Sample records for larger space structures

  1. A Unified Theory for Plants and Plant Structure

    NASA Astrophysics Data System (ADS)

    Wagner, Orvin E.

    1998-04-01

    The wave theory provides for quantization of plant structure. If one measures many spacings between plant structures it becomes apparent that certain spacings repeat from plant to plant. These spacings are associated with certain discrete frequencies associated with plant operation. When a branch grows it extend by one or more of discrete half wavelengths associated with permitted frequencies. If conditions are optimum it grows by the larger permitted half wavelengths. The angle that the branch makes with the vertical also determines the length because vertical wave velocities are in general larger than horizontal wave velocities as mentioned in the previous abstract. It also appears that cell dimensions are determined by permitted wavelengths. In conifer fiber cells it appears that there is an exact ratio between the average reciprocals of vertical lengths and horizontal reciprocal averages with a value of 1.50 in the data taken so far. Similar ratios for external structure spacings include 1.50, 1.25, 1.33, 1.66, 3.0, These ratios appear to represent ratios of vertical to horizontal velocities (Wagner 1996). See the Wagner web page.

  2. Space astrophysics with large structures - CASES and P/OF. [Controls, Astrophysics, and Structures Experiment in Space and Pinhole/Occulter Facility

    NASA Technical Reports Server (NTRS)

    Hudson, Hugh S.; Davis, J. M.

    1990-01-01

    Space instruments for remote sensing, of the types used for astrophysics and solar-terrestrial physics among many disciplines, will grow to larger physical sizes in the future. The zero-g space environment does not inherently restrict such growth, because relatively lightweight structures can be used. Active servo control of the structures can greatly increase their size for a given mass. The Pinhole/Occulter Facility, a candidate Space Station attached payload, offers an example: it will achieve 0.2 arc s resolution by use of a 50-m baseline for coded-aperture telescopes for hard X-ray and gamma-ray imagers.

  3. A real-space approach to the X-ray phase problem

    NASA Astrophysics Data System (ADS)

    Liu, Xiangan

    Over the past few decades, the phase problem of X-ray crystallography has been explored in reciprocal space in the so called direct methods . Here we investigate the problem using a real-space approach that bypasses the laborious procedure of frequent Fourier synthesis and peak picking. Starting from a completely random structure, we move the atoms around in real space to minimize a cost function. A Monte Carlo method named simulated annealing (SA) is employed to search the global minimum of the cost function which could be constructed in either real space or reciprocal space. In the hybrid minimal principle, we combine the dual space costs together. One part of the cost function monitors the probability distribution of the phase triplets, while the other is a real space cost function which represents the discrepancy between measured and calculated intensities. Compared to the single space cost functions, the dual space cost function has a greatly improved landscape and therefore could prevent the system from being trapped in metastable states. Thus, the structures of large molecules such as virginiamycin (C43H 49N7O10 · 3CH0OH), isoleucinomycin (C60H102N 6O18) and hexadecaisoleucinomycin (HEXIL) (C80H136 N8O24) can now be solved, whereas it would not be possible using the single cost function. When a molecule gets larger, the configurational space becomes larger, and the requirement of CPU time increases exponentially. The method of improved Monte Carlo sampling has demonstrated its capability to solve large molecular structures. The atoms are encouraged to sample the high density regions in space determined by an approximate density map which in turn is updated and modified by averaging and Fourier synthesis. This type of biased sampling has led to considerable reduction of the configurational space. It greatly improves the algorithm compared to the previous uniform sampling. Hence, for instance, 90% of computer run time could be cut in solving the complex structure of isoleucinomycin. Successful trial calculations include larger molecular structures such as HEXIL and a collagen-like peptide (PPG). Moving chemical fragment is proposed to reduce the degrees of freedom. Furthermore, stereochemical parameters are considered for geometric constraints and for a cost function related to chemical energy.

  4. Results of the Advanced Space Structures Technology Research Experiments (ASTREX) hardware and control development

    NASA Technical Reports Server (NTRS)

    Cossey, Derek F.

    1993-01-01

    Future DOD, NASA, and SDI space systems will be larger than any spacecraft flown before. The economics of placing these Precision Space Systems (PSS) into orbit dictates that they be as low in mass as possible. This stringent weight reduction creates structural flexibility causing severe technical problems when combined with the precise shape and pointing requirements associated with many future PSS missions. Development of new Control Structure Interaction (CSI) technologies which can solve these problems and enable future space missions is being conducted at the Phillips Laboratory, On-Location Site, CA.

  5. A survey of surface structures and subsurface developments for lunar bases

    NASA Technical Reports Server (NTRS)

    Hypes, Warren D.; Wright, Robert L.

    1990-01-01

    Concepts proposed for lunar-base structures and shelters include those fabricated on earth, fabricated locally using lunar materials, and developed from subsurface features. Early bases may rely on evolutionary growth using Space Station modules and nodes covered with regolith for protection against thermal and radiative stresses. Expandable/inflatable shelters used alone on the surface or in conjunction with subselene (beneath the lunar surface) features and spent portions of the Space Shuttle's fuel tanks offer early alternatives. More mature lunar bases may need larger volumes provided by erectable buildings, hybrid inflatable/rigid spheres, modular concrete buildings using locally derived cement, or larger subselene developments.

  6. Organizational and Spatial Dynamics of Attentional Focusing in Hierarchically Structured Objects

    ERIC Educational Resources Information Center

    Yeari, Menahem; Goldsmith, Morris

    2011-01-01

    Is the focusing of visual attention object-based, space-based, both, or neither? Attentional focusing latencies in hierarchically structured compound-letter objects were examined, orthogonally manipulating global size (larger vs. smaller) and organizational complexity (two-level structure vs. three-level structure). In a dynamic focusing task,…

  7. Minimal measures for Euler-Lagrange flows on finite covering spaces

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Xia, Zhihong

    2016-12-01

    In this paper we study the minimal measures for positive definite Lagrangian systems on compact manifolds. We are particularly interested in manifolds with more complicated fundamental groups. Mather’s theory classifies the minimal or action-minimizing measures according to the first (co-)homology group of a given manifold. We extend Mather’s notion of minimal measures to a larger class for compact manifolds with non-commutative fundamental groups, and use finite coverings to study the structure of these extended minimal measures. We also define action-minimizers and minimal measures in the homotopical sense. Our program is to study the structure of homotopical minimal measures by considering Mather’s minimal measures on finite covering spaces. Our goal is to show that, in general, manifolds with a non-commutative fundamental group have a richer set of minimal measures, hence a richer dynamical structure. As an example, we study the geodesic flow on surfaces of higher genus. Indeed, by going to the finite covering spaces, the set of minimal measures is much larger and more interesting.

  8. Low-authority control synthesis for large space structures

    NASA Technical Reports Server (NTRS)

    Aubrun, J. N.; Margulies, G.

    1982-01-01

    The control of vibrations of large space structures by distributed sensors and actuators is studied. A procedure is developed for calculating the feedback loop gains required to achieve specified amounts of damping. For moderate damping (Low Authority Control) the procedure is purely algebraic, but it can be applied iteratively when larger amounts of damping are required and is generalized for arbitrary time invariant systems.

  9. Structural load control during construction

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr.

    1991-01-01

    In the absence of gravitational pull, the major design considerations for large space structures are stiffness for controllability, and transient dynamic loadings (as opposed to the traditional static load associated with earth-based structures). Because of the absence of gravitational loading, space structures can be designed to be significantly lighter than their counterparts on Earth. For example, the Space Shuttle manipulator arm is capable of moving and positioning a 60,000 lb payload, yet weighs less than 1,000 lbs. A recent design for the Space Station which had a total weight of about 500,000 lbs. used a primary loadcarrying keel beam which weighed less than 10,000 lbs. For many large space structures designs it is quite common for the load-carrying structure to have a mass fraction on the order of one or two percent of the total spacecraft mass. This significant weight reduction for large space structures is commonly accompanied by very low natural frequencies. These low frequencies cause an unprecedented level of operational complexity for mission applications which require a high level of positioning and control accuracy. This control problem is currently the subject of considerable research directed towards reducing the flexibility problem. In addition, however, the small mass fraction typically results in structures which are quite unforgiving to inadvertent high loadings. In other words, the structures are 'fragile.' In order to deal with the fragility issue CSC developed a load-limiting concept for space truss structures. This concept is aimed at limiting the levels of load which can occur in a large space structure during the construction process as well as during subsequent operations. Currently, the approach for dealing with large loadings is to make the structure larger. The impact this has on construction is significant. The larger structures are more difficult to package in the launch vehicle, and in fact in some instances the concept must be changed from a deployable truss to an erectable truss to permit packaging. The new load-limiting concept is aimed at permitting the use in large space structures of smaller trusses with a high level of strength robustness, in order to simplify the construction process. To date several analyses conducted on the concept have demonstrated its feasibility, and an experiment is currently being designed to demonstrate its operation.

  10. Strain Monitoring of Flexible Structures

    NASA Technical Reports Server (NTRS)

    Litteken, Douglas A.

    2017-01-01

    One of the biggest challenges facing NASA's deep space exploration goals is structural mass. A long duration transit vehicle on a journey to Mars, for example, requires a large internal volume for cargo, supplies and crew support. As with all space structures, a large pressure vessel is not enough. The vehicle also requires thermal, micro-meteoroid, and radiation protection, a navigation and control system, a propulsion system, and a power system, etc. As vehicles get larger, their associated systems also get larger and more complex. These vehicles require larger lift capacities and force the mission to become extremely costly. In order to build large volume habitable vehicles, with only minimal increases in launch volume and mass, NASA is developing lightweight structures. Lightweight structures are made from non-metallic materials including graphite composites and high strength fabrics and could provide similar or better structural capability than metals, but with significant launch volume and mass savings. Fabric structures specifically, have been worked by NASA off and on since its inception, but most notably in the 1990's with the TransHAB program. These TransHAB developed structures use a layered material approach to form a pressure vessel with integrated thermal and micro-meteoroid and orbital debris (MMOD) protection. The flexible fabrics allow the vessel to be packed in a small volume during launch and expand into a much larger volume once in orbit. NASA and Bigelow Aerospace recently installed the first human-rated inflatable module on the International Space Station (ISS), known as the Bigelow Expandable Activity Module (BEAM) in May of 2016. The module provides a similar internal volume to that of an Orbital ATK Cygnus cargo vehicle, but with a 77% launch volume savings. As lightweight structures are developed, testing methods are vital to understanding their behavior and validating analytical models. Common techniques can be applied to fabric materials, such as tensile testing, fatigue testing, and shear testing, but common measurement techniques cannot be used on fabric. Measuring strain in a material and during a test is a critical parameter for an engineer to monitor the structure during the test and correlate to an analytical model. The ability to measure strain in fabric structures is a challenge for NASA. Foil strain gauges, for example, are commonplace on metallic structures testing, but are extremely difficult to interface with a fabric substrate. New strain measuring techniques need to be developed for use with fabric structures. This paper investigates options for measuring strain in fabric structures for both ground testing and in-space structural health monitoring. It evaluates current commercially available options and outlines development work underway to build custom measurement solutions for NASA's fabric structures.

  11. n/a

    NASA Image and Video Library

    1985-11-01

    The crew assigned to the STS-61B mission included (kneeling left to right) Bryan D. O’conner, pilot; and Brewster H. Shaw, commander. On the back row, left to right, are Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission’s primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Autralia); and SATCOM KU-2 (RCA Americom. Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, VA and Marshall Space Flight Center (MSFC), the Assembly Concept for Construction of Erectable Space Structures (ACCESS) was developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). The primary objective of this experiment was to test the ACCESS structural assembly concept for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  12. STS-61B Crew Portrait

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The crew assigned to the STS-61B mission included (kneeling left to right) Bryan D. O'conner, pilot; and Brewster H. Shaw, commander. On the back row, left to right, are Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Autralia); and SATCOM KU-2 (RCA Americom. Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, VA and Marshall Space Flight Center (MSFC), the Assembly Concept for Construction of Erectable Space Structures (ACCESS) was developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). The primary objective of this experiment was to test the ACCESS structural assembly concept for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  13. Bigelow Expandable Activity Module (BEAM) - ISS Inflatable Module Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Dasgupta, Rajib; Munday, Steve; Valle, Gerard D.

    2014-01-01

    INNOVATION: BEAM is a pathway project demonstrating the design, fabrication, test, certification, integration, operation, on-orbit performance, and disposal of the first ever man-rated space inflatable structure. The groundwork laid through the BEAM project will support developing and launching a larger inflatable space structure with even greater mass per volume (M/V) advantages need for longer space missions. OVERVIEW: Inflatable structures have been shown to have much lower mass per volume ratios (M/V) when compared with conventional space structures. BEAM is an expandable structure, launched in a packed state, and then expanded once on orbit. It is a temporary experimental module to be used for gathering structural, thermal, and radiation data while on orbit. BEAM will be launched on Space X-8, be extracted from the dragon trunk, and will attach to ISS at Node 3- Aft. BEAM performance will be monitored over a two-year period and then BEAM will be jettison using the SSRMS.

  14. Combined electron energy-loss and cathodoluminescence spectroscopy on individual and composite plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Coenen, Toon; Schoen, David T.; Brenny, Benjamin J. M.; Polman, Albert; Brongersma, Mark L.

    2016-05-01

    We systematically investigate the plasmonic "dolmen" geometry and its constituent elements using electron energy-loss spectroscopy and cathodoluminescence spectroscopy. In particular, we study the effects of the particle size and spacing on the resonant behavior and interparticle coupling. Because we apply both techniques on the same structures we can directly compare the results and investigate the radiative versus nonradiative character of the different modes. We find that the cathodoluminescence response is significantly lower than the electron energy-loss response for higher-energy modes because strong absorption reduces the scattering efficiency in this regime. Furthermore, we show that the overall resonant response roughly scales with size as expected for plasmonic structures but that the transverse resonant modes do become more dominant in larger structures due to a relative reduction in Ohmic dissipation. Using EELS and CL we can rigorously study coupling between the elements and show that the coupling diminishes for larger spacings.

  15. Space Shuttle Projects

    NASA Image and Video Library

    1985-11-30

    The crew assigned to the STS-61B mission included Bryan D. O’Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission’s primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). The primary objective of this experiment was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction. In this STS-61B onboard photo, astronaut Ross was working on the ACCESS experiment during an Extravehicular Activity (EVA).

  16. Space Shuttle Projects

    NASA Image and Video Library

    1985-11-30

    The crew assigned to the STS-61B mission included Bryan D. O’Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission’s primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Ross works on ACCESS high above the orbiter. The primary objective of these experiments was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  17. Space Shuttle Projects

    NASA Image and Video Library

    1985-11-30

    The crew assigned to the STS-61B mission included Bryan D. O’Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission’s primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), the EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Spring was working on the EASE during an Extravehicular Activity (EVA). The primary objective of this experiment was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  18. Summary of LaRC 2-inch Erectable Joint Hardware Heritage Test Data

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Watson, Judith J.

    2016-01-01

    As the National Space Transportation System (STS, also known as the Space Shuttle) went into service during the early 1980's, NASA envisioned many missions of exploration and discovery that could take advantage of the STS capabilities. These missions included: large orbiting space stations, large space science telescopes and large spacecraft for manned missions to the Moon and Mars. The missions required structures that were significantly larger than the payload volume available on the STS. NASA Langley Research Center (LaRC) conducted studies to design and develop the technology needed to assemble the large space structures in orbit. LaRC focused on technology for erectable truss structures, in particular, the joint that connects the truss struts at the truss nodes. When the NASA research in large erectable space structures ended in the early 1990's, a significant amount of structural testing had been performed on the LaRC 2-inch erectable joint that was never published. An extensive set of historical information and data has been reviewed and the joint structural testing results from this historical data are compiled and summarized in this report.

  19. Genetic Optimization of a Tensegrity Structure

    NASA Technical Reports Server (NTRS)

    Taylor, Jaime R.

    2002-01-01

    Marshall Space Flight Center (MSFC) is charged with developing advanced technologies for space telescopes. The next generation of space optics will be very large and lightweight. Tensegrity structures are built of compressive members (bars), and tensile members (strings). For most materials, the tensile strength of a longitudinal member is larger than its buckling strength; therefore a large stiffness to mass ratio can be achieved by increasing the use of tensile members. Tensegrities are the epitome of lightweight structures, since they take advantage of the larger tensile strength of materials. The compressive members of tensegrity structures are disjoint allowing compact storage of the structure. The structure has the potential to eliminate the requirement for assembly by man in space; it can be deployed by adjustments in its cable tension. A tensegrity structure can be more reliably modeled since none of the individual members experience bending moments. (Members that experience deformation in more than one dimension are much harder to model.) A. Keane and S. Brown designed a satellite boom truss system with an enhanced vibration performance. They started with a standard truss system, then used a genetic algorithm to alter the design, while optimizing the vibration performance. An improvement of over 20,000% in frequency-averaged energy levels was obtained using this approach. In this report an introduction to tensegrity structures is given, along with a description of how to generate the nodal coordinates and connectivity of a multiple stage cylindrical tensegrity structure. A description of how finite elements can be used to develop a stiffness and mass matrix so that the modes of vibration can be determined from the eigenvalue problem is shown. A brief description of a micro genetic algorithm is then presented.

  20. Astronaut Ross Approaches Assembly Concept for Construction of Erectable Space Structure (ACCESS)

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Ross, perched on the Manipulator Foot Restraint (MFR) approaches the erected ACCESS. The primary objective of these experiments was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  1. STS-61B Astronaut Ross Works on Assembly Concept for Construction of Erectable Space Structure

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo astronaut Ross, located on the Manipulator Foot Restraint (MFR) over the cargo bay, erects ACCESS. The primary objective of this experiment was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  2. Ross Works on the Assembly Concept for Construction of Erectable Space Structure (ACCESS) During

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Ross works on ACCESS high above the orbiter. The primary objective of these experiments was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  3. Development of magnetostrictive active members for control of space structures

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce G.; Avakian, Kevin M.; Fenn, Ralph C.; Gaffney, Monique S.; Gerver, Michael J.; Hawkey, Timothy J.; Boudreau, Donald J.

    1992-01-01

    The goal of this Phase 2 Small Business Innovative Research (SBIR) project was to determine the technical feasibility of developing magnetostrictive active members for use as truss elements in space structures. Active members control elastic vibrations of truss-based space structures and integrate the functions of truss structure element, actively controlled actuator, and sensor. The active members must control structural motion to the sub-micron level and, for many proposed space applications, work at cryogenic temperatures. Under this program both room temperature and cryogenic temperature magnetostrictive active members were designed, fabricated, and tested. The results of these performance tests indicated that room temperature magnetostrictive actuators feature higher strain, stiffness, and force capability with lower amplifier requirements than similarly sized piezoelectric or electrostrictive active members, at the cost of higher mass. Two different cryogenic temperature magnetostrictive materials were tested at liquid nitrogen temperatures, both with larger strain capability than the room temperature magnetostrictive materials. The cryogenic active member development included the design and fabrication of a cryostat that allows operation of the cryogenic active member in a space structure testbed.

  4. Development of magnetostrictive active members for control of space structures

    NASA Astrophysics Data System (ADS)

    Johnson, Bruce G.; Avakian, Kevin M.; Fenn, Ralph C.; Gaffney, Monique S.; Gerver, Michael J.; Hawkey, Timothy J.; Boudreau, Donald J.

    1992-08-01

    The goal of this Phase 2 Small Business Innovative Research (SBIR) project was to determine the technical feasibility of developing magnetostrictive active members for use as truss elements in space structures. Active members control elastic vibrations of truss-based space structures and integrate the functions of truss structure element, actively controlled actuator, and sensor. The active members must control structural motion to the sub-micron level and, for many proposed space applications, work at cryogenic temperatures. Under this program both room temperature and cryogenic temperature magnetostrictive active members were designed, fabricated, and tested. The results of these performance tests indicated that room temperature magnetostrictive actuators feature higher strain, stiffness, and force capability with lower amplifier requirements than similarly sized piezoelectric or electrostrictive active members, at the cost of higher mass. Two different cryogenic temperature magnetostrictive materials were tested at liquid nitrogen temperatures, both with larger strain capability than the room temperature magnetostrictive materials. The cryogenic active member development included the design and fabrication of a cryostat that allows operation of the cryogenic active member in a space structure testbed.

  5. Assembly of Space CFRP Structures with Racing Sailing Boats Technology

    NASA Astrophysics Data System (ADS)

    Nieto, Jose; Yuste, Laura; Pipo, Alvaro; Santarsiero, Pablo; Bureo, Rafael

    2014-06-01

    Carbon Fiber Reinforced Plastic (CFRP) is commonly used in space applications to get structures with good mechanical performances and a reduced mass. Most of larger parts of spatial structures are already made of CFRP but the achieved weight saving may be jeopardized by the use of metallic brackets as joining elements. This paper describes the work carried out to study and evaluate ways of reducing weight and costs of the joints between structural elements commonly used in space applications.The main objective of this project is to adapt design solutions coming from the racing sailing boats technology to space applications: the use of out-of autoclave (OoA) cured CFRP joints. In addition to that other CFRP solution common in space business, 3D- RTM Bracket, has been evaluated.This development studies the manufacturing and assembly feasibility making use of these CFRP technologies.This study also compares traditional metallic solutions with innovative CFRP ones in terms of mechanical performances at elementary level. Weight and cost of presented solutions are also compared.

  6. Space Shuttle Projects

    NASA Image and Video Library

    1985-11-30

    The crew assigned to the STS-61B mission included Bryan D. O’Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission’s primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo astronaut Ross, located on the Manipulator Foot Restraint (MFR) over the cargo bay, erects ACCESS. The primary objective of this experiment was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  7. STS-61B Astronauts Ross and Spring Work on Experimental Assembly of Structures in Extravehicular

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). This STS-61B onboard photo depicts astronauts Ross and Spring working on EASE. The primary objective of these experiments was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  8. Collision avoidance in space

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.; Cour-Palais, B. G.; Taylor, R. E.; Landry, P. M.

    1980-01-01

    Collisions in earth orbital space between operational payloads and various forms of space debris (nonoperational payloads, nonfunctional mission-related objects and fragments resulting from collisions and explosions) are discussed and possible means of avoiding them are considered. From 10,000 to 15,000 objects are estimated to be in earth orbital space, most of which represent spacecraft fragments and debris too small to be detected and tracked by earth-based sensors, and it is considered likely that some of them will be or have already been involved in direct collisions with the ever increasing number of operational satellites and space stations. Means of protecting proposed large space structures and smaller spacecraft from significant damage by larger space objects, particularly in the 400-4000 km altitude range where most debris occurs, include structural redundancy and the double shielding of sensitive components. Other means of collision avoidance are the collection or relocation of satellites, rocket bodies and other objects by the Space Shuttle, the prevention of explosions and the disposal of spent rocket parts by reentry. Finally, a management structure would be required to administer guidelines for the prevention and elimination of space debris.

  9. Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries.

    PubMed

    Sun, Yige; Tang, Jie; Zhang, Kun; Yuan, Jinshi; Li, Jing; Zhu, Da-Ming; Ozawa, Kiyoshi; Qin, Lu-Chang

    2017-02-16

    Hydrazine-reduced graphite oxide and graphene oxide were synthesized to compare their performances as anode materials in lithium-ion batteries and sodium-ion batteries. Reduced graphite oxide inherits the layer structure of graphite, with an average spacing between neighboring layers (d-spacing) of 0.374 nm; this exceeds the d-spacing of graphite (0.335 nm). The larger d-spacing provides wider channels for transporting lithium ions and sodium ions in the material. We showed that reduced graphite oxide as an anode in lithium-ion batteries can reach a specific capacity of 917 mA h g -1 , which is about three times of 372 mA h g -1 , the value expected for the LiC 6 structures on the electrode. This increase is consistent with the wider d-spacing, which enhances lithium intercalation and de-intercalation on the electrodes. The electrochemical performance of the lithium-ion batteries and sodium-ion batteries with reduced graphite oxide anodes show a noticeable improvement compared to those with reduced graphene oxide anodes. This improvement indicates that reduced graphite oxide, with larger interlayer spacing, has fewer defects and is thus more stable. In summary, we found that reduced graphite oxide may be a more favorable form of graphene for the fabrication of electrodes for lithium-ion and sodium-ion batteries and other energy storage devices.

  10. Conceptual design of a coherent optical system of modular imaging collectors (COSMIC). [telescope array deployed by space shuttle in 1990's

    NASA Technical Reports Server (NTRS)

    Nein, M. E.; Davis, B. G.

    1982-01-01

    The Coherent Optical System of Modular Imaging Collectors (COSMIC) is the design concept for a phase-coherent optical telescope array that may be placed in earth orbit by the Space Shuttle in the 1990s. The initial system module is a minimum redundancy array whose photon collecting area is three times larger than that of the Space Telescope, and possesses a one-dimensional resoution of better than 0.01 arcsec in the visible range. Thermal structural requirements are assessed. Although the coherent beam combination requirements will be met by an active control system, the COSMIC structural/thermal design must meet more stringent performance criteria than even those of the Space Telescope.

  11. On the use of cartographic projections in visualizing phylo-genetic tree space

    PubMed Central

    2010-01-01

    Phylogenetic analysis is becoming an increasingly important tool for biological research. Applications include epidemiological studies, drug development, and evolutionary analysis. Phylogenetic search is a known NP-Hard problem. The size of the data sets which can be analyzed is limited by the exponential growth in the number of trees that must be considered as the problem size increases. A better understanding of the problem space could lead to better methods, which in turn could lead to the feasible analysis of more data sets. We present a definition of phylogenetic tree space and a visualization of this space that shows significant exploitable structure. This structure can be used to develop search methods capable of handling much larger data sets. PMID:20529355

  12. Parametric State Space Structuring

    NASA Technical Reports Server (NTRS)

    Ciardo, Gianfranco; Tilgner, Marco

    1997-01-01

    Structured approaches based on Kronecker operators for the description and solution of the infinitesimal generator of a continuous-time Markov chains are receiving increasing interest. However, their main advantage, a substantial reduction in the memory requirements during the numerical solution, comes at a price. Methods based on the "potential state space" allocate a probability vector that might be much larger than actually needed. Methods based on the "actual state space", instead, have an additional logarithmic overhead. We present an approach that realizes the advantages of both methods with none of their disadvantages, by partitioning the local state spaces of each submodel. We apply our results to a model of software rendezvous, and show how they reduce memory requirements while, at the same time, improving the efficiency of the computation.

  13. STS-61B Astronaut Ross During ACCESS Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, VA and the Marshall Space Flight Center (MSFC), ACCESS and EASE were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Ross was working on the ACCESS experiment during an Extravehicular Activity (EVA). The primary objective of this experiment was to test the ACCESS structural assembly concept for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  14. STS-61B Astronaut Spring During EASE Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), the EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Spring was working on the EASE during an Extravehicular Activity (EVA). The primary objective of this experiment was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  15. STS-61B Astronaut Ross During ACCESS Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). The primary objective of this experiment was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction. In this STS-61B onboard photo, astronaut Ross was working on the ACCESS experiment during an Extravehicular Activity (EVA).

  16. Cyclic Deformation Microstructure in Heavily Cold-Drawn Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Xie, Xingfei; Ning, Dong; Sun, Jian

    2018-04-01

    Cyclic deformation microstructure of the heavily cold-drawn austenitic stainless steel is significantly influenced by the spacing between mechanical twins introduced by prior cold drawing. Well-developed dislocation cells form between mechanical twins with the spacing larger than about 800 nm. Persistent slip band (PSB)-like structure with ladders takes place between mechanical twins spacing from 300 to 800 nm. Few dislocations occur between neighboring mechanical twins with spacing less than about 100 nm. Pre-existing mechanical twins and deformation bands segment austenitic grains, facilitating multi-slip and consequently suppressing PSB formation.

  17. Cyclic Deformation Microstructure in Heavily Cold-Drawn Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Xie, Xingfei; Ning, Dong; Sun, Jian

    2018-07-01

    Cyclic deformation microstructure of the heavily cold-drawn austenitic stainless steel is significantly influenced by the spacing between mechanical twins introduced by prior cold drawing. Well-developed dislocation cells form between mechanical twins with the spacing larger than about 800 nm. Persistent slip band (PSB)-like structure with ladders takes place between mechanical twins spacing from 300 to 800 nm. Few dislocations occur between neighboring mechanical twins with spacing less than about 100 nm. Pre-existing mechanical twins and deformation bands segment austenitic grains, facilitating multi-slip and consequently suppressing PSB formation.

  18. Automatic Classification of Protein Structure Using the Maximum Contact Map Overlap Metric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andonov, Rumen; Djidjev, Hristo Nikolov; Klau, Gunnar W.

    In this paper, we propose a new distance measure for comparing two protein structures based on their contact map representations. We show that our novel measure, which we refer to as the maximum contact map overlap (max-CMO) metric, satisfies all properties of a metric on the space of protein representations. Having a metric in that space allows one to avoid pairwise comparisons on the entire database and, thus, to significantly accelerate exploring the protein space compared to no-metric spaces. We show on a gold standard superfamily classification benchmark set of 6759 proteins that our exact k-nearest neighbor (k-NN) scheme classifiesmore » up to 224 out of 236 queries correctly and on a larger, extended version of the benchmark with 60; 850 additional structures, up to 1361 out of 1369 queries. Finally, our k-NN classification thus provides a promising approach for the automatic classification of protein structures based on flexible contact map overlap alignments.« less

  19. Automatic Classification of Protein Structure Using the Maximum Contact Map Overlap Metric

    DOE PAGES

    Andonov, Rumen; Djidjev, Hristo Nikolov; Klau, Gunnar W.; ...

    2015-10-09

    In this paper, we propose a new distance measure for comparing two protein structures based on their contact map representations. We show that our novel measure, which we refer to as the maximum contact map overlap (max-CMO) metric, satisfies all properties of a metric on the space of protein representations. Having a metric in that space allows one to avoid pairwise comparisons on the entire database and, thus, to significantly accelerate exploring the protein space compared to no-metric spaces. We show on a gold standard superfamily classification benchmark set of 6759 proteins that our exact k-nearest neighbor (k-NN) scheme classifiesmore » up to 224 out of 236 queries correctly and on a larger, extended version of the benchmark with 60; 850 additional structures, up to 1361 out of 1369 queries. Finally, our k-NN classification thus provides a promising approach for the automatic classification of protein structures based on flexible contact map overlap alignments.« less

  20. Visualizing Phylogenetic Treespace Using Cartographic Projections

    NASA Astrophysics Data System (ADS)

    Sundberg, Kenneth; Clement, Mark; Snell, Quinn

    Phylogenetic analysis is becoming an increasingly important tool for biological research. Applications include epidemiological studies, drug development, and evolutionary analysis. Phylogenetic search is a known NP-Hard problem. The size of the data sets which can be analyzed is limited by the exponential growth in the number of trees that must be considered as the problem size increases. A better understanding of the problem space could lead to better methods, which in turn could lead to the feasible analysis of more data sets. We present a definition of phylogenetic tree space and a visualization of this space that shows significant exploitable structure. This structure can be used to develop search methods capable of handling much larger datasets.

  1. Costs and benefits of future heavy Space Freighters

    NASA Astrophysics Data System (ADS)

    Arend, H.

    1987-10-01

    A class of two-stage reusable ballistic Space Freighters with nominal launch masses of 7000 metric tons for transport of heavy payloads into low earth orbits is investigated in this paper with spcial regard to vehicle cost efficiency. A life-cycle cost analysis shows that Space Freighters with a conventional aluminum structure offer significantly lower specific transportation costs than today's systems for large payload markets and high launch rates. Advanced structural materials and thermal protection systems offer further important reductions not only with regard to vehicle mass but also with respect to specific transportation cost. A phased introduction of these technologies is cost efficient for larger programs with more than 100 vehicles.

  2. Using Minimum-Surface Bodies for Iteration Space Partitioning

    NASA Technical Reports Server (NTRS)

    Frumlin, Michael; VanderWijngaart, Rob F.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    A number of known techniques for improving cache performance in scientific computations involve the reordering of the iteration space. Some of these reorderings can be considered as coverings of the iteration space with the sets having good surface-to-volume ratio. Use of such sets reduces the number of cache misses in computations of local operators having the iteration space as a domain. We study coverings of iteration spaces represented by structured and unstructured grids. For structured grids we introduce a covering based on successive minima tiles of the interference lattice of the grid. We show that the covering has good surface-to-volume ratio and present a computer experiment showing actual reduction of the cache misses achieved by using these tiles. For unstructured grids no cache efficient covering can be guaranteed. We present a triangulation of a 3-dimensional cube such that any local operator on the corresponding grid has significantly larger number of cache misses than a similar operator on a structured grid.

  3. Test Frame for Gravity Offload Systems

    NASA Technical Reports Server (NTRS)

    Murray, Alexander R.

    2005-01-01

    Advances in space telescope and aperture technology have created a need to launch larger structures into space. Traditional truss structures will be too heavy and bulky to be effectively used in the next generation of space-based structures. Large deployable structures are a possible solution. By packaging deployable trusses, the cargo volume of these large structures greatly decreases. The ultimate goal is to three dimensionally measure a boom's deployment in simulated microgravity. This project outlines the construction of the test frame that supports a gravity offload system. The test frame is stable enough to hold the gravity offload system and does not interfere with deployment of, or vibrations in, the deployable test boom. The natural frequencies and stability of the frame were engineered in FEMAP. The test frame was developed to have natural frequencies that would not match the first two modes of the deployable beam. The frame was then modeled in Solidworks and constructed. The test frame constructed is a stable base to perform studies on deployable structures.

  4. Spacecraft Dynamics and Control Program at AFRPL

    NASA Technical Reports Server (NTRS)

    Das, A.; Slimak, L. K. S.; Schloegel, W. T.

    1986-01-01

    A number of future DOD and NASA spacecraft such as the space based radar will be not only an order of magnitude larger in dimension than the current spacecraft, but will exhibit extreme structural flexibility with very low structural vibration frequencies. Another class of spacecraft (such as the space defense platforms) will combine large physical size with extremely precise pointing requirement. Such problems require a total departure from the traditional methods of modeling and control system design of spacecraft where structural flexibility is treated as a secondary effect. With these problems in mind, the Air Force Rocket Propulsion Laboratory (AFRPL) initiated research to develop dynamics and control technology so as to enable the future large space structures (LSS). AFRPL's effort in this area can be subdivided into the following three overlapping areas: (1) ground experiments, (2) spacecraft modeling and control, and (3) sensors and actuators. Both the in-house and contractual efforts of the AFRPL in LSS are summarized.

  5. Around Marshall

    NASA Image and Video Library

    1972-01-01

    This is a cutaway illustration of the Neutral Buoyancy Simulator (NBS) at the Marshall Space Flight Center (MSFC ). The MSFC NBS provided an excellent environment for testing hardware to examine how it would operate in space and for evaluating techniques for space construction and spacecraft servicing. Here, engineers, designers, and astronauts performed various tests to develop basic concepts, preliminary designs, final designs, and crew procedures. The NBS was constructed of welded steel with polyester-resin coating. The water tank was 75-feet (22.9- meters) in diameter, 40-feet (12.2-meters) deep, and held 1.32 million gallons of water. Since it opened for operation in 1968, the NBS had supported a number of successful space missions, such as the Skylab, Solar Maximum Mission Satellite, Marned Maneuvering Unit, Experimental Assembly of Structures in Extravehicular Activity/Assembly Concept for Construction of Erectable Space Structures (EASE/ACCESS), the Hubble Space Telescope, and the Space Station. The function of the MSFC NBS was moved to the larger simulator at the Johnson Space Center and is no longer operational.

  6. The effect of sensor spacing on wind measurements at the Shuttle Landing Facility

    NASA Technical Reports Server (NTRS)

    Merceret, Francis J.

    1995-01-01

    This document presents results of a field study of the effect of sensor spacing on the validity of wind measurements at the Space Shuttle landing Facility (SLF). Standard measurements are made at one second intervals from 30 foot (9.1m) towers located 500 feet (152m) from the SLF centerline. The centerline winds are not exactly the same as those measured by the towers. This study quantifies the differences as a function of statistics of the observed winds and distance between the measurements and points of interest. The field program used logarithmically spaced portable wind towers to measure wind speed and direction over a range of conditions. Correlations, spectra, moments, and structure functions were computed. A universal normalization for structure functions was devised. The normalized structure functions increase as the 2/3 power of separation distance until an asymptotic value is approached. This occurs at spacings of several hundred feet (about 100m). At larger spacings, the structure functions are bounded by the asymptote. This enables quantitative estimates of the expected differences between the winds at the measurement point and the points of interest to be made from the measured wind statistics. A procedure is provided for making these estimates.

  7. Relative Suffix Trees.

    PubMed

    Farruggia, Andrea; Gagie, Travis; Navarro, Gonzalo; Puglisi, Simon J; Sirén, Jouni

    2018-05-01

    Suffix trees are one of the most versatile data structures in stringology, with many applications in bioinformatics. Their main drawback is their size, which can be tens of times larger than the input sequence. Much effort has been put into reducing the space usage, leading ultimately to compressed suffix trees. These compressed data structures can efficiently simulate the suffix tree, while using space proportional to a compressed representation of the sequence. In this work, we take a new approach to compressed suffix trees for repetitive sequence collections, such as collections of individual genomes. We compress the suffix trees of individual sequences relative to the suffix tree of a reference sequence. These relative data structures provide competitive time/space trade-offs, being almost as small as the smallest compressed suffix trees for repetitive collections, and competitive in time with the largest and fastest compressed suffix trees.

  8. Relative Suffix Trees

    PubMed Central

    Farruggia, Andrea; Gagie, Travis; Navarro, Gonzalo; Puglisi, Simon J; Sirén, Jouni

    2018-01-01

    Abstract Suffix trees are one of the most versatile data structures in stringology, with many applications in bioinformatics. Their main drawback is their size, which can be tens of times larger than the input sequence. Much effort has been put into reducing the space usage, leading ultimately to compressed suffix trees. These compressed data structures can efficiently simulate the suffix tree, while using space proportional to a compressed representation of the sequence. In this work, we take a new approach to compressed suffix trees for repetitive sequence collections, such as collections of individual genomes. We compress the suffix trees of individual sequences relative to the suffix tree of a reference sequence. These relative data structures provide competitive time/space trade-offs, being almost as small as the smallest compressed suffix trees for repetitive collections, and competitive in time with the largest and fastest compressed suffix trees. PMID:29795706

  9. Equivalent-Continuum Modeling With Application to Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Gates, Thomas S.; Nicholson, Lee M.; Wise, Kristopher E.

    2002-01-01

    A method has been proposed for developing structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with equivalent-continuum models. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As important examples with direct application to the development and characterization of single-walled carbon nanotubes and the design of nanotube-based devices, the modeling technique has been applied to determine the effective-continuum geometry and bending rigidity of a graphene sheet. A representative volume element of the chemical structure of graphene has been substituted with equivalent-truss and equivalent continuum models. As a result, an effective thickness of the continuum model has been determined. This effective thickness has been shown to be significantly larger than the interatomic spacing of graphite. The effective thickness has been shown to be significantly larger than the inter-planar spacing of graphite. The effective bending rigidity of the equivalent-continuum model of a graphene sheet was determined by equating the vibrational potential energy of the molecular model of a graphene sheet subjected to cylindrical bending with the strain energy of an equivalent continuum plate subjected to cylindrical bending.

  10. Novel In-Space Manufacturing Concepts for the Development of Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Mooney, James T.; Reardon, Patrick; Gregory Don; Manning, Andrew; Blackmon, Jim; Howsman, Tom; Williams, Philip; Brantley, Whitt; Rakoczy, John; Herren, Kenneth

    2006-01-01

    There is a continuous demand for larger, lighter, and higher quality telescopes. Over the past several decades, we have seen the evolution from launchable 2 meter-class telescopes (such as Hubble), to today s demand for deployable 6 meter-class telescopes (such as JWST), to tomorrow s need for up to 150 meter-class telescopes. As the apertures continue to grow, it will become much more difficult and expensive to launch assembled telescope structures. To address this issue, we are seeing the emergence of new novel structural concepts, such as inflatable structures and membrane optics. While these structural concepts do show promise, it is very difficult to achieve and maintain high surface figure quality. Another potential solution to develop large space telescopes is to move the fabrication facility into space and launch the raw materials. In this paper we present initial in-space manufacturing concepts to enable the development of large telescopes. This includes novel approaches for the fabrication of both the optical elements and the telescope support structure. We will also discuss potential optical designs for large space telescopes and describe their relation to the fabrication methods. These concepts are being developed to meet the demanding requirements of DARPA s LASSO (Large Aperture Space Surveillance Optic) program which currently requires a 150 meter optical aperture with a 17 degree field of view.

  11. Study on Parallel 2-DOF Rotation Machanism in Radar

    NASA Astrophysics Data System (ADS)

    Jiang, Ming; Hu, Xuelong; Liu, Lei; Yu, Yunfei

    The spherical parallel machine has become the world's academic and industrial focus of the field in recent years due to its simple and economical manufacture as well as its structural compactness especially suitable for areas where space gesture changes. This paper dwells upon its present research and development home and abroad. The newer machine (RGRR-II) can rotate around the axis z within 360° and the axis y1 from -90° to +90°. It has the advantages such as less moving parts (only 3 parts), larger ratio of work space to machine size, zero mechanic coupling, no singularity. Constructing rotation machine with spherical parallel 2-DOF rotation join (RGRR-II) may realize semispherical movement with zero dead point and extent the range. Control card (PA8000NT Series CNC) is installed in the computer. The card can run the corresponding software which realizes radar movement control. The machine meets the need of radars in plane and satellite which require larger detection range, lighter weight and compacter structure.

  12. Water impact test of aft skirt end ring, and mid ring segments of the Space Shuttle Solid Rocket Booster

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The results of water impact loads tests using aft skirt end ring, and mid ring segments of the Space Shuttle Solid Rocket Booster (SRB) are examined. Dynamic structural response data is developed and an evaluation of the model in various configurations is presented. Impact velocities are determined for the SRB with the larger main chute system. Various failure modes are also investigated.

  13. International Space Station (ISS)

    NASA Image and Video Library

    2000-05-01

    This photograph depicts the International Space Station's (ISS) Joint Airlock Module undergoing exhaustive structural and systems testing in the Space Station manufacturing facility at the Marshall Space Flight Center (MSFC) prior to shipment to the Kennedy Space Center. The Airlock includes two sections. The larger equipment lock, on the left, will store spacesuits and associated gear and the narrower crewlock is on the right, from which the astronauts will exit into space for extravehicular activity. The airlock is 18 feet long and has a mass of about 13,500 pounds. It was launched to the station aboard the Space Shuttle orbiter Atlantis (STS-104 mission) on July 12, 2001. The MSFC is playing a primary role in NASA's development, manufacturing, and operations of the ISS.

  14. ReHypar: A Recursive Hybrid Chunk Partitioning Method Using NAND-Flash Memory SSD

    PubMed Central

    Park, Sung-Soon; Lim, Cheol-Su

    2014-01-01

    Due to the rapid development of flash memory, SSD is considered to be the replacement of HDD in the storage market. Although SSD retains several promising characteristics, such as high random I/O performance and nonvolatility, its high expense per capacity is the main obstacle in replacing HDD in all storage solutions. An alternative is to provide a hybrid structure where a small portion of SSD address space is combined with the much larger HDD address space. In such a structure, maximizing the space utilization of SSD in a cost-effective way is extremely important to generate high I/O performance. We developed ReHypar (recursive hybrid chunk partitioning) that enables improving the space utilization of SSD in the hybrid structure. The first objective of ReHypar is to mitigate the fragmentation overhead of SSD address space, by reusing the remaining free space of I/O units as much as possible. Furthermore, ReHypar allows defining several, logical data sections in SSD address space, with each of those sections being configured with the different I/O unit. We integrated ReHypar with ext2 and ext4 and evaluated it using two public benchmarks including IOzone and Postmark. PMID:24987741

  15. The Time-Dependent Wavelet Spectrum of HH 1 and 2

    NASA Astrophysics Data System (ADS)

    Raga, A. C.; Reipurth, B.; Esquivel, A.; González-Gómez, D.; Riera, A.

    2018-04-01

    We have calculated the wavelet spectra of four epochs (spanning ≍20 yr) of Hα and [S II] HST images of HH 1 and 2. From these spectra we calculated the distribution functions of the (angular) radii of the emission structures. We found that the size distributions have maxima (corresponding to the characteristic sizes of the observed structures) with radii that are logarithmically spaced with factors of ≍2→3 between the successive peaks. The positions of these peaks generally showed small shifts towards larger sizes as a function of time. This result indicates that the structures of HH 1 and 2 have a general expansion (seen at all scales), and/or are the result of a sequence of merging events resulting in the formation of knots with larger characteristic sizes.

  16. Exploring the parameter space of the coarse-grained UNRES force field by random search: selecting a transferable medium-resolution force field.

    PubMed

    He, Yi; Xiao, Yi; Liwo, Adam; Scheraga, Harold A

    2009-10-01

    We explored the energy-parameter space of our coarse-grained UNRES force field for large-scale ab initio simulations of protein folding, to obtain good initial approximations for hierarchical optimization of the force field with new virtual-bond-angle bending and side-chain-rotamer potentials which we recently introduced to replace the statistical potentials. 100 sets of energy-term weights were generated randomly, and good sets were selected by carrying out replica-exchange molecular dynamics simulations of two peptides with a minimal alpha-helical and a minimal beta-hairpin fold, respectively: the tryptophan cage (PDB code: 1L2Y) and tryptophan zipper (PDB code: 1LE1). Eight sets of parameters produced native-like structures of these two peptides. These eight sets were tested on two larger proteins: the engrailed homeodomain (PDB code: 1ENH) and FBP WW domain (PDB code: 1E0L); two sets were found to produce native-like conformations of these proteins. These two sets were tested further on a larger set of nine proteins with alpha or alpha + beta structure and found to locate native-like structures of most of them. These results demonstrate that, in addition to finding reasonable initial starting points for optimization, an extensive search of parameter space is a powerful method to produce a transferable force field. Copyright 2009 Wiley Periodicals, Inc.

  17. Evaluation of structural vacancies for 1/1-Al-Re-Si approximant crystals by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamada, K.; Suzuki, H.; Kitahata, H.; Matsushita, Y.; Nozawa, K.; Komori, F.; Yu, R. S.; Kobayashi, Y.; Ohdaira, T.; Oshima, N.; Suzuki, R.; Takagiwa, Y.; Kimura, K.; Kanazawa, I.

    2018-01-01

    The size of structural vacancies and structural vacancy density of 1/1-Al-Re-Si approximant crystals with different Re compositions were evaluated by positron annihilation lifetime and Doppler broadening measurements. Incident positrons were found to be trapped at the monovacancy-size open space surrounded by Al atoms. From a previous analysis using the maximum entropy method and Rietveld method, such an open space is shown to correspond to the centre of Al icosahedral clusters, which locates at the vertex and body centre. The structural vacancy density of non-metallic Al73Re17Si10 was larger than that of metallic Al73Re15Si12. The observed difference in the structural vacancy density reflects that in bonding nature and may explain that in the physical properties of the two samples.

  18. A novel design for a hybrid space manipulator

    NASA Technical Reports Server (NTRS)

    Shahinpoor, MO

    1991-01-01

    Described are the structural design, kinematics, and characteristics of a robot manipulator for space applications and use as an articulate and powerful space shuttle manipulator. Hybrid manipulators are parallel-serial connection robots that give rise to a multitude of highly precise robot manipulators. These manipulators are modular and can be extended by additional modules over large distances. Every module has a hemispherical work space and collective modules give rise to highly dexterous symmetrical work space. Some basic designs and kinematic structures of these robot manipulators are discussed, the associated direct and inverse kinematics formulations are presented, and solutions to the inverse kinematic problem are obtained explicitly and elaborated upon. These robot manipulators are shown to have a strength-to-weight ratio that is many times larger than the value that is currently available with industrial or research manipulators. This is due to the fact that these hybrid manipulators are stress-compensated and have an ultralight weight, yet, they are extremely stiff due to the fact that force distribution in their structure is mostly axial. Actuation is prismatic and can be provided by ball screws for maximum precision.

