questions we address in the present work. Using the Press-Schechter formalism, we find that turnaround structures have in practice already stopped forming, and consequently, the turnaround radius of structures must be very close to the maximum value today. We also find that the mass scale of ∼ 10{sup 13} M{sub ⊙} characterizes the turnaround structures that start to form in a statistically important number density today —and even at an infinite time in the future, since structure formation has almost stopped. This mass scale also separates turnaround structures with qualitatively different cosmological evolution: smaller structures are no longer readjusting their mass distribution inside the turnaround scale, they asymptotically approach their ultimate abundance from higher values, and they are common enough to have, at some epoch, experienced major mergers with structures of comparable mass; larger structures exhibit the opposite behavior. We call this mass scale the transitional mass scale and we argue that it is the optimal for the purpose outlined above. As a corollary, we explain the different accretion behavior of small and larger structures observed in already conducted numerical simulations.« less

  12. Adaptation and psychometric assessment of the Hebrew version of the Recovery Promoting Relationships Scale (RPRS).

    PubMed

    Moran, Galia S; Zisman-Ilani, Yaara; Garber-Epstein, Paula; Roe, David

    2014-03-01

    Recovery is supported by relationships that are characterized by human centeredness, empowerment and a hopeful approach. The Recovery Promoting Relationships Scale (RPRS; Russinova, Rogers, & Ellison, 2006) assesses consumer-provider relationships from the consumer perspective. Here we present the adaptation and psychometric assessment of a Hebrew version of the RPRS. The RPRS was translated to Hebrew (RPRS-Heb) using multiple strategies to assure conceptual soundness. Then 216 mental health consumers were administered the RPRS-Heb as part of a larger project initiative implementing illness management and recovery intervention (IMR) in community settings. Psychometric testing included assessment of the factor structure, reliability, and validity using the Hope Scale, the Working Alliance Inventory, and the Recovery Assessment Scale. The RPRS-Heb factor structure replicated the two factor structures found in the original scale with minor exceptions. Reliability estimates were good: Cronbach's alpha for the total scale was 0.94. An estimate of 0.93 for the Recovery-Promoting Strategies factor, and 0.86 for the Core Relationship. Concurrent validity was confirmed using the Working Alliance Scale (rp = .51, p < .001) and the Hope Scale (rp = .43, p < .001). Criterion validity was examined using the Recovery Assessment Scale (rp = .355, p < .05). The study yielded a 23-item RPRS-Heb version with a psychometrically sound factor structure, satisfactory reliability, and concurrent validity tested against the Hope, Alliance, and Recovery Assessment scales. Outcomes are discussed in the context of the original scale properties and a similar Dutch initiative. The RPRS-Heb can serve as a valuable tool for studying recovery promoting relationships with Hebrew speaking population.

  13. Scaling NASA Applications to 1024 CPUs on Origin 3K

    NASA Technical Reports Server (NTRS)

    Taft, Jim

    2002-01-01

    The long and highly successful joint SGI-NASA research effort in ever larger SSI systems was to a large degree the result of the successful development of the MLP scalable parallel programming paradigm developed at ARC: 1) MLP scaling in real production codes justified ever larger systems at NAS; 2) MLP scaling on 256p Origin 2000 gave SGl impetus to productize 256p; 3) MLP scaling on 512 gave SGI courage to build 1024p O3K; and 4) History of MLP success resulted in IBM Star Cluster based MLP effort.

  14. Characterization of UMT2013 Performance on Advanced Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howell, Louis

    2014-12-31

    This paper presents part of a larger effort to make detailed assessments of several proxy applications on various advanced architectures, with the eventual goal of extending these assessments to codes of programmatic interest running more realistic simulations. The focus here is on UMT2013, a proxy implementation of deterministic transport for unstructured meshes. I present weak and strong MPI scaling results and studies of OpenMP efficiency on the Sequoia BG/Q system at LLNL, with comparison against similar tests on an Intel Sandy Bridge TLCC2 system. The hardware counters on BG/Q provide detailed information on many aspects of on-node performance, while informationmore » from the mpiP tool gives insight into the reasons for the differing scaling behavior on these two different architectures. Preliminary tests that exploit NVRAM as extended memory on an Ivy Bridge machine designed for “Big Data” applications are also included.« less

  15. Dynamics of a neural system with a multiscale architecture

    PubMed Central

    Breakspear, Michael; Stam, Cornelis J

    2005-01-01

    The architecture of the brain is characterized by a modular organization repeated across a hierarchy of spatial scales—neurons, minicolumns, cortical columns, functional brain regions, and so on. It is important to consider that the processes governing neural dynamics at any given scale are not only determined by the behaviour of other neural structures at that scale, but also by the emergent behaviour of smaller scales, and the constraining influence of activity at larger scales. In this paper, we introduce a theoretical framework for neural systems in which the dynamics are nested within a multiscale architecture. In essence, the dynamics at each scale are determined by a coupled ensemble of nonlinear oscillators, which embody the principle scale-specific neurobiological processes. The dynamics at larger scales are ‘slaved’ to the emergent behaviour of smaller scales through a coupling function that depends on a multiscale wavelet decomposition. The approach is first explicated mathematically. Numerical examples are then given to illustrate phenomena such as between-scale bifurcations, and how synchronization in small-scale structures influences the dynamics in larger structures in an intuitive manner that cannot be captured by existing modelling approaches. A framework for relating the dynamical behaviour of the system to measured observables is presented and further extensions to capture wave phenomena and mode coupling are suggested. PMID:16087448

  16. Predictive validity of the classroom strategies scale-observer form on statewide testing scores: an initial investigation.

    PubMed

    Reddy, Linda A; Fabiano, Gregory A; Dudek, Christopher M; Hsu, Louis

    2013-12-01

    The present study examined the validity of a teacher observation measure, the Classroom Strategies Scale--Observer Form (CSS), as a predictor of student performance on statewide tests of mathematics and English language arts. The CSS is a teacher practice observational measure that assesses evidence-based instructional and behavioral management practices in elementary school. A series of two-level hierarchical generalized linear models were fitted to data of a sample of 662 third- through fifth-grade students to assess whether CSS Part 2 Instructional Strategy and Behavioral Management Strategy scale discrepancy scores (i.e., ∑ |recommended frequency--frequency ratings|) predicted statewide mathematics and English language arts proficiency scores when percentage of minority students in schools was controlled. Results indicated that the Instructional Strategy scale discrepancy scores significantly predicted mathematics and English language arts proficiency scores: Relatively larger discrepancies on observer ratings of what teachers did versus what should have been done were associated with lower proficiency scores. Results offer initial evidence of the predictive validity of the CSS Part 2 Instructional Strategy discrepancy scores on student academic outcomes. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  17. Convergence and divergence in a long-term old-field succession: the importance of spatial scale and species abundance.

    PubMed

    Li, Shao-Peng; Cadotte, Marc W; Meiners, Scott J; Pu, Zhichao; Fukami, Tadashi; Jiang, Lin

    2016-09-01

    Whether plant communities in a given region converge towards a particular stable state during succession has long been debated, but rarely tested at a sufficiently long time scale. By analysing a 50-year continuous study of post-agricultural secondary succession in New Jersey, USA, we show that the extent of community convergence varies with the spatial scale and species abundance classes. At the larger field scale, abundance-based dissimilarities among communities decreased over time, indicating convergence of dominant species, whereas incidence-based dissimilarities showed little temporal tend, indicating no sign of convergence. In contrast, plots within each field diverged in both species composition and abundance. Abundance-based successional rates decreased over time, whereas rare species and herbaceous plants showed little change in temporal turnover rates. Initial abandonment conditions only influenced community structure early in succession. Overall, our findings provide strong evidence for scale and abundance dependence of stochastic and deterministic processes over old-field succession. © 2016 John Wiley & Sons Ltd/CNRS.

  18. Ground penetrating radar imaging of cap rock, caliche and carbonate strata

    USGS Publications Warehouse

    Kruse, S.E.; Schneider, J.C.; Campagna, D.J.; Inman, J.A.; Hickey, T.D.

    2000-01-01

    Field experiments show ground penetrating radar (GPR) can be used to image shallow carbonate stratigraphy effectively in a variety of settings. In south Florida, the position and structure of cap rock cover on limestone can be an important control on surface water flow and vegetation, but larger scale outcrops (tens of meters) of cap rock are sparse. GPR mapping through south Florida prairie, cypress swamp and hardwood hammock resolves variations in thickness and structure of cap rock to ~3 m and holds the potential to test theories for cap rock-vegetation relationships. In other settings, carbonate strata are mapped to test models for the formation of local structural anomalies. A test of GPR imaging capabilities on an arid caliche (calcrete) horizon in southeastern Nevada shows depth penetration to ~2 m with resolution of the base of caliche. GPR profiling also succeeds in resolving more deeply buried (~5 m) limestone discontinuity surfaces that record subaerial exposure in south Florida. (C) 2000 Elsevier Science B.V. All rights reserved.Field experiments show ground penetrating radar (GPR) can be used to image shallow carbonate stratigraphy effectively in a variety of settings. In south Florida, the position and structure of cap rock cover on limestone can be an important control on surface water flow and vegetation, but larger scale outcrops (tens of meters) of cap rock are sparse. GPR mapping through south Florida prairie, cypress swamp and hardwood hammock resolves variations in thickness and structure of cap rock to approx. 3 m and holds the potential to test theories for cap rock-vegetation relationships. In other settings, carbonate strata are mapped to test models for the formation of local structural anomalies. A test of GPR imaging capabilities on an arid caliche (calcrete) horizon in southeastern Nevada shows depth penetration to approx. 2 m with resolution of the base of caliche. GPR profiling also succeeds in resolving more deeply buried (approx. 5 m) limestone discontinuity surfaces that record subaerial exposure in south Florida.

  19. Computational modeling of electrostatic charge and fields produced by hypervelocity impact

    DOE PAGES

    Crawford, David A.

    2015-05-19

    Following prior experimental evidence of electrostatic charge separation, electric and magnetic fields produced by hypervelocity impact, we have developed a model of electrostatic charge separation based on plasma sheath theory and implemented it into the CTH shock physics code. Preliminary assessment of the model shows good qualitative and quantitative agreement between the model and prior experiments at least in the hypervelocity regime for the porous carbonate material tested. The model agrees with the scaling analysis of experimental data performed in the prior work, suggesting that electric charge separation and the resulting electric and magnetic fields can be a substantial effectmore » at larger scales, higher impact velocities, or both.« less

  20. Why does offspring size affect performance? Integrating metabolic scaling with life-history theory

    PubMed Central

    Pettersen, Amanda K.; White, Craig R.; Marshall, Dustin J.

    2015-01-01

    Within species, larger offspring typically outperform smaller offspring. While the relationship between offspring size and performance is ubiquitous, the cause of this relationship remains elusive. By linking metabolic and life-history theory, we provide a general explanation for why larger offspring perform better than smaller offspring. Using high-throughput respirometry arrays, we link metabolic rate to offspring size in two species of marine bryozoan. We found that metabolism scales allometrically with offspring size in both species: while larger offspring use absolutely more energy than smaller offspring, larger offspring use proportionally less of their maternally derived energy throughout the dependent, non-feeding phase. The increased metabolic efficiency of larger offspring while dependent on maternal investment may explain offspring size effects—larger offspring reach nutritional independence (feed for themselves) with a higher proportion of energy relative to structure than smaller offspring. These findings offer a potentially universal explanation for why larger offspring tend to perform better than smaller offspring but studies on other taxa are needed. PMID:26559952

  1. Exclusion by interference competition? The relationship between red and arctic foxes.

    PubMed

    Tannerfeldt, Magnus; Elmhagen, Bodil; Angerbjörn, Anders

    2002-07-01

    The distribution of many predators may be limited by interactions with larger predator species. The arctic fox in mainland Europe is endangered, while the red fox is increasing its range in the north. It has been suggested that the southern distribution limit of the arctic fox is determined by interspecific competition with the red fox. This has been criticised, on the basis that the species co-exist on a regional scale. However, if the larger red fox is superior and interspecific competition important, the arctic fox should avoid close contact, especially during the breeding season. Consequently, the distribution of breeding dens for the two species would be segregated on a much smaller spatial and temporal scale, in areas where they are sympatric. We tested this hypothesis by analysing den use of reproducing arctic and red foxes over 9 years in Sweden. High quality dens were inhabited by reproducing arctic foxes more often when no red foxes bred in the vicinity. Furthermore, in two out of three cases when arctic foxes did reproduce near red foxes, juveniles were killed by red foxes. We also found that breeding arctic foxes occupied dens at higher altitudes than red foxes did. In a large-scale field experiment, red foxes were removed, but the results were not conclusive. However, we conclude that on the scale of individual territories, arctic foxes avoid areas with red foxes. Through interspecific interference competition, the red fox might thus be excluding the arctic fox from breeding in low altitude habitat, which is most important in years when food abundance is limited and competition is most fierce. With high altitude refuges being less suitable, even small-scale behavioural effects could scale up to significant effects at the population level.

  2. Structural strengthening of rocket nozzle extension by means of laser metal deposition

    NASA Astrophysics Data System (ADS)

    Honoré, M.; Brox, L.; Hallberg, M.

    2012-03-01

    Commercial space operations strive to maximize the payload per launch in order to minimize the costs of each kg launched into orbit; this yields demand for ever larger launchers with larger, more powerful rocket engines. Volvo Aero Corporation in collaboration with Snecma and Astrium has designed and tested a new, upgraded Nozzle extension for the Vulcain 2 engine configuration, denoted Vulcain 2+ NE Demonstrator The manufacturing process for the welding of the sandwich wall and the stiffening structure is developed in close cooperation with FORCE Technology. The upgrade is intended to be available for future development programs for the European Space Agency's (ESA) highly successful commercial launch vehicle, the ARIANE 5. The Vulcain 2+ Nozzle Extension Demonstrator [1] features a novel, thin-sheet laser-welded configuration, with laser metal deposition built-up 3D-features for the mounting of stiffening structure, flanges and for structural strengthening, in order to cope with the extreme load- and thermal conditions, to which the rocket nozzle extension is exposed during launch of the 750 ton ARIANE 5 launcher. Several millimeters of material thickness has been deposited by laser metal deposition without disturbing the intricate flow geometry of the nozzle cooling channels. The laser metal deposition process has been applied on a full-scale rocket nozzle demonstrator, and in excess of 15 kilometers of filler wire has been successfully applied to the rocket nozzle. The laser metal deposition has proven successful in two full-throttle, full-scale tests, firing the rocket engine and nozzle in the ESA test facility P5 by DLR in Lampoldshausen, Germany.

  3. Cost of Community Integrated Prevention Campaign for Malaria, HIV, and Diarrhea in Rural Kenya

    PubMed Central

    2011-01-01

    Background Delivery of community-based prevention services for HIV, malaria, and diarrhea is a major priority and challenge in rural Africa. Integrated delivery campaigns may offer a mechanism to achieve high coverage and efficiency. Methods We quantified the resources and costs to implement a large-scale integrated prevention campaign in Lurambi Division, Western Province, Kenya that reached 47,133 individuals (and 83% of eligible adults) in 7 days. The campaign provided HIV testing, condoms, and prevention education materials; a long-lasting insecticide-treated bed net; and a water filter. Data were obtained primarily from logistical and expenditure data maintained by implementing partners. We estimated the projected cost of a Scaled-Up Replication (SUR), assuming reliance on local managers, potential efficiencies of scale, and other adjustments. Results The cost per person served was $41.66 for the initial campaign and was projected at $31.98 for the SUR. The SUR cost included 67% for commodities (mainly water filters and bed nets) and 20% for personnel. The SUR projected unit cost per person served, by disease, was $6.27 for malaria (nets and training), $15.80 for diarrhea (filters and training), and $9.91 for HIV (test kits, counseling, condoms, and CD4 testing at each site). Conclusions A large-scale, rapidly implemented, integrated health campaign provided services to 80% of a rural Kenyan population with relatively low cost. Scaling up this design may provide similar services to larger populations at lower cost per person. PMID:22189090

  4. Space Shuttle Pressure Data Model in the 10- by 10-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1978-04-21

    Technicians examine a scale model of the space shuttle used to obtain pressure data during tests in the 10- by 10-Foot Supersonic Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis researchers used the 10- by 10 tunnel extensively in the 1970s to study shuttle configurations in order to forecast conditions during an actual flight. These tests included analysis of the solid rocket boosters’ aerodynamics, orbiter forebody angle -of -attack and air speed, base heating for entire shuttle, and engine-out loads. The test seen in this photograph used a 3.5- percent scale aluminum alloy model of the entire launch configuration. The program was designed to obtain aerodynamic pressure data. The tests were part of a larger program to study possible trouble areas for the shuttle’s new Advanced Flexible Reusable Surface Insulation. The researchers obtained aeroacoustic data and pressure distributions from five locations on the model. Over 100 high-temperature pressure transducers were attached to the model. Other portions of the test program were conducted at Lewis’ 8- by 6-Foot Supersonic Wind Tunnel and the 11- by 11-Foot Transonic Wind Tunnel at Ames Research Center.

  5. Geckos as Springs: Mechanics Explain Across-Species Scaling of Adhesion.

    PubMed

    Gilman, Casey A; Imburgia, Michael J; Bartlett, Michael D; King, Daniel R; Crosby, Alfred J; Irschick, Duncan J

    2015-01-01

    One of the central controversies regarding the evolution of adhesion concerns how adhesive force scales as animals change in size, either among or within species. A widely held view is that as animals become larger, the primary mechanism that enables them to climb is increasing pad area. However, prior studies show that much of the variation in maximum adhesive force remains unexplained, even when area is accounted for. We tested the hypothesis that maximum adhesive force among pad-bearing gecko species is not solely dictated by toepad area, but also depends on the ratio of toepad area to gecko adhesive system compliance in the loading direction, where compliance (C) is the change in extension (Δ) relative to a change in force (F) while loading a gecko's adhesive system (C = dΔ/dF). Geckos are well-known for their ability to climb on a range of vertical and overhanging surfaces, and range in mass from several grams to over 300 grams, yet little is understood of the factors that enable adhesion to scale with body size. We examined the maximum adhesive force of six gecko species that vary in body size (~2-100 g). We also examined changes between juveniles and adults within a single species (Phelsuma grandis). We found that maximum adhesive force and toepad area increased with increasing gecko size, and that as gecko species become larger, their adhesive systems become significantly less compliant. Additionally, our hypothesis was supported, as the best predictor of maximum adhesive force was not toepad area or compliance alone, but the ratio of toepad area to compliance. We verified this result using a synthetic "model gecko" system comprised of synthetic adhesive pads attached to a glass substrate and a synthetic tendon (mechanical spring) of finite stiffness. Our data indicate that increases in toepad area as geckos become larger cannot fully account for increased adhesive abilities, and decreased compliance must be included to explain the scaling of adhesion in animals with dry adhesion systems.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakob, Christian

    This report summarises an investigation into the relationship of tropical thunderstorms to the atmospheric conditions they are embedded in. The study is based on the use of radar observations at the Atmospheric Radiation Measurement site in Darwin run under the auspices of the DOE Atmospheric Systems Research program. Linking the larger scales of the atmosphere with the smaller scales of thunderstorms is crucial for the development of the representation of thunderstorms in weather and climate models, which is carried out by a process termed parametrisation. Through the analysis of radar and wind profiler observations the project made several fundamental discoveriesmore » about tropical storms and quantified the relationship of the occurrence and intensity of these storms to the large-scale atmosphere. We were able to show that the rainfall averaged over an area the size of a typical climate model grid-box is largely controlled by the number of storms in the area, and less so by the storm intensity. This allows us to completely rethink the way we represent such storms in climate models. We also found that storms occur in three distinct categories based on their depth and that the transition between these categories is strongly related to the larger scale dynamical features of the atmosphere more so than its thermodynamic state. Finally, we used our observational findings to test and refine a new approach to cumulus parametrisation which relies on the stochastic modelling of the area covered by different convective cloud types.« less

  7. Scaling up microbial fuel cells and other bioelectrochemical systems.

    PubMed

    Logan, Bruce E

    2010-02-01

    Scientific research has advanced on different microbial fuel cell (MFC) technologies in the laboratory at an amazing pace, with power densities having reached over 1 kW/m(3) (reactor volume) and to 6.9 W/m(2) (anode area) under optimal conditions. The main challenge is to bring these technologies out of the laboratory and engineer practical systems for bioenergy production at larger scales. Recent advances in new types of electrodes, a better understanding of the impact of membranes and separators on performance of these systems, and results from several new pilot-scale tests are all good indicators that commercialization of the technology could be possible within a few years. Some of the newest advances and future challenges are reviewed here with respect to practical applications of these MFCs for renewable energy production and other applications.

  8. Transport pilot workload - A comparison of two subjective techniques

    NASA Technical Reports Server (NTRS)

    Battiste, Vernol; Bortolussi, Michael

    1988-01-01

    Although SWAT and NASA-TLX workload scales have been compared on numerous occasions, they have not been compared in the context of transport operations. Transport pilot workload has traditionally been classified as long periods of low workload with occasional spikes of high workload. Thus, the relative sensitivity of the scales to variations in workload at the low end of the scale were evaluated. This study was a part of a larger study which investigated workload measures for aircraft certification, conducted in a Phase II certified Link/Boeing 727 simulator. No significant main effects were found for any performance-based measures of workload. However, both SWAT and NASA-TLX were sensitive to differences between high and low workload flights and to differences among flight segments. NASA-TLX (but not SWAT) was sensitive to the increase in workload during the cruise segment of the high workload flight. Between-subject variability was high for SWAT. NASA-TLX was found to be stable when compared in the test/retest paradigm. A test/retest by segment interaction suggested that this was not the case for SWAT ratings.

  9. An exploration of the impact of invalid MMPI-2 protocols on collateral self-report measure scores.

    PubMed

    Forbey, Johnathan D; Lee, Tayla T C

    2011-11-01

    Although a number of studies have examined the impact of invalid MMPI-2 (Butcher et al., 2001) response styles on MMPI-2 scale scores, limited research has specifically explored the effects that such response styles might have on conjointly administered collateral self-report measures. This study explored the potential impact of 2 invalidating response styles detected by the Validity scales of the MMPI-2, overreporting and underreporting, on scores of collateral self-report measures administered conjointly with the MMPI-2. The final group of participants included in analyses was 1,112 college students from a Midwestern university who completed all measures as part of a larger study. Results of t-test analyses suggested that if either over- or underreporting was indicated by the MMPI-2 Validity scales, the scores of most conjointly administered collateral measures were also significantly impacted. Overall, it appeared that test-takers who were identified as either over- or underreporting relied on such a response style across measures. Limitations and suggestions for future study are discussed.

  10. TESTING THE EFFECTS OF EXPANSION ON SOLAR WIND TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vech, Daniel; Chen, Christopher H K, E-mail: dvech@umich.edu

    2016-11-20

    We present a multi-spacecraft approach to test the predictions of recent studies on the effect of solar wind expansion on the radial spectral, variance, and local 3D anisotropies of the turbulence. We found that on small scales (5000–10,000 km) the power levels of the B-trace structure functions do not depend on the sampling direction with respect to the radial suggesting that on this scale the effect of expansion is small possibly due to fast turbulent timescales. On larger scales (110–135 R{sub E}), the fluctuations of the radial magnetic field component are reduced by ∼20% compared to the transverse (perpendicular tomore » radial) ones, which could be due to expansion confining the fluctuations into the plane perpendicular to radial. For the local 3D spectral anisotropy, the B-trace structure functions showed dependence on the sampling direction with respect to radial. The anisotropy in the perpendicular plane is reduced when the increments are taken perpendicular with respect to radial, which could be an effect of expansion.« less

  11. Membrane properties change in fine-pore aeration diffusers: full-scale variations of transfer efficiency and headloss.

    PubMed

    Rosso, Diego; Libra, Judy A; Wiehe, Wolfgang; Stenstrom, Michael K

    2008-05-01

    Fine-pore diffusers are the most common aeration system in municipal wastewater treatment. Punched polymeric membranes are often used in fine-pore aeration due to their advantageous initial performance. These membranes are subject to fouling and scaling, resulting in increased headloss and reduced oxygen transfer efficiency, both contributing to increased plant energy costs. This paper describes and discusses the change in material properties for polymeric fine-pore diffusers, comparing new and used membranes. Three different diffuser technologies were tested and sample diffusers from two wastewater treatment facilities were analysed. The polymeric membranes analysed in this paper were composed of ethylene-propylene-diene monomer (EPDM), polyurethane, and silicon. Transfer efficiency is usually lower with longer times in operation, as older, dilated orifices produce larger bubbles, which are unfavourable to mass transfer. At the same time, headloss increases with time in operation, since membranes increase in rigidity and hardness, and fouling and scaling phenomena occur at the orifice opening. Change in polymer properties and laboratory test results correlate with the decrease in oxygen transfer efficiency.

  12. EXPERIMENTAL METHODS TO ESTIMATE ACCUMULATED SOLIDS IN NUCLEAR WASTE TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duignan, M.; Steeper, T.; Steimke, J.

    2012-12-10

    The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a wastemore » tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream; Magnetic wand used to manually remove stainless steel solids from samples and the tank heel; Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas; Laser rangefinders to determine the volume and shape of the solids mounds; Core sampler to determine the stainless steel solids distribution within the solids mounds; Computer driven positioner that placed the laser rangefinders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities were low. These devices and techniques were very effective to estimate the movement, location, and concentrations of the solids representing plutonium and are expected to perform well at a larger scale. The operation of the techniques and their measurement accuracies will be discussed as well as the overall results of the accumulated solids test.« less

  13. Experimental Methods to Estimate Accumulated Solids in Nuclear Waste Tanks - 13313

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duignan, Mark R.; Steeper, Timothy J.; Steimke, John L.

    2013-07-01

    The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a wastemore » tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: - Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream. - Magnetic wand used to manually remove stainless steel solids from samples and the tank heel. - Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas. - Laser range finders to determine the volume and shape of the solids mounds. - Core sampler to determine the stainless steel solids distribution within the solids mounds. - Computer driven positioner that placed the laser range finders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities were low. These devices and techniques were very effective to estimate the movement, location, and concentrations of the solids representing plutonium and are expected to perform well at a larger scale. The operation of the techniques and their measurement accuracies will be discussed as well as the overall results of the accumulated solids test. (authors)« less

  14. Recent Advances in the LEWICE Icing Model

    NASA Technical Reports Server (NTRS)

    Wright, William B.; Addy, Gene; Struk, Peter; Bartkus, Tadas

    2015-01-01

    This paper will describe two recent modifications to the Glenn ICE software. First, a capability for modeling ice crystals and mixed phase icing has been modified based on recent experimental data. Modifications have been made to the ice particle bouncing and erosion model. This capability has been added as part of a larger effort to model ice crystal ingestion in aircraft engines. Comparisons have been made to ice crystal ice accretions performed in the NRC Research Altitude Test Facility (RATFac). Second, modifications were made to the run back model based on data and observations from thermal scaling tests performed in the NRC Altitude Icing Tunnel.

  15. Development of a scaled-down aerobic fermentation model for scale-up in recombinant protein vaccine manufacturing.

    PubMed

    Farrell, Patrick; Sun, Jacob; Gao, Meg; Sun, Hong; Pattara, Ben; Zeiser, Arno; D'Amore, Tony

    2012-08-17

    A simple approach to the development of an aerobic scaled-down fermentation model is presented to obtain more consistent process performance during the scale-up of recombinant protein manufacture. Using a constant volumetric oxygen mass transfer coefficient (k(L)a) for the criterion of a scale-down process, the scaled-down model can be "tuned" to match the k(L)a of any larger-scale target by varying the impeller rotational speed. This approach is demonstrated for a protein vaccine candidate expressed in recombinant Escherichia coli, where process performance is shown to be consistent among 2-L, 20-L, and 200-L scales. An empirical correlation for k(L)a has also been employed to extrapolate to larger manufacturing scales. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Bigger is better and worse: on the intricate relationship between hippocampal size and memory.

    PubMed

    Molnár, Katalin; Kéri, Szabolcs

    2014-04-01

    The structure-function relationship between the hippocampal region and memory is a debated topic in the literature. It has been suggested that larger hippocampi are associated with less effective memory performance in healthy young adults because of a partial synaptic pruning. Here, we tested this hypothesis in individuals with Fragile X Syndrome (FXS) with known abnormal pruning and IQ- and age-matched individuals with hypoxic brain injury, preterm birth, and obstetric complications. Results revealed larger normalized hippocampal volume in FXS compared with neurotypical controls, whereas individuals with hypoxic injury had smaller hippocampi. In neurotypical controls and individuals with hypoxic injury, better general memory, as indexed by the Wechsler Memory Scale-Revised, was associated with larger hippocampus. In contrast, in FXS we observed the opposite relationship: larger hippocampus was associated with worse general memory. Caudate volume did not correlate with memory in either group. These results suggest that incomplete pruning in young healthy adults may not contribute to less efficient memory capacity, and hippocampal size is positively associated with memory performance. However, abnormally large and poorly pruned hippocampus may indeed be less effective in FXS. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Analyzing the dynamic response of rotating blades in small-scale wind turbines

    NASA Astrophysics Data System (ADS)

    Hsiung, Wan-Ying; Huang, Yu-Ting; Loh, Chin-Hsiung; Loh, Kenneth J.; Kamisky, Robert J.; Nip, Danny; van Dam, Cornelis

    2014-03-01

    The objective of this study was to validate modal analysis, system identification and damage detection of small-scale rotating wind turbine blades in the laboratory and in the field. Here, wind turbine blades were instrumented with accelerometers and strain gages, and data acquisition was achieved using a prototype wireless sensing system. In the first portion of this study conducted in the laboratory, sensors were installed onto metallic structural elements that were fabricated to be representative of an actual wind blade. In order to control the excitation (rotation of the wind blade), a motor was used to spin the blades at controlled angular velocities. The wind turbine was installed on a shaking table for testing under rotation of turbine blades. Data measured by the sensors were recorded while the blade was operated at different speeds. On the other hand, the second part of this study utilized a small-scale wind turbine system mounted on the rooftop of a building. The main difference, as compared to the lab tests, was that the field tests relied on actual wind excitations (as opposed to a controlled motor). The raw data from both tests were analyzed using signal processing and system identification techniques for deriving the model response of the blades. The multivariate singular spectrum analysis (MSSA) and covariance-driven stochastic subspace identification method (SSI-COV) were used to identify the dynamic characteristics of the system. Damage of one turbine blade (loose bolts connection) in the lab test was also conducted. The extracted modal properties for both undamaged and damage cases under different ambient or forced excitations (earthquake loading) were compared. These tests confirmed that dynamic characterization of rotating wind turbines was feasible, and the results will guide future monitoring studies planned for larger-scale systems.

  18. Symbolic magnitude processing in elementary school children: A group administered paper-and-pencil measure (SYMP Test).

    PubMed

    Brankaer, Carmen; Ghesquière, Pol; De Smedt, Bert

    2017-08-01

    The ability to compare symbolic numerical magnitudes correlates with children's concurrent and future mathematics achievement. We developed and evaluated a quick timed paper-and-pencil measure that can easily be used, for example in large-scale research, in which children have to cross out the numerically larger of two Arabic one- and two-digit numbers (SYMP Test). We investigated performance on this test in 1,588 primary school children (Grades 1-6) and examined in each grade its associations with mathematics achievement. The SYMP Test had satisfactory test-retest reliability. The SYMP Test showed significant and stable correlations with mathematics achievement for both one-digit and two-digit comparison, across all grades. This replicates the previously observed association between symbolic numerical magnitude processing and mathematics achievement, but extends it by showing that the association is observed in all grades in primary education and occurs for single- as well as multi-digit processing. Children with mathematical learning difficulties performed significantly lower on one-digit comparison and two-digit comparison in all grades. This all suggests satisfactory construct and criterion-related validity of the SYMP Test, which can be used in research, when performing large-scale (intervention) studies, and by practitioners, as screening measure to identify children at risk for mathematical difficulties or dyscalculia.

  19. Test-retest reliability and sensitivity to change of the dimensional anxiety scales for DSM-5.

    PubMed

    Knappe, Susanne; Klotsche, Jens; Heyde, Franziska; Hiob, Sarah; Siegert, Jens; Hoyer, Jürgen; Strobel, Anja; LeBeau, Richard T; Craske, Michelle G; Wittchen, Hans-Ulrich; Beesdo-Baum, Katja

    2014-06-01

    This article reports on the test-retest reliability and sensitivity to change of a set of brief dimensional self-rating questionnaires for social anxiety disorder (SAD-D), specific phobia (SP-D), agoraphobia (AG-D), panic disorder (PD-D), and generalized anxiety disorder (GAD-D), as well as a general cross-cutting anxiety scale (Cross-D), which were developed to supplement categorical diagnoses in the Diagnostic and Statistical Manual of Mental Disorders, 5th edition (DSM-5). The German versions of the dimensional anxiety scales were administered to 218 students followed up approximately 2 weeks later (Study 1) and 55 outpatients (23 with anxiety diagnoses) followed-up 1 year later (Study 2). Probable diagnostic status in students was determined by the DIA-X/M-CIDI stem screening-questionnaire (SSQ). In the clinical sample, Diagnostic and Statistical Manual of Mental Disorders, 4th edition (DSM-IV) diagnoses were assessed at Time 1 using the DIA-X/M-CIDI. At Time 2, the patient-version of the Clinical Global Impression-Improvement scale (CGI-I) was applied to assess change. Good psychometric properties, including high test-retest reliability, were found for the dimensional scales except for SP-D. In outpatients, improvement at Time 2 was associated with significant decrease in PD-D, GAD-D, and Cross-D scores. Discussion Major advantages of the scales include that they are brief, concise, and based on a consistent template to measure the cognitive, physiological, and behavioral symptoms of fear and anxiety. Further replication in larger samples is needed. Given its modest psychometric properties, SP-D needs refinement. Increasing evidence from diverse samples suggests clinical utility of the dimensional anxiety scales.

  20. Scaling effects in direct shear tests

    USGS Publications Warehouse

    Orlando, A.D.; Hanes, D.M.; Shen, H.H.

    2009-01-01

    Laboratory experiments of the direct shear test were performed on spherical particles of different materials and diameters. Results of the bulk friction vs. non-dimensional shear displacement are presented as a function of the non-dimensional particle diameter. Simulations of the direct shear test were performed using the Discrete Element Method (DEM). The simulation results show Considerable differences with the physical experiments. Particle level material properties, such as the coefficients of static friction, restitution and rolling friction need to be known a priori in order to guarantee that the simulation results are an accurate representation of the physical phenomenon. Furthermore, laboratory results show a clear size dependency on the results, with smaller particles having a higher bulk friction than larger ones. ?? 2009 American Institute of Physics.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigg, Reid; McPherson, Brian; Lee, Rober

    The Southwest Regional Partnership on Carbon Sequestration (SWP) one of seven regional partnerships sponsored by the U.S. Department of Energy (USDOE) carried out five field pilot tests in its Phase II Carbon Sequestration Demonstration effort, to validate the most promising sequestration technologies and infrastructure concepts, including three geologic pilot tests and two terrestrial pilot programs. This field testing demonstrated the efficacy of proposed sequestration technologies to reduce or offset greenhouse gas emissions in the region. Risk mitigation, optimization of monitoring, verification, and accounting (MVA) protocols, and effective outreach and communication were additional critical goals of these field validation tests. Themore » program included geologic pilot tests located in Utah, New Mexico, Texas, and a region-wide terrestrial analysis. Each geologic sequestration test site was intended to include injection of a minimum of ~75,000 tons/year CO{sub 2}, with minimum injection duration of one year. These pilots represent medium- scale validation tests in sinks that host capacity for possible larger-scale sequestration operations in the future. These validation tests also demonstrated a broad variety of carbon sink targets and multiple value-added benefits, including testing of enhanced oil recovery and sequestration, enhanced coalbed methane production and a geologic sequestration test combined with a local terrestrial sequestration pilot. A regional terrestrial sequestration demonstration was also carried out, with a focus on improved terrestrial MVA methods and reporting approaches specific for the Southwest region.« less

  2. Scaling Effects of Riparian Peatlands on Stable Isotopes in Runoff and DOC Mobilization

    NASA Astrophysics Data System (ADS)

    Tetzlaff, D.; Tunaley, C.; Soulsby, C.

    2016-12-01

    We combined 13 months of daily isotope measurements in stream water with daily DOC and 15 minute FDOM (fluorescent component of dissolved organic matter) data at three nested scales to identify how riparian peatlands generate runoff and influence DOC dynamics in streams. We investigated how runoff generation processes in a small, riparian peatland dominated headwater catchment (0.65 km2) propagate to larger scales (3.2 km2 and 31 km2) with decreasing percentage of riparian peatland coverage. Isotope damping was most pronounced in the 0.65 km2 headwater catchment due to high water storage in the organic soils which encourage tracer mixing. At the largest scale, stream flow and water isotope dynamics showed a more flashy response. The isotopic difference between the sites was most pronounced in the summer months when stream water signatures were enriched. During the winter months, the inter-site difference reduced. The isotopes also revealed evaporative fractionation in the peatland dominated catchment, in particular during summer low flows, which implied high hydrological connectivity in form of constant seepage from the peatlands sustaining high baseflows at the headwater scale. This connectivity resulted in high DOC concentrations at the peatland site during baseflow ( 5 mg l-1). In contrast, at the larger scales, DOC was minimal during low flows ( 2 mg l-1) due to increased groundwater influence and the disconnection between DOC sources and the stream. High frequency data also revealed diel variability during low flows. Insights into event dynamics through the analysis of hysteresis loops showed slight dilution on the rising limb, the strong influence of dry antecedent conditions and a quick recovery between events at the riparian peatland site. Again, these dynamics are driven by the tight coupling and high connectivity of the landscape to the stream. At larger scales, the disconnection between the landscape units increase and the variable connectivity controls runoff generation and DOC dynamics. The results presented here suggest that the processes occurring in riparian peatlands in headwater catchments are less evident at larger scales which may have implications for the larger scale impact of peatland restoration projects.

  3. Scaling effects of riparian peatlands on stable isotopes in runoff and DOC mobilisation

    NASA Astrophysics Data System (ADS)

    Tunaley, C.; Tetzlaff, D.; Soulsby, C.

    2017-06-01

    We combined 13 months of daily isotope measurements in stream water with daily DOC and 15 min FDOM (fluorescent component of dissolved organic matter) data at three nested scales to identify how riparian peatlands generate runoff and influence DOC dynamics in streams. We investigated how runoff generation processes in a small, riparian peatland-dominated headwater catchment (0.65 km2) propagate to larger scales (3.2 km2 and 31 km2) with decreasing percentage of riparian peatland coverage. Isotope damping was most pronounced in the 0.65 km2 headwater catchment due to high water storage in the organic soils encouraging tracer mixing. At the largest scale, stream flow and water isotope dynamics showed a more flashy response. The isotopic difference between the sites was most pronounced in the summer months when stream water signatures were enriched. During the winter months, the inter-site difference reduced. The isotopes also revealed evaporative fractionation in the peatland dominated catchment, in particular during summer low flows, which implied high hydrological connectivity in the form of constant seepage from the peatlands sustaining high baseflows at the headwater scale. This connectivity resulted in high DOC concentrations at the peatland site during baseflow (∼5 mg l-1). In contrast, at the larger scales, DOC was minimal during low flows (∼2 mg l-1) due to increased groundwater influence and the disconnection between DOC sources and the stream. High frequency data also revealed diel variability during low flows. Insights into event dynamics through the analysis of hysteresis loops showed slight dilution on the rising limb, the strong influence of dry antecedent conditions and a quick recovery between events at the riparian peatland site. Again, these dynamics are driven by the tight coupling and high connectivity of the landscape to the stream. At larger scales, the disconnection between the landscape units increases and the variable connectivity controls runoff generation and DOC dynamics. The results presented here suggest that the processes occurring in riparian peatlands in headwater catchments are less evident at larger scales which may have implications for the larger scale impact of peatland restoration projects.

  4. Scale dependence of entrainment-mixing mechanisms in cumulus clouds

    DOE PAGES

    Lu, Chunsong; Liu, Yangang; Niu, Shengjie; ...

    2014-12-17

    This work empirically examines the dependence of entrainment-mixing mechanisms on the averaging scale in cumulus clouds using in situ aircraft observations during the Routine Atmospheric Radiation Measurement Aerial Facility Clouds with Low Optical Water Depths Optical Radiative Observations (RACORO) field campaign. A new measure of homogeneous mixing degree is defined that can encompass all types of mixing mechanisms. Analysis of the dependence of the homogenous mixing degree on the averaging scale shows that, on average, the homogenous mixing degree decreases with increasing averaging scales, suggesting that apparent mixing mechanisms gradually approach from homogeneous mixing to extreme inhomogeneous mixing with increasingmore » scales. The scale dependence can be well quantified by an exponential function, providing first attempt at developing a scale-dependent parameterization for the entrainment-mixing mechanism. The influences of three factors on the scale dependence are further examined: droplet-free filament properties (size and fraction), microphysical properties (mean volume radius and liquid water content of cloud droplet size distributions adjacent to droplet-free filaments), and relative humidity of entrained dry air. It is found that the decreasing rate of homogeneous mixing degree with increasing averaging scales becomes larger with larger droplet-free filament size and fraction, larger mean volume radius and liquid water content, or higher relative humidity. The results underscore the necessity and possibility of considering averaging scale in representation of entrainment-mixing processes in atmospheric models.« less

  5. Rossby waves and two-dimensional turbulence in a large-scale zonal jet

    NASA Technical Reports Server (NTRS)

    Shepherd, Theodor G.

    1987-01-01

    Homogeneous barotropic beta-plane turbulence is investigated, taking into account the effects of spatial inhomogeneity in the form of a zonal shear flows. Attention is given to the case of zonal flows that are barotropically stable and of larger scale than the resulting transient eddy field. Numerical simulations reveal that large-scale zonal flows alter the picture of classical beta-plane turbulence. It is found that the disturbance field penetrates to the largest scales of motion, that the larger disturbance scales show a tendency to meridional rather than zonal anisotropy, and that the initial spectral transfer rate away from an isotropic intermediate-scale source is enhanced by the shear-induced transfer associated with straining by the zonal flow.

  6. When Bigger Is Better: Household Size, Abuse Injuries, Neglect, and Family Response in Novosibirsk, Russia.

    PubMed

    Emery, Clifton R; Eremina, Tatiana; Arenas, Carmen; Kim, Jaeyop; Chan, Ko Ling

    2017-02-01

    Although previous research has demonstrated larger households to be at higher risk of physical abuse and neglect of children, we argue that unilateral conceptualization of larger households as a risk factor is inappropriate. Application of resource dilution theory must capture the possibility that larger families may have more members with both the agency and will to intervene against child maltreatment. We hypothesized a negative interaction between household size and protective informal social control by family members in predicting abuse injuries and neglect. A three-stage probability proportional to size cluster sample representative of Novosibirsk, Russia, was collected from 306 cohabiting couples. One parent in each household was interviewed. A focal child was selected using most recent birthday. When responses limited to families with minor children (below age 18) were selected, 172 families remained in the data. Physical abuse and neglect were measured using the Conflict Tactics Scales (CTS). Protective informal social control by family members was measured using the Informal Social Control of Child Maltreatment (ISC_CM) Scale. Models were tested using random effects regression and logistic regression. Nearly 7% of focal children were injured in the last year, 10% were neglected. Consistent with previous research, protective informal social control was associated with lower odds of injury and fewer instances of neglect. The significant negative interaction between household size and protective control is consistent with the idea that larger households may be protective when adult family members intervene against maltreatment to protect children. Replication and further investigation of protective ISC_CM in Western populations is much needed. Future research should not conceptualize or measure household size as a unilateral risk factor.

  7. Developing the RAL front end test stand source to deliver a 60 mA, 50 Hz, 2 ms H- beam

    NASA Astrophysics Data System (ADS)

    Faircloth, Dan; Lawrie, Scott; Letchford, Alan; Gabor, Christoph; Perkins, Mike; Whitehead, Mark; Wood, Trevor; Tarvainen, Olli; Komppula, Jani; Kalvas, Taneli; Dudnikov, Vadim; Pereira, Hugo; Izaola, Zunbeltz; Simkin, John

    2013-02-01

    All the Front End Test Stand (FETS) beam requirements have been achieved, but not simultaneously [1]. At 50 Hz repetition rates beam current droop becomes unacceptable for pulse lengths longer than 1 ms. This is fundamental limitation of the present source design. Previous researchers [2] have demonstrated that using a physically larger Penning surface plasma source should overcome these limitations. The scaled source development strategy is outlined in this paper. A study of time-varying plasma behavior has been performed using a V-UV spectrometer. Initial experiments to test scaled plasma volumes are outlined. A dedicated plasma and extraction test stand (VESPA-Vessel for Extraction and Source Plasma Analysis) is being developed to allow new source and extraction designs to be appraised. The experimental work is backed up by modeling and simulations. A detailed ANSYS thermal model has been developed. IBSimu is being used to design extraction and beam transport. A novel 3D plasma modeling code using beamlets is being developed by Cobham Vector Fields using SCALA OPERA, early source modeling results are very promising. Hardware on FETS is also being developed in preparation to run the scaled source. A new 2 ms, 50 Hz, 25 kV pulsed extraction voltage power supply has been constructed and a new discharge power supply is being designed. The design of the post acceleration electrode assembly has been improved.

  8. Information transfer across the scales of climate data variability

    NASA Astrophysics Data System (ADS)

    Palus, Milan; Jajcay, Nikola; Hartman, David; Hlinka, Jaroslav

    2015-04-01

    Multitude of scales characteristic of the climate system variability requires innovative approaches in analysis of instrumental time series. We present a methodology which starts with a wavelet decomposition of a multi-scale signal into quasi-oscillatory modes of a limited band-with, described using their instantaneous phases and amplitudes. Then their statistical associations are tested in order to search for interactions across time scales. In particular, an information-theoretic formulation of the generalized, nonlinear Granger causality is applied together with surrogate data testing methods [1]. The method [2] uncovers causal influence (in the Granger sense) and information transfer from large-scale modes of climate variability with characteristic time scales from years to almost a decade to regional temperature variability on short time scales. In analyses of daily mean surface air temperature from various European locations an information transfer from larger to smaller scales has been observed as the influence of the phase of slow oscillatory phenomena with periods around 7-8 years on amplitudes of the variability characterized by smaller temporal scales from a few months to annual and quasi-biennial scales [3]. In sea surface temperature data from the tropical Pacific area an influence of quasi-oscillatory phenomena with periods around 4-6 years on the variability on and near the annual scale has been observed. This study is supported by the Ministry of Education, Youth and Sports of the Czech Republic within the Program KONTAKT II, Project No. LH14001. [1] M. Palus, M. Vejmelka, Phys. Rev. E 75, 056211 (2007) [2] M. Palus, Entropy 16(10), 5263-5289 (2014) [3] M. Palus, Phys. Rev. Lett. 112, 078702 (2014)

  9. Conceptual design and analysis of a dynamic scale model of the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Davis, D. A.; Gronet, M. J.; Tan, M. K.; Thorne, J.

    1994-01-01

    This report documents the conceptual design study performed to evaluate design options for a subscale dynamic test model which could be used to investigate the expected on-orbit structural dynamic characteristics of the Space Station Freedom early build configurations. The baseline option was a 'near-replica' model of the SSF SC-7 pre-integrated truss configuration. The approach used to develop conceptual design options involved three sets of studies: evaluation of the full-scale design and analysis databases, conducting scale factor trade studies, and performing design sensitivity studies. The scale factor trade study was conducted to develop a fundamental understanding of the key scaling parameters that drive design, performance and cost of a SSF dynamic scale model. Four scale model options were estimated: 1/4, 1/5, 1/7, and 1/10 scale. Prototype hardware was fabricated to assess producibility issues. Based on the results of the study, a 1/4-scale size is recommended based on the increased model fidelity associated with a larger scale factor. A design sensitivity study was performed to identify critical hardware component properties that drive dynamic performance. A total of 118 component properties were identified which require high-fidelity replication. Lower fidelity dynamic similarity scaling can be used for non-critical components.

  10. Links between soil properties and steady-state solute transport through cultivated topsoil at the field scale

    NASA Astrophysics Data System (ADS)

    Koestel, J. K.; Norgaard, T.; Luong, N. M.; Vendelboe, A. L.; Moldrup, P.; Jarvis, N. J.; Lamandé, M.; Iversen, B. V.; Wollesen de Jonge, L.

    2013-02-01

    It is known that solute transport through soil is heterogeneous at all spatial scales. However, little data are available to allow quantification of these heterogeneities at the field scale or larger. In this study, we investigated the spatial patterns of soil properties, hydrologic state variables, and tracer breakthrough curves (BTCs) at the field scale for the inert solute transport under a steady-state irrigation rate which produced near-saturated conditions. Sixty-five undisturbed soil columns approximately 20 cm in height and diameter were sampled from the loamy topsoil of an agricultural field site in Silstrup (Denmark) at a sampling distance of approximately 15 m (with a few exceptions), covering an area of approximately 1 ha (60 m × 165 m). For 64 of the 65 investigated soil columns, we observed BTC shapes indicating a strong preferential transport. The strength of preferential transport was positively correlated with the bulk density and the degree of water saturation. The latter suggests that preferential macropore transport was the dominating transport process. Increased bulk densities were presumably related with a decrease in near-saturated hydraulic conductivities and as a consequence to larger water saturation and the activation of larger macropores. Our study provides further evidence that it should be possible to estimate solute transport properties from soil properties such as soil texture or bulk density. We also demonstrated that estimation approaches established for the column scale have to be upscaled when applied to the field scale or larger.

  11. Wind-Tunnel Tests of the 1/25-Scale Powered Model of the Martin JRM-1 Airplane. IV - Tests with Ground Board and with Modified Wing and Hull - TED No. NACA 232. Part 4; Tests with Ground Board and with Modified Wing and Hull, TED No. NACA 232

    NASA Technical Reports Server (NTRS)

    Lockwood, Vernard E.; Smith, Bernard J.

    1947-01-01

    Wind-tunnel tests were made of a 1/25 scale model of the Martin JRM-1 airplane to determine: (1) The longitudinal stability and control characteristics of the JRM-1 model near the water and lateral and directional stability characteristics with power while moving on the surface of the water, the latter being useful for the design of tip floats; (2) The stability and stalling characteristics of the wing with a modified airfoil contour; (3) Stability characteristics of a hull of larger design gross weight; The test results indicated that the elevator was powerful enough to trim the original model in a landing configuration at any lift coefficient within the specified range of centers of gravity. The ground-board tests for evaluating the aerodynamic forces and moments on an airplane in a simulated cross wind indicate a high dihedral effect in the presence of the ground board and, consequently, during low-speed taxying and take-off, large overturning moments would result which would have to be overcome by the tip floats.

  12. Simulating Extraterrestrial Ices in the Laboratory

    NASA Astrophysics Data System (ADS)

    Berisford, D. F.; Carey, E. M.; Hand, K. P.; Choukroun, M.

    2017-12-01

    Several ongoing experiments at JPL attempt to simulate the ice environment for various regimes associated with icy moons. The Europa Penitent Ice Experiment (EPIX) simulates the surface environment of an icy moon, to investigate the physics of ice surface morphology growth. This experiment features half-meter-scale cryogenic ice samples, cryogenic radiative sink environment, vacuum conditions, and diurnal cycling solar simulation. The experiment also includes several smaller fixed-geometry vacuum chambers for ice simulation at Earth-like and intermediate temperature and vacuum conditions for development of surface morphology growth scaling relations. Additionally, an ice cutting facility built on a similar platform provides qualitative data on the mechanical behavior of cryogenic ice with impurities under vacuum, and allows testing of ice cutting/sampling tools relevant for landing spacecraft. A larger cutting facility is under construction at JPL, which will provide more quantitative data and allow full-scale sampling tool tests. Another facility, the JPL Ice Physics Laboratory, features icy analog simulant preparation abilities that range icy solar system objects such as Mars, Ceres and the icy satellites of Saturn and Jupiter. In addition, the Ice Physics Lab has unique facilities for Icy Analog Tidal Simulation and Rheological Studies of Cryogenic Icy Slurries, as well as equipment to perform thermal and mechanical properties testing on icy analog materials and their response to sinusoidal tidal stresses.

  13. The use of neuropsychological tests to assess intelligence.

    PubMed

    Gansler, David A; Varvaris, Mark; Schretlen, David J

    We sought to derive a 'neuropsychological intelligence quotient' (NIQ) to replace IQ testing in some routine assessments. We administered neuropsychological testing and a seven-subtest short form of the Wechsler Adult Intelligence Scale to a community sample of 394 adults aged 18-96 years. We regressed Wechsler Full Scale IQs (W-FSIQ) on 23 neuropsychological scores and derived an NIQ from 9 measures that explained significant variance in W-FSIQ. We then compared subgroups of 284 healthy and 108 unhealthy participants in NIQ and W-FSIQ to assess criterion validity, correlated NIQ and W-FSIQ scores with education level and independence for activities of daily living to assess convergent validity, and compared validity coefficients for the NIQ with those of 'hold' and 'no-hold' indices. By design, NIQ and W-FSIQ scores correlated highly (r = .84), and both were higher in healthy participants. The difference was larger for NIQ, which accounted for more variability in activities of daily living. The NIQ and 'no-hold' index were better predicted by health status and less predicted by educational status than the 'hold' index. We constructed an NIQ that correlates highly with Wechsler FSIQ. Tests required to obtain NIQ are commonly used and can be administered in about 45 min. Validity properties of NIQ and W-FSIQ are similar. The NIQ bore greater resemblance to a 'no-hold' than 'hold' index. One can obtain a reasonably accurate estimate of current Full Scale IQ without formal intelligence testing from a brief neuropsychological battery.

  14. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis

    2001-07-25

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 4/03/2001 through 7/02/2001. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives. Note that this version of the quarterly technical report is a revision to add the reports from subcontractors Montana State and Oak Ridge National Laboratories The significant accomplishments for this quarter include: Development of an experimental plan and initiation of experiments to create a calibration curve that correlates algal chlorophyll levels with carbon levels (to simplify future experimentalmore » procedures); Completion of debugging of the slug flow reactor system, and development of a plan for testing the pressure drop of the slug flow reactor; Design and development of a new bioreactor screen design which integrates the nutrient delivery drip system and the harvesting system; Development of an experimental setup for testing the new integrated drip system/harvesting system; Completion of model-scale bioreactor tests examining the effects of CO{sub 2} concentration levels and lighting levels on Nostoc 86-3 growth rates; Completion of the construction of a larger model-scale bioreactor to improve and expand testing capabilities and initiation of tests; Substantial progress on construction of a pilot-scale bioreactor; and Preliminary economic analysis of photobioreactor deployment. Plans for next quarter's work are included in the conclusions. A preliminary economic analysis is included as an appendix.« less

  15. Community shifts under climate change: mechanisms at multiple scales.

    PubMed

    Gornish, Elise S; Tylianakis, Jason M

    2013-07-01

    Processes that drive ecological dynamics differ across spatial scales. Therefore, the pathways through which plant communities and plant-insect relationships respond to changing environmental conditions are also expected to be scale-dependent. Furthermore, the processes that affect individual species or interactions at single sites may differ from those affecting communities across multiple sites. We reviewed and synthesized peer-reviewed literature to identify patterns in biotic or abiotic pathways underpinning changes in the composition and diversity of plant communities under three components of climate change (increasing temperature, CO2, and changes in precipitation) and how these differ across spatial scales. We also explored how these changes to plants affect plant-insect interactions. The relative frequency of biotic vs. abiotic pathways of climate effects at larger spatial scales often differ from those at smaller scales. Local-scale studies show variable responses to climate drivers, often driven by biotic factors. However, larger scale studies identify changes to species composition and/or reduced diversity as a result of abiotic factors. Differing pathways of climate effects can result from different responses of multiple species, habitat effects, and differing effects of invasions at local vs. regional to global scales. Plant community changes can affect higher trophic levels as a result of spatial or phenological mismatch, foliar quality changes, and plant abundance changes, though studies on plant-insect interactions at larger scales are rare. Climate-induced changes to plant communities will have considerable effects on community-scale trophic exchanges, which may differ from the responses of individual species or pairwise interactions.

  16. Organ size control via hydraulically gated oscillations.

    PubMed

    Ruiz-Herrero, Teresa; Alessandri, Kévin; Gurchenkov, Basile V; Nassoy, Pierre; Mahadevan, L

    2017-12-01

    Hollow vesicular tissues of various sizes and shapes arise in biological organs such as ears, guts, hearts, brains and even entire organisms. Regulating their size and shape is crucial for their function. Although chemical signaling has been thought to play a role in the regulation of cellular processes that feed into larger scales, it is increasingly recognized that mechanical forces are involved in the modulation of size and shape at larger length scales. Motivated by a variety of examples of tissue cyst formation and size control that show simultaneous growth and size oscillations, we create a minimal theoretical framework for the growth and dynamics of a soft, fluid-permeable, spherical shell. We show that these shells can relieve internal pressure by bursting intermittently, shrinking and re-growing, providing a simple mechanism by which hydraulically gated oscillations can regulate size. To test our theory, we develop an in vitro experimental set-up to monitor the growth and oscillations of a hollow tissue spheroid growing freely or when confined. A simple generalization of our theory to account for irreversible deformations allows us to explain the time scales and the amplitudes of oscillations in terms of the geometry and mechanical properties of the tissue shells. Taken together, our theory and experimental observations show how soft hydraulics can regulate the size of growing tissue shells. © 2017. Published by The Company of Biologists Ltd.

  17. Turbulence- and particle-resolved modeling of self-formed channels

    NASA Astrophysics Data System (ADS)

    Schmeeckle, M. W.

    2016-12-01

    A numerical model is presented that combines a large eddy simulation (LES) of turbulent water motion and a discrete element method (DEM) simulation of all sediment particles forming a small alluvial river. All simulations are begun with a relatively narrow and deep channel and a constant body force is applied to the fluid. At very small applied force at the critical shear stress for sediment motion the channel becomes wider and shallower. Transport on the banks becomes very small with larger transport at the center of the channel. However, even the very small bank transport resulted in continued net downslope motion and channel widening; bedload diffusion from higher transport areas of the channel is not sufficient to counteract downslope transport. This simulation will be extended over much longer times to determine whether an equilibrium straight channel with transport is possible without varying the water discharge. Simulations at slightly higher fluid forcing results in the development of alternate bars. Particle size segregation occurs in all simulations at multiple scales. At the smallest scale, turbulent structures induce small scale depressions; larger particles preferentially move to lower elevations of the depressions. Sloping beds at banks and bars also increase size segregation. However, bar translation mixes segregated sediments. Granular modeling of river channels appears to be a fruitful method for testing and developing continuum ideas of channel pattern formation and size segregation.

  18. Turbulence-and particle-resolved modeling of self-formed channels

    NASA Astrophysics Data System (ADS)

    Schmeeckle, M. W.

    2017-12-01

    A numerical model is presented that combines a large eddy simulation (LES) of turbulent water motion and a discrete element method (DEM) simulation of all sediment particles forming a small alluvial river. All simulations are begun with a relatively narrow and deep channel and a constant body force is applied to the fluid. At very small applied force at the critical shear stress for sediment motion the channel becomes wider and shallower. Transport on the banks becomes very small with larger transport at the center of the channel. However, even the very small bank transport resulted in continued net downslope motion and channel widening; bedload diffusion from higher transport areas of the channel is not sufficient to counteract downslope transport. This simulation will be extended over much longer times to determine whether an equilibrium straight channel with transport is possible without varying the water discharge. Simulations at slightly higher fluid forcing results in the development of alternate bars. Particle size segregation occurs in all simulations at multiple scales. At the smallest scale, turbulent structures induce small scale depressions; larger particles preferentially move to lower elevations of the depressions. Sloping beds at banks and bars also increase size segregation. However, bar translation mixes segregated sediments. Granular modeling of river channels appears to be a fruitful method for testing and developing continuum ideas of channel pattern formation and size segregation.

  19. Validity and reliability of naturalistic driving scene categorization Judgments from crowdsourcing.

    PubMed

    Cabrall, Christopher D D; Lu, Zhenji; Kyriakidis, Miltos; Manca, Laura; Dijksterhuis, Chris; Happee, Riender; de Winter, Joost

    2018-05-01

    A common challenge with processing naturalistic driving data is that humans may need to categorize great volumes of recorded visual information. By means of the online platform CrowdFlower, we investigated the potential of crowdsourcing to categorize driving scene features (i.e., presence of other road users, straight road segments, etc.) at greater scale than a single person or a small team of researchers would be capable of. In total, 200 workers from 46 different countries participated in 1.5days. Validity and reliability were examined, both with and without embedding researcher generated control questions via the CrowdFlower mechanism known as Gold Test Questions (GTQs). By employing GTQs, we found significantly more valid (accurate) and reliable (consistent) identification of driving scene items from external workers. Specifically, at a small scale CrowdFlower Job of 48 three-second video segments, an accuracy (i.e., relative to the ratings of a confederate researcher) of 91% on items was found with GTQs compared to 78% without. A difference in bias was found, where without GTQs, external workers returned more false positives than with GTQs. At a larger scale CrowdFlower Job making exclusive use of GTQs, 12,862 three-second video segments were released for annotation. Infeasible (and self-defeating) to check the accuracy of each at this scale, a random subset of 1012 categorizations was validated and returned similar levels of accuracy (95%). In the small scale Job, where full video segments were repeated in triplicate, the percentage of unanimous agreement on the items was found significantly more consistent when using GTQs (90%) than without them (65%). Additionally, in the larger scale Job (where a single second of a video segment was overlapped by ratings of three sequentially neighboring segments), a mean unanimity of 94% was obtained with validated-as-correct ratings and 91% with non-validated ratings. Because the video segments overlapped in full for the small scale Job, and in part for the larger scale Job, it should be noted that such reliability reported here may not be directly comparable. Nonetheless, such results are both indicative of high levels of obtained rating reliability. Overall, our results provide compelling evidence for CrowdFlower, via use of GTQs, being able to yield more accurate and consistent crowdsourced categorizations of naturalistic driving scene contents than when used without such a control mechanism. Such annotations in such short periods of time present a potentially powerful resource in driving research and driving automation development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Wind-Driven Montgolfiere Balloons for Mars

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Fairbrother, Debora; Lemieux, Aimee; Lachenmeier, Tim; Zubrin, Robert

    2005-01-01

    Solar Montgolfiere balloons, or solar-heated hot air balloons have been evaluated by use on Mars for about 5 years. In the past, JPL has developed thermal models that have been confirmed, as well as developed altitude control systems to allow the balloons to float over the landscape or carry ground sampling instrumentation. Pioneer Astronautics has developed and tested a landing system for Montgolfieres. JPL, together with GSSL. have successfully deployed small Montgolfieres (<15-m diameter) in the earth's stratosphere, where conditions are similar to a Mars deployment. Two larger Montgolfieres failed, however, and a series of larger scale Montgolfieres is now planned using stronger, more uniform polyethylene bilaminate, combined with stress-reducing ripstitch and reduced parachute deceleration velocities. This program, which is presently under way, is a joint effort between JPL, WFF, and GSSL, and is planned for completion in three years.

  1. A New Model of Size-graded Soil Veneer on the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Basu, Abhijit; McKay, David S.

    2005-01-01

    Introduction. We propose a new model of distribution of submillimeter sized lunar soil grains on the lunar surface. We propose that in the uppermost millimeter or two of the lunar surface, soil-grains are size graded with the finest nanoscale dust on top and larger micron-scale particles below. This standard state is perturbed by ejecta deposition of larger grains at the lunar surface, which have a coating of dusty layer that may not have substrates of intermediate sizes. Distribution of solar wind elements (SWE), agglutinates, vapor deposited nanophase Fe0 in size fractions of lunar soils and ir spectra of size fractions of lunar soils are compatible with this model. A direct test of this model requires bringing back glue-impregnated tubes of lunar soil samples to be dissected and examined on Earth.

  2. Clinical Functional Capacity Testing in Patients With Facioscapulohumeral Muscular Dystrophy: Construct Validity and Interrater Reliability of Antigravity Tests.

    PubMed

    Rijken, Noortje H; van Engelen, Baziel G; Weerdesteyn, Vivian; Geurts, Alexander C

    2015-12-01

    To evaluate the construct validity and interrater reliability of 4 simple antigravity tests in a small group of patients with facioscapulohumeral muscular dystrophy (FSHD). Case-control study. University medical center. Patients with various severity levels of FSHD (n=9) and healthy control subjects (n=10) were included (N=19). Not applicable. A 4-point ordinal scale was designed to grade performance on the following 4 antigravity tests: sit to stance, stance to sit, step up, and step down. In addition, the 6-minute walk test, 10-m walking test, Berg Balance Scale, and timed Up and Go test were administered as conventional tests. Construct validity was determined by linear regression analysis using the Clinical Severity Score (CSS) as the dependent variable. Interrater agreement was tested using a κ analysis. Patients with FSHD performed worse on all 4 antigravity tests compared with the controls. Stronger correlations were found within than between test categories (antigravity vs conventional). The antigravity tests revealed the highest explained variance with regard to the CSS (R(2)=.86, P=.014). Interrater agreement was generally good. The results of this exploratory study support the construct validity and interrater reliability of the proposed antigravity tests for the assessment of functional capacity in patients with FSHD taking into account the use of compensatory strategies. Future research should further validate these results in a larger sample of patients with FSHD. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  3. GenASiS Basics: Object-oriented utilitarian functionality for large-scale physics simulations

    DOE PAGES

    Cardall, Christian Y.; Budiardja, Reuben D.

    2015-06-11

    Aside from numerical algorithms and problem setup, large-scale physics simulations on distributed-memory supercomputers require more basic utilitarian functionality, such as physical units and constants; display to the screen or standard output device; message passing; I/O to disk; and runtime parameter management and usage statistics. Here we describe and make available Fortran 2003 classes furnishing extensible object-oriented implementations of this sort of rudimentary functionality, along with individual `unit test' programs and larger example problems demonstrating their use. Lastly, these classes compose the Basics division of our developing astrophysics simulation code GenASiS (General Astrophysical Simulation System), but their fundamental nature makes themmore » useful for physics simulations in many fields.« less

  4. Parallel Visualization of Large-Scale Aerodynamics Calculations: A Case Study on the Cray T3E

    NASA Technical Reports Server (NTRS)

    Ma, Kwan-Liu; Crockett, Thomas W.

    1999-01-01

    This paper reports the performance of a parallel volume rendering algorithm for visualizing a large-scale, unstructured-grid dataset produced by a three-dimensional aerodynamics simulation. This dataset, containing over 18 million tetrahedra, allows us to extend our performance results to a problem which is more than 30 times larger than the one we examined previously. This high resolution dataset also allows us to see fine, three-dimensional features in the flow field. All our tests were performed on the Silicon Graphics Inc. (SGI)/Cray T3E operated by NASA's Goddard Space Flight Center. Using 511 processors, a rendering rate of almost 9 million tetrahedra/second was achieved with a parallel overhead of 26%.

  5. Operational experience of the OC-OTEC experiments at NELH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, H

    1989-02-01

    The Solar Energy Research Institute, under funding and program direction from the US Department of Energy, has been operating a small-scale test apparatus to investigate key components of open- cycle ocean thermal energy conversion (OC-OTEC). The apparatus started operations in October 1987 and continues to provide valuable information on heat-and mass-transfer processes in evaporators and condensers, gas sorption processes as seawater is depressurized and repressurized, and control and instrumentation characteristics of open-cycle systems. Although other test facilities have been used to study some of these interactions, this is the largest apparatus of its kind to use seawater since Georges Claude`smore » efforts in 1926. The information obtained from experiments conducted in this apparatus is being used to design a larger scale experiment in which a positive net power production is expected to be demonstrated for the first time with OC-OTEC. This paper describes the apparatus, the major tests conducted during its first 18 months of operation, and the experience gained in OC-OTEC system operation. 13 refs., 8 figs.« less

  6. Rapid small-scale column testing of granular activated carbon for organic micro-pollutant removal in treated domestic wastewater.

    PubMed

    Zietzschmann, F; Müller, J; Sperlich, A; Ruhl, A S; Meinel, F; Altmann, J; Jekel, M

    2014-01-01

    This study investigates the applicability of the rapid small-scale column test (RSSCT) concept for testing of granular activated carbon (GAC) for organic micro-pollutants (OMPs) removal from wastewater treatment plant (WWTP) effluent. The chosen experimental setup was checked using pure water, WWTP effluent, different GAC products, and variable hydrodynamic conditions with different flow velocities and differently sized GAC, as well as different empty bed contact times (EBCTs). The setup results in satisfying reproducibility and robustness. RSSCTs in combination with WWTP effluent are effective when comparing the OMP removal potentials of different GAC products and are a useful tool for the estimation of larger filters. Due to the potentially high competition between OMPs and bulk organics, breakthrough curves are likely to have unfavorable shapes when treating WWTP effluent. This effect can be counteracted by extending the EBCT. With respect to the strong competition observed in GAC treatment of WWTP effluent, the small organic acid and neutral substances are retained longer in the RSSCT filters and are likely to cause the majority of the observed adsorption competition with OMPs.

  7. Nerve Decompression Surgery After Total Hip Arthroplasty: What Are the Outcomes?

    PubMed

    Chughtai, Morad; Khlopas, Anton; Gwam, Chukwuwieke U; Elmallah, Randa K; Thomas, Melbin; Nace, James; Mont, Michael A

    2017-04-01

    The purpose of our study was to compare (1) muscle strength; (2) pain; (3) sensation; (4) various outcome measurement scales between post-total hip arthroplasty (THA) patients who had a sciatic nerve injury and did or did not receive decompression surgery for this condition; and (5) to compare these findings with current literature. Nineteen patients who had nerve injury after THA were reviewed. Patients were stratified into those who had a nerve decompression (n = 12), and those who had not (n = 7). Motor strength was evaluated using the Muscle Strength Testing Scale. Pain was evaluated by using the visual analogue scale. Systematic literature search was performed to compare the findings of this study with others currently published. The decompression group had a significant improvement in motor strength and the visual analog scale scores as compared with nonoperative group. Patients in decompression group had a significant larger increase in the mean Harris hip score and University of California Los Angeles score. There was no significant difference in the increase of Short Form-36 physical and mental scores between the 2 groups. Literature review for nonoperative management yielded 5 studies (93 patients), with 33% improvement. There were 7 studies (81 patients) on nerve decompression surgery, with 75% improvement. This study demonstrates the benefits of nerve decompression surgery in patients who had sciatic nerve injury after THA, as evidenced by results of standardized outcome measurement scales. It is possible to achieve improvements in terms of strength, pain, and clinical outcomes. Comparative studies with larger cohorts are needed to fully assess the best candidates for this procedure. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Chiral Lagrangian with broken scale: Testing the restoration of symmetries in astrophysics and in the laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonanno, Luca; Drago, Alessandro

    2009-04-15

    We study matter at high density and temperature using a chiral Lagrangian in which the breaking of scale invariance is regulated by the value of a scalar field, called dilaton [E. K. Heide, S. Rudaz, and P. J. Ellis, Nucl. Phys. A571, 713 (1994); G. W. Carter, P. J. Ellis, and S. Rudaz, Nucl. Phys. A603, 367 (1996); G. W. Carter, P. J. Ellis, and S. Rudaz, Nucl. Phys. A618, 317 (1997); G. W. Carter and P. J. Ellis, Nucl. Phys. A628, 325 (1998)]. We provide a phase diagram describing the restoration of chiral and scale symmetries. We show thatmore » chiral symmetry is restored at large temperatures, but at low temperatures it remains broken at all densities. We also show that scale invariance is more easily restored at low rather than large baryon densities. The masses of vector-mesons scale with the value of the dilaton and their values initially slightly decrease with the density but then they increase again for densities larger than {approx}3{rho}{sub 0}. The pion mass increases continuously with the density and at {rho}{sub 0} and T=0 its value is {approx}30 MeV larger than in the vacuum. We show that the model is compatible with the bounds stemming from astrophysics, as, e.g., the one associated with the maximum mass of a neutron star. The most striking feature of the model is a very significant softening at large densities, which manifests also as a strong reduction of the adiabatic index. Although the softening has probably no consequence for supernova explosion via the direct mechanism, it could modify the signal in gravitational waves associated with the merging of two neutron stars.« less

  9. Erosive Augmentation of Solid Propellant Burning Rate: Motor Size Scaling Effect

    NASA Technical Reports Server (NTRS)

    Strand, L. D.; Cohen, Norman S.

    1990-01-01

    Two different independent variable forms, a difference form and a ratio form, were investigated for correlating the normalized magnitude of the measured erosive burning rate augmentation above the threshold in terms of the amount that the driving parameter (mass flux or Reynolds number) exceeds the threshold value for erosive augmentation at the test condition. The latter was calculated from the previously determined threshold correlation. Either variable form provided a correlation for each of the two motor size data bases individually. However, the data showed a motor size effect, supporting the general observation that the magnitude of erosive burning rate augmentation is reduced for larger rocket motors. For both independent variable forms, the required motor size scaling was attained by including the motor port radius raised to a power in the independent parameter. A boundary layer theory analysis confirmed the experimental finding, but showed that the magnitude of the scale effect is itself dependent upon scale, tending to diminish with increasing motor size.

  10. Asymmetric multiscale detrended fluctuation analysis of California electricity spot price

    NASA Astrophysics Data System (ADS)

    Fan, Qingju

    2016-01-01

    In this paper, we develop a new method called asymmetric multiscale detrended fluctuation analysis, which is an extension of asymmetric detrended fluctuation analysis (A-DFA) and can assess the asymmetry correlation properties of series with a variable scale range. We investigate the asymmetric correlations in California 1999-2000 power market after filtering some periodic trends by empirical mode decomposition (EMD). Our findings show the coexistence of symmetric and asymmetric correlations in the price series of 1999 and strong asymmetric correlations in 2000. What is more, we detect subtle correlation properties of the upward and downward price series for most larger scale intervals in 2000. Meanwhile, the fluctuations of Δα(s) (asymmetry) and | Δα(s) | (absolute asymmetry) are more significant in 2000 than that in 1999 for larger scale intervals, and they have similar characteristics for smaller scale intervals. We conclude that the strong asymmetry property and different correlation properties of upward and downward price series for larger scale intervals in 2000 have important implications on the collapse of California power market, and our findings shed a new light on the underlying mechanisms of power price.

  11. Materials and structure synergistic with in-space materials utilization. [as means of reducing costs of space missions, colonization, and settlements

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Shadman, Farhang; Sridhar, K. R.

    1992-01-01

    The significant advances made recently toward actual hardware realizations of various concepts for the application of in-space materials utilization (ISMU) are demonstrated. The overall plan for taking innovative concepts through technical feasibility, small-scale tests, scale-up, computer modeling, and larger-scale execution is outlined. Two specific fields of endeavor are surveyed: one has direct applications to construction on the moon, while the other has more basic implications, in addition to the practical aspects of lunar colonies. Several fundamental scientific advances made in the characterization of the physical and chemical processes that need to be elucidated for any intelligent application of the ISMU concepts in future space missions are described. A rigorous quantitative technique for the unambiguous evaluation of various components and component technology that form any space (or terrestrial mission) is also described.

  12. Spatial and temporal variability of hyperspectral signatures of terrain

    NASA Astrophysics Data System (ADS)

    Jones, K. F.; Perovich, D. K.; Koenig, G. G.

    2008-04-01

    Electromagnetic signatures of terrain exhibit significant spatial heterogeneity on a range of scales as well as considerable temporal variability. A statistical characterization of the spatial heterogeneity and spatial scaling algorithms of terrain electromagnetic signatures are required to extrapolate measurements to larger scales. Basic terrain elements including bare soil, grass, deciduous, and coniferous trees were studied in a quasi-laboratory setting using instrumented test sites in Hanover, NH and Yuma, AZ. Observations were made using a visible and near infrared spectroradiometer (350 - 2500 nm) and hyperspectral camera (400 - 1100 nm). Results are reported illustrating: i) several difference scenes; ii) a terrain scene time series sampled over an annual cycle; and iii) the detection of artifacts in scenes. A principal component analysis indicated that the first three principal components typically explained between 90 and 99% of the variance of the 30 to 40-channel hyperspectral images. Higher order principal components of hyperspectral images are useful for detecting artifacts in scenes.

  13. Multiscale permutation entropy analysis of electrocardiogram

    NASA Astrophysics Data System (ADS)

    Liu, Tiebing; Yao, Wenpo; Wu, Min; Shi, Zhaorong; Wang, Jun; Ning, Xinbao

    2017-04-01

    To make a comprehensive nonlinear analysis to ECG, multiscale permutation entropy (MPE) was applied to ECG characteristics extraction to make a comprehensive nonlinear analysis of ECG. Three kinds of ECG from PhysioNet database, congestive heart failure (CHF) patients, healthy young and elderly subjects, are applied in this paper. We set embedding dimension to 4 and adjust scale factor from 2 to 100 with a step size of 2, and compare MPE with multiscale entropy (MSE). As increase of scale factor, MPE complexity of the three ECG signals are showing first-decrease and last-increase trends. When scale factor is between 10 and 32, complexities of the three ECG had biggest difference, entropy of the elderly is 0.146 less than the CHF patients and 0.025 larger than the healthy young in average, in line with normal physiological characteristics. Test results showed that MPE can effectively apply in ECG nonlinear analysis, and can effectively distinguish different ECG signals.

  14. WIDE RANGE ACHIEVEMENT TEST IN AUTISM SPECTRUM DISORDER: TEST-RETEST STABILITY.

    PubMed

    Jantz, Paul B; Bigler, Erin D; Froehlich, Alyson L; Prigge, Molly B D; Cariello, Annahir N; Travers, Brittany G; Anderson, Jeffrey; Zielinski, Brandon A; Alexander, Andrew L; Lange, Nicholas; Lainhart, Janet E

    2015-06-01

    The principal goal of this descriptive study was to establish the test-retest stability of the Reading, Spelling, and Arithmetic subtest scores of the Wide Range Achievement Test (WRAT-3) across two administrations in individuals with autism spectrum disorder. Participants (N = 31) were males ages 6-22 years (M = 15.2, SD = 4.0) who were part of a larger ongoing longitudinal study of brain development in children and adults with autism spectrum disorder (N = 185). Test-retest stability for all three subtests remained consistent across administration periods (M = 31.8 mo., SD = 4.1). Age at time of administration, time between administrations, and test form did not significantly influence test-retest stability. Results indicated that for research involving individuals with autism spectrum disorder with a full scale intelligence quotient above 75, the WRAT-3 Spelling and Arithmetic subtests have acceptable test-retest stability over time and the Reading subtest has moderate test-retest stability over time.

  15. Quantification of a maximum injection volume of CO2 to avert geomechanical perturbations using a compositional fluid flow reservoir simulator

    NASA Astrophysics Data System (ADS)

    Jung, Hojung; Singh, Gurpreet; Espinoza, D. Nicolas; Wheeler, Mary F.

    2018-02-01

    Subsurface CO2 injection and storage alters formation pressure. Changes of pore pressure may result in fault reactivation and hydraulic fracturing if the pressure exceeds the corresponding thresholds. Most simulation models predict such thresholds utilizing relatively homogeneous reservoir rock models and do not account for CO2 dissolution in the brine phase to calculate pore pressure evolution. This study presents an estimation of reservoir capacity in terms of allowable injection volume and rate utilizing the Frio CO2 injection site in the coast of the Gulf of Mexico as a case study. The work includes laboratory core testing, well-logging data analyses, and reservoir numerical simulation. We built a fine-scale reservoir model of the Frio pilot test in our in-house reservoir simulator IPARS (Integrated Parallel Accurate Reservoir Simulator). We first performed history matching of the pressure transient data of the Frio pilot test, and then used this history-matched reservoir model to investigate the effect of the CO2 dissolution into brine and predict the implications of larger CO2 injection volumes. Our simulation results -including CO2 dissolution- exhibited 33% lower pressure build-up relative to the simulation excluding dissolution. Capillary heterogeneity helps spread the CO2 plume and facilitate early breakthrough. Formation expansivity helps alleviate pore pressure build-up. Simulation results suggest that the injection schedule adopted during the actual pilot test very likely did not affect the mechanical integrity of the storage complex. Fault reactivation requires injection volumes of at least about sixty times larger than the actual injected volume at the same injection rate. Hydraulic fracturing necessitates much larger injection rates than the ones used in the Frio pilot test. Tested rock samples exhibit ductile deformation at in-situ effective stresses. Hence, we do not expect an increase of fault permeability in the Frio sand even in the presence of fault reactivation.

  16. Heat-transfer test results for a .0275-scale space shuttle external tank with a 10 deg/40 deg double cone-ogive nose in the NASA/AMES 3.5-foot hypersonic wind tunnel (FH14), volume 2

    NASA Technical Reports Server (NTRS)

    Carroll, H. R.

    1977-01-01

    A .0275 scale forebody model of the new baseline configuration of the space shuttle external tank vent cap configuration was tested to determine the flow field due to the double cone configuration. The tests were conducted in a 3.5 foot hypersonic wind tunnel at alpha = -5 deg, -4.59 deg, 0 deg, 5 deg, and 10 deg; beta = 0 deg, -3 deg, -5.51 deg, -6 deg, -9 deg, and +6 deg; nominal freestream Reynolds numbers per foot of 1.5 x 1 million, 3.0 x 1 million, and 5.0 x 1 million; and a nominal Mach number of 5. Separation and reattached flow from thermocouple data, shadowgraphs, and oil flows indicate that separation begins about 80% from the tip of the 10 deg cone, then reattaches on the vent cap and produces fully turbulent flow over most of the model forebody. The hardware disturbs the flow over a much larger area than present TPS application has assumed. A correction to the flow disturbance was experimentally suggested from the results of an additional test run.

  17. What are the fluxes of greenhouse gases from the greater Los Angeles area as inferred from top-down remote sensing studies?

    NASA Astrophysics Data System (ADS)

    Hedelius, J.; Wennberg, P. O.; Wunch, D.; Roehl, C. M.; Podolske, J. R.; Hillyard, P.; Iraci, L. T.

    2017-12-01

    Greenhouse gas (GHG) emissions from California's South Coast Air Basin (SoCAB) have been studied extensively using a variety of tower, aircraft, remote sensing, emission inventory, and modeling studies. It is impractical to survey GHG fluxes from all urban areas and hot-spots to the extent the SoCAB has been studied, but it can serve as a test location for scaling methods globally. We use a combination of remote sensing measurements from ground (Total Carbon Column Observing Network, TCCON) and space-based (Observing Carbon Observatory-2, OCO-2) sensors in an inversion to obtain the carbon dioxide flux from the SoCAB. We also perform a variety of sensitivity tests to see how the inversion performs using different model parameterizations. Fluxes do not significantly depend on the mixed layer depth, but are sensitive to the model surface layers (<5 m). Carbon dioxide fluxes are larger than those from bottom-up inventories by about 20%, and along with CO has a significant weekend:weekday effect. Methane fluxes have little weekend changes. Results also include flux estimates from sub-regions of the SoCAB. Larger top-down than bottom-up fluxes highlight the need for additional work on both approaches. Higher top-down fluxes could arise from sampling bias, model bias, or may show bottom-up values underestimate sources. Lessons learned here may help in scaling up inversions to hundreds of urban systems using space-based observations.

  18. Implementation of a boundary element method to solve for the near field effects of an array of WECs

    NASA Astrophysics Data System (ADS)

    Oskamp, J. A.; Ozkan-Haller, H. T.

    2010-12-01

    When Wave Energy Converters (WECs) are installed, they affect the shoreline wave climate by removing some of the wave energy which would have reached the shore. Before large WEC projects are launched, it is important to understand the potential coastal impacts of these installations. The high cost associated with ocean scale testing invites the use of hydrodynamic models to play a major role in estimating these effects. In this study, a wave structure interaction program (WAMIT) is used to model an array of WECs. The program predicts the wave field throughout the array using a boundary element method to solve the potential flow fluid problem, taking into account the incident waves, the power dissipated, and the way each WEC moves and interacts with the others. This model is appropriate for a small domain near the WEC array in order to resolve the details in the interactions, but not extending to the coastline (where the far-field effects must be assessed). To propagate these effects to the coastline, the waves leaving this small domain will be used as boundary conditions for a larger model domain which will assess the shoreline effects caused by the array. The immediate work is concerned with setting up the WAMIT model for a small array of point absorbers. A 1:33 scale lab test is planned and will provide data to validate the WAMIT model on this small domain before it is nested with the larger domain to estimate shoreline effects.

  19. Fun and games in reviewing neonatal emergency care.

    PubMed

    Gordon, D W; Brown, H N

    1995-04-01

    To develop a game-based review instrument for use by newborn caregivers in preparing for emergency situations. One hundred and one test questions covering pathophysiology, resuscitation, and medications were developed. The questions then underwent expert and peer review, psychometric testing for content validity and test-retest reliability, and a game trial. The needs of adult learners are different from those of other learners. The gaming format uses knowledge gained through experience and provides an avenue for validating knowledge and sharing experiences. This format has been found effective for review and reinforcement of facts. Twelve nurses participated in a trial game and completed a written evaluation using a Likert scale. The Neonatal Emergency Trivia Game is an effective tool for reviewing material related to neonatal emergency care decisions. Additional testing with a larger group would strengthen validity and reliability data.

  20. Planar blast scaling with condensed-phase explosives in a shock tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Scott L

    2011-01-25

    Blast waves are strong shock waves that result from large power density deposition into a fluid. The rapid energy release of high-explosive (HE) detonation provides sufficiently high power density for blast wave generation. Often it is desirable to quantify the energy released by such an event and to determine that energy relative to other reference explosives to derive an explosive-equivalence value. In this study, we use condensed-phase explosives to drive a blast wave in a shock tube. The explosive material and quantity were varied to produce blast waves of differing strengths. Pressure transducers at varying lengths measured the post-shock pressure,more » shock-wave arrival time and sidewall impulse associated with each test. Blast-scaling concepts in a one-dimensional geometry were then used to both determine the energy release associated with each test and to verify the scaling of the shock position versus time, overpressure versus distance, and impulse. Most blast scaling measurements to-date have been performed in a three-dimensional geometry such as a blast arena. Testing in a three-dimensional geometry can be challenging, however, as spherical shock-wave symmetry is required for good measurements. Additionally, the spherical wave strength decays rapidly with distance and it can be necessary to utilize larger (several kg) quantities of explosive to prevent significant decay from occurring before an idealized blast wave has formed. Such a mode of testing can be expensive, require large quantities of explosive, and be limited by both atmospheric conditions (such as rain) and by noise complaints from the population density near the test arena. Testing is possible in more compact geometries, however. Non-planar blast waves can be formed into a quasi-planar shape by confining the shock diffraction with the walls of a shock tube. Regardless of the initial form, the wave shape will begin to approximate a planar front after successive wave reflections from the tube walls. Such a technique has previously been used to obtain blast scaling measurements in the planar geometry with gaseous explosives and the condensed-phase explosive nitroguanidine. Recently, there has been much interest in the blast characterization of various non-ideal high explosive (NIHE) materials. With non-ideals, the detonation reaction zone is significantly larger (up to several cm for ANFO) than more ideal explosives. Wave curvature, induced by charge-geometry, can significantly affect the energy release associated with NIHEs. To measure maximum NIHE energy release accurately, it is desirable to minimize any such curvature and, if possible, to overdrive the detonation shock to ensure completion of chemical reactions ahead of the sonic locus associated with the reaction zone. This is achieved in the current study through use of a powerful booster HE and a charge geometry consisting of short cylindrical lengths of NIHE initiated along the charge centerline.« less

  1. Rasch analysis of the Multiple Sclerosis Impact Scale (MSIS-29)

    PubMed Central

    Ramp, Melina; Khan, Fary; Misajon, Rose Anne; Pallant, Julie F

    2009-01-01

    Background Multiple Sclerosis (MS) is a degenerative neurological disease that causes impairments, including spasticity, pain, fatigue, and bladder dysfunction, which negatively impact on quality of life. The Multiple Sclerosis Impact Scale (MSIS-29) is a disease-specific health-related quality of life (HRQoL) instrument, developed using the patient's perspective on disease impact. It consists of two subscales assessing the physical (MSIS-29-PHYS) and psychological (MSIS-29-PSYCH) impact of MS. Although previous studies have found support for the psychometric properties of the MSIS-29 using traditional methods of scale evaluation, the scale has not been subjected to a detailed Rasch analysis. Therefore, the objective of this study was to use Rasch analysis to assess the internal validity of the scale, and its response format, item fit, targeting, internal consistency and dimensionality. Methods Ninety-two persons with definite MS residing in the community were recruited from a tertiary hospital database. Patients completed the MSIS-29 as part of a larger study. Rasch analysis was undertaken to assess the psychometric properties of the MSIS-29. Results Rasch analysis showed overall support for the psychometric properties of the two MSIS-29 subscales, however it was necessary to reduce the response format of the MSIS-29-PHYS to a 3-point response scale. Both subscales were unidimensional, had good internal consistency, and were free from item bias for sex and age. Dimensionality testing indicated it was not appropriate to combine the two subscales to form a total MSIS score. Conclusion In this first study to use Rasch analysis to fully assess the psychometric properties of the MSIS-29 support was found for the two subscales but not for the use of the total scale. Further use of Rasch analysis on the MSIS-29 in larger and broader samples is recommended to confirm these findings. PMID:19545445

  2. Tests of dynamic Lagrangian eddy viscosity models in Large Eddy Simulations of flow over three-dimensional bluff bodies

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-Heng; Meneveau, Charles; Parlange, Marc B.

    2004-11-01

    Large Eddy Simulations (LES) of atmospheric boundary-layer air movement in urban environments are especially challenging due to complex ground topography. Typically in such applications, fairly coarse grids must be used where the subgrid-scale (SGS) model is expected to play a crucial role. A LES code using pseudo-spectral discretization in horizontal planes and second-order differencing in the vertical is implemented in conjunction with the immersed boundary method to incorporate complex ground topography, with the classic equilibrium log-law boundary condition in the new-wall region, and with several versions of the eddy-viscosity model: (1) the constant-coefficient Smagorinsky model, (2) the dynamic, scale-invariant Lagrangian model, and (3) the dynamic, scale-dependent Lagrangian model. Other planar-averaged type dynamic models are not suitable because spatial averaging is not possible without directions of statistical homogeneity. These SGS models are tested in LES of flow around a square cylinder and of flow over surface-mounted cubes. Effects on the mean flow are documented and found not to be major. Dynamic Lagrangian models give a physically more realistic SGS viscosity field, and in general, the scale-dependent Lagrangian model produces larger Smagorinsky coefficient than the scale-invariant one, leading to reduced distributions of resolved rms velocities especially in the boundary layers near the bluff bodies.

  3. Psychometric Testing of the Greek Version of the Clinical Learning Environment-Teacher (CLES+T).

    PubMed

    Papastavrou, Evridiki; Dimitriadou, Maria; Tsangari, Haritini

    2015-09-01

    Clinical practice is an important part of nursing education, and robust instruments are required to evaluate the effectiveness of the hospital setting as a learning environment. The study aim is the psychometric test of the Clinical Learning Environment+Teacher (CLES+T) scale-Greek version. 463 students practicing in acute care hospitals participated in the study. The reliability of the instrument was estimated with Cronbach's alpha coefficients. The construct validity was evaluated using exploratory factor analysis (EFA) with Varimax rotation. Convergent validity was examined by measuring the bivariate correlations between the scale/subscales. Content, validity and semantic equivalence were examined through reviews by a panel of experts. The total scale showed high internal consistency (α=0.95). EFA was identical to the original scale, had eigen values larger than one and explained a total of 67.4% of the variance. The factor with the highest eigen value and the largest percentage of variance explained was "supervisory relationship", with an original eigenvalue of 13.1 (6.8 after Varimax rotation) and an explanation of around 38% of the variance (or 20% after rotation). Convergent validity was examined by measuring the bivariate correlations between the scale and a question that measured the general satisfaction. The Greek version of the CLES+T is a valid and reliable instrument that can be used to examine students' perceptions of the clinical learning environment.

  4. Cost-optimized methods extending the solution space of lightweight spaceborne monolithic ZERODUR® mirrors to larger sizes

    NASA Astrophysics Data System (ADS)

    Leys, Antoine; Hull, Tony; Westerhoff, Thomas

    2015-09-01

    We address the problem that larger spaceborne mirrors require greater sectional thickness to achieve a sufficient first eigen frequency that is resilient to launch loads, and to be stable during optical telescope assembly integration and test, this added thickness results in unacceptable added mass if we simply scale up solutions for smaller mirrors. Special features, like cathedral ribs, arch, chamfers, and back-side following the contour of the mirror face have been considered for these studies. For computational efficiency, we have conducted detailed analysis on various configurations of a 800 mm hexagonal segment and of a 1.2-m mirror, in a manner that they can be constrained by manufacturing parameters as would be a 4-m mirror. Furthermore each model considered also has been constrained by cost-effective machining practice as defined in the SCHOTT Mainz factory. Analysis on variants of this 1.2-m mirror has shown a favorable configuration. We have then scaled this optimal configuration to 4-m aperture. We discuss resulting parameters of costoptimized 4-m mirrors. We also discuss the advantages and disadvantages this analysis reveals of going to cathedral rib architecture on 1-m class mirror substrates.

  5. Scaling properties of European research units

    PubMed Central

    Jamtveit, Bjørn; Jettestuen, Espen; Mathiesen, Joachim

    2009-01-01

    A quantitative characterization of the scale-dependent features of research units may provide important insight into how such units are organized and how they grow. The relative importance of top-down versus bottom-up controls on their growth may be revealed by their scaling properties. Here we show that the number of support staff in Scandinavian research units, ranging in size from 20 to 7,800 staff members, is related to the number of academic staff by a power law. The scaling exponent of ≈1.30 is broadly consistent with a simple hierarchical model of the university organization. Similar scaling behavior between small and large research units with a wide range of ambitions and strategies argues against top-down control of the growth. Top-down effects, and externally imposed effects from changing political environments, can be observed as fluctuations around the main trend. The observed scaling law implies that cost-benefit arguments for merging research institutions into larger and larger units may have limited validity unless the productivity per academic staff and/or the quality of the products are considerably higher in larger institutions. Despite the hierarchical structure of most large-scale research units in Europe, the network structures represented by the academic component of such units are strongly antihierarchical and suboptimal for efficient communication within individual units. PMID:19625626

  6. Multiscale Porosity and Mechanical Properties of Mancos Shale: Evaluation of REV and Scale Separation

    NASA Astrophysics Data System (ADS)

    Heath, J. E.; Dewers, T. A.; Yoon, H.; Mozley, P.

    2016-12-01

    Heterogeneity from the nanometer to core and larger length scales is a major challenge to understanding coupled processes in shale. To develop methods to address this challenge, we present application of high throughput multi-beam scanning electron microscopy (mSEM) and nano-to-micro-scale mechanics to the Mancos Shale. We use a 61-beam mSEM to collect 6 nm resolution SEM images at the scale of several square millimeters. These images are analyzed for pore size and shape characteristics including spatial correlation and structure. Nano-indentation, micropillar compression, and axisymmetric testing at multiple length scales allows for examining the influence of sampling size on mechanical response. The combined data set is used to: investigate representative elementary volumes (and areas for the 2D images) for the Mancos Shale; determine if scale separation occurs; and determine if transport and mechanical properties at a given length scale can be statistically defined. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. Effects of axisymmetric contractions on turbulence of various scales

    NASA Technical Reports Server (NTRS)

    Tan-Atichat, J.; Nagib, H. M.; Drubka, R. E.

    1980-01-01

    Digitally acquired and processed results from an experimental investigation of grid generated turbulence of various scales through and downstream of nine matched cubic contour contractions ranging in area ratio from 2 to 36, and in length to inlet diameter ratio from 0.25 to 1.50 are reported. An additional contraction with a fifth order contour was also utilized for studying the shape effect. Thirteen homogeneous and nearly isotropic test flow conditions with a range of turbulence intensities, length scales and Reynolds numbers were generated and used to examine the sensitivity of the contractions to upstream turbulence. The extent to which the turbulence is altered by the contraction depends on the incoming turbulence scales, the total strain experienced by the fluid, as well as the contraction ratio and the strain rate. Varying the turbulence integral scale influences the transverse turbulence components more than the streamwise component. In general, the larger the turbulence scale, the lesser the reduction in the turbulence intensity of the transverse components. Best agreement with rapid distortion theory was obtained for large scale turbulence, where viscous decay over the contraction length was negligible, or when a first order correction for viscous decay was applied to the results.

  8. Boolean decision problems with competing interactions on scale-free networks: Equilibrium and nonequilibrium behavior in an external bias

    NASA Astrophysics Data System (ADS)

    Zhu, Zheng; Andresen, Juan Carlos; Moore, M. A.; Katzgraber, Helmut G.

    2014-02-01

    We study the equilibrium and nonequilibrium properties of Boolean decision problems with competing interactions on scale-free networks in an external bias (magnetic field). Previous studies at zero field have shown a remarkable equilibrium stability of Boolean variables (Ising spins) with competing interactions (spin glasses) on scale-free networks. When the exponent that describes the power-law decay of the connectivity of the network is strictly larger than 3, the system undergoes a spin-glass transition. However, when the exponent is equal to or less than 3, the glass phase is stable for all temperatures. First, we perform finite-temperature Monte Carlo simulations in a field to test the robustness of the spin-glass phase and show that the system has a spin-glass phase in a field, i.e., exhibits a de Almeida-Thouless line. Furthermore, we study avalanche distributions when the system is driven by a field at zero temperature to test if the system displays self-organized criticality. Numerical results suggest that avalanches (damage) can spread across the whole system with nonzero probability when the decay exponent of the interaction degree is less than or equal to 2, i.e., that Boolean decision problems on scale-free networks with competing interactions can be fragile when not in thermal equilibrium.

  9. An empirical test of 'universal' biomass scaling relationships in kelps: evidence of convergence with seed plants.

    PubMed

    Starko, Samuel; Martone, Patrick T

    2016-11-01

    Biomass allocation patterns have received substantial consideration, leading to the recognition of several 'universal' interspecific trends. Despite efforts to understand biomass partitioning among embryophytes, few studies have examined macroalgae that evolved independently, yet function ecologically in much the same ways as plants. Kelps allocate photosynthate among three organs (the blade(s), stipe(s) and holdfast) that are superficially convergent with organs of land plants, providing a unique opportunity to test the limits of 'universal' trends. In this study, we used an allometric approach to quantify interspecific biomass partitioning patterns in kelps and assess whether embryophyte-based predictions of biomass scaling can be applied to marine macrophytes that lack root-to-leaf hydraulic transport. Photosynthetic area and dry mass were found to scale to approximately the ¾ power and kelp biomass allocation patterns were shown to match closely to empirical measures of allometric scaling among woody plants. Larger kelp species were found to have increased relative stipe and holdfast mass than smaller species, highlighting important consequences of size for marine macroalgae. Our study provides insights into the evolution of size in the largest marine macrophytes and corroborates previous work suggesting that the morphology of divergent lineages of photoautotrophs may reflect similar selective pressures. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  10. Concentrating Solar Power Central Receiver Panel Component Fabrication and Testing FINAL REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDowell, Michael W; Miner, Kris

    The objective of this project is to complete a design of an advanced concentrated solar panel and demonstrate the manufacturability of key components. Then confirm the operation of the key components under prototypic solar flux conditions. This work is an important step in reducing the levelized cost of energy (LCOE) from a central receiver solar power plant. The key technical risk to building larger power towers is building the larger receiver systems. Therefore, this proposed technology project includes the design of an advanced molten salt prototypic sub-scale receiver panel that can be utilized into a large receiver system. Then completemore » the fabrication and testing of key components of the receive design that will be used to validate the design. This project shall have a significant impact on solar thermal power plant design. Receiver panels of suitable size for utility scale plants are a key element to a solar power tower plant. Many subtle and complex manufacturing processes are involved in producing a reliable, robust receiver panel. Given the substantial size difference between receiver panels manufactured in the past and those needed for large plant designs, the manufacture and demonstration on prototype receiver panel components with representative features of a full-sized panel will be important to improving the build process for commercial success. Given the thermal flux limitations of the test facility, the panel components cannot be rendered full size. Significance changes occurred in the projects technical strategies from project initiation to the accomplishments described herein. The initial strategy was to define cost improvements for the receiver, design and build a scale prototype receiver and test, on sun, with a molten salt heat transport system. DOE had committed to constructing a molten salt heat transport loop to support receiver testing at the top of the NSTTF tower. Because of funding constraints this did not happen. A subsequent plan to test scale prototype receiver, off sun but at temperature, at a molten salt loop at ground level adjacent to the tower also had to be abandoned. Thus, no test facility existed for a molten salt receiver test. As a result, PWR completed the prototype receiver design and then fabricated key components for testing instead of fabricating the complete prototype receiver. A number of innovative design ideas have been developed. Key features of the receiver panel have been identified. This evaluation includes input from Solar 2, personal experience of people working on these programs and meetings with Sandia. Key components of the receiver design and key processes used to fabricate a receiver have been selected for further evaluation. The Test Plan, Concentrated Solar Power Receiver In Cooperation with the Department of Energy and Sandia National Laboratory was written to define the scope of the testing to be completed as well as to provide details related to the hardware, instrumentation, and data acquisition. The document contains a list of test objectives, a test matrix, and an associated test box showing the operating points to be tested. Test Objectives: 1. Demonstrate low-cost manufacturability 2. Demonstrate robustness of two different tube base materials 3. Collect temperature data during on sun operation 4. Demonstrate long term repeated daily operation of heat shields 5. Complete pinhole tube weld repairs 6. Anchor thermal models This report discusses the tests performed, the results, and implications for design improvements and LCOE reduction.« less

  11. Testing Convergence Versus History: Convergence Dominates Phenotypic Evolution for over 150 Million Years in Frogs.

    PubMed

    Moen, Daniel S; Morlon, Hélène; Wiens, John J

    2016-01-01

    Striking evolutionary convergence can lead to similar sets of species in different locations, such as in cichlid fishes and Anolis lizards, and suggests that evolution can be repeatable and predictable across clades. Yet, most examples of convergence involve relatively small temporal and/or spatial scales. Some authors have speculated that at larger scales (e.g., across continents), differing evolutionary histories will prevent convergence. However, few studies have compared the contrasting roles of convergence and history, and none have done so at large scales. Here we develop a two-part approach to test the scale over which convergence can occur, comparing the relative importance of convergence and history in macroevolution using phylogenetic models of adaptive evolution. We apply this approach to data from morphology, ecology, and phylogeny from 167 species of anuran amphibians (frogs) from 10 local sites across the world, spanning ~160 myr of evolution. Mapping ecology on the phylogeny revealed that similar microhabitat specialists (e.g., aquatic, arboreal) have evolved repeatedly across clades and regions, producing many evolutionary replicates for testing for morphological convergence. By comparing morphological optima for clades and microhabitat types (our first test), we find that convergence associated with microhabitat use dominates frog morphological evolution, producing recurrent ecomorphs that together encompass all sampled species in each community in each region. However, our second test, which examines whether and how much species differ from their inferred optima, shows that convergence is incomplete: that is, phenotypes of most species are still somewhat distant from the estimated optimum for each microhabitat, seemingly because of insufficient time for more complete adaptation (an effect of history). Yet, these effects of history are related to past ecologies, and not clade membership. Overall, our study elucidates the dominant drivers of morphological evolution across a major vertebrate clade and shows that evolution can be repeatable at much greater temporal and spatial scales than commonly thought. It also provides an analytical framework for testing other potential examples of large-scale convergence. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Development of Experimental Icing Simulation Capability for Full-Scale Swept Wings: Hybrid Design Process, Years 1 and 2

    NASA Technical Reports Server (NTRS)

    Fujiwara, Gustavo; Bragg, Mike; Triphahn, Chris; Wiberg, Brock; Woodard, Brian; Loth, Eric; Malone, Adam; Paul, Bernard; Pitera, David; Wilcox, Pete; hide

    2017-01-01

    This report presents the key results from the first two years of a program to develop experimental icing simulation capabilities for full-scale swept wings. This investigation was undertaken as a part of a larger collaborative research effort on ice accretion and aerodynamics for large-scale swept wings. Ice accretion and the resulting aerodynamic effect on large-scale swept wings presents a significant airplane design and certification challenge to air frame manufacturers, certification authorities, and research organizations alike. While the effect of ice accretion on straight wings has been studied in detail for many years, the available data on swept-wing icing are much more limited, especially for larger scales.