  19. The role of defensible space for residential structure protection during wildfires

    USGS Publications Warehouse

    Syphard, Alexandra D.; Brennan, Teresa J.; Keeley, Jon E.

    2014-01-01

    With the potential for worsening fire conditions, discussion is escalating over how to best reduce effects on urban communities. A widely supported strategy is the creation of defensible space immediately surrounding homes and other structures. Although state and local governments publish specific guidelines and requirements, there is little empirical evidence to suggest how much vegetation modification is needed to provide significant benefits. We analysed the role of defensible space by mapping and measuring a suite of variables on modern pre-fire aerial photography for 1000 destroyed and 1000 surviving structures for all fires where homes burned from 2001 to 2010 in San Diego County, CA, USA. Structures were more likely to survive a fire with defensible space immediately adjacent to them. The most effective treatment distance varied between 5 and 20 m (16–58 ft) from the structure, but distances larger than 30 m (100 ft) did not provide additional protection, even for structures located on steep slopes. The most effective actions were reducing woody cover up to 40% immediately adjacent to structures and ensuring that vegetation does not overhang or touch the structure. Multiple-regression models showed landscape-scale factors, including low housing density and distances to major roads, were more important in explaining structure destruction. The best long-term solution will involve a suite of prevention measures that include defensible space as well as building design approach, community education and proactive land use planning that limits exposure to fire.

  20. Zeolite-like liquid crystals

    NASA Astrophysics Data System (ADS)

    Poppe, Silvio; Lehmann, Anne; Scholte, Alexander; Prehm, Marko; Zeng, Xiangbing; Ungar, Goran; Tschierske, Carsten

    2015-10-01

    Zeolites represent inorganic solid-state materials with porous structures of fascinating complexity. Recently, significant progress was made by reticular synthesis of related organic solid-state materials, such as metal-organic or covalent organic frameworks. Herein we go a step further and report the first example of a fluid honeycomb mimicking a zeolitic framework. In this unique self-assembled liquid crystalline structure, transverse-lying π-conjugated rod-like molecules form pentagonal channels, encircling larger octagonal channels, a structural motif also found in some zeolites. Additional bundles of coaxial molecules penetrate the centres of the larger channels, unreachable by chains attached to the honeycomb framework. This creates a unique fluid hybrid structure combining positive and negative anisotropies, providing the potential for tuning the directionality of anisotropic optical, electrical and magnetic properties. This work also demonstrates a new approach to complex soft-matter self-assembly, by using frustration between space filling and the entropic penalty of chain extension.

  1. Body-Building: A Female Student's Use of the Transitional Spaces of a Painting Degree Course to Explore Her Sexual Desirability and Aesthetics as a "Grotesque" Female Body

    ERIC Educational Resources Information Center

    Chittenden, Tara

    2013-01-01

    Whilst a part of the fine art degree course is about teaching technical skills and learning from tutor/peer group crits, a larger part is about the facilitation of a "safe" and structured space in which students gain the confidence to experiment with personal ideas, to hone a self-critical reflection and understand who they are as individuals,…

  2. Recent developments in deployment analysis simulation using a multi-body computer code

    NASA Technical Reports Server (NTRS)

    Housner, Jerrold M.

    1989-01-01

    Deployment is a candidate mode for construction of structural space systems components. By its very nature, deployment is a dynamic event, often involving large angle unfolding of flexible beam members. Validation of proposed designs and conceptual deployment mechanisms is enhanced through analysis. Analysis may be used to determine member loads thus helping to establish deployment rates and deployment control requirements for a given concept. Futhermore, member flexibility, joint free-play, manufacturing tolerances, and imperfections can affect the reliability of deployment. Analyses which include these effects can aid in reducing risks associated with a particular concept. Ground tests which can play a similar role to that of analyses are difficult and expensive to perform. Suspension systems just for vibration ground tests of large space structures in a 1 g environment present many challenges. Suspension of a structure which spatially expands is even more challenging. Analysis validation through experimental confirmation on relatively small simple models would permit analytical extrapolation to larger more complex space structures.

  3. Structural and practical identifiability analysis of S-system.

    PubMed

    Zhan, Choujun; Li, Benjamin Yee Shing; Yeung, Lam Fat

    2015-12-01

    In the field of systems biology, biological reaction networks are usually modelled by ordinary differential equations. A sub-class, the S-systems representation, is a widely used form of modelling. Existing S-systems identification techniques assume that the system itself is always structurally identifiable. However, due to practical limitations, biological reaction networks are often only partially measured. In addition, the captured data only covers a limited trajectory, therefore data can only be considered as a local snapshot of the system responses with respect to the complete set of state trajectories over the entire state space. Hence the estimated model can only reflect partial system dynamics and may not be unique. To improve the identification quality, the structural and practical identifiablility of S-system are studied. The S-system is shown to be identifiable under a set of assumptions. Then, an application on yeast fermentation pathway was conducted. Two case studies were chosen; where the first case is based on a larger state trajectories and the second case is based on a smaller one. By expanding the dataset which span a relatively larger state space, the uncertainty of the estimated system can be reduced. The results indicated that initial concentration is related to the practical identifiablity.

  4. Spatial education: improving conservation delivery through space-structured decision making

    USGS Publications Warehouse

    Moore, Clinton T.; Shaffer, Terry L.; Gannon, Jill J.

    2013-01-01

    Adaptive management is a form of structured decision making designed to guide management of natural resource systems when their behaviors are uncertain. Where decision making can be replicated across units of a landscape, learning can be accelerated, and biological processes can be understood in a larger spatial context. Broad-based partnerships among land management agencies, exemplified by Landscape Conservation Cooperatives (conservation partnerships created through the U.S. Department of the Interior), are potentially ideal environments for implementing spatially structured adaptive management programs.

  5. Preparing to Test for Deep Space

    NASA Image and Video Library

    2015-07-15

    A structural steel section is lifted into place atop the B-2 Test Stand at NASA’s Stennis Space Center as part of modification work to prepare for testing the core stage of NASA’s new Space Launch System. The section is part of the Main Propulsion Test Article (MPTA) framework, which will support the SLS core stage for testing. The existing framework was installed on the stand in the late 1970s to test the shuttle MPTA. However, that framework had to be repositioned and modified to accommodate the larger SLS stage. About 1 million pounds of structural steel has been added, extending the framework about 100 feet higher and providing a new look to the Stennis skyline. Stennis will test the actual flight core stage for the first uncrewed SLS mission, Exploration Mission-1.

  6. Categorical dimensions of human odor descriptor space revealed by non-negative matrix factorization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chennubhotla, Chakra; Castro, Jason

    2013-01-01

    In contrast to most other sensory modalities, the basic perceptual dimensions of olfaction remain un- clear. Here, we use non-negative matrix factorization (NMF) - a dimensionality reduction technique - to uncover structure in a panel of odor profiles, with each odor defined as a point in multi-dimensional descriptor space. The properties of NMF are favorable for the analysis of such lexical and perceptual data, and lead to a high-dimensional account of odor space. We further provide evidence that odor di- mensions apply categorically. That is, odor space is not occupied homogenously, but rather in a discrete and intrinsically clustered manner.more » We discuss the potential implications of these results for the neural coding of odors, as well as for developing classifiers on larger datasets that may be useful for predicting perceptual qualities from chemical structures.« less

  7. Local and average structure of Mn- and La-substituted BiFeO3

    NASA Astrophysics Data System (ADS)

    Jiang, Bo; Selbach, Sverre M.

    2017-06-01

    The local and average structure of solid solutions of the multiferroic perovskite BiFeO3 is investigated by synchrotron X-ray diffraction (XRD) and electron density functional theory (DFT) calculations. The average experimental structure is determined by Rietveld refinement and the local structure by total scattering data analyzed in real space with the pair distribution function (PDF) method. With equal concentrations of La on the Bi site or Mn on the Fe site, La causes larger structural distortions than Mn. Structural models based on DFT relaxed geometry give an improved fit to experimental PDFs compared to models constrained by the space group symmetry. Berry phase calculations predict a higher ferroelectric polarization than the experimental literature values, reflecting that structural disorder is not captured in either average structure space group models or DFT calculations with artificial long range order imposed by periodic boundary conditions. Only by including point defects in a supercell, here Bi vacancies, can DFT calculations reproduce the literature results on the structure and ferroelectric polarization of Mn-substituted BiFeO3. The combination of local and average structure sensitive experimental methods with DFT calculations is useful for illuminating the structure-property-composition relationships in complex functional oxides with local structural distortions.

  8. Local and average structure of Mn- and La-substituted BiFeO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Bo; Selbach, Sverre M.

    2017-06-01

    The local and average structure of solid solutions of the multiferroic perovskite BiFeO 3 is investigated by synchrotron X-ray diffraction (XRD) and electron density functional theory (DFT) calculations. The average experimental structure is determined by Rietveld refinement and the local structure by total scattering data analyzed in real space with the pair distribution function (PDF) method. With equal concentrations of La on the Bi site or Mn on the Fe site, La causes larger structural distortions than Mn. Structural models based on DFT relaxed geometry give an improved fit to experimental PDFs compared to models constrained by the space groupmore » symmetry. Berry phase calculations predict a higher ferroelectric polarization than the experimental literature values, reflecting that structural disorder is not captured in either average structure space group models or DFT calculations with artificial long range order imposed by periodic boundary conditions. Only by including point defects in a supercell, here Bi vacancies, can DFT calculations reproduce the literature results on the structure and ferroelectric polarization of Mn-substituted BiFeO 3. The combination of local and average structure sensitive experimental methods with DFT calculations is useful for illuminating the structure-property-composition relationships in complex functional oxides with local structural distortions.« less

  9. The organization of the cone photoreceptor mosaic measured in the living human retina

    PubMed Central

    Sawides, Lucie; de Castro, Alberto; Burns, Stephen A.

    2016-01-01

    The cone photoreceptors represent the initial fundamental sampling step in the acquisition of visual information. While recent advances in adaptive optics have provided increasingly precise estimates of the packing density and spacing of the cone photoreceptors in the living human retina, little is known about the local cone arrangement beyond a tendency towards hexagonal packing. We analyzed the cone mosaic in data from 10 normal subjects. A technique was applied to calculate the local average cone mosaic structure which allowed us to determine the hexagonality, spacing and orientation of local regions. Using cone spacing estimates, we find the expected decrease in cone density with retinal eccentricity and higher densities along the horizontal meridians as opposed to the vertical meridians. Orientation analysis reveals an asymmetry in the local cone spacing of the hexagonal packing, with cones having a larger local spacing along the horizontal direction. This horizontal/vertical asymmetry is altered at eccentricities larger than 2 degrees in the superior meridian and 2.5 degrees in the inferior meridian. Analysis of hexagon orientations in the central 1.4° of the retina show a tendency for orientation to be locally coherent, with orientation patches consisting of between 35 and 240 cones. PMID:27353225

  10. Load concentration due to missing members in planar faces of a large space truss

    NASA Technical Reports Server (NTRS)

    Waltz, J. E.

    1979-01-01

    A large space structure with members missing was investigated using a finite element analysis. The particular structural configuration was the tetrahedral truss, with attention restricted to one of its planar faces. Initially the finite element model of a complete face was verified by comparing it with known results for some basic loadings. Then an analysis was made of the structure with members near the center removed. Some calculations were made on the influence of the mesh size of a structure containing a hexagonal hole, and an analysis was also made of a structure with a rigid hexagonal insert. In general, load concentration effects in these trusses were significantly lower than classical stress concentration effects in an infinitely wide isotropic plate with a circular rigid inclusion, although larger effects were obtained when a hole extended over several rings of elements.

  11. Impact verification of space suit design for space station

    NASA Technical Reports Server (NTRS)

    Fish, Richard H.

    1987-01-01

    The ballistic limits of single sheet and double sheet structures made of 6061 T6 Aluminum of 1.8 mm and larger nominal thickness were investigated for projectiles of 1.5 mm diameter fired in the Vertical Gun Range Test Facility and NASA Ames Research Center. The hole diameters and sheet deformation behavior were studied for various ratios of sheet spacing to projectile diameter. The results indicate that for projectiles of less than 1.5 mm diameter the ballistic limit exceeds the nominal 10 km/sec orbital debris encounter velocity, if a single-sheet suit of 1.8 mm thickness is behind a single bumper sheet of 1 mm thickness spaced 12.5 mm apart.

  12. Sterically allowed configuration space for amino acid dipeptides

    NASA Astrophysics Data System (ADS)

    Caballero, Diego; Maatta, Jukka; Sammalkorpi, Maria; O'Hern, Corey; Regan, Lynne

    2014-03-01

    Despite recent improvements in computational methods for protein design, we still lack a quantitative, predictive understanding of the intrinsic propensities for amino acids to be in particular backbone or side-chain conformations. This question has remained unsettled for years because of the discrepancies between different experimental approaches. To address it, I performed all-atom hard-sphere simulations of hydrophobic residues with stereo-chemical constraints and non-attractive steric interactions between non-bonded atoms for ALA, ILE, LEU and VAL dipeptide mimetics. For these hard-sphere MD simulations, I show that transitions between α-helix and β-sheet structures only occur when the bond angle τ(N -Cα - C) >110° , and the probability distribution of bond angles for structures in the `bridge' region of ϕ- ψ space is shifted to larger angles compared to that in other regions. In contrast, the relevant bond-angle distributions obtained from most molecular dynamics packages are broader and shifter to larger values. I encounter similar correlations between bond angles and side-chain dihedral angles. The success of these studies is an argument for re-incorporating local stereochemical constraints into computational protein design methodology.

  13. Minimizing Cache Misses Using Minimum-Surface Bodies

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; VanderWijngaart, Rob; Biegel, Bryan (Technical Monitor)

    2002-01-01

    A number of known techniques for improving cache performance in scientific computations involve the reordering of the iteration space. Some of these reorderings can be considered as coverings of the iteration space with the sets having good surface-to-volume ratio. Use of such sets reduces the number of cache misses in computations of local operators having the iteration space as a domain. First, we derive lower bounds which any algorithm must suffer while computing a local operator on a grid. Then we explore coverings of iteration spaces represented by structured and unstructured grids which allow us to approach these lower bounds. For structured grids we introduce a covering by successive minima tiles of the interference lattice of the grid. We show that the covering has low surface-to-volume ratio and present a computer experiment showing actual reduction of the cache misses achieved by using these tiles. For planar unstructured grids we show existence of a covering which reduces the number of cache misses to the level of structured grids. On the other hand, we present a triangulation of a 3-dimensional cube such that any local operator on the corresponding grid has significantly larger number of cache misses than a similar operator on a structured grid.

  14. Investigation of Secondary Neutron Production in Large Space Vehicles for Deep Space

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Koontz, Steve; Reddell, Brandon; Atwell, William; Boeder, Paul

    2016-01-01

    Future NASA missions will focus on deep space and Mars surface operations with large structures necessary for transportation of crew and cargo. In addition to the challenges of manufacturing these large structures, there are added challenges from the space radiation environment and its impacts on the crew, electronics, and vehicle materials. Primary radiation from the sun (solar particle events) and from outside the solar system (galactic cosmic rays) interact with materials of the vehicle and the elements inside the vehicle. These interactions lead to the primary radiation being absorbed or producing secondary radiation (primarily neutrons). With all vehicles, the high-energy primary radiation is of most concern. However, with larger vehicles, there is more opportunity for secondary radiation production, which can be significant enough to cause concern. In a previous paper, we embarked upon our first steps toward studying neutron production from large vehicles by validating our radiation transport codes for neutron environments against flight data. The following paper will extend the previous work to focus on the deep space environment and the resulting neutron flux from large vehicles in this deep space environment.

  15. What to expect from dynamical modelling of galactic haloes - II. The spherical Jeans equation

    NASA Astrophysics Data System (ADS)

    Wang, Wenting; Han, Jiaxin; Cole, Shaun; More, Surhud; Frenk, Carlos; Schaller, Matthieu

    2018-06-01

    The spherical Jeans equation (SJE) is widely used in dynamical modelling of the Milky Way (MW) halo potential. We use haloes and galaxies from the cosmological Millennium-II simulation and hydrodynamical APOSTLE (A Project of Simulations of The Local Environment) simulations to investigate the performance of the SJE in recovering the underlying mass profiles of MW mass haloes. The best-fitting halo mass and concentration parameters scatter by 25 per cent and 40 per cent around their input values, respectively, when dark matter particles are used as tracers. This scatter becomes as large as a factor of 3 when using star particles instead. This is significantly larger than the estimated statistical uncertainty associated with the use of the SJE. The existence of correlated phase-space structures that violate the steady-state assumption of the SJE as well as non-spherical geometries is the principal source of the scatter. Binary haloes show larger scatter because they are more aspherical in shape and have a more perturbed dynamical state. Our results confirm that the number of independent phase-space structures sets an intrinsic limiting precision on dynamical inferences based on the steady-state assumption. Modelling with a radius-independent velocity anisotropy, or using tracers within a limited outer radius, result in significantly larger scatter, but the ensemble-averaged measurement over the whole halo sample is approximately unbiased.

  16. Structural features of biomass in a hybrid MBBR reactor.

    PubMed

    Xiao, G Y; Ganczarczyk, J

    2006-03-01

    The structural features of biomass present in the hybrid MBBR (Moving Bed Biofilm Reactor) aeration tank were studied in two subsequent periods, which differed in hydraulic and substrate loads. The physical characteristics of attached-growth biomass, such as, biofilm thickness, density, porosity, inner and surface fractal dimensions, and those of suspended-growth biomass, such as, floc size distribution, density, porosity, inner and surface fractal dimensions, were investigated in each study period and then compared. The results indicated that biofilm always had a higher density, geometric porosity, and a larger boundary fractal dimension than flocs. Both types of biomass were found to exhibit at least two distinct Sierpinski fractal dimensions, indicating two major different pore space populations. With the increasing wastewater flow, both types of biomass were found to shift their structural properties to larger values, except porosity and surface roughness, which decreased. Floc density and biomass Sierpinski fractals were not affected much by the system loadings.

  17. Recent experience in simultaneous control-structure optimization

    NASA Technical Reports Server (NTRS)

    Salama, M.; Ramaker, R.; Milman, M.

    1989-01-01

    To show the feasibility of simultaneous optimization as design procedure, low order problems were used in conjunction with simple control formulations. The numerical results indicate that simultaneous optimization is not only feasible, but also advantageous. Such advantages come at the expense of introducing complexities beyond those encountered in structure optimization alone, or control optimization alone. Examples include: larger design parameter space, optimization may combine continuous and combinatoric variables, and the combined objective function may be nonconvex. Future extensions to include large order problems, more complex objective functions and constraints, and more sophisticated control formulations will require further research to ensure that the additional complexities do not outweigh the advantages of simultaneous optimization. Some areas requiring more efficient tools than currently available include: multiobjective criteria and nonconvex optimization. Efficient techniques to deal with optimization over combinatoric and continuous variables, and with truncation issues for structure and control parameters of both the model space as well as the design space need to be developed.

  18. Comparison of molecular dynamics and superfamily spaces of protein domain deformation.

    PubMed

    Velázquez-Muriel, Javier A; Rueda, Manuel; Cuesta, Isabel; Pascual-Montano, Alberto; Orozco, Modesto; Carazo, José-María

    2009-02-17

    It is well known the strong relationship between protein structure and flexibility, on one hand, and biological protein function, on the other hand. Technically, protein flexibility exploration is an essential task in many applications, such as protein structure prediction and modeling. In this contribution we have compared two different approaches to explore the flexibility space of protein domains: i) molecular dynamics (MD-space), and ii) the study of the structural changes within superfamily (SF-space). Our analysis indicates that the MD-space and the SF-space display a significant overlap, but are still different enough to be considered as complementary. The SF-space space is wider but less complex than the MD-space, irrespective of the number of members in the superfamily. Also, the SF-space does not sample all possibilities offered by the MD-space, but often introduces very large changes along just a few deformation modes, whose number tend to a plateau as the number of related folds in the superfamily increases. Theoretically, we obtained two conclusions. First, that function restricts the access to some flexibility patterns to evolution, as we observe that when a superfamily member changes to become another, the path does not completely overlap with the physical deformability. Second, that conformational changes from variation in a superfamily are larger and much simpler than those allowed by physical deformability. Methodologically, the conclusion is that both spaces studied are complementary, and have different size and complexity. We expect this fact to have application in fields as 3D-EM/X-ray hybrid models or ab initio protein folding.

  19. Comparison of molecular dynamics and superfamily spaces of protein domain deformation

    PubMed Central

    Velázquez-Muriel, Javier A; Rueda, Manuel; Cuesta, Isabel; Pascual-Montano, Alberto; Orozco, Modesto; Carazo, José-María

    2009-01-01

    Background It is well known the strong relationship between protein structure and flexibility, on one hand, and biological protein function, on the other hand. Technically, protein flexibility exploration is an essential task in many applications, such as protein structure prediction and modeling. In this contribution we have compared two different approaches to explore the flexibility space of protein domains: i) molecular dynamics (MD-space), and ii) the study of the structural changes within superfamily (SF-space). Results Our analysis indicates that the MD-space and the SF-space display a significant overlap, but are still different enough to be considered as complementary. The SF-space space is wider but less complex than the MD-space, irrespective of the number of members in the superfamily. Also, the SF-space does not sample all possibilities offered by the MD-space, but often introduces very large changes along just a few deformation modes, whose number tend to a plateau as the number of related folds in the superfamily increases. Conclusion Theoretically, we obtained two conclusions. First, that function restricts the access to some flexibility patterns to evolution, as we observe that when a superfamily member changes to become another, the path does not completely overlap with the physical deformability. Second, that conformational changes from variation in a superfamily are larger and much simpler than those allowed by physical deformability. Methodologically, the conclusion is that both spaces studied are complementary, and have different size and complexity. We expect this fact to have application in fields as 3D-EM/X-ray hybrid models or ab initio protein folding. PMID:19220918

  20. Nondestructive Structural Damage Detection in Flexible Space Structures Using Vibration Characterization

    NASA Technical Reports Server (NTRS)

    Ricles, James M.

    1991-01-01

    Spacecraft are susceptible to structural damage over their operating life from impact, environmental loads, and fatigue. Structural damage that is not detected and not corrected may potentially cause more damage and eventually catastrophic structural failure. NASA's current fleet of reusable spacecraft, namely the Space Shuttle, has been flown on several missions. In addition, configurations of future NASA space structures, e.g. Space Station Freedom, are larger and more complex than current structures, making them more susceptible to damage as well as being more difficult to inspect. Consequently, a reliable structural damage detection capability is essential to maintain the flight safety of these structures. Visual inspections alone can not locate impending material failure (fatigue cracks, yielding); it can only observe post-failure situations. An alternative approach is to develop an inspection and monitoring system based on vibration characterization that assesses the integrity of structural and mechanical components. A methodology for detecting structural damage is presented. This methodology is based on utilizing modal test data in conjunction with a correlated analytical model of the structure to: (1) identify the structural dynamic characteristics (resonant frequencies and mode shapes) from measurements of ambient motions and/or force excitation; (2) calculate modal residual force vectors to identify the location of structural damage; and (3) conduct a weighted sensitivity analysis in order to assess the extent of mass and stiffness variations, where structural damage is characterized by stiffness reductions. The approach is unique from other existing approaches in that varying system mass and stiffness, mass center locations, the perturbation of both the natural frequencies and mode shapes, and statistical confidence factors for structural parameters and experimental instrumentation are all accounted for directly.

  1. Neutral Buoyancy Simulator: MSFC-Langley joint test of large space structures component assembly:

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. And construction methods had to be efficient due to limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. With the help of the NBS, building a space station became more of a reality. In a joint venture between NASA/Langley Research Center in Hampton, VA and MSFC, the Assembly Concept for Construction of Erectable Space Structures (ACCESS) was developed and demonstrated at MSFC's NBS. The primary objective of this experiment was to test the ACCESS structural assembly concept for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction. Pictured is a demonstration of ACCESS.

  2. Neutral Buoyancy Test - Large Space Structure

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. Construction methods had to be efficient due to the limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. With the help of the NBS, building a space station became more of a reality. In a joint venture between NASA/Langley Research Center in Hampton, Virginia and the MSFC, the Assembly Concept for Construction of Erectable Space Structures (ACCESS) was developed and demonstrated at MSFC's NBS. The primary objective of this experiment was to test the ACCESS structural assembly concept for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction. Pictured is a demonstration of ACCESS.

  3. Neutral Buoyancy Test - NB-18 - Large Space Structure Assembly

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. Construction methods had to be efficient due to the limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. With the help of the NBS, building a space station became more of a reality. In a joint venture between NASA/Langley Research Center in Hampton, Virginia and the MSFC, the Assembly Concept for Construction of Erectable Space Structures (ACCESS) was developed and demonstrated at MSFC's NBS. The primary objective of this experiment was to test the ACCESS structural assembly concept for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction. Pictured is a demonstration of ACCESS.

  4. Selection considerations between ZERODUR® and silicon carbide for dimensionally-stable spaceborne optical telescopes in two-earth-orbits

    NASA Astrophysics Data System (ADS)

    Hull, Tony; Westerhoff, Thomas; Weidmann, Gunter

    2015-09-01

    A key consideration in defining a space telescope mission is definition of the optical materials. This selection defines both the performance of the system and system complexity and cost. Optimal material selection for system stability must consider the thermal environment and its variation. Via numerical simulations, we compare the thermal and structural-mechanical behavior of ZERODUR® and SiC as mirror substrates for telescope assemblies in space. SiC has significantly larger CTE values then ZERODUR®, but also its thermal diffusivity k/(ρcp) is larger, and that helps to homogenize thermal gradients in the mirror. Therefore it is not obvious at first glance which material performs with better dimensional stability under realistic unsteady, inhomogeneous thermal loads. We specifically examine the telescope response to transient, gradient driving, thermal environments representative of low- and high-earth- orbits.

  5. Growing a hypercubical output space in a self-organizing feature map.

    PubMed

    Bauer, H U; Villmann, T

    1997-01-01

    Neural maps project data from an input space onto a neuron position in a (often lower dimensional) output space grid in a neighborhood preserving way, with neighboring neurons in the output space responding to neighboring data points in the input space. A map-learning algorithm can achieve an optimal neighborhood preservation only, if the output space topology roughly matches the effective structure of the data in the input space. We here present a growth algorithm, called the GSOM or growing self-organizing map, which enhances a widespread map self-organization process, Kohonen's self-organizing feature map (SOFM), by an adaptation of the output space grid during learning. The GSOM restricts the output space structure to the shape of a general hypercubical shape, with the overall dimensionality of the grid and its extensions along the different directions being subject of the adaptation. This constraint meets the demands of many larger information processing systems, of which the neural map can be a part. We apply our GSOM-algorithm to three examples, two of which involve real world data. Using recently developed methods for measuring the degree of neighborhood preservation in neural maps, we find the GSOM-algorithm to produce maps which preserve neighborhoods in a nearly optimal fashion.

  6. Configurable Aperture Space Telescope

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Vassigh, Kenny; Bendek, Selman; Young, Zion W; Lynch, Dana H.

    2015-01-01

    In December 2014, we were awarded Center Innovation Fund to evaluate an optical and mechanical concept for a novel implementation of a segmented telescope based on modular, interconnected small sats (satlets). The concept is called CAST, a Configurable Aperture Space Telescope. With a current TRL is 2 we will aim to reach TLR 3 in Sept 2015 by demonstrating a 2x2 mirror system to validate our optical model and error budget, provide strawman mechanical architecture and structural damping analyses, and derive future satlet-based observatory performance requirements. CAST provides an alternative access to visible andor UV wavelength space telescope with 1-meter or larger aperture for NASA SMD Astrophysics and Planetary Science community after the retirement of HST.

  7. Configurable Aperture Space Telescope

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Bendek, Eduardo

    2015-01-01

    In December 2014, we were awarded Center Innovation Fund to evaluate an optical and mechanical concept for a novel implementation of a segmented telescope based on modular, interconnected small sats (satlets). The concept is called CAST, a Configurable Aperture Space Telescope. With a current TRL is 2 we will aim to reach TLR 3 in Sept 2015 by demonstrating a 2x2 mirror system to validate our optical model and error budget, provide straw man mechanical architecture and structural damping analyses, and derive future satlet-based observatory performance requirements. CAST provides an alternative access to visible and/or UV wavelength space telescope with 1-meter or larger aperture for NASA SMD Astrophysics and Planetary Science community after the retirement of HST

  8. Integrated scheduling and resource management. [for Space Station Information System

    NASA Technical Reports Server (NTRS)

    Ward, M. T.

    1987-01-01

    This paper examines the problem of integrated scheduling during the Space Station era. Scheduling for Space Station entails coordinating the support of many distributed users who are sharing common resources and pursuing individual and sometimes conflicting objectives. This paper compares the scheduling integration problems of current missions with those anticipated for the Space Station era. It examines the facilities and the proposed operations environment for Space Station. It concludes that the pattern of interdependecies among the users and facilities, which are the source of the integration problem is well structured, allowing a dividing of the larger problem into smaller problems. It proposes an architecture to support integrated scheduling by scheduling efficiently at local facilities as a function of dependencies with other facilities of the program. A prototype is described that is being developed to demonstrate this integration concept.

  9. Nitrogen-mediated effects of elevated CO2 on intra-aggregate soil pore structure.

    PubMed

    Caplan, Joshua S; Giménez, Daniel; Subroy, Vandana; Heck, Richard J; Prior, Stephen A; Runion, G Brett; Torbert, H Allen

    2017-04-01

    Soil pore structure has a strong influence on water retention, and is itself influenced by plant and microbial dynamics such as root proliferation and microbial exudation. Although increased nitrogen (N) availability and elevated atmospheric CO 2 concentrations (eCO 2 ) often have interacting effects on root and microbial dynamics, it is unclear whether these biotic effects can translate into altered soil pore structure and water retention. This study was based on a long-term experiment (7 yr at the time of sampling) in which a C 4 pasture grass (Paspalum notatum) was grown on a sandy loam soil while provided factorial additions of N and CO 2 . Through an analysis of soil aggregate fractal properties supported by 3D microtomographic imagery, we found that N fertilization induced an increase in intra-aggregate porosity and a simultaneous shift toward greater accumulation of pore space in larger aggregates. These effects were enhanced by eCO 2 and yielded an increase in water retention at pressure potentials near the wilting point of plants. However, eCO 2 alone induced changes in the opposite direction, with larger aggregates containing less pore space than under control conditions, and water retention decreasing accordingly. Results on biotic factors further suggested that organic matter gains or losses induced the observed structural changes. Based on our results, we postulate that the pore structure of many mineral soils could undergo N-dependent changes as atmospheric CO 2 concentrations rise, having global-scale implications for water balance, carbon storage, and related rhizosphere functions. © 2016 John Wiley & Sons Ltd.

  10. Discrete-continuum multiscale model for transport, biomass development and solid restructuring in porous media

    NASA Astrophysics Data System (ADS)

    Ray, Nadja; Rupp, Andreas; Prechtel, Alexander

    2017-09-01

    Upscaling transport in porous media including both biomass development and simultaneous structural changes in the solid matrix is extremely challenging. This is because both affect the medium's porosity as well as mass transport parameters and flow paths. We address this challenge by means of a multiscale model. At the pore scale, the local discontinuous Galerkin (LDG) method is used to solve differential equations describing particularly the bacteria's and the nutrient's development. Likewise, a sticky agent tightening together solid or bio cells is considered. This is combined with a cellular automaton method (CAM) capturing structural changes of the underlying computational domain stemming from biomass development and solid restructuring. Findings from standard homogenization theory are applied to determine the medium's characteristic time- and space-dependent properties. Investigating these results enhances our understanding of the strong interplay between a medium's functional properties and its geometric structure. Finally, integrating such properties as model parameters into models defined on a larger scale enables reflecting the impact of pore scale processes on the larger scale.

  11. Micro- and meso-scale pore structure in mortar in relation to aggregate content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yun, E-mail: yun.gao@ugent.be; De Schutter, Geert; Ye, Guang

    2013-10-15

    Mortar is often viewed as a three-phase composite consisting of aggregate, bulk paste, and an interfacial transition zone (ITZ). However, this description is inconsistent with experimental findings because of the basic assumption that larger pores are only present within the ITZ. In this paper, we use backscattered electron (BSE) imaging to investigate the micro- and meso-scale structure of mortar with varying aggregate content. The results indicate that larger pores are present not only within the ITZ but also within areas far from aggregates. This phenomenon is discussed in detail based on a series of analytical calculations, such as the effectivemore » water binder ratio and the inter-aggregate spacing. We developed a modified computer model that includes a two-phase structure for bulk paste. This model interprets previous mercury intrusion porosimetry data very well. -- Highlights: •Based on BSE, we examine the HCSS model. •We develop the HCSS-DBLB model. •We use the modified model to interpret the MIP data.« less

  12. EML Array fabricated by SAG technique monolithically integrated with a buried ridge AWG multiplexer

    NASA Astrophysics Data System (ADS)

    Xu, Junjie; Liang, Song; Zhang, Zhike; An, Junming; Zhu, Hongliang; Wang, Wei

    2017-06-01

    We report the fabrication of a ten channel electroabsorption modulated DFB laser (EML) array. Different emission wavelengths of the laser array are obtained by selective area growth (SAG) technique, which is also used for the integration of electroabsorption modulators (EAM) with the lasers. An arrayed waveguide grating (AWG) combiner is integrated monolithically with the laser array by butt-joint regrowth (BJR) technique. A buried ridge waveguide structure is adopted for the AWG combiner. A self aligned fabrication procedure is adopted for the fabrication of the waveguide structure of the device to eliminate the misalignment between the laser active waveguide and the passive waveguide. A Ti thin film heater is integrated for each laser in the array. With the help of the heaters, ten laser emissions with 1.8 nm channel spacing are obtained. The integrated EAM has a larger than 11 dB static extinction ratios and larger than 8 GHz small signal modulation bandwidths. The light power collected in the output waveguide of the AWG is larger than -13 dBm for each wavelength.

  13. Description of New Inflatable/Rigidizable Hexapod Structure Testbed for Shape and Vibration Control

    NASA Technical Reports Server (NTRS)

    Adetona, O.; Keel, L. H.; Horta, L. G.; Cadogan, D. P.; Sapna, G. H.; Scarborough, S. E.

    2002-01-01

    Larger and more powerful space based instruments are needed to meet increasingly sophisticated scientific demand. To support this need, concepts for telescopes with apertures of 100 meters are being investigated, but the required technologies are not in hand today. Due to the capacity limits of launch vehicles, the idea of deploying, erecting, or inflating large structures in space is being considered. Recently, rigidization concepts of large inflatable structures have demonstrated the capability of weight reductions of up to 50% from current concepts with packaging efficiencies near 80%. One of the important aspects of inflatable structures is vibration mitigation and line-of-sight control. Such control tasks are possible only after actuators/sensors are properly integrated into a rigidizable concept. To study these issues, we have developed an inflatable/rigidizable hexapod structure testbed. The testbed integrates state of the art piezo-electric self-sensing actuators into an inflatable/rigidizable structure and a flat membrane reflector. Using this testbed, we plan to experimentally demonstrate achievable vibration and line-of-sight control. This paper contains a description of the testbed and an outline of the test plan.

  14. Large space deployable antenna systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The design technology is described for manufacturing a 20 m or larger space erectable antenna with high thermal stability, high dynamic stiffness, and minimum stowed size. The selected approach includes a wrap rib design with a cantilever beam basic element and graphite-epoxy composite lenticular cross section ribs. The rib configuration and powered type operated deploying mechanism are described and illustrated. Other features of the parabolic reflector discussed include weight and stowed diameter characteristics, structural dynamics characteristics, orbit thermal aperture limitations, and equivalent element and secondary (on axis) patterns. A block diagram of the multiple beam pattern is also presented.

  15. Communication: Relativistic Fock-space coupled cluster study of small building blocks of larger uranium complexes.

    PubMed

    Tecmer, Paweł; Gomes, André Severo Pereira; Knecht, Stefan; Visscher, Lucas

    2014-07-28

    We present a study of the electronic structure of the [UO2](+), [UO2](2 +), [UO2](3 +), NUO, [NUO](+), [NUO](2 +), [NUN](-), NUN, and [NUN](+) molecules with the intermediate Hamiltonian Fock-space coupled cluster method. The accuracy of mean-field approaches based on the eXact-2-Component Hamiltonian to incorporate spin-orbit coupling and Gaunt interactions are compared to results obtained with the Dirac-Coulomb Hamiltonian. Furthermore, we assess the reliability of calculations employing approximate density functionals in describing electronic spectra and quantities useful in rationalizing Uranium (VI) species reactivity (hardness, electronegativity, and electrophilicity).

  16. Communication: Relativistic Fock-space coupled cluster study of small building blocks of larger uranium complexes

    NASA Astrophysics Data System (ADS)

    Tecmer, Paweł; Severo Pereira Gomes, André; Knecht, Stefan; Visscher, Lucas

    2014-07-01

    We present a study of the electronic structure of the [UO2]+, [UO2]2 +, [UO2]3 +, NUO, [NUO]+, [NUO]2 +, [NUN]-, NUN, and [NUN]+ molecules with the intermediate Hamiltonian Fock-space coupled cluster method. The accuracy of mean-field approaches based on the eXact-2-Component Hamiltonian to incorporate spin-orbit coupling and Gaunt interactions are compared to results obtained with the Dirac-Coulomb Hamiltonian. Furthermore, we assess the reliability of calculations employing approximate density functionals in describing electronic spectra and quantities useful in rationalizing Uranium (VI) species reactivity (hardness, electronegativity, and electrophilicity).

  17. Noise Source Location and Flow Field Measurements on Supersonic Jets and Implications Regarding Broadband Shock Noise

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.; Wernet, Mark P.; Clem, Michelle M.; Fagan, Amy F.

    2017-01-01

    An experiment was conducted in an effort to obtain data that would provide a better understanding of the origins of broadband shock noise (BBSN). Phased array noise source location and two types of flow field data (background oriented schlieren and particle image velocimetry) were acquired on unheated, single-stream jets. Results are presented for one subsonic and four supersonic operating conditions. These data show that BBSN is created primarily in the downstream portion of the shock train with peak BBSN production occurring near where the average size of the turbulent structures is equal to the shockcell spacing. These data tend to validate theories that BBSN is created by turbulent structures that are as large or larger than the shock spacing.

  18. Analysis on the propagation characteristics of two multiplexed groups of coaxial OAM beams in atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Zheng, Yongping; Tian, Qinghua; Zhang, Wei; Zhang, Qi; Zhu, Lei; Wang, Yongjun; Liu, Bo; Xin, Xiangjun

    2018-01-01

    Orbital angular momentum (OAM) as a new degree of freedom, greatly improves the spectrum efficiency and channel capacity of optical communication system. It has become the research focus in the field of optical communications. Some scholars have demonstrated that the feasibility of two multiplexed groups of concentric rings of Laguerre-Gaussian (LG) beams with OAM multiplexing transmission in free space. Based on the point, this paper makes the further research on the propagation characteristics of LG beams with this spatial multiplexing structure in atmospheric turbulence. The random phase screen is established by using the modified von Karman power spectrum and the received power and crosstalk power of OAM modes of LG beams are obtained under the Rytov approximation. We investigate the characteristic parameters of LG beams with this spatial multiplexing structure for mitigating turbulence. Simulation results show that the system exists an optimum beam waist related to wavelength in which the received power of OAM modes reaches the maximum. Meanwhile, the BER and aggregate capacity of the system with two multiplexed groups of concentric rings of LG beams with OAM multiplexing are simulated and analyzed under different intensities of atmospheric turbulence. The results reveal that the system with larger mode spacing generally has lower inter-modal crosstalk and larger aggregate capacity than that with the smaller mode spacing. Finally, on the basis of above the analysis and research, some suggestions for efficient OAM multiplexing detection scheme are proposed.

  19. Materials and structure synergistic with in-space materials utilization. [as means of reducing costs of space missions, colonization, and settlements

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Shadman, Farhang; Sridhar, K. R.

    1992-01-01

    The significant advances made recently toward actual hardware realizations of various concepts for the application of in-space materials utilization (ISMU) are demonstrated. The overall plan for taking innovative concepts through technical feasibility, small-scale tests, scale-up, computer modeling, and larger-scale execution is outlined. Two specific fields of endeavor are surveyed: one has direct applications to construction on the moon, while the other has more basic implications, in addition to the practical aspects of lunar colonies. Several fundamental scientific advances made in the characterization of the physical and chemical processes that need to be elucidated for any intelligent application of the ISMU concepts in future space missions are described. A rigorous quantitative technique for the unambiguous evaluation of various components and component technology that form any space (or terrestrial mission) is also described.

  20. Biomorphic architectures for autonomous Nanosat designs

    NASA Technical Reports Server (NTRS)

    Hasslacher, Brosl; Tilden, Mark W.

    1995-01-01

    Modern space tool design is the science of making a machine both massively complex while at the same time extremely robust and dependable. We propose a novel nonlinear control technique that produces capable, self-organizing, micron-scale space machines at low cost and in large numbers by parallel silicon assembly. Experiments using biomorphic architectures (with ideal space attributes) have produced a wide spectrum of survival-oriented machines that are reliably domesticated for work applications in specific environments. In particular, several one-chip satellite prototypes show interesting control properties that can be turned into numerous application-specific machines for autonomous, disposable space tasks. We believe that the real power of these architectures lies in their potential to self-assemble into larger, robust, loosely coupled structures. Assembly takes place at hierarchical space scales, with different attendant properties, allowing for inexpensive solutions to many daunting work tasks. The nature of biomorphic control, design, engineering options, and applications are discussed.

  1. Around Marshall

    NASA Image and Video Library

    1979-03-22

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. And construction methods had to be efficient due to limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. With the help of the NBS, building a space station became more of a reality. In a joint venture between NASA/Langley Research Center in Hampton, VA and MSFC, the Assembly Concept for Construction of Erectable Space Structures (ACCESS) was developed and demonstrated at MSFC's NBS. The primary objective of this experiment was to test the ACCESS structural assembly concept for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction. Pictured is a demonstration of ACCESS.

  2. Around Marshall

    NASA Image and Video Library

    1977-07-13

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. And construction methods had to be efficient due to limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. With the help of the NBS, building a space station became more of a reality. In a joint venture between NASA/Langley Research Center in Hampton, VA and MSFC, the Assembly Concept for Construction of Erectable Space Structures (ACCESS) was developed and demonstrated at MSFC's NBS. The primary objective of this experiment was to test the ACCESS structural assembly concept for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction. Pictured is a demonstration of ACCESS.

  3. Around Marshall

    NASA Image and Video Library

    1979-04-16

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. Construction methods had to be efficient due to the limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. With the help of the NBS, building a space station became more of a reality. In a joint venture between NASA/Langley Research Center in Hampton, Virginia and the MSFC, the Assembly Concept for Construction of Erectable Space Structures (ACCESS) was developed and demonstrated at MSFC's NBS. The primary objective of this experiment was to test the ACCESS structural assembly concept for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction. Pictured is a demonstration of ACCESS.

  4. Cholesterol-Induced Formation of Liquid Ordered Phase-Like Structures in Non-Phospholipid Systems.

    PubMed

    Konno, Yoshikazu; Yoshimura, Akio; Naito, Noboru; Aramaki, Kenji

    2018-01-01

    The formation of liquid ordered (L o ) phase-like structures in stearyltrimethylammonium chloride/cholesterol/1,3-butanediol/water and hepta(oxyethylen) octadecyl ether/cholesterol/1,3-butanediol/water systems was investigated. Differential scanning calorimetry and X-ray scattering measurements confirmed that L o phase-like structures were formed in both surfactant/cholesterol systems, similar to the lysophospholipid/cholesterol system. It was revealed that the concentration of cholesterol at which only L o phase-like structures are formed increases in the order stearyltrimethylammonium chloride < lysophospholipid < hepta(oxyethylen) octadecyl ether. In addition, for both surfactants, the interlayer spacing, d, was larger for L o phase-like structures than for α-gel structures. These results suggest that the ionicity and structure of the hydrophilic group of each surfactant play important roles.

  5. Importance of geologic study and load test of log pod mangartom arch bridge

    NASA Astrophysics Data System (ADS)

    Kamnik, Rok; Meshcheryakova, Tatiana; Kovačič, Boštjan

    2017-10-01

    Some structures and their relationships, positions in space and shifts represent the structural set of an area, as included within regional units, and smaller or larger portions of the earth’s crust known as the Earth’s plates and micro plates. The most important fact is that tectonic movements are always possible around the locations of considered bridges. Therefore, it is certainly necessary to define in detail their characteristics due to the potential impacts on individual bridges. A recent structural set was made for the Log pod Mangartom. To assess the bridge in micro sense the load test of the bridge was performed.

  6. Joint nonlinearity effects in the design of a flexible truss structure control system

    NASA Technical Reports Server (NTRS)

    Mercadal, Mathieu

    1986-01-01

    Nonlinear effects are introduced in the dynamics of large space truss structures by the connecting joints which are designed with rather important tolerances to facilitate the assembly of the structures in space. The purpose was to develop means to investigate the nonlinear dynamics of the structures, particularly the limit cycles that might occur when active control is applied to the structures. An analytical method was sought and derived to predict the occurrence of limit cycles and to determine their stability. This method is mainly based on the quasi-linearization of every joint using describing functions. This approach was proven successful when simple dynamical systems were tested. Its applicability to larger systems depends on the amount of computations it requires, and estimates of the computational task tend to indicate that the number of individual sources of nonlinearity should be limited. Alternate analytical approaches, which do not account for every single nonlinearity, or the simulation of a simplified model of the dynamical system should, therefore, be investigated to determine a more effective way to predict limit cycles in large dynamical systems with an important number of distributed nonlinearities.

  7. Physiological Intracellular Crowdedness is Defined by the Perimeter-to-Area Ratio of Sub-Cellular Compartments

    PubMed Central

    Hiroi, Noriko; Okuhara, Takahiro; Kubojima, Takeshi; Iba, Keisuke; Tabira, Akito; Yamashita, Shuji; Okada, Yasunori; Kobayashi, Tetsuya J.; Funahashi, Akira

    2012-01-01

    The intracellular environment is known to be a crowded and inhomogeneous space. Such an in vivo environment differs from a well-diluted, homogeneous environment for biochemical reactions. However, the effects of both crowdedness and the inhomogeneity of environment on the behavior of a mobile particle have not yet been investigated sufficiently. As described in this paper, we constructed artificial reaction spaces with fractal models, which are assumed to be non-reactive solid obstacles in a reaction space with crevices that function as operating ranges for mobile particles threading the space. Because of the homogeneity of the structures of artificial reaction spaces, the models succeeded in reproducing the physiological fractal dimension of solid structures with a smaller number of non-reactive obstacles than in the physiological condition. This incomplete compatibility was mitigated when we chose a suitable condition of a perimeter-to-area ratio of the operating range to our model. Our results also show that a simulation space is partitioned into convenient reaction compartments as an in vivo environment with the exact amount of solid structures estimated from TEM images. The characteristics of these compartments engender larger mean square displacement of a mobile particle than that of particles in smaller compartments. Subsequently, the particles start to show confined particle-like behavior. These results are compatible with our previously presented results, which predicted that a physiological environment would produce quick response and slow exhaustion reactions. PMID:22936917

  8. The structural response of the cornea to changes in stromal hydration

    PubMed Central

    White, Tomas; Boote, Craig; Kamma-Lorger, Christina S.; Bell, James; Sorenson, Thomas; Terrill, Nick; Shebanova, Olga; Meek, Keith M.

    2017-01-01

    The primary aim of this study was to quantify the relationship between corneal structure and hydration in humans and pigs. X-ray scattering data were collected from human and porcine corneas equilibrated with polyethylene glycol (PEG) to varying levels of hydration, to obtain measurements of collagen fibril diameter, interfibrillar spacing (IFS) and intermolecular spacing. Both species showed a strong positive linear correlation between hydration and IFS2 and a nonlinear, bi-phasic relationship between hydration and fibril diameter, whereby fibril diameter increased up to approximately physiological hydration, H = 3.0, with little change thereafter. Above H = 3.0, porcine corneas exhibited a larger fibril diameter than human corneas (p < 0.001). Intermolecular spacing also varied with hydration in a bi-phasic manner but reached a maximum value at a lower hydration (H = 1.5) than fibril diameter. Human corneas displayed a higher intermolecular spacing than porcine corneas at all hydrations (p < 0.0001). Human and porcine corneas required a similar PEG concentration to reach physiological hydration, suggesting that the total fixed charge that gives rise to the swelling pressure is the same. The difference in their structural responses to hydration can be explained by variations in molecular cross-linking and intra/interfibrillar water partitioning. PMID:28592658

  9. The structural response of the cornea to changes in stromal hydration.

    PubMed

    Hayes, Sally; White, Tomas; Boote, Craig; Kamma-Lorger, Christina S; Bell, James; Sorenson, Thomas; Terrill, Nick; Shebanova, Olga; Meek, Keith M

    2017-06-01

    The primary aim of this study was to quantify the relationship between corneal structure and hydration in humans and pigs. X-ray scattering data were collected from human and porcine corneas equilibrated with polyethylene glycol (PEG) to varying levels of hydration, to obtain measurements of collagen fibril diameter, interfibrillar spacing (IFS) and intermolecular spacing. Both species showed a strong positive linear correlation between hydration and IFS 2 and a nonlinear, bi-phasic relationship between hydration and fibril diameter, whereby fibril diameter increased up to approximately physiological hydration, H = 3.0, with little change thereafter. Above H = 3.0, porcine corneas exhibited a larger fibril diameter than human corneas ( p < 0.001). Intermolecular spacing also varied with hydration in a bi-phasic manner but reached a maximum value at a lower hydration ( H = 1.5) than fibril diameter. Human corneas displayed a higher intermolecular spacing than porcine corneas at all hydrations ( p < 0.0001). Human and porcine corneas required a similar PEG concentration to reach physiological hydration, suggesting that the total fixed charge that gives rise to the swelling pressure is the same. The difference in their structural responses to hydration can be explained by variations in molecular cross-linking and intra/interfibrillar water partitioning. © 2017 The Authors.

  10. Structural strengthening of rocket nozzle extension by means of laser metal deposition

    NASA Astrophysics Data System (ADS)

    Honoré, M.; Brox, L.; Hallberg, M.

    2012-03-01

    Commercial space operations strive to maximize the payload per launch in order to minimize the costs of each kg launched into orbit; this yields demand for ever larger launchers with larger, more powerful rocket engines. Volvo Aero Corporation in collaboration with Snecma and Astrium has designed and tested a new, upgraded Nozzle extension for the Vulcain 2 engine configuration, denoted Vulcain 2+ NE Demonstrator The manufacturing process for the welding of the sandwich wall and the stiffening structure is developed in close cooperation with FORCE Technology. The upgrade is intended to be available for future development programs for the European Space Agency's (ESA) highly successful commercial launch vehicle, the ARIANE 5. The Vulcain 2+ Nozzle Extension Demonstrator [1] features a novel, thin-sheet laser-welded configuration, with laser metal deposition built-up 3D-features for the mounting of stiffening structure, flanges and for structural strengthening, in order to cope with the extreme load- and thermal conditions, to which the rocket nozzle extension is exposed during launch of the 750 ton ARIANE 5 launcher. Several millimeters of material thickness has been deposited by laser metal deposition without disturbing the intricate flow geometry of the nozzle cooling channels. The laser metal deposition process has been applied on a full-scale rocket nozzle demonstrator, and in excess of 15 kilometers of filler wire has been successfully applied to the rocket nozzle. The laser metal deposition has proven successful in two full-throttle, full-scale tests, firing the rocket engine and nozzle in the ESA test facility P5 by DLR in Lampoldshausen, Germany.

  11. Ten new predicted covalent organic frameworks with strong optical response in the visible and near infrared

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Li-Ming, E-mail: lmyang.uio@gmail.com, E-mail: ganzx001@umn.edu; Frauenheim, Thomas; Dornfeld, Matthew

    2015-06-28

    We use density functional theory to predict and evaluate 10 novel covalent organic frameworks (COFs), labeled (X{sub 4}Y)(BDC){sub 3}, (X = C/Si; Y = C, Si, Ge, Sn, and Pb), with topology based on metal organic framework isoreticular metal-organic framework (IRMOF-1), but with new elements substituted for the corner atoms. We show that these new materials are stable structures using frequency calculations. For two structures, (C{sub 4}C and Si{sub 4}C) molecular dynamics simulations were performed to demonstrate stability of the systems up to 600 K for 10 ps. This demonstrates the remarkable stability of these systems, some of which maymore » be experimentally accessible. For the C{sub 4}C material, we also explored the stability of isolated corners and linkers and vacuum and started to build the structure from these pieces. We discuss the equilibrium lattice parameters, formation enthalpies, electronic structures, chemical bonding, and mechanical and optical properties. The predicted bulk moduli of these COFs range from 18.9 to 23.9 GPa, larger than that of IRMOF-1 (ca. 15.4 GPa), and larger than many existing 3D COF materials. The band gaps range from 1.5 to 2.1 eV, corresponding to 600–830 nm wavelength (orange through near infrared). The negative values of the formation enthalpy suggest that they are stable and should be experimentally accessible under suitable conditions. Seven materials distort the crystal structure to a lower space group symmetry Fm-3, while three materials maintain the original Fm-3m space group symmetry. All of the new materials are highly luminescent. We hope that this work will inspire efforts for experimental synthesis of these new materials.« less

  12. Embedded Ultrasonics for SHM of Space Applications

    DTIC Science & Technology

    2012-07-30

    information on material properties and other forms of damage such as cracks, structural fatigue and/or impact events. This synergistic aspect of the embedded...larger the phase shift. However, high excitation levels could contribute to sensor fatigue and levels in a range 15 to 20 (110 to 130 volts) are...joints each featuring three bolts. Piezoelectric wafers ( PZT ) with UNF electrodes were bonded to the isogrid panels using 3M 2216 epoxy

  13. Animal cognition. Number-space mapping in the newborn chick resembles humans' mental number line.

    PubMed

    Rugani, Rosa; Vallortigara, Giorgio; Priftis, Konstantinos; Regolin, Lucia

    2015-01-30

    Humans represent numbers along a mental number line (MNL), where smaller values are located on the left and larger on the right. The origin of the MNL and its connections with cultural experience are unclear: Pre-verbal infants and nonhuman species master a variety of numerical abilities, supporting the existence of evolutionary ancient precursor systems. In our experiments, 3-day-old domestic chicks, once familiarized with a target number (5), spontaneously associated a smaller number (2) with the left space and a larger number (8) with the right space. The same number (8), though, was associated with the left space when the target number was 20. Similarly to humans, chicks associate smaller numbers with the left space and larger numbers with the right space. Copyright © 2015, American Association for the Advancement of Science.

  14. Neutral Buoyancy Simulator-NB32-Assembly of Large Space Structure

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Once the United States' space program had progressed from Earth's orbit into outerspace, theprospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. Construction methods had to be efficient due to the limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA's Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. Pictured is a Massachusetts Institute of Technology (MIT) student working in a spacesuit on the Experimental Assembly of Structures in Extravehicular Activity (EASE) project which was developed as a joint effort between MFSC and MIT. The EASE experiment required that crew members assemble small components to form larger components, working from the payload bay of the space shuttle. The MIT student in this photo is assembling two six-beam tetrahedrons.

  15. The crystal structure of synthetic simmonsite, Na 2LiAlF 6

    NASA Astrophysics Data System (ADS)

    Ross, Kirk C.; Mitchell, Roger H.; Chakhmouradian, Anton R.

    2003-04-01

    The structure of the synthetic fluoroperovskite, Na 2LiAlF 6 (simmonsite), has been determined by powder X-ray diffraction using the Rietveld method of structure refinement. The compound adopts space group P2 1/ n [#14; a=5.2842(1); b=5.3698(1); c=7.5063(2) Å; β=89.98(1)°; Z=4), and is a member of the cryolite (Na 2NaAlF 6) structural group characterized by ordering of the B-site cations (Li, Al) and tilting of the BF 6 octahedra according to the tilt scheme a-b-c+. Rotations of the B-site polyhedra are less ( ΦLi=14.9°; ΦAl=17.0°) than those found in cryolite ( ΦNa=18.6; ΦAl=23.5°) because of the larger difference in the ionic radii of the B-site cations in cryolite as compared to those in simmonsite. Na at the A-site is displaced from the special position resulting in 10- and 8-fold coordination in simmonsite and cryolite, respectively. By analogy with the synthetic compound, naturally occurring simmonsite is considered to adopt space group P2 1/ n (#14) and not the P2 1(#4) or P2 1/ m(#11) space groups.

  16. Metaplectic-c Quantomorphisms

    NASA Astrophysics Data System (ADS)

    Vaughan, Jennifer

    2015-03-01

    In the classical Kostant-Souriau prequantization procedure, the Poisson algebra of a symplectic manifold (M,ω) is realized as the space of infinitesimal quantomorphisms of the prequantization circle bundle. Robinson and Rawnsley developed an alternative to the Kostant-Souriau quantization process in which the prequantization circle bundle and metaplectic structure for (M,ω) are replaced by a metaplectic-c prequantization. They proved that metaplectic-c quantization can be applied to a larger class of manifolds than the classical recipe. This paper presents a definition for a metaplectic-c quantomorphism, which is a diffeomorphism of metaplectic-c prequantizations that preserves all of their structures. Since the structure of a metaplectic-c prequantization is more complicated than that of a circle bundle, we find that the definition must include an extra condition that does not have an analogue in the Kostant-Souriau case. We then define an infinitesimal quantomorphism to be a vector field whose flow consists of metaplectic-c quantomorphisms, and prove that the space of infinitesimal metaplectic-c quantomorphisms exhibits all of the same properties that are seen for the infinitesimal quantomorphisms of a prequantization circle bundle. In particular, this space is isomorphic to the Poisson algebra C^∞(M).

  17. On spatial coalescents with multiple mergers in two dimensions.

    PubMed

    Heuer, Benjamin; Sturm, Anja

    2013-08-01

    We consider the genealogy of a sample of individuals taken from a spatially structured population when the variance of the offspring distribution is relatively large. The space is structured into discrete sites of a graph G. If the population size at each site is large, spatial coalescents with multiple mergers, so called spatial Λ-coalescents, for which ancestral lines migrate in space and coalesce according to some Λ-coalescent mechanism, are shown to be appropriate approximations to the genealogy of a sample of individuals. We then consider as the graph G the two dimensional torus with side length 2L+1 and show that as L tends to infinity, and time is rescaled appropriately, the partition structure of spatial Λ-coalescents of individuals sampled far enough apart converges to the partition structure of a non-spatial Kingman coalescent. From a biological point of view this means that in certain circumstances both the spatial structure as well as larger variances of the underlying offspring distribution are harder to detect from the sample. However, supplemental simulations show that for moderately large L the different structure is still evident. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Chicxulub multiring impact basin - Size and other characteristics derived from gravity analysis

    NASA Technical Reports Server (NTRS)

    Sharpton, Virgil L.; Burke, Kevin; Camargo-Zanoguera, Antonio; Hall, Stuart A.; Lee, D. S.; Marin, Luis E.; Suarez-Reynoso, Gerardo; Quezada-Muneton, Juan M.; Spudis, Paul D.; Urrutia-Fucugauchi, Jaime

    1993-01-01

    The buried Chicxulub impact structure in Mexico, which is linked to the Cretaceous-Tertiary (K-T) boundary layer, may be significantly larger than previously suspected. Reprocessed gravity data over Northern Yucatan reveal three major rings and parts of a fourth ring, spaced similarly to those observed at multiring impact basins on other planets. The outer ring, probably corresponding to the basin's topographic rim, is almost 300 kilometers in diameter, indicating that Chicxulub may be one of the largest impact structures produced in the inner solar system since the period of early bombardment ended nearly 4 billion years ago.

  19. Nonlocal Gravity and Structure in the Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodelson, Scott; Park, Sohyun

    2014-08-26

    The observed acceleration of the Universe can be explained by modifying general relativity. One such attempt is the nonlocal model of Deser and Woodard. Here we fix the background cosmology using results from the Planck satellite and examine the predictions of nonlocal gravity for the evolution of structure in the universe, confronting the model with three tests: gravitational lensing, redshift space distortions, and the estimator of gravitymore » $$E_G$$. Current data favor general relativity (GR) over nonlocal gravity: fixing primordial cosmology with the best fit parameters from Planck leads to weak lensing results favoring GR by 5.9 sigma; redshift space distortions measurements of the growth rate preferring GR by 7.8 sigma; and the single measurement of $$E_G$$ favoring GR, but by less than 1-sigma. The significance holds up even after the parameters are allowed to vary within Planck limits. The larger lesson is that a successful modified gravity model will likely have to suppress the growth of structure compared to general relativity.« less

  20. Structure and Soot Properties of Nonbuoyant Ethylene/Air Laminar Jet Diffusion Flames. Appendix I

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Linteris, G. T.; Voss, J. E.; Lin, K.-C.; Dai, Z.; Sun, K.; Faeth, G. M.; Ross, Howard D. (Technical Monitor)

    2000-01-01

    The structure and soot properties of round, soot-emitting, nonbuoyant, laminar jet diffusion flames are described, based on long-duration (175-230/s) experiments at microgravity carried out on orbit In the Space Shuttle Columbia. Experiments] conditions included ethylene-fueled flames burning in still air at nominal pressures of 50 and 100 kPa and an ambient temperature of 300 K with luminous Annie lengths of 49-64 mm. Measurements included luminous flame shapes using color video imaging, soot concentration (volume fraction) distributions using deconvoluted laser extinction imaging, soot temperature distributions using deconvoluted multiline emission imaging, gas temperature distributions at fuel-lean (plume) conditions using thermocouple probes, not structure distributions using thermophoretic sampling and analysis by transmission electron microscopy, and flame radiation using a radiometer. The present flames were larger, and emitted soot men readily, than comparable observed during ground-based microgravity experiments due to closer approach to steady conditions resulting from the longer test times and the reduced gravitational disturbances of the space-based experiments.

  1. Brain structural plasticity with spaceflight.

    PubMed

    Koppelmans, Vincent; Bloomberg, Jacob J; Mulavara, Ajitkumar P; Seidler, Rachael D

    2016-01-01

    Humans undergo extensive sensorimotor adaptation during spaceflight due to altered vestibular inputs and body unloading. No studies have yet evaluated the effects of spaceflight on human brain structure despite the fact that recently reported optic nerve structural changes are hypothesized to occur due to increased intracranial pressure occurring with microgravity. This is the first report on human brain structural changes with spaceflight. We evaluated retrospective longitudinal T2-weighted MRI scans and balance data from 27 astronauts (thirteen ~2-week shuttle crew members and fourteen ~6-month International Space Station crew members) to determine spaceflight effects on brain structure, and whether any pre to postflight brain changes are associated with balance changes. Data were obtained from the NASA Lifetime Surveillance of Astronaut Health. Brain scans were segmented into gray matter maps and normalized into MNI space using a stepwise approach through subject specific templates. Non-parametric permutation testing was used to analyze pre to postflight volumetric gray matter changes. We found extensive volumetric gray matter decreases, including large areas covering the temporal and frontal poles and around the orbits. This effect was larger in International Space Station versus shuttle crew members in some regions. There were bilateral focal gray matter increases within the medial primary somatosensory and motor cortex; i.e., the cerebral areas where the lower limbs are represented. These intriguing findings are observed in a retrospective data set; future prospective studies should probe the underlying mechanisms and behavioral consequences.

  2. Object-based warping: an illusory distortion of space within objects.

    PubMed

    Vickery, Timothy J; Chun, Marvin M

    2010-12-01

    Visual objects are high-level primitives that are fundamental to numerous perceptual functions, such as guidance of attention. We report that objects warp visual perception of space in such a way that spatial distances within objects appear to be larger than spatial distances in ground regions. When two dots were placed inside a rectangular object, they appeared farther apart from one another than two dots with identical spacing outside of the object. To investigate whether this effect was object based, we measured the distortion while manipulating the structure surrounding the dots. Object displays were constructed with a single object, multiple objects, a partially occluded object, and an illusory object. Nonobject displays were constructed to be comparable to object displays in low-level visual attributes. In all cases, the object displays resulted in a more powerful distortion of spatial perception than comparable non-object-based displays. These results suggest that perception of space within objects is warped.

  3. A simple circular-polarized antenna: Circular waveguide horn coated with lossy magnetic material

    NASA Technical Reports Server (NTRS)

    Lee, C. S.; Lee, S. W.; Justice, D. W.

    1986-01-01

    A circular waveguide horn coated with a lossy material in its interior wall can be used as an alternative to a corrugated waveguide for radiating a circularly polarized (CP) field. To achieve good CP radiation, the diameter of the structure must be larger than the free-space wavelength, and the coating material must be sufficiently lossy and magnetic. This device is cheaper and lighter in weight than the corrugated one.

  4. Experiments on free and impinging supersonic microjets

    NASA Astrophysics Data System (ADS)

    Phalnikar, K. A.; Kumar, R.; Alvi, F. S.

    2008-05-01

    The fluid dynamics of microflows has recently commanded considerable attention because of their potential applications. Until now, with a few exceptions, most of the studies have been limited to low speed flows. This experimental study examines supersonic microjets of 100-1,000 μm in size with exit velocities in the range of 300-500 m/s. Such microjets are presently being used to actively control larger supersonic impinging jets, which occur in STOVL (short takeoff and vertical landing) aircraft, cavity flows, and flow separation. Flow properties of free as well as impinging supersonic microjets have been experimentally investigated over a range of geometric and flow parameters. The flowfield is visualized using a micro-schlieren system with a high magnification. These schlieren images clearly show the characteristic shock cell structure typically observed in larger supersonic jets. Quantitative measurements of the jet decay and spreading rates as well as shock cell spacing are obtained using micro-pitot probe surveys. In general, the mean flow features of free microjets are similar to larger supersonic jets operating at higher Reynolds numbers. However, some differences are also observed, most likely due to pronounced viscous effects associated with jets at these small scales. Limited studies of impinging microjets were also conducted. They reveal that, similar to the behavior of free microjets, the flow structure of impinging microjets strongly resembles that of larger supersonic impinging jets.

  5. Water Dynamics in the Hydration Shells of Biomolecules

    PubMed Central

    2017-01-01

    The structure and function of biomolecules are strongly influenced by their hydration shells. Structural fluctuations and molecular excitations of hydrating water molecules cover a broad range in space and time, from individual water molecules to larger pools and from femtosecond to microsecond time scales. Recent progress in theory and molecular dynamics simulations as well as in ultrafast vibrational spectroscopy has led to new and detailed insight into fluctuations of water structure, elementary water motions, electric fields at hydrated biointerfaces, and processes of vibrational relaxation and energy dissipation. Here, we review recent advances in both theory and experiment, focusing on hydrated DNA, proteins, and phospholipids, and compare dynamics in the hydration shells to bulk water. PMID:28248491

  6. Local and average structure of Mn- and La-substituted BiFeO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Bo; Selbach, Sverre M., E-mail: selbach@ntnu.no

    2017-06-15

    The local and average structure of solid solutions of the multiferroic perovskite BiFeO{sub 3} is investigated by synchrotron X-ray diffraction (XRD) and electron density functional theory (DFT) calculations. The average experimental structure is determined by Rietveld refinement and the local structure by total scattering data analyzed in real space with the pair distribution function (PDF) method. With equal concentrations of La on the Bi site or Mn on the Fe site, La causes larger structural distortions than Mn. Structural models based on DFT relaxed geometry give an improved fit to experimental PDFs compared to models constrained by the space groupmore » symmetry. Berry phase calculations predict a higher ferroelectric polarization than the experimental literature values, reflecting that structural disorder is not captured in either average structure space group models or DFT calculations with artificial long range order imposed by periodic boundary conditions. Only by including point defects in a supercell, here Bi vacancies, can DFT calculations reproduce the literature results on the structure and ferroelectric polarization of Mn-substituted BiFeO{sub 3}. The combination of local and average structure sensitive experimental methods with DFT calculations is useful for illuminating the structure-property-composition relationships in complex functional oxides with local structural distortions. - Graphical abstract: The experimental and simulated partial pair distribution functions (PDF) for BiFeO{sub 3}, BiFe{sub 0.875}Mn{sub 0.125}O{sub 3}, BiFe{sub 0.75}Mn{sub 0.25}O{sub 3} and Bi{sub 0.9}La{sub 0.1}FeO{sub 3}.« less

  7. Micrometeoroid Impacts on the Hubble Space Telescope Wide Field and Planetary Camera 2: Larger Particles

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Grime, G. W.; Webb, R. P.; Jeynes, C.; Palitsin, V.; Colaux, J. L.; Ross, D. K.; Anz-Meador, P.; Liou, J. C.; Opiela, J.; hide

    2014-01-01

    The Wide Field and Planetary Camera 2 (WFPC2) was returned from the Hubble Space Telescope (HST) by shuttle mission STS-125 in 2009. In space for 16 years, the surface accumulated hundreds of impact features on the zinc orthotitanate paint, some penetrating through into underlying metal. Larger impacts were seen in photographs taken from within the shuttle orbiter during service missions, with spallation of paint in areas reaching 1.6 cm across, exposing alloy beneath. Here we describe larger impact shapes, the analysis of impactor composition, and the micrometeoroid (MM) types responsible.

  8. A global analysis of adaptive evolution of operons in cyanobacteria.

    PubMed

    Memon, Danish; Singh, Abhay K; Pakrasi, Himadri B; Wangikar, Pramod P

    2013-02-01

    Operons are an important feature of prokaryotic genomes. Evolution of operons is hypothesized to be adaptive and has contributed significantly towards coordinated optimization of functions. Two conflicting theories, based on (i) in situ formation to achieve co-regulation and (ii) horizontal gene transfer of functionally linked gene clusters, are generally considered to explain why and how operons have evolved. Furthermore, effects of operon evolution on genomic traits such as intergenic spacing, operon size and co-regulation are relatively less explored. Based on the conservation level in a set of diverse prokaryotes, we categorize the operonic gene pair associations and in turn the operons as ancient and recently formed. This allowed us to perform a detailed analysis of operonic structure in cyanobacteria, a morphologically and physiologically diverse group of photoautotrophs. Clustering based on operon conservation showed significant similarity with the 16S rRNA-based phylogeny, which groups the cyanobacterial strains into three clades. Clade C, dominated by strains that are believed to have undergone genome reduction, shows a larger fraction of operonic genes that are tightly packed in larger sized operons. Ancient operons are in general larger, more tightly packed, better optimized for co-regulation and part of key cellular processes. A sub-clade within Clade B, which includes Synechocystis sp. PCC 6803, shows a reverse trend in intergenic spacing. Our results suggest that while in situ formation and vertical descent may be a dominant mechanism of operon evolution in cyanobacteria, optimization of intergenic spacing and co-regulation are part of an ongoing process in the life-cycle of operons.

  9. Intelligent Reconfigurable System with Self-Dammage Assessmentand Control Stress Capabilities

    NASA Astrophysics Data System (ADS)

    Trivailo, P.; Plotnikova, L.; Kao, T. W.

    2002-01-01

    Modern space structures are constructed using a modular approach that facilitates their transportation and assembly in space. Modular architecture of space structures also enables reconfiguration of large structures such that they can adapt to possible changes in environment, and also allows use of the limited structural resources available in space for completion of a much larger variety of tasks. An increase in size and complexity demands development of materials with a "smart" or active structural modulus and also of effective control algorithms to control the motion of large flexible structures. This challenging task has generated a lot of interest amongst scientists and engineers during the last two decades, however, research into the development of control schemes which can adapt to structural configuration changes has received less attention. This is possibly due to the increased complexity caused by alterations in geometry, which inevitably lead to changes in the dynamic properties of the system. This paper presents results of the application of a decentralized control approach for active control of large flexible structures undergoing significant reconfigurations. The Control Component Synthesis methodology was used to build controlled components and to assemble them into a controlled flexible structure that meets required performance specifications. To illustrate the efficiency of the method, numerical simulations were conducted for 2D and 3D modular truss structures and a multi-link beam system. In each case the performance of the decentralized control system has been evaluated using pole location maps, step and impulse response simulations and frequency response analysis. The performance of the decentralized control system has been measured against the optimal centralised control system for various excitation scenarios. A special case where one of the local component controllers fails was also examined. For better interpretation of the efficiency of the designed controllers, results of the simulations are illustrated using a Virtual Reality computer environment, offering advanced visual effects. Plotnikova@rmit.edu.au # Tsunwah@hotmail.com

  10. Structural Color Model Based on Surface Morphology of MORPHO Butterfly Wing Scale

    NASA Astrophysics Data System (ADS)

    Huang, Zhongjia; Cai, Congcong; Wang, Gang; Zhang, Hui; Huttula, Marko; Cao, Wei

    2016-05-01

    Color production through structural coloration is created by micrometer and sub-micrometer surface textures which interfere with visible light. The shiny blue of morpho menelaus is a typical example of structural coloring. Modified from morphology of the morpho scale, a structure of regular windows with two side offsets was constructed on glass substrates. Optical properties of the bioinspired structure were studied through numerical simulations of light scattering. Results show that the structure can generate monochromatic light scattering. Wavelength of scattered light is tunable via changing the spacing between window shelves. Compared to original butterfly model, the modified one possesses larger illumination scopes in azimuthal distributions despite being less in polar directions. Present bionic structure is periodically repeated and is easy to fabricate. It is hoped that the computational materials design work can inspire future experimental realizations of such a structure in photonics applications.

  11. One of the larger open spaces on the third floor. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    One of the larger open spaces on the third floor. This space was used most often for drafting work and for general experimentation. Physical evidence on the ceiling indicates existence of partition walls for smaller rooms, but no photographic or documentary evidence has surfaced to verify this. - Thomas A. Edison Laboratories, Building No. 5, Main Street & Lakeside Avenue, West Orange, Essex County, NJ

  12. Coupled pulsating and cellular structure in the propagation of globally planar detonations in free space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Wenhu; Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084; Gao, Yang, E-mail: gaoyang-00@mails.tsinghua.edu.cn

    The globally planar detonation in free space is numerically simulated, with particular interest to understand and quantify the emergence and evolution of the one-dimensional pulsating instability and the two-dimensional cellular structure which is inherently also affected by pulsating instability. It is found that the pulsation includes three stages: rapid decay of the overdrive, approach to the Chapman-Jouguet state and emergence of weak pulsations, and the formation of strong pulsations; while evolution of the cellular structure also exhibits distinct behavior at these three stages: no cell formation, formation of small-scale, irregular cells, and formation of regular cells of a larger scale.more » Furthermore, the average shock pressure in the detonation front consists of fine-scale oscillations reflecting the collision dynamics of the triple-shock structure and large-scale oscillations affected by the global pulsation. The common stages of evolution between the cellular structure and the pulsating behavior, as well as the existence of shock-front pressure oscillation, suggest highly correlated mechanisms between them. Detonations with period doubling, period quadrupling, and chaotic amplitudes were also observed and studied for progressively increasing activation energies.« less

  13. Insect adhesion on rough surfaces: analysis of adhesive contact of smooth and hairy pads on transparent microstructured substrates

    PubMed Central

    Zhou, Yanmin; Robinson, Adam; Steiner, Ullrich; Federle, Walter

    2014-01-01

    Insect climbing footpads are able to adhere to rough surfaces, but the details of this capability are still unclear. To overcome experimental limitations of randomly rough, opaque surfaces, we fabricated transparent test substrates containing square arrays of 1.4 µm diameter pillars, with variable height (0.5 and 1.4 µm) and spacing (from 3 to 22 µm). Smooth pads of cockroaches (Nauphoeta cinerea) made partial contact (limited to the tops of the structures) for the two densest arrays of tall pillars, but full contact (touching the substrate in between pillars) for larger spacings. The transition from partial to full contact was accompanied by a sharp increase in shear forces. Tests on hairy pads of dock beetles (Gastrophysa viridula) showed that setae adhered between pillars for larger spacings, but pads were equally unable to make full contact on the densest arrays. The beetles' shear forces similarly decreased for denser arrays, but also for short pillars and with a more gradual transition. These observations can be explained by simple contact models derived for soft uniform materials (smooth pads) or thin flat plates (hairy-pad spatulae). Our results show that microstructured substrates are powerful tools to reveal adaptations of natural adhesives for rough surfaces. PMID:24990289

  14. Insect adhesion on rough surfaces: analysis of adhesive contact of smooth and hairy pads on transparent microstructured substrates.

    PubMed

    Zhou, Yanmin; Robinson, Adam; Steiner, Ullrich; Federle, Walter

    2014-09-06

    Insect climbing footpads are able to adhere to rough surfaces, but the details of this capability are still unclear. To overcome experimental limitations of randomly rough, opaque surfaces, we fabricated transparent test substrates containing square arrays of 1.4 µm diameter pillars, with variable height (0.5 and 1.4 µm) and spacing (from 3 to 22 µm). Smooth pads of cockroaches (Nauphoeta cinerea) made partial contact (limited to the tops of the structures) for the two densest arrays of tall pillars, but full contact (touching the substrate in between pillars) for larger spacings. The transition from partial to full contact was accompanied by a sharp increase in shear forces. Tests on hairy pads of dock beetles (Gastrophysa viridula) showed that setae adhered between pillars for larger spacings, but pads were equally unable to make full contact on the densest arrays. The beetles' shear forces similarly decreased for denser arrays, but also for short pillars and with a more gradual transition. These observations can be explained by simple contact models derived for soft uniform materials (smooth pads) or thin flat plates (hairy-pad spatulae). Our results show that microstructured substrates are powerful tools to reveal adaptations of natural adhesives for rough surfaces.

  15. Protein crystal growth in microgravity: Temperature induced large scale crystallization of insulin

    NASA Technical Reports Server (NTRS)

    Long, Marianna M.; Delucas, Larry J.; Smith, C.; Carson, M.; Moore, K.; Harrington, Michael D.; Pillion, D. J.; Bishop, S. P.; Rosenblum, W. M.; Naumann, R. J.

    1994-01-01

    One of the major stumbling blocks that prevents rapid structure determination using x-ray crystallography is macro-molecular crystal growth. There are many examples where crystallization takes longer than structure determination. In some cases, it is impossible to grow useful crystals on earth. Recent experiments conducted in conjuction with NASA on various Space Shuttle missions have demonstrated that protein crystals often grow larger and display better internal molecular order than their earth-grown counterparts. This paper reports results from three Shuttle flights using the Protein Crystallization Facility (PCF). The PCF hardware produced large, high-quality insulin crystals by using a temperature change as the sole means to affect protein solubility and thus, crystallization. The facility consists of cylinders/containers with volumes of 500, 200, 100, and 50 ml. Data from the three Shuttle flights demonstrated that larger, higher resolution crystals (as evidenced by x-ray diffraction data) were obtained from the microgravity experiments when compared to earth-grown crystals.

  16. Driving and latching of the Starlab pointing mirror doors

    NASA Technical Reports Server (NTRS)

    Beaven, Herbert R., Jr.; Avina, Raymond R.

    1990-01-01

    The Starlab Experiment, a major SDIO technology initiative, is an attached payload which will be delivered into Earth orbit aboard NASA's Space Shuttle in 1991. Starlab will generate and aim an 80 cm diameter laser beam into space through a large opening in the structure which houses the pointing mirror. Two doors, each somewhat larger than a desktop, cover the opening when the laser optics system is nonoperational. Latch Mechanism Assemblies hold the doors shut during liftoff and ascent and, again, during Orbiter reentry. Each door is powered by a Door Drive System during the many open/close cycles between various experiments. The design, testing, and resultant failure modes of these mechanisms are examined.

  17. Method for Producing Launch/Landing Pads and Structures Project

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P. (Compiler)

    2015-01-01

    Current plans for deep space exploration include building landing-launch pads capable of withstanding the rocket blast of much larger spacecraft that that of the Apollo days. The proposed concept will develop lightweight launch and landing pad materials from in-situ materials, utilizing regolith to produce controllable porous cast metallic foam brickstiles shapes. These shapes can be utilized to lay a landing launch platform, as a construction material or as more complex parts of mechanical assemblies.

  18. Characterizing protein conformations by correlation analysis of coarse-grained contact matrices.

    PubMed

    Lindsay, Richard J; Siess, Jan; Lohry, David P; McGee, Trevor S; Ritchie, Jordan S; Johnson, Quentin R; Shen, Tongye

    2018-01-14

    We have developed a method to capture the essential conformational dynamics of folded biopolymers using statistical analysis of coarse-grained segment-segment contacts. Previously, the residue-residue contact analysis of simulation trajectories was successfully applied to the detection of conformational switching motions in biomolecular complexes. However, the application to large protein systems (larger than 1000 amino acid residues) is challenging using the description of residue contacts. Also, the residue-based method cannot be used to compare proteins with different sequences. To expand the scope of the method, we have tested several coarse-graining schemes that group a collection of consecutive residues into a segment. The definition of these segments may be derived from structural and sequence information, while the interaction strength of the coarse-grained segment-segment contacts is a function of the residue-residue contacts. We then perform covariance calculations on these coarse-grained contact matrices. We monitored how well the principal components of the contact matrices is preserved using various rendering functions. The new method was demonstrated to assist the reduction of the degrees of freedom for describing the conformation space, and it potentially allows for the analysis of a system that is approximately tenfold larger compared with the corresponding residue contact-based method. This method can also render a family of similar proteins into the same conformational space, and thus can be used to compare the structures of proteins with different sequences.

  19. The nature of geometric frustration in the Kob-Andersen mixture

    NASA Astrophysics Data System (ADS)

    Crowther, Peter; Turci, Francesco; Royall, C. Patrick

    2015-07-01

    Geometric frustration is an approach to the glass transition based upon the consideration of locally favoured structures (LFS), which are geometric motifs which minimise the local free energy. Geometric frustration proposes that a transition to a crystalline state is frustrated because these LFS do not tile space. However, this concept is based on icosahedra which are not always the LFS for a given system. The LFS of the popular Kob-Andersen (KA) model glassformer are the bicapped square antiprism, which does tile space. Such a LFS-crystal is indeed realised in the Al2Cu structure, which is predicted to be a low energy state for the KA model with a 2:1 composition. We, therefore, hypothesise that upon changing the composition in the KA model towards 2:1, geometric frustration may be progressively relieved, leading to larger and larger domains of LFS which would ultimately correspond to the Al2Cu crystal. Remarkably, rather than an increase, upon changing composition we find a small decrease in the LFS population, and the system remains impervious to nucleation of LFS crystals. We suggest that this may be related to the composition of the LFS, as only a limited subset is compatible with the crystal. We further demonstrate that the Al2Cu crystal will grow from a seed in the KA model with 2:1 composition and identify the melting temperature to be 0.447(2).

  20. Characterizing protein conformations by correlation analysis of coarse-grained contact matrices

    NASA Astrophysics Data System (ADS)

    Lindsay, Richard J.; Siess, Jan; Lohry, David P.; McGee, Trevor S.; Ritchie, Jordan S.; Johnson, Quentin R.; Shen, Tongye

    2018-01-01

    We have developed a method to capture the essential conformational dynamics of folded biopolymers using statistical analysis of coarse-grained segment-segment contacts. Previously, the residue-residue contact analysis of simulation trajectories was successfully applied to the detection of conformational switching motions in biomolecular complexes. However, the application to large protein systems (larger than 1000 amino acid residues) is challenging using the description of residue contacts. Also, the residue-based method cannot be used to compare proteins with different sequences. To expand the scope of the method, we have tested several coarse-graining schemes that group a collection of consecutive residues into a segment. The definition of these segments may be derived from structural and sequence information, while the interaction strength of the coarse-grained segment-segment contacts is a function of the residue-residue contacts. We then perform covariance calculations on these coarse-grained contact matrices. We monitored how well the principal components of the contact matrices is preserved using various rendering functions. The new method was demonstrated to assist the reduction of the degrees of freedom for describing the conformation space, and it potentially allows for the analysis of a system that is approximately tenfold larger compared with the corresponding residue contact-based method. This method can also render a family of similar proteins into the same conformational space, and thus can be used to compare the structures of proteins with different sequences.

  1. Purification, crystallization and preliminary X-ray structural studies of a 7.2 kDa cytotoxin isolated from the venom of Daboia russelli russelli of the Viperidae family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy Choudhury, Subhasree; Gomes, Aparna; Gomes, Antony

    2006-03-01

    A cytotoxin from Indian Russell’s viper (D. russelli russelli) venom having multifunctional activity has been crystallized in space group P4{sub 1}. Larger crystals diffracted to 1.5 Å but were found to be twinned; preliminary data were therefore collected (2.93 Å) from a smaller crystal. A cytotoxin (MW 7.2 kDa) from Indian Russell’s viper (Daboia russelli russelli) venom possessing antiproliferative activity, cardiotoxicity, neurotoxicity and myotoxicity has been purified, characterized and crystallized. The crystals belong to the tetragonal space group P4{sub 1}, with unit-cell parameters a = b = 47.94, c = 50.2 Å. Larger crystals, which diffracted to 1.5 Å, weremore » found to be twinned; diffraction data were therefore collected to 2.93 Å resolution using a smaller crystal. Molecular-replacement calculations identified two molecules of the protein in the asymmetric unit, which is in accordance with the calculated V{sub M} value.« less

  2. Study on Wind-induced Vibration and Fatigue Life of Cable-stayed Flexible Antenna

    NASA Astrophysics Data System (ADS)

    He, Kongde; He, Xuehui; Fang, Zifan; Zheng, Xiaowei; Yu, Hongchang

    2018-03-01

    The cable-stayed flexible antenna is a large-span space structure composed of flexible multibody, with low frequency of vibration, vortex-induced resonance can occur under the action of Stochastic wind, and a larger amplitude is generated when resonance occurs. To solve this problem, based on the theory of vortex-induced vibration, this paper analyzes the vortex-induced vibration of a cable-stayed flexible antenna under the action of Wind. Based on the sinusoidal force model and Autoregressive Model (AR) method, the vortex-induced force is simulated, then the fatigue analysis of the structure is based on the linear fatigue cumulative damage principle and the rain-flow method. The minimum fatigue life of the structure is calculated to verify the vibration fatigue performance of the structure.

  3. Comparison of variational real-space representations of the kinetic energy operator

    NASA Astrophysics Data System (ADS)

    Skylaris, Chris-Kriton; Diéguez, Oswaldo; Haynes, Peter D.; Payne, Mike C.

    2002-08-01

    We present a comparison of real-space methods based on regular grids for electronic structure calculations that are designed to have basis set variational properties, using as a reference the conventional method of finite differences (a real-space method that is not variational) and the reciprocal-space plane-wave method which is fully variational. We find that a definition of the finite-difference method [P. Maragakis, J. Soler, and E. Kaxiras, Phys. Rev. B 64, 193101 (2001)] satisfies one of the two properties of variational behavior at the cost of larger errors than the conventional finite-difference method. On the other hand, a technique which represents functions in a number of plane waves which is independent of system size closely follows the plane-wave method and therefore also the criteria for variational behavior. Its application is only limited by the requirement of having functions strictly localized in regions of real space, but this is a characteristic of an increasing number of modern real-space methods, as they are designed to have a computational cost that scales linearly with system size.

  4. NEUTRON-IRRADIATED STRUCTURES

    DOEpatents

    Ashley, E.L.; Ashley, J.W.; Bowker, H.W.; Hall, R.H.; Kendall, J.W.

    1959-02-01

    A moderator structure is described for a nuclear reactor of the heterogensous type wherein a large mass of moderator is provided with channels therethrough for the introduction of uranium serving as nuclear fuel and for the passage of a cooling fluid. The structure is comprised of blocks of moderator material in superposed horizontal layers, the blocks of each layer being tied together with spaces between them and oriented to have horizontal Wigner growth. The ties are strips of moderator material, the same as the blocks, with transverse Wigner growth, disposed horizontally along lines crossing at vertical axes of the blocks. The blocks are preferably rectangular with a larger or length dimension transverse to the directions of Wiguer growth and are stood on end to provide for horizontal growth.

  5. Gravity Wave Seeding of Equatorial Plasma Bubbles

    NASA Technical Reports Server (NTRS)

    Singh, Sardul; Johnson, F. S.; Power, R. A.

    1997-01-01

    Some examples from the Atmosphere Explorer E data showing plasma bubble development from wavy ion density structures in the bottomside F layer are described. The wavy structures mostly had east-west wavelengths of 150-800 km, in one example it was about 3000 km. The ionization troughs in the wavy structures later broke up into either a multiple-bubble patch or a single bubble, depending upon whether, in the precursor wavy structure, shorter wavelengths were superimposed on the larger scale wavelengths. In the multiple bubble patches, intrabubble spacings vaned from 55 km to 140 km. In a fully developed equatorial spread F case, east-west wavelengths from 690 km down to about 0.5 km were present simultaneously. The spacings between bubble patches or between bubbles in a patch appear to be determined by the wavelengths present in the precursor wave structure. In some cases, deeper bubbles developed on the western edge of a bubble patch, suggesting an east-west asymmetry. Simultaneous horizontal neutral wind measurements showed wavelike perturbations that were closely associated with perturbations in the plasma horizontal drift velocity. We argue that the wave structures observed here that served as the initial seed ion density perturbations were caused by gravity waves, strengthening the view that gravity waves seed equatorial spread F irregularities.

  6. A development roadmap for critical technologies needed for TALC: a deployable 20m annular space telescope

    NASA Astrophysics Data System (ADS)

    Sauvage, Marc; Amiaux, Jérome; Austin, James; Bello, Mara; Bianucci, Giovanni; Chesné, Simon; Citterio, Oberto; Collette, Christophe; Correia, Sébastien; Durand, Gilles A.; Molinari, Sergio; Pareschi, Giovanni; Penfornis, Yann; Sironi, Giorgia; Valsecchi, Giuseppe; Verpoort, Sven; Wittrock, Ulrich

    2016-07-01

    Astronomy is driven by the quest for higher sensitivity and improved angular resolution in order to detect fainter or smaller objects. The far-infrared to submillimeter domain is a unique probe of the cold and obscured Universe, harboring for instance the precious signatures of key elements such as water. Space observations are mandatory given the blocking effect of our atmosphere. However the methods we have relied on so far to develop increasingly larger telescopes are now reaching a hard limit, with the JWST illustrating this in more than one way (e.g. it will be launched by one of the most powerful rocket, it requires the largest existing facility on Earth to be qualified). With the Thinned Aperture Light Collector (TALC) project, a concept of a deployable 20 m annular telescope, we propose to break out of this deadlock by developing novel technologies for space telescopes, which are disruptive in three aspects: • An innovative deployable mirror whose topology, based on stacking rather than folding, leads to an optimum ratio of collecting area over volume, and creates a telescope with an eight times larger collecting area and three times higher angular resolution compared to JWST from the same pre-deployed volume; • An ultra-light weight segmented primary mirror, based on electrodeposited Nickel, Composite and Honeycomb stacks, built with a replica process to control costs and mitigate the industrial risks; • An active optics control layer based on piezo-electric layers incorporated into the mirror rear shell allowing control of the shape by internal stress rather than by reaction on a structure. We present in this paper the roadmap we have built to bring these three disruptive technologies to technology readiness level 3. We will achieve this goal through design and realization of representative elements: segments of mirrors for optical quality verification, active optics implemented on representative mirror stacks to characterize the shape correction capabilities, and mechanical models for validation of the deployment concept. Accompanying these developments, a strong system activity will ensure that the ultimate goal of having an integrated system can be met, especially in terms of (a) scalability toward a larger structure, and (b) verification philosophy.

  7. Passing of northern pike and common carp through experimental barriers designed for use in wetland restoration

    USGS Publications Warehouse

    French, John R. P.; Wilcox, Douglas A.; Nichols, S. Jerrine

    1999-01-01

    Restoration plans for Metzger Marsh, a coastal wetland on the south shore of western Lake Erie, incorporated a fish-control system designed to restrict access to the wetland by large common carp (Cyprinus carpio). Ingress fish passageways in the structure contain slots into which experimental grates of varying size and shape can be placed to selectively allow entry and transfer of other large fish species while minimizing the number of common carp to be handled. We tested different sizes and shapes of grates in experimental tanks in the laboratory to determine the best design for testing in the field. We also tested northern pike (Esox lucius) because lack of access to wetland spawning habitat has greatly reduced their populations in western Lake Erie. Based on our results, vertical bar grates were chosen for installation because common carp were able to pass through circular grates smaller than body height by compressing their soft abdomens; they passed through rectangular grates on the diagonal. Vertical bar grates with 5-cm spacing that were installed across much of the control structure should limit access of common carp larger than 34 cm total length (TL) and northern pike larger than 70 cm. Vertical bar grates selected for initial field trials in the fish passageway had spacings of 5.8 and 6.6 cm, which increased access by common carp to 40 and 47 cm TL and by northern pike to 76 and 81 cm, respectively. The percentage of potential common carp biomass (fish seeking entry) that must be handled in lift baskets in the passageway increased from 0.9 to 4.8 to 15.4 with each increase in spacing between bars. Further increases in spacing would greatly increase the number of common carp that would have to be handled. The results of field testing should be useful in designing selective fish-control systems for other wetland restoration sites adjacent to large water bodies.

  8. Computational exploration of the chemical structure space of possible reverse tricarboxylic acid cycle constituents.

    PubMed

    Meringer, Markus; Cleaves, H James

    2017-12-13

    The reverse tricarboxylic acid (rTCA) cycle has been explored from various standpoints as an idealized primordial metabolic cycle. Its simplicity and apparent ubiquity in diverse organisms across the tree of life have been used to argue for its antiquity and its optimality. In 2000 it was proposed that chemoinformatics approaches support some of these views. Specifically, defined queries of the Beilstein database showed that the molecules of the rTCA are heavily represented in such compound databases. We explore here the chemical structure "space," e.g. the set of organic compounds which possesses some minimal set of defining characteristics, of the rTCA cycle's intermediates using an exhaustive structure generation method. The rTCA's chemical space as defined by the original criteria and explored by our method is some six to seven times larger than originally considered. Acknowledging that each assumption in what is a defining criterion making the rTCA cycle special limits possible generative outcomes, there are many unrealized compounds which fulfill these criteria. That these compounds are unrealized could be due to evolutionary frozen accidents or optimization, though this optimization may also be for systems-level reasons, e.g., the way the pathway and its elements interface with other aspects of metabolism.

  9. A widely adaptable habitat construction system utilizing space resources

    NASA Technical Reports Server (NTRS)

    Wykes, Harry B.