  13. The Evolution of Clutch Size in Hosts of Avian Brood Parasites.

    PubMed

    Medina, Iliana; Langmore, Naomi E; Lanfear, Robert; Kokko, Hanna

    2017-11-01

    Coevolution with avian brood parasites shapes a range of traits in their hosts, including morphology, behavior, and breeding systems. Here we explore whether brood parasitism is also associated with the evolution of host clutch size. Several studies have proposed that hosts of highly virulent parasites could decrease the costs of parasitism by evolving a smaller clutch size, because hosts with smaller clutches will lose fewer progeny when their clutch is parasitized. We describe a model of the evolution of clutch size, which challenges this logic and shows instead that an increase in clutch size (or no change) should evolve in hosts. We test this prediction using a broad-scale comparative analysis to ask whether there are differences in clutch size within hosts and between hosts and nonhosts. Consistent with our model, this analysis revealed that host species do not have smaller clutches and that hosts that incur larger costs from raising a parasite lay larger clutches. We suggest that brood parasitism might be an influential factor in clutch-size evolution and could potentially select for the evolution of larger clutches in host species.

  14. Modeling Feedbacks Between Individual Human Decisions and Hydrology Using Interconnected Physical and Social Models

    NASA Astrophysics Data System (ADS)

    Murphy, J.; Lammers, R. B.; Proussevitch, A. A.; Ozik, J.; Altaweel, M.; Collier, N. T.; Alessa, L.; Kliskey, A. D.

    2014-12-01

    The global hydrological cycle intersects with human decision making at multiple scales, from dams and irrigation works to the taps in individuals' homes. Residential water consumers are commonly encouraged to conserve; these messages are heard against a background of individual values and conceptions about water quality, uses, and availability. The degree to which these values impact the larger-hydrological dynamics, the way that changes in those values have impacts on the hydrological cycle through time, and the feedbacks by which water availability and quality in turn shape those values, are not well explored. To investigate this domain we employ a global-scale water balance model (WBM) coupled with a social-science-grounded agent-based model (ABM). The integration of a hydrological model with an agent-based model allows us to explore driving factors in the dynamics in coupled human-natural systems. From the perspective of the physical hydrologist, the ABM offers a richer means of incorporating the human decisions that drive the hydrological system; from the view of the social scientist, a physically-based hydrological model allows the decisions of the agents to play out against constraints faithful to the real world. We apply the interconnected models to a study of Tucson, Arizona, USA, and its role in the larger Colorado River system. Our core concept is Technology-Induced Environmental Distancing (TIED), which posits that layers of technology can insulate consumers from direct knowledge of a resource. In Tucson, multiple infrastructure and institutional layers have arguably increased the conceptual distance between individuals and their water supply, offering a test case of the TIED framework. Our coupled simulation allows us to show how the larger system transforms a resource with high temporal and spatial variability into a consumer constant, and the effects of this transformation on the regional system. We use this to explore how pricing, messaging, and social dynamics impact demand, how changes in demand affect the regional water system, and under what system challenges the values of the individuals are likely to change. This study is a preamble to modeling multiple regionally connected cities and larger systems with impacts on hydrology at the continental and global scales.

  15. Feasibility study of full-reactor gas core demonstration test

    NASA Technical Reports Server (NTRS)

    Kunze, J. F.; Lofthouse, J. H.; Shaffer, C. J.; Macbeth, P. J.

    1973-01-01

    Separate studies of nuclear criticality, flow patterns, and thermodynamics for the gas core reactor concept have all given positive indications of its feasibility. However, before serious design for a full scale gas core application can be made, feasibility must be shown for operation with full interaction of the nuclear, thermal, and hydraulic effects. A minimum sized, and hence minimum expense, test arrangement is considered for a full gas core configuration. It is shown that the hydrogen coolant scattering effects dominate the nuclear considerations at elevated temperatures. A cavity diameter of somewhat larger than 4 ft (122 cm) will be needed if temperatures high enough to vaporize uranium are to be achieved.

  16. Ducted Fan Designs Lead to Potential New Vehicles

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In 1994, aerospace engineers Rob Bulaga and Mike Moshier formed Trek Aerospace Inc., based in Folsom, California, to develop personal air vehicles using a novel ducted fan design. The company relied on Ames Research Center for a great deal of testing, the results of which have provided greater lift, lowered weight, more power, and improved maneuverability. The technology has been applied to three models: the Dragonfly UMR-1, the Springtail EFV, and the OVIWUN, a small-scale version that is for sale through the company's Web site. It is safer than a manned vehicle, and its size makes it relatively difficult for it to damage itself during test flights the way a larger mass, faster craft could.

  17. Trampoline Resonator Fabrication for Tests of Quantum Mechanics at High Mass

    NASA Astrophysics Data System (ADS)

    Weaver, Matthew; Pepper, Brian; Sonin, Petro; Eerkens, Hedwig; Buters, Frank; de Man, Sven; Bouwmeester, Dirk

    2014-03-01

    There has been much interest recently in optomechanical devices that can reach the ground state. Two requirements for achieving ground state cooling are high optical finesse in the cavity and high mechanical quality factor. We present a set of trampoline resonator devices using high stress silicon nitride and superpolishing of mirrors with sufficient finesse (as high as 60,000) and quality factor (as high as 480,000) for ground state cooling in a dilution refrigerator. These devices have a higher mass, between 80 and 100 ng, and lower frequency, between 200 and 500 kHz, than other devices that have been cooled to the ground state, enabling tests of quantum mechanics at a larger mass scale.

  18. Rock Geochemistry and Mineralogy from Fault Zones and Polymetallic Fault Veins of the Central Front Range, Colorado

    USGS Publications Warehouse

    Caine, Jonathan S.; Bove, Dana J.

    2010-01-01

    During the 2004 to 2008 field seasons, approximately 200 hand samples of fault and polymetallic vein-related rocks were collected for geochemical and mineralogical analyses. The samples were collected by the U.S. Geological Survey as part of the Evolution of Brittle Structures Task under the Central Colorado Assessment Project (CCAP) of the Mineral Resources Program (http://minerals.cr.usgs.gov/projects/colorado_assessment/index.html). The purpose of this work has been to characterize the relation between epithermal, polymetallic mineral deposits, paleostress, and the geological structures that hosted fluid flow and localization of the deposits. The data in this report will be used to document and better understand the processes that control epithermal mineral-deposit formation by attempting to relate the geochemistry of the primary structures that hosted hydrothermal fluid flow to their heat and fluid sources. This includes processes from the scale of the structures themselves to the far field scale, inclusive of the intrusive bodies that have been thought to be the sources for the hydrothermal fluid flow. The data presented in this report are part of a larger assessment effort on public lands. The larger study area spans the region of the southern Rocky Mountains in Colorado from the Wyoming to New Mexico borders and from the eastern boundary of the Front Range to approximately the longitude of Vail and Leadville, Colorado. Although the study area has had an extensive history of geological mapping, the mapping has resulted in a number of hypotheses that are still in their infancy of being tested. For example, the proximity of polymetallic veins to intrusive bodies has been thought to reflect a genetic relation between the two features; however, this idea has not been well tested with geochemical indicators. Recent knowledge regarding the coupled nature of stress, strain, fluid flow, and geochemistry warrant new investigations and approaches to test a variety of ideas regarding the genetic processes associated with ore-deposit formation. The central part of the eastern Front Range has excellent exposures of fault zones and polymetallic fault veins, subsequently resulting in some of the most detailed mapping and associated data sets in the region. Thus, the area was chosen for detailed data compilation, new sample and data collection, and a variety of structural and geochemical analyses. The data presented in this report come from samples of fault-related exposures in the Front Range and include elemental chemistry and mineralogy from the outcrop-scale study localities within the larger CCAP study area.

  19. Effects of a Brief Qigong-based Stress Reduction Program (BQSRP) in a distressed Korean population: a randomized trial

    PubMed Central

    2013-01-01

    Background Distressed individuals in Korea may benefit from the practice of mind–body exercises such as Qigong. However, the effectiveness of such techniques needs to be investigated. Methods Fifty participants who were eligible to this study were randomized into a group receiving a 4-week intervention of a brief Qigong-based stress reduction program (BQSRP) or a wait-list control group. Before and after the intervention period, saliva samples were collected and questionnaires were completed on perceived stress, anxiety, “Hwa-Byung” (anger syndrome), and quality of life. Salivary cortisol has emerged in mind-body therapy research as an easy-to-collect, relatively inexpensive, biologic marker of stress. Salivary corisol were collected to evaluate physiological effect of BQSRP. Between-group comparisons of change from baseline to study completion were analyzed by analysis of covariance for the Perceived Stress Scale and independent two sample t-tests for other measures. Results Compared with the control group, the BQSRP intervention group displayed significantly larger decreases in Perceived Stress Scale scores (p = 0.0006), State Anxiety scores (p = 0.0028), Trait Anxiety scores (p < 0.0001), personality subscale scores of the Hwa-Byung Scale (p = 0.0321), symptoms scores of the Hwa-Byung Scale (p = 0.0196), and a significantly larger increase in World Health Organization Quality of Life Abbreviated version scores (ps < .05). Salivary cortisol levels were not changed. Conclusions The BQSRP appears to be effective in reducing stress perception, anxiety, anger, and improving quality of life (KCT0000056). PMID:23705963

  20. Inhibition of Return in the Visual Field

    PubMed Central

    Bao, Yan; Lei, Quan; Fang, Yuan; Tong, Yu; Schill, Kerstin; Pöppel, Ernst; Strasburger, Hans

    2013-01-01

    Inhibition of return (IOR) as an indicator of attentional control is characterized by an eccentricity effect, that is, the more peripheral visual field shows a stronger IOR magnitude relative to the perifoveal visual field. However, it could be argued that this eccentricity effect may not be an attention effect, but due to cortical magnification. To test this possibility, we examined this eccentricity effect in two conditions: the same-size condition in which identical stimuli were used at different eccentricities, and the size-scaling condition in which stimuli were scaled according to the cortical magnification factor (M-scaling), thus stimuli being larger at the more peripheral locations. The results showed that the magnitude of IOR was significantly stronger in the peripheral relative to the perifoveal visual field, and this eccentricity effect was independent of the manipulation of stimulus size (same-size or size-scaling). These results suggest a robust eccentricity effect of IOR which cannot be eliminated by M-scaling. Underlying neural mechanisms of the eccentricity effect of IOR are discussed with respect to both cortical and subcortical structures mediating attentional control in the perifoveal and peripheral visual field. PMID:23820946

  1. Similarity Rules for Scaling Solar Sail Systems

    NASA Technical Reports Server (NTRS)

    Canfield, Stephen L.; Beard, James W., III; Peddieson, John; Ewing, Anthony; Garbe, Greg

    2004-01-01

    Future science missions will require solar sails on the order 10,000 sq m (or larger). However, ground and flight demonstrations must be conducted at significantly smaller Sizes (400 sq m for ground demo) due to limitations of ground-based facilities and cost and availability of flight opportunities. For this reason, the ability to understand the process of scalability, as it applies to solar sail system models and test data, is crucial to the advancement of this technology. This report will address issues of scaling in solar sail systems, focusing on structural characteristics, by developing a set of similarity or similitude functions that will guide the scaling process. The primary goal of these similarity functions (process invariants) that collectively form a set of scaling rules or guidelines is to establish valid relationships between models and experiments that are performed at different orders of scale. In the near term, such an effort will help guide the size and properties of a flight validation sail that will need to be flown to accurately represent a large, mission-level sail.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Sarah L.; Gibbons, Sean M.; Owens, Sarah M.

    Soil microbial communities are essential for ecosystem function, but linking community composition to biogeochemical processes is challenging because of high microbial diversity and large spatial variability of most soil characteristics. We investigated soil bacterial community structure in a switchgrass stand planted on soil with a history of grassland vegetation at high spatial resolution to determine whether biogeographic trends occurred at the centimeter scale. Moreover, we tested whether such heterogeneity, if present, influenced community structure within or among ecosystems. Pronounced heterogeneity was observed at centimeter scales, with abrupt changes in relative abundance of phyla from sample to sample. At the ecosystemmore » scale (> 10 m), however, bacterial community composition and structure were subtly, but significantly, altered by fertilization, with higher alpha diversity in fertilized plots. Moreover, by comparing these data with data from 1772 soils from the Earth Microbiome Project, it was found that 20% diverse globally sourced soil samples, while grassland soils shared approximately 40% of their operational taxonomic units with the current study. By spanning several orders of magnitude, the analysis suggested that extreme patchiness characterized community structure at smaller scales but that coherent patterns emerged at larger length scales.« less

  3. Aerobic anti-gravity exercise in patients with Charcot-Marie-Tooth disease types 1A and X: A pilot study.

    PubMed

    Knak, Kirsten L; Andersen, Linda K; Vissing, John

    2017-12-01

    Charcot-Marie-Tooth (CMT) disease is a hereditary neuropathy associated with impaired walking capacity. Some patients are too weak in the lower extremity muscles to walk at gravity with sufficient intensity or duration to gain benefit. The aim was to investigate the effect of aerobic anti-gravity exercise in weak patients with CMT 1A and X. Five adult patients performed moderate-intensity aerobic anti-gravity exercise 3/week for 10 weeks. There was a significant positive difference in Berg balance scale and postural stability test between test occasions, and walking distance in the 6-min walk test trended to increase. The study indicates that the anti-gravity treadmill training of patients with CMT should be pursued in larger CMT cohorts.

  4. Centeredness Theory: Understanding and Measuring Well-Being Across Core Life Domains

    PubMed Central

    Bloch-Jorgensen, Zephyr T.; Cilione, Patrick J.; Yeung, William W. H.; Gatt, Justine M.

    2018-01-01

    Background: Centeredness Theory (CT) is proposed as a new mental health paradigm that focuses on well-being at a systems-level, across the core life domains of the self, the family unit, relationships, community, and work. The current studies aimed to validate the psychometric properties of a new scale that measures CT against existing well-being and mental health measures. Methods: Study 1 included 488 anonymous online respondents (46% females, 28% males, 25% unknown with median age between 31 and 35 years) across 38 countries who completed the CT scale. Study 2 included 49 first-year psychology students (90% females, mean age of 19 years) from Sydney Australia that completed the CT scale and other well-being and mental health questionnaires at baseline and 2-weeks follow-up. Results: Exploratory and confirmatory factor analyses resulted in a refined 60-item CT scale with five domains, each with four sub-domains. The CT scale demonstrated good internal consistency reliability and test-retest reliability, and showed evidence of convergent validity against other well-being measures (e.g., COMPAS-W Wellbeing Scale, SWLS scale, and Ryff's Psychological Well-being scale). Conclusions: The CT scale appears to be a reliable measure of well-being at a systems-level. Future studies need to confirm these findings in larger heterogeneous samples. PMID:29765344

  5. Modified Baryonic Dynamics: two-component cosmological simulations with light sterile neutrinos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angus, G.W.; Gentile, G.; Diaferio, A.

    2014-10-01

    In this article we continue to test cosmological models centred on Modified Newtonian Dynamics (MOND) with light sterile neutrinos, which could in principle be a way to solve the fine-tuning problems of the standard model on galaxy scales while preserving successful predictions on larger scales. Due to previous failures of the simple MOND cosmological model, here we test a speculative model where the modified gravitational field is produced only by the baryons and the sterile neutrinos produce a purely Newtonian field (hence Modified Baryonic Dynamics). We use two-component cosmological simulations to separate the baryonic N-body particles from the sterile neutrinomore » ones. The premise is to attenuate the over-production of massive galaxy cluster halos which were prevalent in the original MOND plus light sterile neutrinos scenario. Theoretical issues with such a formulation notwithstanding, the Modified Baryonic Dynamics model fails to produce the correct amplitude for the galaxy cluster mass function for any reasonable value of the primordial power spectrum normalisation.« less

  6. [A Measure of Participation and Social Inclusion for Use in People with a Chronic Mental Disorder (F-INK)].

    PubMed

    Schützwohl, Matthias; Souza, Paula M L; Rackel, Yvonne

    2017-03-01

    Objective To develop and test the psychometric properties of a measure of participation and social inclusion for individuals with a chronic mental disorder - the F-INK. Methods Within a cross-sectional design, mental health patients from different institutional settings (n = 106) and adults from the general population (n = 19) completed the questionnaire in an individual interview with a researcher. To estimate the reliability of two sum-scores on social inclusion and participation, Cronbach's α was computed. To appraise the validity, mean scale scores were compared across different study groups. Results For both scales, reliability was qualified as substantial (α > 0.70). Study groups showed expected differences in mean scores. Conclusion Preliminary findings suggest that the F-INK may be a useful tool for the assessment of social inclusion and social participation in individuals with a chronic mental disorder. However, further testing of the psychometric properties on a larger population is needed. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Synthesis of a Novel Energetic Heterocyclic Oxidizer with Higher Energy and Lower Sensitivity (Phase 2) Final Report CRADA No. TC02125.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagoria, P. F.; Racoveanu, A.

    2017-09-08

    This project was a continuation of work originally performed under a Phase 1 of the Small Business Technology Transfer (STIR). The success of the Phase 1 led to the award of a Phase 2 of the STIR. In Phase 1 of the STIR, the target energetic compound, 3,4-bis(4-nitro-l,2,5- oxadiazol-3yl)-1,2,5-oxadiazole-l-oxide (DNTF), was synthesized at the 5g scale and small-scale safety tests were performed. DNTF showed promising performance· and safety properties. DNTF was shown to be relatively insensitive while performing better than the current industry standard, H1vIX, in solid propellant formulations. Because of the successful research and development project involving PSI, LLNLmore » and Aerojet in Phase I of the STIR, the sponsors wanted to obtain larger quantities of DNTF for further testing.« less

  8. A Model for Dissipation of Solar Wind Magnetic Turbulence by Kinetic Alfvén Waves at Electron Scales: Comparison with Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreiner, Anne; Saur, Joachim, E-mail: schreiner@geo.uni-koeln.de

    In hydrodynamic turbulence, it is well established that the length of the dissipation scale depends on the energy cascade rate, i.e., the larger the energy input rate per unit mass, the more the turbulent fluctuations need to be driven to increasingly smaller scales to dissipate the larger energy flux. Observations of magnetic spectral energy densities indicate that this intuitive picture is not valid in solar wind turbulence. Dissipation seems to set in at the same length scale for different solar wind conditions independently of the energy flux. To investigate this difference in more detail, we present an analytic dissipation modelmore » for solar wind turbulence at electron scales, which we compare with observed spectral densities. Our model combines the energy transport from large to small scales and collisionless damping, which removes energy from the magnetic fluctuations in the kinetic regime. We assume wave–particle interactions of kinetic Alfvén waves (KAWs) to be the main damping process. Wave frequencies and damping rates of KAWs are obtained from the hot plasma dispersion relation. Our model assumes a critically balanced turbulence, where larger energy cascade rates excite larger parallel wavenumbers for a certain perpendicular wavenumber. If the dissipation is additionally wave driven such that the dissipation rate is proportional to the parallel wavenumber—as with KAWs—then an increase of the energy cascade rate is counterbalanced by an increased dissipation rate for the same perpendicular wavenumber, leading to a dissipation length independent of the energy cascade rate.« less

  9. A Model for Dissipation of Solar Wind Magnetic Turbulence by Kinetic Alfvén Waves at Electron Scales: Comparison with Observations

    NASA Astrophysics Data System (ADS)

    Schreiner, Anne; Saur, Joachim

    2017-02-01

    In hydrodynamic turbulence, it is well established that the length of the dissipation scale depends on the energy cascade rate, I.e., the larger the energy input rate per unit mass, the more the turbulent fluctuations need to be driven to increasingly smaller scales to dissipate the larger energy flux. Observations of magnetic spectral energy densities indicate that this intuitive picture is not valid in solar wind turbulence. Dissipation seems to set in at the same length scale for different solar wind conditions independently of the energy flux. To investigate this difference in more detail, we present an analytic dissipation model for solar wind turbulence at electron scales, which we compare with observed spectral densities. Our model combines the energy transport from large to small scales and collisionless damping, which removes energy from the magnetic fluctuations in the kinetic regime. We assume wave-particle interactions of kinetic Alfvén waves (KAWs) to be the main damping process. Wave frequencies and damping rates of KAWs are obtained from the hot plasma dispersion relation. Our model assumes a critically balanced turbulence, where larger energy cascade rates excite larger parallel wavenumbers for a certain perpendicular wavenumber. If the dissipation is additionally wave driven such that the dissipation rate is proportional to the parallel wavenumber—as with KAWs—then an increase of the energy cascade rate is counterbalanced by an increased dissipation rate for the same perpendicular wavenumber, leading to a dissipation length independent of the energy cascade rate.

  10. Estimation of local scale dispersion from local breakthrough curves during a tracer test in a heterogeneous aquifer: the Lagrangian approach.

    PubMed

    Vanderborght, Jan; Vereecken, Harry

    2002-01-01

    The local scale dispersion tensor, Dd, is a controlling parameter for the dilution of concentrations in a solute plume that is displaced by groundwater flow in a heterogeneous aquifer. In this paper, we estimate the local scale dispersion from time series or breakthrough curves, BTCs, of Br concentrations that were measured at several points in a fluvial aquifer during a natural gradient tracer test at Krauthausen. Locally measured BTCs were characterized by equivalent convection dispersion parameters: equivalent velocity, v(eq)(x) and expected equivalent dispersivity, [lambda(eq)(x)]. A Lagrangian framework was used to approximately predict these equivalent parameters in terms of the spatial covariance of log(e) transformed conductivity and the local scale dispersion coefficient. The approximate Lagrangian theory illustrates that [lambda(eq)(x)] increases with increasing travel distance and is much larger than the local scale dispersivity, lambda(d). A sensitivity analysis indicates that [lambda(eq)(x)] is predominantly determined by the transverse component of the local scale dispersion and by the correlation scale of the hydraulic conductivity in the transverse to flow direction whereas it is relatively insensitive to the longitudinal component of the local scale dispersion. By comparing predicted [lambda(eq)(x)] for a range of Dd values with [lambda(eq)(x)] obtained from locally measured BTCs, the transverse component of Dd, DdT, was estimated. The estimated transverse local scale dispersivity, lambda(dT) = DdT/U1 (U1 = mean advection velocity) is in the order of 10(1)-10(2) mm, which is relatively large but realistic for the fluvial gravel sediments at Krauthausen.

  11. Field Performance of Recycled Plastic Foundation for Pipeline

    PubMed Central

    Kim, Seongkyum; Lee, Kwanho

    2015-01-01

    The incidence of failure of embedded pipelines has increased in Korea due to the increasing applied load and the improper compaction of bedding and backfill materials. To overcome these problems, a prefabricated lightweight plastic foundation using recycled plastic was developed for sewer pipelines. A small scale laboratory chamber test and two field tests were conducted to verify its construction workability and performance. From the small scale laboratory chamber test, the applied loads at 2.5% and 5.0% of deformation were 3.45 kgf/cm2 and 5.85 kgf/cm2 for Case S1, and 4.42 kgf/cm2 and 6.43 kgf/cm2 for Case S2, respectively. From the first field test, the vertical deformation of the recycled plastic foundation (Case A2) was very small. According to the analysis based on the PE pipe deformation at the connection (CN) and at the center (CT), the pipe deformation at each part for Case A1 was larger than that for Case A2, which adopted the recycled lightweight plastic foundation. From the second field test, the measured maximum settlements of Case B1 and Case B2 were 1.05 cm and 0.54 cm, respectively. The use of a plastic foundation can reduce the settlement of an embedded pipeline and be an alternative construction method.

  12. SPRITE: A TPS Test Bed for Ground and Flight

    NASA Technical Reports Server (NTRS)

    Prabhu, Dinesh K.; Agrawal, Parul; Peterson, Keith; Swanson, Gregory; Skokova, Kristina; Mangini, Nancy; Empey, Daniel M.; Gorbunov, Sergey; Venkatapathy, Ethiraj

    2012-01-01

    Engineers in the Entry Systems and Technology Division at NASA Ames Research Center developed a fully instrumented, small atmospheric entry probe called SPRITE (Small Probe Reentry Investigation for TPS Engineering). SPRITE, conceived as a flight test bed for thermal protection materials, was tested at full scale in an arc-jet facility so that the aerothermal environments the probe experiences over portions of its flight trajectory and in the arc-jet are similar. This ground-to-flight traceability enhances the ability of mission designers to evaluate margins needed in the design of thermal protection systems (TPS) of larger scale atmospheric entry vehicles. SPRITE is a 14-inch diameter, 45 deg. sphere-cone with a conical aftbody and designed for testing in the NASA Ames Aerodynamic Heating Facility (AHF). The probe is a two-part aluminum shell with PICA (phenolic impregnated carbon ablator) bonded on the forebody and LI-2200 (Shuttle tile material) bonded to the aftbody. Plugs with embedded thermocouples, similar to those installed in the heat shield of the Mars Science Laboratory (MSL), and a number of distributed sensors are integrated into the design. The data from these sensors are fed to an innovative, custom-designed data acquisition system also integrated with the test article. Two identical SPRITE models were built and successfully tested in late 2010-early 2011, and the concept is currently being modified to enable testing of conformable and/or flexible materials.

  13. Oklahoma Downbursts and Their Asymmetry.

    DTIC Science & Technology

    1986-11-01

    velocity across the divergence center of at least 10 m s-1. Further, downbursts are called micro- bursts when they are 0.4-4 km in diameter, and macrobursts ...outflows in- vestigated in this study are larger-scale downbursts ( macrobursts ) that were imbedded in large intense convective storms. This does not...observed in this study were associated with intense convective storms and were generally of much larger horizontal scale ( macrobursts ). However, due to

  14. An increase in aerosol burden due to the land-sea warming contrast

    NASA Astrophysics Data System (ADS)

    Hassan, T.; Allen, R.; Randles, C. A.

    2017-12-01

    Climate models simulate an increase in most aerosol species in response to warming, particularly over the tropics and Northern Hemisphere midlatitudes. This increase in aerosol burden is related to a decrease in wet removal, primarily due to reduced large-scale precipitation. Here, we show that the increase in aerosol burden, and the decrease in large-scale precipitation, is related to a robust climate change phenomenon—the land/sea warming contrast. Idealized simulations with two state of the art climate models, the National Center for Atmospheric Research Community Atmosphere Model version 5 (NCAR CAM5) and the Geophysical Fluid Dynamics Laboratory Atmospheric Model 3 (GFDL AM3), show that muting the land-sea warming contrast negates the increase in aerosol burden under warming. This is related to smaller decreases in near-surface relative humidity over land, and in turn, smaller decreases in large-scale precipitation over land—especially in the NH midlatitudes. Furthermore, additional idealized simulations with an enhanced land/sea warming contrast lead to the opposite result—larger decreases in relative humidity over land, larger decreases in large-scale precipitation, and larger increases in aerosol burden. Our results, which relate the increase in aerosol burden to the robust climate projection of enhanced land warming, adds confidence that a warmer world will be associated with a larger aerosol burden.

  15. Eye Size, Fovea, and Foraging Ecology in Accipitriform Raptors.

    PubMed

    Potier, Simon; Mitkus, Mindaugas; Bonadonna, Francesco; Duriez, Olivier; Isard, Pierre-François; Dulaurent, Thomas; Mentek, Marielle; Kelber, Almut

    2017-01-01

    Birds with larger eyes are predicted to have higher spatial resolution because of their larger retinal image. Raptors are well known for their acute vision, mediated by their deep central fovea. Because foraging strategies may demand specific visual adaptations, eye size and fovea may differ between species with different foraging ecology. We tested whether predators (actively hunting mobile prey) and carrion eaters (eating dead prey) from the order Accipitriformes differ in eye size, foveal depth, and retinal thickness using spectral domain optical coherence tomography and comparative phylogenetic methods. We found that (1) all studied predators (except one) had a central and a temporal fovea, but all carrion eaters had only the central fovea; (2) eye size scaled with body mass both in predators and carrion eaters; (3) predators had larger eyes relative to body mass and a thicker retina at the edge of the fovea than carrion eaters, but there was no difference in the depth of the central fovea between the groups. Finally, we found that (4) larger eyes generally had a deeper central fovea. These results suggest that the visual system of raptors within the order Accipitriformes may be highly adapted to the foraging strategy, except for the foveal depth, which seems mostly dependent upon the eye size. © 2017 S. Karger AG, Basel.

  16. Factors affecting economies of scale in combined sewer systems.

    PubMed

    Maurer, Max; Wolfram, Martin; Anja, Herlyn

    2010-01-01

    A generic model is introduced that represents the combined sewer infrastructure of a settlement quantitatively. A catchment area module first calculates the length and size distribution of the required sewer pipes on the basis of rain patterns, housing densities and area size. These results are fed into the sewer-cost module in order to estimate the combined sewer costs of the entire catchment area. A detailed analysis of the relevant input parameters for Swiss settlements is used to identify the influence of size on costs. The simulation results confirm that an economy of scale exists for combined sewer systems. This is the result of two main opposing cost factors: (i) increased construction costs for larger sewer systems due to larger pipes and increased rain runoff in larger settlements, and (ii) lower costs due to higher population and building densities in larger towns. In Switzerland, the more or less organically grown settlement structures and limited land availability emphasise the second factor to show an apparent economy of scale. This modelling approach proved to be a powerful tool for understanding the underlying factors affecting the cost structure for water infrastructures.

  17. An Ethical Issue Scale for Community Pharmacy Setting (EISP): Development and Validation.

    PubMed

    Crnjanski, Tatjana; Krajnovic, Dusanka; Tadic, Ivana; Stojkov, Svetlana; Savic, Mirko

    2016-04-01

    Many problems that arise when providing pharmacy services may contain some ethical components and the aims of this study were to develop and validate a scale that could assess difficulties of ethical issues, as well as the frequency of those occurrences in everyday practice of community pharmacists. Development and validation of the scale was conducted in three phases: (1) generating items for the initial survey instrument after qualitative analysis; (2) defining the design and format of the instrument; (3) validation of the instrument. The constructed Ethical Issue scale for community pharmacy setting has two parts containing the same 16 items for assessing the difficulty and frequency thereof. The results of the 171 completely filled out scales were analyzed (response rate 74.89%). The Cronbach's α value of the part of the instrument that examines difficulties of the ethical situations was 0.83 and for the part of the instrument that examined frequency of the ethical situations was 0.84. Test-retest reliability for both parts of the instrument was satisfactory with all Interclass correlation coefficient (ICC) values above 0.6, (for the part that examines severity ICC = 0.809, for the part that examines frequency ICC = 0.929). The 16-item scale, as a self assessment tool, demonstrated a high degree of content, criterion, and construct validity and test-retest reliability. The results support its use as a research tool to asses difficulty and frequency of ethical issues in community pharmacy setting. The validated scale needs to be further employed on a larger sample of pharmacists.

  18. Reduction of non-adherent behaviour in a Mexican-American adolescent with type 2 diabetes.

    PubMed

    Piven, Emily; Duran, Rene

    2014-03-01

    This single-subject research aimed to evaluate the effect of occupation-based activities to improve diabetes self-management skills in a non-adherent 19-year-old Mexican-American adolescent transitioning to young adulthood. Using a pre-test/post-test design, the subject's performance was re-evaluated with five standardized measures following an 8-week intervention. The subject made major improvements on the Diabetes Self-Efficacy Scale, Exercise Behaviour and in goal attainment of targeted behaviours on the basis of the Canadian Occupational Performance Measure. The Adapted Intrusiveness Rating Scale and the Social/Role Activities Limitations Scale revealed increased intrusiveness of diabetes in his life, once he finally embraced his need to prioritize diabetes self-care. The study illuminated how a culturally sensitive, occupation-based early intervention might potentially prevent or reduce debilitating complications in adulthood. The value of this study is its contribution to body of diabetes literature on the role of occupational therapist in secondary prevention with Mexican-Americans. Research suggestions included expansion of single-subject design with larger samples and higher-level research studies with adolescents from various cultural backgrounds. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Fatigue FEM analysis in the case of brazed aluminium alloy 3L59 used in aeronautical industry

    NASA Astrophysics Data System (ADS)

    Dimitrescu, A.; Amza, Gh; Niţoi, D. F.; Amza, C. Gh; Apostolescu, Z.

    2016-08-01

    The use, on a larger scale, of brazed aluminum alloys in the aerospace industry led to the need for a detailed study of the assemblies behavior. These are built from 6061 aluminum aloy (3L59) brazed with aluminum aloy A103. Therefore, a finit element simulation (FEM) of durability is necessary, that consists in the observation of gradual deterioration until failure. These studies are required and are previous to the stage of the producing the assembly and test it by traditional methods.

  20. Real-time incidence of travel-related symptoms through a smartphone-based app remote monitoring system: a pilot study.

    PubMed

    Rodriguez-Valero, N; Carbayo, M J Ledesma; Sanchez, D Cuadrado; Vladimirov, A; Espriu, M; Vera, I; Roldan, M; de Alba, T; Sanz, S; Moreno, J L Gonzalez; Oroz, M Luengo; Muñoz, J

    2018-01-01

    Trip Doctor®, a Smartphone-based app monitoring system, was developed to detect infections among travelers in real-time. For testing, 106 participants were recruited (62.2% male, mean age 36 years (SD = 11)). Majority of trips were for tourism and main destinations were in South East Asia. Mean travel duration was 14 days (SD = 10). Diarrhea was the most frequently reported symptom (15.5%). The system demonstrated adequate usability and is ready to be used on a larger scale.

  1. Brain reserve against physical disability progression over 5 years in multiple sclerosis.

    PubMed

    Sumowski, James F; Rocca, Maria A; Leavitt, Victoria M; Meani, Alessandro; Mesaros, Sarlota; Drulovic, Jelena; Preziosa, Paolo; Habeck, Christian G; Filippi, Massimo

    2016-05-24

    The brain reserve hypothesis links larger maximal lifetime brain growth (MLBG, estimated with intracranial volume [ICV]) with lower risk for cognitive decline/dementia. We examined whether larger MLBG is also linked to less physical disability progression over 5 years in a prospective sample of treatment-naive patients with multiple sclerosis (MS). Physical disability was measured with the Expanded Disability Status Scale (EDSS) at baseline and 5-year follow-up in 52 treatment-naive Serbian patients with MS. MRI measured disease burden (cerebral atrophy, T2 lesion volume) and MLBG: a genetically determined, premorbid (established during adolescence, stable thereafter) patient characteristic estimated with ICV (adjusted for sex). Logistic regression tested whether MLBG (smaller vs larger) predicts disability progression (stable vs worsened) independently of disease burden. Disability progression was observed in 29 (55.8%) patients. Larger MLBG predicted lower risk for progression (odds ratio 0.13, 95% confidence interval 0.02-0.78), independently of disease burden. We also calculated absolute change in EDSS scores, and observed that patients with smaller MLBG showed worse EDSS change (0.91 ± 0.71) than patients with larger MLBG (0.42 ± 0.87). Larger MLBG was linked to lower risk for disability progression in patients with MS over 5 years, which is the first extension of the brain reserve hypothesis to physical disability. MLBG (ICV) represents a clinically available metric that may help gauge risk for future disability in patients with MS, which may advance the science and practice of early intervention. Potential avenues for future research are discussed. © 2016 American Academy of Neurology.

  2. [Mokken scaling of the Cognitive Screening Test].

    PubMed

    Diesfeldt, H F A

    2009-10-01

    The Cognitive Screening Test (CST) is a twenty-item orientation questionnaire in Dutch, that is commonly used to evaluate cognitive impairment. This study applied Mokken Scale Analysis, a non-parametric set of techniques derived from item response theory (IRT), to CST-data of 466 consecutive participants in psychogeriatric day care. The full item set and the standard short version of fourteen items both met the assumptions of the monotone homogeneity model, with scalability coefficient H = 0.39, which is considered weak. In order to select items that would fulfil the assumption of invariant item ordering or the double monotonicity model, the subjects were randomly partitioned into a training set (50% of the sample) and a test set (the remaining half). By means of an automated item selection eleven items were found to measure one latent trait, with H = 0.67 and item H coefficients larger than 0.51. Cross-validation of the item analysis in the remaining half of the subjects gave comparable values (H = 0.66; item H coefficients larger than 0.56). The selected items involve year, place of residence, birth date, the monarch's and prime minister's names, and their predecessors. Applying optimal discriminant analysis (ODA) it was found that the full set of twenty CST items performed best in distinguishing two predefined groups of patients of lower or higher cognitive ability, as established by an independent criterion derived from the Amsterdam Dementia Screening Test. The chance corrected predictive value or prognostic utility was 47.5% for the full item set, 45.2% for the fourteen items of the standard short version of the CST, and 46.1% for the homogeneous, unidimensional set of selected eleven items. The results of the item analysis support the application of the CST in cognitive assessment, and revealed a more reliable 'short' version of the CST than the standard short version (CST14).

  3. More 'altruistic' punishment in larger societies.

    PubMed

    Marlowe, Frank W; Berbesque, J Colette

    2008-03-07

    If individuals will cooperate with cooperators, and punish non-cooperators even at a cost to themselves, then this strong reciprocity could minimize the cheating that undermines cooperation. Based upon numerous economic experiments, some have proposed that human cooperation is explained by strong reciprocity and norm enforcement. Second-party punishment is when you punish someone who defected on you; third-party punishment is when you punish someone who defected on someone else. Third-party punishment is an effective way to enforce the norms of strong reciprocity and promote cooperation. Here we present new results that expand on a previous report from a large cross-cultural project. This project has already shown that there is considerable cross-cultural variation in punishment and cooperation. Here we test the hypothesis that population size (and complexity) predicts the level of third-party punishment. Our results show that people in larger, more complex societies engage in significantly more third-party punishment than people in small-scale societies.

  4. Multiscale deformation behavior for multilayered steel by in-situ FE-SEM

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Kishimoto, S.; Yin, F.; Kobayashi, M.; Tomimatsu, T.; Kagawa, K.

    2010-03-01

    The multi-scale deformation behavior of multi-layered steel during tensile loading was investigated by in-situ FE-SEM observation coupled with multi-scale pattern. The material used was multi-layered steel sheet consisting of martensitic and austenitic stainless steel layers. Prior to in-situ tensile testing, the multi-scale pattern combined with a grid and random dots were fabricated by electron beam lithography on the polished surface in the area of 1 mm2 to facilitate direct observation of multi-scale deformation. Both of the grids with pitches of 10 μm and a random speckle pattern ranging from 200 nm to a few μm sizes were drawn onto the specimen surface at same location. The electron moiré method was applied to measure the strain distribution in the deformed specimens at a millimeter scale and digital images correlation method was applied to measure the in-plane deformation and strain distribution at a micron meter scale acquired before and after at various increments of straining. The results showed that the plastic deformation in the austenitic stainless steel layer was larger than the martensitic steel layer at millimeter scale. However, heterogeneous intrinsic grain-scale plastic deformation was clearly observed and it increased with increasing the plastic deformation.

  5. Ontogenetic body-mass scaling of resting metabolic rate covaries with species-specific metabolic level and body size in spiders and snakes.

    PubMed

    Glazier, Douglas S

    2009-08-01

    According to common belief, metabolic rate usually scales with body mass to the 3/4-power, which is considered by some to be a universal law of nature. However, substantial variation in the metabolic scaling exponent (b) exists, much of which can be related to the overall metabolic level (L) of various taxonomic groups of organisms, as predicted by the recently proposed metabolic-level boundaries (MLB) hypothesis. Here the MLB hypothesis was tested using data for intraspecific (ontogenetic) body-mass scaling of resting metabolic rate in spiders and boid snakes. As predicted, in both animal groups b varies mostly between 2/3 and 1, and is significantly negatively related to L. L is, in turn, negatively related to species-specific body mass (M(m): estimated as the mass at the midpoint of a scaling relationship), and as a result, larger species tend to have steeper metabolic scaling slopes (b) than smaller species. After adjusting for the effects of M(m), b and L are still negatively related, though significantly only in the spiders, which exhibit a much wider range of L than the snakes. Therefore, in spiders and snakes the intraspecific scaling of metabolic rate with body mass itself scales with interspecific variation in both metabolic level and body mass.

  6. Does Size Matter? Scaling of CO2 Emissions and U.S. Urban Areas

    PubMed Central

    Fragkias, Michail; Lobo, José; Strumsky, Deborah; Seto, Karen C.

    2013-01-01

    Urban areas consume more than 66% of the world’s energy and generate more than 70% of global greenhouse gas emissions. With the world’s population expected to reach 10 billion by 2100, nearly 90% of whom will live in urban areas, a critical question for planetary sustainability is how the size of cities affects energy use and carbon dioxide (CO2) emissions. Are larger cities more energy and emissions efficient than smaller ones? Do larger cities exhibit gains from economies of scale with regard to emissions? Here we examine the relationship between city size and CO2 emissions for U.S. metropolitan areas using a production accounting allocation of emissions. We find that for the time period of 1999–2008, CO2 emissions scale proportionally with urban population size. Contrary to theoretical expectations, larger cities are not more emissions efficient than smaller ones. PMID:23750213

  7. Los Alamos Explosives Performance Key to Stockpile Stewardship

    ScienceCinema

    Dattelbaum, Dana

    2018-02-14

    As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- and small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.

  8. Fluids and Combustion Facility Acoustic Emissions Controlled by Aggressive Low-Noise Design Process

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.; Young, Judith A.

    2004-01-01

    The Fluids and Combustion Facility (FCF) is a dual-rack microgravity research facility that is being developed by Northrop Grumman Information Technology (NGIT) for the International Space Station (ISS) at the NASA Glenn Research Center. As an on-orbit test bed, FCF will host a succession of experiments in fluid and combustion physics. The Fluids Integrated Rack (FIR) and the Combustion Integrated Rack (CIR) must meet ISS acoustic emission requirements (ref. 1), which support speech communication and hearing-loss-prevention goals for ISS crew. To meet these requirements, the NGIT acoustics team implemented an aggressive low-noise design effort that incorporated frequent acoustic emission testing for all internal noise sources, larger-scale systems, and fully integrated racks (ref. 2). Glenn's Acoustical Testing Laboratory (ref. 3) provided acoustical testing services (see the following photograph) as well as specialized acoustical engineering support as part of the low-noise design process (ref. 4).

  9. Life histories predict genetic diversity and population structure within three species of octopus targeted by small-scale fisheries in Northwest Mexico.

    PubMed

    Domínguez-Contreras, José F; Munguia-Vega, Adrian; Ceballos-Vázquez, Bertha P; Arellano-Martínez, Marcial; García-Rodríguez, Francisco J; Culver, Melanie; Reyes-Bonilla, Hector

    2018-01-01

    The fishery for octopus in Northwest Mexico has increased to over 2,000 tons annually, but to date the specific composition of the catch has been ignored. With at least three main species targeted by artisanal fisheries in the region with distinct life histories, the lack of basic biological information about the distribution, metapopulation size and structure of each species could impede effective fisheries management to avoid overexploitation. We tested if different life histories of three species of octopus could help predict observed patterns of genetic diversity, population dynamics, structure and connectivity and how this information could be relevant to the sustainable management of the fishery. We sequenced two mitochondrial genes and genotyped seven nuclear microsatellite loci to identify the distribution of each species in 20 locations from the Gulf of California and the west coast of the Baja California peninsula. We tested five hypotheses derived from population genetic theory based on differences in the fecundity and dispersal potential for each species. We discovered that Octopus bimaculoides with low fecundity and direct development (without a planktonic phase) had lower average effective population size and genetic diversity, but higher levels of kinship, population structure, and richness of private alleles, than the other two species. These features indicated limited dispersal and high local recruitment. In contrast, O. bimaculatus and O. hubbsorum with higher fecundity and planktonic phase as paralarvae had higher effective population size and genetic diversity, and overall lower kinship and population structure than O. bimaculoides . These observations supported higher levels of gene flow over a larger geographical scale. O. bimaculatus with the longest planktonic paralarval duration and therefore larger dispersal potential had differences in the calculated parameters possibly associated with increased connectivity. We propose O. bimaculoides is more susceptible to over exploitation of small, isolated populations and could have longer recovery times than the other two species. This species may benefit from distinct fishery management within each local population. O. bimaculatus and O. hubbsorum may benefit from fishery management that takes into account metapopulation structure over larger geographic scales and the directionality and magnitude of larval dispersal driven by ocean currents and population connectivity among individuals of each locality. The distribution of each species and variations in their reproductive phenology is also important to consider when establishing marine reserves or seasonal fishing closures.

  10. Scaling behaviors of precipitation over China

    NASA Astrophysics Data System (ADS)

    Jiang, Lei; Li, Nana; Zhao, Xia

    2017-04-01

    Scaling behaviors in the precipitation time series derived from 1951 to 2009 over China are investigated by detrended fluctuation analysis (DFA) method. The results show that there exists long-term memory for the precipitation time series in some stations, where the values of the scaling exponent α are less than 0.62, implying weak persistence characteristics. The values of scaling exponent in other stations indicate random behaviors. In addition, the scaling exponent α in precipitation records varies from station to station over China. A numerical test is made to verify the significance in DFA exponents by shuffling the data records many times. We think it is significant when the values of scaling exponent before shuffled precipitation records are larger than the interval threshold for 95 % confidence level after shuffling precipitation records many times. By comparison, the daily precipitation records exhibit weak positively long-range correlation in a power law fashion mainly at the stations taking on zonal distributions in south China, upper and middle reaches of the Yellow River, northern part of northeast China. This may be related to the subtropical high. Furthermore, the values of scaling exponent which cannot pass the significance test do not show a clear distribution pattern. It seems that the stations are mainly distributed in coastal areas, southwest China, and southern part of north China. In fact, many complicated factors may affect the scaling behaviors of precipitation such as the system of the east and south Asian monsoon, the interaction between sea and land, and the big landform of the Tibetan Plateau. These results may provide a better prerequisite to long-term predictor of precipitation time series for different regions over China.

  11. Validating Large Scale Networks Using Temporary Local Scale Networks

    USDA-ARS?s Scientific Manuscript database

    The USDA NRCS Soil Climate Analysis Network and NOAA Climate Reference Networks are nationwide meteorological and land surface data networks with soil moisture measurements in the top layers of soil. There is considerable interest in scaling these point measurements to larger scales for validating ...

  12. Geckos as Springs: Mechanics Explain Across-Species Scaling of Adhesion

    PubMed Central

    Gilman, Casey A.; Imburgia, Michael J.; Bartlett, Michael D.; King, Daniel R.; Crosby, Alfred J.; Irschick, Duncan J.

    2015-01-01

    One of the central controversies regarding the evolution of adhesion concerns how adhesive force scales as animals change in size, either among or within species. A widely held view is that as animals become larger, the primary mechanism that enables them to climb is increasing pad area. However, prior studies show that much of the variation in maximum adhesive force remains unexplained, even when area is accounted for. We tested the hypothesis that maximum adhesive force among pad-bearing gecko species is not solely dictated by toepad area, but also depends on the ratio of toepad area to gecko adhesive system compliance in the loading direction, where compliance (C) is the change in extension (Δ) relative to a change in force (F) while loading a gecko’s adhesive system (C = dΔ/dF). Geckos are well-known for their ability to climb on a range of vertical and overhanging surfaces, and range in mass from several grams to over 300 grams, yet little is understood of the factors that enable adhesion to scale with body size. We examined the maximum adhesive force of six gecko species that vary in body size (~2–100 g). We also examined changes between juveniles and adults within a single species (Phelsuma grandis). We found that maximum adhesive force and toepad area increased with increasing gecko size, and that as gecko species become larger, their adhesive systems become significantly less compliant. Additionally, our hypothesis was supported, as the best predictor of maximum adhesive force was not toepad area or compliance alone, but the ratio of toepad area to compliance. We verified this result using a synthetic “model gecko” system comprised of synthetic adhesive pads attached to a glass substrate and a synthetic tendon (mechanical spring) of finite stiffness. Our data indicate that increases in toepad area as geckos become larger cannot fully account for increased adhesive abilities, and decreased compliance must be included to explain the scaling of adhesion in animals with dry adhesion systems. PMID:26331621

  13. Identification of small-scale low and high permeability layers using single well forced-gradient tracer tests: fluorescent dye imaging and modelling at the laboratory-scale.

    PubMed

    Barns, Gareth L; Thornton, Steven F; Wilson, Ryan D

    2015-01-01

    Heterogeneity in aquifer permeability, which creates paths of varying mass flux and spatially complex contaminant plumes, can complicate the interpretation of contaminant fate and transport in groundwater. Identifying the location of high mass flux paths is critical for the reliable estimation of solute transport parameters and design of groundwater remediation schemes. Dipole flow tracer tests (DFTTs) and push-pull tests (PPTs) are single well forced-gradient tests which have been used at field-scale to estimate aquifer hydraulic and transport properties. In this study, the potential for PPTs and DFTTs to resolve the location of layered high- and low-permeability layers in granular porous media was investigated with a pseudo 2-D bench-scale aquifer model. Finite element fate and transport modelling was also undertaken to identify appropriate set-ups for in situ tests to determine the type, magnitude, location and extent of such layered permeability contrasts at the field-scale. The characteristics of flow patterns created during experiments were evaluated using fluorescent dye imaging and compared with the breakthrough behaviour of an inorganic conservative tracer. The experimental results show that tracer breakthrough during PPTs is not sensitive to minor permeability contrasts for conditions where there is no hydraulic gradient. In contrast, DFTTs are sensitive to the type and location of permeability contrasts in the host media and could potentially be used to establish the presence and location of high or low mass flux paths. Numerical modelling shows that the tracer peak breakthrough time and concentration in a DFTT is sensitive to the magnitude of the permeability contrast (defined as the permeability of the layer over the permeability of the bulk media) between values of 0.01-20. DFTTs are shown to be more sensitive to deducing variations in the contrast, location and size of aquifer layered permeability contrasts when a shorter central packer is used. However, larger packer sizes are more likely to be practical for field-scale applications, with fewer tests required to characterise a given aquifer section. The sensitivity of DFTTs to identify layered permeability contrasts was not affected by test flow rate. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Seismic isolation of small modular reactors using metamaterials

    NASA Astrophysics Data System (ADS)

    Witarto, Witarto; Wang, S. J.; Yang, C. Y.; Nie, Xin; Mo, Y. L.; Chang, K. C.; Tang, Yu; Kassawara, Robert

    2018-04-01

    Adaptation of metamaterials at micro- to nanometer scales to metastructures at much larger scales offers a new alternative for seismic isolation systems. These new isolation systems, known as periodic foundations, function both as a structural foundation to support gravitational weight of the superstructure and also as a seismic isolator to isolate the superstructure from incoming seismic waves. Here we describe the application of periodic foundations for the seismic protection of nuclear power plants, in particular small modular reactors (SMR). For this purpose, a large-scale shake table test on a one-dimensional (1D) periodic foundation supporting an SMR building model was conducted. The 1D periodic foundation was designed and fabricated using reinforced concrete and synthetic rubber (polyurethane) materials. The 1D periodic foundation structural system was tested under various input waves, which include white noise, stepped sine and seismic waves in the horizontal and vertical directions as well as in the torsional mode. The shake table test results show that the 1D periodic foundation can reduce the acceleration response (transmissibility) of the SMR building up to 90%. In addition, the periodic foundation-isolated structure also exhibited smaller displacement than the non-isolated SMR building. This study indicates that the challenge faced in developing metastructures can be overcome and the periodic foundations can be applied to isolating vibration response of engineering structures.

  15. Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater.

    PubMed

    Cusick, Roland D; Bryan, Bill; Parker, Denny S; Merrill, Matthew D; Mehanna, Maha; Kiely, Patrick D; Liu, Guangli; Logan, Bruce E

    2011-03-01

    A pilot-scale (1,000 L) continuous flow microbial electrolysis cell was constructed and tested for current generation and COD removal with winery wastewater. The reactor contained 144 electrode pairs in 24 modules. Enrichment of an exoelectrogenic biofilm required ~60 days, which is longer than typically needed for laboratory reactors. Current generation was enhanced by ensuring adequate organic volatile fatty acid content (VFA/SCOD ≥ 0.5) and by raising the wastewater temperature (31 ± 1°C). Once enriched, SCOD removal (62 ± 20%) was consistent at a hydraulic retention time of 1 day (applied voltage of 0.9 V). Current generation reached a maximum of 7.4 A/m(3) by the planned end of the test (after 100 days). Gas production reached a maximum of 0.19 ± 0.04 L/L/day, although most of the product gas was converted to methane (86 ± 6%). In order to increase hydrogen recovery in future tests, better methods will be needed to isolate hydrogen gas produced at the cathode. These results show that inoculation and enrichment procedures are critical to the initial success of larger-scale systems. Acetate amendments, warmer temperatures, and pH control during startup were found to be critical for proper enrichment of exoelectrogenic biofilms and improved reactor performance.

  16. Biogasification products of water hyacinth wastewater reclamation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chynoweth, D.P.; Biljetina, R.; Srivastava, V.J.