    1993-01-01

    This study suggests that the cost of providing accommodations for various manned activities in space may be reduced by the extensive use of resources that are commonly found throughout the solar system. Several concepts are proposed for converting these resources into simple products with many uses. Concrete is already being considered as a possible moonbase material. Manufacturing equipment should be as small and simple as possible, which leads to the idea of molding it into miniature modules that can be produced and assembled in large numbers to create any conceivable shape. Automated equipment could build up complex structures by laying down layer after layer in a process resembling stereolithography. These tiny concrete blocks handle compression loads and provide a barrier to harmful radiation. They are joined by a web of tension members that could be made of wire or fiber-reinforced plastic. The finished structure becomes air-tight with the addition of a flexible liner. Wire can be made from the iron modules found in lunar soil. In addition to its structural role, a relatively simple apparatus can bend and weld it into countless products like chairs and shelving that would otherwise need to be supplied from Earth. Wire woven into a loose blanket could be an effective micrometeoroid shield, tiny wire compression beams could be assembled into larger beams which in turn form larger beams to create very large space-frame structures. A technology developed with lunar materials could be applied to the moons of Mars or the asteroids. To illustrate its usefulness several designs for free-flying habitats are presented. They begin with a minimal self-contained living unit called the Cubicle. It may be multiplied into clusters called Condos. These are shown in a rotating tether configuration that provides a substitute for gravity. The miniature block proposal is compared with an alternate design based on larger triangular components and a tetrahedral geometry. The overall concept may be expanded to envision city-sized self-sufficient environments where humans could confortably live their entire lives. One such proposal is the Hive. It is configured around a unique sunlight collection system that could provide all its energy needs and that could be scaled up to compensate for the reduced solar intensity at greater distances from the sun. Its outer perimeter consists of a cylindrical section mated to two conical end walls that taper inwards toward a small aperture at the center of rotation. Light collected by two huge mirrors of unusual design enters the aperture and is redirected to the inside of the cylinder. The conical end walls are shielded from direct sunlight and are designed to radiate heat into space. They are lined with air ducts that passively recirculate the atmosphere while extracting moisture by condensation. Although there is no immediate demand for spacecraft on this scale, their consideration can influence even the earliest stages of the development process.

  10. Wiring economy and volume exclusion determine neuronal placement in the Drosophila brain.

    PubMed

    Rivera-Alba, Marta; Vitaladevuni, Shiv N; Mishchenko, Yuriy; Mischenko, Yuriy; Lu, Zhiyuan; Takemura, Shin-Ya; Scheffer, Lou; Meinertzhagen, Ian A; Chklovskii, Dmitri B; de Polavieja, Gonzalo G

    2011-12-06

    Wiring economy has successfully explained the individual placement of neurons in simple nervous systems like that of Caenorhabditis elegans [1-3] and the locations of coarser structures like cortical areas in complex vertebrate brains [4]. However, it remains unclear whether wiring economy can explain the placement of individual neurons in brains larger than that of C. elegans. Indeed, given the greater number of neuronal interconnections in larger brains, simply minimizing the length of connections results in unrealistic configurations, with multiple neurons occupying the same position in space. Avoiding such configurations, or volume exclusion, repels neurons from each other, thus counteracting wiring economy. Here we test whether wiring economy together with volume exclusion can explain the placement of neurons in a module of the Drosophila melanogaster brain known as lamina cartridge [5-13]. We used newly developed techniques for semiautomated reconstruction from serial electron microscopy (EM) [14] to obtain the shapes of neurons, the location of synapses, and the resultant synaptic connectivity. We show that wiring length minimization and volume exclusion together can explain the structure of the lamina microcircuit. Therefore, even in brains larger than that of C. elegans, at least for some circuits, optimization can play an important role in individual neuron placement. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Saturn Apollo Program

    NASA Image and Video Library

    1965-01-01

    Workers at the Marshall Space Flight Center's (MSFC) Dynamic Test Stand install S-IB-200D, a dynamic test version of the Saturn IB launch vehicle's first stage, on January 11, 1965. MSFC Test Laboratory persornel assembled a complete Saturn IB to test the launch vehicle's structural soundness. Developed by the MSFC as an interim vehicle in MSFC's "building block" approach to the Saturn rocket development, the Saturn IB utilized Saturn I technology to further develop and refine the larger boosters and the Apollo spacecraft capabilities required for the manned lunar missions.

  12. Studies of high temperature ternary phases in mixed-metal-rich early transition metal sulfide and phosphide systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marking, Gregory Allen

    1994-01-04

    Investigations of ternary mixed early transition metal-rich sulfide and phosphide systems resulted in the discovery of new structures and new phases. A new series of Zr and Hf - group V transition metal - sulfur K-phases was synthesized and crystallographically characterized. When the group V transition metal was Nb or Ta, the unit cell volume was larger than any previously reported K-phase. The presence of adventitious oxygen was determined in two K-phases through a combination of neutron scattering and X-ray diffraction experiments. A compound Hf 10Ta 3S 3 was found to crystallize in a new-structure type similar to the knownmore » gamma brasses. This structure is unique in that it is the only reported "stuffed" gamma-brass type structure. The metal components, Hf and Ta, are larger in size and more electropositive than the metals found in normal gamma brasses (e.g. Cu and Zn) and because of the larger metallic radii, sulfur can be incorporated into the structure where it plays an integral role in stabilizing this phase relative to others. X-ray single-crystal, X-ray powder and neutron powder refinements were performed on this structure. A new structure was found in the ternary Nb-Zr-P system which has characteristics in common with many known early transition metal-rich sulfides, selenides, and phosphides. This structure has the simplest known interconnection of the basic building blocks known for this structural class. Anomalous scattering was a powerful tool for differentiating between Zr and Nb when using Mo Kα X-radiation. The compounds ZrNbP and HfNbP formed in the space group Prima with the simple Co 2Si structure which is among the most common structures found for crystalline solid materials. Solid solution compounds in the Ta-Nb-P, Ta-Zr-P, Nb-Zr-P, Hf-Nb-P, and Hf-Zr-S systems were crystallographically characterized. The structural information corroborated ideas about bonding in metal-rich compounds.« less

  13. Inflatable habitation for the lunar base

    NASA Technical Reports Server (NTRS)

    Roberts, M.

    1992-01-01

    Inflatable structures have a number of advantages over rigid modules in providing habitation at a lunar base. Some of these advantages are packaging efficiency, convenience of expansion, flexibility, and psychological benefit to the inhabitants. The relatively small, rigid cylinders fitted to the payload compartment of a launch vehicle are not as efficient volumetrically as a collapsible structure that fits into the same space when packaged, but when deployed is much larger. Pressurized volume is a valuable resource. By providing that resource efficiently, in large units, labor intensive external expansion (such as adding additional modules to the existing base) can be minimized. The expansive interior in an inflatable would facilitate rearrangement of the interior to suite the evolving needs of the base. This large, continuous volume would also relieve claustrophobia, enhancing habitability and improving morale. The purpose of this paper is to explore some of the aspects of inflatable habitat design, including structural, architectural, and environmental considerations. As a specific case, the conceptual design of an inflatable lunar habitat, developed for the Lunar Base Systems Study at the Johnson Space Center, is described.

  14. Structure and Soot Properties of Nonbuoyant Ethylene/Air Laminar Jet Diffusion Flames. Appendix E; Repr. from AIAA Journal, v. 36 p 1346-1360

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Linteris, G. T.; Voss, J. E.; Lin, K.-C.; Dai, Z.; Sun, K.; Faeth, G. M.; Ross, Howard D. (Technical Monitor)

    2001-01-01

    The structure and soot properties of round, soot-emitting, nonbuoyant, laminar jet diffusion flames are described, based on long-duration (175-230-s) experiments at microgravity carried out on orbit in the Space Shuttle Columbia. Experimental conditions included ethylene-fueled flames burning in still air at nominal pressures of 50 and 100 kPa and an ambient temperature of 300 K with luminous flame lengths of 49-64 mm Measurements included luminous flame shapes using color video imaging soot concentration (volume fraction) distributions using deconvoluted laser extinction imaging, soot temperature distributions using deconvoluted multiline emission imaging, gas temperature distributions at fuel-lean (plume) conditions using thermocouple probes, soot structure distributions using thermophoretic sampling and analysis by transmission electron microscopy, and flame radiation using a radiometer.The present flames were larger, and emitted soot more readily, than comparable flames observed during ground-based microgravity experiments due to closer approach to steady conditions resulting from the longer test times and the reduced gravitational disturbances of the space-based experiments.

  15. Detecting 3D Vegetation Structure with the Galileo Space Probe: Can a Distant Probe Detect Vegetation Structure on Earth?

    PubMed Central

    2016-01-01

    Sagan et al. (1993) used the Galileo space probe data and first principles to find evidence of life on Earth. Here we ask whether Sagan et al. (1993) could also have detected whether life on Earth had three-dimensional structure, based on the Galileo space probe data. We reanalyse the data from this probe to see if structured vegetation could have been detected in regions with abundant photosynthetic pigments through the anisotropy of reflected shortwave radiation. We compare changing brightness of the Amazon forest (a region where Sagan et al. (1993) noted a red edge in the reflectance spectrum, indicative of photosynthesis) as the planet rotates to a common model of reflectance anisotropy and found measured increase of surface reflectance of 0.019 ± 0.003 versus a 0.007 predicted from only anisotropic effects. We hypothesize the difference was due to minor cloud contamination. However, the Galileo dataset had only a small change in phase angle (sun-satellite position) which reduced the observed anisotropy signal and we demonstrate that theoretically if the probe had a variable phase angle between 0–20°, there would have been a much larger predicted change in surface reflectance of 0.1 and under such a scenario three-dimensional vegetation structure on Earth could possibly have been detected. These results suggest that anisotropic effects may be useful to help determine whether exoplanets have three-dimensional vegetation structure in the future, but that further comparisons between empirical and theoretical results are first necessary. PMID:27973530

  16. Detecting 3D Vegetation Structure with the Galileo Space Probe: Can a Distant Probe Detect Vegetation Structure on Earth?

    PubMed

    Doughty, Christopher E; Wolf, Adam

    2016-01-01

    Sagan et al. (1993) used the Galileo space probe data and first principles to find evidence of life on Earth. Here we ask whether Sagan et al. (1993) could also have detected whether life on Earth had three-dimensional structure, based on the Galileo space probe data. We reanalyse the data from this probe to see if structured vegetation could have been detected in regions with abundant photosynthetic pigments through the anisotropy of reflected shortwave radiation. We compare changing brightness of the Amazon forest (a region where Sagan et al. (1993) noted a red edge in the reflectance spectrum, indicative of photosynthesis) as the planet rotates to a common model of reflectance anisotropy and found measured increase of surface reflectance of 0.019 ± 0.003 versus a 0.007 predicted from only anisotropic effects. We hypothesize the difference was due to minor cloud contamination. However, the Galileo dataset had only a small change in phase angle (sun-satellite position) which reduced the observed anisotropy signal and we demonstrate that theoretically if the probe had a variable phase angle between 0-20°, there would have been a much larger predicted change in surface reflectance of 0.1 and under such a scenario three-dimensional vegetation structure on Earth could possibly have been detected. These results suggest that anisotropic effects may be useful to help determine whether exoplanets have three-dimensional vegetation structure in the future, but that further comparisons between empirical and theoretical results are first necessary.

  17. Structure of possible long-lived asteroid belts

    NASA Astrophysics Data System (ADS)

    Evans, N. W.; Tabachnik, S. A.

    2002-06-01

    High-resolution simulations are used to map out the detailed structure of two long-lived stable belts of asteroid orbits in the inner Solar system. The Vulcanoid belt extends from 0.09 to 0.20au, though with a gaps at 0.15 and 0.18au corresponding to de-stabilizing mean motion resonances with Mercury and Venus. As collisional evolution proceeds slower at larger heliocentric distances, km-sized or larger Vulcanoids are most likely to be found in the region between 0.16 and 0.18au. The optimum location to search is at geocentric ecliptic longitudes 9°<=|lg|<=10° and latitudes |βg|<1°. Dynamically speaking, the Earth-Mars belt between 1.08 and 1.28au is a stable repository for asteroids on nearly circular orbits. It is interrupted at 1.21au owing to the 3:4 commensurability with the Earth, while secular resonances with Saturn are troublesome beyond 1.17au. These detailed maps of the fine structure of the belts can be used to plan search methodologies. Strategies for detecting members of the belts are discussed, including the use of infrared wide-field imaging with VISTA, and forthcoming European Space Agency satellite missions such as GAIA and BepiColombo.

  18. Impact of large-scale tides on cosmological distortions via redshift-space power spectrum

    NASA Astrophysics Data System (ADS)

    Akitsu, Kazuyuki; Takada, Masahiro

    2018-03-01

    Although large-scale perturbations beyond a finite-volume survey region are not direct observables, these affect measurements of clustering statistics of small-scale (subsurvey) perturbations in large-scale structure, compared with the ensemble average, via the mode-coupling effect. In this paper we show that a large-scale tide induced by scalar perturbations causes apparent anisotropic distortions in the redshift-space power spectrum of galaxies in a way depending on an alignment between the tide, wave vector of small-scale modes and line-of-sight direction. Using the perturbation theory of structure formation, we derive a response function of the redshift-space power spectrum to large-scale tide. We then investigate the impact of large-scale tide on estimation of cosmological distances and the redshift-space distortion parameter via the measured redshift-space power spectrum for a hypothetical large-volume survey, based on the Fisher matrix formalism. To do this, we treat the large-scale tide as a signal, rather than an additional source of the statistical errors, and show that a degradation in the parameter is restored if we can employ the prior on the rms amplitude expected for the standard cold dark matter (CDM) model. We also discuss whether the large-scale tide can be constrained at an accuracy better than the CDM prediction, if the effects up to a larger wave number in the nonlinear regime can be included.

  19. Neutral Buoyancy Simulator-NB32-Large Space Structure Assembly

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. Construction methods had to be efficient due to the limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. As part of this experimentation, the Experimental Assembly of Structures in Extravehicular Activity (EASE) project was developed as a joint effort between MFSC and the Massachusetts Institute of Technology (MIT). The EASE experiment required that crew members assemble small components to form larger components, working from the payload bay of the space shuttle. Pictured is an entire unit that has been constructed and is sitting in the bottom of a mock-up shuttle cargo bay pallet.

  20. Simple phenomenological modeling of transition-region capacitance of forward-biased p-n junction diodes and transistor diodes

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.

    1982-01-01

    The derivation of a simple expression for the capacitance C(V) associated with the transition region of a p-n junction under a forward bias is derived by phenomenological reasoning. The treatment of C(V) is based on the conventional Shockley equations, and simpler expressions for C(V) result that are in general accord with the previous analytical and numerical results. C(V) consists of two components resulting from changes in majority carrier concentration and from free hole and electron accumulation in the space-charge region. The space-charge region is conceived as the intrinsic region of an n-i-p structure for a space-charge region markedly wider than the extrinsic Debye lengths at its edges. This region is excited in the sense that the forward bias creates hole and electron densities orders of magnitude larger than those in equilibrium. The recent Shirts-Gordon (1979) modeling of the space-charge region using a dielectric response function is contrasted with the more conventional Schottky-Shockley modeling.

  1. Stability of Multi-Planet Systems Orbiting in the Alpha Centauri AB System

    NASA Astrophysics Data System (ADS)

    Lissauer, Jack

    2018-04-01

    We evaluate how closely-spaced planetary orbits in multiple planet systems can be and still survive for billion-year timescales within the alpha Centauri AB system. Although individual planets on nearly circular, coplanar orbits can survive throughout the habitable zones of both stars, perturbations from the companion star imply that the spacing of such planets in multi-planet systems must be significantly larger than the spacing of similar systems orbiting single stars in order to be long-lived. Because the binary companion induces a forced eccentricity upon circumstellar planets, stable orbits with small initial eccentricities aligned with the binary orbit are possible to slightly larger initial semimajor axes than are initially circular orbits. Initial eccentricities close to the appropriate forced eccentricity can have a much larger affect on how closely planetary orbits can be spaced, on how many planets may remain in the habitable zones, although the required spacing remains significantly higher than for planets orbiting single stars.

  2. Space assembly fixtures and aids

    NASA Technical Reports Server (NTRS)

    Bloom, K. A.; Lillenas, A. N.

    1980-01-01

    Concepts and requirements for assembly fixtures and aids necessary for the assembly and maintenance of spare platforms were studied. Emphasis was placed on erectable and deployable type structures with the shuttle orbiter as the assembly base. Both single and multiple orbiter flight cases for the platform assembly were considered. Applicable space platform assembly studies were reviewed to provide a data base for establishing the assembly fixture and aids design requirements, assembly constraints, and the development of representative design concepts. Conclusions indicated that fixture requirements will vary with platform size. Larger platforms will require translation relative to the orbiter RMS working volume. The installation of platform payloads and subsystems (e.g., utility distribution) must also be considered in the specification of assembly fixtures and aids.

  3. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study. Volume 2: Addendum 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The potential of a common Liquid Rocket Booster (LRB) design was evaluated for use with both the Space Transportation System (STS) and the Advanced Launch System (ALS). A goal is to have a common Liquid Oxygen/Liquid Hydrogen (LO2/LH2) engine developed for both the ALS booster and the core stage. The LO2/LH2 option for the STS was evaluated to identify potential LRB program cost reductions. The objective was to identify the structural impacts to the external tank (ET), and to determine if any significant ET re-development costs are required as a result of the larger LO2/LH2 LRB. The potential ET impacts evaluated are presented.

  4. Carbohydrates in diversity-oriented synthesis: challenges and opportunities.

    PubMed

    Lenci, E; Menchi, G; Trabocchi, A

    2016-01-21

    Over the last decade, Diversity-Oriented Synthesis (DOS) has become a new paradigm for developing large collections of structurally diverse small molecules as probes to investigate biological pathways, and to provide a larger array of the chemical space. Drug discovery and chemical biology are taking advantage of DOS approaches to exploit highly-diverse and complex molecular platforms, producing advances in both target and ligand discovery. In this view, carbohydrates are attractive building blocks for DOS libraries, due to their stereochemical diversity and high density of polar functional groups, thus offering many possibilities for chemical manipulation and scaffold decoration. This review will discuss research contributions and perspectives on the application of carbohydrate chemistry to explore the accessible chemical space through appendage, stereochemical and scaffold diversity.

  5. Improved Cryogenic Optical Test Capability at Marshall Space Flight Center's X-ray Cryogenic Test Facility

    NASA Technical Reports Server (NTRS)

    Kegley, Jeffrey; Haight, Harlan; Hogue, William; Carpenter, Jay; Siler, Richard; Wright, Ernie; Eng, Ron; Baker, Mark; McCracken, Jeff

    2005-01-01

    Marshall Space Flight Center's X-ray & Cryogenic Test Facility (XRCF) has been performing optical wavefront testing and thermal structural deformation testing at subliquid nitrogen cryogenic temperatures since 1999. Recent modifications have been made to the facility in support of the James Webb Space Telescope (JWST) program. The test article envelope and the chamber's refrigeration capacity have both been increased. A new larger helium-cooled enclosure has been added to the existing enclosure increasing both the cross-sectional area and the length. This new enclosure is capable of supporting six JWST Primary Mirror Segment Assemblies. A second helium refrigeration system has been installed essentially doubling the cooling capacity available at the facility. Modifications have also been made to the optical instrumentation area. Improved access is now available for both the installation and operation of optical instrumentation outside the vacuum chamber. Chamber configuration, specifications, and performance data will be presented.

  6. Guided bone augmentation using ceramic space-maintaining devices: the impact of chemistry

    PubMed Central

    Anderud, Jonas; Abrahamsson, Peter; Jimbo, Ryo; Isaksson, Sten; Adolfsson, Erik; Malmström, Johan; Naito, Yoshihito; Wennerberg, Ann

    2015-01-01

    The purpose of the study was to evaluate histologically, whether vertical bone augmentation can be achieved using a hollow ceramic space maintaining device in a rabbit calvaria model. Furthermore, the chemistry of microporous hydroxyapatite and zirconia were tested to determine which of these two ceramics are most suitable for guided bone generation. 24 hollow domes in two different ceramic materials were placed subperiosteal on rabbit skull bone. The rabbits were sacrificed after 12 weeks and the histology results were analyzed regarding bone-to-material contact and volume of newly formed bone. The results suggest that the effect of the microporous structure of hydroxyapatite seems to facilitate for the bone cells to adhere to the material and that zirconia enhance a slightly larger volume of newly formed bone. In conclusion, the results of the current study demonstrated that ceramic space maintaining devices permits new bone formation and osteoconduction within the dome. PMID:25792855

  7. Cheminformatic comparison of approved drugs from natural product versus synthetic origins.

    PubMed

    Stratton, Christopher F; Newman, David J; Tan, Derek S

    2015-11-01

    Despite the recent decline of natural product discovery programs in the pharmaceutical industry, approximately half of all new drug approvals still trace their structural origins to a natural product. Herein, we use principal component analysis to compare the structural and physicochemical features of drugs from natural product-based versus completely synthetic origins that were approved between 1981 and 2010. Drugs based on natural product structures display greater chemical diversity and occupy larger regions of chemical space than drugs from completely synthetic origins. Notably, synthetic drugs based on natural product pharmacophores also exhibit lower hydrophobicity and greater stereochemical content than drugs from completely synthetic origins. These results illustrate that structural features found in natural products can be successfully incorporated into synthetic drugs, thereby increasing the chemical diversity available for small-molecule drug discovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The crystalline structure of copper phthalocyanine films on ZnO(1100).

    PubMed

    Cruickshank, Amy C; Dotzler, Christian J; Din, Salahud; Heutz, Sandrine; Toney, Michael F; Ryan, Mary P

    2012-09-05

    The structure of copper phthalocyanine (CuPc) thin films (5-100 nm) deposited on single-crystal ZnO(1100) substrates by organic molecular beam deposition was determined from grazing-incidence X-ray diffraction reciprocal space maps. The crystal structure was identified as the metastable polymorph α-CuPc, but the molecular stacking was found to vary depending on the film thickness: for thin films, a herringbone arrangement was observed, whereas for films thicker than 10 nm, coexistence of both the herringbone and brickstone arrangements was found. We propose a modified structure for the herringbone phase with a larger monoclinic β angle, which leads to intrastack Cu-Cu distances closer to those in the brickstone phase. This structural basis enables an understanding of the functional properties (e.g., light absorption and charge transport) of (opto)electronic devices fabricated from CuPc/ZnO hybrid systems.

  9. Omicron space habitat—research stage II

    NASA Astrophysics Data System (ADS)

    Doule, Ondřej; Šálený, Vratislav; Hérin, Benoît; Rousek, Tomáš

    2012-01-01

    The design presented in this paper is in response to the revolution in private space activities, the increasing public interest in commercial flights to space and the utilization of structures such as space hotels or private orbital habitats. The baseline for the Omicron design concept is the Russian Salyut derived space station module. Salyut was the first space station to orbit the Earth. Its unique design and technical features were what made the development of space stations Salyut 1-7, MIR and the International Space Station (ISS) Zwezda service module possible. Due to its versatility and the reliable operating launch vehicle Proton, this space module series has the potential to be adapted for space hotel development. This paper proposes a conceptual design of the space habitat called Omicron, with particular focus on interior design for the microgravity environment. The Omicron concepts address the needs of space tourism with a strong emphasis on the safety and comfort of the spaceflight participants. The Omicron habitat supports three inhabitants in nominal conditions (e.g., two passengers and one astronaut). The habitat provides a flexible interior, facilities and spaces dynamically transforming in order to accommodate various types of activities, which will be performed in an organically formed interior supporting spatial orientation and movement in microgravity. The future development potential of Omicron is also considered. The baseline version is composed solely of one rigid module with an inverted cupola for observations. An alternative version offers more space using an inflatable structure. Finally, a combination of multiple Omicron modules enables the creation of a larger orbital habitat. The Omicron's subsystems support a few days visit by trained passengers. The transport to the habitat would be provided e.g., by the Soyuz TMA spacecraft carried by the Soyuz launch vehicle in the early stage of Omicron's development, before a fully reusable spacecraft would be available.

  10. Parametric Study of an Ablative TPS and Hot Structure Heatshield for a Mars Entry Capsule Vehicle

    NASA Technical Reports Server (NTRS)

    Langston, Sarah L.; Lang, Christapher G.; Samareh, Jamshid A.

    2017-01-01

    The National Aeronautics and Space Administration is planning to send humans to Mars. As part of the Evolvable Mars Campaign, different en- try vehicle configurations are being designed and considered for delivering larger payloads than have been previously sent to the surface of Mars. Mass and packing volume are driving factors in the vehicle design, and the thermal protection for planetary entry is an area in which advances in technology can offer potential mass and volume savings. The feasibility and potential benefits of a carbon-carbon hot structure concept for a Mars entry vehicle is explored in this paper. The windward heat shield of a capsule design is assessed for the hot structure concept as well as an ablative thermal protection system (TPS) attached to a honeycomb sandwich structure. Independent thermal and structural analyses are performed to determine the minimum mass design. The analyses are repeated for a range of design parameters, which include the trajectory, vehicle size, and payload. Polynomial response functions are created from the analysis results to study the capsule mass with respect to the design parameters. Results from the polynomial response functions created from the thermal and structural analyses indicate that the mass of the capsule was higher for the hot structure concept as compared to the ablative TPS for the parameter space considered in this study.

  11. Status of solar sail technology within NASA

    NASA Astrophysics Data System (ADS)

    Johnson, Les; Young, Roy; Montgomery, Edward; Alhorn, Dean

    2011-12-01

    In the early 2000s, NASA made substantial progress in the development of solar sail propulsion systems for use in robotic science and exploration of the solar system. Two different 20-m solar sail systems were produced. NASA has successfully completed functional vacuum testing in their Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. The sails were designed and developed by Alliant Techsystems Space Systems and L'Garde, respectively. The sail systems consist of a central structure with four deployable booms that support each sail. These sail designs are robust enough for deployment in a one-atmosphere, one-gravity environment and are scalable to much larger solar sails - perhaps as large as 150 m on a side. Computation modeling and analytical simulations were performed in order to assess the scalability of the technology to the larger sizes that are required to implement the first generation of missions using solar sails. Furthermore, life and space environmental effects testing of sail and component materials was also conducted.NASA terminated funding for solar sails and other advanced space propulsion technologies shortly after these ground demonstrations were completed. In order to capitalize on the $30 M investment made in solar sail technology to that point, NASA Marshall Space Flight Center funded the NanoSail-D, a subscale solar sail system designed for possible small spacecraft applications. The NanoSail-D mission flew on board a Falcon-1 rocket, launched August 2, 2008. As a result of the failure of that rocket, the NanoSail-D was never successfully given the opportunity to achieve orbit. The NanoSail-D flight spare was flown in the Fall of 2010. This review paper summarizes NASA's investment in solar sail technology to date and discusses future opportunities.

  12. MIC-Large Scale Magnetically Inflated Cable Structures for Space Power, Propulsion, Communications and Observational Applications

    NASA Astrophysics Data System (ADS)

    Powell, James; Maise, George; Rather, John

    2010-01-01

    A new approach for the erection of rigid large scale structures in space-MIC (Magnetically Inflated Cable)-is described. MIC structures are launched as a compact payload of superconducting cables and attached tethers. After reaching orbit, the superconducting cables are energized with electrical current. The magnet force interactions between the cables cause them to expand outwards into the final large structure. Various structural shapes and applications are described. The MIC structure can be a simple flat disc with a superconducting outer ring that supports a tether network holding a solar cell array, or it can form a curved mirror surface that concentrates light and focuses it on a smaller region-for example, a high flux solar array that generates electric power, a high temperature receiver that heats H2 propellant for high Isp propulsion, and a giant primary reflector for a telescope for astronomy and Earth surveillance. Linear dipole and quadrupole MIC structures are also possible. The linear quadrupole structure can be used for magnetic shielding against cosmic radiation for astronauts, for example. MIC could use lightweight YBCO superconducting HTS (High Temperature Superconductor) cables, that can operate with liquid N2 coolant at engineering current densities of ~105 amp/cm2. A 1 kilometer length of MIC cable would weigh only 3 metric tons, including superconductor, thermal insulations, coolant circuits, and refrigerator, and fit within a 3 cubic meter compact package for launch. Four potential MIC applications are described: Solar-thermal propulsion using H2 propellant, space based solar power generation for beaming power to Earth, a large space telescope, and solar electric generation for a manned lunar base. The first 3 applications use large MIC solar concentrating mirrors, while the 4th application uses a surface based array of solar cells on a magnetically levitated MIC structure to follow the sun. MIC space based mirrors can be very large and light in weight. A 300 meter diameter MIC mirror in orbit for example, would weigh 20 metric tons and MIC structures can be easily developed and tested on Earth at small scale in existing evacuated chambers followed by larger scale tests in the atmosphere, using a vacuum tight enclosure on the small diameter superconducting cable to prevent air leakage into the evacuated thermal insulation around the superconducting cable.

  13. Anharmonic Rovibrational Partition Functions for Fluxional Species at High Temperatures via Monte Carlo Phase Space Integrals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasper, Ahren W.; Gruey, Zackery B.; Harding, Lawrence B.

    Monte Carlo phase space integration (MCPSI) is used to compute full dimensional and fully anharmonic, but classical, rovibrational partition functions for 22 small- and medium-sized molecules and radicals. Several of the species considered here feature multiple minima and low-frequency nonlocal motions, and efficiently sampling these systems is facilitated using curvilinear (stretch, bend, and torsion) coordinates. The curvilinear coordinate MCPSI method is demonstrated to be applicable to the treatment of fluxional species with complex rovibrational structures and as many as 21 fully coupled rovibrational degrees of freedom. Trends in the computed anharmonicity corrections are discussed. For many systems, rovibrational anharmonicities atmore » elevated temperatures are shown to vary consistently with the number of degrees of freedom and with temperature once rovibrational coupling and torsional anharmonicity are accounted for. Larger corrections are found for systems with complex vibrational structures, such as systems with multiple large-amplitude modes and/or multiple minima.« less

  14. Hydrophobic durability characteristics of butterfly wing surface after freezing cycles towards the design of nature inspired anti-icing surfaces

    PubMed Central

    Choy, Kwang-Leong

    2018-01-01

    The hydrophobicity and anti-icing performance of the surfaces of some artificial hydrophobic coatings degraded after several icing and de-icing cycles. In this paper, the frost formation on the surfaces of butterfly wings from ten different species was observed, and the contact angles were measured after 0 to 6 frosting/defrosting cycles. The results show that no obvious changes in contact angle for the butterfly wing specimens were not obvious during the frosting/defrosting process. Further, the conclusion was inferred that the topography of the butterfly wing surface forms a special space structure which has a larger space inside that can accommodate more frozen droplets; this behavior prevents destruction of the structure. The findings of this study may provide a basis and new concepts for the design of novel industrially important surfaces to inhibit frost/ice growth, such as durable anti-icing coatings, which may decrease or prevent the socio-economic loss. PMID:29385390

  15. Hydrophobic durability characteristics of butterfly wing surface after freezing cycles towards the design of nature inspired anti-icing surfaces.

    PubMed

    Chen, Tingkun; Cong, Qian; Qi, Yingchun; Jin, Jingfu; Choy, Kwang-Leong

    2018-01-01

    The hydrophobicity and anti-icing performance of the surfaces of some artificial hydrophobic coatings degraded after several icing and de-icing cycles. In this paper, the frost formation on the surfaces of butterfly wings from ten different species was observed, and the contact angles were measured after 0 to 6 frosting/defrosting cycles. The results show that no obvious changes in contact angle for the butterfly wing specimens were not obvious during the frosting/defrosting process. Further, the conclusion was inferred that the topography of the butterfly wing surface forms a special space structure which has a larger space inside that can accommodate more frozen droplets; this behavior prevents destruction of the structure. The findings of this study may provide a basis and new concepts for the design of novel industrially important surfaces to inhibit frost/ice growth, such as durable anti-icing coatings, which may decrease or prevent the socio-economic loss.

  16. Software analysis handbook: Software complexity analysis and software reliability estimation and prediction

    NASA Technical Reports Server (NTRS)

    Lee, Alice T.; Gunn, Todd; Pham, Tuan; Ricaldi, Ron

    1994-01-01

    This handbook documents the three software analysis processes the Space Station Software Analysis team uses to assess space station software, including their backgrounds, theories, tools, and analysis procedures. Potential applications of these analysis results are also presented. The first section describes how software complexity analysis provides quantitative information on code, such as code structure and risk areas, throughout the software life cycle. Software complexity analysis allows an analyst to understand the software structure, identify critical software components, assess risk areas within a software system, identify testing deficiencies, and recommend program improvements. Performing this type of analysis during the early design phases of software development can positively affect the process, and may prevent later, much larger, difficulties. The second section describes how software reliability estimation and prediction analysis, or software reliability, provides a quantitative means to measure the probability of failure-free operation of a computer program, and describes the two tools used by JSC to determine failure rates and design tradeoffs between reliability, costs, performance, and schedule.

  17. Tests and prospects of new physics at very high energy. Beyond the standard basic principles, and beyond conventional matter and space-time. On the possible origin of Quantum Mechanics.

    NASA Astrophysics Data System (ADS)

    Gonzalez-Mestres, Luis

    2015-05-01

    Recent results and announcements by Planck and BICEP2 have led to important controversies in the fields of Cosmology and Particle Physics. As new ideas and alternative approaches can since then more easily emerge, the link between the Mathematical Physics aspects of theories and the interpretation of experimental results becomes more direct. This evolution is also relevant for Particle Physics experiments at very high energy, where the interpretation of data on the highest-energy cosmic rays remains a major theoretical and phenomenological challenge. Alternative particle physics and cosmology can raise fundamental questions such as that of the structure of vacuum and space-time. In particular, the simplified description of the physical vacuum contained in standard quantum field theory does not necessarily correspond to reality at a deeper level, and similarly for the relativistic space-time based on four real variables. In a more general approach, the definition itself of vacuum can be a difficult task. The spinorial space-time (SST) we suggested in 1996-97 automatically incorporates a local privileged space direction (PSD) for each comoving observer, possibly leading to a locally anisotropic vacuum structure. As the existence of the PSD may have been confirmed by Planck, and a possible discovery of primordial B-modes in the polarization of the cosmic microwave background radiation (CMB) may turn out to contain new evidence for the SST, we explore other possible implications of this approach to space-time. The SST structure can naturally be at the origin of Quantum Mechanics at distance scales larger than the fundamental one if standard particles are dealt with as vacuum excitations. We also discuss possible implications of our lack of knowledge of the structure of vacuum, as well as related theoretical, phenomenological and cosmological uncertainties. Pre-Big Bang scenarios and new ultimate constituents of matter (including superbradyons) are crucial open subjects, together with vacuum structure and the interaction between vacuum and standard matter.

  18. The periplasmic domain of Escherichia coli outer membrane protein A can undergo a localized temperature dependent structural transition.

    PubMed

    Ishida, Hiroaki; Garcia-Herrero, Alicia; Vogel, Hans J

    2014-12-01

    Gram-negative bacteria such as Escherichia coli are surrounded by two membranes with a thin peptidoglycan (PG)-layer located in between them in the periplasmic space. The outer membrane protein A (OmpA) is a 325-residue protein and it is the major protein component of the outer membrane of E. coli. Previous structure determinations have focused on the N-terminal fragment (residues 1-171) of OmpA, which forms an eight stranded transmembrane β-barrel in the outer membrane. Consequently it was suggested that OmpA is composed of two independently folded domains in which the N-terminal β-barrel traverses the outer membrane and the C-terminal domain (residues 180-325) adopts a folded structure in the periplasmic space. However, some reports have proposed that full-length OmpA can instead refold in a temperature dependent manner into a single domain forming a larger transmembrane pore. Here, we have determined the NMR solution structure of the C-terminal periplasmic domain of E. coli OmpA (OmpA(180-325)). Our structure reveals that the C-terminal domain folds independently into a stable globular structure that is homologous to the previously reported PG-associated domain of Neisseria meningitides RmpM. Our results lend credence to the two domain structure model and a PG-binding function for OmpA, and we could indeed localize the PG-binding site on the protein through NMR chemical shift perturbation experiments. On the other hand, we found no evidence for binding of OmpA(180-325) with the TonB protein. In addition, we have also expressed and purified full-length OmpA (OmpA(1-325)) to study the structure of the full-length protein in micelles and nanodiscs by NMR spectroscopy. In both membrane mimetic environments, the recombinant OmpA maintains its two domain structure that is connected through a flexible linker. A series of temperature-dependent HSQC experiments and relaxation dispersion NMR experiments detected structural destabilization in the bulge region of the periplasmic domain of OmpA above physiological temperatures, which may induce dimerization and play a role in triggering the previously reported larger pore formation. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. A structural topological optimization method for multi-displacement constraints and any initial topology configuration

    NASA Astrophysics Data System (ADS)

    Rong, J. H.; Yi, J. H.

    2010-10-01

    In density-based topological design, one expects that the final result consists of elements either black (solid material) or white (void), without any grey areas. Moreover, one also expects that the optimal topology can be obtained by starting from any initial topology configuration. An improved structural topological optimization method for multi- displacement constraints is proposed in this paper. In the proposed method, the whole optimization process is divided into two optimization adjustment phases and a phase transferring step. Firstly, an optimization model is built to deal with the varied displacement limits, design space adjustments, and reasonable relations between the element stiffness matrix and mass and its element topology variable. Secondly, a procedure is proposed to solve the optimization problem formulated in the first optimization adjustment phase, by starting with a small design space and advancing to a larger deign space. The design space adjustments are automatic when the design domain needs expansions, in which the convergence of the proposed method will not be affected. The final topology obtained by the proposed procedure in the first optimization phase, can approach to the vicinity of the optimum topology. Then, a heuristic algorithm is given to improve the efficiency and make the designed structural topology black/white in both the phase transferring step and the second optimization adjustment phase. And the optimum topology can finally be obtained by the second phase optimization adjustments. Two examples are presented to show that the topologies obtained by the proposed method are of very good 0/1 design distribution property, and the computational efficiency is enhanced by reducing the element number of the design structural finite model during two optimization adjustment phases. And the examples also show that this method is robust and practicable.

  20. The Space Homestead and Creation of Real Estate and Industry beyond Earth

    NASA Astrophysics Data System (ADS)

    Detweiler, Michael K.; Curreri, Peter A.

    2008-01-01

    During the 1970s large habitats were proposed by G. K. O'Neill and studied by NASA that could house 10,000 to 4 million people in Earth/Moon space. These people would be employed in building space solar satellites and more habitats for new settlers. Such a program, the NASA studies concluded, could reach financial break even in 38 years with peak Apollo level expenditures. It was suggested in a previous paper that human settlement of space could begin not by building city size structures but with a minimum technology habitat that could provide subsistence for a more minimal number of people and be capable of producing new habitats with extraterrestrial materials and energy. These habitats would be mostly independent from Earth. The approach could provide a quicker return on investment and lower start-up costs, and could be of a scale that could be developed and tested within the planned NASA transportation and lunar base architecture. This paper examines the population growth kinetics of humans in space, and the development of space solar power industry using small bolo shaped habitats in comparison to using larger habitat designs as considered in the 1970s.

  1. Around Marshall

    NASA Image and Video Library

    1980-05-06

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. Construction methods had to be efficient due to the limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. As part of this experimentation, the Experimental Assembly of Structures in Extravehicular Activity (EASE) project was developed as a joint effort between MFSC and the Massachusetts Institute of Technology (MIT). The EASE experiment required that crew members assemble small components to form larger components, working from the payload bay of the space shuttle. Pictured is an entire unit that has been constructed and is sitting in the bottom of a mock-up shuttle cargo bay pallet.

  2. Around Marshall

    NASA Image and Video Library

    1980-01-07

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. Construction methods had to be efficient due to the limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA's Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. Pictured is a Massachusetts Institute of Technology (MIT) student working in a spacesuit on the Experimental Assembly of Structures in Extravehicular Activity (EASE) project which was developed as a joint effort between MFSC and MIT. The EASE experiment required that crew members assemble small components to form larger components, working from the payload bay of the space shuttle. The MIT student in this photo is assembling two six-beam tetrahedrons.

  3. Around Marshall

    NASA Image and Video Library

    1980-02-27

    Once the United States' space program had progressed from Earth's orbit into outerspace, theprospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. Construction methods had to be efficient due to the limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA's Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. Pictured is a Massachusetts Institute of Technology (MIT) student working in a spacesuit on the Experimental Assembly of Structures in Extravehicular Activity (EASE) project which was developed as a joint effort between MFSC and MIT. The EASE experiment required that crew members assemble small components to form larger components, working from the payload bay of the space shuttle. The MIT student in this photo is assembling two six-beam tetrahedrons.

  4. Around Marshall

    NASA Image and Video Library

    1980-07-08

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. And construction methods had to be efficient due to limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. Pictured is a Massachusetts Institute of Technology (MIT) student working in a spacesuit on the Experimental Assembly of Structures in Extravehicular Activity (EASE) project which was developed as a joint effort between MFSC and MIT. The EASE experiment required that crew members assemble small components to form larger components, working from the payload bay of the space shuttle.

  5. X-ray diffraction and spectroscopy study of nano-Eu 2O 3 structural transformation under high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhenhai; Wang, Qinglin; Ma, Yanzhang

    Nanoscale materials exhibit properties that are quite distinct from those of bulk materials because of their size restricted nature. Here, we investigated the high-pressure structural stability of cubic (C-type) nano-Eu2O3 using in situ synchrotron X-ray diffraction (XRD), Raman and luminescence spectroscopy, and impedance spectra techniques. Our high-pressure XRD experimental results revealed a pressure-induced structural phase transition in nano-Eu2O3 from the C-type phase (space group: Ia-3) to a hexagonal phase (A-type, space group: P-3m1). Our reported transition pressure (9.3 GPa) in nano-Eu2O3 is higher than that of the corresponding bulk-Eu2O3 (5.0 GPa), which is contrary to the preceding reported experimental result.more » After pressure release, the A-type phase of Eu2O3 transforms into a new monoclinic phase (B-type, space group: C2/m). Compared with bulk-Eu2O3, C-type and A-type nano-Eu2O3 exhibits a larger bulk modulus. Our Raman and luminescence findings and XRD data provide consistent evidence of a pressure-induced structural phase transition in nano-Eu2O3. To our knowledge, we have performed the first high-pressure impedance spectra investigation on nano-Eu2O3 to examine the effect of the structural phase transition on its transport properties. We propose that the resistance inflection exhibited at ~12 GPa results from the phase boundary between the C-type and A-type phases. Besides, we summarized and discussed the structural evolution process by the phase diagram of lanthanide sesquioxides (Ln2O3) under high pressure.« less

  6. Identification and Simulation of Subsurface Soil patterns using hidden Markov random fields and remote sensing and geophysical EMI data sets

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Wellmann, Florian; Verweij, Elizabeth; von Hebel, Christian; van der Kruk, Jan

    2017-04-01

    Lateral and vertical spatial heterogeneity of subsurface properties such as soil texture and structure influences the available water and resource supply for crop growth. High-resolution mapping of subsurface structures using non-invasive geo-referenced geophysical measurements, like electromagnetic induction (EMI), enables a characterization of 3D soil structures, which have shown correlations to remote sensing information of the crop states. The benefit of EMI is that it can return 3D subsurface information, however the spatial dimensions are limited due to the labor intensive measurement procedure. Although active and passive sensors mounted on air- or space-borne platforms return 2D images, they have much larger spatial dimensions. Combining both approaches provides us with a potential pathway to extend the detailed 3D geophysical information to a larger area by using remote sensing information. In this study, we aim at extracting and providing insights into the spatial and statistical correlation of the geophysical and remote sensing observations of the soil/vegetation continuum system. To this end, two key points need to be addressed: 1) how to detect and recognize the geometric patterns (i.e., spatial heterogeneity) from multiple data sets, and 2) how to quantitatively describe the statistical correlation between remote sensing information and geophysical measurements. In the current study, the spatial domain is restricted to shallow depths up to 3 meters, and the geostatistical database contains normalized difference vegetation index (NDVI) derived from RapidEye satellite images and apparent electrical conductivities (ECa) measured from multi-receiver EMI sensors for nine depths of exploration ranging from 0-2.7 m. The integrated data sets are mapped into both the physical space (i.e. the spatial domain) and feature space (i.e. a two-dimensional space framed by the NDVI and the ECa data). Hidden Markov Random Fields (HMRF) are employed to model the underlying heterogeneities in spatial domain and finite Gaussian mixture models are adopted to quantitatively describe the statistical patterns in terms of center vectors and covariance matrices in feature space. A recently developed parallel stochastic clustering algorithm is adopted to implement the HMRF models and the Markov chain Monte Carlo based Bayesian inference. Certain spatial patterns such as buried paleo-river channels covered by shallow sediments are investigated as typical examples. The results indicate that the geometric patterns of the subsurface heterogeneity can be represented and quantitatively characterized by HMRF. Furthermore, the statistical patterns of the NDVI and the EMI data from the soil/vegetation-continuum system can be inferred and analyzed in a quantitative manner.

  7. Perceived Spaciousness and Preference in Sequential Experience.

    PubMed

    Bokharaei, Saleheh; Nasar, Jack L

    2016-11-01

    We assessed the perceived spaciousness and preference for a destination space in relation to six attributes (size, lighting, window size, texture, wall mural, and amount of furniture) of it and of the space experienced before it. Studies have examined effects of these attributes but not for dynamic experience or preference. We created 24 virtual reality walks between each possible pair of two levels of each attribute. For each destination space, 31 students (13 men, 18 women) rated spaciousness and 30 students (16 men, 14 women) rated preference. We conducted separate 2 × 2 repeated-measure ANOVAs across each condition for perceived spaciousness and preference. Participants judged the space that was larger, was more brightly lit, with a larger window, or with less furniture as the more spacious. These attributes also increased preference. Consonant with adaptation-level theory, participants judged offices as higher in spaciousness and preference if preceded by a space that was smaller, was more dimly lit, or had smaller windows. The findings suggest that perceived spaciousness varies with size, lightness, window size, and amount of furniture but that perception also depends on the size, lightness, and size of the space experienced before. Designers could use the findings to manipulate features to make a space appear larger or more desirable. © 2016, Human Factors and Ergonomics Society.

  8. REINTERPRETATION OF SLOWDOWN OF SOLAR WIND MEAN VELOCITY IN NONLINEAR STRUCTURES OBSERVED UPSTREAM OF EARTH'S BOW SHOCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parks, G. K.; Lin, N.; Lee, E.

    2013-07-10

    Two of the many features associated with nonlinear upstream structures are (1) the solar wind (SW) mean flow slows down and deviates substantially and (2) the temperature of the plasma increases in the structure. In this Letter, we show that the SW beam can be present throughout the entire upstream event maintaining a nearly constant beam velocity and temperature. The decrease of the velocity is due to the appearance of new particles moving in the opposite direction that act against the SW beam and reduce the mean velocity as computed via moments. The new population, which occupies a larger velocitymore » space, also contributes to the second moment, increasing the temperature. The new particles include the reflected SW beam at the bow shock and another population of lower energies, accelerated nearby at the shock or at the boundary of the nonlinear structures.« less

  9. Spontaneously Flowing Crystal of Self-Propelled Particles

    NASA Astrophysics Data System (ADS)

    Briand, Guillaume; Schindler, Michael; Dauchot, Olivier

    2018-05-01

    We experimentally and numerically study the structure and dynamics of a monodisperse packing of spontaneously aligning self-propelled hard disks. The packings are such that their equilibrium counterparts form perfectly ordered hexagonal structures. Experimentally, we first form a perfect crystal in a hexagonal arena which respects the same crystalline symmetry. Frustration of the hexagonal order, obtained by removing a few particles, leads to the formation of a rapidly diffusing "droplet." Removing more particles, the whole system spontaneously forms a macroscopic sheared flow, while conserving an overall crystalline structure. This flowing crystalline structure, which we call a "rheocrystal," is made possible by the condensation of shear along localized stacking faults. Numerical simulations very well reproduce the experimental observations and allow us to explore the parameter space. They demonstrate that the rheocrystal is induced neither by frustration nor by noise. They further show that larger systems flow faster while still remaining ordered.

  10. Saturn Apollo Program

    NASA Image and Video Library

    1960-01-01

    Marshall Space Flight Center (MSFC) workers hoist a dynamic test version of the S-IVB stage, the Saturn IB launch vehicle's second stage, into the Center's Dynamic Test Stand on January 18, 1965. MSFC Test Laboratory persornel assembled a complete Saturn IB to test the launch vehicle's structural soundness. Developed by the MSFC as an interim vehicle in MSFC's "building block" approach to the Saturn rocket development, the Saturn IB utilized Saturn I technology to further develop and refine the larger boosters and the Apollo spacecraft capabilities required for the manned lunar missions.

  11. Modularity of Protein Folds as a Tool for Template-Free Modeling of Structures.

    PubMed

    Vallat, Brinda; Madrid-Aliste, Carlos; Fiser, Andras

    2015-08-01

    Predicting the three-dimensional structure of proteins from their amino acid sequences remains a challenging problem in molecular biology. While the current structural coverage of proteins is almost exclusively provided by template-based techniques, the modeling of the rest of the protein sequences increasingly require template-free methods. However, template-free modeling methods are much less reliable and are usually applicable for smaller proteins, leaving much space for improvement. We present here a novel computational method that uses a library of supersecondary structure fragments, known as Smotifs, to model protein structures. The library of Smotifs has saturated over time, providing a theoretical foundation for efficient modeling. The method relies on weak sequence signals from remotely related protein structures to create a library of Smotif fragments specific to the target protein sequence. This Smotif library is exploited in a fragment assembly protocol to sample decoys, which are assessed by a composite scoring function. Since the Smotif fragments are larger in size compared to the ones used in other fragment-based methods, the proposed modeling algorithm, SmotifTF, can employ an exhaustive sampling during decoy assembly. SmotifTF successfully predicts the overall fold of the target proteins in about 50% of the test cases and performs competitively when compared to other state of the art prediction methods, especially when sequence signal to remote homologs is diminishing. Smotif-based modeling is complementary to current prediction methods and provides a promising direction in addressing the structure prediction problem, especially when targeting larger proteins for modeling.

  12. A theory of the genesis of breast duct papilloma.

    PubMed

    WHANG, J

    1960-03-01

    While it is not the intent to argue that papilloma never develops in the conventionally accepted manner (proliferative growth from the wall of a pre-existing cavity) a new, perhaps alternative, genesis is suggested. The concept is that, beginning with the usual lobular structure of the breast, first by hyperplasia and then by coalescence of alveoli, seen earliest at the periphery of the lobule, spaces appear between the content of the lobule and the wall. By confluence of these spaces a larger cystic cavity is formed. Coalescence of alveoli through the body of the central mass, in the same way as at the periphery, develops the familiar pattern of "papilloma." Following the earlier hyperplasia, regressive changes appear and may go on to complete disintegration of the papillary mass, leaving a smooth-walled cavity.

  13. Algebraic Structure of tt * Equations for Calabi-Yau Sigma Models

    NASA Astrophysics Data System (ADS)

    Alim, Murad

    2017-08-01

    The tt * equations define a flat connection on the moduli spaces of {2d, \\mathcal{N}=2} quantum field theories. For conformal theories with c = 3 d, which can be realized as nonlinear sigma models into Calabi-Yau d-folds, this flat connection is equivalent to special geometry for threefolds and to its analogs in other dimensions. We show that the non-holomorphic content of the tt * equations, restricted to the conformal directions, in the cases d = 1, 2, 3 is captured in terms of finitely many generators of special functions, which close under derivatives. The generators are understood as coordinates on a larger moduli space. This space parameterizes a freedom in choosing representatives of the chiral ring while preserving a constant topological metric. Geometrically, the freedom corresponds to a choice of forms on the target space respecting the Hodge filtration and having a constant pairing. Linear combinations of vector fields on that space are identified with the generators of a Lie algebra. This Lie algebra replaces the non-holomorphic derivatives of tt * and provides these with a finer and algebraic meaning. For sigma models into lattice polarized K3 manifolds, the differential ring of special functions on the moduli space is constructed, extending known structures for d = 1 and 3. The generators of the differential rings of special functions are given by quasi-modular forms for d = 1 and their generalizations in d = 2, 3. Some explicit examples are worked out including the case of the mirror of the quartic in {\\mathbbm{P}^3}, where due to further algebraic constraints, the differential ring coincides with quasi modular forms.

  14. Impact of influent data frequency and model structure on the quality of WWTP model calibration and uncertainty.

    PubMed

    Cierkens, Katrijn; Plano, Salvatore; Benedetti, Lorenzo; Weijers, Stefan; de Jonge, Jarno; Nopens, Ingmar

    2012-01-01

    Application of activated sludge models (ASMs) to full-scale wastewater treatment plants (WWTPs) is still hampered by the problem of model calibration of these over-parameterised models. This either requires expert knowledge or global methods that explore a large parameter space. However, a better balance in structure between the submodels (ASM, hydraulic, aeration, etc.) and improved quality of influent data result in much smaller calibration efforts. In this contribution, a methodology is proposed that links data frequency and model structure to calibration quality and output uncertainty. It is composed of defining the model structure, the input data, an automated calibration, confidence interval computation and uncertainty propagation to the model output. Apart from the last step, the methodology is applied to an existing WWTP using three models differing only in the aeration submodel. A sensitivity analysis was performed on all models, allowing the ranking of the most important parameters to select in the subsequent calibration step. The aeration submodel proved very important to get good NH(4) predictions. Finally, the impact of data frequency was explored. Lowering the frequency resulted in larger deviations of parameter estimates from their default values and larger confidence intervals. Autocorrelation due to high frequency calibration data has an opposite effect on the confidence intervals. The proposed methodology opens doors to facilitate and improve calibration efforts and to design measurement campaigns.

  15. Shell-corona microgels from double interpenetrating networks.

    PubMed

    Rudyak, Vladimir Yu; Gavrilov, Alexey A; Kozhunova, Elena Yu; Chertovich, Alexander V

    2018-04-18

    Polymer microgels with a dense outer shell offer outstanding features as universal carriers for different guest molecules. In this paper, microgels formed by an interpenetrating network comprised of collapsed and swollen subnetworks are investigated using dissipative particle dynamics (DPD) computer simulations, and it is found that such systems can form classical core-corona structures, shell-corona structures, and core-shell-corona structures, depending on the subchain length and molecular mass of the system. The core-corona structures consisting of a dense core and soft corona are formed at small microgel sizes when the subnetworks are able to effectively separate in space. The most interesting shell-corona structures consist of a soft cavity in a dense shell surrounded with a loose corona, and are found at intermediate gel sizes; the area of their existence depends on the subchain length and the corresponding mesh size. At larger molecular masses the collapsing network forms additional cores inside the soft cavity, leading to the core-shell-corona structure.

  16. What is your neural function, visual narrative conjunction? Grammar, meaning, and fluency in sequential image processing.

    PubMed

    Cohn, Neil; Kutas, Marta

    2017-01-01

    Visual narratives sometimes depict successive images with different characters in the same physical space; corpus analysis has revealed that this occurs more often in Japanese manga than American comics. We used event-related brain potentials to determine whether comprehension of "visual narrative conjunctions" invokes not only incremental mental updating as traditionally assumed, but also, as we propose, "grammatical" combinatoric processing. We thus crossed (non)/conjunction sequences with character (in)/congruity. Conjunctions elicited a larger anterior negativity (300-500 ms) than nonconjunctions, regardless of congruity, implicating "grammatical" processes. Conjunction and incongruity both elicited larger P600s (500-700 ms), indexing updating. Both conjunction effects were modulated by participants' frequency of reading manga while growing up. Greater anterior negativity in frequent manga readers suggests more reliance on combinatoric processing; larger P600 effects in infrequent manga readers suggest more resources devoted to mental updating. As in language comprehension, it seems that processing conjunctions in visual narratives is not just mental updating but also partly grammatical, conditioned by comic readers' experience with specific visual narrative structures.

  17. Rocket Experiment on Construction of Huge Transmitting Antenna for the SPS Using Furoshiki Satellite System with Robots

    NASA Astrophysics Data System (ADS)

    Kaya, N.; Iwashita, M.; Nakasuka, S.; Summerer, L.; Mankins, J.

    2004-12-01

    Construction technology of huge structures is essential for the future space development as well as the Solar Power Satellite (SPS). The SPS needs huge antennas to transmit the generated electric power toward the ground, while the huge antenna have many useful applications in space as well as on the ground, for example, telecommunication for cellular phones, radars for remote sensing, navigation and observation, and so on. A parabola antenna was mostly used for the space antenna. However, it is very difficult for the larger parabola antenna to keep accuracy of the reflectors and the beam control, because the surfaces of the reflectors are mechanically supported and controlled. The huge space antenna with flexible and ultra-light structures is essential and necessary for the future applications. An active phased array antenna is more suitable and promising for the huge flexible antenna than the parabola antenna. We are proposing to apply the Furoshiki satellite [1] with robots for construction of the huge structures. While a web is deployed using the Furoshiki satellite in the same size of the huge antenna, all of the antenna elements crawl on the web with their own legs toward their allocated locations. We are verifying the deployment concept of the Furoshiki satellite using a sounding rocket with robots crawling on the deployed web. The robots are internationally being developed by NASA, ESA and Kobe University. The paper describes the concept of the crawling robot developed by Kobe University as well as the plan of the rocket experiment.

  18. Numerical Study of a Three Dimensional Interaction between two bow Shock Waves and the Aerodynamic Heating on a Wedge Shaped Nose Cone

    NASA Astrophysics Data System (ADS)

    Wu, N.; Wang, J. H.; Shen, L.

    2017-03-01

    This paper presents a numerical investigation on the three-dimensional interaction between two bow shock waves in two environments, i.e. ground high-enthalpy wind tunnel test and real space flight, using Fluent 15.0. The first bow shock wave, also called induced shock wave, which is generated by the leading edge of a hypersonic vehicle. The other bow shock wave can be deemed objective shock wave, which is generated by the cowl clip of hypersonic inlet, and in this paper the inlet is represented by a wedge shaped nose cone. The interaction performances including flow field structures, aerodynamic pressure and heating are analyzed and compared between the ground test and the real space flight. Through the analysis and comparison, we can find the following important phenomena: 1) Three-dimensional complicated flow structures appear in both cases, but only in the real space flight condition, a local two-dimensional type IV interaction appears; 2) The heat flux and pressure in the interaction region are much larger than those in the no-interaction region in both cases, but the peak values of the heat flux and pressure in real space flight are smaller than those in ground test. 3) The interaction region on the objective surface are different in the two cases, and there is a peak value displacement of 3 mm along the stagnation line.

  19. Heliophysics Radio Observations Enabled by the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Kasper, J. C.

    2018-02-01

    This presentation reviews the scientific potential of low frequency radio imaging from space, the SunRISE radio interferometer, and the scientific value of larger future arrays in deep space and how they would benefit from the Deep Space Gateway.

  20. Innovative design of parabolic reflector light guiding structure

    NASA Astrophysics Data System (ADS)

    Whang, Allen J.; Tso, Chun-Hsien; Chen, Yi-Yung

    2008-02-01

    Due to the idea of everlasting green architecture, it is of increasing importance to guild natural light into indoors. The advantages are multifold - to have better color rendering index, excellent energy savings from environments viewpoints and make humans more healthy, etc. Our search is to design an innovative structure, to convert outdoor sun light impinges on larger surfaces, into near linear light beam sources, later convert this light beam into near point sources which enters the indoor spaces then can be used as lighting sources indoors. We are not involved with the opto-electrical transformation, to the guild light into to the building, to perform the illumination, as well as the imaging function. Because non-imaging optics, well known for apply to the solar concentrators, that can use non-imaging structures to fulfill our needs, which can also be used as energy collectors in solar energy devices. Here, we have designed a pair of large and small parabolic reflector, which can be used to collect daylight and change area from large to small. Then we make a light-guide system that is been designed by us use of this parabolic reflector to guide the collection light, can pick up the performance for large surface source change to near linear source and a larger collection area.

  1. Health monitoring of offshore structures using wireless sensor network: experimental investigations

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Srinivasan; Chitambaram, Thailammai

    2016-04-01

    This paper presents a detailed methodology of deploying wireless sensor network in offshore structures for structural health monitoring (SHM). Traditional SHM is carried out by visual inspections and wired systems, which are complicated and requires larger installation space to deploy while decommissioning is a tedious process. Wireless sensor networks can enhance the art of health monitoring with deployment of scalable and dense sensor network, which consumes lesser space and lower power consumption. Proposed methodology is mainly focused to determine the status of serviceability of large floating platforms under environmental loads using wireless sensors. Data acquired by the servers will analyze the data for their exceedance with respect to the threshold values. On failure, SHM architecture will trigger an alarm or an early warning in the form of alert messages to alert the engineer-in-charge on board; emergency response plans can then be subsequently activated, which shall minimize the risk involved apart from mitigating economic losses occurring from the accidents. In the present study, wired and wireless sensors are installed in the experimental model and the structural response, acquired is compared. The wireless system comprises of Raspberry pi board, which is programmed to transmit the acquired data to the server using Wi-Fi adapter. Data is then hosted in the webpage for further post-processing, as desired.

  2. Precise Analysis of Microstructural Effects on Mechanical Properties of Cast ADC12 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Okayasu, Mitsuhiro; Takeuchi, Shuhei; Yamamoto, Masaki; Ohfuji, Hiroaki; Ochi, Toshihiro

    2015-04-01

    The effects of microstructural characteristics (secondary dendrite arm spacing, SDAS) and Si- and Fe-based eutectic structures on the mechanical properties and failure behavior of an Al-Si-Cu alloy are investigated. Cast Al alloy samples are produced using a special continuous-casting technique with which it is easy to control both the sizes of microstructures and the direction of crystal orientation. Dendrite cells appear to grow in the casting direction. There are linear correlations between SDAS and tensile properties (ultimate tensile strength σ UTS, 0.2 pct proof strength σ 0.2, and fracture strain ɛ f). These linear correlations, however, break down, especially for σ UTS vs SDAS and ɛ f vs SDAS, as the eutectic structures become more than 3 μm in diameter, when the strength and ductility ( σ UTS and ɛ f) decrease significantly. For eutectic structures larger than 3 μm, failure is dominated by the brittle eutectic phases, for which SDAS is no longer strongly correlated with σ UTS and ɛ f. In contrast, a linear correlation is obtained between σ 0.2 and SDAS, even for eutectic structures larger than 3 μm, and the eutectic structure does not have a strong effect on yield behavior. This is because failure in the eutectic phases occurs just before final fracture. In situ failure observation during tensile testing is performed using microstructural and lattice characteristics. From the experimental results obtained, models of failure during tensile loading are proposed.

  3. Fourier imaging of non-linear structure formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandbyge, Jacob; Hannestad, Steen, E-mail: jacobb@phys.au.dk, E-mail: sth@phys.au.dk

    We perform a Fourier space decomposition of the dynamics of non-linear cosmological structure formation in ΛCDM models. From N -body simulations involving only cold dark matter we calculate 3-dimensional non-linear density, velocity divergence and vorticity Fourier realizations, and use these to calculate the fully non-linear mode coupling integrals in the corresponding fluid equations. Our approach allows for a reconstruction of the amount of mode coupling between any two wavenumbers as a function of redshift. With our Fourier decomposition method we identify the transfer of power from larger to smaller scales, the stable clustering regime, the scale where vorticity becomes important,more » and the suppression of the non-linear divergence power spectrum as compared to linear theory. Our results can be used to improve and calibrate semi-analytical structure formation models.« less

  4. Epitaxial structure and transport in LaTiO3+x films on (001) SrTiO3

    NASA Astrophysics Data System (ADS)

    Kim, K. H.; Norton, D. P.; Budai, J. D.; Chisholm, M. F.; Sales, B. C.; Christen, D. K.; Cantoni, C.

    2003-12-01

    The structure and transport properties of LaTiO3+x epitaxial thin films grown on (001) SrTiO3 by pulsed-laser deposition is examined. Four-circle X-ray diffraction indicates that the films possess the defect perovskite LaTiO3 structure when deposited in vacuum, with the higher X compounds forming at moderate oxygen pressures. The crystal structure of the LaTiO3 films is tetragonal in the epitaxial films, in contrast to the orthorhombic structure observed in bulk materials. A domain structure is observed in the films, consisting of LaTiO3 oriented either with the [110] or [001] directions perpendicular to the substrate surface. Z-contrast scanning transmission electron microscopy reveals that this domain structure is not present in the first few unit cells of the film, but emerges approximately 2-3 nm from the SrTiO3/LaTiO3 interface. Upon increasing the oxygen pressure during growth, a shift in the lattice d-spacing parallel to the substrate surface is observed, and is consistent with the growth of the La2Ti2O7 phase. However, van der Pauw measurements show that the films with the larger d-spacing remain conductive, albeit with a resistivity that is significantly higher than that for the perovskite LaTiO3 films. The transport behavior suggests that the films grown at higher oxygen pressures are LaTiO3+x with 0.4 < x < 0.5. (

  5. Zooplankton size selection relative to gill raker spacing in rainbow trout

    USGS Publications Warehouse

    Budy, P.; Haddix, T.; Schneidervin, R.

    2005-01-01

    Rainbow trout Oncorhynchus mykiss are one of the most widely stocked salmonids worldwide, often based on the assumption that they will effectively utilize abundant invertebrate food resources. We evaluated the potential for feeding morphology to affect prey selection by rainbow trout using a combination of laboratory feeding experiments and field observations in Flaming Gorge Reservoir, Utah-Wyoming. For rainbow trout collected from the reservoir, inter-gill raker spacing averaged 1.09 mm and there was low variation among fish overall (SD = 0.28). Ninety-seven percent of all zooplankton observed in the diets of rainbow trout collected in the reservoir were larger than the interraker spacing, while only 29% of the zooplankton found in the environment were larger than the interraker spacing. Over the size range of rainbow trout evaluated here (200-475 mm), interraker spacing increased moderately with increasing fish length; however, the size of zooplankton found in the diet did not increase with increasing fish length. In laboratory experiments, rainbow trout consumed the largest zooplankton available; the mean size of zooplankton observed in the diets was significantly larger than the mean size of zooplankton available. Electivity indices for both laboratory and field observations indicated strong selection for larger-sized zooplankton. The size threshold at which electivity switched from selection against smaller-sized zooplankton to selection for larger-sized zooplankton closely corresponded to the mean interraker spacing for both groups (???1-1.2 mm). The combination of results observed here indicates that rainbow trout morphology limits the retention of different-sized zooplankton prey and reinforces the importance of understanding how effectively rainbow trout can utilize the type and sizes of different prey available in a given system. These considerations may improve our ability to predict the potential for growth and survival of rainbow trout within and among different systems. ?? Copyright by the American Fisheries Society 2005.

  6. Crystal structure and superconducting properties of KSr2Nb3O10

    NASA Astrophysics Data System (ADS)

    Kawaguchi, T.; Horigane, K.; Itoh, Y.; Kobayashi, K.; Horie, R.; Kambe, T.; Akimitsu, J.

    2018-05-01

    We performed X-ray diffraction (XRD) and DC magnetic susceptibility measurements to elucidate the crystal structure and superconducting properties of KSr2Nb3O10. From the diffraction pattern indexing, it was found that KSr2Nb3O10 crystallizes with monoclinic symmetry, space group P21/m(11). We succeeded in preparing high temperature (HT) and low temperature (LT) phases of KSr2Nb3O10 powder samples synthesized by a conventional solid state reaction and an ion-exchange reaction, respectively. Superconductivity was observed at 4 K by Li intercalation and it was found that the superconducting volume fraction of the LT phase ( 1.4%) is clearly larger than that of the HT phase (0.07%).

  7. Wireless Power Transmission Options for Space Solar Power

    NASA Technical Reports Server (NTRS)

    Potter, Seth; Davis, Dean; Born, Martin; Bayer, Martin; Howell, Joe; Mankins, John

    2008-01-01

    Space Solar Power (SSP), combined with Wireless Power Transmission (WPT), offers the far-term potential to solve major energy problems on Earth. In the long term, we aspire to beam energy to Earth from geostationary Earth orbit (GEO), or even further distances in space. In the near term, we can beam power over more moderate distances, but still stretch the limits of today s technology. In recent studies, a 100 kWe-class "Power Plug" Satellite and a 10 kWe-class Lunar Polar Solar Power outpost have been considered as the first steps in using these WPT options for SSP. Our current assessments include consideration of orbits, wavelengths, and structural designs to meet commercial, civilian government, and military needs. Notional transmitter and receiver sizes are considered for use in supplying 5 to 40 MW of power. In the longer term, lunar or asteroidal material can be used. By using SSP and WPT technology for near-term missions, we gain experience needed for sound decisions in designing and developing larger systems to send power from space to Earth.

  8. Wireless Power Transmission Options for Space Solar Power

    NASA Technical Reports Server (NTRS)

    Potter, Seth; Henley, Mark; Davis, Dean; Born, Andrew; Howell, Joe; Mankins, John

    2008-01-01

    Space Solar Power (SSP), combined with Wireless Power Transmission (WPT), offers the far-term potential to solve major energy problems on Earth. In the long-term, we aspire to beam energy to Earth from geostationary Earth orbit (GEO), or even further distances in space. In the near-term, we can beam power over more moderate distances, but still stretch the limits of today s technology. In recent studies, a 100 kWe-class "Power Plug" Satellite and a 10 kWe-class Lunar Polar Solar Power outpost have been considered as the first steps in using these WPT options for SSP. Our current assessments include consideration of orbits, wavelengths, and structural designs to meet commercial, civilian government, and military needs. Notional transmitter and receiver sizes are considered for use in supplying 5 to 15 MW of power. In the longer term, lunar or asteroidal material can be used. By using SSP and WPT technology for near-term missions, we gain experience needed for sound decisions in designing and developing larger systems to send power from space to Earth.

  9. Habitat Concepts for Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Griffin, Brand N.

    2014-01-01

    Future missions under consideration requiring human habitation beyond the International Space Station (ISS) include deep space habitats in the lunar vicinity to support asteroid retrieval missions, human and robotic lunar missions, satellite servicing, and Mars vehicle servicing missions. Habitat designs are also under consideration for missions beyond the Earth-Moon system, including transfers to near-Earth asteroids and Mars orbital destinations. A variety of habitat layouts have been considered, including those derived from the existing ISS designs and those that could be fabricated from the Space Launch System (SLS) propellant tanks. This paper presents a comparison showing several options for asteroid, lunar, and Mars mission habitats using ISS derived and SLS derived modules and identifies some of the advantages and disadvantages inherent in each. Key findings indicate that the larger SLS diameter modules offer built-in compatibility with the launch vehicle, single launch capability without on-orbit assembly, improved radiation protection, lighter structures per unit volume, and sufficient volume to accommodate consumables for long duration missions without resupply. The information provided with the findings includes mass and volume comparison data that should be helpful to future exploration mission planning efforts.

  10. The Experiment that Came from the Cold: Results from the Recovered REXUS 12 Suaineadh Spinning Web Experiment

    NASA Astrophysics Data System (ADS)

    Sinn, T.; McRobb, M.; Wujek, A.; Skogby, J.; Rogberg, F.; Wang, J.; Vasile, M.; Tibert, G.; Mao, H.

    2015-09-01

    The Suaineadh experiment had the purpose to deploy a 2m x 2m web in milli gravity conditions by using the centrifugal forces acting on corner sections of a web that is spinning around a central hub. Continuous exploration of our solar system and beyond requires ever larger structures in space. But the biggest problem nowadays is the transport of these structures into space due to launch vehicle payload volume constrains. By making the space structures deployable with minimum storage properties, this constrain may be bypassed. Deployable concepts range from inflatables, foldables, electrostatic to spinning web deployment. The advantage of the web deployment is the very low storage volume and the simple deployment mechanism. These webs can act as lightweight platforms for the construction of large structures in space without the huge expense of launching heavy structures from Earth. The Suaineadh experiment was launched onboard the sounding rocket REXUS12 in March 2012. After achieving the required altidue, the Suaineadh experiment was ejected from the rocket in order to be fully free flying. A specially designed spinning wheel in the ejected section was then used to spin up the experiment until the required rate is achieved for web deployment to commence. Unfortunately during re-entry, the probe was lost and also a recovery mission in August 20 1 2 was only able to find minor components of the experiment. After 18 month, in September 201 3 , the experiment was found in the wilderness of Northern Sweden. In the following months all data from the experiment could be recovered. The images and accelerometer~ data that has been analysed showed the deployment of the web and a very interesting three dimensional behaviour that differs greatly from on ground two dimensional prototype tests. This paper will give an overview on the recovered data and it will present the analysed results of the Suaineadh spinning web experiment.

  11. Quantum Correlation Properties in Composite Parity-Conserved Matrix Product States

    NASA Astrophysics Data System (ADS)

    Zhu, Jing-Min

    2016-09-01

    We give a new thought for constructing long-range quantum correlation in quantum many-body systems. Our proposed composite parity-conserved matrix product state has long-range quantum correlation only for two spin blocks where their spin-block length larger than 1 compared to any subsystem only having short-range quantum correlation, and we investigate quantum correlation properties of two spin blocks varying with environment parameter and spacing spin number. We also find that the geometry quantum discords of two nearest-neighbor spin blocks and two next-nearest-neighbor spin blocks become smaller and for other conditions the geometry quantum discord becomes larger than that in any subcomponent, i.e., the increase or the production of the long-range quantum correlation is at the cost of reducing the short-range quantum correlation compared to the corresponding classical correlation and total correlation having no any characteristic of regulation. For nearest-neighbor and next-nearest-neighbor all the correlations take their maximal values at the same points, while for other conditions no whether for spacing same spin number or for different spacing spin numbers all the correlations taking their maximal values are respectively at different points which are very close. We believe that our work is helpful to comprehensively and deeply understand the organization and structure of quantum correlation especially for long-range quantum correlation of quantum many-body systems; and further helpful for the classification, the depiction and the measure of quantum correlation of quantum many-body systems.

  12. FTIR spectra of the solid solutions (Na0.88K0.12)VO3, (Na0.5K0.5)VO3, and Na(V0.66P0.34)O3

    NASA Astrophysics Data System (ADS)

    de Waal, D.; Heyns, A. M.

    1992-03-01

    It is known that three different solid solutions, (Na0.88K0.12)VO3, (Na0.5K0.5)VO3 and Na(V0.66P0.34)O3, form in the (Na,K)(V,P)O3 system. These compounds all have monoclinic crystal structures similar to the pure alkali metal metavanadates containing small cations, e.g. Li+ and Na+ (Space group C2/c). Metavanadates with large cations like K+, Rb+, C+s and NH+4 form orthorhombic crystals, space group Pbcm. All those are structurally related to the silicate pyroxenes. Na(V0.66P0.34)O3 and (Na0.88K0.12)VO3 have the same modified diopside structure as (alpha) - NaVO3 while (Na0.5K0.5)VO3 adopts the true diopside structure. The infrared spectra of the three solid solutions are reported here in comparison with those of (alpha) -NaVO3 and KVO3. The results are also correlated with those obtained in two independent high pressure Raman studies of NH4VO3 and RbVO3 as the introduction of a larger cation like K+ should increase the pressure in the structure.

  13. Constraining the phantom braneworld model from cosmic structure sizes

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sourav; Kousvos, Stefanos R.

    2017-11-01

    We consider the phantom braneworld model in the context of the maximum turnaround radius, RTA ,max, of a stable, spherical cosmic structure with a given mass. The maximum turnaround radius is the point where the attraction due to the central inhomogeneity gets balanced with the repulsion of the ambient dark energy, beyond which a structure cannot hold any mass, thereby giving the maximum upper bound on the size of a stable structure. In this work we derive an analytical expression of RTA ,max for this model using cosmological scalar perturbation theory. Using this we numerically constrain the parameter space, including a bulk cosmological constant and the Weyl fluid, from the mass versus observed size data for some nearby, nonvirial cosmic structures. We use different values of the matter density parameter Ωm, both larger and smaller than that of the Λ cold dark matter, as the input in our analysis. We show in particular, that (a) with a vanishing bulk cosmological constant the predicted upper bound is always greater than what is actually observed; a similar conclusion holds if the bulk cosmological constant is negative (b) if it is positive, the predicted maximum size can go considerably below than what is actually observed and owing to the involved nature of the field equations, it leads to interesting constraints on not only the bulk cosmological constant itself but on the whole parameter space of the theory.

  14. Multistage polymeric lens structure in silica-waveguides for photonic functional circuits

    NASA Astrophysics Data System (ADS)

    Tate, Atsushi; Suzuki, Takanori; Tsuda, Hiroyuki

    2005-04-01

    A waveguide lens composed of multistage polymer-filled thin grooves in a silica planar lightwave circuit (PLC) is proposed and the low-loss structure is designed. Both an imaging optical system and a Fourier-Transform optical system can be configured in a PLC by use of a waveguide lens. It makes a PLC functional and its design flexible. Moreover, a focal length of a lens is tunable with large thermo-optic effect of the polymer. A concatenated lens is formed to attain a desirable focal length with low-loss. The thickness of each lens and the spacing are about 10-50 microns. The simulation showed that the radiation loss of the light propagate through 20-stage grooves filled with a polymer was only 0.868 dB when the refractive index of the polymer was 1.57, the groove width was 30 microns, and the spacing between adjacent grooves was 15 microns. For example, the single lens structure that the center thickness is 30 microns, the diameter is 300 microns, and the refractive index of the polymer was 1.57, have a focal length of 4600 microns. The focal length of 450 microns can be obtained with 20-stage concatenated lens structure. The larger numerical aperture can be realized with a polymer of higher refractive index. We have applied the concatenated lens structure to various photonic circuits including optical couplers, a variable optical attenuator.

  15. Quantification of site-city interaction effects on the response of structure under double resonance condition

    NASA Astrophysics Data System (ADS)

    Kumar, Neeraj; Narayan, Jay Prakash

    2018-01-01

    This paper presents the site-city interaction (SCI) effects on the response of closely spaced structures under double resonance condition (F_{02{{D}}}^{{S}} = F_{02{{D}}}^{{B}}), where F_{02{{D}}}^{{S}} and F_{02{{D}}}^{{B}} are fundamental frequencies of 2-D structure and 2-D basin, respectively. This paper also presents the development of empirical relations to predict the F_{02{{D}}}^{{B}} of elliptical and trapezoidal basins for both the polarizations of the S wave. Simulated results revealed that F_{02{{D}}}^{{B}} of a 2-D basin very much depends on its geometry, shape ratio and polarization of the incident S wave. The obtained spectral amplification factor (SAF) at F_{02{{D}}}^{{S}} of a standalone structure in a 2-D basin is greater than that in the 1-D case under double resonance condition. A considerable reduction of the fundamental resonance frequency of structures due to the SCI effects is observed for both the polarizations of the S wave. The SAFs at F_{02{{D}}}^{{S}} of closely spaced structures due to SCI effects is larger in the case of SV than SH waves. A splitting of the fundamental-mode frequency bandwidth along with the drastic decrease of SAF due to the SCI effects is obtained. The findings of this paper raise the question concerning the validity of the predicted response of standalone structure based on soil-structure interaction for the design of structures in a 2-D small basin, in an urban environment.

  16. Crystal structures of (Mg1-x,Fe(x))SiO3 postperovskite at high pressures.

    PubMed

    Yamanaka, Takamitsu; Hirose, Kei; Mao, Wendy L; Meng, Yue; Ganesh, P; Shulenburger, Luke; Shen, Guoyin; Hemley, Russell J

    2012-01-24

    X-ray diffraction experiments on postperovskite (ppv) with compositions (Mg(0.9)Fe(0.1))SiO(3) and (Mg(0.6)Fe(0.4))SiO(3) at Earth core-mantle boundary pressures reveal different crystal structures. The former adopts the CaIrO(3)-type structure with space group Cmcm, whereas the latter crystallizes in a structure with the Pmcm (Pmma) space group. The latter has a significantly higher density (ρ = 6.119(1) g/cm(3)) than the former (ρ = 5.694(8) g/cm(3)) due to both the larger amount of iron and the smaller ionic radius of Fe(2+) as a result of an electronic spin transition observed by X-ray emission spectroscopy (XES). The smaller ionic radius for low-spin compared to high-spin Fe(2+) also leads to an ordered cation distribution in the M1 and M2 crystallographic sites of the higher density ppv structure. Rietveld structure refinement indicates that approximately 70% of the total Fe(2+) in that phase occupies the M2 site. XES results indicate a loss of 70% of the unpaired electronic spins consistent with a low spin M2 site and high spin M1 site. First-principles calculations of the magnetic ordering confirm that Pmcm with a two-site model is energetically more favorable at high pressure, and predict that the ordered structure is anisotropic in its electrical and elastic properties. These results suggest that interpretations of seismic structure in the deep mantle need to treat a broader range of mineral structures than previously considered.

  17. Three-dimensional gas exchange pathways in pome fruit characterized by synchrotron x-ray computed tomography.

    PubMed

    Verboven, Pieter; Kerckhofs, Greet; Mebatsion, Hibru Kelemu; Ho, Quang Tri; Temst, Kristiaan; Wevers, Martine; Cloetens, Peter; Nicolaï, Bart M

    2008-06-01

    Our understanding of the gas exchange mechanisms in plant organs critically depends on insights in the three-dimensional (3-D) structural arrangement of cells and voids. Using synchrotron radiation x-ray tomography, we obtained for the first time high-contrast 3-D absorption images of in vivo fruit tissues of high moisture content at 1.4-microm resolution and 3-D phase contrast images of cell assemblies at a resolution as low as 0.7 microm, enabling visualization of individual cell morphology, cell walls, and entire void networks that were previously unknown. Intercellular spaces were always clear of water. The apple (Malus domestica) cortex contains considerably larger parenchyma cells and voids than pear (Pyrus communis) parenchyma. Voids in apple often are larger than the surrounding cells and some cells are not connected to void spaces. The main voids in apple stretch hundreds of micrometers but are disconnected. Voids in pear cortex tissue are always smaller than parenchyma cells, but each cell is surrounded by a tight and continuous network of voids, except near brachyssclereid groups. Vascular and dermal tissues were also measured. The visualized network architecture was consistent over different picking dates and shelf life. The differences in void fraction (5.1% for pear cortex and 23.0% for apple cortex) and in gas network architecture helps explain the ability of tissues to facilitate or impede gas exchange. Structural changes and anisotropy of tissues may eventually lead to physiological disorders. A combined tomography and internal gas analysis during growth are needed to make progress on the understanding of void formation in fruit.

  18. Electrostatic Inflation of Membrane Space Structures

    NASA Astrophysics Data System (ADS)

    Stiles, Laura A.

    Membrane space structures provide a lightweight and cost effective alternative to traditional mechanical systems. The low-mass and high deployed-to-stored volume ratios allow for larger structures to be launched, expanding on-orbit science and technology capabilities. This research explores a novel method for deployment of membrane space structures using electrostatic pressure as the inflation mechanism. Applying electric charge to a layered gossamer structure provides an inflationary pressure due to the repulsive electrostatic forces between the charged layers. The electrostatic inflation of membrane structures (EIMS) concept is particularly applicable to non-precision structures such as sunshields or drag de-orbiting devices. This research addresses three fundamental topics: necessary conditions for EIMS in a vacuum, necessary conditions for EIMS in a plasma, and charging methods. Vacuum demonstrations show that less than 10 kiloVolts are required for electrostatic inflation of membrane structures in 1-g. On-orbit perturbation forces can be much smaller, suggesting feasible voltage requirements. Numerical simulation enables a relationship between required inflation pressure (to offset disturbances) and voltage. 100's of Volts are required for inflation in geosynchronous orbits (GEO) and a few kiloVolts in low Earth orbit (LEO). While GEO plasma has a small impact on the EIMS performance, Debye shielding at LEO reduces the electrostatic pressure. The classic Debye shielding prediction is far worse than actual shielding, raising the `effective' Debye length to the meter scale in LEO, suggesting feasibility for EIMS in LEO. Charged particle emission and remote charging methods are explored as inflation mechanisms. Secondary electron emission characteristics of EIMS materials were determined experimentally. Nonlinear fits to the Sternglass curve determined a maximum yield of 1.83 at 433 eV for Aluminized Kapton and a maximum yield of 1.78 at 511 eV for Aluminized Mylar. Remote charging was demonstrated to -500 V with a 5 keV electron beam. Charge emission power levels are below 1 Watt in GEO and from 10's of Watt to a kiloWatt in LEO.

  19. Dual-vergence structure from multiple migration of widely spaced OBSs

    NASA Astrophysics Data System (ADS)

    Yelisetti, Subbarao; Spence, George D.; Scherwath, Martin; Riedel, Michael; Klaeschen, Dirk

    2017-10-01

    The detailed structure of the northern Cascadia basin and frontal ridge region was obtained using data from several widely spaced ocean bottom seismometers (OBSs). Mirror imaging was used in which the downgoing multiples (mirror signal) are migrated as they provide information about a much larger area than imaging with primary signal alone. Specifically, Kirchhoff time migration was applied to hydrophone and vertical geophone data. Our results indicate remarkable structures that were not observed on the northern Cascadia margin in previous single-channel or multi-channel seismic (MCS) data. Results show that, in these water depths (2.0-2.5 km), an OBS can image up to 5 km on either side of its position on the seafloor and hence an OBS spacing of 5 km is sufficient to provide a two-fold migration stack. Results also show the top of the igneous oceanic crust at 5-6 km beneath the seafloor using only a small airgun source (120 in.3). Specifically, OBS migration results clearly show the continuity of reflectors which enabled the identification of frontal thrusts and a main thrust fault. These faults indicate, for the first time on this margin, the presence of a dual-vergence structure. These kinds of structures have so far been observed in < 0.5% of modern convergent margins and could be related to horizontal compression associated with subduction and low basal shear stress resulting from over-pressure. Reanalysis of previous MCS data from this region augmented the OBS migration results and further suggests that the vergence switches from seaward to landward around central Vancouver Island. Furthermore, fault geometry analyses indicate that the total amount of shortening accommodated due to faulting and folding is about 3 km, which suggest that thrusting would have started at least ∼ 65 ky ago.

  20. Characterization of protein-folding pathways by reduced-space modeling.

    PubMed

    Kmiecik, Sebastian; Kolinski, Andrzej

    2007-07-24

    Ab initio simulations of the folding pathways are currently limited to very small proteins. For larger proteins, some approximations or simplifications in protein models need to be introduced. Protein folding and unfolding are among the basic processes in the cell and are very difficult to characterize in detail by experiment or simulation. Chymotrypsin inhibitor 2 (CI2) and barnase are probably the best characterized experimentally in this respect. For these model systems, initial folding stages were simulated by using CA-CB-side chain (CABS), a reduced-space protein-modeling tool. CABS employs knowledge-based potentials that proved to be very successful in protein structure prediction. With the use of isothermal Monte Carlo (MC) dynamics, initiation sites with a residual structure and weak tertiary interactions were identified. Such structures are essential for the initiation of the folding process through a sequential reduction of the protein conformational space, overcoming the Levinthal paradox in this manner. Furthermore, nucleation sites that initiate a tertiary interactions network were located. The MC simulations correspond perfectly to the results of experimental and theoretical research and bring insights into CI2 folding mechanism: unambiguous sequence of folding events was reported as well as cooperative substructures compatible with those obtained in recent molecular dynamics unfolding studies. The correspondence between the simulation and experiment shows that knowledge-based potentials are not only useful in protein structure predictions but are also capable of reproducing the folding pathways. Thus, the results of this work significantly extend the applicability range of reduced models in the theoretical study of proteins.

  1. Self-monitoring high voltage transmission line suspension insulator

    DOEpatents

    Stemler, Gary E.; Scott, Donald N.

    1981-01-01

    A high voltage transmission line suspension insulator (18 or 22) which monitors its own dielectric integrity. A dielectric rod (10) has one larger diameter end fitting attachable to a transmission line and another larger diameter end fitting attachable to a support tower. The rod is enclosed in a dielectric tube (14) which is hermetically sealed to the rod's end fittings such that a liquidtight space (20) is formed between the rod and the tube. A pressurized dielectric liquid is placed within that space. A discoloring dye placed within this space is used to detect the loss of the pressurized liquid.

  2. Constraint-based scheduling

    NASA Technical Reports Server (NTRS)

    Zweben, Monte

    1991-01-01

    The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint-based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all the inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocation for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its application to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.

  3. Constraint-based scheduling

    NASA Technical Reports Server (NTRS)

    Zweben, Monte

    1991-01-01

    The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocations for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its applications to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.

  4. Constraint-based scheduling

    NASA Technical Reports Server (NTRS)

    Zweben, Monte

    1993-01-01

    The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint-based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all the inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocation for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its application to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.

  5. The Space Debris Environment for the ISS Orbit

    NASA Technical Reports Server (NTRS)

    Theall, Jeff; Liou, Jer-Chyi; Matney, Mark; Kessler, Don

    2001-01-01

    With thirty-five planned missions over the next five years, the International Space Station (ISS) will be the focus for manned space activity. At least 6 different vehicles will transport crew and supplies to and from the nominally 400 km, 51.6 degree orbit. When completed, the ISS will be the largest space structure ever assembled and hence the largest target for space debris. Recent work at the Johnson Space Center has focused on updating the existing space debris models. The Orbital Debris Engineering Model, has been restructured to take advantage of state of the art desktop computing capability and revised with recent measurements from Haystack and Goldstone radars, additional analysis of LDEF and STS impacts, and the most recent SSN catalog. The new model also contains the capability to extrapolate the current environment in time to the year 2030. A revised meteoroid model based on the work of Divine has also been developed, and is called the JSC Meteoroid Model. The new model defines flux on the target per unit angle per unit speed, and for Earth orbit, includes the meteor showers. This paper quantifies the space debris environment for the ISS orbit from natural and anthropogenic sources. Particle flux and velocity distributions as functions of size and angle are be given for particles 10 microns and larger for altitudes from 350 to 450 km. The environment is projected forward in time until 2030.

  6. Stability of Multi-Planet Systems in the Alpha Centauri System

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2017-01-01

    We evaluate the extent of the regions within the alpha Centauri AB star system where small planets are able to orbit for billion-year timescales (Quarles & Lissauer 2016, Astron. J. 151, 111), as well as how closely-spaced planetary orbits can be within those regions in which individual planets can survive. Although individual planets on low inclination, low eccentricity, orbits can survive throughout the habitable zones of both stars, perturbations from the companion star imply that the spacing of planets in multi-planet systems within the habitable zones of each star must be significantly larger than the spacing of similar multi-planet systems orbiting single stars in order to be long-lived. Because the binary companion induces a forced eccentricity upon the orbits of planets in orbit around either star, appropriately-aligned circumstellar orbits with small initial eccentricities are stable to slightly larger initial semimajor axes than are initially circular orbits. Initial eccentricities close to forced eccentricities can have a much larger affect on how closely planetary orbits can be spaced, and therefore on how many planets may remain in the habitable zones, although the required spacing remains significantly higher than for planets orbiting single stars.

  7. The Structure of Conscious Bodily Self-Perception during Full-Body Illusions

    PubMed Central

    Dobricki, Martin; de la Rosa, Stephan

    2013-01-01

    Previous research suggests that bodily self-identification, bodily self-localization, agency, and the sense of being present in space are critical aspects of conscious full-body self-perception. However, none of the existing studies have investigated the relationship of these aspects to each other, i.e., whether they can be identified to be distinguishable components of the structure of conscious full-body self-perception. Therefore, the objective of the present investigation is to elucidate the structure of conscious full-body self-perception. We performed two studies in which we stroked the back of healthy individuals for three minutes while they watched the back of a distant virtual body being synchronously stroked with a virtual stick. After visuo-tactile stimulation, participants assessed changes in their bodily self-perception with a custom made self-report questionnaire. In the first study, we investigated the structure of conscious full-body self-perception by analyzing the responses to the questionnaire by means of multidimensional scaling combined with cluster analysis. In the second study, we then extended the questionnaire and validated the stability of the structure of conscious full-body self-perception found in the first study within a larger sample of individuals by performing a principle components analysis of the questionnaire responses. The results of the two studies converge in suggesting that the structure of conscious full-body self-perception consists of the following three distinct components: bodily self-identification, space-related self-perception (spatial presence), and agency. PMID:24376765

  8. The structure of conscious bodily self-perception during full-body illusions.

    PubMed

    Dobricki, Martin; de la Rosa, Stephan

    2013-01-01

    Previous research suggests that bodily self-identification, bodily self-localization, agency, and the sense of being present in space are critical aspects of conscious full-body self-perception. However, none of the existing studies have investigated the relationship of these aspects to each other, i.e., whether they can be identified to be distinguishable components of the structure of conscious full-body self-perception. Therefore, the objective of the present investigation is to elucidate the structure of conscious full-body self-perception. We performed two studies in which we stroked the back of healthy individuals for three minutes while they watched the back of a distant virtual body being synchronously stroked with a virtual stick. After visuo-tactile stimulation, participants assessed changes in their bodily self-perception with a custom made self-report questionnaire. In the first study, we investigated the structure of conscious full-body self-perception by analyzing the responses to the questionnaire by means of multidimensional scaling combined with cluster analysis. In the second study, we then extended the questionnaire and validated the stability of the structure of conscious full-body self-perception found in the first study within a larger sample of individuals by performing a principle components analysis of the questionnaire responses. The results of the two studies converge in suggesting that the structure of conscious full-body self-perception consists of the following three distinct components: bodily self-identification, space-related self-perception (spatial presence), and agency.

  9. Understanding the Lunar System Architecture Design Space

    NASA Technical Reports Server (NTRS)

    Arney, Dale C.; Wilhite, Alan W.; Reeves, David M.

    2013-01-01

    Based on the flexible path strategy and the desire of the international community, the lunar surface remains a destination for future human exploration. This paper explores options within the lunar system architecture design space, identifying performance requirements placed on the propulsive system that performs Earth departure within that architecture based on existing and/or near-term capabilities. The lander crew module and ascent stage propellant mass fraction are primary drivers for feasibility in multiple lander configurations. As the aggregation location moves further out of the lunar gravity well, the lunar lander is required to perform larger burns, increasing the sensitivity to these two factors. Adding an orbit transfer stage to a two-stage lunar lander and using a large storable stage for braking with a one-stage lunar lander enable higher aggregation locations than Low Lunar Orbit. Finally, while using larger vehicles enables a larger feasible design space, there are still feasible scenarios that use three launches of smaller vehicles.

  10. IDEAS: A multidisciplinary computer-aided conceptual design system for spacecraft

    NASA Technical Reports Server (NTRS)

    Ferebee, M. J., Jr.

    1984-01-01

    During the conceptual development of advanced aerospace vehicles, many compromises must be considered to balance economy and performance of the total system. Subsystem tradeoffs may need to be made in order to satisfy system-sensitive attributes. Due to the increasingly complex nature of aerospace systems, these trade studies have become more difficult and time-consuming to complete and involve interactions of ever-larger numbers of subsystems, components, and performance parameters. The current advances of computer-aided synthesis, modeling and analysis techniques have greatly helped in the evaluation of competing design concepts. Langley Research Center's Space Systems Division is currently engaged in trade studies for a variety of systems which include advanced ground-launched space transportation systems, space-based orbital transfer vehicles, large space antenna concepts and space stations. The need for engineering analysis tools to aid in the rapid synthesis and evaluation of spacecraft has led to the development of the Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) computer-aided design system. The ADEAS system has been used to perform trade studies of competing technologies and requirements in order to pinpoint possible beneficial areas for research and development. IDEAS is presented as a multidisciplinary tool for the analysis of advanced space systems. Capabilities range from model generation and structural and thermal analysis to subsystem synthesis and performance analysis.

  11. EOS situational data shared service mechanism

    NASA Astrophysics Data System (ADS)

    Lv, L.; Xu, Q.; Lan, C. Z.; Shi, Q. S.; Lu, W. J.; Wu, W. Q.

    2016-11-01

    With the rapid development of aerospace and remote sensing technology, various high-resolution Earth Observation Systems (EOS) are widely used in economic, social, military and other fields and playing an increasingly prominent role in the construction of Digital Earth and national strategic planning. The normal operation of the system is the premise of high quality data acquisition. Compared with the ground observation mode, EOS itself and the surrounding environment are more complex, and its operation control mainly depends on all kinds of Space Situational Awareness (SSA) data acquisition and analysis. SSA data has more extensive sources, larger volume, stronger time-effectiveness and more complicated structure than traditional geographical spatial data. For effective data sharing and utilization, combined with the analysis of data types and structures, a SSA data sharing identity language SSDSML is designed based on the extensible mark-up language XML, which realizes a comprehensive description of satellites and their attributes, space environment, ground stations, etc. Then EOS situational data shared service mechanism is established and provides a powerful data support for the normal operation of the system.