    1984-01-01

    This paper describes the results of research in progress to evaluate the use of water hyacinth for wastewater treatment and subsequent conversion of hyacinth and sludge to methane by anaerobic digestion. Laboratory studies have been directed toward evaluating advanced biogasification concepts and establishing a data base for the design and operation of an experimental test unit (ETU) located at the water hyacinth wastewater treatment facility at Walt Disney World (WDW) located in Kissimmee, Florida. Laboratory-scale kinetic experiments have been conducted using continuously-stirred tank reactors (CSTR) and a novel non-mixed upflow solids reactor (USR) receiving a hyacinth/sludge blend at retention timesmore » of 15 down to 2.1 days. The data suggest that best performance is achieved in the USR which has longer solids and organism retention. A larger-scale ETU (160 cu ft) was designed and installed at WDW in 1983 and started up in 1984. The purpose of this unit is to validate laboratory experiments and to evaluate larger-scale equipment used for chopping, slurry preparation, mixing, and effluent dewatering. The ETU includes a front end designed for multiple feed processing and storage, a fully instrumented USR digester, and tanks for effluent and gas storage. The ETU is currently being operated on a 2:1 blend (dry wt basis) of water hyacinth and primary sludge. Performance is good without major operational problems. Results of laboratory studies and start-up and operation of the ETU will be presented. 7 references, 4 figures, 1 table.« less

  17. Horizontal and vertical integration of physicians: a tale of two tails.

    PubMed

    Burns, Lawton Robert; Goldsmith, Jeff C; Sen, Aditi

    2013-01-01

    Researchers recommend a reorganization of the medical profession into larger groups with a multispecialty mix. We analyze whether there is evidence for the superiority of these models and if this organizational transformation is underway. DESIGN/METHODOLOGY APPROACH: We summarize the evidence on scale and scope economies in physician group practice, and then review the trends in physician group size and specialty mix to conduct survivorship tests of the most efficient models. The distribution of physician groups exhibits two interesting tails. In the lower tail, a large percentage of physicians continue to practice in small, physician-owned practices. In the upper tail, there is a small but rapidly growing percentage of large groups that have been organized primarily by non-physician owners. While our analysis includes no original data, it does collate all known surveys of physician practice characteristics and group practice formation to provide a consistent picture of physician organization. Our review suggests that scale and scope economies in physician practice are limited. This may explain why most physicians have retained their small practices. Larger, multispecialty groups have been primarily organized by non-physician owners in vertically integrated arrangements. There is little evidence supporting the efficiencies of such models and some concern they may pose anticompetitive threats. This is the first comprehensive review of the scale and scope economies of physician practice in nearly two decades. The research results do not appear to have changed much; nor has much changed in physician practice organization.

  18. Ability of the Confined Explosive Component Water Gap Test STANAG 4363 to Assess the Shock Sensitivity of MM-Scale Detonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lefrancois, A S; Roeske, F; Benterou, J

    2006-02-10

    The Explosive Component Water Gap Test (ECWGT) has been validated to assess the shock sensitivity of lead and booster components having a diameter larger than 5 mm. Several countries have investigated by experiments and numerical simulations the effect of confinement on the go/no go threshold for Pentaerythritol Tetranitrate (PETN) pellets having a height and diameter of 3 mm, confined by a steel annulus of wall thickness 1-3.5 mm. Confinement of the PETN by a steel annulus of the same height of the pellet with 1-mm wall thickness makes the component more sensitive (larger gap). As the wall thickness is increasedmore » to 2-mm, the gap increases a lesser amount, but when the wall thickness is increased to 3.5-mm a decrease in sensitivity is observed (smaller gap). This decrease of the water gap has been reproduced experimentally. Recent numerical simulations using Ignition and Growth model [1] for the PETN Pellet have reproduced the experimental results for the steel confinement up to 2 mm thick [2]. The presence of a stronger re-shock following the first input shock from the water and focusing on the axis have been identified in the pellet due to the steel confinement. The double shock configuration is well-known to lead in some cases to shock desensitization. This work presents the numerical simulations using Ignition and Growth model for LX16 (PETN based HE) and LX19 (CL20 based HE) Pellets [3] in order to assess the shock sensitivity of mm-scale detonators. The pellets are 0.6 mm in diameter and 3 mm length with different type of steel confinement 2.2 mm thick and 4.7 mm thick. The influence of an aluminum confinement is calculated for the standard LX 16 pellet 3 mm in diameter and 3 mm in height. The question of reducing the size of the donor charge is also investigated to small scale the test itself.« less

  19. Scaling of Brain Metabolism with a Fixed Energy Budget per Neuron: Implications for Neuronal Activity, Plasticity and Evolution

    PubMed Central

    Herculano-Houzel, Suzana

    2011-01-01

    It is usually considered that larger brains have larger neurons, which consume more energy individually, and are therefore accompanied by a larger number of glial cells per neuron. These notions, however, have never been tested. Based on glucose and oxygen metabolic rates in awake animals and their recently determined numbers of neurons, here I show that, contrary to the expected, the estimated glucose use per neuron is remarkably constant, varying only by 40% across the six species of rodents and primates (including humans). The estimated average glucose use per neuron does not correlate with neuronal density in any structure. This suggests that the energy budget of the whole brain per neuron is fixed across species and brain sizes, such that total glucose use by the brain as a whole, by the cerebral cortex and also by the cerebellum alone are linear functions of the number of neurons in the structures across the species (although the average glucose consumption per neuron is at least 10× higher in the cerebral cortex than in the cerebellum). These results indicate that the apparently remarkable use in humans of 20% of the whole body energy budget by a brain that represents only 2% of body mass is explained simply by its large number of neurons. Because synaptic activity is considered the major determinant of metabolic cost, a conserved energy budget per neuron has several profound implications for synaptic homeostasis and the regulation of firing rates, synaptic plasticity, brain imaging, pathologies, and for brain scaling in evolution. PMID:21390261

  20. Scaling of brain metabolism with a fixed energy budget per neuron: implications for neuronal activity, plasticity and evolution.

    PubMed

    Herculano-Houzel, Suzana

    2011-03-01

    It is usually considered that larger brains have larger neurons, which consume more energy individually, and are therefore accompanied by a larger number of glial cells per neuron. These notions, however, have never been tested. Based on glucose and oxygen metabolic rates in awake animals and their recently determined numbers of neurons, here I show that, contrary to the expected, the estimated glucose use per neuron is remarkably constant, varying only by 40% across the six species of rodents and primates (including humans). The estimated average glucose use per neuron does not correlate with neuronal density in any structure. This suggests that the energy budget of the whole brain per neuron is fixed across species and brain sizes, such that total glucose use by the brain as a whole, by the cerebral cortex and also by the cerebellum alone are linear functions of the number of neurons in the structures across the species (although the average glucose consumption per neuron is at least 10× higher in the cerebral cortex than in the cerebellum). These results indicate that the apparently remarkable use in humans of 20% of the whole body energy budget by a brain that represents only 2% of body mass is explained simply by its large number of neurons. Because synaptic activity is considered the major determinant of metabolic cost, a conserved energy budget per neuron has several profound implications for synaptic homeostasis and the regulation of firing rates, synaptic plasticity, brain imaging, pathologies, and for brain scaling in evolution.

  1. Mobile propeller dynamometer validation

    NASA Astrophysics Data System (ADS)

    Morris, Mason Wade

    With growing interest in UAVs and OSU's interest in propeller performance and manufacturing, evaluating UAV propeller and propulsion system performance has become essential. In attempts to evaluate these propellers a mobile propeller dynamometer has been designed, built, and tested. The mobile dyno has been designed to be cost effective through the ability to load it into the back of a test vehicle to create simulated forward flight characteristics. This allows much larger propellers to be dynamically tested without the use of large and expensive wind tunnels. While evaluating the accuracy of the dyno, several improvements had to be made to get accurate results. The decisions made to design and improve the mobile propeller dyno will be discussed along with attempts to validate the dyno by comparing its results against known sources. Another large part of assuring the accuracy of the mobile dyno is determining if the test vehicle will influence the flow going into the propellers being tested. The flow into the propeller needs to be as smooth and uniform as possible. This is determined by characterizing the boundary layer and accelerated flow over the vehicle. This evaluation was accomplished with extensive vehicle aerodynamic measurements with the use of full-scale tests using a pitot-rake and the actual test vehicle. Additional tests were conducted in Oklahoma State University's low speed wind tunnel with a 1/8-scale model using qualitative flow visualization with smoke. Continuing research on the mobile dyno will be discussed, along with other potential uses for the dyno.

  2. Pulse Jet Mixing Tests With Noncohesive Solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.

    2012-02-17

    This report summarizes results from pulse jet mixing (PJM) tests with noncohesive solids in Newtonian liquid. The tests were conducted during FY 2007 and 2008 to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant (WTP). Tests were conducted at three geometric scales using noncohesive simulants, and the test data were used to develop models predicting two measures of mixing performance for full-scale WTP vessels. The models predict the cloud height (the height to which solids will be lifted by the PJM action) and the critical suspension velocity (the minimum velocity needed to ensure allmore » solids are suspended off the floor, though not fully mixed). From the cloud height, the concentration of solids at the pump inlet can be estimated. The predicted critical suspension velocity for lifting all solids is not precisely the same as the mixing requirement for 'disturbing' a sufficient volume of solids, but the values will be similar and closely related. These predictive models were successfully benchmarked against larger scale tests and compared well with results from computational fluid dynamics simulations. The application of the models to assess mixing in WTP vessels is illustrated in examples for 13 distinct designs and selected operational conditions. The values selected for these examples are not final; thus, the estimates of performance should not be interpreted as final conclusions of design adequacy or inadequacy. However, this work does reveal that several vessels may require adjustments to design, operating features, or waste feed properties to ensure confidence in operation. The models described in this report will prove to be valuable engineering tools to evaluate options as designs are finalized for the WTP. Revision 1 refines data sets used for model development and summarizes models developed since the completion of Revision 0.« less

  3. Psychometric properties of the Arabic version of the 12-item diabetes fatalism scale

    PubMed Central

    Abi Kharma, Joelle

    2018-01-01

    Background There are widespread fatalistic beliefs in Arab countries, especially among individuals with diabetes. However, there is no tool to assess diabetes fatalism in this population. This study describes the processes used to create an Arabic version of the Diabetes Fatalism Scale (DFS) and examine its psychometric properties. Methods A descriptive correlational design was used with a convenience sample of Lebanese adults (N = 274) with type 2 diabetes recruited from a major hospital in Beirut, Lebanon and by snowball sampling. The 12- item Diabetes Fatalism Scale- Arabic (12-item DFS-Ar) was back-translated from the original version, pilot tested on 22 adults with type 2 diabetes and then administered to 274 patients to assess the validity and reliability of the scale. Confirmatory factor analysis (CFA) was used to test the hypothesized factor structure. Cronbach’s alpha was used to test for reliability. Results CFA supported the existence of the three factor hypothesis of the original DFS scale. The five items measuring “emotional distress” loaded under Factor 1, the four items measuring “spiritual coping” loaded under factor 2 and the last three items measuring “perceived self-efficacy” of the original scale loaded under Factor 3 (p <0.001 for all three subscales). Goodness of fit indices confirmed adequateness of the CFA model (CFI = 0.97, TLI = 0.96, RMSEA = 0.067 and pclose = 0.05). The 12-item DFS-Ar showed good reliability (Cronbach’s alpha of 0.86) and significantly predicted HbA1c (β = 0.20, p < 0.01). After adjusting for the demographic characteristics and the number of diabetes comorbid conditions, the 12-item DFS-Ar score was independently associated with HbA1c in a multivariable model (β = 0.16, p < 0.05). Conclusions The 12-item DFS-Ar demonstrated good psychometric properties that are comparable to the original scale. It is a valid and reliable measure of diabetes fatalism. Further testing with larger and non-Lebanese Arabic population is needed. PMID:29324827

  4. Alexithymia, empathy, emotion identification and social inference in anorexia nervosa: A case-control study.

    PubMed

    Gramaglia, Carla; Ressico, Francesca; Gambaro, Eleonora; Palazzolo, Anna; Mazzarino, Massimiliano; Bert, Fabrizio; Siliquini, Roberta; Zeppegno, Patrizia

    2016-08-01

    Alexithymia, difficulties in facial emotion recognition, poor socio-relational skills are typical of anorexia nervosa (AN). We assessed patients with AN and healthy controls (HCs) with mixed stimuli: questionnaires (Toronto Alexithymia Scale-TAS, Interpersonal Reactivity Index-IRI), photographs (Facial Emotion Identification Test-FEIT) and dynamic images (The Awareness of Social Inference Test-TASIT). TAS and IRI Personal Distress (PD) were higher in AN than HCs. Few or no differences emerged at the FEIT and TASIT, respectively. Larger effect sizes were found for the TAS results. Despite higher levels of alexithymia, patients with AN seem to properly acknowledge others' emotions while being inhibited in the expression of their own. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The index-flood and the GRADEX methods combination for flood frequency analysis.

    NASA Astrophysics Data System (ADS)

    Fuentes, Diana; Di Baldassarre, Giuliano; Quesada, Beatriz; Xu, Chong-Yu; Halldin, Sven; Beven, Keith

    2017-04-01

    Flood frequency analysis is used in many applications, including flood risk management, design of hydraulic structures, and urban planning. However, such analysis requires of long series of observed discharge data which are often not available in many basins around the world. In this study, we tested the usefulness of combining regional discharge and local precipitation data to estimate the event flood volume frequency curve for 63 catchments in Mexico, Central America and the Caribbean. This was achieved by combining two existing flood frequency analysis methods, the regionalization index-flood approach with the GRADEX method. For up to 10-years return period, similar shape of the scaled flood frequency curve for catchments with similar flood behaviour was assumed from the index-flood approach. For return periods larger than 10-years the probability distribution of rainfall and discharge volumes were assumed to be asymptotically and exponential-type functions with the same scale parameter from the GRADEX method. Results showed that if the mean annual flood (MAF), used as index-flood, is known, the index-flood approach performed well for up to 10 years return periods, resulting in 25% mean relative error in prediction. For larger return periods the prediction capability decreased but could be improved by the use of the GRADEX method. As the MAF is unknown at ungauged and short-period measured basins, we tested predicting the MAF using catchments climate-physical characteristics, and discharge statistics, the latter when observations were available for only 8 years. Only the use of discharge statistics resulted in acceptable predictions.

  6. Neural Systems Underlying Individual Differences in Intertemporal Decision-making.

    PubMed

    Elton, Amanda; Smith, Christopher T; Parrish, Michael H; Boettiger, Charlotte A

    2017-03-01

    Excessively choosing immediate over larger future rewards, or delay discounting (DD), associates with multiple clinical conditions. Individual differences in DD likely depend on variations in the activation of and functional interactions between networks, representing possible endophenotypes for associated disorders, including alcohol use disorders (AUDs). Numerous fMRI studies have probed the neural bases of DD, but investigations of large-scale networks remain scant. We addressed this gap by testing whether activation within large-scale networks during Now/Later decision-making predicts individual differences in DD. To do so, we scanned 95 social drinkers (18-40 years old; 50 women) using fMRI during hypothetical choices between small monetary amounts available "today" or larger amounts available later. We identified neural networks engaged during Now/Later choice using independent component analysis and tested the relationship between component activation and degree of DD. The activity of two components during Now/Later choice correlated with individual DD rates: A temporal lobe network positively correlated with DD, whereas a frontoparietal-striatal network negatively correlated with DD. Activation differences between these networks predicted individual differences in DD, and their negative correlation during Now/Later choice suggests functional competition. A generalized psychophysiological interactions analysis confirmed a decrease in their functional connectivity during decision-making. The functional connectivity of these two networks negatively correlates with alcohol-related harm, potentially implicating these networks in AUDs. These findings provide novel insight into the neural underpinnings of individual differences in impulsive decision-making with potential implications for addiction and related disorders in which impulsivity is a defining feature.

  7. A Pilot Study to Assess a Teaching Intervention to Improve Sleep-Wake Disturbances in Parents of Children Diagnosed With Epilepsy.

    PubMed

    Ledet, Davonna; Aplin-Kalisz, Christina; Filter, Marilyn; Dycus, Paula

    2016-02-01

    The aim of this study was to assess the impact of screening and teaching interventions for sleep-wake disturbances in parents of childhood patients with epilepsy. This was a prospective, descriptive study using convenience sampling. After informed consent was obtained from eligible parents who agreed to participate, study questionnaires were administered. All parents were provided with an individualized teaching intervention. Study tools were readministered 8-12 weeks later to evaluate if the individualized teaching intervention altered or improved sleep-wake disturbances. The t value for the paired t test of the Epworth Sleepiness Scale prescore and postscore was 0.000 with a two-tailed probability value of 1.000, and the t value for the paired t test of the Pittsburgh Sleep Quality Index prescore and postscore was 0.713 with a two-tailed probability value of .492, indicating no significant difference between pre and post Epworth Sleepiness Scale or Pittsburgh Sleep Quality Index scores. A sleep hygiene teaching intervention for parents of children with epilepsy was not effective in this setting of an inner-city epilepsy monitoring unit in changing postintervention scores on measures of both nighttime sleep quality and daytime sleepiness. These results must be interpreted with caution secondary to the small number included in the initial phase of this study. A larger number of participants will be needed to verify these findings. If the results remain consistent with a larger number, studies evaluating variables of cause may be helpful to determine more effective interventions.

  8. The residual protective effects of enactment.

    PubMed

    Wammes, Jeffrey D; Fernandes, Myra A

    2017-07-01

    Research has demonstrated the importance of the quality of initial retrieval events (Test 1) for performance on later memory tests (Test 2). We explored whether enacting words at encoding, relative to simply reading them, provided protection against the detrimental effects of a degraded retrieval experience, through the addition of motor processing to the extant memory representation. Participants encoded a mixed list of enacted and read words, then completed Test 1, and a later Test 2. Encoding and Test 2 were always completed under full attention (FA). Critically though, Test 1 was completed either under FA, or under divided attention (DA) with a distracting task requiring semantic and phonological processing. We predicted a larger enactment effect following DA relative to FA, indicating greater preservation of enacted words from dual-task interference. In Experiment 1, we demonstrated that the enactment effect was indeed larger following DA than FA, indicating greater preservation of enacted words after dual-task interference. In Experiment 2, we showed that this effect was even more potent over longer time scales, which served as a conceptual replication. In Experiment 3, we showed that enactment provides little to no protection when the distracting task requires motor processing, and in Experiment 4, we returned to the phonological distracting task and showed that in contrast with enactment, generation at encoding does not afford the same protection to memory. Taken together, these finding suggest that enactment renders words relatively immune to the detrimental effects of dual-tasking during testing, through the addition of a different kind, rather than a greater degree, of processing to the memory trace at encoding. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Scaling considerations related to interactions of hydrologic, pedologic and geomorphic processes (Invited)

    NASA Astrophysics Data System (ADS)

    Sidle, R. C.

    2013-12-01

    Hydrologic, pedologic, and geomorphic processes are strongly interrelated and affected by scale. These interactions exert important controls on runoff generation, preferential flow, contaminant transport, surface erosion, and mass wasting. Measurement of hydraulic conductivity (K) and infiltration capacity at small scales generally underestimates these values for application at larger field, hillslope, or catchment scales. Both vertical and slope-parallel saturated flow and related contaminant transport are often influenced by interconnected networks of preferential flow paths, which are not captured in K measurements derived from soil cores. Using such K values in models may underestimate water and contaminant fluxes and runoff peaks. As shown in small-scale runoff plot studies, infiltration rates are typically lower than integrated infiltration across a hillslope or in headwater catchments. The resultant greater infiltration-excess overland flow in small plots compared to larger landscapes is attributed to the lack of preferential flow continuity; plot border effects; greater homogeneity of rainfall inputs, topography and soil physical properties; and magnified effects of hydrophobicity in small plots. At the hillslope scale, isolated areas with high infiltration capacity can greatly reduce surface runoff and surface erosion at the hillslope scale. These hydropedologic and hydrogeomorphic processes are also relevant to both occurrence and timing of landslides. The focus of many landslide studies has typically been either on small-scale vadose zone process and how these affect soil mechanical properties or on larger scale, more descriptive geomorphic studies. One of the issues in translating laboratory-based investigations on geotechnical behavior of soils to field scales where landslides occur is the characterization of large-scale hydrological processes and flow paths that occur in heterogeneous and anisotropic porous media. These processes are not only affected by the spatial distribution of soil physical properties and bioturbations, but also by geomorphic attributes. Interactions among preferential flow paths can induce rapid pore water pressure response within soil mantles and trigger landslides during storm peaks. Alternatively, in poorly developed and unstructured soils, infiltration occurs mainly through the soil matrix and a lag time exists between the rainfall peak and development of pore water pressures at depth. Deep, slow-moving mass failures are also strongly controlled by secondary porosity within the regolith with the timing of activation linked to recharge dynamics. As such, understanding both small and larger scale processes is needed to estimate geomorphic impacts, as well as streamflow generation and contaminant migration.

  10. Experimental Plan for Crystal Accumulation Studies in the WTP Melter Riser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, D.; Fowley, M.

    2015-04-28

    This experimental plan defines crystal settling experiments to be in support of the U.S. Department of Energy – Office of River Protection crystal tolerant glass program. The road map for development of crystal-tolerant high level waste glasses recommends that fluid dynamic modeling be used to better understand the accumulation of crystals in the melter riser and mechanisms of removal. A full-scale version of the Hanford Waste Treatment and Immobilization Plant (WTP) melter riser constructed with transparent material will be used to provide data in support of model development. The system will also provide a platform to demonstrate mitigation or recoverymore » strategies in off-normal events where crystal accumulation impedes melter operation. Test conditions and material properties will be chosen to provide results over a variety of parameters, which can be used to guide validation experiments with the Research Scale Melter at the Pacific Northwest National Laboratory, and that will ultimately lead to the development of a process control strategy for the full scale WTP melter. The experiments described in this plan are divided into two phases. Bench scale tests will be used in Phase 1 (using the appropriate solid and fluid simulants to represent molten glass and spinel crystals) to verify the detection methods and analytical measurements prior to their use in a larger scale system. In Phase 2, a full scale, room temperature mockup of the WTP melter riser will be fabricated. The mockup will provide dynamic measurements of flow conditions, including resistance to pouring, as well as allow visual observation of crystal accumulation behavior.« less

  11. Shallowing-upward cyclic patterns within larger-scale transgressive-regressive (T-R) sedimentary sequences, St. Peter through Decorah Formations, Ordovician, Iowa area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witzke, B.J.

    1993-03-01

    Four large-scale (2--8 Ma) T-R sedimentary sequences of M. Ord. age (late Chaz.-Sherm.) were delimited by Witzke Kolata (1980) in the Iowa area, each bounded by local to regional unconformity/disconformity surfaces. These encompass both siliciclastic and carbonate intervals, in ascending order: (1) St. Peter-Glenwood fms., (2) Platteville Fm., (3) Decorah Fm., (4) Dunleith/upper Decorah fms. Finer-scale resolution of depth-related depositional features has led to regional recognition of smaller-scale shallowing-upward cyclicity contained within each large-scale sequence. Such smaller-scale cyclicity encompasses stratigraphic intervals of 1--10 m thickness, with estimated durations of 0.5--1.5 Ma. The St. Peter Sandst. has long been regarded asmore » a classic transgressive sheet sand. However, four discrete shallowing-upward packages characterize the St. Peter-Glenwood interval regionally (IA, MN, NB, KS), including western facies displaying coarsening-upward sandstone packages with condensed conodont-rich brown shale and phosphatic sediments in their lower part (local oolitic ironstone), commonly above pyritic hardgrounds. Regional continuity of small-scale cyclic patterns in M. Ord. strata of the Iowa area may suggest eustatic controls; this can be tested through inter-regional comparisons.« less

  12. Quantitative analysis of scale of aeromagnetic data raises questions about geologic-map scale

    USGS Publications Warehouse

    Nykanen, V.; Raines, G.L.

    2006-01-01

    A recently published study has shown that small-scale geologic map data can reproduce mineral assessments made with considerably larger scale data. This result contradicts conventional wisdom about the importance of scale in mineral exploration, at least for regional studies. In order to formally investigate aspects of scale, a weights-of-evidence analysis using known gold occurrences and deposits in the Central Lapland Greenstone Belt of Finland as training sites provided a test of the predictive power of the aeromagnetic data. These orogenic-mesothermal-type gold occurrences and deposits have strong lithologic and structural controls associated with long (up to several kilometers), narrow (up to hundreds of meters) hydrothermal alteration zones with associated magnetic lows. The aeromagnetic data were processed using conventional geophysical methods of successive upward continuation simulating terrane clearance or 'flight height' from the original 30 m to an artificial 2000 m. The analyses show, as expected, that the predictive power of aeromagnetic data, as measured by the weights-of-evidence contrast, decreases with increasing flight height. Interestingly, the Moran autocorrelation of aeromagnetic data representing differing flight height, that is spatial scales, decreases with decreasing resolution of source data. The Moran autocorrelation coefficient scems to be another measure of the quality of the aeromagnetic data for predicting exploration targets. ?? Springer Science+Business Media, LLC 2007.

  13. Exploring cosmic homogeneity with the BOSS DR12 galaxy sample

    NASA Astrophysics Data System (ADS)

    Ntelis, Pierros; Hamilton, Jean-Christophe; Le Goff, Jean-Marc; Burtin, Etienne; Laurent, Pierre; Rich, James; Guillermo Busca, Nicolas; Tinker, Jeremy; Aubourg, Eric; du Mas des Bourboux, Hélion; Bautista, Julian; Palanque Delabrouille, Nathalie; Delubac, Timothée; Eftekharzadeh, Sarah; Hogg, David W.; Myers, Adam; Vargas-Magaña, Mariana; Pâris, Isabelle; Petitjean, Partick; Rossi, Graziano; Schneider, Donald P.; Tojeiro, Rita; Yeche, Christophe

    2017-06-01

    In this study, we probe the transition to cosmic homogeneity in the Large Scale Structure (LSS) of the Universe using the CMASS galaxy sample of BOSS spectroscopic survey which covers the largest effective volume to date, 3 h-3 Gpc3 at 0.43 <= z <= 0.7. We study the scaled counts-in-spheres, N(2.97 for r>RH, we find RH = (63.3±0.7) h-1 Mpc, in agreement at the percentage level with the predictions of the ΛCDM model RH=62.0 h-1 Mpc. Thanks to the large cosmic depth of the survey, we investigate the redshift evolution of the transition to homogeneity scale and find agreement with the ΛCDM prediction. Finally, we find that Script D2 is compatible with 3 at scales larger than 300 h-1 Mpc in all redshift bins. These results consolidate the Cosmological Principle and represent a precise consistency test of the ΛCDM model.

  14. Dichotomous scoring of Trails B in patients referred for a dementia evaluation.

    PubMed

    Schmitt, Andrew L; Livingston, Ronald B; Smernoff, Eric N; Waits, Bethany L; Harris, James B; Davis, Kent M

    2010-04-01

    The Trail Making Test is a popular neuropsychological test and its interpretation has traditionally used time-based scores. This study examined an alternative approach to scoring that is simply based on the examinees' ability to complete the test. If an examinee is able to complete Trails B successfully, they are coded as "completers"; if not, they are coded as "noncompleters." To assess this approach to scoring Trails B, the performance of 97 diagnostically heterogeneous individuals referred for a dementia evaluation was examined. In this sample, 55 individuals successfully completed Trails B and 42 individuals were unable to complete it. Point-biserial correlations indicated a moderate-to-strong association (r(pb)=.73) between the Trails B completion variable and the Total Scale score of the Repeatable Battery for the Assessment of Neurological Status (RBANS), which was larger than the correlation between the Trails B time-based score and the RBANS Total Scale score (r(pb)=.60). As a screen for dementia status, Trails B completion showed a sensitivity of 69% and a specificity of 100% in this sample. These results suggest that dichotomous scoring of Trails B might provide a brief and clinically useful measure of dementia status.

  15. A Simple Decontamination Approach Using Hydrogen ...

    EPA Pesticide Factsheets

    Journal article To evaluate the use of relatively low levels of hydrogen peroxide vapor (HPV) for the inactivation of Bacillus anthracis spores within an indoor environment. Methods and Results: Laboratory-scale decontamination tests were conducted using bacterial spores of both B. anthracis Ames and Bacillus atrophaeus inoculated onto several types of materials. Pilot-scale tests were also conducted using a larger chamber furnished as an indoor office. Commercial off-the-shelf (COTS) humidifiers filled with aqueous solutions of 3% or 8% hydrogen peroxide were used to generate the HPV inside the mock office. The spores were exposed to the HPV for periods ranging from 8 hours up to one week. Conclusions: Four to seven day exposures to low levels of HPV (average air concentrations of approximately 5-10 parts per million) were effective in inactivating B. anthracis spores on multiple materials. The HPV can be generated with COTS humidifiers and household H2O2 solutions. With the exception of one test/material, B. atrophaeus spores were equally or more resistant to HPV inactivation compared to those from B. anthracis Ames. Significance and Impact of Study: This simple and effective decontamination method is another option that could be widely applied in the event of a B. anthracis spore release.

  16. Trinity to Trinity 1945-2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moniz, Ernest; Carr, Alan; Bethe, Hans

    The Trinity Test of July 16, 1945 was the first full-scale, real-world test of a nuclear weapon; with the new Trinity supercomputer Los Alamos National Laboratory's goal is to do this virtually, in 3D. Trinity was the culmination of a fantastic effort of groundbreaking science and engineering by hundreds of men and women at Los Alamos and other Manhattan Project sites. It took them less than two years to change the world. The Laboratory is marking the 70th anniversary of the Trinity Test because it not only ushered in the Nuclear Age, but with it the origin of today’s advancedmore » supercomputing. We live in the Age of Supercomputers due in large part to nuclear weapons science here at Los Alamos. National security science, and nuclear weapons science in particular, at Los Alamos National Laboratory have provided a key motivation for the evolution of large-scale scientific computing. Beginning with the Manhattan Project there has been a constant stream of increasingly significant, complex problems in nuclear weapons science whose timely solutions demand larger and faster computers. The relationship between national security science at Los Alamos and the evolution of computing is one of interdependence.« less

  17. Trinity to Trinity 1945-2015

    ScienceCinema

    Moniz, Ernest; Carr, Alan; Bethe, Hans; Morrison, Phillip; Ramsay, Norman; Teller, Edward; Brixner, Berlyn; Archer, Bill; Agnew, Harold; Morrison, John

    2018-01-16

    The Trinity Test of July 16, 1945 was the first full-scale, real-world test of a nuclear weapon; with the new Trinity supercomputer Los Alamos National Laboratory's goal is to do this virtually, in 3D. Trinity was the culmination of a fantastic effort of groundbreaking science and engineering by hundreds of men and women at Los Alamos and other Manhattan Project sites. It took them less than two years to change the world. The Laboratory is marking the 70th anniversary of the Trinity Test because it not only ushered in the Nuclear Age, but with it the origin of today’s advanced supercomputing. We live in the Age of Supercomputers due in large part to nuclear weapons science here at Los Alamos. National security science, and nuclear weapons science in particular, at Los Alamos National Laboratory have provided a key motivation for the evolution of large-scale scientific computing. Beginning with the Manhattan Project there has been a constant stream of increasingly significant, complex problems in nuclear weapons science whose timely solutions demand larger and faster computers. The relationship between national security science at Los Alamos and the evolution of computing is one of interdependence.

  18. Diagnostic efficiency of demographically corrected Wechsler Adult Intelligence Scale-III and Wechsler Memory Scale-III indices in moderate to severe traumatic brain injury and lower education levels.

    PubMed

    Walker, Alexandra J; Batchelor, Jennifer; Shores, E Arthur; Jones, Mike

    2009-11-01

    Despite the sensitivity of neuropsychological tests to educational level, improved diagnostic accuracy for demographically corrected scores has yet to be established. Diagnostic efficiency statistics of Wechsler Adult Intelligence Scale-III (WAIS-III) and Wechsler Memory Scale-III (WMS-III) indices that were corrected for education, sex, and age (demographically corrected) were compared with age corrected indices in individuals aged 16 to 75 years with moderate to severe traumatic brain injury (TBI) and 12 years or less education. TBI participants (n = 100) were consecutive referrals to an outpatient rehabilitation service and met careful selection criteria. Controls (n = 100) were obtained from the WAIS-III/WMS-III standardization sample. Demographically corrected indices did not provide higher diagnostic efficiency than age corrected indices and this result was supported by reanalysis of the TBI group against a larger and unmatched control group. Processing Speed Index provided comparable diagnostic accuracy to that of combined indices. Demographically corrected indices were associated with higher cut-scores to maximize overall classification, reflecting the upward adjustment of those scores in a lower education sample. This suggests that, in clinical practice, the test results of individuals with limited education may be more accurately interpreted with the application of demographic corrections. Diagnostic efficiency statistics are presented, and future research directions are discussed.

  19. Effects of Spatial Patch Arrangement and Scale of Covarying Resources on Growth and Intraspecific Competition of a Clonal Plant

    PubMed Central

    Wang, Yong-Jian; Shi, Xue-Ping; Meng, Xue-Feng; Wu, Xiao-Jing; Luo, Fang-Li; Yu, Fei-Hai

    2016-01-01

    Spatial heterogeneity in two co-variable resources such as light and water availability is common and can affect the growth of clonal plants. Several studies have tested effects of spatial heterogeneity in the supply of a single resource on competitive interactions of plants, but none has examined those of heterogeneous distribution of two co-variable resources. In a greenhouse experiment, we grew one (without intraspecific competition) or nine isolated ramets (with competition) of a rhizomatous herb Iris japonica under a homogeneous environment and four heterogeneous environments differing in patch arrangement (reciprocal and parallel patchiness of light and soil water) and patch scale (large and small patches of light and water). Intraspecific competition significantly decreased the growth of I. japonica, but at the whole container level there were no significant interaction effects of competition by spatial heterogeneity or significant effect of heterogeneity on competitive intensity. Irrespective of competition, the growth of I. japonica in the high and the low water patches did not differ significantly in the homogeneous treatments, but it was significantly larger in the high than in the low water patches in the heterogeneous treatments with large patches. For the heterogeneous treatments with small patches, the growth of I. japonica was significantly larger in the high than in the low water patches in the presence of competition, but such an effect was not significant in the absence of competition. Furthermore, patch arrangement and patch scale significantly affected competitive intensity at the patch level. Therefore, spatial heterogeneity in light and water supply can alter intraspecific competition at the patch level and such effects depend on patch arrangement and patch scale. PMID:27375630

  20. Effects of Spatial Patch Arrangement and Scale of Covarying Resources on Growth and Intraspecific Competition of a Clonal Plant.

    PubMed

    Wang, Yong-Jian; Shi, Xue-Ping; Meng, Xue-Feng; Wu, Xiao-Jing; Luo, Fang-Li; Yu, Fei-Hai

    2016-01-01

    Spatial heterogeneity in two co-variable resources such as light and water availability is common and can affect the growth of clonal plants. Several studies have tested effects of spatial heterogeneity in the supply of a single resource on competitive interactions of plants, but none has examined those of heterogeneous distribution of two co-variable resources. In a greenhouse experiment, we grew one (without intraspecific competition) or nine isolated ramets (with competition) of a rhizomatous herb Iris japonica under a homogeneous environment and four heterogeneous environments differing in patch arrangement (reciprocal and parallel patchiness of light and soil water) and patch scale (large and small patches of light and water). Intraspecific competition significantly decreased the growth of I. japonica, but at the whole container level there were no significant interaction effects of competition by spatial heterogeneity or significant effect of heterogeneity on competitive intensity. Irrespective of competition, the growth of I. japonica in the high and the low water patches did not differ significantly in the homogeneous treatments, but it was significantly larger in the high than in the low water patches in the heterogeneous treatments with large patches. For the heterogeneous treatments with small patches, the growth of I. japonica was significantly larger in the high than in the low water patches in the presence of competition, but such an effect was not significant in the absence of competition. Furthermore, patch arrangement and patch scale significantly affected competitive intensity at the patch level. Therefore, spatial heterogeneity in light and water supply can alter intraspecific competition at the patch level and such effects depend on patch arrangement and patch scale.

  1. Large 21-cm signals from AGN-dominated reionization

    NASA Astrophysics Data System (ADS)

    Kulkarni, Girish; Choudhury, Tirthankar Roy; Puchwein, Ewald; Haehnelt, Martin G.

    2017-08-01

    We present predictions for the spatial distribution of 21-cm brightness temperature fluctuations from high-dynamic-range simulations for active galactic nucleus (AGN)-dominated reionization histories that have been tested against available Lyα and cosmic microwave background (CMB) data. We model AGNs by extrapolating the observed Mbh - σ relation to high redshifts and assign them ionizing emissivities consistent with recent UV luminosity function measurements. We assess the observability of the predicted spatial 21-cm fluctuations in the late stages of reionization in the limit in which the hydrogen 21-cm spin temperature is significantly larger than the CMB temperature. Our AGN-dominated reionization histories increase the variance of the 21-cm emission by a factor of up to 10 compared to similar reionization histories dominated by faint galaxies, to values close to 100 mK2 at scales accessible to experiments (k ≲ 1 cMpc-1 h). This is lower than the sensitivity reached by ongoing experiments only by a factor of about 2 or less. When reionization is dominated by AGNs, the 21-cm power spectrum is enhanced on all scales due to the enhanced bias of the clustering of the more massive haloes and the peak in the large scale 21-cm power is strongly enhanced and moved to larger scales due to bigger characteristic bubble sizes. AGN-dominated reionization should be easily detectable by Low Frequency Array (and later Hydrogen Epoch of Reionization Array and Phase 1 of the Square Kilometre Array) at their design sensitivity, assuming successful foreground subtraction and instrument calibration. Conversely, these could become the first non-trivial reionization scenarios to be ruled out by 21-cm experiments, thereby constraining the contribution of AGNs to reionization.

  2. The unusual suspect: Land use is a key predictor of biodiversity patterns in the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Martins, Inês Santos; Proença, Vânia; Pereira, Henrique Miguel

    2014-11-01

    Although land use change is a key driver of biodiversity change, related variables such as habitat area and habitat heterogeneity are seldom considered in modeling approaches at larger extents. To address this knowledge gap we tested the contribution of land use related variables to models describing richness patterns of amphibians, reptiles and passerines in the Iberian Peninsula. We analyzed the relationship between species richness and habitat heterogeneity at two spatial resolutions (i.e., 10 km × 10 km and 50 km × 50 km). Using both ordinary least square and simultaneous autoregressive models, we assessed the relative importance of land use variables, climate variables and topographic variables. We also compare the species-area relationship with a multi-habitat model, the countryside species-area relationship, to assess the role of the area of different types of habitats on species diversity across scales. The association between habitat heterogeneity and species richness varied with the taxa and spatial resolution. A positive relationship was detected for all taxa at a grain size of 10 km × 10 km, but only passerines responded at a grain size of 50 km × 50 km. Species richness patterns were well described by abiotic predictors, but habitat predictors also explained a considerable portion of the variation. Moreover, species richness patterns were better described by a multi-habitat species-area model, incorporating land use variables, than by the classic power model, which only includes area as the single explanatory variable. Our results suggest that the role of land use in shaping species richness patterns goes beyond the local scale and persists at larger spatial scales. These findings call for the need of integrating land use variables in models designed to assess species richness response to large scale environmental changes.

  3. PRELIMINARY ENVIRONMENTAL, HEALTH AND SAFETY RISK ASSESSMENT ON THE INTEGRATION OF A PROCESS UTILIZING LOW-ENERGY SOLVENTS FOR CARBON DIOXIDE CAPTURE ENABLED BY A COMBINATION OF ENZYMES AND VACUUM REGENERATION WITH A SUBCRITICAL PC POWER PLANT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzgerald, David; Vidal, Rafael; Russell, Tania

    2014-12-31

    The results of the preliminary environmental, health and safety (EH&S) risk assessment for an enzyme-activated potassium carbonate (K2CO3) solution post-combustion CO2 capture (PCC) plant, integrated with a subcritical pulverized coal (PC) power plant, are presented. The expected emissions during normal steady-state operation have been estimated utilizing models of the PCC plant developed in AspenTech’s AspenPlus® software, bench scale test results from the University of Kentucky, and industrial experience of emission results from a slipstream PCC plant utilizing amine based solvents. A review of all potential emission species and their sources was undertaken that identified two credible emission sources, the absorbermore » off-gas that is vented to atmosphere via a stack and the waste removed from the PCC plant in the centrifuge used to reclaim enzyme and solvent. The conditions and compositions of the emissions were calculated and the potential EH&S effects were considered as well as legislative compliance requirements. Potential mitigation methods for emissions during normal operation have been proposed and solutions to mitigate uncontrolled releases of species have been considered. The potential emissions were found to pose no significant EH&S concerns and were compliant with the Federal legislation reviewed. The limitations in predicting full scale plant performance from bench scale tests have been noted and further work on a larger scale test unit is recommended to reduce the level of uncertainty.« less

  4. Interspecific scaling patterns of talar articular surfaces within primates and their closest living relatives

    PubMed Central

    Yapuncich, Gabriel S; Boyer, Doug M

    2014-01-01

    The articular facets of interosseous joints must transmit forces while maintaining relatively low stresses. To prevent overloading, joints that transmit higher forces should therefore have larger facet areas. The relative contributions of body mass and muscle-induced forces to joint stress are unclear, but generate opposing hypotheses. If mass-induced forces dominate, facet area should scale with positive allometry to body mass. Alternatively, muscle-induced forces should cause facets to scale isometrically with body mass. Within primates, both scaling patterns have been reported for articular surfaces of the femoral and humeral heads, but more distal elements are less well studied. Additionally, examination of complex articular surfaces has largely been limited to linear measurements, so that ‘true area' remains poorly assessed. To re-assess these scaling relationships, we examine the relationship between body size and articular surface areas of the talus. Area measurements were taken from microCT scan-generated surfaces of all talar facets from a comprehensive sample of extant euarchontan taxa (primates, treeshrews, and colugos). Log-transformed data were regressed on literature-derived log-body mass using reduced major axis and phylogenetic least squares regressions. We examine the scaling patterns of muscle mass and physiological cross-sectional area (PCSA) to body mass, as these relationships may complicate each model. Finally, we examine the scaling pattern of hindlimb muscle PCSA to talar articular surface area, a direct test of the effect of mass-induced forces on joint surfaces. Among most groups, there is an overall trend toward positive allometry for articular surfaces. The ectal (= posterior calcaneal) facet scales with positive allometry among all groups except ‘sundatherians', strepsirrhines, galagids, and lorisids. The medial tibial facet scales isometrically among all groups except lemuroids. Scaling coefficients are not correlated with sample size, clade inclusivity or behavioral diversity of the sample. Muscle mass scales with slight positive allometry to body mass, and PCSA scales at isometry to body mass. PCSA generally scales with negative allometry to articular surface area, which indicates joint surfaces increase faster than muscles' ability to generate force. We suggest a synthetic model to explain the complex patterns observed for talar articular surface area scaling: whether ‘muscles or mass' drive articular facet scaling is probably dependent on the body size range of the sample and the biological role of the facet. The relationship between ‘muscle vs. mass' dominance is likely bone-and facet-specific, meaning that some facets should respond primarily to stresses induced by larger body mass, whereas others primarily reflect muscle forces. PMID:24219027

  5. Sex differences in giraffe foraging behavior at two spatial scales.

    PubMed

    Ginnett, T F; Demment, Montague W

    1997-04-01

    We test predictions about differences in the foraging behaviors of male and female giraffes (Giraffa camelopardalis tippelskirchi Matchie) that derive from a hypothesis linking sexual size dimorphism to foraging behavior. This body-size hypothesis predicts that males will exhibit specific behaviors that increase their dry-matter intake rate relative to females. Foraging behavior was examined at two hierarchical levels corresponding to two spatial and temporal scales, within patches and within habitats. Patches are defined as individual trees or shrubs and habitats are defined as collections of patches within plant communities. Males were predicted to increase dry-matter intake rate within patches by taking larger bites, cropping bites more quickly, chewing less, and chewing faster. Within habitats, males were expected to increase intake rate by increasing the proportion of foraging time devoted to food ingestion as opposed to inter-patch travel time and vigilance. The predictions were tested in a free-ranging population of giraffes in Mikumi National Park, Tanzania. Males spent less total time foraging than females but allocated a greater proportion of their foraging time to forage ingestion as opposed to travel between patches. There was no sex difference in rumination time but males spent more time in activities other than foraging and rumination, such as walking. Within patches, males took larger bites than females, but females cropped bites more quickly and chewed faster. Males had longer per-bite handling times than females but had shorter handling times per gram of intake. Within habitats, males had longer average patch residence times but there was no significant sex difference in inter-patch travel times. There was no overall difference between sexes in vigilance while foraging, although there were significant sex by habitat and sex by season interactions. Although not all the predictions were confirmed, overall the results agree qualitatively with the body-size hypothesis. Sex-related differences in foraging behavior led to greater estimated intake rates for males at the within-patch and within-habitat scales.

  6. Accurate atomistic potentials and training sets for boron-nitride nanostructures

    NASA Astrophysics Data System (ADS)

    Tamblyn, Isaac

    Boron nitride nanotubes exhibit exceptional structural, mechanical, and thermal properties. They are optically transparent and have high thermal stability, suggesting a wide range of opportunities for structural reinforcement of materials. Modeling can play an important role in determining the optimal approach to integrating nanotubes into a supporting matrix. Developing accurate, atomistic scale models of such nanoscale interfaces embedded within composites is challenging, however, due to the mismatch of length scales involved. Typical nanotube diameters range from 5-50 nm, with a length as large as a micron (i.e. a relevant length-scale for structural reinforcement). Unlike their carbon-based counterparts, well tested and transferable interatomic force fields are not common for BNNT. In light of this, we have developed an extensive training database of BN rich materials, under conditions relevant for BNNT synthesis and composites based on extensive first principles molecular dynamics simulations. Using this data, we have produced an artificial neural network potential capable of reproducing the accuracy of first principles data at significantly reduced computational cost, allowing for accurate simulation at the much larger length scales needed for composite design.

  7. Using stable isotopes to identify the scaling effects of riparian peatlands on runoff generation processes and DOC mobilisation

    NASA Astrophysics Data System (ADS)

    Tunaley, Claire; Tetzlaff, Doerthe; Soulsby, Chris

    2017-04-01

    Knowledge of hydrological sources, flow paths, and their connectivity is fundamental to understanding stream flow generation and surface water quality in peatlands. Stable isotopes are proven tools for tracking the sources and flow paths of runoff. However, relativity few studies have used isotopes in peat-dominated catchments. Here, we combined 13 months (June 2014 - July 2015) of daily isotope measurements in stream water with daily DOC and 15 minute FDOM (fluorescent component of dissolved organic matter) data, at three nested scales in NE Scotland, to identify the hydrological processes occurring in riparian peatlands. We investigated how runoff generation processes in a small, riparian peatland dominated headwater catchment (0.65 km2) propagate to larger scales (3.2 km2 and 31 km2) with decreasing percentage of riparian peatland coverage. Isotope damping was most pronounced in the 0.65 km2 catchment due to high water storage in the organic soils which encouraged tracer mixing and resulted in attenuated runoff peaks. At the largest scale, stream flow and water isotope dynamics showed a more flashy response. Particularly insightful in this study was calculating the deviation of the isotopes from the local meteoric water line, the lc-excess. The lc-excess revealed evaporative fractionation in the peatland dominated catchment, particularly during summer low flows. This implied high hydrological connectivity in the form of constant seepage from the peatlands sustaining high baseflows at the headwater scale. This constant connectivity resulted in high DOC concentrations at the peatland site during baseflow ( 5 mg l-1). In contrast, at the larger scales, DOC was minimal during low flows ( 2 mg l-1) due to increased groundwater influence and the disconnection between DOC sources and the stream. Insights into event dynamics through the analysis of DOC hysteresis loops showed slight dilution on the rising limb, the strong influence of dry antecedent conditions and a quick recovery between events at the riparian peatland site. Again, these dynamics were driven by the tight coupling and high connectivity of the landscape to the stream. At larger scales, the disconnection between the landscape units increased and the variable connectivity controlled runoff generation and DOC dynamics. The results presented here suggest that the hydrological processes occurring in riparian peatlands in headwater catchments are less evident at larger scales which may have implications for the larger scale impact of peatland restoration projects.

  8. The value of cows in reference populations for genomic selection of new functional traits.

    PubMed

    Buch, L H; Kargo, M; Berg, P; Lassen, J; Sørensen, A C

    2012-06-01

    Today, almost all reference populations consist of progeny tested bulls. However, older progeny tested bulls do not have reliable estimated breeding values (EBV) for new traits. Thus, to be able to select for these new traits, it is necessary to build a reference population. We used a deterministic prediction model to test the hypothesis that the value of cows in reference populations depends on the availability of phenotypic records. To test the hypothesis, we investigated different strategies of building a reference population for a new functional trait over a 10-year period. The trait was either recorded on a large scale (30 000 cows per year) or on a small scale (2000 cows per year). For large-scale recording, we compared four scenarios where the reference population consisted of 30 sires; 30 sires and 170 test bulls; 30 sires and 2000 cows; or 30 sires, 2000 cows and 170 test bulls in the first year with measurements of the new functional trait. In addition to varying the make-up of the reference population, we also varied the heritability of the trait (h2 = 0.05 v. 0.15). The results showed that a reference population of test bulls, cows and sires results in the highest accuracy of the direct genomic values (DGV) for a new functional trait, regardless of its heritability. For small-scale recording, we compared two scenarios where the reference population consisted of the 2000 cows with phenotypic records or the 30 sires of these cows in the first year with measurements of the new functional trait. The results showed that a reference population of cows results in the highest accuracy of the DGV whether the heritability is 0.05 or 0.15, because variation is lost when phenotypic data on cows are summarized in EBV of their sires. The main conclusions from this study are: (i) the fewer phenotypic records, the larger effect of including cows in the reference population; (ii) for small-scale recording, the accuracy of the DGV will continue to increase for several years, whereas the increases in the accuracy of the DGV quickly decrease with large-scale recording; (iii) it is possible to achieve accuracies of the DGV that enable selection for new functional traits recorded on a large scale within 3 years from commencement of recording; and (iv) a higher heritability benefits a reference population of cows more than a reference population of bulls.

  9. Developmental neuropsychological assessment of 4- to 5-year-old children born following Preimplantation Genetic Diagnosis (PGD): A pilot study.

    PubMed

    Sacks, Gilat Chaya; Altarescu, Gheona; Guedalia, Judith; Varshaver, Irit; Gilboa, Tal; Levy-Lahad, Ephrat; Eldar-Geva, Talia

    2016-01-01

    The purpose of this pilot study was to evaluate developmental neuropsychological profiles of 4- to 5-year-old children born after Preimplantation Genetic Diagnosis (PGD). Twenty-seven participants received a neurological examination and a battery of neuropsychological assessments including Wechsler Preschool & Primary Scale of Intelligence - Third Edition (WPPSI-III; cognitive development), Preschool Language Scale, Fourth Edition (PLS-4; language development), Wide Range Assessment of Visual Motor Abilities (visual motor abilities), Childhood Autism Rating Scales II (a screening test for autistic spectrum disorders), and the Miles ABC Test (ocular dominance). Parental questionnaires included the Behavior Rating Inventory of Executive Function Preschool Version (BRIEF-P; executive function), Child Behavior Checklist (CBCL) and the Carey Temperament Scales Behavioral Style Questionnaire (socioemotional development and temperament), and the Vineland Adaptive Behavior Scales, Interview Edition, Second Edition (general adaptive behavior). Subjects' tests results were compared to each test's norms. Children born after PGD demonstrated scores within the normal or above-normal ranges for all developmental outcomes (mean ± SD): WPPSI-III-VIQ 107.4 ± 14.4 (p = .013), PLS-4-Total 113.2 ± 12.4, p < .001), CBCL-Total 41.1 ± 8.6 (p < .001), BRIEF-P-Global Executive Composite 44.8 ± 9.5 (p = .009). Twelve (44%) of the PGD children had a significant difference between their VIQ and PIQ scores (compared to 27% in the general population). One subject was found to show possible signs of autistic spectrum disorder, although a family history of autism was noted. In conclusion, in this pilot study, children assessed at age 4-5 years and conceived after PGD displayed developmental neuropsychological outcomes within normal limits as compared to their chronologic peers. A larger study is needed to evaluate and follow the neuropsychological development of children born after PGD.

  10. Aerodynamic Simulation of Runback Ice Accretion

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Whalen, Edward A.; Busch, Greg T.; Bragg, Michael B.

    2010-01-01

    This report presents the results of recent investigations into the aerodynamics of simulated runback ice accretion on airfoils. Aerodynamic tests were performed on a full-scale model using a high-fidelity, ice-casting simulation at near-flight Reynolds (Re) number. The ice-casting simulation was attached to the leading edge of a 72-in. (1828.8-mm ) chord NACA 23012 airfoil model. Aerodynamic performance tests were conducted at the ONERA F1 pressurized wind tunnel over a Reynolds number range of 4.7?10(exp 6) to 16.0?10(exp 6) and a Mach (M) number ran ge of 0.10 to 0.28. For Re = 16.0?10(exp 6) and M = 0.20, the simulated runback ice accretion on the airfoil decreased the maximum lift coe fficient from 1.82 to 1.51 and decreased the stalling angle of attack from 18.1deg to 15.0deg. The pitching-moment slope was also increased and the drag coefficient was increased by more than a factor of two. In general, the performance effects were insensitive to Reynolds numb er and Mach number changes over the range tested. Follow-on, subscale aerodynamic tests were conducted on a quarter-scale NACA 23012 model (18-in. (457.2-mm) chord) at Re = 1.8?10(exp 6) and M = 0.18, using low-fidelity, geometrically scaled simulations of the full-scale castin g. It was found that simple, two-dimensional simulations of the upper- and lower-surface runback ridges provided the best representation of the full-scale, high Reynolds number iced-airfoil aerodynamics, whereas higher-fidelity simulations resulted in larger performance degrada tions. The experimental results were used to define a new subclassification of spanwise ridge ice that distinguishes between short and tall ridges. This subclassification is based upon the flow field and resulting aerodynamic characteristics, regardless of the physical size of the ridge and the ice-accretion mechanism.

  11. Heart Rate and Heart Rate Variability in Dairy Cows with Different Temperament and Behavioural Reactivity to Humans

    PubMed Central

    Tőzsér, János; Szenci, Ottó; Póti, Péter; Pajor, Ferenc

    2015-01-01

    From the 1990s, extensive research was started on the physiological aspects of individual traits in animals. Previous research has established two extreme (proactive and reactive) coping styles in several animal species, but the means of reactivity with the autonomic nervous system (ANS) activity has not yet been investigated in cattle. The aim of this study was the characterization of cardiac autonomic activity under different conditions in cows with different individual characteristics. For this purpose, we investigated heart rate and ANS-related heart rate variability (HRV) parameters of dairy cows (N = 282) on smaller- and larger-scale farms grouped by (1) temperament and (2) behavioural reactivity to humans (BRH). Animals with high BRH scores were defined as impulsive, while animals with low BRH scores were defined as reserved. Cardiac parameters were calculated for undisturbed lying (baseline) and for milking bouts, the latter with the presence of an unfamiliar person (stressful situation). Sympathetic tone was higher, while vagal activity was lower in temperamental cows than in calm animals during rest both on smaller- and larger-scale farms. During milking, HRV parameters were indicative of a higher sympathetic and a lower vagal activity of temperamental cows as compared to calm ones in farms of both sizes. Basal heart rate did not differ between BRH groups either on smaller- or larger-scale farms. Differences between basal ANS activity of impulsive and reserved cows reflected a higher resting vagal and lower sympathetic activity of reserved animals compared to impulsive ones both on smaller- and larger-scale farms. There was no difference either in heart rate or in HRV parameters between groups during milking neither in smaller- nor in larger-scale farms. These two groupings allowed to draw possible parallels between personality and cardiac autonomic activity during both rest and milking in dairy cows. Heart rate and HRV seem to be useful for characterisation of physiological differences related to temperament and BRH. PMID:26291979

  12. Stereoscopic perception of real depths at large distances.

    PubMed

    Palmisano, Stephen; Gillam, Barbara; Govan, Donovan G; Allison, Robert S; Harris, Julie M

    2010-06-01

    There has been no direct examination of stereoscopic depth perception at very large observation distances and depths. We measured perceptions of depth magnitude at distances where it is frequently reported without evidence that stereopsis is non-functional. We adapted methods pioneered at distances up to 9 m by R. S. Allison, B. J. Gillam, and E. Vecellio (2009) for use in a 381-m-long railway tunnel. Pairs of Light Emitting Diode (LED) targets were presented either in complete darkness or with the environment lit as far as the nearest LED (the observation distance). We found that binocular, but not monocular, estimates of the depth between pairs of LEDs increased with their physical depths up to the maximum depth separation tested (248 m). Binocular estimates of depth were much larger with a lit foreground than in darkness and increased as the observation distance increased from 20 to 40 m, indicating that binocular disparity can be scaled for much larger distances than previously realized. Since these observation distances were well beyond the range of vertical disparity and oculomotor cues, this scaling must rely on perspective cues. We also ran control experiments at smaller distances, which showed that estimates of depth and distance correlate poorly and that our metric estimation method gives similar results to a comparison method under the same conditions.

  13. DEVELOPMENT OF RIPARIAN ZONE INDICATORS (INT. GRANT)

    EPA Science Inventory

    Landscape features (e.g., land use) influence water quality characteristics on a variety of spatial scales. For example, while land use is controlled by anthropogenic features at a local scale, geologic features are set at larger spatial, and longer temporal scales. Individual ...

  14. Local Scale Radiobrightness Modeling During the Intensive Observing Period-4 of the Cold Land Processes Experiment-1

    NASA Astrophysics Data System (ADS)

    Kim, E.; Tedesco, M.; de Roo, R.; England, A. W.; Gu, H.; Pham, H.; Boprie, D.; Graf, T.; Koike, T.; Armstrong, R.; Brodzik, M.; Hardy, J.; Cline, D.

    2004-12-01

    The NASA Cold Land Processes Field Experiment (CLPX-1) was designed to provide microwave remote sensing observations and ground truth for studies of snow and frozen ground remote sensing, particularly issues related to scaling. CLPX-1 was conducted in 2002 and 2003 in Colorado, USA. One of the goals of the experiment was to test the capabilities of microwave emission models at different scales. Initial forward model validation work has concentrated on the Local-Scale Observation Site (LSOS), a 0.8~ha study site consisting of open meadows separated by trees where the most detailed measurements were made of snow depth and temperature, density, and grain size profiles. Results obtained in the case of the 3rd Intensive Observing Period (IOP3) period (February, 2003, dry snow) suggest that a model based on Dense Medium Radiative Transfer (DMRT) theory is able to model the recorded brightness temperatures using snow parameters derived from field measurements. This paper focuses on the ability of forward DMRT modelling, combined with snowpack measurements, to reproduce the radiobrightness signatures observed by the University of Michigan's Truck-Mounted Radiometer System (TMRS) at 19 and 37~GHz during the 4th IOP (IOP4) in March, 2003. Unlike in IOP3, conditions during IOP4 include both wet and dry periods, providing a valuable test of DMRT model performance. In addition, a comparison will be made for the one day of coincident observations by the University of Tokyo's Ground-Based Microwave Radiometer-7 (GBMR-7) and the TMRS. The plot-scale study in this paper establishes a baseline of DMRT performance for later studies at successively larger scales. And these scaling studies will help guide the choice of future snow retrieval algorithms and the design of future Cold Lands observing systems.

  15. Lagrangian Statistics and Intermittency in Gulf of Mexico.

    PubMed

    Lin, Liru; Zhuang, Wei; Huang, Yongxiang

    2017-12-12

    Due to the nonlinear interaction between different flow patterns, for instance, ocean current, meso-scale eddies, waves, etc, the movement of ocean is extremely complex, where a multiscale statistics is then relevant. In this work, a high time-resolution velocity with a time step 15 minutes obtained by the Lagrangian drifter deployed in the Gulf of Mexico (GoM) from July 2012 to October 2012 is considered. The measured Lagrangian velocity correlation function shows a strong daily cycle due to the diurnal tidal cycle. The estimated Fourier power spectrum E(f) implies a dual-power-law behavior which is separated by the daily cycle. The corresponding scaling exponents are close to -1.75 and -2.75 respectively for the time scale larger (resp. 0.1 ≤ f ≤ 0.4 day -1 ) and smaller (resp. 2 ≤ f ≤ 8 day -1 ) than 1 day. A Hilbert-based approach is then applied to this data set to identify the possible multifractal property of the cascade process. The results show an intermittent dynamics for the time scale larger than 1 day, while a less intermittent dynamics for the time scale smaller than 1 day. It is speculated that the energy is partially injected via the diurnal tidal movement and then transferred to larger and small scales through a complex cascade process, which needs more studies in the near future.

  16. FINAL REPORT SUMMARY OF DM 1200 OPERATION AT VSL VSL-06R6710-2 REV 0 9/7/06

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KRUGER AA; MATLACK KS; DIENER G

    2011-12-29

    The principal objective of this report was to summarize the testing experience on the DuraMelter 1200 (DMI200), which is the High Level Waste (HLW) Pilot Melter located at the Vitreous State Laboratory (VSL). Further objectives were to provide descriptions of the history of all modifications and maintenance, methods of operation, problems and unit failures, and melter emissions and performance while processing a variety of simulated HL W and low activity waste (LAW) feeds for the Hanford Waste Treatment and Immobilization Plant (WTP) and employing a variety of operating methods. All of these objectives were met. The River Protection Project -more » Hanford Waste Treatment and Immobilization Plant (RPP-WTP) Project has undertaken a 'tiered' approach to vitrification development testing involving computer-based glass formulation, glass property-composition models, crucible melts, and continuous melter tests of increasing, more realistic scales. Melter systems ranging from 0.02 to 1.2 m{sup 2} installed at the Vitreous State Laboratory (VSL) have been used for this purpose, which, in combination with the 3.3 m{sup 2} low activity waste (LAW) Pilot Melter at Duratek, Inc., span more than two orders of magnitude in melt surface area. In this way, less-costly small-scale tests can be used to define the most appropriate tests to be conducted at the larger scales in order to extract maximum benefit from the large-scale tests. For high level waste (HLW) vitrification development, a key component in this approach is the one-third scale DuraMelter 1200 (DM 1200), which is the HLW Pilot Melter that has been installed at VSL with an integrated prototypical off-gas treatment system. That system replaced the DM1000 system that was used for HLW throughput testing during Part B1. Both melters have similar melt surface areas (1.2 m{sup 2}) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. In particular, the DM1200 provides for testing on a vitrification system with the specific train of unit operations that has been selected for both HLW and LAW RPP-WTP off-gas treatment.« less

  17. Validation of the DIFFAL, HPAC and HotSpot Dispersion Models Using the Full-Scale Radiological Dispersal Device (FSRDD) Field Trials Witness Plate Deposition Dataset.

    PubMed

    Purves, Murray; Parkes, David

    2016-05-01

    Three atmospheric dispersion models--DIFFAL, HPAC, and HotSpot--of differing complexities have been validated against the witness plate deposition dataset taken during the Full-Scale Radiological Dispersal Device (FSRDD) Field Trials. The small-scale nature of these trials in comparison to many other historical radiological dispersion trials provides a unique opportunity to evaluate the near-field performance of the models considered. This paper performs validation of these models using two graphical methods of comparison: deposition contour plots and hotline profile graphs. All of the models tested are assessed to perform well, especially considering that previous model developments and validations have been focused on larger-scale scenarios. Of the models, HPAC generally produced the most accurate results, especially at locations within ∼100 m of GZ. Features present within the observed data, such as hot spots, were not well modeled by any of the codes considered. Additionally, it was found that an increase in the complexity of the meteorological data input to the models did not necessarily lead to an improvement in model accuracy; this is potentially due to the small-scale nature of the trials.

  18. Large-Scale medical image analytics: Recent methodologies, applications and Future directions.

    PubMed

    Zhang, Shaoting; Metaxas, Dimitris

    2016-10-01

    Despite the ever-increasing amount and complexity of annotated medical image data, the development of large-scale medical image analysis algorithms has not kept pace with the need for methods that bridge the semantic gap between images and diagnoses. The goal of this position paper is to discuss and explore innovative and large-scale data science techniques in medical image analytics, which will benefit clinical decision-making and facilitate efficient medical data management. Particularly, we advocate that the scale of image retrieval systems should be significantly increased at which interactive systems can be effective for knowledge discovery in potentially large databases of medical images. For clinical relevance, such systems should return results in real-time, incorporate expert feedback, and be able to cope with the size, quality, and variety of the medical images and their associated metadata for a particular domain. The design, development, and testing of the such framework can significantly impact interactive mining in medical image databases that are growing rapidly in size and complexity and enable novel methods of analysis at much larger scales in an efficient, integrated fashion. Copyright © 2016. Published by Elsevier B.V.

  19. Inhibition of return in the visual field: the eccentricity effect is independent of cortical magnification.

    PubMed

    Bao, Yan; Lei, Quan; Fang, Yuan; Tong, Yu; Schill, Kerstin; Pöppel, Ernst; Strasburger, Hans

    2013-01-01

    Inhibition of return (IOR) as an indicator of attentional control is characterized by an eccentricity effect, that is, the more peripheral visual field shows a stronger IOR magnitude relative to the perifoveal visual field. However, it could be argued that this eccentricity effect may not be an attention effect, but due to cortical magnification. To test this possibility, we examined this eccentricity effect in two conditions: the same-size condition in which identical stimuli were used at different eccentricities, and the size-scaling condition in which stimuli were scaled according to the cortical magnification factor (M-scaling), thus stimuli being larger at the more peripheral locations. The results showed that the magnitude of IOR was significantly stronger in the peripheral relative to the perifoveal visual field, and this eccentricity effect was independent of the manipulation of stimulus size (same-size or size-scaling). These results suggest a robust eccentricity effect of IOR which cannot be eliminated by M-scaling. Underlying neural mechanisms of the eccentricity effect of IOR are discussed with respect to both cortical and subcortical structures mediating attentional control in the perifoveal and peripheral visual field.

  20. Oxidation behavior of FeAl+Hf,Zr,B

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Doychak, Joseph

    1988-01-01

    The oxidation behavior of Fe-40Al-1Hf, Fe-40Al-1Hf-0.4B, and Fe-40Al-0.1Zr-0.4B (at. percent) alloys was characterized after 900, 1000, and 100 C exposures. Isothermal tests revealed parabolic kinetics after a period of transitional theta-alumina scale growth. The parabolic growth rates for the subsequent alpha-alumina scales were about five times higher than those for NiAl+0.1Zr alloys. The isothermally grown scales showed a propensity toward massive scale spallation due to both extensive rumpling from growth stresses and to an inner layer of HfO2. Cyclic oxidation for 200 1-hr cycles produced little degradation at 900 or 1000 C, but caused significant spallation at 1100 C in the form of small segments of the outer scale. The major difference in the cyclic oxidation of the three FeAl alloys was increased initial spallation for FeAl+Zr,B. Although these FeAl alloys showed many similarities to NiAl alloys, they were generally less oxidation resistant. It is believed that this resulted from nonoptimal levels of dopants and larger thermal expansion mismatch stresses.

  1. Robust Optical Recognition of Cursive Pashto Script Using Scale, Rotation and Location Invariant Approach

    PubMed Central

    Ahmad, Riaz; Naz, Saeeda; Afzal, Muhammad Zeshan; Amin, Sayed Hassan; Breuel, Thomas

    2015-01-01

    The presence of a large number of unique shapes called ligatures in cursive languages, along with variations due to scaling, orientation and location provides one of the most challenging pattern recognition problems. Recognition of the large number of ligatures is often a complicated task in oriental languages such as Pashto, Urdu, Persian and Arabic. Research on cursive script recognition often ignores the fact that scaling, orientation, location and font variations are common in printed cursive text. Therefore, these variations are not included in image databases and in experimental evaluations. This research uncovers challenges faced by Arabic cursive script recognition in a holistic framework by considering Pashto as a test case, because Pashto language has larger alphabet set than Arabic, Persian and Urdu. A database containing 8000 images of 1000 unique ligatures having scaling, orientation and location variations is introduced. In this article, a feature space based on scale invariant feature transform (SIFT) along with a segmentation framework has been proposed for overcoming the above mentioned challenges. The experimental results show a significantly improved performance of proposed scheme over traditional feature extraction techniques such as principal component analysis (PCA). PMID:26368566

  2. The electrostatic persistence length of polymers beyond the OSF limit.

    PubMed

    Everaers, R; Milchev, A; Yamakov, V

    2002-05-01

    We use large-scale Monte Carlo simulations to test scaling theories for the electrostatic persistence length l(e) of isolated, uniformly charged polymers with Debye-Hückel intrachain interactions in the limit where the screening length kappa(-1) exceeds the intrinsic persistence length of the chains. Our simulations cover a significantly larger part of the parameter space than previous studies. We observe no significant deviations from the prediction l(e) proportional to kappa(-2) by Khokhlov and Khachaturian which is based on applying the Odijk-Skolnick-Fixman theories of electrostatic bending rigidity and electrostatically excluded volume to the stretched de Gennes-Pincus-Velasco-Brochard polyelectrolyte blob chain. A linear or sublinear dependence of the persistence length on the screening length can be ruled out. We show that previous results pointing into this direction are due to a combination of excluded-volume and finite chain length effects. The paper emphasizes the role of scaling arguments in the development of useful representations for experimental and simulation data.

  3. Dissociable effects of local inhibitory and excitatory theta-burst stimulation on large-scale brain dynamics

    PubMed Central

    Sale, Martin V.; Lord, Anton; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B.

    2015-01-01

    Normal brain function depends on a dynamic balance between local specialization and large-scale integration. It remains unclear, however, how local changes in functionally specialized areas can influence integrated activity across larger brain networks. By combining transcranial magnetic stimulation with resting-state functional magnetic resonance imaging, we tested for changes in large-scale integration following the application of excitatory or inhibitory stimulation on the human motor cortex. After local inhibitory stimulation, regions encompassing the sensorimotor module concurrently increased their internal integration and decreased their communication with other modules of the brain. There were no such changes in modular dynamics following excitatory stimulation of the same area of motor cortex nor were there changes in the configuration and interactions between core brain hubs after excitatory or inhibitory stimulation of the same area. These results suggest the existence of selective mechanisms that integrate local changes in neural activity, while preserving ongoing communication between brain hubs. PMID:25717162

  4. SfM with MRFs: discrete-continuous optimization for large-scale structure from motion.

    PubMed

    Crandall, David J; Owens, Andrew; Snavely, Noah; Huttenlocher, Daniel P

    2013-12-01

    Recent work in structure from motion (SfM) has built 3D models from large collections of images downloaded from the Internet. Many approaches to this problem use incremental algorithms that solve progressively larger bundle adjustment problems. These incremental techniques scale poorly as the image collection grows, and can suffer from drift or local minima. We present an alternative framework for SfM based on finding a coarse initial solution using hybrid discrete-continuous optimization and then improving that solution using bundle adjustment. The initial optimization step uses a discrete Markov random field (MRF) formulation, coupled with a continuous Levenberg-Marquardt refinement. The formulation naturally incorporates various sources of information about both the cameras and points, including noisy geotags and vanishing point (VP) estimates. We test our method on several large-scale photo collections, including one with measured camera positions, and show that it produces models that are similar to or better than those produced by incremental bundle adjustment, but more robustly and in a fraction of the time.

  5. RELIABILITY OF THE DETECTION OF THE BARYON ACOUSTIC PEAK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MartInez, Vicent J.; Arnalte-Mur, Pablo; De la Cruz, Pablo

    2009-05-01

    The correlation function of the distribution of matter in the universe shows, at large scales, baryon acoustic oscillations, which were imprinted prior to recombination. This feature was first detected in the correlation function of the luminous red galaxies of the Sloan Digital Sky Survey (SDSS). Recently, the final release (DR7) of the SDSS has been made available, and the useful volume is about two times bigger than in the old sample. We present here, for the first time, the redshift-space correlation function of this sample at large scales together with that for one shallower, but denser volume-limited subsample drawn frommore » the Two-Degree Field Redshift Survey. We test the reliability of the detection of the acoustic peak at about 100 h {sup -1} Mpc and the behavior of the correlation function at larger scales by means of careful estimation of errors. We confirm the presence of the peak in the latest data although broader than in previous detections.« less

  6. Effect of Alternate Nostril Breathing Exercise on Experimentally Induced Anxiety in Healthy Volunteers Using the Simulated Public Speaking Model: A Randomized Controlled Pilot Study.

    PubMed

    Kamath, Ashwin; Urval, Rathnakar P; Shenoy, Ashok K

    2017-01-01

    A randomized controlled pilot study was carried out to determine the effect of a 15-minute practice of ANB exercise on experimentally induced anxiety using the simulated public speaking model in yoga-naïve healthy young adults. Thirty consenting medical students were equally divided into test and control groups. The test group performed alternate nostril breathing exercise for 15 minutes, while the control group sat in a quiet room before participating in the simulated public speaking test (SPST). Visual Analog Mood Scale and Self-Statements during Public Speaking scale were used to measure the mood state at different phases of the SPST. The psychometric scores of both groups were comparable at baseline. Repeated-measures ANOVA showed a significant effect of phase ( p < 0.05), but group and gender did not have statistically significant influence on the mean anxiety scores. However, the test group showed a trend towards lower mean scores for the anxiety factor when compared with the control group. Considering the limitations of this pilot study and the trend seen towards lower anxiety in the test group, alternate nostril breathing may have potential anxiolytic effect in acute stressful situations. A study with larger sample size is therefore warranted. This trial is registered with CTRI/2014/03/004460.

  7. Effect of Alternate Nostril Breathing Exercise on Experimentally Induced Anxiety in Healthy Volunteers Using the Simulated Public Speaking Model: A Randomized Controlled Pilot Study

    PubMed Central

    Urval, Rathnakar P.; Shenoy, Ashok K.

    2017-01-01

    A randomized controlled pilot study was carried out to determine the effect of a 15-minute practice of ANB exercise on experimentally induced anxiety using the simulated public speaking model in yoga-naïve healthy young adults. Thirty consenting medical students were equally divided into test and control groups. The test group performed alternate nostril breathing exercise for 15 minutes, while the control group sat in a quiet room before participating in the simulated public speaking test (SPST). Visual Analog Mood Scale and Self-Statements during Public Speaking scale were used to measure the mood state at different phases of the SPST. The psychometric scores of both groups were comparable at baseline. Repeated-measures ANOVA showed a significant effect of phase (p < 0.05), but group and gender did not have statistically significant influence on the mean anxiety scores. However, the test group showed a trend towards lower mean scores for the anxiety factor when compared with the control group. Considering the limitations of this pilot study and the trend seen towards lower anxiety in the test group, alternate nostril breathing may have potential anxiolytic effect in acute stressful situations. A study with larger sample size is therefore warranted. This trial is registered with CTRI/2014/03/004460. PMID:29159176

  8. Effects of carbon brush anode size and loading on microbial fuel cell performance in batch and continuous mode

    NASA Astrophysics Data System (ADS)

    Lanas, Vanessa; Ahn, Yongtae; Logan, Bruce E.

    2014-02-01

    Larger scale microbial fuel cells (MFCs) require compact architectures to efficiently treat wastewater. We examined how anode-brush diameter, number of anodes, and electrode spacing affected the performance of the MFCs operated in fed-batch and continuous flow mode. All anodes were initially tested with the brush core set at the same distance from the cathode. In fed-batch mode, the configuration with three larger brushes (25 mm diameter) produced 80% more power (1240 mW m-2) than reactors with eight smaller brushes (8 mm) (690 mW m-2). The higher power production by the larger brushes was due to more negative and stable anode potentials than the smaller brushes. The same general result was obtained in continuous flow operation, although power densities were reduced. However, by moving the center of the smaller brushes closer to the cathode (from 16.5 to 8 mm), power substantially increased from 690 to 1030 mW m-2 in fed batch mode. In continuous flow mode, power increased from 280 to 1020 mW m-2, resulting in more power production from the smaller brushes than the larger brushes (540 mW m-2). These results show that multi-electrode MFCs can be optimized by selecting smaller anodes, placed as close as possible to the cathode.

  9. On the Spatio-Temporal Variability of Field-Aligned Currents Observed with the Swarm Satellite Constellation: Implications for the Energetics of Magnetosphere-Ionosphere Coupling

    NASA Astrophysics Data System (ADS)

    Pakhotin, I.; Mann, I. R.; Forsyth, C.; Rae, J.; Burchill, J. K.; Knudsen, D. J.; Murphy, K. R.; Gjerloev, J. W.; Ozeke, L.; Balasis, G.; Daglis, I. A.

    2016-12-01

    With the advent of the Swarm mission with its multi-satellite capacity, it became possible for the first time to make systematic close separation multi-satellite measurements of the magnetic fields associated with field-aligned currents (FACs) at a 50 Hz cadence using fluxgate magnetometers. Initial studies have revealed an even greater level of detail and complexity and spatio-temporal non-stationarity than previously understood. On inter-satellite separation scales of 10 seconds along-track and <120 km cross-track, the peak-to-peak magnitudes of the small scale and poorly correlated inter-spacecraft magnetic field fluctuations can reach tens to hundreds of nanoteslas. These magnitudes are directly comparable to those associated with larger scale magnetic perturbations such as the global scale Region 1 and 2 FAC systems characterised by Iijima and Potemra 40 years ago. We evaluate the impact of these smaller scale magnetic perturbations relative to the larger scale FAC systems statistically as a function of the total number of FAC crossings observed, and as a function of geomagnetic indices, spatial location, and season. Further case studies incorporating Swarm electric field measurements enable estimates of the Poynting flux associated with the small scale and non-stationary magnetic fields. We interpret the small scale structures as Alfvenic, suggesting that Alfven waves play a much larger and more energetically significant role in magnetosphere-ionosphere coupling than previously thought. We further examine what causes such high variability among low-Earth orbit FAC systems to be observed under some conditions but not in others.

  10. Factors influencing acceptability of voluntary HIV testing among pregnant women in Gamboma, Republic of Congo.

    PubMed

    Ghoma-Linguissi, Laure Stella; Ebourombi, Dagene Fruinovy; Sidibe, Anissa; Kivouele, Thomas Serge; Vouvoungui, Jeannhey Christevy; Poulain, Pierre; Ntoumi, Francine

    2015-11-06

    This study was carried out to identify factors affecting the acceptability of voluntary HIV testing among pregnant women in a semi-rural city, Gamboma, Republic of Congo. A cross-sectional study was conducted between January and September 2012. Pregnant women attending antenatal heath care at an integrated health center were enrolled after informed consent and followed through voluntary HIV testing. Among 136 participants, 98 women (72 %) accepted voluntary HIV testing after pre-test counseling. Women with basic education, those who cited blood transfusion as a mode of transmission and prevention of mother-to-child transmission (MTCT) were more likely to accept testing as well those informed about free HIV testing. Interestingly, pregnant women who had heard about HIV/AIDS from hospital setting were less likely to accept testing. Our data indicate that increasing general education on HIV transmission/prevention modes is crucial for increasing acceptability of screening. Furthermore, HIV/AIDS knowledge disseminated to patients in hospital settings should be carefully monitored. Lastly, scaling-up MTCT services along with a better and larger community information, may address accessibility barriers observed in the present study.

  11. Comparative analysis of the Parent Attitudes about Childhood Vaccines (PACV) short scale and the five categories of vaccine acceptance identified by Gust et al.

    PubMed

    Oladejo, Omolade; Allen, Kristen; Amin, Avnika; Frew, Paula M; Bednarczyk, Robert A; Omer, Saad B

    2016-09-22

    There is a need to develop a standardized tool to aid in identifying, measuring and classifying the unique needs of vaccine-hesitant parents (VHPs). This will also assist in designing tailored interventions to address these needs. The Parental Attitude about Childhood Vaccines (PACV) short scale developed by Opel et al., and the Gust et al. vaccine acceptance categories have been acknowledged as potentially useful tools to measure parental vaccine hesitancy. The PACV short scale requires further validation. In our study, we evaluated how the Gust et al. vaccine acceptance categories correspond with the PACV short scale. As part of a larger study on vaccine attitudes, using the PACV short scale and Gust et al. vaccine acceptance categories, we assessed the correlation between the two measures using Spearman correlation coefficient, and the association between the two measures using the Cochran-Mantel-Haentszel test of association. We used logistic regression modelling to compare the association between a child's up-to-date immunization status and (a) PACV short scale and (b) Gust et al. vaccine acceptance categories. The PACV short scale and Gust et al. vaccine acceptance categories were positively correlated (r=0.6, df=198, p<0.05), and the Cochran-Mantel-Haentszel test of association yielded a statistically significant association (p<0.05). The two scales similarly predicted children's up-to-date immunization status for all recommended childhood vaccines. The ability of the PACV short scale to identify and classify parental vaccine hesitancy is similar to classification using Gust et al. vaccine acceptance categories, and both measure linear entities. The PACV short scale is recommended for screening parents at their first pediatric visit because it is easier to administer. A clearer understanding of how to classify parental vaccine hesitancy can be used to design tailored interventions based on these classifications, to address their specific needs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Using Remotely Sensed Information for Near Real-Time Landslide Hazard Assessment

    NASA Technical Reports Server (NTRS)

    Kirschbaum, Dalia; Adler, Robert; Peters-Lidard, Christa

    2013-01-01

    The increasing availability of remotely sensed precipitation and surface products provides a unique opportunity to explore how landslide susceptibility and hazard assessment may be approached at larger spatial scales with higher resolution remote sensing products. A prototype global landslide hazard assessment framework has been developed to evaluate how landslide susceptibility and satellite-derived precipitation estimates can be used to identify potential landslide conditions in near-real time. Preliminary analysis of this algorithm suggests that forecasting errors are geographically variable due to the resolution and accuracy of the current susceptibility map and the application of satellite-based rainfall estimates. This research is currently working to improve the algorithm through considering higher spatial and temporal resolution landslide susceptibility information and testing different rainfall triggering thresholds, antecedent rainfall scenarios, and various surface products at regional and global scales.

  13. Design Against Propagating Shear Failure in Pipelines

    NASA Astrophysics Data System (ADS)

    Leis, B. N.; Gray, J. Malcolm

    Propagating shear failure can occur in gas and certain hazardous liquid transmission pipelines, potentially leading to a large long-burning fire and/or widespread pollution, depending on the transported product. Such consequences require that the design of the pipeline and specification of the steel effectively preclude the chance of propagating shear failure. Because the phenomenology of such failures is complex, design against such occurrences historically has relied on full-scale demonstration experiments coupled with empirically calibrated analytical models. However, as economic drivers have pushed toward larger diameter higher pressure pipelines made of tough higher-strength grades, the design basis to ensure arrest has been severely compromised. Accordingly, for applications where the design basis becomes less certain, as has occurred increasing as steel grade and toughness has increased, it has become necessary to place greater reliance on the use and role of full-scale testing.

  14. Los Alamos Explosives Performance Key to Stockpile Stewardship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dattelbaum, Dana

    2014-11-03

    As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- andmore » small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.« less

  15. Higgs seesaw mechanism as a source for dark energy.

    PubMed

    Krauss, Lawrence M; Dent, James B

    2013-08-09

    Motivated by the seesaw mechanism for neutrinos which naturally generates small neutrino masses, we explore how a small grand-unified-theory-scale mixing between the standard model Higgs boson and an otherwise massless hidden sector scalar can naturally generate a small mass and vacuum expectation value for the new scalar which produces a false vacuum energy density contribution comparable to that of the observed dark energy dominating the current expansion of the Universe. This provides a simple and natural mechanism for producing the correct scale for dark energy, even if it does not address the long-standing question of why much larger dark energy contributions are not produced from the visible sector. The new scalar produces no discernible signatures in existing terrestrial experiments so that one may have to rely on other cosmological tests of this idea.

  16. TAC Proton Accelerator Facility: The Status and Road Map

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Algin, E.; Akkus, B.; Caliskan, A.

    2011-06-28

    Proton Accelerator (PA) Project is at a stage of development, working towards a Technical Design Report under the roof of a larger-scale Turkish Accelerator Center (TAC) Project. The project is supported by the Turkish State Planning Organization. The PA facility will be constructed in a series of stages including a 3 MeV test stand, a 55 MeV linac which can be extended to 100+ MeV, and then a full 1-3 GeV proton synchrotron or superconducting linac. In this article, science applications, overview, and current status of the PA Project will be given.

  17. The Super-Linear Slope Of The Spatially-resolved Star Formation Law In NGC 3521 And NGC 5194 (m51a)

    NASA Astrophysics Data System (ADS)

    Liu, Guilin; Koda, J.; Calzetti, D.; Fukuhara, M.; Momose, R.

    2011-01-01

    We have conducted interferometric observations with CARMA and an OTF mapping with the 45-m telescope at NRO in the CO (1-0) emission line of NGC 3521. Combining these new data, together with similar data for M51a and archival SINGS H-alpha, 24um, THINGS H I and GALEX FUV data for both galaxies, we investigate the empirical scaling law that connects the surface density of star formation rate (SFR) and cold gas (the Schmidt-Kennicutt law) on a spatially-resolved basis, and find a super-linear slope when carefully subtracting the background emissions in the SFR image. We argue that plausibly deriving SFR maps of nearby galaxies requires the diffuse stellar/dust background emission to be carefully subtracted (especially in mid-IR). An approach to complete this task is presented and applied in our pixel-by-pixel analysis on both galaxies, showing that the controversial results whether the molecular S-K law is super-linear or basically linear is a result of removing or preserving the local background. In both galaxies, the power index of the molecular S-K law is super-linear (1.5-1.9) at the highest available resolution (230 pc), and decreases monotonically for decreasing resolution; while the scatter (mainly intrinsic) increases as the resolution becomes higher, indicating a trend for which the S-K law breaks down below some scale. Both quantities are systematically larger in M51a than in NGC 3521, but when plotted against the de-projected scale, they become highly consistent between the two galaxies, tentatively suggesting that the sub-kpc molecular S-K law in spiral galaxies depends only on the scale being considered, without varying amongst spiral galaxies. We obtaion slope=-1.1[log(scale/kpc)]+1.4 and scatter=-0.2 [scale/kpc]+0.7 through fitting to the M51a data, which describes both galaxies impressively well on sub-kpc scales. However, a larger sample of galaxies with better sensitivity, resolution and broader FoV are required to test these results.

  18. A Power Hardware-in-the-Loop Platform with Remote Distribution Circuit Cosimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmintier, Bryan; Lundstrom, Blake; Chakraborty, Sudipta

    2015-04-01

    This paper demonstrates the use of a novel cosimulation architecture that integrates hardware testing using Power Hardware-in-the-Loop (PHIL) with larger-scale electric grid models using off-the-shelf, non-PHIL software tools. This architecture enables utilities to study the impacts of emerging energy technologies on their system and manufacturers to explore the interactions of new devices with existing and emerging devices on the power system, both without the need to convert existing grid models to a new platform or to conduct in-field trials. The paper describes an implementation of this architecture for testing two residential-scale advanced solar inverters at separate points of common coupling.more » The same hardware setup is tested with two different distribution feeders (IEEE 123 and 8500 node test systems) modeled using GridLAB-D. In addition to simplifying testing with multiple feeders, the architecture demonstrates additional flexibility with hardware testing in one location linked via the Internet to software modeling in a remote location. In testing, inverter current, real and reactive power, and PCC voltage are well captured by the co-simulation platform. Testing of the inverter advanced control features is currently somewhat limited by the software model time step (1 sec) and tested communication latency (24 msec). Overshoot induced oscillations are observed with volt/VAR control delays of 0 and 1.5 sec, while 3.4 sec and 5.5 sec delays produced little or no oscillation. These limitations could be overcome using faster modeling and communication within the same co-simulation architecture.« less

  19. Transition from geostrophic turbulence to inertia-gravity waves in the atmospheric energy spectrum.

    PubMed

    Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver

    2014-12-02

    Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth's rotation and the atmosphere's stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia-gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia-gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia-gravity waves dominate at scales smaller than 500 km.

  20. Transition from geostrophic turbulence to inertia–gravity waves in the atmospheric energy spectrum

    PubMed Central

    Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver

    2014-01-01

    Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth’s rotation and the atmosphere’s stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia–gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia–gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia–gravity waves dominate at scales smaller than 500 km. PMID:25404349

  1. Current challenges in quantifying preferential flow through the vadose zone

    NASA Astrophysics Data System (ADS)

    Koestel, John; Larsbo, Mats; Jarvis, Nick

    2017-04-01

    In this presentation, we give an overview of current challenges in quantifying preferential flow through the vadose zone. A review of the literature suggests that current generation models do not fully reflect the present state of process understanding and empirical knowledge of preferential flow. We believe that the development of improved models will be stimulated by the increasingly widespread application of novel imaging technologies as well as future advances in computational power and numerical techniques. One of the main challenges in this respect is to bridge the large gap between the scales at which preferential flow occurs (pore to Darcy scales) and the scale of interest for management (fields, catchments, regions). Studies at the pore scale are being supported by the development of 3-D non-invasive imaging and numerical simulation techniques. These studies are leading to a better understanding of how macropore network topology and initial/boundary conditions control key state variables like matric potential and thus the strength of preferential flow. Extrapolation of this knowledge to larger scales would require support from theoretical frameworks such as key concepts from percolation and network theory, since we lack measurement technologies to quantify macropore networks at these large scales. Linked hydro-geophysical measurement techniques that produce highly spatially and temporally resolved data enable investigation of the larger-scale heterogeneities that can generate preferential flow patterns at pedon, hillslope and field scales. At larger regional and global scales, improved methods of data-mining and analyses of large datasets (machine learning) may help in parameterizing models as well as lead to new insights into the relationships between soil susceptibility to preferential flow and site attributes (climate, land uses, soil types).

  2. Blur-resistant perimetric stimuli.

    PubMed

    Horner, Douglas G; Dul, Mitchell W; Swanson, William H; Liu, Tiffany; Tran, Irene

    2013-05-01

    To develop perimetric stimuli that are resistant to the effects of peripheral defocus. One eye each was tested on subjects free of eye disease. Experiment 1 assessed spatial frequency, testing 12 subjects at eccentricities from 2 to 7 degrees using blur levels from 0 to 3 diopters (D) for two (Gabor) stimuli (spatial SD, 0.5 degrees; spatial frequencies, 0.5 and 1.0 cycles per degree [cpd]). Experiment 2 assessed stimulus size, testing 12 subjects at eccentricities from 4 to 7 degrees using blur levels 0 to 6 D for two Gaussians with SD of 0.5 and 0.25 degrees and a 0.5-cpd Gabor with SD of 0.5 degrees. Experiment 3 tested 13 subjects at eccentricities from fixation to 27 degrees using blur levels 0 to 6 D for Gabor stimuli at 56 locations; the spatial frequency ranged from 0.14 to 0.50 cpd with location, and SD was scaled accordingly. In experiment 1, blur by 3 D caused a small decline in log contrast sensitivity for the 0.5-cpd stimulus (mean ± SE, 0.09 ± 0.08 log units) and a larger (t = 7.7, p < 0.0001) decline for the 1.0-cpd stimulus (0.37 ± 0.13 log units). In experiment 2, blur by 6 D caused minimal decline for the larger Gaussian, by 0.17 ± 0.16 log units, and larger (t > 4.5, p < 0.001) declines for the smaller Gaussian (0.33 ± 0.16 log units) and the Gabor (0.36 ± 0.18 log units). In experiment 3, blur by 6 D caused declines by 0.27 ± 0.05 log units for eccentricities from 0 to 10 degrees, by 0.20 ± 0.04 log units for eccentricities from 10 to 20 degrees, and 0.13 ± 0.03 log units for eccentricities from 20 to 27 degrees. Experiments 1 and 2 allowed us to design stimuli for experiment 3 that were resistant to effects of peripheral defocus.

  3. Testing and Validating Gadget2 for GPUs

    NASA Astrophysics Data System (ADS)

    Wibking, Benjamin; Holley-Bockelmann, K.; Berlind, A. A.

    2013-01-01

    We are currently upgrading a version of Gadget2 (Springel et al., 2005) that is optimized for NVIDIA's CUDA GPU architecture (Frigaard, unpublished) to work with the latest libraries and graphics cards. Preliminary tests of its performance indicate a ~40x speedup in the particle force tree approximation calculation, with overall speedup of 5-10x for cosmological simulations run with GPUs compared to running on the same CPU cores without GPU acceleration. We believe this speedup can be reasonably increased by an additional factor of two with futher optimization, including overlap of computation on CPU and GPU. Tests of single-precision GPU numerical fidelity currently indicate accuracy of the mass function and the spectral power density to within a few percent of extended-precision CPU results with the unmodified form of Gadget. Additionally, we plan to test and optimize the GPU code for Millenium-scale "grand challenge" simulations of >10^9 particles, a scale that has been previously untested with this code, with the aid of the NSF XSEDE flagship GPU-based supercomputing cluster codenamed "Keeneland." Current work involves additional validation of numerical results, extending the numerical precision of the GPU calculations to double precision, and evaluating performance/accuracy tradeoffs. We believe that this project, if successful, will yield substantial computational performance benefits to the N-body research community as the next generation of GPU supercomputing resources becomes available, both increasing the electrical power efficiency of ever-larger computations (making simulations possible a decade from now at scales and resolutions unavailable today) and accelerating the pace of research in the field.

  4. A spectral radius scaling semi-implicit iterative time stepping method for reactive flow simulations with detailed chemistry

    NASA Astrophysics Data System (ADS)

    Xie, Qing; Xiao, Zhixiang; Ren, Zhuyin

    2018-09-01

    A spectral radius scaling semi-implicit time stepping scheme has been developed for simulating unsteady compressible reactive flows with detailed chemistry, in which the spectral radius in the LUSGS scheme has been augmented to account for viscous/diffusive and reactive terms and a scalar matrix is proposed to approximate the chemical Jacobian using the minimum species destruction timescale. The performance of the semi-implicit scheme, together with a third-order explicit Runge-Kutta scheme and a Strang splitting scheme, have been investigated in auto-ignition and laminar premixed and nonpremixed flames of three representative fuels, e.g., hydrogen, methane, and n-heptane. Results show that the minimum species destruction time scale can well represent the smallest chemical time scale in reactive flows and the proposed scheme can significantly increase the allowable time steps in simulations. The scheme is stable when the time step is as large as 10 μs, which is about three to five orders of magnitude larger than the smallest time scales in various tests considered. For the test flames considered, the semi-implicit scheme achieves second order of accuracy in time. Moreover, the errors in quantities of interest are smaller than those from the Strang splitting scheme indicating the accuracy gain when the reaction and transport terms are solved coupled. Results also show that the relative efficiency of different schemes depends on fuel mechanisms and test flames. When the minimum time scale in reactive flows is governed by transport processes instead of chemical reactions, the proposed semi-implicit scheme is more efficient than the splitting scheme. Otherwise, the relative efficiency depends on the cost in sub-iterations for convergence within each time step and in the integration for chemistry substep. Then, the capability of the compressible reacting flow solver and the proposed semi-implicit scheme is demonstrated for capturing the hydrogen detonation waves. Finally, the performance of the proposed method is demonstrated in a two-dimensional hydrogen/air diffusion flame.

  5. Developing and testing an instrument for identifying performance incentives in the Greek health care sector.

    PubMed

    Paleologou, Victoria; Kontodimopoulos, Nick; Stamouli, Aggeliki; Aletras, Vassilis; Niakas, Dimitris

    2006-09-13

    In the era of cost containment, managers are constantly pursuing increased organizational performance and productivity by aiming at the obvious target, i.e. the workforce. The health care sector, in which production processes are more complicated compared to other industries, is not an exception. In light of recent legislation in Greece in which efficiency improvement and achievement of specific performance targets are identified as undisputable health system goals, the purpose of this study was to develop a reliable and valid instrument for investigating the attitudes of Greek physicians, nurses and administrative personnel towards job-related aspects, and the extent to which these motivate them to improve performance and increase productivity. A methodological exploratory design was employed in three phases: a) content development and assessment, which resulted in a 28-item instrument, b) pilot testing (N = 74) and c) field testing (N = 353). Internal consistency reliability was tested via Cronbach's alpha coefficient and factor analysis was used to identify the underlying constructs. Tests of scaling assumptions, according to the Multitrait-Multimethod Matrix, were used to confirm the hypothesized component structure. Four components, referring to intrinsic individual needs and external job-related aspects, were revealed and explain 59.61% of the variability. They were subsequently labeled: job attributes, remuneration, co-workers and achievement. Nine items not meeting item-scale criteria were removed, resulting in a 19-item instrument. Scale reliability ranged from 0.782 to 0.901 and internal item consistency and discriminant validity criteria were satisfied. Overall, the instrument appears to be a promising tool for hospital administrations in their attempt to identify job-related factors, which motivate their employees. The psychometric properties were good and warrant administration to a larger sample of employees in the Greek healthcare system.

  6. Developing and testing an instrument for identifying performance incentives in the Greek health care sector

    PubMed Central

    Paleologou, Victoria; Kontodimopoulos, Nick; Stamouli, Aggeliki; Aletras, Vassilis; Niakas, Dimitris

    2006-01-01

    Background In the era of cost containment, managers are constantly pursuing increased organizational performance and productivity by aiming at the obvious target, i.e. the workforce. The health care sector, in which production processes are more complicated compared to other industries, is not an exception. In light of recent legislation in Greece in which efficiency improvement and achievement of specific performance targets are identified as undisputable health system goals, the purpose of this study was to develop a reliable and valid instrument for investigating the attitudes of Greek physicians, nurses and administrative personnel towards job-related aspects, and the extent to which these motivate them to improve performance and increase productivity. Methods A methodological exploratory design was employed in three phases: a) content development and assessment, which resulted in a 28-item instrument, b) pilot testing (N = 74) and c) field testing (N = 353). Internal consistency reliability was tested via Cronbach's alpha coefficient and factor analysis was used to identify the underlying constructs. Tests of scaling assumptions, according to the Multitrait-Multimethod Matrix, were used to confirm the hypothesized component structure. Results Four components, referring to intrinsic individual needs and external job-related aspects, were revealed and explain 59.61% of the variability. They were subsequently labeled: job attributes, remuneration, co-workers and achievement. Nine items not meeting item-scale criteria were removed, resulting in a 19-item instrument. Scale reliability ranged from 0.782 to 0.901 and internal item consistency and discriminant validity criteria were satisfied. Conclusion Overall, the instrument appears to be a promising tool for hospital administrations in their attempt to identify job-related factors, which motivate their employees. The psychometric properties were good and warrant administration to a larger sample of employees in the Greek healthcare system. PMID:16970823

  7. Test-retest reliability of the prefrontal response to affective pictures based on functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Yuxia; Mao, Mengchai; Zhang, Zong; Zhou, Hui; Zhao, Yang; Duan, Lian; Kreplin, Ute; Xiao, Xiang; Zhu, Chaozhe

    2017-01-01

    Functional near-infrared spectroscopy (fNIRS) is being increasingly applied to affective and social neuroscience research; however, the reliability of this method is still unclear. This study aimed to evaluate the test-retest reliability of the fNIRS-based prefrontal response to emotional stimuli. Twenty-six participants viewed unpleasant and neutral pictures, and were simultaneously scanned by fNIRS in two sessions three weeks apart. The reproducibility of the prefrontal activation map was evaluated at three spatial scales (mapwise, clusterwise, and channelwise) at both the group and individual levels. The influence of the time interval was also explored and comparisons were made between longer (intersession) and shorter (intrasession) time intervals. The reliabilities of the activation map at the group level for the mapwise (up to 0.88, the highest value appeared in the intersession assessment) and clusterwise scales (up to 0.91, the highest appeared in the intrasession assessment) were acceptable, indicating that fNIRS may be a reliable tool for emotion studies, especially for a group analysis and under larger spatial scales. However, it should be noted that the individual-level and the channelwise fNIRS prefrontal responses were not sufficiently stable. Future studies should investigate which factors influence reliability, as well as the validity of fNIRS used in emotion studies.

  8. Physical therapy in Huntington's disease--toward objective assessments?

    PubMed

    Bohlen, S; Ekwall, C; Hellström, K; Vesterlin, H; Björnefur, M; Wiklund, L; Reilmann, R

    2013-02-01

    Physical therapy is recommended for the treatment of Huntington's disease, but reliable studies investigating its efficacy are almost non-existent. This may in part be due to the lack of suitable outcome measures. Therefore, we investigated the applicability of novel quantitative and objective assessments of motor dysfunction in the evaluation of physical therapy interventions aimed at improving gait and posture. Twelve patients with Huntington disease received a predefined twice-weekly intervention focusing on posture and gait over 6 weeks. The GAITRite mat and a force plate were used for objective and quantitative assessments. The Unified Huntingtons Disease Rating Scale Total Motor Score, the timed Up &Go test, and the Berg Balance Scale were used as clinical outcome measures. Significant improvements were seen in GAITRite measures after therapy. Improvements were also seen in the Up & Go test and Berg Balance Scale, whereas force plate measures and Total Motor Scores did not change. The results suggest that physical therapy has a positive effect on gait in Huntington's disease. The study shows that objective and quantitative measures of gait and posture may serve as endpoints in trials assessing the efficacy of physical therapy. They should be explored further in larger trials applying a randomized controlled setting. © 2012 The Author(s) European Journal of Neurology © 2012 EFNS.

  9. Effect of Atomoxetine on the Cognitive Functions in Treatment of Attention Deficit Hyperactivity Disorder in Children with Congenital Hypothyroidism: A Pilot Study.

    PubMed

    Yang, Rongwang; Gao, Weijia; Li, Rong; Zhao, Zhengyan

    2015-04-19

    With early initiation of thyroxine supplementation, children with congenital hypothyroidism (CH) retain some subtle deficits, such as attention and inhibitory control problems. This study assessed the effects of atomoxetine on cognitive functions in treatment of attention deficit hyperactivity disorder (ADHD) symptoms in children with CH. In a 6-month, open-labeled pilot study, 12 children were recruited and received atomoxetine. The measures of efficacy were scores on the Swanson, Nolan and Pelham Teacher and Parent Rating Scale, version IV (SNAP-IV) and Clinical Global Impression-Severity scale (CGI-S). The cognitive functions were evaluated with the Wechsler Intelligence Scale for Chinese Children, Digit Span, Wisconsin Card Sorting Test, and Stroop test. A statistically significant difference was found between the mean CGI-S and SNAP-IV scores before and after treatment (p < 0.01). All the indicators of cognitive functions at the endpoint were improved compared with those at baseline. No serious adverse events were reported. Atomoxetine appears to be useful in improving ADHD symptoms, as well as cognitive functions, in children with CH. Larger, randomized, double-blinded, clinical trials are required to replicate these results. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  10. Pilot study of a targeted dance class for physical rehabilitation in children with cerebral palsy.

    PubMed

    López-Ortiz, Citlali; Egan, Tara; Gaebler-Spira, Deborah J

    2016-01-01

    This pilot study evaluates the effects of a targeted dance class utilizing classical ballet principles for rehabilitation of children with cerebral palsy on balance and upper extremity control. Twelve children with cerebral palsy (ages 7-15 years) with Gross Motor Function Classification scores II-IV participated in this study and were assigned to either a control group or targeted dance class group. Targeted dance class group participated in 1-h classes three times per week in a 4-week period. The Pediatric Balance Scale and the Quality of Upper Extremity Skills Test were administered before, after, and 1 month after the targeted dance class. Improvements in the Pediatric Balance Scale were present in the targeted dance class group in before versus after and before versus 1 month follow-up comparisons (p-value = 0.0088 and p-value = 0.019, respectively). The Pediatric Balance Scale changes were not significant in the control group. The Quality of Upper Extremity Skills Test did not reach statistical differences in either group. Classical ballet as an art form involves physical training, musical accompaniment, social interactions, and emotional expression that could serve as adjunct to traditional physical therapy. This pilot study demonstrated improvements in balance control. A larger study with a more homogeneous sample is warranted.

  11. Interspecific interference competition at the resource patch scale: do large herbivores spatially avoid elephants while accessing water?