  12. The effects of gravity level during directional solidification on the microstructure of hypermonotectic Al-In-Sn alloys

    NASA Technical Reports Server (NTRS)

    Curreri, P. A.; Kaukler, W. F.

    1986-01-01

    Five hypermonotectic Al-In-Sn compositions were directionally solidified in a Bridgman-type furnace at normal gravity and during aircraft low-gravity maneuvers. The tendency of the Al-30In alloy to form an indium-rich band at the start of unidirectional growth (SUG) made it difficult to study the integration of L sub 2 into the solidification interface. Hypermonotectic compositions closer to monotectic slightly hypermonotectic caused only a partial band on L sub 2 to form at SUG and allowed the study of such variables as gravity, composition, and monotectic dome height on integration of excess L sub 2 into the solid plus L sub 2 interface. It was found that formation of aligned composite structures for the Al-In-Sn system is not only a function of G and R but also of the degree to which the composition varies from monotectic. Most of the aligned fibrous structures formed from hypermonotectic Al-In-Sn had spacings that were of the order of irregular fibrous structures reported for on monotectic Al-In-Sn. The spacings for the large fibers and aligned globules found for ground and low-gravity processed Al-In-18-Sn-22, respectively, were significantly larger than the others measured and were of the order expected for cell spacings under the growth conditions utilized. It was found that the integration into the solidification front of excess L sub 2 in low gravity was a function of the Sn composition of the alloy.

  13. Apparent resistivity for transient electromagnetic induction logging and its correction in radial layer identification

    NASA Astrophysics Data System (ADS)

    Meng, Qingxin; Hu, Xiangyun; Pan, Heping; Xi, Yufei

    2018-04-01

    We propose an algorithm for calculating all-time apparent resistivity from transient electromagnetic induction logging. The algorithm is based on the whole-space transient electric field expression of the uniform model and Halley's optimisation. In trial calculations for uniform models, the all-time algorithm is shown to have high accuracy. We use the finite-difference time-domain method to simulate the transient electromagnetic field in radial two-layer models without wall rock and convert the simulation results to apparent resistivity using the all-time algorithm. The time-varying apparent resistivity reflects the radially layered geoelectrical structure of the models and the apparent resistivity of the earliest time channel follows the true resistivity of the inner layer; however, the apparent resistivity at larger times reflects the comprehensive electrical characteristics of the inner and outer layers. To accurately identify the outer layer resistivity based on the series relationship model of the layered resistance, the apparent resistivity and diffusion depth of the different time channels are approximately replaced by related model parameters; that is, we propose an apparent resistivity correction algorithm. By correcting the time-varying apparent resistivity of radial two-layer models, we show that the correction results reflect the radially layered electrical structure and the corrected resistivities of the larger time channels follow the outer layer resistivity. The transient electromagnetic fields of radially layered models with wall rock are simulated to obtain the 2D time-varying profiles of the apparent resistivity and corrections. The results suggest that the time-varying apparent resistivity and correction results reflect the vertical and radial geoelectrical structures. For models with small wall-rock effect, the correction removes the effect of the low-resistance inner layer on the apparent resistivity of the larger time channels.

  14. Focal theoretical problems in modulated and martensitic transformations in alloys and perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krumhansl, J.A.

    Fundamental understanding of the microscopic physic of displacive transformations requires insight into the most remarkable and fascinating feature common to so many of the transformations; the formation of local distortive structures, modulations and more general patterns at the mesoscopic scale, far larger than atomic spacings, much smaller than typical specimen size. These have been extensively studied by metallurgists for some time; but also, they are are manifest in ferroelectrics, in such phenomena as the blue phases'' in chloesteric liquid crystals, and in turbulence. This commonality in such a wide range of materials challenges us to achieve a basic understanding ofmore » the physics of why such local, persistent mesostructures appear. In order to address some of the bigger questions -- microscopics of nucleation and growth, mesoscopic and transitional (precursor) structures, and properties of transformed materials -- we began addressing the limitations of traditional methods for describing the thermodynamics and (elastic) distortions of displacive transformations. Conventional phonon descriptions and linear elasticity (and their contribution of the free energy) are obviously limited to very small distortions and are intrinsically incapable of describing the larger, topology changing displacements that are of essence here.« less

  15. Rethinking urban space in cities - A study of parks in Hyderabad, India

    NASA Astrophysics Data System (ADS)

    Shrinagesh, B.; Markandey, Kalpana

    2016-06-01

    Urban areas being economically diversified attract large streams of migrants making for a burgeoning population. This is more prevalent in the developing countries. The concomitants of this are high density, heavy traffic movement and increased pollution levels. To reduce the stressful life of city dwellers it is important to have open spaces, where one can pursue leisure time activities a few removes from clutter. A public space is a space that is generally open and accessible to people. Roads, public parks, libraries etc, are typically considered public space. The term ‘public space’ is also often misconstrued to mean other things such as ‘gathering place’, which is an element of the larger concept of social space. Hyderabad, the historical city is the capital of Telangana, India and extends from longitude 78o23’ to 78o33’E and latitude of 17o17’ to 17o31’N. It is the second largest city in terms of area and fifth largest in terms of population. It is one of the fastest growing cities in India. There is a huge influx of people from other states in search of better opportunities. The main objectives of the study are; to study the sprawl and changing demographic structure of the city of Hyderabad, to study the accessibility of parks, to study the need for the emergence of a local public sphere. The data base will be mainly on secondary data collected from various government sources. A primary survey will be conducted based on a structured questionnaire. GIS and other mapping techniques will be applied to analyse the data.

  16. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1980-01-01

    This illustration shows the Hubble Space Telescope's (HST's) major configuration elements. The spacecraft has three interacting systems: The Support System Module (SSM), an outer structure that houses the other systems and provides services such as power, communication, and control; The Optical Telescope Assembly (OTA), which collects and concentrates the incoming light in the focal plane for use by the Scientific Instruments (SI); and five SIs. The SI Control and Data Handling (CDH) unit controls the five SI's, four that are housed in an aft section focal plane structure and one that is placed along the circumference of the spacecraft. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  17. Creating an inclusive leisure space: strategies used to engage children with and without disabilities in the arts-mediated program Spiral Garden.

    PubMed

    Smart, Eric; Edwards, Brydne; Kingsnorth, Shauna; Sheffe, Sarah; Curran, C J; Pinto, Madhu; Crossman, Shannon; King, Gillian

    2018-01-01

    This article describes how service providers use a set of practical strategies to create an inclusive leisure space in Spiral Garden, an arts-mediated outdoor summer day program for children with and without disabilities. This study was guided by an interpretive qualitative approach. Fourteen Spiral Garden service providers participated in semi-structured interviews. Nine had extensive experience with the program and had been present during key phases of program development spanning over a 26-year period and five were service providers during the summer of 2013. Transcript data were analyzed using inductive thematic analysis. The analysis produced eight strategies organized under three larger categories that service providers perceived to be essential in creating an inclusive leisure space: (1) engaging children in collective experiences; (2) encouraging peer interactions and friendships; and (3) facilitating collaborative child-directed experiences. Service providers working across different inclusive settings can use findings from this study to contribute to program design and implementation. Presented strategies enable children to experience opportunities for spontaneous free play, individualized structured support, and meaningful social participation. Overall, service providers are encouraged to enhance supportive child and service provider relationships and reciprocal child and environment relationships in group-based programs. Implications for Rehabilitation Exploring and facilitating reciprocal relationships between children and their environment is essential to creating inclusive leisure spaces. Transforming program intentions of meaningful social participation into practice requires learning about and affecting change in children's individual social contexts. Service providers can engage themselves as full participants in inclusive leisure spaces through playful negotiations, internal reflections, and artistic expressions.

  18. The effect of front-to-rear propeller spacing on the interaction noise at cruise conditions of a model counterrotation propeller having a reduced diameter aft propeller

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Gordon, Eliott B.; Jeracki, Robert J.

    1988-01-01

    The effect of forward-to-aft propeller spacing on the interaction noise of a counterrotation propeller with reduced aft diameter was measured at cruise conditions. In general, the tones at 100 percent speed decreased from close to nominal spacing as expected from a wake decay model. However, when the spacing was further increased to the far position, the noise did not decrease as expected and in some cases increased. The behavior at the far spacing was attributed to changing forward propeller performance, which produced larger wakes. The results of this experiment indicate that simple wake decay model is sufficient to describe the behavior of the interaction noise only if the aerodynamic coupling of the two propellers does not change with spacing. If significant coupling occurs such that the loading of the forward propeller is altered, the interaction noise does not necessarily decrease with larger forward-to-aft propeller spacing.

  19. Kinetic effects on the velocity-shear-driven instability

    NASA Technical Reports Server (NTRS)

    Wang, Z.; Pritchett, P. L.; Ashour-Abdalla, M.

    1992-01-01

    A comparison is made between the properties of the low-frequency long-wavelength velocity-shear-driven instability in kinetic theory and magnetohydrodynamics (MHD). The results show that the removal of adiabaticity along the magnetic field line in kinetic theory leads to modifications in the nature of the instability. Although the threshold for the instability in the two formalisms is the same, the kinetic growth rate and the unstable range in wave-number space can be larger or smaller than the MHD values depending on the ratio between the thermal speed, Alfven speed, and flow speed. When the thermal speed is much larger than the flow speed and the flow speed is larger than the Alfven speed, the kinetic formalism gives a larger maximum growth rate and broader unstable range in wave-number space. In this regime, the normalized wave number for instability can be larger than unity, while in MHD it is always less than unity. The normal mode profile in the kinetic case has a wider spatial extent across the shear layer.

  20. Resonance-enhanced optical forces between coupled photonic crystal slabs.

    PubMed

    Liu, Victor; Povinelli, Michelle; Fan, Shanhui

    2009-11-23

    The behaviors of lateral and normal optical forces between coupled photonic crystal slabs are analyzed. We show that the optical force is periodic with displacement, resulting in stable and unstable equilibrium positions. Moreover, the forces are strongly enhanced by guided resonances of the coupled slabs. Such enhancement is particularly prominent near dark states of the system, and the enhancement effect is strongly dependent on the types of guided resonances involved. These structures lead to enhancement of light-induced pressure over larger areas, in a configuration that is directly accessible to externally incident, free-space optical beams.

  1. Visualization of electronic density

    DOE PAGES

    Grosso, Bastien; Cooper, Valentino R.; Pine, Polina; ...

    2015-04-22

    An atom’s volume depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent numerical algorithms and packages to calculate it for other materials. 3D visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. We explore several approaches to 3D charge density visualization, including the extension of an anaglyphic stereo visualization application based on the AViz package to larger structures such as nanotubes. We will describe motivations and potential applications of these tools for answering interesting questions about nanotube properties.

  2. Saturn Apollo Program

    NASA Image and Video Library

    1965-01-01

    S-IB-200D, a dynamic test version of the Saturn IB launch vehicle's first stage (S-IB), makes its way to the Marshall Space Flight Center (MSFC) East Test Area on January 4, 1965. Test Laboratory persornel assembled a complete Saturn IB to test the structural soundness of the launch vehicle in the Dynamic Test Stand. Developed by the MSFC as an interim vehicle in MSFC's "building block" approach to the Saturn rocket development, the Saturn IB utilized Saturn I technology to further develop and refine the larger boosters and the Apollo spacecraft capabilities required for the manned lunar missions.

  3. Dynamic Load Predictions for Launchers Using Extra-Large Eddy Simulations X-Les

    NASA Astrophysics Data System (ADS)

    Maseland, J. E. J.; Soemarwoto, B. I.; Kok, J. C.

    2005-02-01

    Flow-induced unsteady loads can have a strong impact on performance and flight characteristics of aerospace vehicles and therefore play a crucial role in their design and operation. Complementary to costly flight tests and delicate wind-tunnel experiments, unsteady loads can be calculated using time-accurate Computational Fluid Dynamics. A capability to accurately predict the dynamic loads on aerospace structures at flight Reynolds numbers can be of great value for the design and analysis of aerospace vehicles. Advanced space launchers are subject to dynamic loads in the base region during the ascent to space. In particular the engine and nozzle experience aerodynamic pressure fluctuations resulting from massive flow separations. Understanding these phenomena is essential for performance enhancements for future launchers which operate a larger nozzle. A new hybrid RANS-LES turbulence modelling approach termed eXtra-Large Eddy Simulations (X-LES) holds the promise to capture the flow structures associated with massive separations and enables the prediction of the broad-band spectrum of dynamic loads. This type of method has become a focal point, reducing the cost of full LES, driven by the demand for their applicability in an industrial environment. The industrial feasibility of X-LES simulations is demonstrated by computing the unsteady aerodynamic loads on the main-engine nozzle of a generic space launcher configuration. The potential to calculate the dynamic loads is qualitatively assessed for transonic flow conditions in a comparison to wind-tunnel experiments. In terms of turn-around-times, X-LES computations are already feasible within the time-frames of the development process to support the structural design. Key words: massive separated flows; buffet loads; nozzle vibrations; space launchers; time-accurate CFD; composite RANS-LES formulation.

  4. Estimating the effect of the reorganization of interactions on the adaptability of species to changing environments.

    PubMed

    Cenci, Simone; Montero-Castaño, Ana; Saavedra, Serguei

    2018-01-21

    A major challenge in community ecology is to understand how species respond to environmental changes. Previous studies have shown that the reorganization of interactions among co-occurring species can modulate their chances to adapt to novel environmental conditions. Moreover, empirical evidence has shown that these ecological dynamics typically facilitate the persistence of groups of species rather than entire communities. However, so far, we have no systematic methodology to identify those groups of species with the highest or lowest chances to adapt to new environments through a reorganization of their interactions. Yet, this could prove extremely valuable for developing new conservation strategies. Here, we introduce a theoretical framework to estimate the effect of the reorganization of interactions on the adaptability of a group of species, within a community, to novel environmental conditions. We introduce the concept of the adaptation space of a group of species based on a feasibility analysis of a population dynamics model. We define the adaptation space of a group as the set of environmental conditions that can be made compatible with its persistence thorough the reorganization of interactions among species within the group. The larger the adaptation space of a group, the larger its likelihood to adapt to a novel environment. We show that the interactions in the community outside a group can act as structural constraints and be used to quantitatively compare the size of the adaptation space among different groups of species within a community. To test our theoretical framework, we perform a data analysis on several pairs of natural and artificially perturbed ecological communities. Overall, we find that the groups of species present in both control and perturbed communities are among the ones with the largest adaptation space. We believe that the results derived from our framework point out towards new directions to understand and estimate the adaptability of species to changing environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Near and far space neglect: task sensitivity and anatomical substrates.

    PubMed

    Aimola, Lina; Schindler, Igor; Simone, Anna Maria; Venneri, Annalena

    2012-05-01

    Most group studies which have investigated neglect for near and far space have found an increased severity of symptoms in far space compared to near space. However, the majority of these studies used relatively small samples and based their findings almost exclusively on line bisection performance. The aim of the present study was, therefore, to explore the occurrence of neglect for near and far space in a larger group of unselected right brain damaged patients and to evaluate whether neglect specific to near and far space is a task-related deficit or generalises across distance irrespective of task. In addition, a lesion overlap analysis was carried out to identify critical lesion sites associated with distance specific neglect deficits. Thirty-eight right hemisphere damaged patients carried out a line bisection and a cancellation task by using a pen in near space (40 cm) and a laser pointer in far space (320 cm). The results showed that both the number of left-sided omissions and rightward bisection errors were significantly increased in near compared to far space. Distance specific dissociations, albeit less common, were more frequently observed for cancellation than line bisection. These results suggest that space representation in neglect is more severely impaired in near than in far space. In addition, distance related dissociations in neglect may depend on task demands. Although the anatomical findings were broadly consistent with a dorsal and ventral stream dichotomy for near and far space processing, they also suggest the involvement of intermediate structures in distance related neglect phenomena. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. The introduction of strain and its effects on the structure and stability of T4 lysozyme.

    PubMed

    Liu, R; Baase, W A; Matthews, B W

    2000-01-07

    In order to try to better understand the role played by strain in the structure and stability of a protein a series of "small-to-large" mutations was made within the core of T4 lysozyme. Three different alanine residues, one involved in backbone contacts, one in side-chain contacts, and the third adjacent to a small cavity, were each replaced with subsets of the larger residues, Val, Leu, Ile, Met, Phe and Trp. As expected, the protein is progressively destabilized as the size of the introduced side-chain becomes larger. There does, however, seem to be a limit to the destabilization, suggesting that a protein of a given size may be capable of maintaining only a certain amount of strain. The changes in stability vary greatly from site to site. Substitution of larger residues for both Ala42 and Ala98 substantially destabilize the protein, even though the primary contacts in one case are predominantly with side-chain atoms and in the other with backbone. The results suggest that it is neither practical nor meaningful to try to separate the effects of introduced strain on side-chains from the effects on the backbone. Substitutions at Ala129 are much less destabilizing than at sites 42 or 98. This is most easily understood in terms of the pre-existing cavity, which provides partial space to accommodate the introduced side-chains. Crystal structures were obtained for a number of the mutants. These show that the changes in structure to accommodate the introduced side-chains usually consist of essentially rigid-body displacements of groups of linked atoms, achieved through relatively small changes in torsion angles. On rare occasions, a side-chain close to the site of substitution may change to a different rotamer. When such rotomer changes occur, they permit the structure to dissipate strain by a response that is plastic rather than elastic. In one case, a surface loop moves 1.2 A, not in direct response to a mutation, but in an interaction mediated via an intermolecular contact. It illustrates how the structure of a protein can be modified by crystal contacts. Copyright 2000 Academic Press.

  7. Growth of zeolite crystals in the microgravity environment of space

    NASA Technical Reports Server (NTRS)

    Sacco, A., Jr.; Sand, L. B.; Collette, D.; Dieselman, K.; Crowley, J.; Feitelberg, A.

    1986-01-01

    Zeolites are hydrated, crystalline aluminosilicates with alkali and alkaling earth metals substituted into cation vacancies. Typically zeolite crystals are 3 to 8 microns. Larger cyrstals are desirable. Large zeolite crystals were produced (100 to 200 microns); however, they have taken restrictively long times to grow. It was proposed if the rate of nucleation or in some other way the number of nuclei can be lowered, fewer, larger crystals will be formed. The microgravity environment of space may provide an ideal condition to achieve rapid growth of large zeolite crystals. The objective of the project is to establish if large zeolite crystals can be formed rapidly in space.

  8. Periodically Launched, Dedicated CubeSats/SmallSats for Space Situational Awareness Through NASA Communications Networks

    NASA Astrophysics Data System (ADS)

    Stromberg, E. M.; Shaw, H.; Estabrook, P.; Neilsen, T. L.; Gunther, J.; Swenson, C.; Fish, C. S.; Schaire, S. H.

    2014-12-01

    Space Situational Awareness (SSA) is an area where spaceflight activities and missions can directly influence the quality of life on earth. The combination of space weather, near earth orbiting objects, atmospheric conditions at the space boundary, and other phenomena can have significant short-term and long-term implications for the inhabitants of this planet. The importance of SSA has led to increased activity in this area from both space and ground based platforms. The emerging capability of CubeSats and SmallSats provides an opportunity for these low-cost, versatile platforms to augment the SSA infrastructure. The CubeSats and SmallSats can be launched opportunistically with shorter lead times than larger missions. They can be organized both as constellations or individual sensor elements. Combining CubeSats and SmallSats with the existing NASA communications networks (TDRS Space Network, Deep Space Network and the Near Earth Network) provide a backbone structure for SSA which can be tied to a SSA portal for data distribution and management. In this poster we will describe the instruments and sensors needed for CubeSat and SmallSat SSA missions. We will describe the architecture and concept of operations for a set of opportunistic, periodically launched, SSA CubeSats and SmallSats. We will also describe the integrated communications infrastructure to support end-to-end data delivery and management to a SSA portal.

  9. Manipulation and Investigation of Uniformly-Spaced Nanowire Array on a Substrate via Dielectrophoresis and Electrostatic Interaction.

    PubMed

    Choi, U Hyeok; Park, Ji Hun; Kim, Jaekyun

    2018-06-21

    Directed-assembly of nanowires on the dielectrics-covered parallel electrode structure is capable of producing uniformly-spaced nanowire array at the electrode gap due to dielectrophoretic nanowire attraction and electrostatic nanowire repulsion. Beyond uniformly-spaced nanowire array formation, the control of spacing in the array is beneficial in that it should be the experimental basis of the precise positioning of functional nanowires on a circuit. Here, we investigate the material parameters and bias conditions to modulate the nanowire spacing in the ordered array, where the nanowire array formation is readily attained due to the electrostatic nanowire interaction. A theoretical model for the force calculation and the simulation of the induced charge in the assembled nanowire verifies that the longer nanowires on thicker dielectric layer tend to be assembled with a larger pitch due to the stronger nanowire-nanowire electrostatic repulsion, which is consistent with the experimental results. It was claimed that the stronger dielectrophoretic force is likely to attract more nanowires that are suspended in solution at the electrode gap, causing them to be less-spaced. Thus, we propose a generic mechanism, competition of dielectrophoretic and electrostatic force, to determine the nanowire pitch in an ordered array. Furthermore, this spacing-controlled nanowire array offers a way to fabricate the high-density nanodevice array without nanowire registration.

  10. The Space Homestead and Creation of Real Estate and Industry Beyond Earth

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.; Detweiler, Michael K.

    2008-01-01

    During the 1970's large habitats were proposed by G. K. O'Neill and studied by NASA that could house 10,000 to 4 million people in Earth/Moon space. These peoples would be employed in building space solar satellites and more habitats for new settlers. Such a program, the NASA studies concluded, could reach financial break even in 17 to 30 years of peak Apollo level expenditures. During the STAIF 2007 conference the first author presented a proposal to begin human settlement not by building city size structures but with a minimum technology habitat that could provide subsistence for a human family (10 people) and be capable of producing new habitats with extraterrestrial materials and energy. Such a habitat would be the equivalent of a space homestead. Later these habitats could cooperate to form towns and cities in a free ad hoe manner similar to the development of the American west. In addition the approach could provide a quicker return on investment and lower start up costs, and would be of a scale that could be developed and tested within the planned transportation and lunar base architecture of the Exploration Vision. This paper examines the population growth kinetics of humans in space, and the development of space solar power industry for the space homestead in comparison to larger habitat designs considered in the 1970's.

  11. Meteorite and meteoroid: New comprehensive definitions

    USGS Publications Warehouse

    Rubin, A.E.; Grossman, J.N.

    2010-01-01

    Meteorites have traditionally been defined as solid objects that have fallen to Earth from space. This definition, however, is no longer adequate. In recent decades, man-made objects have fallen to Earth from space, meteorites have been identified on the Moon and Mars, and small interplanetary objects have impacted orbiting spacecraft. Taking these facts and other potential complications into consideration, we offer new comprehensive definitions of the terms "meteorite,""meteoroid," and their smaller counterparts: A meteoroid is a 10-??m to 1-m-size natural solid object moving in interplanetary space. A micrometeoroid is a meteoroid 10 ??m to 2 mm in size. A meteorite is a natural, solid object larger than 10 ??m in size, derived from a celestial body, that was transported by natural means from the body on which it formed to a region outside the dominant gravitational influence of that body and that later collided with a natural or artificial body larger than itself (even if it is the same body from which it was launched). Weathering and other secondary processes do not affect an object's status as a meteorite as long as something recognizable remains of its original minerals or structure. An object loses its status as a meteorite if it is incorporated into a larger rock that becomes a meteorite itself. A micrometeorite is a meteorite between 10 ??m and 2 mm in size. Meteorite- "a solid substance or body falling from the high regions of the atmosphere" (Craig 1849); "[a] mass of stone and iron that ha[s] been directly observed to have fallen down to the Earth's surface" (translated from Cohen 1894); "[a] solid bod[y] which came to the earth from space" (Farrington 1915); "A mass of solid matter, too small to be considered an asteroid; either traveling through space as an unattached unit, or having landed on the earth and still retaining its identity" (Nininger 1933); "[a meteoroid] which has reached the surface of the Earth without being vaporized" (1958 International Astronomical Union (IAU) definition, quoted by Millman 1961); "a solid body which has arrived on the Earth from outer space" (Mason 1962); "[a] solid bod[y] which reach[es] the Earth (or the Moon, Mars, etc.) from interplanetary space and [is] large enough to survive passage through the Earth's (or Mars', etc.) atmosphere" (Gomes and Keil 1980); "[a meteoroid] that survive[s] passage through the atmosphere and fall[s] to earth" (Burke 1986); "a recovered fragment of a meteoroid that has survived transit through the earth's atmosphere" (McSween 1987); "[a] solid bod[y] of extraterrestrial material that penetrate[s] the atmosphere and reach[es] the Earth's surface" (Krot et al. 2003). ?? The Meteoritical Society, 2010.

  12. Plantation Spacing Affects Early Growth of Planted Virginia Pine

    Treesearch

    T.E. Russell

    1979-01-01

    Spacings ranging from 4 x 4 to 8 x 8 ft did not affect 15 year height growth of Virginia pines planted on a cutover Cumberland Plateau site. Wider spacings produced trees of larger diameters than did closer spacings; closer spacings had more basal area and volume. Although height to the base of the live crown increased as spacing narrowed, self-pruning was poor at all...

  13. Cell Division and Evolution of Biological Tissues

    NASA Astrophysics Data System (ADS)

    Rivier, Nicolas; Arcenegui-Siemens, Xavier; Schliecker, Gudrun

    A tissue is a geometrical, space-filling, random cellular network; it remains in this steady state while individual cells divide. Cell division (fragmentation) is a local, elementary topological transformation which establishes statistical equilibrium of the structure. Statistical equilibrium is characterized by observable relations (Lewis, Aboav) between cell shapes, sizes and those of their neighbours, obtained through maximum entropy and topological correlation extending to nearest neighbours only, i.e. maximal randomness. For a two-dimensional tissue (epithelium), the distribution of cell shapes and that of mother and daughter cells can be obtained from elementary geometrical and physical arguments, except for an exponential factor favouring division of larger cells, and exponential and combinatorial factors encouraging a most symmetric division. The resulting distributions are very narrow, and stationarity severely restricts the range of an adjustable structural parameter

  14. The relationship between structural stability and electrochemical performance of multi-element doped alpha nickel hydroxide

    NASA Astrophysics Data System (ADS)

    Miao, Chengcheng; Zhu, Yanjuan; Huang, Liangguo; Zhao, Tengqi

    2015-01-01

    The multi-element doped alpha nickel hydroxide has been prepared by supersonic co-precipitation method. Three kinds of samples A, B and C are prepared by chemically coprecipitating Ni/Al, Ni/Al/Mn and Ni/Al/Mn/Yb, respectively. Inductively coupled plasma atomic emission spectroscopy (ICP-AES), Particle size distribution (PSD) measurement, X-ray diffraction (XRD), scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FT-IR) are used to characterize the physical properties of the synthesized α-Ni(OH)2 samples, such as chemical composition, morphology, structural stability of the crystal. The results show that all samples are nano-sized materials and the interlayer spacing becomes larger and the structural stability becomes better with the increase of doped elements and doped ratio. The prepared alpha nickel hydroxide samples are added into micro-sized beta nickel hydroxide to form biphase electrode materials for Ni-MH battery. The electrochemical characterization of the biphase electrodes, including cyclic voltammetry (CV) and charge/discharge test, are also performed. The results demonstrate that the biphase electrode with sample C exhibits better electrochemical reversibility and cyclic stability, higher charge efficient and discharge potential, larger proton diffusion coefficient (5.81 × 10-12 cm2 s-1) and discharge capacity (309.0 mAh g-1). Hence, it indicates that all doped elements can produce the synergic effect and further improve the electrochemical properties of the alpha nickel hydroxide.

  15. Adaptive governance to promote ecosystem services in urban green spaces

    EPA Science Inventory

    Managing urban green space as part of an ongoing social-ecological transformationposes novel governance issues, particularly in post-industrial settings. Urban green spaces operate as small-scale nodes in larger networks of ecological reserves that provide and maintain key ecosys...

  16. The Grism Lens-amplified Survey from Space (Glass). IX. The Dual Origin of Low-mass Cluster Galaxies as Revealed by New Structural Analyses

    NASA Astrophysics Data System (ADS)

    Morishita, Takahiro; Abramson, Louis E.; Treu, Tommaso; Vulcani, Benedetta; Schmidt, Kasper B.; Dressler, Alan; Poggianti, Bianca M.; Malkan, Matthew A.; Wang, Xin; Huang, Kuang-Han; Trenti, Michele; Bradač, Maruša; Hoag, Austin

    2017-02-01

    Using deep Hubble Frontier Fields imaging and slitless spectroscopy from the Grism Survey from Space, we study 2200 cluster and 1748 field galaxies at 0.2≤slant z≤slant 0.7 to determine the impact of environment on galaxy size and structure at stellar masses {log}{M}* /{M}⊙ > 7.8, an unprecedented limit at these redshifts. Based on simple assumptions—{r}e=f({M}* )—we find no significant differences in half-light radii (re) between equal-mass cluster or field systems. More complex analyses—{r}e=f({M}* ,U-V,n,z,{{Σ }})—reveal local density (Σ) to induce only a 7% ± 3% (95% confidence) reduction in re beyond what can be accounted for by U - V color, Sérsic index (n), and redshift (z) effects. Almost any size difference between galaxies in high- and low-density regions is thus attributable to their different distributions in properties other than environment. Indeed, we find a clear color-re correlation in low-mass passive cluster galaxies ({log}{M}* /{M}⊙ < 9.8) such that bluer systems have larger radii, with the bluest having sizes consistent with equal-mass star-forming galaxies. We take this as evidence that large-re low-mass passive cluster galaxies are recently acquired systems that have been environmentally quenched without significant structural transformation (e.g., by ram pressure stripping or starvation). Conversely, ˜20% of small-re low-mass passive cluster galaxies appear to have been in place since z≳ 3. Given the consistency of the small-re galaxies’ stellar surface densities (and even colors) with those of systems more than ten times as massive, our findings suggest that clusters mark places where galaxy evolution is accelerated for an ancient base population spanning most masses, with late-time additions quenched by environment-specific mechanisms mainly restricted to the lowest masses.

  17. Space Station Freedom as an engineering experiment station: An overview

    NASA Technical Reports Server (NTRS)

    Rose, M. Frank

    1992-01-01

    In this presentation, the premise that Space Station Freedom has great utility as an engineering experiment station will be explored. There are several modes in which it can be used for this purpose. The most obvious are space qualification, process development, in space satellite repair, and materials engineering. The range of engineering experiments which can be done at Space Station Freedom run the gamut from small process oriented experiments to full exploratory development models. A sampling of typical engineering experiments are discussed in this session. First and foremost, Space Station Freedom is an elaborate experiment itself, which, if properly instrumented, will provide engineering guidelines for even larger structures which must surely be built if humankind is truly 'outward bound.' Secondly, there is the test, evaluation and space qualification of advanced electric thruster concepts, advanced power technology and protective coatings which must of necessity be tested in the vacuum of space. The current approach to testing these technologies is to do exhaustive laboratory simulation followed by shuttle or unmanned flights. Third, the advanced development models of life support systems intended for future space stations, manned mars missions, and lunar colonies can be tested for operation in a low gravity environment. Fourth, it will be necessary to develop new protective coatings, establish construction techniques, evaluate new materials to be used in the upgrading and repair of Space Station Freedom. Finally, the industrial sector, if it is ever to build facilities for the production of commercial products, must have all the engineering aspects of the process evaluated in space prior to a commitment to such a facility.

  18. Crystal structures of (Mg1-x,Fex)SiO3postperovskite at high pressures

    PubMed Central

    Yamanaka, Takamitsu; Hirose, Kei; Mao, Wendy L.; Meng, Yue; Ganesh, P.; Shulenburger, Luke; Shen, Guoyin; Hemley, Russell J.

    2012-01-01

    X-ray diffraction experiments on postperovskite (ppv) with compositions (Mg0.9Fe0.1)SiO3 and (Mg0.6Fe0.4)SiO3 at Earth core-mantle boundary pressures reveal different crystal structures. The former adopts the CaIrO3-type structure with space group Cmcm, whereas the latter crystallizes in a structure with the Pmcm (Pmma) space group. The latter has a significantly higher density (ρ = 6.119(1) g/cm3) than the former (ρ = 5.694(8) g/cm3) due to both the larger amount of iron and the smaller ionic radius of Fe2+ as a result of an electronic spin transition observed by X-ray emission spectroscopy (XES). The smaller ionic radius for low-spin compared to high-spin Fe2+ also leads to an ordered cation distribution in the M1 and M2 crystallographic sites of the higher density ppv structure. Rietveld structure refinement indicates that approximately 70% of the total Fe2+ in that phase occupies the M2 site. XES results indicate a loss of 70% of the unpaired electronic spins consistent with a low spin M2 site and high spin M1 site. First-principles calculations of the magnetic ordering confirm that Pmcm with a two-site model is energetically more favorable at high pressure, and predict that the ordered structure is anisotropic in its electrical and elastic properties. These results suggest that interpretations of seismic structure in the deep mantle need to treat a broader range of mineral structures than previously considered. PMID:22223656

  19. Structural diversities induced by cation sizes in a series of fluorogermanophosphates: A2[GeF2(HPO4)2] (A = Na, K, Rb, NH4, and Cs).

    PubMed

    Chen, Zhang-Gai; Huang, Xia; Zhuang, Rong-Chuan; Zhang, Yu; Liu, Xin; Shi, Tao; Wang, Shuai-Hua; Wu, Shao-Fan; Mi, Jin-Xiao; Huang, Ya-Xi

    2017-09-12

    Germanophosphates, in comparison with other metal phosphates, have been less studied but potentially exhibit more diverse structural chemistry with wide applications. Herein we applied a hydro-/solvo-fluorothermal route to make use of both the "tailor effect" of fluoride for the formation of low dimensional anionic clusters and the presence of alkali cations of different sizes to align the anionic clusters to control the overall crystal symmetries of germanophosphates. The synergetic effects of fluoride and alkali cations led to structural changes from chain-like structures to layered structures in a series of five novel fluorogermanophosphates: A 2 [GeF 2 (HPO 4 ) 2 ] (A = Na, K, Rb, NH 4 , and Cs, denoted as Na, K, Rb, NH4, and Cs). Although these fluorogermanophosphates have stoichiometrically equivalent formulas, they feature different anionic clusters, diverse structural dimensionalities, and contrasting crystal symmetries. Chain-like structures were observed for the compounds with the smaller sized alkali ions (Na + , K + , and Rb + ), whereas layered structures were found for those containing the larger sized cations ((NH 4 ) + and Cs + ). Specifically, monoclinic space groups were observed for the Na, K, Rb, and NH4 compounds, whereas a tetragonal space group P4/mbm was found for the Cs compound. These compounds provide new insights into the effects of cation sizes on the anionic clusters built from GeO 4 F 2 octahedra and HPO 4 tetrahedra as well as their influences on the overall structural symmetries in germanophosphates. Further characterization including IR spectroscopy and thermal analyses for all five compounds is also presented.

  20. Theoretical Modeling of Electromagnetic Field from Electron Bunches in Periodic Wire Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuchurka, S.; Benediktovitch, A.; Galyamin, S. N.

    The interaction of relativistic electrons with periodic conducting structures results in radiation via a number of mechanisms. In case of crystals one obtains parametric X-ray radiation, its frequency is determined by the distance between crystallographic planes and the direction of electron beam. If instead of a crystal one considers a periodic structure of metallic wires with the spacing of the order of mm, it is plausible to expect the emission of radiation of a similar nature (“diffraction response”) at THz frequencies. Additionally, a “long-wave” radiation will occur in this case with wavelengths much larger then structure periods. In this contribution,more » we present different theoretical approaches for describing the electromagnetic radiation field from prolonged electron bunch propagated in the lattice of metallic wires. The validity of these analytical descriptions is checked by numerical simulations. We discuss the possible applications of aforementioned structure as sources of coherent THz radiation.« less

  1. Structural investigation of spherical hollow excipient Mannit Q by X-ray microtomography.

    PubMed

    Kajihara, Ryusuke; Noguchi, Shuji; Iwao, Yasunori; Yasuda, Yuki; Segawa, Megumi; Itai, Shigeru

    2015-11-10

    The structure of Mannit Q particles, an excipient made by spray-drying a d-mannitol solution, and Mannit Q tablets were investigated by synchrotron X-ray microtomography. The Mannit Q particles had a spherical shape with a hollow core. The shells of the particles consisted of fine needle-shaped crystals, and columnar crystals were present in the hollows. These structural features suggested the following formation mechanism for the hollow particles:during the spray-drying process, the solvent rapidly evaporated from the droplet surface, resulting in the formation of shells made of fine needle-shaped crystals.Solvent remaining inside the shells then evaporated slowly and larger columnar crystals grew as the hollows formed. Although most of the Mannit Q particles were crushed on tableting, some of the particles retained their hollow structures, probably because the columnar crystals inside the hollows functioned as props. This demonstrated that the tablets with porous void spaces may be readily manufactured using Mannit Q. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Combined effects of fishing and oil spills on marine fish: Role of stock demographic structure for offspring overlap with oil.

    PubMed

    Stige, Leif Chr; Ottersen, Geir; Yaragina, Natalia A; Vikebø, Frode B; Stenseth, Nils Chr; Langangen, Øystein

    2018-04-01

    It has been proposed that the multiple pressures of fishing and petroleum activities impact fish stocks in synergy, as fishing-induced demographic changes in a stock may lead to increased sensitivity to detrimental effects of acute oil spills. High fishing pressure may erode the demographic structure of fish stocks, lead to less diverse spawning strategies, and more concentrated distributions of offspring in space and time. Hence an oil spill may potentially hit a larger fraction of a year-class of offspring. Such a link between demographic structure and egg distribution was recently demonstrated for the Northeast Arctic stock of Atlantic cod for years 1959-1993. We here estimate that this variation translates into a two-fold variation in the maximal proportion of cod eggs potentially exposed to a large oil spill. With this information it is possible to quantitatively account for demographic structure in prospective studies of population effects of possible oil spills. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. JASMINE: constructor of the dynamical structure of the Galactic bulge

    NASA Astrophysics Data System (ADS)

    Gouda, N.; Kobayashi, Y.; Yamada, Y.; Yano, T.; Tsujimoto, T.; Suganuma, M.; Niwa, Y.; Yamauchi, M.

    2008-07-01

    We introduce a Japanese space astrometry project which is called JASMINE. JASMINE (Japan Astrometry Satellite Mission for INfrared Exploration) will measure distances and tangential motions of stars in the Galactic bulge with yet unprecedented precision. JASMINE will operate in z-band whose central wavelength is 0.9 micron. It will measure parallaxes, positions with accuracy of about 10 micro-arcsec and proper motions with accuracy of about 10 micro- arcsec/year for the stars brighter than z=14 mag. The number of stars observed by JASMINE with high accuracy of parallaxes in the Galactic bulge is much larger than that observed in other space astrometry projects operating in optical bands. With the completely new “map of the Galactic bulge” including motions of bulge stars, we expect that many new exciting scientific results will be obtained in studies of the Galactic bulge. One of them is the construction of the dynamical structure of the Galactic bulge. Kinematics and distance data given by JASMINE are the closest approach to a view of the exact dynamical structure of the Galactic bulge. Presently, JASMINE is in a development phase, with a target launch date around 2016. We comment on the outline of JASMINE mission, scientific targets and a preliminary design of JASMINE in this paper.

  4. Interaction of CO with an Au monatomic chain at different strains: Electronic structure and ballistic transport

    NASA Astrophysics Data System (ADS)

    Sclauzero, Gabriele; Dal Corso, Andrea; Smogunov, Alexander

    2012-04-01

    We study the energetics, the electronic structure, and the ballistic transport of an infinite Au monatomic chain with an adsorbed CO molecule. We find that the bridge adsorption site is energetically favored with respect to the atop site, both at the equilibrium Au-Au spacing of the chain and at larger spacings. Instead, a substitutional configuration requires a very elongated Au-Au bond, well above the rupture distance of the pristine Au chain. The electronic structure properties can be described by the Blyholder model, which involves the formation of bonding/antibonding pairs of 5σ and 2π states through the hybridization between molecular levels of CO and metallic states of the chain. In the atop geometry, we find an almost vanishing conductance due to the 5σ antibonding states giving rise to a Fano-like destructive interference close to the Fermi energy. In the bridge geometry, instead, the same states are shifted to higher energies and the conductance reduction with respect to pristine Au chain is much smaller. We also examine the effects of strain on the ballistic transport, finding opposite behaviors for the atop and bridge conductances. Only the bridge geometry shows a strain dependence compatible with the experimental conductance traces.

  5. Numerical Simulations of Silverpit Crater Collapse

    NASA Technical Reports Server (NTRS)

    Collins, G. S.; Turtle, E. P.; Melosh, H. J.

    2003-01-01

    The Silverpit crater is a recently discovered, 60-65 Myr old complex crater, which lies buried beneath the North Sea, about 150 km east of Britain. High-resolution images of Silverpit's subsurface structure, provided by three-dimensional seismic reflection data, reveal an inner-crater morphology similar to that expected for a 5-8 km diameter terrestrial crater. The crater walls show evidence of terracestyle slumping and there is a distinct central uplift, which may have produced a central peak in the pristine crater morphology. However, Silverpit is not a typical 5-km diameter terrestrial crater, because it exhibits multiple, concentric rings outside the main cavity. External concentric rings are normally associated with much larger impact structures, for example Chicxulub on Earth, or Orientale on the Moon. Furthermore, external rings associated with large impacts on the terrestrial planets and moons are widely-spaced, predominantly inwardly-facing, asymmetric scarps. However, the seismic data show that the external rings at Silverpit represent closely-spaced, concentric fault-bound graben, with both inwardly and outwardly facing faults-carps. This type of multi-ring structure is directly analogous to the Valhalla-type multi-ring basins found on the icy satellites. Thus, the presence and style of the multiple rings at Silverpit is surprising given both the size of the crater and its planetary setting.

  6. Evolution of complexity in a resource-based model

    NASA Astrophysics Data System (ADS)

    Fernández, Lenin; Campos, Paulo R. A.

    2017-02-01

    Through a resource-based modelling the evolution of organismal complexity is studied. In the model, the cells are characterized by their metabolic rates which, together with the availability of resource, determine the rate at which they divide. The population is structured in groups. Groups are also autonomous entities regarding reproduction and propagation, and so they correspond to a higher biological organization level. The model assumes reproductive altruism as there exists a fitness transfer from the cell level to the group level. Reproductive altruism comes about by inflicting a higher energetic cost to cells belonging to larger groups. On the other hand, larger groups are less prone to extinction. The strength of this benefit arising from group augmentation can be tuned by the synergistic parameter γ. Through extensive computer simulations we make a thorough exploration of the parameter space to find out the domain in which the formation of larger groups is allowed. We show that formation of small groups can be obtained for a low level of synergy. Larger group sizes can only be attained as synergistic interactions surpass a given level of strength. Although the total resource influx rate plays a key role in determining the number of groups coexisting at the equilibrium, its function on driving group size is minor. On the other hand, how the resource is seized by the groups matters.

  7. Three-Dimensional Gas Exchange Pathways in Pome Fruit Characterized by Synchrotron X-Ray Computed Tomography1[C][W][OA

    PubMed Central

    Verboven, Pieter; Kerckhofs, Greet; Mebatsion, Hibru Kelemu; Ho, Quang Tri; Temst, Kristiaan; Wevers, Martine; Cloetens, Peter; Nicolaï, Bart M.

    2008-01-01

    Our understanding of the gas exchange mechanisms in plant organs critically depends on insights in the three-dimensional (3-D) structural arrangement of cells and voids. Using synchrotron radiation x-ray tomography, we obtained for the first time high-contrast 3-D absorption images of in vivo fruit tissues of high moisture content at 1.4-μm resolution and 3-D phase contrast images of cell assemblies at a resolution as low as 0.7 μm, enabling visualization of individual cell morphology, cell walls, and entire void networks that were previously unknown. Intercellular spaces were always clear of water. The apple (Malus domestica) cortex contains considerably larger parenchyma cells and voids than pear (Pyrus communis) parenchyma. Voids in apple often are larger than the surrounding cells and some cells are not connected to void spaces. The main voids in apple stretch hundreds of micrometers but are disconnected. Voids in pear cortex tissue are always smaller than parenchyma cells, but each cell is surrounded by a tight and continuous network of voids, except near brachyssclereid groups. Vascular and dermal tissues were also measured. The visualized network architecture was consistent over different picking dates and shelf life. The differences in void fraction (5.1% for pear cortex and 23.0% for apple cortex) and in gas network architecture helps explain the ability of tissues to facilitate or impede gas exchange. Structural changes and anisotropy of tissues may eventually lead to physiological disorders. A combined tomography and internal gas analysis during growth are needed to make progress on the understanding of void formation in fruit. PMID:18417636

  8. Recent Advances in Solar Sail Propulsion at NASA

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Young, Roy M.; Montgomery, Edward E., IV

    2006-01-01

    Supporting NASA's Science Mission Directorate, the In-Space Propulsion Technology Program is developing solar sail propulsion for use in robotic science and exploration of the solar system. Solar sail propulsion will provide longer on-station operation, increased scientific payload mass fraction, and access to previously inaccessible orbits for multiple potential science missions. Two different 20-meter solar sail systems were produced and successfully completed functional vacuum testing last year in NASA Glenn's Space Power Facility at Plum Brook Station, Ohio. The sails were designed and developed by ATK Space Systems and L'Garde, respectively. These sail systems consist of a central structure with four deployable booms that support the sails. This sail designs are robust enough for deployments in a one atmosphere, one gravity environment, and are scalable to much larger solar sails-perhaps as much as 150 meters on a side. In addition, computation modeling and analytical simulations have been performed to assess the scalability of the technology to the large sizes (>150 meters) required for first generation solar sails missions. Life and space environmental effects testing of sail and component materials are also nearly complete. This paper will summarize recent technology advancements in solar sails and their successful ambient and vacuum testing.

  9. Self-Assembly of Narrowly Dispersed Brush Diblock Copolymers with Domain Spacing more than 100 nm

    NASA Astrophysics Data System (ADS)

    Gu, Weiyin; Sveinbjornsson, Benjamin; Hong, Sung Woo; Grubbs, Robert; Russell, Thomas

    2012-02-01

    Self-assembled structures of high molecular weight (MW), narrow molecular weight distribution brush block copolymers containing polylactic acid (PLA) and polystyrene (PS) side chains with similar MWs were studied in both the melt and thin films. The polynorbornene-backbone-based brush diblock copolymers containing approximately equal volume fractions of each block self-assembled into highly ordered lamellae with domain spacing over 100 nm, as revealed by SAXS, GISAXS and AFM. The domain size increased approximately linearly with backbone length, which indicated an extended conformation of the backbone in the ordered state. The length of side chains also played a significant role in terms of controlling the domain size. As the degree of polymerization (DP) increased, the symmetric brush diblock copolymers with longer side chains tended to form larger lamellar microdomains in comparison to those that have the same DP but shorter side chains.

  10. ML Construction Progress

    NASA Image and Video Library

    2014-11-17

    Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. The haunch, a structure that will support the launch vehicle on the ML, arrives by flatbed truck at the park site. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018.

  11. ML Construction Progress

    NASA Image and Video Library

    2014-11-17

    A water moccasin snake travels across the gravel surface near the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. Nearby, the haunch, a structure that will support the launch vehicle on the ML, arrives by flatbed truck at the park site. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018.