    PubMed

    Ferry, Nicolas; Dray, Stéphane; Fritz, Hervé; Valeix, Marion

    2016-11-01

    Animals may anticipate and try to avoid, at some costs, physical encounters with other competitors. This may ultimately impact their foraging distribution and intake rates. Such cryptic interference competition is difficult to measure in the field, and extremely little is known at the interspecific level. We tested the hypothesis that smaller species avoid larger ones because of potential costs of interference competition and hence expected them to segregate from larger competitors at the scale of a resource patch. We assessed fine-scale spatial segregation patterns between three African herbivore species (zebra Equus quagga, kudu Tragelaphus strepsiceros and giraffe Giraffa camelopardalis) and a megaherbivore, the African elephant Loxodonta africana, at the scale of water resource patches in the semi-arid ecosystem of Hwange National Park, Zimbabwe. Nine waterholes were monitored every two weeks during the dry season of a drought year, and observational scans of the spatial distribution of all herbivores were performed every 15 min. We developed a methodological approach to analyse such fine-scale spatial data. Elephants increasingly used waterholes as the dry season progressed, as did the probability of co-occurrence and agonistic interaction with elephants for the three study species. All three species segregated from elephants at the beginning of the dry season, suggesting a spatial avoidance of elephants and the existence of costs of being close to them. However, contrarily to our expectations, herbivores did not segregate from elephants the rest of the dry season but tended to increasingly aggregate with elephants as the dry season progressed. We discuss these surprising results and the existence of a trade-off between avoidance of interspecific interference competition and other potential factors such as access to quality water, which may have relative associated costs that change with the time of the year. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  12. Discharge characteristics of a needle-to-plate electrode at a micro-scale gap

    NASA Astrophysics Data System (ADS)

    Ronggang, WANG; Qizheng, JI; Tongkai, ZHANG; Qing, XIA; Yu, ZHANG; Jiting, OUYANG

    2018-05-01

    To understand the discharge characteristics under a gap of micrometers, the breakdown voltage and current–voltage curve are measured experimentally in a needle-to-plate electrode at a micro-scale gap of 3–50 μm in air. The effect of the needle radius and the gas pressure on the discharge characteristics are tested. The results show that when the gap is larger than 10 μm, the relation between the breakdown voltage and the gap looks like the Paschen curve; while below 10 μm, the breakdown voltage is nearly constant in the range of the tested gap. However, at the same gap distance, the breakdown voltage is still affected by the pressure and shows a trend similar to Paschen’s law. The current–voltage characteristic in all the gaps is similar and follows the trend of a typical Townsend-to-glow discharge. A simple model is used to explain the non-normality of breakdown in the micro-gaps. The Townsend mechanism is suggested to control the breakdown process in this configuration before the gap reduces much smaller in air.

  13. Perturbations and gradients as fundamental tests for modeling the soil carbon cycle

    NASA Astrophysics Data System (ADS)

    Bond-Lamberty, B. P.; Bailey, V. L.; Becker, K.; Fansler, S.; Hinkle, C.; Liu, C.

    2013-12-01

    An important step in matching process-level knowledge to larger-scale measurements and model results is to challenge those models with site-specific perturbations and/or changing environmental conditions. Here we subject modified versions of an ecosystem process model to two stringent tests: replicating a long-term climate change dryland experiment (Rattlesnake Mountain) and partitioning the carbon fluxes of a soil drainage gradient in the northern Everglades (Disney Wilderness Preserve). For both sites, on-site measurements were supplemented by laboratory incubations of soil columns. We used a parameter-space search algorithm to optimize, within observational limits, the model's influential inputs, so that the spun-up carbon stocks and fluxes matched observed values. Modeled carbon fluxes (net primary production and net ecosystem exchange) agreed with measured values, within observational error limits, but the model's partitioning of soil fluxes (autotrophic versus heterotrophic), did not match laboratory measurements from either site. Accounting for site heterogeneity at DWP, modeled carbon exchange was reasonably consistent with values from eddy covariance. We discuss the implications of this work for ecosystem- to global scale modeling of ecosystems in a changing climate.

  14. Tungsten Contact and Line Resistance Reduction with Advanced Pulsed Nucleation Layer and Low Resistivity Tungsten Treatment

    NASA Astrophysics Data System (ADS)

    Chandrashekar, Anand; Chen, Feng; Lin, Jasmine; Humayun, Raashina; Wongsenakhum, Panya; Chang, Sean; Danek, Michal; Itou, Takamasa; Nakayama, Tomoo; Kariya, Atsushi; Kawaguchi, Masazumi; Hizume, Shunichi

    2010-09-01

    This paper describes electrical testing results of new tungsten chemical vapor deposition (CVD-W) process concepts that were developed to address the W contact and bitline scaling issues on 55 nm node devices. Contact resistance (Rc) measurements in complementary metal oxide semiconductor (CMOS) devices indicate that the new CVD-W process for sub-32 nm and beyond - consisting of an advanced pulsed nucleation layer (PNL) combined with low resistivity tungsten (LRW) initiation - produces a 20-30% drop in Rc for diffused NiSi contacts. From cross-sectional bright field and dark field transmission electron microscopy (TEM) analysis, such Rc improvement can be attributed to improved plugfill and larger in-feature W grain size with the advanced PNL+LRW process. More experiments that measured contact resistance for different feature sizes point to favorable Rc scaling with the advanced PNL+LRW process. Finally, 40% improvement in line resistance was observed with this process as tested on 55 nm embedded dynamic random access memory (DRAM) devices, confirming that the advanced PNL+LRW process can be an effective metallization solution for sub-32 nm devices.

  15. Utilizing the ultrasensitive Schistosoma up-converting phosphor lateral flow circulating anodic antigen (UCP-LF CAA) assay for sample pooling-strategies.

    PubMed

    Corstjens, Paul L A M; Hoekstra, Pytsje T; de Dood, Claudia J; van Dam, Govert J

    2017-11-01

    Methodological applications of the high sensitivity genus-specific Schistosoma CAA strip test, allowing detection of single worm active infections (ultimate sensitivity), are discussed for efficient utilization in sample pooling strategies. Besides relevant cost reduction, pooling of samples rather than individual testing can provide valuable data for large scale mapping, surveillance, and monitoring. The laboratory-based CAA strip test utilizes luminescent quantitative up-converting phosphor (UCP) reporter particles and a rapid user-friendly lateral flow (LF) assay format. The test includes a sample preparation step that permits virtually unlimited sample concentration with urine, reaching ultimate sensitivity (single worm detection) at 100% specificity. This facilitates testing large urine pools from many individuals with minimal loss of sensitivity and specificity. The test determines the average CAA level of the individuals in the pool thus indicating overall worm burden and prevalence. When requiring test results at the individual level, smaller pools need to be analysed with the pool-size based on expected prevalence or when unknown, on the average CAA level of a larger group; CAA negative pools do not require individual test results and thus reduce the number of tests. Straightforward pooling strategies indicate that at sub-population level the CAA strip test is an efficient assay for general mapping, identification of hotspots, determination of stratified infection levels, and accurate monitoring of mass drug administrations (MDA). At the individual level, the number of tests can be reduced i.e. in low endemic settings as the pool size can be increased as opposed to prevalence decrease. At the sub-population level, average CAA concentrations determined in urine pools can be an appropriate measure indicating worm burden. Pooling strategies allowing this type of large scale testing are feasible with the various CAA strip test formats and do not affect sensitivity and specificity. It allows cost efficient stratified testing and monitoring of worm burden at the sub-population level, ideally for large-scale surveillance generating hard data for performance of MDA programs and strategic planning when moving towards transmission-stop and elimination.

  16. SPE5 Sub-Scale Test Series Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandersall, Kevin S.; Reeves, Robert V.; DeHaven, Martin R.

    2016-01-14

    A series of 2 SPE5 sub-scale tests were performed to experimentally confirm that a booster system designed and evaluated in prior tests would properly initiate the PBXN-110 case charge fill. To conduct the experiments, a canister was designed to contain the nominally 50 mm diameter booster tube with an outer fill of approximately 150 mm diameter by 150 mm in length. The canisters were filled with PBXN-110 at NAWS-China Lake and shipped back to LLNL for testing in the High Explosives Applications Facility (HEAF). Piezoelectric crystal pins were placed on the outside of the booster tube before filling, and amore » series of piezoelectric crystal pins along with Photonic Doppler Velocimetry (PDV) probes were placed on the outer surface of the canister to measure the relative timing and magnitude of the detonation. The 2 piezoelectric crystal pins integral to the booster design were also utilized along with a series of either piezoelectric crystal pins or piezoelectric polymer pads on the top of the canister or outside case that utilized direct contact, gaps, or different thicknesses of RTV cushions to obtain time of arrival data to evaluate the response in preparation for the large-scale SPE5 test. To further quantify the margin of the booster operation, the 1st test (SPE5SS1) was functioned with both detonators and the 2nd test (SPE5SS2) was functioned with only 1 detonator. A full detonation of the material was observed in both experiments as observed by the pin timing and PDV signals. The piezoelectric pads were found to provide a greater measured signal magnitude during the testing with an RTV layer present, and the improved response is due to the larger measurement surface area of the pad. This report will detail the experiment design, canister assembly for filling, final assembly, experiment firing, presentation of the diagnostic results, and a discussion of the results.« less

  17. Species richness and biomass explain spatial turnover in ecosystem functioning across tropical and temperate ecosystems.

    PubMed

    Barnes, Andrew D; Weigelt, Patrick; Jochum, Malte; Ott, David; Hodapp, Dorothee; Haneda, Noor Farikhah; Brose, Ulrich

    2016-05-19

    Predicting ecosystem functioning at large spatial scales rests on our ability to scale up from local plots to landscapes, but this is highly contingent on our understanding of how functioning varies through space. Such an understanding has been hampered by a strong experimental focus of biodiversity-ecosystem functioning research restricted to small spatial scales. To address this limitation, we investigate the drivers of spatial variation in multitrophic energy flux-a measure of ecosystem functioning in complex communities-at the landscape scale. We use a structural equation modelling framework based on distance matrices to test how spatial and environmental distances drive variation in community energy flux via four mechanisms: species composition, species richness, niche complementarity and biomass. We found that in both a tropical and a temperate study region, geographical and environmental distance indirectly influence species richness and biomass, with clear evidence that these are the dominant mechanisms explaining variability in community energy flux over spatial and environmental gradients. Our results reveal that species composition and trait variability may become redundant in predicting ecosystem functioning at the landscape scale. Instead, we demonstrate that species richness and total biomass may best predict rates of ecosystem functioning at larger spatial scales. © 2016 The Author(s).

  18. Analogue scale modelling of extensional tectonic processes using a large state-of-the-art centrifuge

    NASA Astrophysics Data System (ADS)

    Park, Heon-Joon; Lee, Changyeol

    2017-04-01

    Analogue scale modelling of extensional tectonic processes such as rifting and basin opening has been numerously conducted. Among the controlling factors, gravitational acceleration (g) on the scale models was regarded as a constant (Earth's gravity) in the most of the analogue model studies, and only a few model studies considered larger gravitational acceleration by using a centrifuge (an apparatus generating large centrifugal force by rotating the model at a high speed). Although analogue models using a centrifuge allow large scale-down and accelerated deformation that is derived by density differences such as salt diapir, the possible model size is mostly limited up to 10 cm. A state-of-the-art centrifuge installed at the KOCED Geotechnical Centrifuge Testing Center, Korea Advanced Institute of Science and Technology (KAIST) allows a large surface area of the scale-models up to 70 by 70 cm under the maximum capacity of 240 g-tons. Using the centrifuge, we will conduct analogue scale modelling of the extensional tectonic processes such as opening of the back-arc basin. Acknowledgement This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant number 2014R1A6A3A04056405).

  19. Achieving ultra-high temperatures with a resistive emitter array

    NASA Astrophysics Data System (ADS)

    Danielson, Tom; Franks, Greg; Holmes, Nicholas; LaVeigne, Joe; Matis, Greg; McHugh, Steve; Norton, Dennis; Vengel, Tony; Lannon, John; Goodwin, Scott

    2016-05-01

    The rapid development of very-large format infrared detector arrays has challenged the IR scene projector community to also develop larger-format infrared emitter arrays to support the testing of systems incorporating these detectors. In addition to larger formats, many scene projector users require much higher simulated temperatures than can be generated with current technology in order to fully evaluate the performance of their systems and associated processing algorithms. Under the Ultra High Temperature (UHT) development program, Santa Barbara Infrared Inc. (SBIR) is developing a new infrared scene projector architecture capable of producing both very large format (>1024 x 1024) resistive emitter arrays and improved emitter pixel technology capable of simulating very high apparent temperatures. During earlier phases of the program, SBIR demonstrated materials with MWIR apparent temperatures in excess of 1400 K. New emitter materials have subsequently been selected to produce pixels that achieve even higher apparent temperatures. Test results from pixels fabricated using the new material set will be presented and discussed. A 'scalable' Read In Integrated Circuit (RIIC) is also being developed under the same UHT program to drive the high temperature pixels. This RIIC will utilize through-silicon via (TSV) and Quilt Packaging (QP) technologies to allow seamless tiling of multiple chips to fabricate very large arrays, and thus overcome the yield limitations inherent in large-scale integrated circuits. Results of design verification testing of the completed RIIC will be presented and discussed.

  20. Significance of connectivity and post-wildfire runoff

    USDA-ARS?s Scientific Manuscript database

    Amplified hillslope soil loss from rain storms following wildfire results from the evolution of runoff and erosion processes across spatial scales. At point to small-plot scales, soil is detached and transported a short distance by rainsplash and sheetflow. Soil transport by water over larger scales...

  1. COMPARING AND LINKING PLUMES ACROSS MODELING APPROACHES

    EPA Science Inventory

    River plumes carry many pollutants, including microorganisms, into lakes and the coastal ocean. The physical scales of many stream and river plumes often lie between the scales for mixing zone plume models, such as the EPA Visual Plumes model, and larger-sized grid scales for re...

  2. Solar forcing of the stream flow of a continental scale South American river.

    PubMed

    Mauas, Pablo J D; Flamenco, Eduardo; Buccino, Andrea P

    2008-10-17

    Solar forcing on climate has been reported in several studies although the evidence so far remains inconclusive. Here, we analyze the stream flow of one of the largest rivers in the world, the Paraná in southeastern South America. For the last century, we find a strong correlation with the sunspot number, in multidecadal time scales, and with larger solar activity corresponding to larger stream flow. The correlation coefficient is r=0.78, significant to a 99% level. In shorter time scales we find a strong correlation with El Niño. These results are a step toward flood prediction, which might have great social and economic impacts.

  3. LSSA large area silicon sheet task continuous Czochralski process development

    NASA Technical Reports Server (NTRS)

    Rea, S. N.

    1978-01-01

    A Czochralski crystal growing furnace was converted to a continuous growth facility by installation of a premelter to provide molten silicon flow into the primary crucible. The basic furnace is operational and several trial crystals were grown in the batch mode. Numerous premelter configurations were tested both in laboratory-scale equipment as well as in the actual furnace. The best arrangement tested to date is a vertical, cylindrical graphite heater containing small fused silicon test tube liner in which the incoming silicon is melted and flows into the primary crucible. Economic modeling of the continuous Czochralski process indicates that for 10 cm diameter crystal, 100 kg furnace runs of four or five crystals each are near-optimal. Costs tend to asymptote at the 100 kg level so little additional cost improvement occurs at larger runs. For these conditions, crystal cost in equivalent wafer area of around $20/sq m exclusive of polysilicon and slicing was obtained.

  4. Solar Confocal Interferometers for Sub-Picometer-Resolution Spectral Filters

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Pietraszewski, Chris; West, Edward A.; Dines, Terence C.

    2006-01-01

    The confocal Fabry-Perot interferometer allows sub-picometer spectral resolution of Fraunhofer line profiles. Such high spectral resolution is needed to keep pace with the higher spatial resolution of the new set of large-aperture solar telescopes. The line-of-sight spatial resolution derived for line profile inversions would then track the improvements of the transverse spatial scale provided by the larger apertures. The confocal interferometer's unique properties allow a simultaneous increase in both etendue and spectral power. Methods: We have constructed and tested two confocal interferometers. Conclusions: In this paper we compare the confocal interferometer with other spectral imaging filters, provide initial design parameters, show construction details for two designs, and report on the laboratory test results for these interferometers, and propose a multiple etalon system for future testing of these units and to obtain sub-picometer spectral resolution information on the photosphere in both the visible and near-infrared.

  5. Wind-tunnel evaluation of an advanced main-rotor blade design for a utility-class helicopter

    NASA Technical Reports Server (NTRS)

    Yeager, William T., Jr.; Mantay, Wayne R.; Wilbur, Matthew L.; Cramer, Robert G., Jr.; Singleton, Jeffrey D.

    1987-01-01

    An investigation was conducted in the Langley Transonic Dynamics Tunnel to evaluate differences between an existing utility-class main-rotor blade and an advanced-design main-rotor blade. The two rotor blade designs were compared with regard to rotor performance oscillatory pitch-link loads, and 4-per-rev vertical fixed-system loads. Tests were conducted in hover and over a range of simulated full-scale gross weights and density altitude conditions at advance ratios from 0.15 to 0.40. Results indicate that the advanced blade design offers performance improvements over the baseline blade in both hover and forward flight. Pitch-link oscillatory loads for the baseline rotor were more sensitive to the test conditions than those of the advanced rotor. The 4-per-rev vertical fixed-system load produced by the advanced blade was larger than that produced by the baseline blade at all test conditions.

  6. Erosive burning research. [for solid-propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Strand, L.; Yang, L. C.; Nguyen, M. H.; Cohen, N. S.

    1986-01-01

    A status report is given on the results for the completed tests in a series of motor firings being carried out to measure the effects of the parameters that are considered to most strongly influence the scaling to larger rocket motor sizes of the transition to/or threshold conditions for erosive burning rate augmentation. Propellant burning rates at locations along the axis of the test motors are measured with a newly developed plasma capacitance gauge technique. The measured results are compared with erosive-burning predictions from a supporting ballistics analysis. The completed motor firings have successfully demonstrated response to the designed test variables. The trends with varying propellant burning rate, chamber pressure, and mass flow rate are consistent with existing results, but no pronounced effect of surface roughness has been observed. Rather, the influence of propellant oxidizer particle size on erosive burning is through its effect on the base, no-corssflow burning rate.

  7. Estimation of water turbidity in Gorgan Bay, South-east of Caspian Sea by using IRS-LISS-III images.

    PubMed

    Aghighi, Hossein; Alimohammadi, Abbas; Saradjian, Mohammad Reza; Ashourloo, Davood

    2008-03-01

    In this research, usefulness of IRS-LISS-III data of Gorgan Bay, South-east of Caspian Sea located in North of Iran for water turbidity mapping, has been tested. After correction of geometric and radiometric errors, the resulting radiance data were used for examination of correlations between the remotely sensed and in situ water turbidity data simultaneously measured by the Secchi depth approach. Results of this research showed good relations between the Secchi depth and spectral data. The fitted statistical model was very significant (R2 = 0.77) and test of the model performance by independent samples was encouraging. Because of the low costs encountered with acquisition and processing of remotely sensed data, further research in larger scales for the purpose of more precise test of the approach for water turbidity mapping and monitoring is recommended.

  8. Why Be a Shrub? A Basic Model and Hypotheses for the Adaptive Values of a Common Growth Form

    PubMed Central

    Götmark, Frank; Götmark, Elin; Jensen, Anna M.

    2016-01-01

    Shrubs are multi-stemmed short woody plants, more widespread than trees, important in many ecosystems, neglected in ecology compared to herbs and trees, but currently in focus due to their global expansion. We present a novel model based on scaling relationships and four hypotheses to explain the adaptive significance of shrubs, including a review of the literature with a test of one hypothesis. Our model describes advantages for a small shrub compared to a small tree with the same above-ground woody volume, based on larger cross-sectional stem area, larger area of photosynthetic tissue in bark and stem, larger vascular cambium area, larger epidermis (bark) area, and larger area for sprouting, and faster production of twigs and canopy. These components form our Hypothesis 1 that predicts higher growth rate for a small shrub than a small tree. This prediction was supported by available relevant empirical studies (14 publications). Further, a shrub will produce seeds faster than a tree (Hypothesis 2), multiple stems in shrubs insure future survival and growth if one or more stems die (Hypothesis 3), and three structural traits of short shrub stems improve survival compared to tall tree stems (Hypothesis 4)—all hypotheses have some empirical support. Multi-stemmed trees may be distinguished from shrubs by more upright stems, reducing bending moment. Improved understanding of shrubs can clarify their recent expansion on savannas, grasslands, and alpine heaths. More experiments and other empirical studies, followed by more elaborate models, are needed to understand why the shrub growth form is successful in many habitats. PMID:27507981

  9. Natural Flood Management Plus: Scaling Up Nature Based Solutions to Larger Catchments

    NASA Astrophysics Data System (ADS)

    Quinn, Paul; Nicholson, Alex; Adams, Russ

    2017-04-01

    It has been established that networks NFM features, such as ponds and wetlands, can have a significant effect on flood flow and pollution at local scales (less than 10km2). However, it is much less certain that NFM and NBS can impact at larger scales and protect larger cities. This is especially true for recent storms in the UK such as storm Desmond that caused devastation across the north of England. It is possible using observed rainfall and runoff data to estimate the amounts of storage that would be required to impact on extreme flood events. Here we will how a toolkit that will estimate the amount of storage that can be accrued through a dense networks of NFM features. The analysis suggest that the use of many hundreds of small NFM features can have a significant impact on peak flow, however we still require more storage in order to address extreme events and to satisfy flood engineers who may propose more traditional flood defences. We will also show case studies of larger NFM feature positioned on flood plains that can store significantly more flood flow. Examples designs of NFM plus feature will be shown. The storage aggregation tool will then show the degree to which storing large amounts of flood flow in NFM plus features can contribute to flood management and estimate the likely costs. Together smaller and larger NFM features if used together can produce significant flood storage and at a much lower cost than traditional schemes.

  10. The Feldenkrais Method(®) can enhance cognitive function in independent living older adults: A case-series.

    PubMed

    Ullmann, Gerhild; Williams, Harriet G

    2016-07-01

    Poor cognitive health a major concern of aging individuals, can compromise independent living. More than 16 million people in the United States are affected by cognitive impairment. We have studied the effects of the Feldenkrais Method(®) on cognitive function. In this case series with three participants cognitive function was assessed with the Trail Making Test A and B at baseline and after the Feldenkrais intervention. All participants improved performance on Trail Making Test A and B after completing the Feldenkrais intervention indicating that Feldenkrais lessons may offset age-related decline in cognitive function. The results of this case series warrant larger scale studies on cognitive outcomes of Feldenkrais interventions in clinical and non-clinical populations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Measurement-Device-Independent Quantum Key Distribution over Untrustful Metropolitan Network

    NASA Astrophysics Data System (ADS)

    Tang, Yan-Lin; Yin, Hua-Lei; Zhao, Qi; Liu, Hui; Sun, Xiang-Xiang; Huang, Ming-Qi; Zhang, Wei-Jun; Chen, Si-Jing; Zhang, Lu; You, Li-Xing; Wang, Zhen; Liu, Yang; Lu, Chao-Yang; Jiang, Xiao; Ma, Xiongfeng; Zhang, Qiang; Chen, Teng-Yun; Pan, Jian-Wei

    2016-01-01

    Quantum cryptography holds the promise to establish an information-theoretically secure global network. All field tests of metropolitan-scale quantum networks to date are based on trusted relays. The security critically relies on the accountability of the trusted relays, which will break down if the relay is dishonest or compromised. Here, we construct a measurement-device-independent quantum key distribution (MDIQKD) network in a star topology over a 200-square-kilometer metropolitan area, which is secure against untrustful relays and against all detection attacks. In the field test, our system continuously runs through one week with a secure key rate 10 times larger than previous results. Our results demonstrate that the MDIQKD network, combining the best of both worlds—security and practicality, constitutes an appealing solution to secure metropolitan communications.

  12. Exploring competitive orientation in a group of athletes participating in the 1996 paralympic trials.

    PubMed

    Page, S J

    2000-10-01

    The purposes of this study were to test (1) whether athletes with congenital disabilities exhibited different competitive orientations than athletes with disabilities acquired during their lifespans and (2) whether male athletes with disabilities exhibited different competitive orientations than their female peers. 54 paraplegic, quadriplegic and amputee athletes competing in the 1996 Paralympic Track and Field Trials completed the Sport Orientation Questionnaire. No mean differences were found between men and women, athletes with different onsets of their disabilities across the lifespan, between adolescents and adults, and between athletes with different severity classifications on the Goal orientation, Competitiveness, and Desire to win scales. Larger studies are encouraged to examine competitive orientation, as well as scores on tests specifically constructed to be administered to athletes with disabilities.

  13. OTEC Cold Water Pipe-Platform Subsystem Dynamic Interaction Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varley, Robert; Halkyard, John; Johnson, Peter

    A commercial floating 100-megawatt (MW) ocean thermal energy conversion (OTEC) power plant will require a cold water pipe (CWP) with a diameter of 10-meter (m) and length of up to 1,000 m. The mass of the cold water pipe, including entrained water, can exceed the mass of the platform supporting it. The offshore industry uses software-modeling tools to develop platform and riser (pipe) designs to survive the offshore environment. These tools are typically validated by scale model tests in facilities able to replicate real at-sea meteorological and ocean (metocean) conditions to provide the understanding and confidence to proceed to finalmore » design and full-scale fabrication. However, today’s offshore platforms (similar to and usually larger than those needed for OTEC applications) incorporate risers (or pipes) with diameters well under one meter. Secondly, the preferred construction method for large diameter OTEC CWPs is the use of composite materials, primarily a form of fiber-reinforced plastic (FRP). The use of these material results in relatively low pipe stiffness and large strains compared to steel construction. These factors suggest the need for further validation of offshore industry software tools. The purpose of this project was to validate the ability to model numerically the dynamic interaction between a large cold water-filled fiberglass pipe and a floating OTEC platform excited by metocean weather conditions using measurements from a scale model tested in an ocean basin test facility.« less

  14. Testing scale-dependent effects of seminatural habitats on farmland biodiversity.

    PubMed

    Dainese, Matteo; Luna, Diego Inclán; Sitzia, Tommaso; Marini, Lorenzo

    2015-09-01

    The effectiveness of conservation interventions for maximizing biodiversity benefits from agri-environment schemes (AESs) is expected to depend on the quantity of seminatural habitats in the surrounding landscape. To verify this hypothesis, we developed a hierarchical sampling design to assess the effects of field boundary type and cover of seminatural habitats in the landscape at two nested spatial scales. We sampled three types of field boundaries with increasing structural complexity (grass margin, simple hedgerow, complex hedgerow) in paired landscapes with the presence or absence of seminatural habitats (radius 0.5 km), that in turn, were nested within 15 areas with different proportions of seminatural habitats at a larger spatial scale (10 X 10 km). Overall, 90 field boundaries were sampled across a Mediterranean'region (northeastern Italy). We considered species richness response across three different taxonomic groups: vascular plants, butterflies, and tachinid flies. No interactions between type of field boundary and surrounding landscape were found at either 0.5 and 10 km, indicating that the quality of field boundary had the same effect irrespective of the cover of seminatural habitats. At the local scale, extended-width grass margins yielded higher plant species richness, while hedgerows yielded higher species richness of butterflies and tachinids. At the 0.5-km landscape scale, the effect of the proportion of seminatural habitats was neutral for plants and tachinids, while butterflies were positively related to the proportion of forest. At the 10-km landscape scale, only butterflies responded positively to the proportion of seminatural habitats. Our study confirmed the importance of testing multiple scales when considering species from different taxa and with different mobility. We showed that the quality of field boundaries at the local scale was an important factor in enhancing farmland biodiversity. For butterflies, AESs should focus particular attention on preservation'of forest patches in agricultural landscapes within 0.5 kin, as well as the conservation of seminatural habitats at a wider landscape scale.

  15. Forced synchronization of large-scale circulation to increase predictability of surface states

    NASA Astrophysics Data System (ADS)

    Shen, Mao-Lin; Keenlyside, Noel; Selten, Frank; Wiegerinck, Wim; Duane, Gregory

    2016-04-01

    Numerical models are key tools in the projection of the future climate change. The lack of perfect initial condition and perfect knowledge of the laws of physics, as well as inherent chaotic behavior limit predictions. Conceptually, the atmospheric variables can be decomposed into a predictable component (signal) and an unpredictable component (noise). In ensemble prediction the anomaly of ensemble mean is regarded as the signal and the ensemble spread the noise. Naturally the prediction skill will be higher if the signal-to-noise ratio (SNR) is larger in the initial conditions. We run two ensemble experiments in order to explore a way to reduce the SNR of surface winds and temperature. One ensemble experiment is AGCM with prescribing sea surface temperature (SST); the other is AGCM with both prescribing SST and nudging the high-level temperature and winds to ERA-Interim. Each ensemble has 30 members. Larger SNR is expected and found over the tropical ocean in the first experiment because the tropical circulation is associated with the convection and the associated surface wind convergence as these are to a large extent driven by the SST. However, small SNR is found over high latitude ocean and land surface due to the chaotic and non-synchronized atmosphere states. In the second experiment the higher level temperature and winds are forced to be synchronized (nudged to reanalysis) and hence a larger SNR of surface winds and temperature is expected. Furthermore, different nudging coefficients are also tested in order to understand the limitation of both synchronization of large-scale circulation and the surface states. These experiments will be useful for the developing strategies to synchronize the 3-D states of atmospheric models that can be later used to build a super model.

  16. Declines in predatory fish promote bloom-forming macroalgae.

    PubMed

    Eriksson, Britas Klemens; Ljunggren, Lars; Sandström, Alfred; Johansson, Gustav; Mattila, Johanna; Rubach, Anja; Råberg, Sonja; Snickars, Martin

    2009-12-01

    In the Baltic Sea, increased dominance of ephemeral and bloom-forming algae is presently attributed to increased nutrient loads. Simultaneously, coastal predatory fish are in strong decline. Using field data from nine areas covering a 700-km coastline, we examined whether formation of macroalgal blooms could be linked to the composition of the fish community. We then tested whether predator or nutrient availability could explain the field patterns in two small-scale field experiments, by comparing joint effects on algal net production from nutrient enrichment with agricultural fertilizer and exclusion of larger predatory fish with cages. We also manipulated the presence of invertebrate grazers. The abundance of piscivorous fish had a strong negative correlation with the large-scale distribution of bloom-forming macroalgae. Areas with depleted top-predator communities displayed massive increases in their prey, small-bodied fish, and high covers of ephemeral algae. Combining the results from the two experiments showed that excluding larger piscivorous fish: (1) increased the abundance of small-bodied predatory fish; (2) changed the size distribution of the dominating grazers, decreasing the smaller gastropod scrapers; and (3) increased the net production of ephemeral macroalgae. Effects of removing top predators and nutrient enrichment were similar and additive, together increasing the abundance of ephemeral algae many times. Predator effects depended on invertebrate grazers; in the absence of invertebrates there were no significant effects of predator exclusion on algal production. Our results provide strong support for regional declines of larger predatory fish in the Baltic Sea promoting algal production by decreasing invertebrate grazer control. This highlights the importance of trophic interactions for ecosystem responses to eutrophication. The view emerges that to achieve management goals for water quality we need to consider the interplay between top-down and bottom-up processes in future ecosystem management of marine resources.

  17. The influence of hydrocarbons in changing the mechanical and acoustic properties of a carbonate reservoir: implications of laboratory results on larger scale processes

    NASA Astrophysics Data System (ADS)

    Trippetta, Fabio; Ruggieri, Roberta; Geremia, Davide; Brandano, Marco

    2017-04-01

    Understanding hydraulic and mechanical processes that acted in reservoir rocks and their effect on the rock properties is of a great interest for both scientific and industry fields. In this work we investigate the role of hydrocarbons in changing the petrophysical properties of rock by merging laboratory, outcrops, and subsurface data focusing on the carbonate-bearing Majella reservoir (Bolognano formation). This reservoir represents an interesting analogue for subsurface carbonate reservoirs and is made of high porosity (8 to 28%) ramp calcarenites saturated by hydrocarbon in the state of bitumen at the surface. Within this lithology clean and bitumen bearing samples were investigated. For both groups, density, porosity, P and S wave velocity, at increasing confining pressure and deformation tests were conducted on cylindrical specimens with BRAVA apparatus at the HP-HT Laboratory of the Istituto Nazionale di Geofisica e Vulcanologia (INGV) in Rome, Italy. The performed petrophysical characterization, shows a very good correlation between Vp, Vs and porosity and a pressure independent Vp/Vs ratio while the presence of bitumen within samples increases both Vp and Vs. P-wave velocity hysteresis measured at ambient pressure after 100 MPa of applied confining pressure, suggests an almost pure elastic behaviour for bitumen-bearing samples and a more inelastic behaviour for cleaner samples. Calculated dynamic Young's modulus is larger for bitumen-bearing samples and these data are confirmed by cyclic deformation tests where the same samples generally record larger strength, larger Young's modulus and smaller permanent strain respect to clean samples. Starting from laboratory data, we also derived a synthetic acoustic model highlighting an increase in acoustic impedance for bitumen-bearing samples. Models have been also performed simulating a saturation with decreasing API° hydrocarbons, showing opposite effects on the seismic properties of the reservoir respect to bitumen. In order to compare our laboratory results at larger scale we selected 11 outcrops of the same lithofacies of laboratory samples both clean and bitumen-saturated. Fractures orientations, from the scan-line method, are similar for the two types of outcrops and they follow the same trends of literature data collected on older rocks. On the other hand, spacing data show very lower fracture density for bitumen-saturated outcrops confirming laboratory observations. In conclusion, laboratory experiments highlight a more elastic behaviour for bitumen-bearing samples and saturated outcrops are less prone to fracture respect to clean outcrops. Presence of bitumen has, thus, a positive influence on mechanical properties of the reservoir while acoustic model suggests that lighter oils should have an opposite effect. Geologically, this suggests that hydrocarbons migration in the study area predates the last stage of deformation giving also clues about a relatively high density of the oil when deformation began.

  18. Collaboration in national forest management

    Treesearch

    Susan Charnley; Jonathan W. Long; Frank K. Lake

    2014-01-01

    National forest management efforts have generally moved toward collaborative and participatory approaches at a variety of scales. This includes, at a larger scale, greater public participation in transparent and inclusive democratic processes and, at a smaller scale, more engagement with local communities. Participatory approaches are especially important for an all-...

  19. Snake scales, partial exposure, and the Snake Detection Theory: A human event-related potentials study.

    PubMed

    Van Strien, Jan W; Isbell, Lynne A

    2017-04-07

    Studies of event-related potentials in humans have established larger early posterior negativity (EPN) in response to pictures depicting snakes than to pictures depicting other creatures. Ethological research has recently shown that macaques and wild vervet monkeys respond strongly to partially exposed snake models and scale patterns on the snake skin. Here, we examined whether snake skin patterns and partially exposed snakes elicit a larger EPN in humans. In Task 1, we employed pictures with close-ups of snake skins, lizard skins, and bird plumage. In task 2, we employed pictures of partially exposed snakes, lizards, and birds. Participants watched a random rapid serial visual presentation of these pictures. The EPN was scored as the mean activity (225-300 ms after picture onset) at occipital and parieto-occipital electrodes. Consistent with previous studies, and with the Snake Detection Theory, the EPN was significantly larger for snake skin pictures than for lizard skin and bird plumage pictures, and for lizard skin pictures than for bird plumage pictures. Likewise, the EPN was larger for partially exposed snakes than for partially exposed lizards and birds. The results suggest that the EPN snake effect is partly driven by snake skin scale patterns which are otherwise rare in nature.

  20. Snake scales, partial exposure, and the Snake Detection Theory: A human event-related potentials study

    PubMed Central

    Van Strien, Jan W.; Isbell, Lynne A.

    2017-01-01

    Studies of event-related potentials in humans have established larger early posterior negativity (EPN) in response to pictures depicting snakes than to pictures depicting other creatures. Ethological research has recently shown that macaques and wild vervet monkeys respond strongly to partially exposed snake models and scale patterns on the snake skin. Here, we examined whether snake skin patterns and partially exposed snakes elicit a larger EPN in humans. In Task 1, we employed pictures with close-ups of snake skins, lizard skins, and bird plumage. In task 2, we employed pictures of partially exposed snakes, lizards, and birds. Participants watched a random rapid serial visual presentation of these pictures. The EPN was scored as the mean activity (225–300 ms after picture onset) at occipital and parieto-occipital electrodes. Consistent with previous studies, and with the Snake Detection Theory, the EPN was significantly larger for snake skin pictures than for lizard skin and bird plumage pictures, and for lizard skin pictures than for bird plumage pictures. Likewise, the EPN was larger for partially exposed snakes than for partially exposed lizards and birds. The results suggest that the EPN snake effect is partly driven by snake skin scale patterns which are otherwise rare in nature. PMID:28387376

  1. 25 CFR 169.6 - Maps.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the map of the last section may include any excess of 10 miles or less. (c) The scale of maps showing... larger scale when necessary and when an increase in scale cannot be avoided through the use of separate field notes, but the scale must not be increased to such extent as to make the maps too cumbersome for...

  2. Evaluating scale-up rules of a high-shear wet granulation process.

    PubMed

    Tao, Jing; Pandey, Preetanshu; Bindra, Dilbir S; Gao, Julia Z; Narang, Ajit S

    2015-07-01

    This work aimed to evaluate the commonly used scale-up rules for high-shear wet granulation process using a microcrystalline cellulose-lactose-based low drug loading formulation. Granule properties such as particle size, porosity, flow, and tabletability, and tablet dissolution were compared across scales using scale-up rules based on different impeller speed calculations or extended wet massing time. Constant tip speed rule was observed to produce slightly less granulated material at the larger scales. Longer wet massing time can be used to compensate for the lower shear experienced by the granules at the larger scales. Constant Froude number and constant empirical stress rules yielded granules that were more comparable across different scales in terms of compaction performance and tablet dissolution. Granule porosity was shown to correlate well with blend tabletability and tablet dissolution, indicating the importance of monitoring granule densification (porosity) during scale-up. It was shown that different routes can be chosen during scale-up to achieve comparable granule growth and densification by altering one of the three parameters: water amount, impeller speed, and wet massing time. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  3. The relation of hippocampal subfield volumes to verbal episodic memory measured by the California Verbal Learning Test II in healthy adults.

    PubMed

    Aslaksen, Per M; Bystad, Martin K; Ørbo, Marte C; Vangberg, Torgil R

    2018-06-08

    Total hippocampal volume has previously been shown to correlate with performance on tests for verbal episodic memory. However, there are sparse evidence on how hippocampal subfield volumes are related to verbal episodic memory in healthy adults. The present study investigated the association between volumes of separate hippocampal subfields and verbal episodic memory performance in healthy volunteers. Forty-seven participants (31 females) between 20 to 71 years age underwent testing with the California Verbal Learning Test II (CVLT II), and the Wechsler Abbreviated Scale of Intelligence (WASI) to obtain an estimate of cognitive functioning. T1-weighted MR images were obtained after cognitive testing, and volumetric estimates adjusted for age and estimated total intracranial volume were calculated in the FreeSurfer 6.0 software suite for cerebral -and hippocampal structures. The sample performed within the statistical normal range on both CVLT II and WASI. Significant correlations adjusted for multiple testing were found between CVLT II subtests of total learning, free immediate recall and free delayed recall and volumes of the left Cornu Ammonis (CA) 1-4 subfields. There were no significant correlations between right hippocampal subfields and CVLT II performance, and no significant correlation between WASI results and hippocampal subfields. The present results suggest that better verbal episodic memory measured by the CVLT II is associated with relative larger volumes of specific left CA hippocampal subfields in healthy adults. Due to the small sample size and large age-span of the participants, the present findings are preliminary and should be confirmed in larger samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Community assembly of the ferns of Florida.

    PubMed

    Sessa, Emily B; Chambers, Sally M; Li, Daijiang; Trotta, Lauren; Endara, Lorena; Burleigh, J Gordon; Baiser, Benjamin

    2018-03-01

    Many ecological and evolutionary processes shape the assembly of organisms into local communities from a regional pool of species. We analyzed phylogenetic and functional diversity to understand community assembly of the ferns of Florida at two spatial scales. We built a phylogeny for 125 of the 141 species of ferns in Florida using five chloroplast markers. We calculated mean pairwise dissimilarity (MPD) and mean nearest taxon distance (MNTD) from phylogenetic distances and functional trait data for both spatial scales and compared the results to null models to assess significance. Our results for over vs. underdispersion in functional and phylogenetic diversity differed depending on spatial scale and metric considered. At the county scale, MPD revealed evidence for phylogenetic overdispersion, while MNTD revealed phylogenetic and functional underdispersion, and at the conservation area scale, MPD revealed phylogenetic and functional underdispersion while MNTD revealed evidence only of functional underdispersion. Our results are consistent with environmental filtering playing a larger role at the smaller, conservation area scale. The smaller spatial units are likely composed of fewer local habitat types that are selecting for closely related species, with the larger-scale units more likely to be composed of multiple habitat types that bring together a larger pool of species from across the phylogeny. Several aspects of fern biology, including their unique physiology and water relations and the importance of the independent gametophyte stage of the life cycle, make ferns highly sensitive to local, microhabitat conditions. © 2018 The Authors. American Journal of Botany is published by Wiley Periodicals, Inc. on behalf of the Botanical Society of America.

  5. Development and evaluation of the PI-G: a three-scale measure based on the German translation of the PROMIS ® pain interference item bank.

    PubMed

    Farin, Erik; Nagl, Michaela; Gramm, Lukas; Heyduck, Katja; Glattacker, Manuela

    2014-05-01

    Study aim was to translate the PROMIS(®) pain interference (PI) item bank (41 items) into German, test its psychometric properties in patients with chronic low back pain and develop static subforms. We surveyed N = 262 patients undergoing rehabilitation who were asked to fill out questionnaires at the beginning and 2 weeks after the end of rehabilitation, applying the Oswestry Disability Index (ODI) and Pain Disability Index (PDI) in addition to the PROMIS(®) PI items. For psychometric testing, a 1-parameter item response theory (IRT) model was used. Exploratory and confirmatory factor analyses as well as reliability and construct validity analyses were conducted. The assumptions regarding IRT scaling of the translated PROMIS(®) PI item bank as a whole were not confirmed. However, we succeeded in devising three static subforms (PI-G scales: PI mental 13 items, PI functional 11 items, PI physical 4 items), revealing good psychometric properties. The PI-G scales in their static form can be recommended for use in German-speaking countries. Their strengths versus the ODI and PDI are that pain interference is assessed in a differentiated manner and that several psychometric values are somewhat better than those associated with the ODI and PDI (distribution properties, IRT model fit, reliability). To develop an IRT-scaled item bank of the German translations of the PROMIS(®) PI items, it would be useful to have additional studies (e.g., with larger sample sizes and using a 2-parameter IRT model).

  6. WE-E-17A-06: Assessing the Scale of Tumor Heterogeneity by Complete Hierarchical Segmentation On MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gensheimer, M; Trister, A; Ermoian, R

    2014-06-15

    Purpose: In many cancers, intratumoral heterogeneity exists in vascular and genetic structure. We developed an algorithm which uses clinical imaging to interrogate different scales of heterogeneity. We hypothesize that heterogeneity of perfusion at large distance scales may correlate with propensity for disease recurrence. We applied the algorithm to initial diagnosis MRI of rhabdomyosarcoma patients to predict recurrence. Methods: The Spatial Heterogeneity Analysis by Recursive Partitioning (SHARP) algorithm recursively segments the tumor image. The tumor is repeatedly subdivided, with each dividing line chosen to maximize signal intensity difference between the two subregions. This process continues to the voxel level, producing segmentsmore » at multiple scales. Heterogeneity is measured by comparing signal intensity histograms between each segmented region and the adjacent region. We measured the scales of contrast enhancement heterogeneity of the primary tumor in 18 rhabdomyosarcoma patients. Using Cox proportional hazards regression, we explored the influence of heterogeneity parameters on relapse-free survival (RFS). To compare with existing methods, fractal and Haralick texture features were also calculated. Results: The complete segmentation produced by SHARP allows extraction of diverse features, including the amount of heterogeneity at various distance scales, the area of the tumor with the most heterogeneity at each scale, and for a given point in the tumor, the heterogeneity at different scales. 10/18 rhabdomyosarcoma patients suffered disease recurrence. On contrast-enhanced MRI, larger scale of maximum signal intensity heterogeneity, relative to tumor diameter, predicted for shorter RFS (p=0.05). Fractal dimension, fractal fit, and three Haralick features did not predict RFS (p=0.09-0.90). Conclusion: SHARP produces an automatic segmentation of tumor regions and reports the amount of heterogeneity at various distance scales. In rhabdomyosarcoma, RFS was shorter when the primary tumor exhibited larger scale of heterogeneity on contrast-enhanced MRI. If validated on a larger dataset, this imaging biomarker could be useful to help personalize treatment.« less

  7. Hierarchical population monitoring of greater sage-grouse (Centrocercus urophasianus) in Nevada and California—Identifying populations for management at the appropriate spatial scale

    USGS Publications Warehouse

    Coates, Peter S.; Prochazka, Brian G.; Ricca, Mark A.; Wann, Gregory T.; Aldridge, Cameron L.; Hanser, Steven E.; Doherty, Kevin E.; O'Donnell, Michael S.; Edmunds, David R.; Espinosa, Shawn P.

    2017-08-10

    Population ecologists have long recognized the importance of ecological scale in understanding processes that guide observed demographic patterns for wildlife species. However, directly incorporating spatial and temporal scale into monitoring strategies that detect whether trajectories are driven by local or regional factors is challenging and rarely implemented. Identifying the appropriate scale is critical to the development of management actions that can attenuate or reverse population declines. We describe a novel example of a monitoring framework for estimating annual rates of population change for greater sage-grouse (Centrocercus urophasianus) within a hierarchical and spatially nested structure. Specifically, we conducted Bayesian analyses on a 17-year dataset (2000–2016) of lek counts in Nevada and northeastern California to estimate annual rates of population change, and compared trends across nested spatial scales. We identified leks and larger scale populations in immediate need of management, based on the occurrence of two criteria: (1) crossing of a destabilizing threshold designed to identify significant rates of population decline at a particular nested scale; and (2) crossing of decoupling thresholds designed to identify rates of population decline at smaller scales that decouple from rates of population change at a larger spatial scale. This approach establishes how declines affected by local disturbances can be separated from those operating at larger scales (for example, broad-scale wildfire and region-wide drought). Given the threshold output from our analysis, this adaptive management framework can be implemented readily and annually to facilitate responsive and effective actions for sage-grouse populations in the Great Basin. The rules of the framework can also be modified to identify populations responding positively to management action or demonstrating strong resilience to disturbance. Similar hierarchical approaches might be beneficial for other species occupying landscapes with heterogeneous disturbance and climatic regimes.

  8. Peptides and Anti-peptide Antibodies for Small and Medium Scale Peptide and Anti-peptide Affinity Microarrays: Antigenic Peptide Selection, Immobilization, and Processing.

    PubMed

    Zhang, Fan; Briones, Andrea; Soloviev, Mikhail

    2016-01-01

    This chapter describes the principles of selection of antigenic peptides for the development of anti-peptide antibodies for use in microarray-based multiplex affinity assays and also with mass-spectrometry detection. The methods described here are mostly applicable to small to medium scale arrays. Although the same principles of peptide selection would be suitable for larger scale arrays (with 100+ features) the actual informatics software and printing methods may well be different. Because of the sheer number of proteins/peptides to be processed and analyzed dedicated software capable of processing all the proteins and an enterprise level array robotics may be necessary for larger scale efforts. This report aims to provide practical advice to those who develop or use arrays with up to ~100 different peptide or protein features.

  9. Scaling considerations for a multi-megawatt class supercritical CO2 brayton cycle and commercialization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Conboy, Thomas M.

    2013-11-01

    Small-scale supercritical CO2 demonstration loops are successful at identifying the important technical issues that one must face in order to scale up to larger power levels. The Sandia National Laboratories supercritical CO2 Brayton cycle test loops are identifying technical needs to scale the technology to commercial power levels such as 10 MWe. The small size of the Sandia 1 MWth loop has demonstration of the split flow loop efficiency and effectiveness of the Printed Circuit Heat Exchangers (PCHXs) leading to the design of a fully recuperated, split flow, supercritical CO2 Brayton cycle demonstration system. However, there were many problems thatmore » were encountered, such as high rotational speeds in the units. Additionally, the turbomachinery in the test loops need to identify issues concerning the bearings, seals, thermal boundaries, and motor controller problems in order to be proved a reliable power source in the 300 kWe range. Although these issues were anticipated in smaller demonstration units, commercially scaled hardware would eliminate these problems caused by high rotational speeds at small scale. The economic viability and development of the future scalable 10 MWe solely depends on the interest of DOE and private industry. The Intellectual Property collected by Sandia proves that the ~10 MWe supercritical CO2 power conversion loop to be very beneficial when coupled to a 20 MWth heat source (either solar, geothermal, fossil, or nuclear). This paper will identify a commercialization plan, as well as, a roadmap from the simple 1 MWth supercritical CO2 development loop to a power producing 10 MWe supercritical CO2 Brayton loop.« less

  10. Cultural adaptation and validation of Stroke Impact Scale 3.0 version in Uganda: A small-scale study

    PubMed Central

    Kamwesiga, Julius T; von Koch, Lena; Kottorp, Anders; Guidetti, Susanne

    2016-01-01

    Background: Knowledge is scarce about the impact of stroke in Uganda, and culturally adapted, psychometrically tested patient-reported outcome measures are lacking. The Stroke Impact Scale 3.0 is recommended, but it has not been culturally adapted and validated in Uganda. Objective: To culturally adapt and determine the psychometric properties of the Stroke Impact Scale 3.0 in the Ugandan context on a small scale. Method: The Stroke Impact Scale 3.0 was culturally adapted to form Stroke Impact Scale 3.0 Uganda (in English) by involving 25 participants in three different expert committees. Subsequently, Stroke Impact Scale 3.0 Uganda from English to Luganda language was done in accordance with guidelines. The first language in Uganda is English and Luganda is the main spoken language in Kampala city and its surroundings. Translation of Stroke Impact Scale 3.0 Uganda (both in English and Luganda) was then tested psychometrically by applying a Rasch model on data collected from 95 participants with stroke. Results: Overall, 10 of 59 (17%) items in the eight domains of the Stroke Impact Scale 3.0 were culturally adapted. The majority were 6 of 10 items in the domain Activities of Daily Living, 2 of 9 items in the domain Mobility, and 2 of 5 items in the domain Hand function. Only in two domains, all items demonstrated acceptable goodness of fit to the Rasch model. There were also more than 5% person misfits in the domains Participation and Emotion, while the Communication, Mobility, and Hand function domains had the lowest proportions of person misfits. The reliability coefficient was equal or larger than 0.90 in all domains except the Emotion domain, which was below the set criterion of 0.80 (0.75). Conclusion: The cultural adaptation and translation of Stroke Impact Scale 3.0 Uganda provides initial evidence of validity of the Stroke Impact Scale 3.0 when used in this context. The results provide support for several aspects of validity and precision but also point out issues for further adaptation and improvement of the Stroke Impact Scale. PMID:27746913

  11. Cultural adaptation and validation of Stroke Impact Scale 3.0 version in Uganda: A small-scale study.

    PubMed

    Kamwesiga, Julius T; von Koch, Lena; Kottorp, Anders; Guidetti, Susanne

    2016-01-01

    Knowledge is scarce about the impact of stroke in Uganda, and culturally adapted, psychometrically tested patient-reported outcome measures are lacking. The Stroke Impact Scale 3.0 is recommended, but it has not been culturally adapted and validated in Uganda. To culturally adapt and determine the psychometric properties of the Stroke Impact Scale 3.0 in the Ugandan context on a small scale. The Stroke Impact Scale 3.0 was culturally adapted to form Stroke Impact Scale 3.0 Uganda ( in English ) by involving 25 participants in three different expert committees. Subsequently, Stroke Impact Scale 3.0 Uganda from English to Luganda language was done in accordance with guidelines. The first language in Uganda is English and Luganda is the main spoken language in Kampala city and its surroundings. Translation of Stroke Impact Scale 3.0 Uganda ( both in English and Luganda ) was then tested psychometrically by applying a Rasch model on data collected from 95 participants with stroke. Overall, 10 of 59 (17%) items in the eight domains of the Stroke Impact Scale 3.0 were culturally adapted. The majority were 6 of 10 items in the domain Activities of Daily Living, 2 of 9 items in the domain Mobility, and 2 of 5 items in the domain Hand function. Only in two domains, all items demonstrated acceptable goodness of fit to the Rasch model. There were also more than 5% person misfits in the domains Participation and Emotion, while the Communication, Mobility, and Hand function domains had the lowest proportions of person misfits. The reliability coefficient was equal or larger than 0.90 in all domains except the Emotion domain, which was below the set criterion of 0.80 (0.75). The cultural adaptation and translation of Stroke Impact Scale 3.0 Uganda provides initial evidence of validity of the Stroke Impact Scale 3.0 when used in this context. The results provide support for several aspects of validity and precision but also point out issues for further adaptation and improvement of the Stroke Impact Scale.

  12. Integrating nanosphere lithography in device fabrication

    NASA Astrophysics Data System (ADS)

    Laurvick, Tod V.; Coutu, Ronald A.; Lake, Robert A.