  12. KSC-2014-3672

    NASA Image and Video Library

    2014-09-03

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A crane is used to lift a new steel beam for installation on the ML structure. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018. Photo credit: NASA/Cory Huston

  13. KSC-2014-2885

    NASA Image and Video Library

    2014-06-11

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A section of the metal structure is lifted away from the ML. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission-1, in 2017. Photo credit: NASA/Daniel Casper

  14. KSC-2014-3669

    NASA Image and Video Library

    2014-09-03

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A new steel beam has arrived for installation on the ML structure. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018. Photo credit: NASA/Cory Huston

  15. KSC-2014-3670

    NASA Image and Video Library

    2014-09-03

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A new steel beam has arrived for installation on the ML structure. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018. Photo credit: NASA/Cory Huston

  16. KSC-2014-3671

    NASA Image and Video Library

    2014-09-03

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A crane is in place to lift a new steel beam for installation on the ML structure. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018. Photo credit: NASA/Cory Huston

  17. KSC-2014-2882

    NASA Image and Video Library

    2014-06-11

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A crane is used to lift a section of the metal structure away from the ML. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission-1, in 2017. Photo credit: NASA/Daniel Casper

  18. KSC-2014-2884

    NASA Image and Video Library

    2014-06-11

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A crane is used to lift a section of the metal structure away from the ML. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission-1, in 2017. Photo credit: NASA/Daniel Casper

  19. KSC-2014-4501

    NASA Image and Video Library

    2014-11-17

    CAPE CANAVERAL, Fla. -- Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. The haunch, a structure that will support the launch vehicle on the ML, arrives by flatbed truck at the park site. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018. Photo credit: NASA/Kim Shiflett

  20. KSC-2014-2887

    NASA Image and Video Library

    2014-06-11

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A section of the metal structure is lowered by crane to the ground near the ML. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission-1, in 2017. Photo credit: NASA/Daniel Casper

  1. KSC-2014-2886

    NASA Image and Video Library

    2014-06-11

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A section of the metal structure is lowered by crane to the ground near the ML. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission-1, in 2017. Photo credit: NASA/Daniel Casper

  2. KSC-2014-2883

    NASA Image and Video Library

    2014-06-11

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A crane is used to lift a section of the metal structure away from the ML. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission-1, in 2017. Photo credit: NASA/Daniel Casper

  3. KSC-2014-4503

    NASA Image and Video Library

    2014-11-17

    CAPE CANAVERAL, Fla. -- Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. The haunch, a structure that will support the launch vehicle on the ML, arrives by flatbed truck at the park site. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018. Photo credit: NASA/Kim Shiflett

  4. KSC-2014-2888

    NASA Image and Video Library

    2014-06-11

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A section of the metal structure is lowered by crane to the ground near the ML. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program office at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first mission, Exploration Mission-1, in 2017. Photo credit: NASA/Daniel Casper

  5. KSC-2014-4505

    NASA Image and Video Library

    2014-11-17

    CAPE CANAVERAL, Fla. -- Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. The haunch, a structure that will support the launch vehicle on the ML, arrives by flatbed truck at the park site. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018. Photo credit: NASA/Kim Shiflett

  6. KSC-2014-3674

    NASA Image and Video Library

    2014-09-03

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A crane is in place to lift a new steel beam for installation on the ML structure. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018. Photo credit: NASA/Cory Huston

  7. KSC-2014-4502

    NASA Image and Video Library

    2014-11-17

    CAPE CANAVERAL, Fla. -- Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. The haunch, a structure that will support the launch vehicle on the ML, arrives by flatbed truck at the park site. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018. Photo credit: NASA/Kim Shiflett

  8. KSC-2014-3673

    NASA Image and Video Library

    2014-09-03

    CAPE CANAVERAL, Fla. – Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. A crane is in place to lift a new steel beam for installation on the ML structure. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018. Photo credit: NASA/Cory Huston

  9. KSC-2014-4504

    NASA Image and Video Library

    2014-11-17

    CAPE CANAVERAL, Fla. -- Modifications continue on the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. The haunch, a structure that will support the launch vehicle on the ML, arrives by flatbed truck at the park site. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018. Photo credit: NASA/Kim Shiflett

  10. A THEORY OF THE GENESIS OF BREAST DUCT PAPILLOMA

    PubMed Central

    Whang, Junshick

    1960-01-01

    While it is not the intent to argue that papilloma never develops in the conventionally accepted manner (proliferative growth from the wall of a pre-existing cavity) a new, perhaps alternative, genesis is suggested. The concept is that, beginning with the usual lobular structure of the breast, first by hyperplasia and then by coalescence of alveoli, seen earliest at the periphery of the lobule, spaces appear between the content of the lobule and the wall. By confluence of these spaces a larger cystic cavity is formed. Coalescence of alveoli through the body of the central mass, in the same way as at the periphery, develops the familiar pattern of “papilloma.” Following the earlier hyperplasia, regressive changes appear and may go on to complete disintegration of the papillary mass, leaving a smooth-walled cavity. ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5.Figure 6. PMID:13844252

  11. Galactic outflows, star formation histories, and time-scales in starburst dwarf galaxies from STARBIRDS

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Heilman, Taryn N.; Mitchell, Noah P.; Kelley, Tyler

    2018-07-01

    Winds are predicted to be ubiquitous in low-mass, actively star-forming galaxies. Observationally, winds have been detected in relatively few local dwarf galaxies, with even fewer constraints placed on their time-scales. Here, we compare galactic outflows traced by diffuse, soft X-ray emission from Chandra Space Telescope archival observations to the star formation histories derived from Hubble Space Telescope imaging of the resolved stellar populations in six starburst dwarfs. We constrain the longevity of a wind to have an upper limit of 25 Myr based on galaxies whose starburst activity has already declined, although a larger sample is needed to confirm this result. We find an average 16 per cent efficiency for converting the mechanical energy of stellar feedback to thermal, soft X-ray emission on the 25 Myr time-scale, somewhat higher than simulations predict. The outflows have likely been sustained for time-scales comparable to the duration of the starbursts (i.e. 100s Myr), after taking into account the time for the development and cessation of the wind. The wind time-scales imply that material is driven to larger distances in the circumgalactic medium than estimated by assuming short, 5-10 Myr starburst durations, and that less material is recycled back to the host galaxy on short time-scales. In the detected outflows, the expelled hot gas shows various morphologies that are not consistent with a simple biconical outflow structure. The sample and analysis are part of a larger program, the STARBurst IRregular Dwarf Survey (STARBIRDS), aimed at understanding the life cycle and impact of starburst activity in low-mass systems.

  12. Structure-based design of combinatorial mutagenesis libraries

    PubMed Central

    Verma, Deeptak; Grigoryan, Gevorg; Bailey-Kellogg, Chris

    2015-01-01

    The development of protein variants with improved properties (thermostability, binding affinity, catalytic activity, etc.) has greatly benefited from the application of high-throughput screens evaluating large, diverse combinatorial libraries. At the same time, since only a very limited portion of sequence space can be experimentally constructed and tested, an attractive possibility is to use computational protein design to focus libraries on a productive portion of the space. We present a general-purpose method, called “Structure-based Optimization of Combinatorial Mutagenesis” (SOCoM), which can optimize arbitrarily large combinatorial mutagenesis libraries directly based on structural energies of their constituents. SOCoM chooses both positions and substitutions, employing a combinatorial optimization framework based on library-averaged energy potentials in order to avoid explicitly modeling every variant in every possible library. In case study applications to green fluorescent protein, β-lactamase, and lipase A, SOCoM optimizes relatively small, focused libraries whose variants achieve energies comparable to or better than previous library design efforts, as well as larger libraries (previously not designable by structure-based methods) whose variants cover greater diversity while still maintaining substantially better energies than would be achieved by representative random library approaches. By allowing the creation of large-scale combinatorial libraries based on structural calculations, SOCoM promises to increase the scope of applicability of computational protein design and improve the hit rate of discovering beneficial variants. While designs presented here focus on variant stability (predicted by total energy), SOCoM can readily incorporate other structure-based assessments, such as the energy gap between alternative conformational or bound states. PMID:25611189

  13. Structure-based design of combinatorial mutagenesis libraries.

    PubMed

    Verma, Deeptak; Grigoryan, Gevorg; Bailey-Kellogg, Chris

    2015-05-01

    The development of protein variants with improved properties (thermostability, binding affinity, catalytic activity, etc.) has greatly benefited from the application of high-throughput screens evaluating large, diverse combinatorial libraries. At the same time, since only a very limited portion of sequence space can be experimentally constructed and tested, an attractive possibility is to use computational protein design to focus libraries on a productive portion of the space. We present a general-purpose method, called "Structure-based Optimization of Combinatorial Mutagenesis" (SOCoM), which can optimize arbitrarily large combinatorial mutagenesis libraries directly based on structural energies of their constituents. SOCoM chooses both positions and substitutions, employing a combinatorial optimization framework based on library-averaged energy potentials in order to avoid explicitly modeling every variant in every possible library. In case study applications to green fluorescent protein, β-lactamase, and lipase A, SOCoM optimizes relatively small, focused libraries whose variants achieve energies comparable to or better than previous library design efforts, as well as larger libraries (previously not designable by structure-based methods) whose variants cover greater diversity while still maintaining substantially better energies than would be achieved by representative random library approaches. By allowing the creation of large-scale combinatorial libraries based on structural calculations, SOCoM promises to increase the scope of applicability of computational protein design and improve the hit rate of discovering beneficial variants. While designs presented here focus on variant stability (predicted by total energy), SOCoM can readily incorporate other structure-based assessments, such as the energy gap between alternative conformational or bound states. © 2015 The Protein Society.

  14. Detectability of molecular signatures in the atmospheres of Giant and Terrestrial Exoplanets

    NASA Astrophysics Data System (ADS)

    Tinetti, G. T.; Vidal-Madjar, A.; Lecavelier Des Etangs, A.; Ehrenreich, D.; Liang, M. C.; Yung, Y.

    In the past decade over 160 planets orbiting other stars extrasolar planets were discovered using indirect detection techniques The known sample is constrained by the currently achievable detection techniques which are more sensitive to larger worlds To extend the detection ability down to Earth-sized planets both the European Space Agency ESA and National Aeronautics and Space Administration NASA are developing large and technologically challenging space-borne observatories The first of these missions is due for launch as early as 2015 and will provide our first opportunity to spectroscopically study the global characteristics of Earth-like planets beyond our solar system to search for signs of habitability and life Almost a decade in advance to the launch of ESA-Darwin or NASA-Terrestrial Planet Finders most recent observations of primary and secondary eclipses with Hubble Space Telescope and Spitzer of transiting extrasolar giant planets EGPs Charbonneau et al 2002 2005 Vidal-Madjar et al 2003 2004 Deming et al 2005 suggest that emitted and transmission spectra of EGPs can be used to infer many properties of their atmospheres and internal structure including chemical element abundances hydrodynamic escape cloud heights temperature-pressure profiles density composition and evolution The next generation of space telescopes James Webb Space Telescope JWST will have the capability of acquiring more precise spectra in the visible and infrared of these extrasolar worlds The ultimate extension of such searches will be to

  15. One-dimensional super Calabi-Yau manifolds and their mirrors

    NASA Astrophysics Data System (ADS)

    Noja, S.; Cacciatori, S. L.; Piazza, F. Dalla; Marrani, A.; Re, R.

    2017-04-01

    We apply a definition of generalised super Calabi-Yau variety (SCY) to supermanifolds of complex dimension one. One of our results is that there are two SCY's having reduced manifold equal to P^1, namely the projective super space P^{.1|2} and the weighted projective super space W{P}_{(2)}^{.1|1} . Then we compute the corresponding sheaf cohomology of superforms, showing that the cohomology with picture number one is infinite dimensional, while the de Rham cohomology, which is what matters from a physical point of view, remains finite dimensional. Moreover, we provide the complete real and holomorphic de Rham cohomology for generic projective super spaces {P}^{.n|m} . We also determine the automorphism groups: these always match the dimension of the projective super group with the only exception of {P}^{.1|2} , whose automorphism group turns out to be larger than the projective super group. By considering the cohomology of the super tangent sheaf, we compute the deformations of {P}^{.1|m} , discovering that the presence of a fermionic structure allows for deformations even if the reduced manifold is rigid. Finally, we show that {P}^{.1|2} is self-mirror, whereas W{P}_{(2)}^{.1|1} has a zero dimensional mirror. Also, the mirror map for {P}^{.1|2} naturally endows it with a structure of N = 2 super Riemann surface.

  16. New insights into chromatin folding and dynamics from multi-scale modeling

    NASA Astrophysics Data System (ADS)

    Olson, Wilma

    The dynamic organization of chromatin plays an essential role in the regulation of gene expression and in other fundamental cellular processes. The underlying physical basis of these activities lies in the sequential positioning, chemical composition, and intermolecular interactions of the nucleosomes-the familiar assemblies of roughly 150 DNA base pairs and eight histone proteins-found on chromatin fibers. We have developed a mesoscale model of short nucleosomal arrays and a computational framework that make it possible to incorporate detailed structural features of DNA and histones in simulations of short chromatin constructs with 3-25 evenly spaced nucleosomes. The correspondence between the predicted and observed effects of nucleosome composition, spacing, and numbers on long-range communication between regulatory proteins bound to the ends of designed nucleosome arrays lends credence to the model and to the molecular insights gleaned from the simulated structures. We have extracted effective nucleosome-nucleosome potentials from the mesoscale simulations and introduced the potentials in a larger scale computational treatment of regularly repeating chromatin fibers. Our results reveal a remarkable influence of nucleosome spacing on chromatin flexibility. Small changes in the length of the DNA fragments linking successive nucleosomes introduce marked changes in the local interactions of the nucleosomes and in the spatial configurations of the fiber as a whole. The changes in nucleosome positioning influence the statistical properties of longer chromatin constructs with 100-10,000 nucleosomes. We are investigating the extent to which the `local' interactions of regularly spaced nucleosomes contribute to the corresponding interactions in chains with mixed spacings as a step toward the treatment of fibers with nucleosomes positioned at the sites mapped at base-pair resolution on genomic sequences. Support of the work by USPHS R01 GM 34809 is gratefully acknowledged.

  17. Taurus lightweight manned spacecraft Earth orbiting vehicle

    NASA Technical Reports Server (NTRS)

    Chase, Kevin A.; Vandersall, Eric J.; Plotkin, Jennifer; Travisano, Jeffrey J.; Loveless, Dennis; Kaczmarek, Michael; White, Anthony G.; Est, Andy; Bulla, Gregory; Henry, Chris

    1991-01-01

    The Taurus Lightweight Manned Spacecraft (LMS) was developed by students of the University of Maryland's Aerospace Engineering course in Space Vehicle Design. That course required students to design an Alternative Manned Spacecraft (AMS) to augment or replace the Space Transportation System and meet the following design requirements: (1) launch on the Taurus Booster being developed by Orbital Sciences Corporation; (2) 99.9 percent assured crew survival rate; (3) technology cutoff data of 1 Jan. 1991; (4) compatibility with current space administration infrastructure; and (5) first flight by May 1995. The Taurus LMS design meets the above requirements and represents an initial step towards larger and more complex spacecraft. The Taurus LMS has a very limited application when compared to the Space Shuttle, but it demonstrates that the U.S. can have a safe, reliable, and low cost space system. The Taurus LMS is a short mission duration spacecraft designed to place one man into low earth orbit (LEO). The driving factor for this design was the low payload carrying capabilities of the Taurus Booster--1300 kg to a 300 km orbit. The Taurus LMS design is divided into six major design sections. The human factors system deals with the problems of life support and spacecraft cooling. The propulsion section contains the abort system, the Orbital Maneuvering System (OMS), the Reaction Control System (RCS), and power generation. The thermal protection systems and spacecraft structure are contained in the structures section. The avionics section includes navigation, attitude determination, data processing, communication systems, and sensors. The mission analysis section was responsible for ground processing and spacecraft astrodynamics. The systems integration section pulled the above sections together into one spacecraft and addressed costing and reliability.

  18. Taurus Lightweight Manned Spacecraft Earth orbiting vehicle

    NASA Technical Reports Server (NTRS)

    Bosset, M.

    1991-01-01

    The Taurus Lightweight Manned Spacecraft (LMS) was developed by students of the University of Maryland's Aerospace Engineering course in Space Vehicle Design. That course required students to design an Alternative Manned Spacecraft (AMS) to augment or replace the Space Transportation System and meet the following design requirements: (1) launch on the Taurus Booster being developed by Orbital Sciences Corporation; (2) 99.9 percent assured crew survival rate; (3) technology cutoff date of 1 Jan. 1991; (4) compatibility with current space administration infrastructure; and (5) first flight by May 1995. The Taurus LMS design meets the above requirements and represents an initial step toward larger and more complex spacecraft. The Taurus LMS has a very limited application when compared to the space shuttle, but it demonstrates that the U.S. can have a safe, reliable, and low-cost space system. The Taurus LMS is a short mission duration spacecraft designed to place one man into low Earth orbit (LEO). The driving factor for this design was the low payload carrying capabilities of the Taurus Booster - 1300 kg to a 300-km orbit. The Taurus LMS design is divided into six major design sections. The Human Factors section deals with the problems of life support and spacecraft cooling. The Propulsion section contains the Abort System, the Orbital Maneuvering System (OMS), the Reaction Control System (RCS), and Power Generation. The thermal protection systems and spacecraft structure are contained in the Structures section. The Avionics section includes Navigation, Attitude Determination, Data Processing, Communication systems, and Sensors. The Mission Analysis section was responsible for ground processing and spacecraft astrodynamics. The Systems Integration Section pulled the above sections together into one spacecraft, and addressed costing and reliability.

  19. Baseline tests of an autonomous telerobotic system for assembly of space truss structures

    NASA Technical Reports Server (NTRS)

    Rhodes, Marvin D.; Will, Ralph W.; Quach, Coung

    1994-01-01

    Several proposed space missions include precision reflectors that are larger in diameter than any current or proposed launch vehicle. Most of these reflectors will require a truss structure to accurately position the reflector panels and these reflectors will likely require assembly in orbit. A research program has been conducted at the NASA Langley Research Center to develop the technology required for the robotic assembly of truss structures. The focus of this research has been on hardware concepts, computer software control systems, and operator interfaces necessary to perform supervised autonomous assembly. A special facility was developed and four assembly and disassembly tests of a 102-strut tetrahedral truss have been conducted. The test procedures were developed around traditional 'pick-and-place' robotic techniques that rely on positioning repeatability for successful operation. The data from two of the four tests were evaluated and are presented in this report. All operations in the tests were controlled by predefined sequences stored in a command file, and the operator intervened only when the system paused because of the failure of an actuator command. The tests were successful in identifying potential pitfalls in a telerobotic system, many of which would not have been readily anticipated or incurred through simulation studies. Addressing the total integrated task, instead of bench testing the component parts, forced all aspects of the task to be evaluated. Although the test results indicate that additional developments should be pursued, no problems were encountered that would preclude automated assembly in space as a viable construction method.

  20. Localization switching of a large object in a crowded cavity: A rigid/soft object prefers surface/inner positioning.

    PubMed

    Shew, Chwen-Yang; Oda, Soutaro; Yoshikawa, Kenichi

    2017-11-28

    For living cells in the real world, a large organelle is commonly positioned in the inner region away from membranes, such as the nucleus of eukaryotic cells, the nucleolus of nuclei, mitochondria, chloroplast, Golgi body, etc. It contradicts the expectation by the current depletion-force theory in that the larger particle should be excluded from the inner cell space onto cell boundaries in a crowding media. Here we simply model a sizable organelle as a soft-boundary large particle allowing crowders, which are smaller hard spheres in the model, to intrude across its boundary. The results of Monte Carlo simulation indicate that the preferential location of the larger particle switches from the periphery into the inner region of the cavity by increasing its softness. An integral equation theory is further developed to account for the structural features of the model, and the theoretical predictions are found consistent with our simulation results.

  1. Localization switching of a large object in a crowded cavity: A rigid/soft object prefers surface/inner positioning

    NASA Astrophysics Data System (ADS)

    Shew, Chwen-Yang; Oda, Soutaro; Yoshikawa, Kenichi

    2017-11-01

    For living cells in the real world, a large organelle is commonly positioned in the inner region away from membranes, such as the nucleus of eukaryotic cells, the nucleolus of nuclei, mitochondria, chloroplast, Golgi body, etc. It contradicts the expectation by the current depletion-force theory in that the larger particle should be excluded from the inner cell space onto cell boundaries in a crowding media. Here we simply model a sizable organelle as a soft-boundary large particle allowing crowders, which are smaller hard spheres in the model, to intrude across its boundary. The results of Monte Carlo simulation indicate that the preferential location of the larger particle switches from the periphery into the inner region of the cavity by increasing its softness. An integral equation theory is further developed to account for the structural features of the model, and the theoretical predictions are found consistent with our simulation results.

  2. Painful languages of the body: experiences of headache among women in two Peruvian communities.

    PubMed

    Darghouth, Sarah; Pedersen, Duncan; Bibeau, Gilles; Rousseau, Cecile

    2006-09-01

    This exploratory study focuses on the understandings of and experiences with headache in two settings in Peru: the Quechua-speaking district of Ayacucho, in southern Peru, and a poor urban district of Lima Metropolitana. More specifically, it explores the personal and collective meanings constructed around women's headache experiences. Structured and open-ended interviews were administered to patients suffering headache to elicit interpretations of headache episodes. An analysis of the collected narratives suggests that headache is often comprehended in a polysemic framework, where meanings ascribed in bodily, emotional, family, and social terms articulate individual and shared notions of suffering within larger contexts of social dislocation. Often woven into experiences of solitude, headache accounts are lived and told in dynamic temporal spaces, and narrate dissolution of family ties and tensions associated with women's roles. The results underscore the significance of patients' subjective interpretations of painful experiences and underscore the connections between bodily and emotional pain and distress experienced at family, community, and larger social levels.

  3. Structural Behavior of Concrete Beams Reinforced with Basalt Fiber Reinforced Polymer (BFRP) Bars

    NASA Astrophysics Data System (ADS)

    Ovitigala, Thilan

    The main challenge for civil engineers is to provide sustainable, environmentally friendly and financially feasible structures to the society. Finding new materials such as fiber reinforced polymer (FRP) material that can fulfill the above requirements is a must. FRP material was expensive and it was limited to niche markets such as space shuttles and air industry in the 1960s. Over the time, it became cheaper and spread to other industries such as sporting goods in the 1980-1990, and then towards the infrastructure industry. Design and construction guidelines are available for carbon fiber reinforced polymer (CFRP), aramid fiber reinforced polymer (AFRP) and glass fiber reinforced polymer (GFRP) and they are currently used in structural applications. Since FRP is linear elastic brittle material, design guidelines for the steel reinforcement are not valid for FRP materials. Corrosion of steel reinforcement affects the durability of the concrete structures. FRP reinforcement is identified as an alternative to steel reinforcement in corrosive environments. Although basalt fiber reinforced polymer (BFRP) has many advantages over other FRP materials, but limited studies have been done. These studies didn't include larger BFRP bar diameters that are mostly used in practice. Therefore, larger beam sizes with larger BFRP reinforcement bar diameters are needed to investigate the flexural and shear behavior of BFRP reinforced concrete beams. Also, shear behavior of BFRP reinforced concrete beams was not yet studied. Experimental testing of mechanical properties and bond strength of BFRP bars and flexural and shear behavior of BFRP reinforced concrete beams are needed to include BFRP reinforcement bars in the design codes. This study mainly focuses on the use of BFRP bars as internal reinforcement. The test results of the mechanical properties of BFRP reinforcement bars, the bond strength of BFRP reinforcement bars, and the flexural and shear behavior of concrete beams reinforced with BFRP reinforcement bars are presented and verified with other research studies, existing design codes and guidelines provided for other FRP bars. Based on the experimental testing results, analytical equations were developed and existing equations were modified to predict the actual structural behavior of FRP bar reinforced concrete beams with reasonable accuracy.

  4. Flow Structure along the 1303 UCAV

    NASA Astrophysics Data System (ADS)

    Kosoglu, Mehmet A.; Rockwell, Donald

    2007-11-01

    The 1303 Unmanned Combat Air Vehicle is representative of a variety of UCAVs with blended wing-body configurations. Flow structure along a scale model of this configuration was investigated using dye visualization and particle image velocimetry for variations of Reynolds number and angle-of-attack. Both of these parameters substantially influence onset and structure of the leading-edge vortex (LEV) and a separation bubble/stall region along the tip. The onset of formation of the LEV initially occurs at a location well downstream of the apex and moves upstream for increasing values of either Reynolds number or angle-of-attack. In cases where a separation bubble or stall region exists, quantitative information on its structure was obtained via PIV imaging on a plane nearly parallel to the surface of the wing. By acquiring images on planes at successively larger elevations from the surface, it was possible to gain insight into the space-time features of the three-dimensional and highly time-dependent structure of the bubble or stall region. Time-averaged images indicate that maximum velocity defect decreases in magnitude and moves downstream with increasing elevation from the surface.

  5. 46 CFR 69.121 - Engine room deduction.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... necessary for the safe operation and maintenance of the propelling machinery, the entire space, or, if... machinery space is not bulkheaded off or is larger than necessary for the safe operation and maintenance of... room deduction is either a percentage of the vessel's total propelling machinery spaces or a percentage...

  6. Electrostatic protection of the Solar Power Satellite and rectenna

    NASA Technical Reports Server (NTRS)

    Freeman, J. W.; Few, A. A., Jr.; Reiff, P. H.; Cooke, D.; Bohannon, J.; Haymes, B.

    1979-01-01

    Several features of the interactions of the solar power satellite (SPS) with its space environment were examined theoretically. The voltages produced at various surfaces due to space plasmas and the plasma leakage currents through the kapton and sapphire solar cell blankets were calculated. At geosynchronous orbit, this parasitic power loss is only 0.7%, and is easily compensated by oversizing. At low-Earth orbit, the power loss is potentially much larger (3%), and anomalous arcing is expected for the EOTV high voltage negative surfaces. Preliminary results of a three dimensional self-consistent plasma and electric field computer program are presented, confirming the validity of the predictions made from the one dimensional models. Magnetic shielding of the satellite, to reduce the power drain and to protect the solar cells from energetic electron and plasma ion bombardment is considered. It is concluded that minor modifications can allow the SPS to operate safely and efficiently in its space environment. The SPS design employed in this study is the 1978 MSFC baseline design utilizing GaAs solar cells at CR-2 and an aluminum structure.

  7. Protein crystal growth in microgravity review of large scale temperature induction method: Bovine insulin, human insulin and human α-interferon

    NASA Astrophysics Data System (ADS)

    Long, Marianna M.; Bishop, John Bradford; Delucas, Lawrence J.; Nagabhushan, Tattanhalli L.; Reichert, Paul; Smith, G. David

    1997-01-01

    The Protein Crystal Growth Facility (PCF) is space-flight hardware that accommodates large scale protein crystal growth experiments using temperature change as the inductive step. Recent modifications include specialized instrumentation for monitoring crystal nucleation with laser light scattering. This paper reviews results from its first seven flights on the Space Shuttle, the last with laser light scattering instrumentation in place. The PCF's objective is twofold: (1) the production of high quality protein crystals for x-ray analysis and subsequent structure-based drug design and (2) preparation of a large quantity of relatively contaminant free crystals for use as time-release protein pharmaceuticals. The first three Shuttle flights with bovine insulin constituted the PCF's proof of concept, demonstrating that the space-grown crystals were larger and diffracted to higher resolution than their earth-grown counterparts. The later four PCF missions were used to grow recombinant human insulin crystals for x-ray analysis and continue productions trials aimed at the development of a processing facility for crystalline recombinant a-interferon.

  8. [Interpersonal attention management inventory: a new instrument to capture different self- and external perception skills].

    PubMed

    Blaser, Klaus; Zlabinger, Milena; Hinterberger, Thilo

    2014-01-01

    The Interpersonal Attention Management Inventory (IAMI) represents a new instrument to capture self- and external perception skills. The underlying theoretical model assumes 3 mental locations of attention (the intrapersonal space, the extrapersonal space, and the external intrapersonal space) of the other. The IAMI was studied regarding its factor structure; it was shortened and statistical values as well as first reference values were calculated based on a larger sample (n = 1089). By factor analysis, the superordinate scales could be widely validated. The shortened version with 31 items and 3 superordinate scales shows a high reliability of the global value (Cronbach's α = 0.81) and, regarding the convergent validity, a modest correlation (r = 0.41) of the global value and mindfulness, measured with the Freiburg Mindfulness Inventory (FMI). Further validation studies are invited so that the IAMI can be used as an instrument for (course) diagnosis in the therapy of psychiatric disorders as well as for research in social neuroscience, e.g., in investigations on mindfulness, compassion, empathy, theory of mind, and self-boundaries.

  9. Spectral comb mitigation to improve continuous-wave search sensitivity in Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Neunzert, Ansel; LIGO Scientific Collaboration; Virgo Collaboration

    2017-01-01

    Searches for continuous gravitational waves, such as those emitted by rapidly spinning non-axisymmetric neutron stars, are degraded by the presence of narrow noise ``lines'' in detector data. These lines either reduce the spectral band available for analysis (if identified as noise and removed) or cause spurious outliers (if unidentified). Many belong to larger structures known as combs: series of evenly-spaced lines which appear across wide frequency ranges. This talk will focus on the challenges of comb identification and mitigation. I will discuss tools and methods for comb analysis, and case studies of comb mitigation at the LIGO Hanford detector site.

  10. The growth of radiative filamentation modes in sheared magnetic fields

    NASA Technical Reports Server (NTRS)

    Vanhoven, Gerard

    1986-01-01

    Observations of prominences show them to require well-developed magnetic shear and to have complex small-scale structure. Researchers show here that these features are reflected in the results of the theory of radiative condensation. Researchers studied, in particular, the influence of the nominally negligible contributions of perpendicular (to B) thermal conduction. They find a large number of unstable modes, with closely spaced growth rates. Their scale widths across B show a wide range of longitudinal and transverse sizes, ranging from much larger than to much smaller than the magnetic shear scale, the latter characterization applying particularly in the direction of shear variation.

  11. Effects of long-term space condition on cell ultrastructure and the molecular level change of the tomato

    NASA Astrophysics Data System (ADS)

    Jinying, L.; Min, L.; Huai, X.; Yi, P.; Chunhua, Z.; Nechitalo, G.

    Effects of long-term exposure to physical factors of space flight on dormant seeds were studied on plants derived from tomato seeds flown for 6 years on board of the space station MIR Upon return to the Earth the seeds were germinated and grown to maturity Samples of plants were compared to plants from parallel ground-based controls Various differences of ultrastructure of the tomato leaf cell were observed with an electron microscope One plant carried by space station has the anatomy of leaves with a three-layered palisade tissue and other plants similar with ground controls have the anatomy of leaves with a one-layered palisade tissue The number of starch grains per chloroplast of every space-treated tomato leaf increased significantly compared with that of the ground control The leaf cell walls of two plants carried by space station became contracted and deformed The size of chloroplast in some space-treated plants was larger and the lamellae s structure of some chloroplasts turned curvature and loose The results obtained point out to significant changes occurring on the molecular level among the space-flight treated seedlings and the ground control The leaves of plants were used for AFLP Amplification Fragment Length Polymorphism analysis For the first generation space-flight treated tomato plants among 64 pairs of primers used in this experiment 43 primers generated the same DNA bands type and 21 primers generated a different DNA band type 2582 DNA bands were produced among which 34 DNA bands were polymorphic with the percentage

  12. Habitation Concepts for Human Missions Beyond Low-Earth-Orbit

    NASA Technical Reports Server (NTRS)

    Smitherman, David V.

    2016-01-01

    The Advanced Concepts Office at the NASA Marshall Space Flight Center has been engaged for several years in a variety of study activities to help define various options for deep space habitation. This work includes study activities supporting asteroid, lunar and Mars mission activities for the Human spaceflight Architecture Team (HAT), the Deep Space Habitat (DSH) project, and the Exploration Augmentation Module (EAM) project through the NASA Advanced Exploration Systems (AES) Program. The missions under consideration required human habitation beyond low-Earth-orbit (LEO) including deep space habitation in the lunar vicinity to support asteroid retrieval missions, human and robotic lunar surface missions, deep space research facilities, Mars vehicle servicing, and Mars transit missions. Additional considerations included international interest and near term capabilities through the International Space Station (ISS) and Space Launch System (SLS) programs. A variety of habitat layouts have been considered, including those derived from the existing ISS systems, those that could be fabricated from SLS components, and other approaches. This paper presents an overview of several leading designs explored in late fiscal year (FY) 2015 for asteroid, lunar, and Mars mission habitats and identifies some of the known advantages and disadvantages inherent in each. Key findings indicate that module diameters larger than those used for ISS can offer lighter structures per unit volume, and sufficient volume to accommodate consumables for long-duration missions in deep space. The information provided with the findings includes mass and volume data that should be helpful to future exploration mission planning and deep space habitat design efforts.

  13. Structure of p-shell nuclei using three-nucleon interactions evolved with the similarity renormalization group

    DOE PAGES

    Jurgenson, E. D.; Maris, P.; Furnstahl, R. J.; ...

    2013-05-13

    The similarity renormalization group (SRG) is used to soften interactions for ab initio nuclear structure calculations by decoupling low- and high-energy Hamiltonian matrix elements. The substantial contribution of both initial and SRG-induced three-nucleon forces requires their consistent evolution in a three-particle basis space before applying them to larger nuclei. While, in principle, the evolved Hamiltonians are unitarily equivalent, in practice the need for basis truncation introduces deviations, which must be monitored. Here we present benchmark no-core full configuration calculations with SRG-evolved interactions in p-shell nuclei over a wide range of softening. As a result, these calculations are used to assessmore » convergence properties, extrapolation techniques, and the dependence of energies, including four-body contributions, on the SRG resolution scale.« less

  14. Magnetospheric Multiscale Satellite Observations of Parallel Electron Acceleration in Magnetic Field Reconnection by Fermi Reflection from Time Domain Structures

    NASA Technical Reports Server (NTRS)

    Mozer, F. S.; Agapitov, O. A.; Artemyev, A.; Burch, J. L.; Ergun, R. E.; Giles, B. L.; Mourenas, D.; Torbert, R. B.; Phan, T. D.; Vasko, I.

    2016-01-01

    The same time domain structures (TDS) have been observed on two Magnetospheric Multiscale Satellites near Earth's dayside magnetopause. These TDS, traveling away from the X line along the magnetic field at 4000 km/s, accelerated field-aligned approx. 5 eV electrons to approx. 200 eV by a single Fermi reflection of the electrons by these overtaking barriers. Additionally, the TDS contained both positive and negative potentials, so they were a mixture of electron holes and double layers. They evolve in approx.10 km of space or 7 ms of time and their spatial scale size is 10-20 km, which is much larger than the electron gyroradius (less than1km) or the electron inertial length (4 km at the observation point, less nearer the X line).

  15. Fifty-year development of Douglas-fir stands planted at various spacings.

    Treesearch

    Donald L. Reukema

    1979-01-01

    A 51-yr record of observations in stands planted at six spacings, ranging from 4 to 12 ft, illustrates clearly the beneficial effects of wide initial spacing and the detrimental effects of carrying too many trees relative to the size to which they will be grown. Not only are trees larger, but yields per acre are greater at wide spacings.

  16. Morphology and Structure of Ultraluminous Infrared Galaxies at z ∼ 2 in the EGS Field

    NASA Astrophysics Data System (ADS)

    Fang, Guan-Wen; Ma, Zhong-Yang; Chen, Yang; Kong, Xu

    2015-04-01

    Using the high-resolution F160W images observed by the HST WFC3 (Hubble Space Telescope Wide Field Camera 3) in the CANDELS-EGS (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey-Extended Groth Strip) field, we have studied the morphological and structural features of 9 ultraluminous infrared galaxies (ULIRGs) at z ∼ 2. We find a wide range of morphological diversity for these ULIRGs, from ellipsoids to multiple bright nuclei or diffuse structures, e.g., the double nuclei, gaseous bridges, dual asym- metries, irregular or elliptical structures. In order to study the morphology of these ULIRGs quantitatively, their morphological parameters (the Gini coeffcient G and moment index M20) are measured in the rest-frame optical wave- band. Compared with the low-redshift counterparts, the high-redshift ULIRGs show a smaller value of G and a larger value of M20, indicating a less concen- tricity and a larger asymmetry of the stellar population distribution in these ULIRGs. Based on a 2-D fitting of the brightness profiles of these ULIRGs, we have derived their effective radii, which are distributed in a range from 2.4 to kpc, with a mean value of (3.9 ± 1.1) kpc. Moreover, we find that in average the sizes of the high-redshift ULIRGs are one to two times smaller than those of the nearby star-forming galaxies of analogous stellar mass. Our results are consistent with those of other studies under the similar conditions of redshift and infrared luminosity.

  17. Pediatric maxillary fractures.

    PubMed

    Yu, Jack; Dinsmore, Robert; Mar, Philip; Bhatt, Kirit

    2011-07-01

    Pediatric craniofacial structures differ from those of adults in many ways. Because of these differences, management of pediatric craniofacial fractures is not the same as those in adults. The most important differences that have clinical relevance are the mechanical properties, craniofacial anatomy, healing capacity, and dental morphology. This article will review these key differences and the management of pediatric maxillary fractures. From the mechanical properties' perspective, pediatric bones are much more resilient than adult bones; as such, they undergo plastic deformation and ductile failure. From the gross anatomic perspective, the relative proportion of the cranial to facial structures is much larger for the pediatric patients and the sinuses are not yet developed. The differences related to dentition and dental development are more conical crowns, larger interdental spaces, and presence of permanent tooth buds in the pediatric population. The fracture pattern, as a result of all the above, does not follow the classic Le Fort types. The maxillomandibular fixation may require circum-mandibular wires, drop wires, or Ivy loops. Interfragmentary ligatures using absorbable sutures play a much greater role in these patients. The use of plates and screws should take into consideration the future development with respect to growth centers and the location of the permanent tooth buds. Pediatric maxillary fractures are not common, require different treatments, and enjoy better long-term outcomes.

  18. Simulations of dynamics of plunge and pitch of a three-dimensional flexible wing in a low Reynolds number flow

    NASA Astrophysics Data System (ADS)

    Qi, Dewei; Liu, Yingming; Shyy, Wei; Aono, Hikaru

    2010-09-01

    The lattice Boltzmann flexible particle method (LBFPM) is used to simulate fluid-structure interaction and motion of a flexible wing in a three-dimensional space. In the method, a beam with rectangular cross section has been discretized into a chain of rigid segments. The segments are connected through ball and socket joints at their ends and may be bent and twisted. Deformation of flexible structure is treated with a linear elasticity model through bending and twisting. It is demonstrated that the flexible particle method (FPM) can approximate the nonlinear Euler-Bernoulli beam equation without resorting to a nonlinear elasticity model. Simulations of plunge and pitch of flexible wing at Reynolds number Re=136 are conducted in hovering condition by using the LBFPM. It is found that both lift and drag forces increase first, then decrease dramatically as the bending rigidity in spanwise direction decreases and that the lift and drag forces are sensitive to rigidity in a certain range. It is shown that the downwash flows induced by wing tip and trailing vortices in wake area are larger for a flexible wing than for a rigid wing, lead to a smaller effective angle of attack, and result in a larger lift force.

  19. How the morphology of dusts influences packing density in small solar system bodies

    NASA Astrophysics Data System (ADS)

    Zangmeister, C.; Radney, J. G.; Zachariah, M. R.

    2014-12-01

    Large planetary seedlings, comets, and nanoscale soot particles are made from rigid, aggregated subunits that are compacted under low compression into larger structures spanning over 10 orders of magnitude in dimensional space. Here, we demonstrate that the packing density (Φf) of compacted rigid aggregates is independent of spatial scale for systems under weak compaction, a regime that includes small solar system bodies. The Φf of rigid aggregated structures across 6 orders of magnitude were measured using nanoscale spherical soot aerosol composed of aggregates with ≈ 17 nm monomeric subunits and aggregates made from uniform monomeric 6 mm spherical subunits at the macroscale. We find Φf = 0.36 ± 0.02 at both the nano- and macroscale. These values are remarkably similar to qf observed for comet nuclei and measured values of other rigid aggregated systems across a wide variety of spatial and formative conditions. We present a packing model that incorporates the aggregate morphology and show that Φf is independent of both monomer and aggregate size. These observations suggest thatqf of rigid aggregates is independent of spatial dimension across varied formative conditions ranging from interstellar space to pharmaceutical manufacturing.

  20. Size, Shape, and Lateral Correlation of Highly Uniform, Mesoscopic, Self-Assembled Domains of Fluorocarbon-Hydrocarbon Diblocks at the Air/Water Interface: A GISAXS Study.

    PubMed

    Veschgini, Mariam; Abuillan, Wasim; Inoue, Shigeto; Yamamoto, Akihisa; Mielke, Salomé; Liu, Xianhe; Konovalov, Oleg; Krafft, Marie Pierre; Tanaka, Motomu

    2017-10-06

    The shape and size of self-assembled mesoscopic surface domains of fluorocarbon-hydrocarbon (FnHm) diblocks and the lateral correlation between these domains were quantitatively determined from grazing incidence small-angle X-ray scattering (GISAXS). The full calculation of structure and form factors unravels the influence of fluorocarbon and hydrocarbon block lengths on the diameter and height of the domains, and provides the inter-domain correlation length. The diameter of the domains, as determined from the form factor analysis, exhibits a monotonic increase in response to the systematic lengthening of each block, which can be attributed to the increase in van der Waals attraction between molecules. The pair correlation function in real space calculated from the structure factor implies that the inter-domain correlation can reach a distance that is over 25 times larger than the domain's size. The full calculation of the GISAXS signals introduced here opens a potential towards the hierarchical design of mesoscale domains of self-assembled small organic molecules, covering several orders of magnitude in space. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Space, self, and the theater of consciousness.

    PubMed

    Trehub, Arnold

    2007-06-01

    Over a decade ago, I introduced a large-scale theory of the cognitive brain which explained for the first time how the human brain is able to create internal models of its intimate world and invent models of a wider universe. An essential part of the theoretical model is an organization of neuronal mechanisms which I have named the Retinoid Model [Trehub, A. (1977). Neuronal models for cognitive processes: Networks for learning, perception and imagination. Journal of Theoretical Biology, 65, 141-169; Trehub, A. (1991). The Cognitive Brain: MIT Press]. This hypothesized brain system has structural and dynamic properties enabling it to register and appropriately integrate disparate foveal stimuli into a perspectival, egocentric representation of an extended 3D world scene including a neuronally tokened locus of the self which, in this theory, is the neuronal origin of retinoid space. As an integral part of the larger neuro-cognitive model, the retinoid system is able to perform many other useful perceptual and higher cognitive functions. In this paper, I draw on the hypothesized properties of this system to argue that neuronal activity within the retinoid structure constitutes the phenomenal content of consciousness and the unique sense of self that each of us experiences.

  2. Compact blackbody calibration sources for in-flight calibration of spaceborne infrared instruments

    NASA Astrophysics Data System (ADS)

    Scheiding, S.; Driescher, H.; Walter, I.; Hanbuch, K.; Paul, M.; Hartmann, M.; Scheiding, M.

    2017-11-01

    High-emissivity blackbodies are mandatory as calibration sources in infrared radiometers. Besides the requirements on the high spectral emissivity and low reflectance, constraints regarding energy consumption, installation space and mass must be considered during instrument design. Cavity radiators provide an outstanding spectral emissivity to the price of installation space and mass of the calibration source. Surface radiation sources are mainly limited by the spectral emissivity of the functional coating and the homogeneity of the temperature distribution. The effective emissivity of a "black" surface can be optimized, by structuring the substrate with the aim to enlarge the ratio of the surface to its projection. Based on the experiences of the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) calibration source MBB3, the results of the surface structuring on the effective emissivity are described analytically and compared to the experimental performance. Different geometries are analyzed and the production methods are discussed. The high-emissivity temperature calibration source features values of 0.99 for wavelength from 5 μm to 10 μm and emissivity larger than 0.95 for the spectral range from 10 μm to 40 μm.

  3. Potassium rich rare earth (RE) borates K 3RE(BO 3) 2

    NASA Astrophysics Data System (ADS)

    Gao, J. H.; Li, R. K.

    2008-01-01

    A series of new compounds in the K 3RE(BO 3) 2 (RE = Y, Nd, Sm, Gd, Tb, Er and Lu) system were synthesized. Powder X-ray diffraction indicates that structures of the K 3RE(BO 3) 2 series can be separated into two different types with boundary between Gd and Tb. Single crystals of two representative compounds K 3Sm(BO 3) 2 and K 3Y(BO 3) 2 were obtained from a K 2O-B 2O 3 melt. The structure of K 3Y(BO 3) 2, determined from single crystal X-ray diffraction data, belongs to Pnnm space group, with lattice constants of a = 9.3377(9) Å, b = 6.7701(6) Å and c = 5.5058(4) Å. With a larger rare earth element, e.g. Sm 3+, K 3Sm(BO 3) 2 crystallizes in space group Pnma, with cell parameters of a = 9.046(3) Å, b = 7.100(2) Å and c = 11.186(3) Å. The structure of K 3Y(BO 3) 2 can be described as a three-dimensional framework formed by isolated YO 6 octahedra jointed by BO 3 triangles by sharing their apical oxygen atoms. The structure of K 3Sm(BO 3) 2 contains infinite [SmO 4BO 3] ∞ chains formed by corner sharing SmO 7 pentagonal dipyramid and BO 3 group, and those chains are interconnected by the other BO 3 groups.

  4. Instability of the layered orthorhombic post-perovskite phase of SrTiO3 and other candidate orthorhombic phases under pressure

    NASA Astrophysics Data System (ADS)

    Bhandari, Churna; Lambrecht, Walter R. L.

    2018-06-01

    While the tetragonal antiferro-electrically distorted (AFD) phase with space group I 4 / mcm is well known for SrTiO3 to occur below 105 K, there are also some hints in the literature of an orthorhombic phase, either at the lower temperature or at high pressure. A previously proposed orthorhombic layered structure of SrTiO3, known as the post-perovskite or CaIrO3 structure with space group Cmcm is shown to have significantly higher energy than the cubic or tetragonal phase and to have its minimum volume at larger volume than cubic perovskite. The Cmcm structure is thus ruled out. We also study an alternative Pnma phase obtained by two octahedral rotations about different axes. This phase is found to have slightly lower energy than the I 4 / mcm phase in spite of the fact that its parent, in-phase tilted P 4 / mbm phase is not found to occur. Our calculated enthalpies of formation show that the I 4 / mcm phase occurs at slightly higher volume than the cubic phase and has a negative transition pressure relative to the cubic phase, which suggests that it does not correspond to the high-pressure tetragonal phase. The enthalpy of the Pnma phase is almost indistinguishable from the I 4 / mcm phase. Alternative ferro-electric tetragonal and orthorhombic structures previously suggested in literature are discussed.

  5. Fertilization and spacing effects on growth of planted ponderosa pine.

    Treesearch

    P.H. Cochran; R.P. Newman; James W. Barrett

    1991-01-01

    Fertilizer placed in the planting hole increased height growth of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) early in the life of the plantation. Later broadcast applications of fertilizer may have had little effect on growth. Wider spacings produced larger trees but less volume per acre than narrower spacings after average tree height...

  6. History of Solid Rockets

    NASA Technical Reports Server (NTRS)

    Green, Rebecca

    2017-01-01

    Solid rockets are of interest to the space program because they are commonly used as boosters that provide the additional thrust needed for the space launch vehicle to escape the gravitational pull of the Earth. Larger, more advanced solid rockets allow for space launch vehicles with larger payload capacities, enabling mankind to reach new depths of space. This presentation will discuss, in detail, the history of solid rockets. The history begins with the invention and origin of the solid rocket, and then goes into the early uses and design of the solid rocket. The evolution of solid rockets is depicted by a description of how solid rockets changed and improved and how they were used throughout the 16th, 17th, 18th, and 19th centuries. Modern uses of the solid rocket include the Solid Rocket Boosters (SRBs) on the Space Shuttle and the solid rockets used on current space launch vehicles. The functions and design of the SRB and the advancements in solid rocket technology since the use of the SRB are discussed as well. Common failure modes and design difficulties are discussed as well.