    2016-03-01

    This paper discusses the integration of nanosphere lithography (NSL) with other fabrication techniques, allowing for nano-scaled features to be realized within larger microelectromechanical system (MEMS) based devices. Nanosphere self-patterning methods have been researched for over three decades, but typically not for use as a lithography process. Only recently has progress been made towards integrating many of the best practices from these publications and determining a process that yields large areas of coverage, with repeatability and enabled a process for precise placement of nanospheres relative to other features. Discussed are two of the more common self-patterning methods used in NSL (i.e. spin-coating and dip coating) as well as a more recently conceived variation of dip coating. Recent work has suggested the repeatability of any method depends on a number of variables, so to better understand how these variables affect the process a series of test vessels were developed and fabricated. Commercially available 3-D printing technology was used to incrementally alter the test vessels allowing for each variable to be investigated individually. With these deposition vessels, NSL can now be used in conjunction with other fabrication steps to integrate features otherwise unattainable through current methods, within the overall fabrication process of larger MEMS devices. Patterned regions in 1800 series photoresist with a thickness of ~700nm are used to capture regions of self-assembled nanospheres. These regions are roughly 2-5 microns in width, and are able to control the placement of 500nm polystyrene spheres by controlling where monolayer self-assembly occurs. The resulting combination of photoresist and nanospheres can then be used with traditional deposition or etch methods to utilize these fine scale features in the overall design.

  13. Examining a participation-focused stroke self-management intervention in a day rehabilitation setting: a quasi-experimental pilot study.

    PubMed

    Lee, Danbi; Fischer, Heidi; Zera, Sarah; Robertson, Rosetta; Hammel, Joy

    2017-12-01

    Background People with stroke often find discharge from rehabilitation distressing because they do not feel prepared to participate in life roles as they want. A self-management approach can facilitate improvement in confidence and ability to manage post-stroke community living and participation after transitioning into the community. Objective To evaluate the feasibility and effectiveness of the Improving Participation After Stroke Self-management program - Rehab version (IPASS-R) in a day rehabilitation setting. Methods We used a mixed-method non-randomized quasi-experimental design. The IPASS-R program is a six-session group-based intervention led by a trained occupational therapist and lay person with stroke. The program uses an efficacy building approach to support aging adults to maintain active participation in home and community activities post-stroke. Primary outcome measures were the Reintegration to Normal Living Index (RNLI), Stroke Impact Scale (SIS), and Participation Strategies Self-Efficacy Scale. Qualitative feedback was collected post-treatment. Results Seventeen participants with stroke (intervention n = 9; control n = 8) were enrolled across two sites. Non-parametric effect sizes calculated using the Wilcoxon Signed-Rank test revealed larger effects on RNLI and SIS outcomes in the intervention group. The Mann-Whitney U test showed significant differences between the two groups' changes in scores on perceived recovery and strength. Conclusions The result shows that IPASS-R has the potential to be integrated into a day rehabilitation setting with a positive impact on community integration and perceived recovery outcomes. Future study is needed to investigate the IPASS-R with a larger sample size and more rigorous study design.

  14. Location Is Everything: Evaluating the Effects of Terrestrial and Marine Resource Subsidies on an Estuarine Bivalve

    PubMed Central

    Harding, Joel M. S.; Segal, Michelle R.; Reynolds, John D.

    2015-01-01

    Estuaries are amongst the world’s most productive ecosystems, lying at the intersection between terrestrial and marine environments. They receive substantial inputs from adjacent landscapes but the importance of resource subsidies is not well understood. Here, we test hypotheses for the effects of both terrestrial- and salmon-derived resource subsidies on the diet (inferred from stable isotopes of muscle tissue), size and percent nitrogen of the soft-shell clam (Mya arenaria), a sedentary estuarine consumer. We examine how these relationships shift across natural gradients among 14 estuaries that vary in upstream watershed size and salmon density on the central coast of British Columbia, Canada. We also test how assimilation and response to subsidies vary at smaller spatial scales within estuaries. The depletion and enrichment of stable isotope ratios in soft-shell clam muscle tissue correlated with increasing upstream watershed size and salmon density, respectively. The effects of terrestrial- and salmon-derived subsidies were also strongest at locations near stream outlets. When we controlled for age of individual clams, there were larger individuals with higher percent nitrogen content in estuaries below larger watersheds, though this effect was limited to the depositional zones below river mouths. Pink salmon exhibited a stronger effect on isotope ratios of clams than chum salmon, which could reflect increased habitat overlap as spawning pink salmon concentrate in lower stream reaches, closer to intertidal clam beds. However, there were smaller clams in estuaries that had higher upstream pink salmon densities, possibly due to differences in habitat requirements. Our study highlights the importance of upstream resource subsidies to this bivalve species, but that individual responses to subsidies can vary at smaller scales within estuaries. PMID:25993002

  15. Porous photonic crystal external cavity laser biosensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Qinglan; Peh, Jessie; Hergenrother, Paul J.

    2016-08-15

    We report the design, fabrication, and testing of a photonic crystal (PC) biosensor structure that incorporates a porous high refractive index TiO{sub 2} dielectric film that enables immobilization of capture proteins within an enhanced surface-area volume that spatially overlaps with the regions of resonant electromagnetic fields where biomolecular binding can produce the greatest shifts in photonic crystal resonant wavelength. Despite the nanoscale porosity of the sensor structure, the PC slab exhibits narrowband and high efficiency resonant reflection, enabling the structure to serve as a wavelength-tunable element of an external cavity laser. In the context of sensing small molecule interactions withmore » much larger immobilized proteins, we demonstrate that the porous structure provides 3.7× larger biosensor signals than an equivalent nonporous structure, while the external cavity laser (ECL) detection method provides capability for sensing picometer-scale shifts in the PC resonant wavelength caused by small molecule binding. The porous ECL achieves a record high figure of merit for label-free optical biosensors.« less

  16. More ‘altruistic’ punishment in larger societies

    PubMed Central

    Marlowe, Frank W; Berbesque, J. Colette; Barr, Abigail; Barrett, Clark; Bolyanatz, Alexander; Cardenas, Juan Camilo; Ensminger, Jean; Gurven, Michael; Gwako, Edwins; Henrich, Joseph; Henrich, Natalie; Lesorogol, Carolyn; McElreath, Richard; Tracer, David

    2007-01-01

    If individuals will cooperate with cooperators, and punish non-cooperators even at a cost to themselves, then this strong reciprocity could minimize the cheating that undermines cooperation. Based upon numerous economic experiments, some have proposed that human cooperation is explained by strong reciprocity and norm enforcement. Second-party punishment is when you punish someone who defected on you; third-party punishment is when you punish someone who defected on someone else. Third-party punishment is an effective way to enforce the norms of strong reciprocity and promote cooperation. Here we present new results that expand on a previous report from a large cross-cultural project. This project has already shown that there is considerable cross-cultural variation in punishment and cooperation. Here we test the hypothesis that population size (and complexity) predicts the level of third-party punishment. Our results show that people in larger, more complex societies engage in significantly more third-party punishment than people in small-scale societies. PMID:18089534

  17. Development and psychometric characteristics of the SCI-QOL Bladder Management Difficulties and Bowel Management Difficulties item banks and short forms and the SCI-QOL Bladder Complications scale.

    PubMed

    Tulsky, David S; Kisala, Pamela A; Tate, Denise G; Spungen, Ann M; Kirshblum, Steven C

    2015-05-01

    To describe the development and psychometric properties of the Spinal Cord Injury--Quality of Life (SCI-QOL) Bladder Management Difficulties and Bowel Management Difficulties item banks and Bladder Complications scale. Using a mixed-methods design, a pool of items assessing bladder and bowel-related concerns were developed using focus groups with individuals with spinal cord injury (SCI) and SCI clinicians, cognitive interviews, and item response theory (IRT) analytic approaches, including tests of model fit and differential item functioning. Thirty-eight bladder items and 52 bowel items were tested at the University of Michigan, Kessler Foundation Research Center, the Rehabilitation Institute of Chicago, the University of Washington, Craig Hospital, and the James J. Peters VA Medical Center, Bronx, NY. Seven hundred fifty-seven adults with traumatic SCI. The final item banks demonstrated unidimensionality (Bladder Management Difficulties CFI=0.965; RMSEA=0.093; Bowel Management Difficulties CFI=0.955; RMSEA=0.078) and acceptable fit to a graded response IRT model. The final calibrated Bladder Management Difficulties bank includes 15 items, and the final Bowel Management Difficulties item bank consists of 26 items. Additionally, 5 items related to urinary tract infections (UTI) did not fit with the larger Bladder Management Difficulties item bank but performed relatively well independently (CFI=0.992, RMSEA=0.050) and were thus retained as a separate scale. The SCI-QOL Bladder Management Difficulties and Bowel Management Difficulties item banks are psychometrically robust and are available as computer adaptive tests or short forms. The SCI-QOL Bladder Complications scale is a brief, fixed-length outcomes instrument for individuals with a UTI.

  18. TURBULENCE IN THE SOLAR WIND MEASURED WITH COMET TAIL TEST PARTICLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeForest, C. E.; Howard, T. A.; Matthaeus, W. H.

    2015-10-20

    By analyzing the motions of test particles observed remotely in the tail of Comet Encke, we demonstrate that the solar wind undergoes turbulent processing enroute from the Sun to the Earth and that the kinetic energy entrained in the large-scale turbulence is sufficient to explain the well-known anomalous heating of the solar wind. Using the heliospheric imaging (HI-1) camera on board NASA's STEREO-A spacecraft, we have observed an ensemble of compact features in the comet tail as they became entrained in the solar wind near 0.4 AU. We find that the features are useful as test particles, via mean-motion analysismore » and a forward model of pickup dynamics. Using population analysis of the ensemble's relative motion, we find a regime of random-walk diffusion in the solar wind, followed, on larger scales, by a surprising regime of semiconfinement that we attribute to turbulent eddies in the solar wind. The entrained kinetic energy of the turbulent motions represents a sufficient energy reservoir to heat the solar wind to observed temperatures at 1 AU. We determine the Lagrangian-frame diffusion coefficient in the diffusive regime, derive upper limits for the small scale coherence length of solar wind turbulence, compare our results to existing Eulerian-frame measurements, and compare the turbulent velocity with the size of the observed eddies extrapolated to 1 AU. We conclude that the slow solar wind is fully mixed by turbulence on scales corresponding to a 1–2 hr crossing time at Earth; and that solar wind variability on timescales shorter than 1–2 hr is therefore dominated by turbulent processing rather than by direct solar effects.« less

  19. Upper Stage Engine Composite Nozzle Extensions

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G.; Allen, Lee R.; Gradl, Paul R.; Greene, Sandra E.; Sullivan, Brian J.; Weller, Leslie J.; Koenig, John R.; Cuneo, Jacques C.; Thompson, James; Brown, Aaron; hide

    2015-01-01

    Carbon-carbon (C-C) composite nozzle extensions are of interest for use on a variety of launch vehicle upper stage engines and in-space propulsion systems. The C-C nozzle extension technology and test capabilities being developed are intended to support National Aeronautics and Space Administration (NASA) and United States Air Force (USAF) requirements, as well as broader industry needs. Recent and on-going efforts at the Marshall Space Flight Center (MSFC) are aimed at both (a) further developing the technology and databases for nozzle extensions fabricated from specific CC materials, and (b) developing and demonstrating low-cost capabilities for testing composite nozzle extensions. At present, materials development work is concentrating on developing a database for lyocell-based C-C that can be used for upper stage engine nozzle extension design, modeling, and analysis efforts. Lyocell-based C-C behaves in a manner similar to rayon-based CC, but does not have the environmental issues associated with the use of rayon. Future work will also further investigate technology and database gaps and needs for more-established polyacrylonitrile- (PAN-) based C-C's. As a low-cost means of being able to rapidly test and screen nozzle extension materials and structures, MSFC has recently established and demonstrated a test rig at MSFC's Test Stand (TS) 115 for testing subscale nozzle extensions with 3.5-inch inside diameters at the attachment plane. Test durations of up to 120 seconds have been demonstrated using oxygen/hydrogen propellants. Other propellant combinations, including the use of hydrocarbon fuels, can be used if desired. Another test capability being developed will allow the testing of larger nozzle extensions (13.5- inch inside diameters at the attachment plane) in environments more similar to those of actual oxygen/hydrogen upper stage engines. Two C-C nozzle extensions (one lyocell-based, one PAN-based) have been fabricated for testing with the larger-scale facility.

  20. Exploring cosmic homogeneity with the BOSS DR12 galaxy sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ntelis, Pierros; Hamilton, Jean-Christophe; Busca, Nicolas Guillermo

    2017-06-01

    In this study, we probe the transition to cosmic homogeneity in the Large Scale Structure (LSS) of the Universe using the CMASS galaxy sample of BOSS spectroscopic survey which covers the largest effective volume to date, 3 h {sup −3} Gpc{sup 3} at 0.43 ≤ z ≤ 0.7. We study the scaled counts-in-spheres, N(< r ), and the fractal correlation dimension, D{sub 2}( r ), to assess the homogeneity scale of the universe using a Landy and Szalay inspired estimator. Defining the scale of transition to homogeneity as the scale at which D{sub 2}( r ) reaches 3 within 1%,more » i.e. D{sub 2}( r )>2.97 for r >R {sub H} , we find R {sub H} = (63.3±0.7) h {sup −1} Mpc, in agreement at the percentage level with the predictions of the ΛCDM model R {sub H} =62.0 h {sup −1} Mpc. Thanks to the large cosmic depth of the survey, we investigate the redshift evolution of the transition to homogeneity scale and find agreement with the ΛCDM prediction. Finally, we find that D{sub 2} is compatible with 3 at scales larger than 300 h {sup −1} Mpc in all redshift bins. These results consolidate the Cosmological Principle and represent a precise consistency test of the ΛCDM model.« less

  1. Fitness disadvantages to disrupted embryogenesis impose selection against suboptimal nest-site choice by female grass snakes, Natrix natrix (Colubridae).

    PubMed

    Löwenborg, K; Shine, R; Hagman, M

    2011-01-01

    Phenotypic traits of hatchling reptiles are strongly influenced by incubation regimes (e.g. of temperature and moisture), suggesting that maternal choice of suitable nest-sites should be under intense selection. Our laboratory incubation of 209 eggs (17 clutches) from wild-caught Swedish grass snakes (Natrix natrix) showed that scale abnormalities (half-scales on one side of the body, often reflecting lateral asymmetry in the number of ribs) occurred more frequently if eggs were incubated under cooler conditions. Especially at low incubation temperatures, individuals with scale asymmetries took longer to hatch than did symmetric conspecifics, were smaller in body length at hatching and were slower in trials of locomotor speed. Anti-predator tactics also covaried with scale asymmetry. These patterns suggest that individuals with asymmetric scales should have lower fitness and hence should rarely survive to adulthood in the wild. We tested this prediction by examining 201 field-collected snakes from museum collections. As predicted, scale asymmetries were seen primarily in small snakes, and rarely in larger animals. We interpret these data to suggest that scale asymmetries in this species offer an index of developmental instability and that fitness disadvantages to disrupted embryogenesis impose selection against suboptimal nest-site choice by females. © 2010 The Authors. Journal of Evolutionary Biology © 2010 European Society For Evolutionary Biology.

  2. Flow tests of the Gladys McCall well. Appendix A, Gladys McCall Site (Cameron Parish, LA): Final report, October 1985--October 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randolph, P.L.; Hayden, C.G.; Rogers, L.A.

    1992-04-01

    This report pulls together the data from all of the geopressured-geothermal field research conducted at the Gladys McCall well. The well produced geopressured brine containing dissolved natural gas from the Lower Miocene sands at a depth of 15,150 to 16,650 feet. More than 25 million barrels of brine and 727 million standard cubic feet of natural gas were produced in a series of flow tests between December 1982 and October 1987 at various brine flow rates up to 28,000 barrels per day. Initial short-term flow tests for the Number 9 Sand found the permeability to be 67 to 85 mdmore » (millidarcies) for a brine volume of 85 to 170 million barrels. Initial short-term flow tests for the Number 8 Sand found a permeability of 113 to 132 md for a reservoir volume of 430 to 550 million barrels of brine. The long-term flow and buildup test of the Number 8 Sand found that the high-permeability reservoir connected to the wellbore (measured by the short-term flow test) was connected to a much larger, low-permeability reservoir. Numerical simulation of the flow and buildup tests required this large connected reservoir to have a volume of about 8 billion barrels (two cubic miles of reservoir rock) with effective permeabilities in the range of 0.2 to 20 md. Calcium carbonate scale formation in the well tubing and separator equipment was a problem. During the first 2 years of production, scale formation was prevented in the surface equipment by injection of an inhibitor upstream of the choke. Starting in 1985, scale formation in the production tubing was successfully prevented by injecting inhibitor ``pills`` directly into the reservoir. Corrosion and/or erosion of surface piping and equipment, as well as disposal well tubing, was also significant.« less

  3. Influence of oral contraceptives on endogenous pain control in healthy women.

    PubMed

    Rezaii, Taraneh; Ernberg, Malin

    2010-06-01

    This study investigated the influence of oral contraceptives (OC) on diffuse noxious inhibitory control (DNIC) in healthy women. Fifteen women taking OC and 17 normally menstruating women (No-OC) were tested during high and low endogenous estrogens sessions. Saliva was sampled for analysis of endogenous estradiol level. Mechanical pressure (test stimuli) was applied to the masseter muscle and finger. The pain induced by this pressure was assessed on a 0-10 numerical rating scale (NRS) before, during, and after immersion of the contralateral hand in ice-cold water (cold pressor test, CPT) to induce DNIC. For all subjects, pain induced by the test stimuli decreased significantly during the CPT (P < 0.001). The decrease in general was larger in the No-OC group, with a significant difference between groups in the masseter muscle in the low session (P < 0.027). There were no significant differences between groups or sessions in estradiol levels. These results indicate that endogenous pain modulation may be less effective in OC users.

  4. Compulsive sexual behavior inventory: a preliminary study of reliability and validity.

    PubMed

    Coleman, E; Miner, M; Ohlerking, F; Raymond, N

    2001-01-01

    This preliminary study was designed to develop empirically a scale of compulsive sexual behavior (CSB) and to test its reliability and validity in a sample of individuals with nonparaphilic CSB (N = 15), in a sample of pedophiles (N = 35) in treatment for sexual offending, and in a sample of normal controls (N = 42). Following a factor analysis and a varimax rotation, those items with factor loadings on the rotated factors of greater than .60 were retained. Three factors were identified, which appeared to measure control, abuse, and violence. Cronbach's alphas indicated that the subscales have good reliability. The 28-item scale was then tested for validity by a linear discriminant function analysis. The scale successfully discriminated the nonparaphilic CSB sample and the pedophiles from controls. Further analysis indicated that this scale is a valid measure of CSB in that there were significant differences between the three groups on the control subscale. Pedophiles scored significantly lower than the other two groups on the abuse subscale, with the other two groups not scoring significantly differently from one another. This indicated that pedophiles were more abusive than the nonparaphilic CSB individuals or the controls. Pedophiles scored significantly lower than controls on the violence subscale. Nonparaphilic individuals with compulsive sexual behavior scored slightly lower on the violence subscale, although not significantly different. As a preliminary study, there are several limitations to this study, which should be addressed, in further studies with larger sample sizes.

  5. The cultural adaptation and validation of the "Burn Specific Health Scale-Revised" (BSHS-R): version for Brazilian burn victims.

    PubMed

    Ferreira, Eneas; Dantas, Rosana Aparecida Spadoti; Rossi, Lidia Aparecida; Ciol, Marcia Aparecida

    2008-11-01

    The Burns Specific Health Scale-Revised (BSHS-R) is of easy application, can be self-administered, and it is considered a good scale to evaluate various important life aspects of burn victims. To translate and culturally adapt the BSHS-R into the Brazilian-Portuguese language and to evaluate the internal consistency and convergent validity of the translated BSHS-R. The cultural adaptation of the BSHS-R included translation and back-translation, discussions with professionals and patients to ensure conceptual equivalence, semantic evaluation, and pre-test of the instrument. The Final Brazilian-Portuguese Version (FBPV) of the BSHS-R was tested on a group of 115 burn patients for internal consistency and validity of construct (using the Rosenberg Self-Esteem Scale (RSES) and the Beck Depression Inventory (BDI)). All values of Cronbach's alpha were greater than .8, demonstrating that the internal consistency of the FBPV was very high. Self-esteem was highly correlated with affect and body image (r=.59, p<.001), and with interpersonal relationships (r=.51, p<.001). Correlations between the domains of the FBPV and the BDI were all negative but larger in magnitude than the correlations with RSES. Depression was highly correlated with affect and body image (r=-.77, p<.001), and with interpersonal relationships (r=-.67, p<.001). The results showed that the adapted version of the BSHS-R into Brazilian-Portuguese fulfills the validity and reliability criteria required from an instrument of health status assessment for burn patients.

  6. [The Machiavellianism and manipulation tactics used by patients with borderline personality disorder in everyday life and in therapy].

    PubMed

    Mandal, Eugenia; Kocur, Dagna

    2013-01-01

    The aim of the researches was to inspect the relation between borderline personality and Machiavellianism as well as the tendency to apply various manipulation tactics in everyday life and in therapy. The test used an original/authors' survey for testing the tendency to employ manipulation tactics as well as a MACH-IV questionnaire (Christie, Geis, 1970) for measuring Machiavellianism. The studied group included 30 patients with diagnosed BPD, 37 therapists and 30 persons in the control group. No differences were noted in the general indicator of Machiavellianism; however, the patients scored lower on the Tactics scale than people from the control group. Patients preferred employing the tactics of taking offense, lying and begging in everyday life. Compared to people from the control group, patients presented a larger tendency to employ tactics of begging, threatening and threatening to break off a close relationship, and a lower tendency to employ seduction. According to therapists, during the therapy patients most often resorted to lying and arousing guilt. Therapists assessed the patients' tendency to employ manipulation tactics higher than the patients themselves. BPD patients are characterized by a degree of Machiavellianism similar to that present in people from the control group. Patients show larger tendency to employ tactics of threatening and begging than the people from the control group. Compared to assessments made by doctors and therapists, they lower their own assessment of the tendency to employ manipulation. The longer the seniority of therapists and the larger the number of treated BPD patients, the higher the ability to perceive the patients' tendency to manipulate.

  7. Correlation-based regularization and gradient operators for (joint) inversion on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Jordi, Claudio; Doetsch, Joseph; Günther, Thomas; Schmelzbach, Cedric; Robertsson, Johan

    2017-04-01

    When working with unstructured meshes for geophysical inversions, special attention should be paid to the design of the operators that are used for regularizing the inverse problem and coupling of different property models in joint inversions. Regularization constraints for inversions on unstructured meshes are often defined in a rather ad-hoc manner and usually only involve the cell to which the operator is applied and its direct neighbours. Similarly, most structural coupling operators for joint inversion, such as the popular cross-gradients operator, are only defined in the direct neighbourhood of a cell. As a result, the regularization and coupling length scales and strength of these operators depend on the discretization as well as cell sizes and shape. Especially for unstructured meshes, where the cell sizes vary throughout the model domain, the dependency of the operator on the discretization may lead to artefacts. Designing operators that are based on a spatial correlation model allows to define correlation length scales over which an operator acts (called footprint), reducing the dependency on the discretization and the effects of variable cell sizes. Moreover, correlation-based operators can accommodate for expected anisotropy by using different length scales in horizontal and vertical directions. Correlation-based regularization operators also known as stochastic regularization operators have already been successfully applied to inversions on regular grids. Here, we formulate stochastic operators for unstructured meshes and apply them in 2D surface and 3D cross-well electrical resistivity tomography data inversion examples of layered media. Especially for the synthetic cross-well example, improved inversion results are achieved when stochastic regularization is used instead of a classical smoothness constraint. For the case of cross-gradients operators for joint inversion, the correlation model is used to define the footprint of the operator and weigh the contributions of the property values that are used to calculate the cross-gradients. In a first series of synthetic-data tests, we examined the mesh dependency of the cross-gradients operators. Compared to operators that are only defined in the direct neighbourhood of a cell, the dependency on the cell size of the cross-gradients calculation is markedly reduced when using operators with larger footprints. A second test with synthetic models focussed on the effect of small-scale variabilities of the parameter value on the cross-gradients calculation. Small-scale variabilities that are superimposed on a global trend of the property value can potentially degrade the cross-gradients calculation and destabilize joint inversion. We observe that the cross-gradients from operators with footprints larger than the length scale of the variabilities are less affected compared to operators with a small footprint. In joint inversions on unstructured meshes, we thus expect the correlation-based coupling operators to ensure robust coupling on a physically meaningful scale.

  8. Sources and Loading of Nitrogen to U.S. Estuaries

    EPA Science Inventory

    Previous assessments of land-based nitrogen loading and sources to U.S. estuaries have been limited to estimates for larger systems with watersheds at the scale of 8-digit HUCs and larger, in part due to the coarse resolution of available data, including estuarine watershed bound...

  9. Non-homogeneous hybrid rocket fuel for enhanced regression rates utilizing partial entrainment

    NASA Astrophysics Data System (ADS)

    Boronowsky, Kenny

    A concept was developed and tested to enhance the performance and regression rate of hydroxyl terminated polybutadiene (HTPB), a commonly used hybrid rocket fuel. By adding small nodules of paraffin into the HTPB fuel, a non-homogeneous mixture was created resulting in increased regression rates. The goal was to develop a fuel with a simplified single core geometry and a tailorable regression rate. The new fuel would benefit from the structural stability of HTPB yet not suffer from the large void fraction representative of typical HTPB core geometries. Regression rates were compared between traditional HTPB single core grains, 85% HTPB mixed with 15% (by weight) paraffin cores, 70% HTPB mixed with 30% paraffin cores, and plain paraffin single core grains. Each fuel combination was tested at oxidizer flow rates, ranging from 0.9 - 3.3 g/s of gaseous oxygen, in a small scale hybrid test rocket and average regression rates were measured. While large uncertainties were present in the experimental setup, the overall data showed that the regression rate was enhanced as paraffin concentration increased. While further testing would be required at larger scales of interest, the trends are encouraging. Inclusion of paraffin nodules in the HTPB grain may produce a greater advantage than other more noxious additives in current use. In addition, it may lead to safer rocket motors with higher integrated thrust due to the decreased void fraction.

  10. Studies of the exhaust products from solid propellant rocket motors

    NASA Technical Reports Server (NTRS)

    Dawbarn, R.; Kinslow, M.

    1976-01-01

    This study was undertaken to determine the feasibility of conducting environmental chamber tests on the physical processes which occur when a solid rocket motor exhaust mixes with the ambient atmosphere. Of particular interest was the interaction between hydrogen chloride, aluminum oxide, and water vapor. The program consisted of three phases: (1) building a small rocket motor and using it to provide the exhaust species in a controlled environment; (2) evaluating instruments used to detect and measure HCl concentrations and if possible determining whether the HCl existed in the gaseous state or as an acid aerosol; (3) monitoring a series of 6.4-percent scale space shuttle motor tests and comparing the results to the environmental chamber studies. Eighteen firings were conducted in an environmental chamber with the initial ambient relative humidity set at values from 29 to 100 percent. Two additional firings were made in a large shed, and four were made on an open concrete apron. Six test firings at MSFC were monitored, and the ground level concentrations are reported. Evidence is presented which shows that the larger Al2O3 (5 to 50 micrometers) particles from the rocket motor can act as condensation nuclei. Under appropriate ambient conditions where there is sufficient water vapor this results in the formation of an acid aerosol. Droplets of this acid were detected both in the environmental chamber and in the scaled shuttle engine tests.

  11. Life histories predict genetic diversity and population structure within three species of octopus targeted by small-scale fisheries in Northwest Mexico

    PubMed Central

    Ceballos-Vázquez, Bertha P.; Arellano-Martínez, Marcial; García-Rodríguez, Francisco J.; Culver, Melanie; Reyes-Bonilla, Hector

    2018-01-01

    The fishery for octopus in Northwest Mexico has increased to over 2,000 tons annually, but to date the specific composition of the catch has been ignored. With at least three main species targeted by artisanal fisheries in the region with distinct life histories, the lack of basic biological information about the distribution, metapopulation size and structure of each species could impede effective fisheries management to avoid overexploitation. We tested if different life histories of three species of octopus could help predict observed patterns of genetic diversity, population dynamics, structure and connectivity and how this information could be relevant to the sustainable management of the fishery. We sequenced two mitochondrial genes and genotyped seven nuclear microsatellite loci to identify the distribution of each species in 20 locations from the Gulf of California and the west coast of the Baja California peninsula. We tested five hypotheses derived from population genetic theory based on differences in the fecundity and dispersal potential for each species. We discovered that Octopus bimaculoides with low fecundity and direct development (without a planktonic phase) had lower average effective population size and genetic diversity, but higher levels of kinship, population structure, and richness of private alleles, than the other two species. These features indicated limited dispersal and high local recruitment. In contrast, O. bimaculatus and O. hubbsorum with higher fecundity and planktonic phase as paralarvae had higher effective population size and genetic diversity, and overall lower kinship and population structure than O. bimaculoides. These observations supported higher levels of gene flow over a larger geographical scale. O. bimaculatus with the longest planktonic paralarval duration and therefore larger dispersal potential had differences in the calculated parameters possibly associated with increased connectivity. We propose O. bimaculoides is more susceptible to over exploitation of small, isolated populations and could have longer recovery times than the other two species. This species may benefit from distinct fishery management within each local population. O. bimaculatus and O. hubbsorum may benefit from fishery management that takes into account metapopulation structure over larger geographic scales and the directionality and magnitude of larval dispersal driven by ocean currents and population connectivity among individuals of each locality. The distribution of each species and variations in their reproductive phenology is also important to consider when establishing marine reserves or seasonal fishing closures. PMID:29472993

  12. Primary Accretion and Turbulent Cascades: Scale-Dependence of Particle Concentration Multiplier Probability Distribution Functions

    NASA Astrophysics Data System (ADS)

    Cuzzi, Jeffrey N.; Weston, B.; Shariff, K.

    2013-10-01

    Primitive bodies with 10s-100s of km diameter (or even larger) may form directly from small nebula constituents, bypassing the step-by-step “incremental growth” that faces a variety of barriers at cm, m, and even 1-10km sizes. In the scenario of Cuzzi et al (Icarus 2010 and LPSC 2012; see also Chambers Icarus 2010) the immediate precursors of 10-100km diameter asteroid formation are dense clumps of chondrule-(mm-) size objects. These predictions utilize a so-called cascade model, which is popular in turbulence studies. One of its usual assumptions is that certain statistical properties of the process (the so-called multiplier pdfs p(m)) are scale-independent within a cascade of energy from large eddy scales to smaller scales. In similar analyses, Pan et al (2011 ApJ) found discrepancies with results of Cuzzi and coworkers; one possibility was that p(m) for particle concentration is not scale-independent. To assess the situation we have analyzed recent 3D direct numerical simulations of particles in turbulence covering a much wider range of scales than analyzed by either Cuzzi and coworkers or by Pan and coworkers (see Bec et al 2010, J. Flu. Mech 646, 527). We calculated p(m) at scales ranging from 45-1024η where η is the Kolmogorov scale, for both particles with a range of stopping times spanning the optimum value, and for energy dissipation in the fluid. For comparison, the p(m) for dissipation have been observed to be scale-independent in atmospheric flows (at much larger Reynolds number) for scales of at least 30-3000η. We found that, in the numerical simulations, the multiplier distributions for both particle concentration and fluid dissipation are as expected at scales of tens of η, but both become narrower and less intermittent at larger scales. This is consistent with observations of atmospheric flows showing scale independence to >3000η if scale-free behavior is established only after some number 10 of large-scale bifurcations (at scales perhaps 10x smaller than the largest scales in the flow), but become scale-free at smaller scales. Predictions of primitive body initial mass functions can now be redone using a slightly modified cascade.

  13. Empirical Comparison of Visualization Tools for Larger-Scale Network Analysis

    DOE PAGES

    Pavlopoulos, Georgios A.; Paez-Espino, David; Kyrpides, Nikos C.; ...

    2017-07-18

    Gene expression, signal transduction, protein/chemical interactions, biomedical literature cooccurrences, and other concepts are often captured in biological network representations where nodes represent a certain bioentity and edges the connections between them. While many tools to manipulate, visualize, and interactively explore such networks already exist, only few of them can scale up and follow today’s indisputable information growth. In this review, we shortly list a catalog of available network visualization tools and, from a user-experience point of view, we identify four candidate tools suitable for larger-scale network analysis, visualization, and exploration. Lastly, we comment on their strengths and their weaknesses andmore » empirically discuss their scalability, user friendliness, and postvisualization capabilities.« less

  14. Empirical Comparison of Visualization Tools for Larger-Scale Network Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlopoulos, Georgios A.; Paez-Espino, David; Kyrpides, Nikos C.

    Gene expression, signal transduction, protein/chemical interactions, biomedical literature cooccurrences, and other concepts are often captured in biological network representations where nodes represent a certain bioentity and edges the connections between them. While many tools to manipulate, visualize, and interactively explore such networks already exist, only few of them can scale up and follow today’s indisputable information growth. In this review, we shortly list a catalog of available network visualization tools and, from a user-experience point of view, we identify four candidate tools suitable for larger-scale network analysis, visualization, and exploration. Lastly, we comment on their strengths and their weaknesses andmore » empirically discuss their scalability, user friendliness, and postvisualization capabilities.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukhanin, Gennadiy; Biery, Kurt; Foulkes, Stephen

    In the NO A experiment, the Detector Controls System (DCS) provides a method for controlling and monitoring important detector hardware and environmental parameters. It is essential for operating the detector and is required to have access to roughly 370,000 independent programmable channels via more than 11,600 physical devices. In this paper, we demonstrate an application of Control System Studio (CSS), developed by Oak Ridge National Laboratory, for the NO A experiment. The application of CSS for the DCS of the NO A experiment has been divided into three phases: (1) user requirements and concept prototype on a test-stand, (2) smallmore » scale deployment at the prototype Near Detector on the Surface, and (3) a larger scale deployment at the Far Detector. We also give an outline of the CSS integration with the NO A online software and the alarm handling logic for the Front-End electronics.« less

  16. Chandra Survey of Nearby Galaxies: Testing the Accretion Model for Low-luminosity AGNs

    NASA Astrophysics Data System (ADS)

    She, Rui; Ho, Luis C.; Feng, Hua; Cui, Can

    2018-06-01

    From a Chandra sample of active galactic nuclei (AGNs) in nearby galaxies, we find that for low-luminosity AGNs, either the intrinsic absorption column density, or the fraction of absorbed AGNs, positively scales with the Eddington ratio for L bol/L Edd ≲ 10‑2. Such a behavior, along with the softness of the X-ray spectrum at low luminosities, is in good agreement with the picture that they are powered by hot accretion flows surrounding supermassive black holes. Numerical simulations find that outflows are inevitable with hot accretion flows, and the outflow rate is correlated with the innermost accretion rate in the low-luminosity regime. This agrees well with our results, suggesting that the X-ray absorption originates from, or is associated with, the outflow material. Gas and dust on larger scales may also produce the observed correlation. Future correlation analyses may help differentiate the two scenarios.

  17. The Key Factors Analysis of Palisades Temperature in Deep Open-pit Mine

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Du, Cuifeng; Jin, Wenbo; Wang, Puyu

    2018-01-01

    In order to study the key factors of palisades temperature field in a deep open-pit mine in the natural environment, the influence of natural factors on the palisades temperature in a deep open-pit mine were analysed based on the principle of heat transfer. Four typical places with different ways of solar radiation were selected to carry out the field test. The results show that solar radiation, atmospheric temperature, and wind speed are three main factors affecting the temperature of palisades and that the direct sunlight plays a leading role. The time period of the sun shining directly on the shady slope of the palisades is short because of blocking effect, whose temperature changes in a smaller scale. At the same time, the sun slope of the palisades suffers from the solar radiation for a long time, whose temperature changes in a larger scale, and the variation is similar to the air temperature.

  18. Climate effects of non-compliant Volkswagen diesel cars

    NASA Astrophysics Data System (ADS)

    Tanaka, Katsumasa; Lund, Marianne T.; Aamaas, Borgar; Berntsen, Terje

    2018-04-01

    On-road operations of Volkswagen light-duty diesel vehicles equipped with defeat devices cause emissions of NOx up to 40 times above emission standards. Higher on-road NOx emissions are a widespread problem not limited to Volkswagen vehicles, but the Volkswagen violations brought this issue under the spotlight. While several studies investigated the health impacts of high NOx emissions, the climatic impacts have not been quantified. Here we show that such diesel cars generate a larger warming on the time scale of several years but a smaller warming on the decadal time scale during actual on-road operations than in vehicle certification tests. The difference in longer-term warming levels, however, depends on underlying driving conditions. Furthermore, in the presence of defeat devices, the climatic advantage of ‘clean diesel’ cars over gasoline cars, in terms of global-mean temperature change, is in our view not necessarily the case.

  19. The influence of acculturation on substance use behaviors among Latina sexual minority women: the mediating role of discrimination.

    PubMed

    Matthews, Alicia; Li, Chien-Ching; Aranda, Frances; Torres, Lourdes; Vargas, Maria; Conrad, Megan

    2014-12-01

    A large body of work has demonstrated that sexual minority women have elevated rates of substance use morbidity, as compared with heterosexual women, and that this might be especially true for women of color. This study examines the influence of acculturation and discrimination on substance use among Latina sexual minority women. Data were collected from 2007 to 2008 as part of a larger community-based survey in the greater Chicago area. Scales measured discrimination, acculturation, and substance use. Structural equation modeling validated scales and examined their relationships, which were further described via mediation analysis. Increased acculturation leads to substance use and this relationship is partially mediated by discrimination (Sobel test = 2.10; p < .05). CONCLUSIONS/IMPORTANCE: Implications of these findings and directions for future research are discussed. Funding was provided by several women's and public health organizations.

  20. GENASIS Mathematics : Object-oriented manifolds, operations, and solvers for large-scale physics simulations

    NASA Astrophysics Data System (ADS)

    Cardall, Christian Y.; Budiardja, Reuben D.

    2018-01-01

    The large-scale computer simulation of a system of physical fields governed by partial differential equations requires some means of approximating the mathematical limit of continuity. For example, conservation laws are often treated with a 'finite-volume' approach in which space is partitioned into a large number of small 'cells,' with fluxes through cell faces providing an intuitive discretization modeled on the mathematical definition of the divergence operator. Here we describe and make available Fortran 2003 classes furnishing extensible object-oriented implementations of simple meshes and the evolution of generic conserved currents thereon, along with individual 'unit test' programs and larger example problems demonstrating their use. These classes inaugurate the Mathematics division of our developing astrophysics simulation code GENASIS (Gen eral A strophysical Si mulation S ystem), which will be expanded over time to include additional meshing options, mathematical operations, solver types, and solver variations appropriate for many multiphysics applications.

  1. Photochemical numerics for global-scale modeling: Fidelity and GCM testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, S.; Jim Kao, Chih-Yue; Zhao, X.

    1995-03-01

    Atmospheric photochemistry lies at the heart of global-scale pollution problems, but it is a nonlinear system embedded in nonlinear transport and so must be modeled in three dimensions. Total earth grids are massive and kinetics require dozens of interacting tracers, taxing supercomputers to their limits in global calculations. A matrix-free and noniterative family scheme is described that permits chemical step sizes an order of magnitude or more larger than time constants for molecular groupings, in the 1-h range used for transport. Families are partitioned through linearized implicit integrations that produce stabilizing species concentrations for a mass-conserving forward solver. The kineticsmore » are also parallelized by moving geographic loops innermost and changes in the continuity equations are automated through list reading. The combination of speed, parallelization and automation renders the programs naturally modular. Accuracy lies within 1% for all species in week-long fidelity tests. A 50-species, 150-reaction stratospheric module tested in a spectral GCM benchmarks at 10 min CPU time per day and agrees with lower-dimensionality simulations. Tropospheric nonmethane hydrocarbon chemistry will soon be added, and inherently three-dimensional phenomena will be investigated both decoupled from dynamics and in a complete chemical GCM. 225 refs., 11 figs., 2 tabs.« less

  2. 'Mechanical restraint-confounders, risk, alliance score': testing the clinical validity of a new risk assessment instrument.

    PubMed

    Deichmann Nielsen, Lea; Bech, Per; Hounsgaard, Lise; Alkier Gildberg, Frederik

    2017-08-01

    Unstructured risk assessment, as well as confounders (underlying reasons for the patient's risk behaviour and alliance), risk behaviour, and parameters of alliance, have been identified as factors that prolong the duration of mechanical restraint among forensic mental health inpatients. To clinically validate a new, structured short-term risk assessment instrument called the Mechanical Restraint-Confounders, Risk, Alliance Score (MR-CRAS), with the intended purpose of supporting the clinicians' observation and assessment of the patient's readiness to be released from mechanical restraint. The content and layout of MR-CRAS and its user manual were evaluated using face validation by forensic mental health clinicians, content validation by an expert panel, and pilot testing within two, closed forensic mental health inpatient units. The three sub-scales (Confounders, Risk, and a parameter of Alliance) showed excellent content validity. The clinical validations also showed that MR-CRAS was perceived and experienced as a comprehensible, relevant, comprehensive, and useable risk assessment instrument. MR-CRAS contains 18 clinically valid items, and the instrument can be used to support the clinical decision-making regarding the possibility of releasing the patient from mechanical restraint. The present three studies have clinically validated a short MR-CRAS scale that is currently being psychometrically tested in a larger study.

  3. Relationship Suicide, Cognitive Functions, and Depression in Patients with Schizophrenia

    PubMed Central

    KOCATÜRK, Bülent Kenan; EŞSİZOĞLU, Altan; AKSARAY, Gökay; AKARSU, Ferdane Özlem; MUSMUL, Ahmet

    2015-01-01

    Introduction The aim of this study was to compare schizophrenic patients with and without a suicide attempt history in terms of sociodemographic and clinical features and cognitive functions and to determine the predictive factors for suicide attempt history. Methods In this study, we assessed and compared 70 patients with schizophrenia, 27 patients with a suicide attempt history, and 43 patients without a suicide attempt history. The cognitive functions of patients were assessed by the Stroop test, Wisconsin Card Sorting Test (WCST), and Rey Auditory Verbal Learning Test. In order to evaluate clinical symptoms, the Positive and Negative Syndrome Scale (PANSS) and Calgary Depression Scale for Schizophrenia (CDSS) were used. Results In this study, the number of hospitalizations, PANSS general psychopathology subscale score, CDSS total score, suicide item score, and WCST total number of responses (WCST1) were significantly higher among the patients with a suicide attempt history. The WCST1 and CDSS total scores were predicted using the suicide attempt history. Conclusion Revealing the factors related to suicidal behavior in patients with schizophrenia contributes to the prevention of suicide. Studies with long-term follow-up and with a larger sample group are required for the investigation of relationship suicide, cognitive impairment, which is one of the core symptoms of schizophrenia, and depression. PMID:28360699

  4. Symphony: A Framework for Accurate and Holistic WSN Simulation

    PubMed Central

    Riliskis, Laurynas; Osipov, Evgeny

    2015-01-01

    Research on wireless sensor networks has progressed rapidly over the last decade, and these technologies have been widely adopted for both industrial and domestic uses. Several operating systems have been developed, along with a multitude of network protocols for all layers of the communication stack. Industrial Wireless Sensor Network (WSN) systems must satisfy strict criteria and are typically more complex and larger in scale than domestic systems. Together with the non-deterministic behavior of network hardware in real settings, this greatly complicates the debugging and testing of WSN functionality. To facilitate the testing, validation, and debugging of large-scale WSN systems, we have developed a simulation framework that accurately reproduces the processes that occur inside real equipment, including both hardware- and software-induced delays. The core of the framework consists of a virtualized operating system and an emulated hardware platform that is integrated with the general purpose network simulator ns-3. Our framework enables the user to adjust the real code base as would be done in real deployments and also to test the boundary effects of different hardware components on the performance of distributed applications and protocols. Additionally we have developed a clock emulator with several different skew models and a component that handles sensory data feeds. The new framework should substantially shorten WSN application development cycles. PMID:25723144

  5. Religion and Wellbeing: Concurrent Validation of the Spiritual Well-Being Scale.

    ERIC Educational Resources Information Center

    Bufford, Rodger K.; Parker, Thomas G., Jr.

    This study was designed to explore the concurrent validity of the Spiritual Well-being Scale (SWB). Ninety first-year student volunteers at an evangelical seminary served as subjects. As part of a larger study, the students completed the SWB and the Interpersonal Behavior Survey (IBS). The SWB Scale is a 20-item self-report scale. Ten items…

  6. Urbanisation at multiple scales is associated with larger size and higher fecundity of an orb-weaving spider.

    PubMed

    Lowe, Elizabeth C; Wilder, Shawn M; Hochuli, Dieter F

    2014-01-01

    Urbanisation modifies landscapes at multiple scales, impacting the local climate and changing the extent and quality of natural habitats. These habitat modifications significantly alter species distributions and can result in increased abundance of select species which are able to exploit novel ecosystems. We examined the effect of urbanisation at local and landscape scales on the body size, lipid reserves and ovary weight of Nephila plumipes, an orb weaving spider commonly found in both urban and natural landscapes. Habitat variables at landscape, local and microhabitat scales were integrated to create a series of indexes that quantified the degree of urbanisation at each site. Spider size was negatively associated with vegetation cover at a landscape scale, and positively associated with hard surfaces and anthropogenic disturbance on a local and microhabitat scale. Ovary weight increased in higher socioeconomic areas and was positively associated with hard surfaces and leaf litter at a local scale. The larger size and increased reproductive capacity of N.plumipes in urban areas show that some species benefit from the habitat changes associated with urbanisation. Our results also highlight the importance of incorporating environmental variables from multiple scales when quantifying species responses to landscape modification.

  7. Urbanisation at Multiple Scales Is Associated with Larger Size and Higher Fecundity of an Orb-Weaving Spider

    PubMed Central

    Lowe, Elizabeth C.; Wilder, Shawn M.; Hochuli, Dieter F.

    2014-01-01

    Urbanisation modifies landscapes at multiple scales, impacting the local climate and changing the extent and quality of natural habitats. These habitat modifications significantly alter species distributions and can result in increased abundance of select species which are able to exploit novel ecosystems. We examined the effect of urbanisation at local and landscape scales on the body size, lipid reserves and ovary weight of Nephila plumipes, an orb weaving spider commonly found in both urban and natural landscapes. Habitat variables at landscape, local and microhabitat scales were integrated to create a series of indexes that quantified the degree of urbanisation at each site. Spider size was negatively associated with vegetation cover at a landscape scale, and positively associated with hard surfaces and anthropogenic disturbance on a local and microhabitat scale. Ovary weight increased in higher socioeconomic areas and was positively associated with hard surfaces and leaf litter at a local scale. The larger size and increased reproductive capacity of N.plumipes in urban areas show that some species benefit from the habitat changes associated with urbanisation. Our results also highlight the importance of incorporating environmental variables from multiple scales when quantifying species responses to landscape modification. PMID:25140809

  8. Reducing Amputations in People with Diabetes (RAPID): Evaluation of a New Care Pathway

    PubMed Central

    MacRury, Sandra; Main, Fiona; Gorman, Jane; Jones, Sandra; Macfarlane, David

    2018-01-01

    People with diabetes are at increased risk of foot ulcers, which, if left untreated, can lead to infection, gangrene, and subsequent amputation. Management by a multidisciplinary diabetes foot team has been shown to reduce amputation rates; however, accessing specialist treatment is made particularly difficult when living in remote and rural locations, such as many individuals cared for within NHS Highland. The RAPID project was made up of two phases: firstly, to evaluate the technical feasibility of a new integrated care pathway using innovative technology, and secondly, to establish process enhancement of the pathway to justify a larger-scale study. Omni-HubTM enabled a face-to-face consultation by the community podiatrist to be enhanced by virtual consultation with members of the multidisciplinary foot team, including specialist diabetes podiatrists and a diabetes consultant. The technical feasibility study provided recommended changes focused around adaptations to the equipment used and the best means to gain successful connectivity. The process enhancement study demonstrated positive outcomes in the process with positive effects both in the service received by patients and experiences of healthcare professionals involved. The RAPID project provides evidence and justification for a larger-scale empirical study to test an embedded pathway and technology solution, which will inform policy change and a paradigm shift in the management of foot ulceration in the community. PMID:29772673

  9. Reducing Amputations in People with Diabetes (RAPID): Evaluation of a New Care Pathway.

    PubMed

    MacRury, Sandra; Stephen, Kate; Main, Fiona; Gorman, Jane; Jones, Sandra; Macfarlane, David

    2018-05-16

    People with diabetes are at increased risk of foot ulcers, which, if left untreated, can lead to infection, gangrene, and subsequent amputation. Management by a multidisciplinary diabetes foot team has been shown to reduce amputation rates; however, accessing specialist treatment is made particularly difficult when living in remote and rural locations, such as many individuals cared for within NHS Highland. The RAPID project was made up of two phases: firstly, to evaluate the technical feasibility of a new integrated care pathway using innovative technology, and secondly, to establish process enhancement of the pathway to justify a larger-scale study. Omni-Hub TM enabled a face-to-face consultation by the community podiatrist to be enhanced by virtual consultation with members of the multidisciplinary foot team, including specialist diabetes podiatrists and a diabetes consultant. The technical feasibility study provided recommended changes focused around adaptations to the equipment used and the best means to gain successful connectivity. The process enhancement study demonstrated positive outcomes in the process with positive effects both in the service received by patients and experiences of healthcare professionals involved. The RAPID project provides evidence and justification for a larger-scale empirical study to test an embedded pathway and technology solution, which will inform policy change and a paradigm shift in the management of foot ulceration in the community.

  10. Medical physics staffing for radiation oncology: a decade of experience in Ontario, Canada.

    PubMed

    Battista, Jerry J; Clark, Brenda G; Patterson, Michael S; Beaulieu, Luc; Sharpe, Michael B; Schreiner, L John; MacPherson, Miller S; Van Dyk, Jacob

    2012-01-05

    The January 2010 articles in The New York Times generated intense focus on patient safety in radiation treatment, with physics staffing identified frequently as a critical factor for consistent quality assurance. The purpose of this work is to review our experience with medical physics staffing, and to propose a transparent and flexible staffing algorithm for general use. Guided by documented times required per routine procedure, we have developed a robust algorithm to estimate physics staffing needs according to center-specific workload for medical physicists and associated support staff, in a manner we believe is adaptable to an evolving radiotherapy practice. We calculate requirements for each staffing type based on caseload, equipment inventory, quality assurance, educational programs, and administration. Average per-case staffing ratios were also determined for larger-scale human resource planning and used to model staffing needs for Ontario, Canada over the next 10 years. The workload specific algorithm was tested through a survey of Canadian cancer centers. For center-specific human resource planning, we propose a grid of coefficients addressing specific workload factors for each staff group. For larger scale forecasting of human resource requirements, values of 260, 700, 300, 600, 1200, and 2000 treated cases per full-time equivalent (FTE) were determined for medical physicists, physics assistants, dosimetrists, electronics technologists, mechanical technologists, and information technology specialists, respectively.

  11. Maximum entropy production allows a simple representation of heterogeneity in semiarid ecosystems.

    PubMed

    Schymanski, Stanislaus J; Kleidon, Axel; Stieglitz, Marc; Narula, Jatin

    2010-05-12

    Feedbacks between water use, biomass and infiltration capacity in semiarid ecosystems have been shown to lead to the spontaneous formation of vegetation patterns in a simple model. The formation of patterns permits the maintenance of larger overall biomass at low rainfall rates compared with homogeneous vegetation. This results in a bias of models run at larger scales neglecting subgrid-scale variability. In the present study, we investigate the question whether subgrid-scale heterogeneity can be parameterized as the outcome of optimal partitioning between bare soil and vegetated area. We find that a two-box model reproduces the time-averaged biomass of the patterns emerging in a 100 x 100 grid model if the vegetated fraction is optimized for maximum entropy production (MEP). This suggests that the proposed optimality-based representation of subgrid-scale heterogeneity may be generally applicable to different systems and at different scales. The implications for our understanding of self-organized behaviour and its modelling are discussed.

  12. Decadal-scale changes in benthic foraminiferal assemblages off Key Largo, Florida

    USGS Publications Warehouse

    Cockey, E.; Hallock, P.; Lidz, B.H.

    1996-01-01

    Assemblages of foraminiferal tests in sediments sampled off Key Largo, Florida, in 1982, 1991, and 1992 were significantly different from assemblages sampled along the same traverses in 1959-1961. Larger, algal symbiont-bearing taxa, primarily Soritidae, comprised 50-80% of the specimens in samples collected in 1959-1961, whereas Miliolidae and Rotaliidae comprised 65-90% of the specimens collected in 1991 and 1992. Test abundance in 1992 samples ranged from 1.0 ?? 102/g to 8.1 ?? 104/g; tests were least abundant in coarse, well-sorted sediments. The lack of test-density data for the 1959-1961 samples prevented assessment of whether densities of smaller foraminifera have increased, symbiotic foraminifera have decreased, or both. Between 1982 and 1992, densities of smaller foraminifera appear to have increased. Although the causes of these changes in foraminiferal assemblages are not known, possible factors include nutrient loading inshore, winnowing and transport of tests by storm activity, and disease. The shift in dominance from long-lived, algal symbiont-bearing taxa in 1959-1961 to small, fast-growing, heterotrophic taxa in 1992 is consistent with predictions of community response to gradually increasing nutrient flux into south Florida's coastal waters. This study indicates that published accounts of foraminiferal assemblages from sediments collected 30 or more years ago can be valuable resources in efforts to determine if biotic changes have occurred in coastal ecosystems. This study also indicates that family-level identifications may be sufficient to detect decadal-scale changes in foraminiferal assemblages in reef-tract sediments.

  13. Process scale-up considerations for non-thermal atmospheric-pressure plasma synthesis of nanoparticles by homogenous nucleation

    NASA Astrophysics Data System (ADS)

    Cole, Jonathan; Zhang, Yao; Liu, Tianqi; Liu, Chang-jun; Mohan Sankaran, R.

    2017-08-01

    Scale-up of non-thermal atmospheric-pressure plasma reactors for the synthesis of nanoparticles by homogeneous nucleation is challenging because the active volume is typically reduced to facilitate gas breakdown, enhance discharge stability, and limit particle size and agglomeration, but thus limits throughput. Here, we introduce a dielectric barrier discharge reactor consisting of a coaxial electrode geometry for nanoparticle production that enables a simple scale-up strategy whereby increasing the outer and inner electrode diameters, the plasma volume is increased approximately linearly, while maintaining a sufficiently small electrode gap to maintain the electric field strength. We show with two test reactors that for a given residence time, the nanoparticle production rate increases linearly with volume over a range of precursor concentrations, while having minimal effect on the shape of the particle size distribution. However, our study also reveals that increasing the total gas flow rate in a smaller volume reactor leads to an enhancement of precursor conversion and a comparable production rate to a larger volume reactor. These results suggest that scale-up requires better understanding of the influence of reactor geometry on particle growth dynamics and may not always be a simple function of reactor volume.

  14. Dynamic Smagorinsky model on anisotropic grids

    NASA Technical Reports Server (NTRS)

    Scotti, A.; Meneveau, C.; Fatica, M.

    1996-01-01

    Large Eddy Simulation (LES) of complex-geometry flows often involves highly anisotropic meshes. To examine the performance of the dynamic Smagorinsky model in a controlled fashion on such grids, simulations of forced isotropic turbulence are performed using highly anisotropic discretizations. The resulting model coefficients are compared with a theoretical prediction (Scotti et al., 1993). Two extreme cases are considered: pancake-like grids, for which two directions are poorly resolved compared to the third, and pencil-like grids, where one direction is poorly resolved when compared to the other two. For pancake-like grids the dynamic model yields the results expected from the theory (increasing coefficient with increasing aspect ratio), whereas for pencil-like grids the dynamic model does not agree with the theoretical prediction (with detrimental effects only on smallest resolved scales). A possible explanation of the departure is attempted, and it is shown that the problem may be circumvented by using an isotropic test-filter at larger scales. Overall, all models considered give good large-scale results, confirming the general robustness of the dynamic and eddy-viscosity models. But in all cases, the predictions were poor for scales smaller than that of the worst resolved direction.

  15. Psychometric properties of the communication Confidence Rating Scale for Aphasia (CCRSA): phase 1.

    PubMed

    Cherney, Leora R; Babbitt, Edna M; Semik, Patrick; Heinemann, Allen W

    2011-01-01

    Confidence is a construct that has not been explored previously in aphasia research. We developed the Communication Confidence Rating Scale for Aphasia (CCRSA) to assess confidence in communicating in a variety of activities and evaluated its psychometric properties using rating scale (Rasch) analysis. The CCRSA was administered to 21 individuals with aphasia before and after participation in a computer-based language therapy study. Person reliability of the 8-item CCRSA was .77. The 5-category rating scale demonstrated monotonic increases in average measures from low to high ratings. However, one item ("I follow news, sports, stories on TV/movies") misfit the construct defined by the other items (mean square infit = 1.69, item-measure correlation = .41). Deleting this item improved reliability to .79; the 7 remaining items demonstrated excellent fit to the underlying construct, although there was a modest ceiling effect in this sample. Pre- to posttreatment changes on the 7-item CCRSA measure were statistically significant using a paired samples t test. Findings support the reliability and sensitivity of the CCRSA in assessing participants' self-report of communication confidence. Further evaluation of communication confidence is required with larger and more diverse samples.

  16. Resolving molecular gas to ~500 pc in a unique star forming disk galaxy at z~2

    NASA Astrophysics Data System (ADS)

    Brisbin, Drew; Aravena, Manuel; Hodge, Jacqueline; Carilli, Chris Luke; Daddi, Emanuele; Dannerbauer, Helmut; Riechers, Dominik; Wagg, Jeff

    2018-06-01

    We have resolved molecular gas in a 'typical' star forming disk galaxy at z>2 down to the scale of ~500 pc. Previous observations of CO and [CI] lines on larger spatial scales have revealed bulk molecular and atomic gas properties indicating that the target is a massive disk galaxy with large gas reserves. Unlike many galaxies studied at high redshift, it is undergoing modest quiescent star formation rather than bursty centrally concentrated star formation. Therefore this galaxy represents an under-studied, but cosmologically important population in the early universe. Our new observations of CO (4-3) highlight the clumpy molecular gas fuelling star formation throughout the disk. Underlying continuum from cold dust provides a key constraint on star formation rate surface densities, allowing us to examine the star formation rate surface density scaling law in a never-before-tested regime of early universe galaxies.These observations enable an unprecedented view of the obscured star formation that is hidden to optical/UV imaging and trace molecular gas on a fine enough scale to resolve morphological traits and provide a view akin to single dish surveys in the local universe.

  17. Time of flight imaging through scattering environments (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Le, Toan H.; Breitbach, Eric C.; Jackson, Jonathan A.; Velten, Andreas

    2017-02-01

    Light scattering is a primary obstacle to imaging in many environments. On small scales in biomedical microscopy and diffuse tomography scenarios scattering is caused by tissue. On larger scales scattering from dust and fog provide challenges to vision systems for self driving cars and naval remote imaging systems. We are developing scale models for scattering environments and investigation methods for improved imaging particularly using time of flight transient information. With the emergence of Single Photon Avalanche Diode detectors and fast semiconductor lasers, illumination and capture on picosecond timescales are becoming possible in inexpensive, compact, and robust devices. This opens up opportunities for new computational imaging techniques that make use of photon time of flight. Time of flight or range information is used in remote imaging scenarios in gated viewing and in biomedical imaging in time resolved diffuse tomography. In addition spatial filtering is popular in biomedical scenarios with structured illumination and confocal microscopy. We are presenting a combination analytical, computational, and experimental models that allow us develop and test imaging methods across scattering scenarios and scales. This framework will be used for proof of concept experiments to evaluate new computational imaging methods.

  18. Equilibrium and nonequilibrium properties of Boolean decision problems on scale-free graphs with competing interactions with external biases

    NASA Astrophysics Data System (ADS)

    Zhu, Zheng; Andresen, Juan Carlos; Janzen, Katharina; Katzgraber, Helmut G.

    2013-03-01

    We study the equilibrium and nonequilibrium properties of Boolean decision problems with competing interactions on scale-free graphs in a magnetic field. Previous studies at zero field have shown a remarkable equilibrium stability of Boolean variables (Ising spins) with competing interactions (spin glasses) on scale-free networks. When the exponent that describes the power-law decay of the connectivity of the network is strictly larger than 3, the system undergoes a spin-glass transition. However, when the exponent is equal to or less than 3, the glass phase is stable for all temperatures. First we perform finite-temperature Monte Carlo simulations in a field to test the robustness of the spin-glass phase and show, in agreement with analytical calculations, that the system exhibits a de Almeida-Thouless line. Furthermore, we study avalanches in the system at zero temperature to see if the system displays self-organized criticality. This would suggest that damage (avalanches) can spread across the whole system with nonzero probability, i.e., that Boolean decision problems on scale-free networks with competing interactions are fragile when not in thermal equilibrium.

  19. Evaluation of the Hydrologic Source Term from Underground Nuclear Tests on Pahute Mesa at the Nevada Test Site: The CHESHIRE Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawloski, G A; Tompson, A F B; Carle, S F

    The objectives of this report are to develop, summarize, and interpret a series of detailed unclassified simulations that forecast the nature and extent of radionuclide release and near-field migration in groundwater away from the CHESHIRE underground nuclear test at Pahute Mesa at the NTS over 1000 yrs. Collectively, these results are called the CHESHIRE Hydrologic Source Term (HST). The CHESHIRE underground nuclear test was one of 76 underground nuclear tests that were fired below or within 100 m of the water table between 1965 and 1992 in Areas 19 and 20 of the NTS. These areas now comprise the Pahutemore » Mesa Corrective Action Unit (CAU) for which a separate subregional scale flow and transport model is being developed by the UGTA Project to forecast the larger-scale migration of radionuclides from underground tests on Pahute Mesa. The current simulations are being developed, on one hand, to more fully understand the complex coupled processes involved in radionuclide migration, with a specific focus on the CHESHIRE test. While remaining unclassified, they are as site specific as possible and involve a level of modeling detail that is commensurate with the most fundamental processes, conservative assumptions, and representative data sets available. However, the simulation results are also being developed so that they may be simplified and interpreted for use as a source term boundary condition at the CHESHIRE location in the Pahute Mesa CAU model. In addition, the processes of simplification and interpretation will provide generalized insight as to how the source term behavior at other tests may be considered or otherwise represented in the Pahute Mesa CAU model.« less

  20. Laboratory generated M -6 earthquakes

    USGS Publications Warehouse

    McLaskey, Gregory C.; Kilgore, Brian D.; Lockner, David A.; Beeler, Nicholas M.

    2014-01-01

    We consider whether mm-scale earthquake-like seismic events generated in laboratory experiments are consistent with our understanding of the physics of larger earthquakes. This work focuses on a population of 48 very small shocks that are foreshocks and aftershocks of stick–slip events occurring on a 2.0 m by 0.4 m simulated strike-slip fault cut through a large granite sample. Unlike the larger stick–slip events that rupture the entirety of the simulated fault, the small foreshocks and aftershocks are contained events whose properties are controlled by the rigidity of the surrounding granite blocks rather than characteristics of the experimental apparatus. The large size of the experimental apparatus, high fidelity sensors, rigorous treatment of wave propagation effects, and in situ system calibration separates this study from traditional acoustic emission analyses and allows these sources to be studied with as much rigor as larger natural earthquakes. The tiny events have short (3–6 μs) rise times and are well modeled by simple double couple focal mechanisms that are consistent with left-lateral slip occurring on a mm-scale patch of the precut fault surface. The repeatability of the experiments indicates that they are the result of frictional processes on the simulated fault surface rather than grain crushing or fracture of fresh rock. Our waveform analysis shows no significant differences (other than size) between the M -7 to M -5.5 earthquakes reported here and larger natural earthquakes. Their source characteristics such as stress drop (1–10 MPa) appear to be entirely consistent with earthquake scaling laws derived for larger earthquakes.

  1. Measuring the topology of large-scale structure in the universe

    NASA Technical Reports Server (NTRS)

    Gott, J. Richard, III

    1988-01-01

    An algorithm for quantitatively measuring the topology of large-scale structure has now been applied to a large number of observational data sets. The present paper summarizes and provides an overview of some of these observational results. On scales significantly larger than the correlation length, larger than about 1200 km/s, the cluster and galaxy data are fully consistent with a sponge-like random phase topology. At a smoothing length of about 600 km/s, however, the observed genus curves show a small shift in the direction of a meatball topology. Cold dark matter (CDM) models show similar shifts at these scales but not generally as large as those seen in the data. Bubble models, with voids completely surrounded on all sides by wall of galaxies, show shifts in the opposite direction. The CDM model is overall the most successful in explaining the data.

  2. Measuring the topology of large-scale structure in the universe

    NASA Astrophysics Data System (ADS)

    Gott, J. Richard, III

    1988-11-01

    An algorithm for quantitatively measuring the topology of large-scale structure has now been applied to a large number of observational data sets. The present paper summarizes and provides an overview of some of these observational results. On scales significantly larger than the correlation length, larger than about 1200 km/s, the cluster and galaxy data are fully consistent with a sponge-like random phase topology. At a smoothing length of about 600 km/s, however, the observed genus curves show a small shift in the direction of a meatball topology. Cold dark matter (CDM) models show similar shifts at these scales but not generally as large as those seen in the data. Bubble models, with voids completely surrounded on all sides by wall of galaxies, show shifts in the opposite direction. The CDM model is overall the most successful in explaining the data.

  3. Combining ground-based measurements and satellite-based spectral vegetation indices to track biomass accumulation in post-fire chaparral

    NASA Astrophysics Data System (ADS)

    Uyeda, K. A.; Stow, D. A.; Roberts, D. A.; Riggan, P. J.

    2015-12-01

    Multi-temporal satellite imagery can provide valuable information on patterns of vegetation growth over large spatial extents and long time periods, but corresponding ground-referenced biomass information is often difficult to acquire, especially at an annual scale. In this study, I test the relationship between annual biomass estimated using shrub growth rings and metrics of seasonal growth derived from Moderate Resolution Imaging Spectroradiometer (MODIS) spectral vegetation indices (SVIs) for a small area of southern California chaparral to evaluate the potential for mapping biomass at larger spatial extents. The site had most recently burned in 2002, and annual biomass accumulation measurements were available from years 5 - 11 post-fire. I tested metrics of seasonal growth using six SVIs (Normalized Difference Vegetation Index, Enhanced Vegetation Index, Soil Adjusted Vegetation Index, Normalized Difference Water Index, Normalized Difference Infrared Index 6, and Vegetation Atmospherically Resistant Index). While additional research would be required to determine which of these metrics and SVIs are most promising over larger spatial extents, several of the seasonal growth metrics/ SVI combinations have a very strong relationship with annual biomass, and all SVIs have a strong relationship with annual biomass for at least one of the seasonal growth metrics.

  4. Characterizing pulmonary blood flow distribution measured using arterial spin labeling.

    PubMed

    Henderson, A Cortney; Prisk, G Kim; Levin, David L; Hopkins, Susan R; Buxton, Richard B

    2009-12-01

    The arterial spin labeling (ASL) method provides images in which, ideally, the signal intensity of each image voxel is proportional to the local perfusion. For studies of pulmonary perfusion, the relative dispersion (RD, standard deviation/mean) of the ASL signal across a lung section is used as a reliable measure of flow heterogeneity. However, the RD of the ASL signals within the lung may systematically differ from the true RD of perfusion because the ASL image also includes signals from larger vessels, which can reflect the blood volume rather than blood flow if the vessels are filled with tagged blood during the imaging time. Theoretical studies suggest that the pulmonary vasculature exhibits a lognormal distribution for blood flow and thus an appropriate measure of heterogeneity is the geometric standard deviation (GSD). To test whether the ASL signal exhibits a lognormal distribution for pulmonary blood flow, determine whether larger vessels play an important role in the distribution, and extract physiologically relevant measures of heterogeneity from the ASL signal, we quantified the ASL signal before and after an intervention (head-down tilt) in six subjects. The distribution of ASL signal was better characterized by a lognormal distribution than a normal distribution, reducing the mean squared error by 72% (p < 0.005). Head-down tilt significantly reduced the lognormal scale parameter (p = 0.01) but not the shape parameter or GSD. The RD increased post-tilt and remained significantly elevated (by 17%, p < 0.05). Test case results and mathematical simulations suggest that RD is more sensitive than the GSD to ASL signal from tagged blood in larger vessels, a probable explanation of the change in RD without a statistically significant change in GSD. This suggests that the GSD is a useful measure of pulmonary blood flow heterogeneity with the advantage of being less affected by the ASL signal from tagged blood in larger vessels.

  5. Prediction skill of tropical synoptic scale transients from ECMWF and NCEP ensemble prediction systems

    DOE PAGES

    Taraphdar, S.; Mukhopadhyay, P.; Leung, L. Ruby; ...

    2016-12-05

    The prediction skill of tropical synoptic scale transients (SSTR) such as monsoon low and depression during the boreal summer of 2007–2009 are assessed using high resolution ECMWF and NCEP TIGGE forecasts data. By analyzing 246 forecasts for lead times up to 10 days, it is found that the models have good skills in forecasting the planetary scale means but the skills of SSTR remain poor, with the latter showing no skill beyond 2 days for the global tropics and Indian region. Consistent forecast skills among precipitation, velocity potential, and vorticity provide evidence that convection is the primary process responsible formore » precipitation. The poor skills of SSTR can be attributed to the larger random error in the models as they fail to predict the locations and timings of SSTR. Strong correlation between the random error and synoptic precipitation suggests that the former starts to develop from regions of convection. As the NCEP model has larger biases of synoptic scale precipitation, it has a tendency to generate more random error that ultimately reduces the prediction skill of synoptic systems in that model. Finally, the larger biases in NCEP may be attributed to the model moist physics and/or coarser horizontal resolution compared to ECMWF.« less

  6. Constraints on muscle performance provide a novel explanation for the scaling of posture in terrestrial animals.

    PubMed

    Usherwood, James R

    2013-08-23

    Larger terrestrial animals tend to support their weight with more upright limbs. This makes structural sense, reducing the loading on muscles and bones, which is disproportionately challenging in larger animals. However, it does not account for why smaller animals are more crouched; instead, they could enjoy relatively more slender supporting structures or higher safety factors. Here, an alternative account for the scaling of posture is proposed, with close parallels to the scaling of jump performance. If the costs of locomotion are related to the volume of active muscle, and the active muscle volume required depends on both the work and the power demanded during the push-off phase of each step (not just the net positive work), then the disproportional scaling of requirements for work and push-off power are revealing. Larger animals require relatively greater active muscle volumes for dynamically similar gaits (e.g. top walking speed)-which may present an ultimate constraint to the size of running animals. Further, just as for jumping, animals with shorter legs and briefer push-off periods are challenged to provide the power (not the work) required for push-off. This can be ameliorated by having relatively long push-off periods, potentially accounting for the crouched stance of small animals.

  7. Constraints on muscle performance provide a novel explanation for the scaling of posture in terrestrial animals

    PubMed Central

    Usherwood, James R.

    2013-01-01

    Larger terrestrial animals tend to support their weight with more upright limbs. This makes structural sense, reducing the loading on muscles and bones, which is disproportionately challenging in larger animals. However, it does not account for why smaller animals are more crouched; instead, they could enjoy relatively more slender supporting structures or higher safety factors. Here, an alternative account for the scaling of posture is proposed, with close parallels to the scaling of jump performance. If the costs of locomotion are related to the volume of active muscle, and the active muscle volume required depends on both the work and the power demanded during the push-off phase of each step (not just the net positive work), then the disproportional scaling of requirements for work and push-off power are revealing. Larger animals require relatively greater active muscle volumes for dynamically similar gaits (e.g. top walking speed)—which may present an ultimate constraint to the size of running animals. Further, just as for jumping, animals with shorter legs and briefer push-off periods are challenged to provide the power (not the work) required for push-off. This can be ameliorated by having relatively long push-off periods, potentially accounting for the crouched stance of small animals. PMID:23825086

  8. The Triggering Mechanism of coronal jets and CMEs: Flux Cancelation

    NASA Technical Reports Server (NTRS)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2017-01-01

    Recent investigations show that coronal jets are driven by the eruption of a small-scale filament (10,000 - 20,000 km long, called a minifilament) following magnetic flux cancelation at the neutral line underneath the minifilament. Minifilament eruptions appear to be analogous to larger-scale solar filament eruptions: they both reside, before the eruption, in the highly sheared field between the adjacent opposite-polarity magnetic flux patches (neutral line); jet-producing minifilament and larger-scale solar filament first show a slow-rise, followed by a fast-rise as they erupt; during the jet-producing minifilament eruption a jet bright point (JBP) appears at the location where the minifilament was rooted before the eruption, analogous to the situation with CME-producing larger-scale filament eruptions where a solar flare arcade forms during the filament eruption along the neutral line along which the filament resided prior to its eruption. In the present study we investigate the triggering mechanism of CME-producing large solar filament eruptions, and find that enduring flux cancelation at the neutral line of the filaments often triggers their eruptions. This corresponds to the finding that persistent flux cancelation at the neutral is the cause of jet-producing minifilament eruptions. Thus our observations support coronal jets being miniature version of CMEs.

  9. The interior of 67P/C-G comet as seen by CONSERT bistatic radar on ROSETTA, key results and implications.

    NASA Astrophysics Data System (ADS)

    Kofman, W.; Herique, A.; Ciarletti, V.; Lasue, J.; Levasseur-Regourd, AC.; Zine, S.; Plettemeier, D.

    2017-09-01

    The structure of the nucleus is one of the major unknowns in cometary science. The scientific objectives of the Comet Nucleus Sounding Experiment by Radiowave Transmission (CONSERT) aboard ESA's spacecraft Rosetta are to perform an interior characterization of comet 67P/Churyumov-Gerasimenko nucleus. This is done by means of a bistatic sounding between the lander Philae laying on the comet's surface and the orbiter Rosetta. Current interpretation of the CONSERT signals is consistent with a highly porous carbon rich primitive body. Internal inhomogeneities are not detected at the wavelength scale and are either smaller, or present a low dielectric contrast. Given the high bulk porosity of 75% inside the sounded part of the nucleus, a likely interior model would be obtained by a mixture, at this 3-m size scale, of voids (vacuum) and blobs with material made of ices and dust with porosity larger than 60%. The absence of any pulse spreading due to scattering allows us to exclude heterogeneity with higher contrast (0.25) and larger size (3m) (but smaller than few wavelengths scale, since larger scales would be responsible for multipath propagation). CONSERT is the first successful radar probe to study the sub-surface of a small body.

  10. Prediction skill of tropical synoptic scale transients from ECMWF and NCEP ensemble prediction systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taraphdar, S.; Mukhopadhyay, P.; Leung, L. Ruby

    The prediction skill of tropical synoptic scale transients (SSTR) such as monsoon low and depression during the boreal summer of 2007–2009 are assessed using high resolution ECMWF and NCEP TIGGE forecasts data. By analyzing 246 forecasts for lead times up to 10 days, it is found that the models have good skills in forecasting the planetary scale means but the skills of SSTR remain poor, with the latter showing no skill beyond 2 days for the global tropics and Indian region. Consistent forecast skills among precipitation, velocity potential, and vorticity provide evidence that convection is the primary process responsible formore » precipitation. The poor skills of SSTR can be attributed to the larger random error in the models as they fail to predict the locations and timings of SSTR. Strong correlation between the random error and synoptic precipitation suggests that the former starts to develop from regions of convection. As the NCEP model has larger biases of synoptic scale precipitation, it has a tendency to generate more random error that ultimately reduces the prediction skill of synoptic systems in that model. Finally, the larger biases in NCEP may be attributed to the model moist physics and/or coarser horizontal resolution compared to ECMWF.« less

  11. Image-Enhancement Aid For The Partially Sighted

    NASA Technical Reports Server (NTRS)

    Lawton, T. A.; Gennery, D. B.

    1989-01-01

    Digital filtering enhances ability to read and to recognize objects. Possible to construct portable vision aid by combining miniature video equipment to observe scene and display images with very-large-scale integrated circuits to implement real-time digital image-data processing. Afflicted observer views scene through magnifier to shift spatial frequencies downward and thereby improves perceived image. However, less magnification needed, larger the scene observed. Thus, one measure of effectiveness of new system is amount of magnification required with and without it. In series of tests, found 27 to 70 percent more magnification needed for afflicted observers to recognize unfiltered words than to recognize filtered words.

  12. Seroprevalence of Leishmaniasis Among Dogs Living in a Municipal Dog and Cat Shelter in Edirne.

    PubMed

    Düzbeyaz, Ayşe; Şakru, Nermin; Töz, Seray

    2016-06-01

    In this study, we aimed to investigate the seroprevalence of canine leishmaniosis among dogs that live in the town center due to a lack of data on the prevalence of canine leishmaniasis (CanL) in Edirne. In the present study, 37 dogs living in a municipal dog and cat shelter in Edirne were screened for leishmaniosis by the ındirect fluorescent antibody test. All samples were found to be seronegative. Our study is a preliminary study for Edirne. We wish to perform a large-scale seroepidemiological study with a larger number of dogs from different regions and identify Phlebotomus species.

  13. Innovative grinding wheel design for cost-effective machining of advanced ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Licht, R.H.; Kuo, P.; Liu, S.

    2000-05-01

    This Final Report covers the Phase II Innovative Grinding Wheel (IGW) program in which Norton Company successfully developed a novel grinding wheel for cost-effective cylindrical grinding of advanced ceramics. In 1995, Norton Company successfully completed the 16-month Phase I technical effort to define requirements, design, develop, and evaluate a next-generation grinding wheel for cost-effective cylindrical grinding of advanced ceramics using small prototype wheels. The Phase II program was initiated to scale-up the new superabrasive wheel specification to larger diameters, 305-mm to 406-mm, required for most production grinding of cylindrical ceramic parts, and to perform in-house and independent validation grinding tests.

  14. Parallel nanomanufacturing via electrohydrodynamic jetting from microfabricated externally-fed emitter arrays

    NASA Astrophysics Data System (ADS)

    Ponce de Leon, Philip J.; Hill, Frances A.; Heubel, Eric V.; Velásquez-García, Luis F.

    2015-06-01

    We report the design, fabrication, and characterization of planar arrays of externally-fed silicon electrospinning emitters for high-throughput generation of polymer nanofibers. Arrays with as many as 225 emitters and with emitter density as large as 100 emitters cm-2 were characterized using a solution of dissolved PEO in water and ethanol. Devices with emitter density as high as 25 emitters cm-2 deposit uniform imprints comprising fibers with diameters on the order of a few hundred nanometers. Mass flux rates as high as 417 g hr-1 m-2 were measured, i.e., four times the reported production rate of the leading commercial free-surface electrospinning sources. Throughput increases with increasing array size at constant emitter density, suggesting the design can be scaled up with no loss of productivity. Devices with emitter density equal to 100 emitters cm-2 fail to generate fibers but uniformly generate electrosprayed droplets. For the arrays tested, the largest measured mass flux resulted from arrays with larger emitter separation operating at larger bias voltages, indicating the strong influence of electrical field enhancement on the performance of the devices. Incorporation of a ground electrode surrounding the array tips helps equalize the emitter field enhancement across the array as well as control the spread of the imprints over larger distances.

  15. Critical parameters in the production of ceramic pot filters for household water treatment in developing countries.

    PubMed

    Soppe, A I A; Heijman, S G J; Gensburger, I; Shantz, A; van Halem, D; Kroesbergen, J; Wubbels, G H; Smeets, P W M H

    2015-06-01

    The need to improve the access to safe water is generally recognized for the benefit of public health in developing countries. This study's objective was to identify critical parameters which are essential for improving the performance of ceramic pot filters (CPFs) as a point-of-use water treatment system. Defining critical production parameters was also relevant to confirm that CPFs with high-flow rates may have the same disinfection capacity as pots with normal flow rates. A pilot unit was built in Cambodia to produce CPFs under controlled and constant conditions. Pots were manufactured from a mixture of clay, laterite and rice husk in a small-scale, gas-fired, temperature-controlled kiln and tested for flow rate, removal efficiency of bacteria and material strength. Flow rate can be increased by increasing pore sizes and by increasing porosity. Pore sizes were increased by using larger rice husk particles and porosity was increased with larger proportions of rice husk in the clay mixture. The main conclusions: larger pore size decreases the removal efficiency of bacteria; higher porosity does not affect the removal efficiency of bacteria, but does influence the strength of pots; flow rates of CPFs can be raised to 10-20 L/hour without a significant decrease in bacterial removal efficiency.

  16. Effects of Alternate Leading Edge Cutback on the Space Shuttle Main Engine Low Pressure Fuel Pump

    NASA Technical Reports Server (NTRS)

    Mulder, Andrew; Skelley, Stephen

    2016-01-01

    A higher order cavitation oscillation observed in the SSME low pressure fuel pump has been eliminated in water flow testing of a modified subscale replica of the inducer. The low pressure pump was modified by removing the outboard sections of two opposing blades of the four-bladed inducer, blending the "cutback" regions into the blades at the leading edge and tip, and removing material on the suction sides to decrease the exposed leading edge thickness. The leading edge tips of the cutback blades were moved approximately 25 degrees from their previous locations, thereby increasing one blade to blade spacing, decreasing the second, while simultaneously moving the cutback tips downstream. The test was conducted in MSFC's inducer test loop at scaled operating conditions in degassed and filtered water. In addition to eliminating HOC across the entire scaled operating regime, rotating cavitation was suppressed while the range of both alternate blade and asymmetric cavitation were increased. These latter phenomena, and more significantly, the shifts between these cavitation modes also resulted in significant changes to the head coefficient at low cavitation numbers. Reverse flow was detected at a slightly larger flow coefficient with the cutback inducer and suction capability was reduced by approximately 1 velocity head at and above approximately 90% of the reference flow coefficient. These performance changes along with more intense reverse flow are consistent with poor flow area management and increased incidence in the cutback region. Although the test demonstrated that the inducer modification was successful at eliminating the higher order cavitation across the entire scaled operating regime, different, previously unobserved, cavitation oscillations were introduced and significant performance penalties were imposed.

  17. Scale issues in soil hydrology related to measurement and simulation: A case study in Colorado

    USDA-ARS?s Scientific Manuscript database

    State variables, such as soil water content (SWC), are typically measured or inferred at very small scales while being simulated at larger scales relevant to spatial management or hillslope areas. Thus there is an implicit spatial disparity that is often ignored. Surface runoff, on the other hand, ...

  18. Everyday Scale Errors

    ERIC Educational Resources Information Center

    Ware, Elizabeth A.; Uttal, David H.; DeLoache, Judy S.

    2010-01-01

    Young children occasionally make "scale errors"--they attempt to fit their bodies into extremely small objects or attempt to fit a larger object into another, tiny, object. For example, a child might try to sit in a dollhouse-sized chair or try to stuff a large doll into it. Scale error research was originally motivated by parents' and…

  19. International bioenergy synthesis-lessons learned and opportunities for the western United States

    Treesearch

    D.L. Nicholls; R. Monserud; D. Dykstra

    2009-01-01

    This synthesis examines international opportunities for utilizing biomass for energy at several different scales, with an emphasis on larger scale electrical power generation at stand-alone facilities as well as smaller scale thermal heating applications such as those at governmental, educational, or other institutional facilities. It identifies barriers that can...

  20. Competition between stink bug and heliothine caterpillar pests on cotton at within-plant spatial scales

    USDA-ARS?s Scientific Manuscript database

    We investigated competition between Heliothine larvae and the secondary pests, southern green and brown stink bugs at the single boll and multiple boll scales; if competition does not occur with this very close association, it might be unlikely at larger scales with less close association. In both ...

  1. Losers in the 'Rock-Paper-Scissors' game: The role of non-hierarchical competition and chaos as biodiversity sustaining agents in aquatic systems

    EPA Science Inventory

    Processes occurring within small areas (patch-scale) that influence species richness and spatial heterogeneity of larger areas (landscape-scale) have long been an interest of ecologists. This research focused on the role of patch-scale deterministic chaos arising in phytoplankton...

  2. Estimating landscape-scale impacts of agricultural management on soil carbon using measurements and models.

    USDA-ARS?s Scientific Manuscript database

    Agriculture covers 40% of Earth’s ice-free land area and has broad impacts on global biogeochemical cycles. While some agricultural management changes are small in scale or impact, others have the potential to shift biogeochemical cycles at landscape and larger scales if widely adopted. Understandin...

  3. Environmental stochasticity controls soil erosion variability

    PubMed Central

    Kim, Jongho; Ivanov, Valeriy Y.; Fatichi, Simone

    2016-01-01

    Understanding soil erosion by water is essential for a range of research areas but the predictive skill of prognostic models has been repeatedly questioned because of scale limitations of empirical data and the high variability of soil loss across space and time scales. Improved understanding of the underlying processes and their interactions are needed to infer scaling properties of soil loss and better inform predictive methods. This study uses data from multiple environments to highlight temporal-scale dependency of soil loss: erosion variability decreases at larger scales but the reduction rate varies with environment. The reduction of variability of the geomorphic response is attributed to a ‘compensation effect’: temporal alternation of events that exhibit either source-limited or transport-limited regimes. The rate of reduction is related to environment stochasticity and a novel index is derived to reflect the level of variability of intra- and inter-event hydrometeorologic conditions. A higher stochasticity index implies a larger reduction of soil loss variability (enhanced predictability at the aggregated temporal scales) with respect to the mean hydrologic forcing, offering a promising indicator for estimating the degree of uncertainty of erosion assessments. PMID:26925542

  4. Modeling of molecular diffusion and thermal conduction with multi-particle interaction in compressible turbulence

    NASA Astrophysics Data System (ADS)

    Tai, Y.; Watanabe, T.; Nagata, K.

    2018-03-01

    A mixing volume model (MVM) originally proposed for molecular diffusion in incompressible flows is extended as a model for molecular diffusion and thermal conduction in compressible turbulence. The model, established for implementation in Lagrangian simulations, is based on the interactions among spatially distributed notional particles within a finite volume. The MVM is tested with the direct numerical simulation of compressible planar jets with the jet Mach number ranging from 0.6 to 2.6. The MVM well predicts molecular diffusion and thermal conduction for a wide range of the size of mixing volume and the number of mixing particles. In the transitional region of the jet, where the scalar field exhibits a sharp jump at the edge of the shear layer, a smaller mixing volume is required for an accurate prediction of mean effects of molecular diffusion. The mixing time scale in the model is defined as the time scale of diffusive effects at a length scale of the mixing volume. The mixing time scale is well correlated for passive scalar and temperature. Probability density functions of the mixing time scale are similar for molecular diffusion and thermal conduction when the mixing volume is larger than a dissipative scale because the mixing time scale at small scales is easily affected by different distributions of intermittent small-scale structures between passive scalar and temperature. The MVM with an assumption of equal mixing time scales for molecular diffusion and thermal conduction is useful in the modeling of the thermal conduction when the modeling of the dissipation rate of temperature fluctuations is difficult.

  5. Crystal Face Distributions and Surface Site Densities of Two Synthetic Goethites: Implications for Adsorption Capacities as a Function of Particle Size.

    PubMed

    Livi, Kenneth J T; Villalobos, Mario; Leary, Rowan; Varela, Maria; Barnard, Jon; Villacís-García, Milton; Zanella, Rodolfo; Goodridge, Anna; Midgley, Paul

    2017-09-12

    Two synthetic goethites of varying crystal size distributions were analyzed by BET, conventional TEM, cryo-TEM, atomic resolution STEM and HRTEM, and electron tomography in order to determine the effects of crystal size, shape, and atomic scale surface roughness on their adsorption capacities. The two samples were determined by BET to have very different site densities based on Cr VI adsorption experiments. Model specific surface areas generated from TEM observations showed that, based on size and shape, there should be little difference in their adsorption capacities. Electron tomography revealed that both samples crystallized with an asymmetric {101} tablet habit. STEM and HRTEM images showed a significant increase in atomic-scale surface roughness of the larger goethite. This difference in roughness was quantified based on measurements of relative abundances of crystal faces {101} and {201} for the two goethites, and a reactive surface site density was calculated for each goethite. Singly coordinated sites on face {210} are 2.5 more dense than on face {101}, and the larger goethite showed an average total of 36% {210} as compared to 14% for the smaller goethite. This difference explains the considerably larger adsorption capacitiy of the larger goethite vs the smaller sample and points toward the necessity of knowing the atomic scale surface structure in predicting mineral adsorption processes.

  6. Social And Environmental Considerations In The Water Management Of A Dam-regulated African River. Implications Of The Artificial Flood Releases In The Lower Delta Of The Senegal River.

    NASA Astrophysics Data System (ADS)

    Duvail, S.

    In the 1970's the governments of Mali, Senegal and Mauritania created the Organi- sation pour la Mise en Valeur du fleuve Sénégal (OMVS) and in the 1980's built two large dams in order to develop irrigated agriculture, produce hydropower and facilitate river navigation. These different objectives have been met only very partially and the negative impacts are numerous, especially in the lower basin. The high and constant water level in the Diama reservoir has nefarious impacts on ecosystems, on human and animal health and on social equilibria. Upstream of the reservoir there is an excess of stagnant fresh water while the estuarine part downstream of the dam lacks fresh wa- ter. The traditional stakeholders of the floodplain (fishermen, livestock keepers and gatherers) had to migrate or reconvert to other activities. For institutional reasons and because irrigated agriculture was the priority, their needs were not taken into account for the Diama dam management. Still, it is possible to define a more democratic water management, which could reconcile the water needs of the large-scale rice farms with the support of local livelihoods. Artificial flood releases were used to simulate pre- dam hydraulics. First tested at a scale of a few thousand hectares they were gradually expanded to cover larger areas. The water needs (in terms of flood timing and dura- tion, water level and water quality) of the local stakeholders and the ecosystems were identified. A hydraulic model (Mike 11 of DHI, Water and Environment) was applied. When associated with a digital elevation model and a geographic information system (Arc view of Esri), the model enabled us to test several flood scenarios and to sup- port the adaptive management approach. At a larger scale, proposals are made for the management of the Diama dam, which take into account the downstream water needs. The research presented has to be seen in the framework of the management of dams on strongly seasonal African rivers. The challenge is to use of artificial flood releases incorporating local development objectives and environmental water needs with the large scale sectoral objectives for which the dams are being designed.

  7. X-40A Free Flight #5

    NASA Image and Video Library

    2001-05-08

    X-40A Free Flight #5. The unpowered X-40A, an 85 percent scale risk reduction version of the proposed X-37, proved the capability of an autonomous flight control and landing system in a series of glide flights at NASA's Dryden Flight Research Center in California. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the X-37 project. At Dryden, the X-40A underwent a series of ground and air tests to reduce possible risks to the larger X-37, including drop tests from a helicopter to check guidance and navigation systems planned for use in the X-37. The X-37 is designed to demonstrate technologies in the orbital and reentry environments for next-generation reusable launch vehicles that will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000 per pound.

  8. Untangling cultural inheritance: language diversity and long-house architecture on the Pacific northwest coast

    PubMed Central

    Jordan, Peter; O'Neill, Sean

    2010-01-01

    Many recent studies of cultural inheritance have focused on small-scale craft traditions practised by single individuals, which do not require coordinated participation by larger social collectives. In this paper, we address this gap in the cultural transmission literature by investigating diversity in the vernacular architecture of the Pacific northwest coast, where communities of hunter–fisher–gatherers constructed immense wooden long-houses at their main winter villages. Quantitative analyses of long-house styles along the coastline draw on a range of models and methods from the biological sciences and are employed to test hypotheses relating to basic patterns of macro-scale cultural diversification, and the degree to which the transmission of housing traits has been constrained by the region's numerous linguistic boundaries. The results indicate relatively strong branching patterns of cultural inheritance and also close associations between regional language history and housing styles, pointing to the potentially crucial role played by language boundaries in structuring large-scale patterns of cultural diversification, especially in relation to ‘collective’ cultural traditions like housing that require substantial inputs of coordinated labour. PMID:21041212

  9. Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors

    NASA Astrophysics Data System (ADS)

    Kerr, Benjamin; Riley, Margaret A.; Feldman, Marcus W.; Bohannan, Brendan J. M.

    2002-07-01

    One of the central aims of ecology is to identify mechanisms that maintain biodiversity. Numerous theoretical models have shown that competing species can coexist if ecological processes such as dispersal, movement, and interaction occur over small spatial scales. In particular, this may be the case for non-transitive communities, that is, those without strict competitive hierarchies. The classic non-transitive system involves a community of three competing species satisfying a relationship similar to the children's game rock-paper-scissors, where rock crushes scissors, scissors cuts paper, and paper covers rock. Such relationships have been demonstrated in several natural systems. Some models predict that local interaction and dispersal are sufficient to ensure coexistence of all three species in such a community, whereas diversity is lost when ecological processes occur over larger scales. Here, we test these predictions empirically using a non-transitive model community containing three populations of Escherichia coli. We find that diversity is rapidly lost in our experimental community when dispersal and interaction occur over relatively large spatial scales, whereas all populations coexist when ecological processes are localized.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durazo, R.; Hernandez, X.; Sánchez, S. F.

    For any MONDian extended theory of gravity where the rotation curves of spiral galaxies are explained through a change in physics rather than the hypothesis of dark matter, a generic dynamical behavior is expected for pressure supported systems: an outer flattening of the velocity dispersion profile occurring at a characteristic radius, where both the amplitude of this flat velocity dispersion and the radius at which it appears are predicted to show distinct scalings with the total mass of the system. By carefully analyzing the dynamics of globular clusters and elliptical galaxies, we are able to significantly extend the astronomical diversitymore » of objects in which MONDian gravity has been tested, from spiral galaxies to the much larger mass range covered by pressure supported systems. We show that a universal projected velocity dispersion profile accurately describes various classes of pressure supported systems, and further, that the expectations of extended gravity are met across seven orders of magnitude in mass. These observed scalings are not expected under dark matter cosmology, and would require particular explanations tuned at the scales of each distinct astrophysical system.« less

  11. Modelling volatility recurrence intervals in the Chinese commodity futures market

    NASA Astrophysics Data System (ADS)

    Zhou, Weijie; Wang, Zhengxin; Guo, Haiming

    2016-09-01

    The law of extreme event occurrence attracts much research. The volatility recurrence intervals of Chinese commodity futures market prices are studied: the results show that the probability distributions of the scaled volatility recurrence intervals have a uniform scaling curve for different thresholds q. So we can deduce the probability distribution of extreme events from normal events. The tail of a scaling curve can be well fitted by a Weibull form, which is significance-tested by KS measures. Both short-term and long-term memories are present in the recurrence intervals with different thresholds q, which denotes that the recurrence intervals can be predicted. In addition, similar to volatility, volatility recurrence intervals also have clustering features. Through Monte Carlo simulation, we artificially synthesise ARMA, GARCH-class sequences similar to the original data, and find out the reason behind the clustering. The larger the parameter d of the FIGARCH model, the stronger the clustering effect is. Finally, we use the Fractionally Integrated Autoregressive Conditional Duration model (FIACD) to analyse the recurrence interval characteristics. The results indicated that the FIACD model may provide a method to analyse volatility recurrence intervals.

  12. Image processing for quantifying fracture orientation and length scale transitions during brittle deformation

    NASA Astrophysics Data System (ADS)

    Rizzo, R. E.; Healy, D.; Farrell, N. J.

    2017-12-01

    We have implemented a novel image processing tool, namely two-dimensional (2D) Morlet wavelet analysis, capable of detecting changes occurring in fracture patterns at different scales of observation, and able of recognising the dominant fracture orientations and the spatial configurations for progressively larger (or smaller) scale of analysis. Because of its inherited anisotropy, the Morlet wavelet is proved to be an excellent choice for detecting directional linear features, i.e. regions where the amplitude of the signal is regular along one direction and has sharp variation along the perpendicular direction. Performances of the Morlet wavelet are tested against the 'classic' Mexican hat wavelet, deploying a complex synthetic fracture network. When applied to a natural fracture network, formed triaxially (σ1>σ2=σ3) deforming a core sample of the Hopeman sandstone, the combination of 2D Morlet wavelet and wavelet coefficient maps allows for the detection of characteristic scale orientation and length transitions, associated with the shifts from distributed damage to the growth of localised macroscopic shear fracture. A complementary outcome arises from the wavelet coefficient maps produced by increasing the wavelet scale parameter. These maps can be used to chart the variations in the spatial distribution of the analysed entities, meaning that it is possible to retrieve information on the density of fracture patterns at specific length scales during deformation.

  13. New lure for the larger pine shoot beetle, Tomicus piniperda - attractant/trap design combinations tested in North America and Europe

    Treesearch

    D. Czokajlo; B. Hrasovec; M. Pernek; J. Hilszczanski; A. Kolk; S. Teale; J. Wickham; P. Kirsch

    2003-01-01

    An optimized, patented lure for the larger pine shoot beetle, Tomicus piniperda has been developed and tested in the United States, Poland, and Croatia. Seven different beetle attractants were tested: α-pinene, α-pinene oxide, ethanol, nonanal, myrtenal, myrtenol, and trans-verbenol. α-pinene was tested...

  14. Temporal and spatial variability of rainfall over Greece

    NASA Astrophysics Data System (ADS)

    Markonis, Y.; Batelis, S. C.; Dimakos, Y.; Moschou, E.; Koutsoyiannis, D.

    2017-10-01

    Recent studies have showed that there is a significant decrease in rainfall over Greece during the last half of the pervious century, following an overall decrease of the precipitation at the eastern Mediterranean. However, during the last decade an increase in rainfall was observed in most regions of the country, contrary to the general circulation climate models forecasts. An updated high-resolution dataset of monthly sums and annual daily maxima records derived from 136 stations during the period 1940-2012 allowed us to present some new evidence for the observed change and its statistical significance. The statistical framework used to determine the significance of the slopes in annual rain was not limited to the time independency assumption (Mann-Kendall test), but we also investigated the effect of short- and long-term persistence through Monte Carlo simulation. Our findings show that (a) change occurs in different scales; most regions show a decline since 1950, an increase since 1980 and remain stable during the last 15 years; (b) the significance of the observed decline is highly dependent to the statistical assumptions used; there are indications that the Mann-Kendall test may be the least suitable method; and (c) change in time is strongly linked with the change in space; for scales below 40 years, relatively close regions may develop even opposite trends, while in larger scales change is more uniform.

  15. Bench-scale demonstration of hot-gas desulfurization technology. Quarterly report, April 1 - June 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-31

    The US Department of Energy (DOE) Morgantown Energy Technology Center (METC) is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal gas) streams of integrated gasification combined-cycle (IGCC) power systems. The programs focus on hot-gas particulate removal and desulfurization technologies that match or nearly match the temperatures and pressures of the gasifier, cleanup system, and power generator. The work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. The goal of this project is to continue further development of the zinc titanate desulfurizationmore » and direct sulfur recovery process (DSRP) technologies by (1) scaling up the zinc titanate reactor system; (2) developing an integrated skid-mounted zinc titanate desulfurization-DSRP reactor system; (3) testing the integrated system over an extended period with real coal-as from an operating gasifier to quantify the degradative effect, if any, of the trace contaminants present in cola gas; (4) developing an engineering database suitable for system scaleup; and (5) designing, fabricating and commissioning a larger DSRP reactor system capable of operating on a six-fold greater volume of gas than the DSRP reactor used in the bench-scale field test. The work performed during the April 1 through June 30, 1996 period is described.« less

  16. Pilot study of a targeted dance class for physical rehabilitation in children with cerebral palsy

    PubMed Central

    López-Ortiz, Citlali; Egan, Tara; Gaebler-Spira, Deborah J

    2016-01-01

    Introduction: This pilot study evaluates the effects of a targeted dance class utilizing classical ballet principles for rehabilitation of children with cerebral palsy on balance and upper extremity control. Methods: Twelve children with cerebral palsy (ages 7–15 years) with Gross Motor Function Classification scores II–IV participated in this study and were assigned to either a control group or targeted dance class group. Targeted dance class group participated in 1-h classes three times per week in a 4-week period. The Pediatric Balance Scale and the Quality of Upper Extremity Skills Test were administered before, after, and 1 month after the targeted dance class. Results: Improvements in the Pediatric Balance Scale were present in the targeted dance class group in before versus after and before versus 1 month follow-up comparisons (p-value = 0.0088 and p-value = 0.019, respectively). The Pediatric Balance Scale changes were not significant in the control group. The Quality of Upper Extremity Skills Test did not reach statistical differences in either group. Conclusion: Classical ballet as an art form involves physical training, musical accompaniment, social interactions, and emotional expression that could serve as adjunct to traditional physical therapy. This pilot study demonstrated improvements in balance control. A larger study with a more homogeneous sample is warranted. PMID:27721977

  17. Evaluation of new chlorhexidine- and cetylpyridinium chloride-based mouthrinse formulations adjunctive to scaling and root planing: pilot study.

    PubMed

    García-Gargallo, M; Zurlohe, M; Montero, E; Alonso, B; Serrano, J; Sanz, M; Herrera, D

    2017-11-01

    To compare the effect of two newly formulated chlorhexidine (CHX) and cetylpyridinium chloride (CPC) mouthrinses after scaling and root planing (SRP) in terms of clinical, microbiological, patient-based variables and adverse events, with a positive control with the same active components, already marketed and tested. A pilot, randomized clinical trial, double-blind, parallel design with 1-month follow-up was conducted. Chronic periodontitis patients requiring non-surgical periodontal therapy were enrolled and randomly assigned to: (i) SRP and test-1 (new reformulation: 0.12% CHX and 0.05% CPC); (ii) SRP and test-2 (new formulation: 0.03% CHX and 0.05% CPC); or (iii) SRP and positive control (commercial product: 0.12% CHX and 0.05% CPC). All variables were evaluated at baseline and 1 month after SRP. Quantitative variables were compared by means of anova or Kruskal-Wallis test and qualitative variables by chi-square or McNemar tests. Thirty patients (10 per group) were included. After 1 month, there were significant differences among groups in plaque levels (P = 0.016) as test-1 showed less sites with plaque than test-2 (31.15% [standard error-SE 2.21%] versus 49.39% [SE 4.60%), respectively). No significant differences were found for global patient perception of the product or in adverse effects. Test groups showed better results in levels and proportions (P = 0.022) of Capnocytophaga spp. Within the limitations of this pilot study, it can be concluded that the newly formulated 0.12% CHX and 0.05% CPC mouthrinse showed larger plaque level reductions, without showing more adverse effects, when compared to the other two mouthrinses, after SRP. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Triggering of Solar Magnetic Eruptions on Various Size Scales Alphonse Sterling

    NASA Technical Reports Server (NTRS)

    Sterling, A.C.

    2010-01-01

    A solar eruption that produces a coronal mass ejection (CME) together with a flare is driven by the eruption of a closed-loop magnetic arcade that has a sheared-field core. Before eruption, the sheared core envelops a polarity inversion line along which cool filament material may reside. The sheared-core arcade erupts when there is a breakdown in the balance between the confining downward-directed magnetic tension of the overall arcade field and the upward-directed force of the pent-up magnetic pressure of the sheared field in the core of the arcade. What triggers the breakdown in this balance in favor of the upward-directed force is still an unsettled question. We consider several eruption examples, using imaging data from the SoHO, TRACE and Hinode satellites, and other sources, along with information about the magnetic field of the erupting regions. In several cases, observations of large-scale eruptions, where the magnetic neutral line spans few x 10,000 km, are consistent with magnetic flux cancellation being the trigger to the eruption's onset, even though the amount of flux canceled is only few percent of the total magnetic flux of the erupting region. In several other cases, an initial compact (small size-scale) eruption occurs embedded inside of a larger closed magnetic loop system, so that the smaller eruption destabilizes and causes the eruption of the much larger system. In this way, small-scale eruptive events can result in eruption of much larger-scale systems.

  19. Scaling theory of temporal correlations and size-dependent fluctuations in the traded value of stocks

    NASA Astrophysics Data System (ADS)

    Eisler, Zoltán; Kertész, János

    2006-04-01

    Records of the traded value fi of stocks display fluctuation scaling, a proportionality between the standard deviation σi and the average ⟨fi⟩ : σi∝⟨fi⟩α , with a strong time scale dependence α(Δt) . The nontrivial (i.e., neither 0.5 nor 1) value of α may have different origins and provides information about the microscopic dynamics. We present a set of stylized facts and then show their connection to such behavior. The functional form α(Δt) originates from two aspects of the dynamics: Stocks of larger companies both tend to be traded in larger packages and also display stronger correlations of traded value. The results are integrated into a general framework that can be applied to a wide range of complex systems.

  20. IMPLEMENTATION STRATEGY FOR PRODUCTION OF NATIONAL LAND-COVER DATA (NLCD) FROM THE LANDSAT 7 THEMATIC MAPPER SATELLITE

    EPA Science Inventory

    As environmental programs within and outside the federal government continue to move away from point-based studies to larger and larger spatial (not cartographic) scale, the need for land-cover and other geographic data have become ineluctable. The national land-cover mapping pr...

Top