  7. Improving spatial perception in 5-yr.-old Spanish children.

    PubMed

    Jiménez, Andrés Canto; Sicilia, Antonio Oña; Vera, Juan Granda

    2007-06-01

    Assimilation of distance perception was studied in 70 Spanish primary school children. This assimilation involves the generation of projective images which are acquired through two mechanisms. One mechanism is spatial perception, wherein perceptual processes develop ensuring successful immersion in space and the acquisition of visual cues which a person may use to interpret images seen in the distance. The other mechanism is movement through space so that these images are produced. The present study evaluated the influence on improvements in spatial perception of using increasingly larger spaces for training sessions within a motor skills program. Visual parameters were measured in relation to the capture and tracking of moving objects or ocular motility and speed of detection or visual reaction time. Analysis showed that for the group trained in increasingly larger spaces, ocular motility and visual reaction time were significantly improved during. different phases of the program.

  8. Interaction of flexible surface hairs with near-wall turbulence.

    PubMed

    Brücker, Ch

    2011-05-11

    The interaction of near-wall turbulence with hairy surfaces is investigated in a turbulent boundary layer flow along a flat plate in an oil channel at Re = 1.2 × 10⁶. The plate is covered locally with a dense carpet of elastomeric micro-hairs (length L = 1 mm, length in viscous units L( + ) = 30) which are arranged in a regular grid (60 × 30 hairs with a streamwise spacing Δx( + )≈15 and a spanwise spacing Δy( + )≈30). Instead of the micro-structures used in previous studies for sensory applications, the surface hairs are considerably larger and much more densely distributed with a spacing of S/D < 5 such that they interact with each other by flow coupling. The non-fluctuating mean part of the flow forces a substantial pre-bending in the streamwise direction (reconfiguration). As a consequence, the hairs align with the streamwise direction, thus imposing anisotropic damping characteristics with regard to flow fluctuations in streamwise and spanwise or wall-normal directions. Near-wall high-frequency disturbances excited by the passage of turbulent sweeps are dampened over their course along the carpet. The cooperative action of the hairs leads to an energy transfer from small-scale motion to larger scales, thus increasing the coherence of the motion pattern in streamwise and spanwise directions. As a consequence of the specific arrangement of the micro-hairs in streamwise columns a reduced spanwise meandering and stabilization of the streamwise velocity streaks is achieved by promoting varicose waves and inhibiting sinusoidal waves. Streak stabilization is known to be a major contributor to turbulent drag reduction. Thus it is concluded that hairy surfaces may be of benefit for turbulent drag reduction as hypothesized by Bartenwerfer and Bechert (1991 Z. Flugwiss. Weltraumforsch. 15 19-26).

  9. HIERARCHICAL STRUCTURE OF MAGNETOHYDRODYNAMIC TURBULENCE IN POSITION-POSITION-VELOCITY SPACE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkhart, Blakesley; Lazarian, A.; Goodman, Alyssa

    2013-06-20

    Magnetohydrodynamic turbulence is able to create hierarchical structures in the interstellar medium (ISM) that are correlated on a wide range of scales via the energy cascade. We use hierarchical tree diagrams known as dendrograms to characterize structures in synthetic position-position-velocity (PPV) emission cubes of isothermal magnetohydrodynamic turbulence. We show that the structures and degree of hierarchy observed in PPV space are related to the presence of self-gravity and the global sonic and Alfvenic Mach numbers. Simulations with higher Alfvenic Mach number, self-gravity and supersonic flows display enhanced hierarchical structure. We observe a strong dependency on the sonic and Alfvenic Machmore » numbers and self-gravity when we apply the statistical moments (i.e., mean, variance, skewness, kurtosis) to the leaf and node distribution of the dendrogram. Simulations with self-gravity, larger magnetic field and higher sonic Mach number have dendrogram distributions with higher statistical moments. Application of the dendrogram to three-dimensional density cubes, also known as position-position-position (PPP) cubes, reveals that the dominant emission contours in PPP and PPV are related for supersonic gas but not for subsonic. We also explore the effects of smoothing, thermal broadening, and velocity resolution on the dendrograms in order to make our study more applicable to observational data. These results all point to hierarchical tree diagrams as being a promising additional tool for studying ISM turbulence and star forming regions for obtaining information on the degree of self-gravity, the Mach numbers and the complicated relationship between PPV and PPP data.« less

  10. Nuclear systems for space power and propulsion

    NASA Technical Reports Server (NTRS)

    Klein, M.

    1971-01-01

    As exploration and utilization of space proceeds through the 1970s, 1980s, and beyond, spacecraft in earth orbit will become increasingly larger, spacecraft will travel deeper into space, and space activities will involve more complex operations. These trends require increasing amounts of energy for power and propulsion. The role to be played by nuclear energy is presented, including plans for deep space missions using radioisotope generators, the reactor power systems for earth orbiting stations and satellites, and the role of nuclear propulsion in space transportation.

  11. Three-Dimensional Quantification of Pore Space in Flocculated Sediments

    NASA Astrophysics Data System (ADS)

    Lawrence, Tom; Spencer, Kate; Bushby, Andy; Manning, Andrew

    2017-04-01

    Flocculated sediment structure plays a vital role in determining sediment dynamics within the water column in fresh and saline water bodies. The porosity of flocs contributes to their specific density and therefore their settling characteristics, and can also affect settling characteristics via through-flow. The process of settling and resuspension of flocculated material causes the formation of larger and more complex individual flocs, about which little is known quantitatively of the internal micro-structure and therefore porosity. Hydrological and sedimentological modelling software currently uses estimations of porosity, because it is difficult to capture and analyse flocs. To combat this, we use a novel microscopy method usually performed on biological material to scan the flocs, the output of which can be used to quantify the dimensions and arrangement of pores. This involves capturing flocculated sediment, staining the sample with heavy metal elements to highlight organic content in the Scanning Electron Microscope later, and finally setting the sample in resin. The overall research aim is to quantitatively characterise the dimensions and distribution of pore space in flocs in three dimensions. In order to gather data, Scanning Electron Microscopy and micro-Computed Tomography have been utilised to produce the necessary images to identify and quantify the pore space. The first objective is to determine the dimensional limits of pores in the structure (i.e. what area do they encapsulate? Are they interconnected or discreet?). This requires a repeatable definition to be established, so that all floc pore spaces can be quantified using the same parameters. The LabSFLOC settling column and dyes will be used as one possible method of determining the outer limits of the discreet pore space. LabSFLOC is a sediment settling column that uses a camera to record the flocs, enabling analysis of settling characteristics. The second objective is to develop a reliable method for quantifying the dimensions of the pores. The dimensions to be quantified are the long- and short-axis lengths, measured using ImageJ. The third objective will be to quantify the distribution of the pore space within the structure, utilising point-to-point measurements and distance from centre of the floc, again utilising software capable of providing accurate measurements between the centres of each pore within the structure. Preliminary data demonstrating pore dimensional limits and quantification will be presented. This will establish a definition of pore space based on limits of interaction between pore water and the water column, including experimental data from LabSFLOC, and visual representations of pore outer limits. Further to this, I will include some investigational data from ImageJ relating to the dimensions being measured for sub-aim 2. This information is vital in providing accurate and reliable information for hydrological and sedimentological model input, ultimately increasing the value of the outputs.

  12. Turnover of plant lineages shapes herbivore phylogenetic beta diversity along ecological gradients.

    PubMed

    Pellissier, Loïc; Ndiribe, Charlotte; Dubuis, Anne; Pradervand, Jean-Nicolas; Salamin, Nicolas; Guisan, Antoine; Rasmann, Sergio

    2013-05-01

    Understanding drivers of biodiversity patterns is of prime importance in this era of severe environmental crisis. More diverse plant communities have been postulated to represent a larger functional trait-space, more likely to sustain a diverse assembly of herbivore species. Here, we expand this hypothesis to integrate environmental, functional and phylogenetic variation of plant communities as factors explaining the diversity of lepidopteran assemblages along elevation gradients in the Swiss Western Alps. According to expectations, we found that the association between butterflies and their host plants is highly phylogenetically structured. Multiple regression analyses showed the combined effect of climate, functional traits and phylogenetic diversity in structuring butterfly communities. Furthermore, we provide the first evidence that plant phylogenetic beta diversity is the major driver explaining butterfly phylogenetic beta diversity. Along ecological gradients, the bottom up control of herbivore diversity is thus driven by phylogenetically structured turnover of plant traits as well as environmental variables. © 2013 Blackwell Publishing Ltd/CNRS.

  13. Controllable synthesis of nickel bicarbonate nanocrystals with high homogeneity for a high-performance supercapacitor

    NASA Astrophysics Data System (ADS)

    Gu, Jianmin; Liu, Xin; Wang, Zhuang; Bian, Zhenpan; Jin, Cuihong; Sun, Xiao; Yin, Baipeng; Wu, Tianhui; Wang, Lin; Tang, Shoufeng; Wang, Hongchao; Gao, Faming

    2017-08-01

    The electrochemical performance of supercapacitors might be associated with the homogeneous structure of the electrode materials. However, the relationship between the degree of uniformity for the electrode materials and the electrochemical performance of the supercapacitor is not clear. Herein, we synthesize two types of nickel bicarbonate nanocrystals with different degrees of uniformity to investigate this relationship. As the electroactive material, the nickel bicarbonate nanocrystals with a homogeneous structure could provide a larger space and offer more exposed atoms for the electrochemical reaction than the nanocrystals with a heterogeneous structure. The homogeneous nickel bicarbonate nanocrystals exhibit better electrochemical performance and show excellent specific capacitance (1596 F g-1 at 2 A g-1 and 1260 F g-1 at 30 A g-1), which is approximately twice that of the heterogeneous nickel bicarbonate nanocrystals. The cycling stability for the homogeneity (˜80%) is higher than the inhomogeneity (˜61%) at a high current density of 5 A g-1.

  14. On Structural Design of a Mobile Lunar Habitat With Multi- Layered Environmental Shielding

    NASA Technical Reports Server (NTRS)

    Pruitt, J. R. (Technical Monitor); Rais-Rohani, M.

    2005-01-01

    This report presents an overview of a Mobile Lunar Habitat (MLH) structural design consisting of advanced composite materials. The habitat design is derived from the cylindrical-shaped U.S. Lab module aboard the International Space Station (ISS) and includes two lateral ports and a hatch at each end that geometrically match those of the ISS Nodes. Thus, several MLH units can be connected together to form a larger lunar outpost of various architectures. For enhanced mobility over the lunar terrain, the MLH uses six articulated insect-like robotic, retractable legs enabling the habitat to .t aboard a launch vehicle. The carbon-composite shell is sandwiched between two layers of hydrogen-rich polyethylene for enhanced radiation shielding. The pressure vessel is covered by modular double-wall panels for meteoroid impact shielding supported by externally mounted stiffeners. The habitat s structure is an assembly of multiple parts manufactured separately and bonded together. Based on the geometric complexity of a part and its material system, an appropriate fabrication process is proposed.

  15. Space Debris and Space Safety - Looking Forward

    NASA Astrophysics Data System (ADS)

    Ailor, W.; Krag, H.

    Man's activities in space are creating a shell of space debris around planet Earth which provides a growing risk of collision with operating satellites and manned systems. Including both the larger tracked objects and the small, untracked debris, more than 98% of the estimated 600,000 objects larger than 1 cm currently in orbit are “space junk”--dead satellites, expended rocket stages, debris from normal operations, fragments from explosions and collisions, and other material. Recognizing the problem, space faring nations have joined together to develop three basic principles for minimizing the growth of the debris population: prevent on-orbit breakups, remove spacecraft and orbital stages that have reached the end of their mission operations from the useful densely populated orbit regions, and limit the objects released during normal operations. This paper provides an overview of what is being done to support these three principles and describes proposals that an active space traffic control service to warn satellite operators of pending collisions with large objects combined with a program to actively remove large objects may reduce the rate of future collisions. The paper notes that cost and cost effectiveness are important considerations that will affect the evolution of such systems.

  16. Anisotropic S-wave velocity structure from joint inversion of surface wave group velocity dispersion: A case study from India

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Dey, S.; Siddartha, G.; Bhattacharya, S.

    2016-12-01

    We estimate 1-dimensional path average fundamental mode group velocity dispersion curves from regional Rayleigh and Love waves sampling the Indian subcontinent. The path average measurements are combined through a tomographic inversion to obtain 2-dimensional group velocity variation maps between periods of 10 and 80 s. The region of study is parametrised as triangular grids with 1° sides for the tomographic inversion. Rayleigh and Love wave dispersion curves from each node point is subsequently extracted and jointly inverted to obtain a radially anisotropic shear wave velocity model through global optimisation using Genetic Algorithm. The parametrization of the model space is done using three crustal layers and four mantle layers over a half-space with varying VpH , VsV and VsH. The anisotropic parameter (η) is calculated from empirical relations and the density of the layers are taken from PREM. Misfit for the model is calculated as a sum of error-weighted average dispersion curves. The 1-dimensional anisotropic shear wave velocity at each node point is combined using linear interpolation to obtain 3-dimensional structure beneath the region. Synthetic tests are performed to estimate the resolution of the tomographic maps which will be presented with our results. We envision to extend this to a larger dataset in near future to obtain high resolution anisotrpic shear wave velocity structure beneath India, Himalaya and Tibet.

  17. Evaluation of High Temperature Knitted Spring Tubes for Structural Seal Applications

    NASA Technical Reports Server (NTRS)

    Taylor, Shawn C.; DeMange, Jeffrey J.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2004-01-01

    Control surface seals are crucial to current and future space vehicles, as they are used to seal the gaps surrounding body flaps, elevons, and other actuated exterior surfaces. During reentry, leakage of high temperature gases through these gaps could damage underlying lower temperature structures such as rudder drive motors and mechanical actuators, resulting in impaired vehicle control. To be effective, control surface seals must shield lower temperature structures from heat transfer by maintaining sufficient resiliency to remain in contact with opposing sealing surfaces through multiple compression cycles. The current seal exhibits significant loss of resiliency after a few compression cycles at elevated temperatures (i.e., 1900 F) and therefore would be inadequate for advanced space vehicles. This seal utilizes a knitted Inconel X-750 spring tube as its primary resilient element. As part of a larger effort to enhance seal resiliency, researchers at the NASA Glenn Research Center performed high temperature compression testing (up to 2000 F) on candidate spring tube designs employing material substitutions and modified geometries. These tests demonstrated significant improvements in spring tube resiliency (5.5x better at 1750 F) through direct substitution of heat treated Rene 41 alloy in the baseline knit design. The impact of geometry modification was minor within the range of parameters tested, however trends did suggest that moderate resiliency improvements could be obtained by optimizing the current spring tube geometry.

  18. Changes in the Structure and Propagation of the MJO with Increasing CO2

    NASA Technical Reports Server (NTRS)

    Adames, Angel F.; Kim, Daehyun; Sobel, Adam H.; Del Genio, Anthony; Wu, Jingbo

    2017-01-01

    Changes in the Madden-Julian Oscillation (MJO) with increasing CO2 concentrations are examined using the Goddard Institute for Space Studies Global Climate Model (GCM). Four simulations performed with fixed CO2 concentrations of 0.5, 1, 2 and 4 times pre-industrial levels using the GCM coupled with a mixed layer ocean model are analyzed in terms of the basic state, rainfall and moisture variability, and the structure and propagation of the MJO.The GCM simulates basic state changes associated with increasing CO2 that are consistent with results from earlier studies: column water vapor increases at approximately 7.1% K(exp -1), precipitation also increases but at a lower rate (approximately 3% K(exp -1)), and column relative humidity shows little change. Moisture and rainfall variability intensify with warming. Total moisture and rainfall variability increases at a rate that is similar to that of the mean state change. The intensification is faster in the MJO-related anomalies than in the total anomalies, though the ratio of the MJO band variability to its westward counterpart increases at a much slower rate. On the basis of linear regression analysis and space-time spectral analysis, it is found that the MJO exhibits faster eastward propagation, faster westward energy dispersion, a larger zonal scale and deeper vertical structure in warmer climates.

  19. Crystal structures of two cross-bridged chromium(III) tetra­aza­macrocycles

    PubMed Central

    Prior, Timothy J.; Maples, Danny L.; Maples, Randall D.; Hoffert, Wesley A.; Parsell, Trenton H.; Silversides, Jon D.; Archibald, Stephen J.; Hubin, Timothy J.

    2014-01-01

    The crystal structure of di­chlorido­(4,10-dimethyl-1,4,7,10-tetra­aza­bicyclo­[5.5.2]tetra­deca­ne)chromium(III) hexa­fluorido­phosphate, [CrCl2(C12H26N4)]PF6, (I), has monoclinic symmetry (space group P21/n) at 150 K. The structure of the related di­chlorido­(4,11-dimethyl-1,4,8,11-tetra­aza­bicyclo­[6.6.2]hexa­deca­ne)chromium(III) hexa­fluorido­phosphate, [CrCl2(C14H30N4)]PF6, (II), also displays monoclinic symmetry (space group P21/c) at 150 K. In each case, the CrIII ion is hexa­coordinate with two cis chloride ions and two non-adjacent N atoms bound cis equatorially and the other two non-adjacent N atoms bound trans axially in a cis-V conformation of the macrocycle. The extent of the distortion from the preferred octa­hedral coordination geometry of the CrIII ion is determined by the parent macrocycle ring size, with the larger cross-bridged cyclam ring in (II) better able to accommodate this preference and the smaller cross-bridged cyclen ring in (I) requiring more distortion away from octa­hedral geometry. PMID:25309165

  20. New generation of the health monitoring system SMS 2001

    NASA Astrophysics Data System (ADS)

    Berndt, Rolf-Dietrich; Schwesinger, Peter

    2001-08-01

    The Structure Monitoring System SMS 2001 (applied for patent) represents a modular structured multi-component measurement devise for use under outdoor conditions. Besides usual continuously (static) measurements of e.g. environmental parameters and structure related responses the SMS is able to register also short term dynamic events automatically with measurement frequencies up to 1 kHz. A larger range of electrical sensors is able to be used. On demand a solar based power supply can be realized. The SMS 2001 is adaptable in a wide range, it is space-saving in its geometric structure and can meet very various demands of the users. The system is applicable preferably for small and medium sized concrete and steel structures (besides buildings and bridges also for special cases). It is suitable to support the efficient concept of a controlled life time extension especially in the case of pre-damaged structures. The interactive communication between SMS and the central office is completely remote controlled. Two point or multi-point connections using the internet can be realized. The measurement data are stored in a central data bank. A safe access supported by software modules can be organized in different levels, e.g. for scientific evaluation, service reasons or needs of authorities.

  1. The crystal structure and morphology of NiO-YSZ composite that prepared from local zircon concentrate of Bangka Island

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahmawati, F., E-mail: fitria@mipa.uns.ac.id; Apriyani, K.; Heraldy, E.

    2016-03-29

    In order to increase the economic value of local zircon concentrate from Bangka Island, NiO-YSZ was synthesized from Zirconia, ZrO{sub 2} that was prepared from local zircon concentrate. The NiO-YSZ composite was synthesized by solid state reaction method. XRD analysis equipped with Le Bail refinement was carried out to analyze the crystal structure and cell parameters of the prepared materials. The result showed that zirconia was crystallized in tetragonal structure with a space group of P42/NMC. Yttria-Stabilized-Zirconia (YSZ) was prepared by doping 8% mol yttrium oxide into zirconia and then sintered at 1250°C for 3 hours. Doping of 8% molmore » Yttria allowed phase transformation of zirconia from tetragonal into the cubic structure. Meanwhile, the composite of NiO-YSZ consists of two crystalline phases, i.e. the NiO with cubic structure and the YSZ with cubic structure. SEM analysis of the prepared materials shows that the addition of NiO into YSZ allows the morphology to become more roughness with larger grain size.« less

  2. Length-independent structural similarities enrich the antibody CDR canonical class model.

    PubMed

    Nowak, Jaroslaw; Baker, Terry; Georges, Guy; Kelm, Sebastian; Klostermann, Stefan; Shi, Jiye; Sridharan, Sudharsan; Deane, Charlotte M

    2016-01-01

    Complementarity-determining regions (CDRs) are antibody loops that make up the antigen binding site. Here, we show that all CDR types have structurally similar loops of different lengths. Based on these findings, we created length-independent canonical classes for the non-H3 CDRs. Our length variable structural clusters show strong sequence patterns suggesting either that they evolved from the same original structure or result from some form of convergence. We find that our length-independent method not only clusters a larger number of CDRs, but also predicts canonical class from sequence better than the standard length-dependent approach. To demonstrate the usefulness of our findings, we predicted cluster membership of CDR-L3 sequences from 3 next-generation sequencing datasets of the antibody repertoire (over 1,000,000 sequences). Using the length-independent clusters, we can structurally classify an additional 135,000 sequences, which represents a ∼20% improvement over the standard approach. This suggests that our length-independent canonical classes might be a highly prevalent feature of antibody space, and could substantially improve our ability to accurately predict the structure of novel CDRs identified by next-generation sequencing.

  3. The structure of turbulent flow around vertical plates containing holes and attached to a channel bed

    NASA Astrophysics Data System (ADS)

    Basnet, K.; Constantinescu, G.

    2017-11-01

    High-resolution, 3-D large eddy simulations are conducted to study the physics of flow past 2-D solid and porous vertical plates of height H mounted on a horizontal surface (no bottom gap) with a fully developed, turbulent incoming flow. The porous plate consists of an array of spanwise-oriented, identical solid cylinders of rectangular cross section. The height of the solid cylinders and the spacing between the solid cylinders, corresponding to the plate's "holes," are kept constant for any given configuration, as the present study considers only plates of uniform porosity. The paper discusses how the mean flow and turbulence structure around the vertical plate, the unsteady forces acting on the plate, the dynamics of the large-scale turbulent eddies, the spectral content of the wake, and the distribution of the bed friction velocity on the horizontal channel bed vary as a function of the plate porosity (0% < P < 36%), the relative spacing between the solid elements of the porous plate (d/H), and the roughness of the channel bed surface. Simulation results are used to explain how the bleeding flow affects the dynamics on the larger billow eddies advected in the separated shear layer (SSL) forming at the top of the plate and the wake structure. It is found that the main recirculation eddy in the wake remains attached to the plate for P < 30%. For larger porosities, the main recirculation eddy forms away from the porous plate. The energy of the billows advected in the SSL decays monotonically with increasing plate porosity. For cases when the recirculation eddy remains attached to the plate, the larger billows advected in the downstream part of the SSL are partially reinjected inside the main recirculation eddy as a result of their interaction with the channel bed. This creates a feedback mechanism that induces large-scale disturbances of the spanwise-oriented vortex tubes advected inside the upstream part of the SSL. Results also show that the mean drag coefficient and the root-mean-square of the drag coefficient fluctuations increase mildly with increasing d/H. Meanwhile, varying d/H has a negligible effect on the position and size of the main recirculation eddy. The presence of large-scale roughness elements (2-D ribs) at the bed results in the decrease of the mean drag coefficient of the plate and, in the case of a solid plate, in a large decrease of the frequency of the large-scale eddies advected in the SSL.

  4. More Than Filaments and Cores: Statistical Study of Structure Formation and Dynamics in Nearby Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Chen, How-Huan; Goodman, Alyssa

    2018-01-01

    In the past decade, multiple attempts at understanding the connection between filaments and star forming cores have been made using observations across the entire epectrum. However, the filaments and the cores are usually treated as predefined--and well-defined--entities, instead of structures that often come at different sizes, shapes, with substantially different dynamics, and inter-connected at different scales. In my dissertation, I present an array of studies using different statistical methods, including the dendrogram and the probability distribution function (PDF), of structures at different size scales within nearby molecular clouds. These structures are identified using observations of different density tracers, and where possible, in the multi-dimensional parameter space of key dynamic properties--the LSR velocity, the velocity dispersion, and the column density. The goal is to give an overview of structure formation in nearby star-forming clouds, as well as of the dynamics in these structures. I find that the overall statistical properties of a larger structure is often the summation/superposition of sub-structures within, and that there could be significant variations due to local physical processes. I also find that the star formation process within molecular clouds could in fact take place in a non-monolithic manner, connecting potentially merging and/or transient structures, at different scales.

  5. The Space Industry

    DTIC Science & Technology

    2007-01-01

    Bölkow-Blohm, Construcciones Aeronauticas Sociedad Aónima, and Aeronautica Industrial SA. This merger was significant because it crossed a number of...large firms. As the larger U.S. space firms move toward a lead systems integrator construct , technological innovation migrates to lower tier

  6. What can we learn from the toughest animals of the Earth? Water bears (tardigrades) as multicellular model organisms in order to perform scientific preparations for lunar exploration

    NASA Astrophysics Data System (ADS)

    Guidetti, Roberto; Rizzo, Angela Maria; Altiero, Tiziana; Rebecchi, Lorena

    2012-12-01

    Space missions of long duration required a series of preliminary experiments on living organisms, validated by a substantial phase of ground simulation experiments, in the field of micro- and inter-mediate gravities, radiobiology, and, for planetary explorations, related to risks deriving from regolith and dust exposure. In this review, we present the tardigrades, whose characteristics that recommend them as an emerging model for space biology. They are microscopic animals but are characterized by a complex structural organization similar to that of larger animals; they can be cultured in lab in small facilities, having small size; they are able to produce clonal lineages by means of parthenogenesis; they can completely suspend their metabolism when entering in dormant states (anhydrobiosis induced by dehydration and cryobiosis induced by freezing); desiccated anhydrobiotic tardigrades are able to withstand chemical and physical extremes, but a large tolerance is showed also by active animals; they can be stored in dry state for many years without loss of viability. Tardigrades have already been exposed to space stressors on Low Earth Orbit several times. The relevance of ground-based and space studies on tardigrades rests on the presumption that results could suggest strategies to protect organisms, also humans, when exposed to the space and lunar environments.

  7. Surveyor Atlas-Centaur Shroud Venting Structural Test in the Space Power Chambers

    NASA Image and Video Library

    1967-06-21

    Setup of a Surveyor/Atlas/Centaur shroud in the Space Power Chambers for a leak test at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Centaur was a 15,000-pound thrust second-stage rocket designed for the military in 1957 and 1958 by General Dynamics. It was the first major rocket to use the liquid hydrogen technology developed by Lewis in the 1950s. The Centaur Program suffered numerous problems before being transferred to Lewis in 1962. Several test facilities at Lewis’ main campus and Plum Brook Station were built or modified specifically for Centaur, including the Space Power Chambers. In 1961, NASA Lewis management decided to convert its Altitude Wind Tunnel into two large test chambers and later renamed it the Space Power Chambers. The conversion, which took over 2 years, included the removal of the tunnel’s internal components and insertion of bulkheads to seal off the new chambers. The larger chamber, seen here, could simulate altitudes of 100,000 feet. It was used for Centaur shroud separation and propellant management studies until the early 1970s. The leak test in this photograph was likely an attempt to verify that the shroud’s honeycomb shell did not seep any of its internal air when the chamber was evacuated to pressures similar to those found in the upper atmosphere.

  8. Null-space and statistical significance of first-arrival traveltime inversion

    NASA Astrophysics Data System (ADS)

    Morozov, Igor B.

    2004-03-01

    The strong uncertainty inherent in the traveltime inversion of first arrivals from surface sources is usually removed by using a priori constraints or regularization. This leads to the null-space (data-independent model variability) being inadequately sampled, and consequently, model uncertainties may be underestimated in traditional (such as checkerboard) resolution tests. To measure the full null-space model uncertainties, we use unconstrained Monte Carlo inversion and examine the statistics of the resulting model ensembles. In an application to 1-D first-arrival traveltime inversion, the τ-p method is used to build a set of models that are equivalent to the IASP91 model within small, ~0.02 per cent, time deviations. The resulting velocity variances are much larger, ~2-3 per cent within the regions above the mantle discontinuities, and are interpreted as being due to the null-space. Depth-variant depth averaging is required for constraining the velocities within meaningful bounds, and the averaging scalelength could also be used as a measure of depth resolution. Velocity variances show structure-dependent, negative correlation with the depth-averaging scalelength. Neither the smoothest (Herglotz-Wiechert) nor the mean velocity-depth functions reproduce the discontinuities in the IASP91 model; however, the discontinuities can be identified by the increased null-space velocity (co-)variances. Although derived for a 1-D case, the above conclusions also relate to higher dimensions.

  9. Dark mammoth trunks in the merging galaxy NGC 1316 and a mechanism of cosmic double helices

    NASA Astrophysics Data System (ADS)

    Carlqvist, Per

    2010-06-01

    NGC 1316 is a giant, elliptical galaxy containing a complex network of dark, dust features. The morphology of these features has been examined in some detail using a Hubble Space Telescope, Advanced Camera for Surveys image. It is found that most of the features are constituted of long filaments. There also exist a great number of dark structures protruding inwards from the filaments. Many of these structures are strikingly similar to elephant trunks in H ii regions in the Milky Way Galaxy, although much larger. The structures, termed mammoth trunks, generally are filamentary and often have shapes resembling the letters V or Y. In some of the mammoth trunks the stem of the Y can be resolved into two or more filaments, many of which showing signs of being intertwined. A model of the mammoth trunks, related to a recent theory of elephant trunks, is proposed. Based on magnetized filaments, the model is capable of giving an account of the various shapes of the mammoth trunks observed, including the twined structures.

  10. Effects of Chemistry on Blunt-Body Wake Structure

    NASA Technical Reports Server (NTRS)

    Dogra, Virendra K.; Moss, James N.; Wilmoth, Richard G.; Taylor, Jeff C.; Hassan, H. A.

    1995-01-01

    Results of a numerical study are presented for hypersonic low-density flow about a 70-deg blunt cone using direct simulation Monte Carlo (DSMC) and Navier-Stokes calculations. Particular emphasis is given to the effects of chemistry on the near-wake structure and on the surface quantities and the comparison of the DSMC results with the Navier-Stokes calculations. The flow conditions simulated are those experienced by a space vehicle at an altitude of 85 km and a velocity of 7 km/s during Earth entry. A steady vortex forms in the near wake for these freestream conditions for both chemically reactive and nonreactive air gas models. The size (axial length) of the vortex for the reactive air calculations is 25% larger than that of the nonreactive air calculations. The forebody surface quantities are less sensitive to the chemistry than the base surface quantities. The presence of the afterbody has no effect on the forebody flow structure or the surface quantities. The comparisons of DSMC and Navier-Stokes calculations show good agreement for the wake structure and the forebody surface quantities.

  11. Conformational equilibria of alkanes in aqueous solution: relationship to water structure near hydrophobic solutes.

    PubMed Central

    Ashbaugh, H S; Garde, S; Hummer, G; Kaler, E W; Paulaitis, M E

    1999-01-01

    Conformational free energies of butane, pentane, and hexane in water are calculated from molecular simulations with explicit waters and from a simple molecular theory in which the local hydration structure is estimated based on a proximity approximation. This proximity approximation uses only the two nearest carbon atoms on the alkane to predict the local water density at a given point in space. Conformational free energies of hydration are subsequently calculated using a free energy perturbation method. Quantitative agreement is found between the free energies obtained from simulations and theory. Moreover, free energy calculations using this proximity approximation are approximately four orders of magnitude faster than those based on explicit water simulations. Our results demonstrate the accuracy and utility of the proximity approximation for predicting water structure as the basis for a quantitative description of n-alkane conformational equilibria in water. In addition, the proximity approximation provides a molecular foundation for extending predictions of water structure and hydration thermodynamic properties of simple hydrophobic solutes to larger clusters or assemblies of hydrophobic solutes. PMID:10423414

  12. Space Station in the 21st century - A social perspective

    NASA Technical Reports Server (NTRS)

    Bluth, B. J.

    1986-01-01

    A human factors and sociological consideration of Space Station crew facilities and interactions is presented which attempts to place the experiences of astronaut communities in the larger context of late 20th century industrial, economic, and cultural trends. Attention is given to the relationship of Space Station communities to 'Information Society' - related historical developments.

  13. Threats to U.S. National Security Interests in Space: Orbital Debris Mitigation and Removal

    DTIC Science & Technology

    2014-01-08

    objects larger than the size of a softball and hundreds of thousands of smaller fragments. This population of space debris potentially threatens U.S...catalogues objects as small as about 10 cm ( softball size) in LEO and as small as 1 meter in Geosynchronous Orbit.12 Today, the Space Surveillance

  14. Scenes of Chaos and Joy: Playing and Performing Selves in Digitally Virtu/Real Places

    ERIC Educational Resources Information Center

    Szafran, Denice Joy

    2012-01-01

    Since the creation of the World Wide Web, researchers have attempted to understand the larger cultural and societal implications of this "space that is not a space" on identity, community, expression, and behavior. Ethnographies and analyses of bounded online gathering spaces, however, contain little concern focused on the expressions of play and…

  15. Effects of Seedbed Density and Row Spacing on Growth and Nutrient Concentrations of Nuttall Oak and Green Ash Seedlings

    Treesearch

    Harvey E. Kennedy

    1988-01-01

    Larger size and higher percentages of plantable 1-0 and 2-0 green ash (Fraxinus pennsylvanica Marsh.) and Nuttall oak (Quercus nuttallii Palmer) seedlings were produced in the wider spacing-lower density plots. Greater numbers of plantable seedlings were produced in the higher density plots. Spacing significantly affected...

  16. 46 CFR 108.469 - Quantity of foam producing materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... at least 5 minutes at each outlet; and (2) In a space must have enough foam producing material to... or space, the system need have only enough foam producing material to cover the largest space that the system covers or, if the liquid surface of a tank covered by the system is larger, the tank with...

  17. 46 CFR 108.469 - Quantity of foam producing materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... at least 5 minutes at each outlet; and (2) In a space must have enough foam producing material to... or space, the system need have only enough foam producing material to cover the largest space that the system covers or, if the liquid surface of a tank covered by the system is larger, the tank with...

  18. 46 CFR 108.469 - Quantity of foam producing materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... at least 5 minutes at each outlet; and (2) In a space must have enough foam producing material to... or space, the system need have only enough foam producing material to cover the largest space that the system covers or, if the liquid surface of a tank covered by the system is larger, the tank with...

  19. 46 CFR 108.469 - Quantity of foam producing materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... at least 5 minutes at each outlet; and (2) In a space must have enough foam producing material to... or space, the system need have only enough foam producing material to cover the largest space that the system covers or, if the liquid surface of a tank covered by the system is larger, the tank with...

  20. 46 CFR 108.469 - Quantity of foam producing materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... at least 5 minutes at each outlet; and (2) In a space must have enough foam producing material to... or space, the system need have only enough foam producing material to cover the largest space that the system covers or, if the liquid surface of a tank covered by the system is larger, the tank with...

  1. Parrondo's games based on complex networks and the paradoxical effect.

    PubMed

    Ye, Ye; Wang, Lu; Xie, Nenggang

    2013-01-01

    Parrondo's games were first constructed using a simple tossing scenario, which demonstrates the following paradoxical situation: in sequences of games, a winning expectation may be obtained by playing the games in a random order, although each game (game A or game B) in the sequence may result in losing when played individually. The available Parrondo's games based on the spatial niche (the neighboring environment) are applied in the regular networks. The neighbors of each node are the same in the regular graphs, whereas they are different in the complex networks. Here, Parrondo's model based on complex networks is proposed, and a structure of game B applied in arbitrary topologies is constructed. The results confirm that Parrondo's paradox occurs. Moreover, the size of the region of the parameter space that elicits Parrondo's paradox depends on the heterogeneity of the degree distributions of the networks. The higher heterogeneity yields a larger region of the parameter space where the strong paradox occurs. In addition, we use scale-free networks to show that the network size has no significant influence on the region of the parameter space where the strong or weak Parrondo's paradox occurs. The region of the parameter space where the strong Parrondo's paradox occurs reduces slightly when the average degree of the network increases.

  2. Labeling RDF Graphs for Linear Time and Space Querying

    NASA Astrophysics Data System (ADS)

    Furche, Tim; Weinzierl, Antonius; Bry, François

    Indices and data structures for web querying have mostly considered tree shaped data, reflecting the view of XML documents as tree-shaped. However, for RDF (and when querying ID/IDREF constraints in XML) data is indisputably graph-shaped. In this chapter, we first study existing indexing and labeling schemes for RDF and other graph datawith focus on support for efficient adjacency and reachability queries. For XML, labeling schemes are an important part of the widespread adoption of XML, in particular for mapping XML to existing (relational) database technology. However, the existing indexing and labeling schemes for RDF (and graph data in general) sacrifice one of the most attractive properties of XML labeling schemes, the constant time (and per-node space) test for adjacency (child) and reachability (descendant). In the second part, we introduce the first labeling scheme for RDF data that retains this property and thus achieves linear time and space processing of acyclic RDF queries on a significantly larger class of graphs than previous approaches (which are mostly limited to tree-shaped data). Finally, we show how this labeling scheme can be applied to (acyclic) SPARQL queries to obtain an evaluation algorithm with time and space complexity linear in the number of resources in the queried RDF graph.

  3. Improvement of Predictive Ability by Uniform Coverage of the Target Genetic Space

    PubMed Central

    Bustos-Korts, Daniela; Malosetti, Marcos; Chapman, Scott; Biddulph, Ben; van Eeuwijk, Fred

    2016-01-01

    Genome-enabled prediction provides breeders with the means to increase the number of genotypes that can be evaluated for selection. One of the major challenges in genome-enabled prediction is how to construct a training set of genotypes from a calibration set that represents the target population of genotypes, where the calibration set is composed of a training and validation set. A random sampling protocol of genotypes from the calibration set will lead to low quality coverage of the total genetic space by the training set when the calibration set contains population structure. As a consequence, predictive ability will be affected negatively, because some parts of the genotypic diversity in the target population will be under-represented in the training set, whereas other parts will be over-represented. Therefore, we propose a training set construction method that uniformly samples the genetic space spanned by the target population of genotypes, thereby increasing predictive ability. To evaluate our method, we constructed training sets alongside with the identification of corresponding genomic prediction models for four genotype panels that differed in the amount of population structure they contained (maize Flint, maize Dent, wheat, and rice). Training sets were constructed using uniform sampling, stratified-uniform sampling, stratified sampling and random sampling. We compared these methods with a method that maximizes the generalized coefficient of determination (CD). Several training set sizes were considered. We investigated four genomic prediction models: multi-locus QTL models, GBLUP models, combinations of QTL and GBLUPs, and Reproducing Kernel Hilbert Space (RKHS) models. For the maize and wheat panels, construction of the training set under uniform sampling led to a larger predictive ability than under stratified and random sampling. The results of our methods were similar to those of the CD method. For the rice panel, all training set construction methods led to similar predictive ability, a reflection of the very strong population structure in this panel. PMID:27672112

  4. International Space Station exhibit

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The International Space Station (ISS) exhibit in StenniSphere at John C. Stennis Space Center in Hancock County, Miss., gives visitors an up-close look at the largest international peacetime project in history. Step inside a module of the ISS and glimpse how astronauts will live and work in space. Currently, 16 countries contribute resources and hardware to the ISS. When complete, the orbiting research facility will be larger than a football field.

  5. Effects of various spacings on loblolly pine growth

    Treesearch

    W.E. Walmer; E.G. Owens; J.R. Jorgensen

    1975-01-01

    Four spacings of loblolly pine trees (6 by 6 ft, 8 by 8 ft, 10 by 10 ft, II by 12 ft) were studied for 15 years at the Calhoun Experlmental Forest ne.ar Union, South carolina. The two wider spacings at 15 years produced trees of greater height, larger diometer, and more sawtimber voll.tne while the two narrower spacings favored bds4l area growth and total cubfc volume...

  6. Normal radiological unossified hip joint space and femoral head size development during growth in 675 children and adolescents.

    PubMed

    Wegener, Veronika; Jorysz, Gabriele; Arnoldi, Andreas; Utzschneider, Sandra; Wegener, Bernd; Jansson, Volkmar; Heimkes, Bernhard

    2017-03-01

    Evaluation of hip joint space width during child growth is important to aid in the early diagnosis of hip pathology in children. We established reference values for hip joint space and femoral head size for each age. Hip joint space development during growth was retrospectively investigated medial and cranial in 1350 hip joints of children using standard anteroposterior supine plain pelvic radiographs. Maximum capital femoral epiphysis diameter and femoral radii were further more investigated. Hip joint space values show a slow decline during growth. Joint space was statistically significantly (p < 0.006) larger in boys than girls. Our hip joint space measurements on supine subjects seem slightly larger than those reported by Hughes on standing subjects. Evaluation of the femoral head diameter and the radii showed a size curve quite parallel to the known body growth charts. Radii medial and perpendicular to the physis are not statistically significantly different. We recommend to compare measurements of hip joint space at two locations to age dependent charts using the same imaging technique. During growth, a divergence in femoral head size from the expected values or loss of the spherical shape should raise the question of hip disorder. Clin. Anat. 30:267-275, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. RAG-3D: A search tool for RNA 3D substructures

    DOE PAGES

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; ...

    2015-08-24

    In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally describedmore » in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.« less

  8. RAG-3D: a search tool for RNA 3D substructures

    PubMed Central

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar

    2015-01-01

    To address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding. PMID:26304547

  9. RAG-3D: A search tool for RNA 3D substructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef

    In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally describedmore » in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.« less

  10. A characterization of the coupled evolution of grain fabric and pore space using complex networks: Pore connectivity and optimized flows in the presence of shear bands

    NASA Astrophysics Data System (ADS)

    Russell, Scott; Walker, David M.; Tordesillas, Antoinette

    2016-03-01

    A framework for the multiscale characterization of the coupled evolution of the solid grain fabric and its associated pore space in dense granular media is developed. In this framework, a pseudo-dual graph transformation of the grain contact network produces a graph of pores which can be readily interpreted as a pore space network. Survivability, a new metric succinctly summarizing the connectivity of the solid grain and pore space networks, measures material robustness. The size distribution and the connectivity of pores can be characterized quantitatively through various network properties. Assortativity characterizes the pore space with respect to the parity of the number of particles enclosing the pore. Multiscale clusters of odd parity versus even parity contact cycles alternate spatially along the shear band: these represent, respectively, local jamming and unjamming regions that continually switch positions in time throughout the failure regime. Optimal paths, established using network shortest paths in favor of large pores, provide clues on preferential paths for interstitial matter transport. In systems with higher rolling resistance at contacts, less tortuous shortest paths thread through larger pores in shear bands. Notably the structural patterns uncovered in the pore space suggest that more robust models of interstitial pore flow through deforming granular systems require a proper consideration of the evolution of in situ shear band and fracture patterns - not just globally, but also inside these localized failure zones.

  11. MC-PDFT can calculate singlet-triplet splittings of organic diradicals

    NASA Astrophysics Data System (ADS)

    Stoneburner, Samuel J.; Truhlar, Donald G.; Gagliardi, Laura

    2018-02-01

    The singlet-triplet splittings of a set of diradical organic molecules are calculated using multiconfiguration pair-density functional theory (MC-PDFT), and the results are compared with those obtained by Kohn-Sham density functional theory (KS-DFT) and complete active space second-order perturbation theory (CASPT2) calculations. We found that MC-PDFT, even with small and systematically defined active spaces, is competitive in accuracy with CASPT2, and it yields results with greater accuracy and precision than Kohn-Sham DFT with the parent functional. MC-PDFT also avoids the challenges associated with spin contamination in KS-DFT. It is also shown that MC-PDFT is much less computationally expensive than CASPT2 when applied to larger active spaces, and this illustrates the promise of this method for larger diradical organic systems.

  12. Analytical methods for describing charged particle dynamics in general focusing lattices using generalized Courant-Snyder theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Hong; Davidson, Ronald C.; Burby, Joshua W.

    2014-04-08

    The dynamics of charged particles in general linear focusing lattices with quadrupole, skew-quadrupole, dipole, and solenoidal components, as well as torsion of the fiducial orbit and variation of beam energy is parametrized using a generalized Courant-Snyder (CS) theory, which extends the original CS theory for one degree of freedom to higher dimensions. The envelope function is generalized into an envelope matrix, and the phase advance is generalized into a 4D symplectic rotation, or a Uð2Þ element. The 1D envelope equation, also known as the Ermakov-Milne-Pinney equation in quantum mechanics, is generalized to an envelope matrix equation in higher dimensions. Othermore » components of the original CS theory, such as the transfer matrix, Twiss functions, and CS invariant (also known as the Lewis invariant) all have their counterparts, with remarkably similar expressions, in the generalized theory. The gauge group structure of the generalized theory is analyzed. By fixing the gauge freedom with a desired symmetry, the generalized CS parametrization assumes the form of the modified Iwasawa decomposition, whose importance in phase space optics and phase space quantum mechanics has been recently realized. This gauge fixing also symmetrizes the generalized envelope equation and expresses the theory using only the generalized Twiss function β. The generalized phase advance completely determines the spectral and structural stability properties of a general focusing lattice. For structural stability, the generalized CS theory enables application of the Krein-Moser theory to greatly simplify the stability analysis. The generalized CS theory provides an effective tool to study coupled dynamics and to discover more optimized lattice designs in the larger parameter space of general focusing lattices.« less

  13. Structures of the Kplus and NH4 Forms of Linde J

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R Broach; R Kirchner

    2011-12-31

    The aluminosilicate zeolite Linde J has a unique topology. The structures of the K{sup +} and NH{sub 4}{sup +} forms of Linde J ([X{sub 2}(H{sub 2}O)][Si{sub 2}Al{sub 2}O{sub 8}] where X = K or NH{sub 4}) are identical except for slight cell size and positional differences due to NH{sub 4}{sup +} being larger than K{sup +} cations. The space group is P2{sub 1}2{sub 1}2{sub 1}. Cell dimensions are: K{sup +} Linde J, a = 9.4577(2) {angstrom}, b = 9.5573(2) {angstrom}, c = 9.9429(2) {angstrom}; NH{sub 4}{sup +} Linde J, a = 9.6324(4) {angstrom}, b = 9.6423(3) {angstrom}, c = 10.0230(3)more » {angstrom}. Zigzag 8-ring channels intersect giving a 2-D pore system.« less

  14. Synthesis, Structure, and Rigid Unit Mode-like Anisotropic Thermal Expansion of BaIr 2 In 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calta, Nicholas P.; Han, Fei; Kanatzidis, Mercouri G.

    2015-09-08

    This Article reports the synthesis of large single crystals of BaIr 2In 9 using In flux and their characterization by variable-temperature single-crystal and synchrotron powder X-ray diffraction, resistivity, and magnetization measurements. The title compound adopts the BaFe 2Al 9-type structure in the space group P6/mmm with room temperature unit cell parameters a = 8.8548(6) angstrom and c = 4.2696(4) A. BaIr 2In 9 exhibits anisotropic thermal expansion behavior with linear expansion along the c axis more than 3 times larger than expansion in the ab plane between 90 and 400 K. This anisotropic expansion originates from a rigid unit mode-likemore » mechanism similar to the mechanism of zero and negative thermal expansion observed in many anomalous thermal expansion materials such as ZrW 2O 8 and ScF 3.« less

  15. Synthesis, Structure, and Rigid Unit Mode-like Anisotropic Thermal Expansion of BaIr2In9.

    PubMed

    Calta, Nicholas P; Han, Fei; Kanatzidis, Mercouri G

    2015-09-08

    This Article reports the synthesis of large single crystals of BaIr2In9 using In flux and their characterization by variable-temperature single-crystal and synchrotron powder X-ray diffraction, resistivity, and magnetization measurements. The title compound adopts the BaFe2Al9-type structure in the space group P6/mmm with room temperature unit cell parameters a = 8.8548(6) Å and c = 4.2696(4) Å. BaIr2In9 exhibits anisotropic thermal expansion behavior with linear expansion along the c axis more than 3 times larger than expansion in the ab plane between 90 and 400 K. This anisotropic expansion originates from a rigid unit mode-like mechanism similar to the mechanism of zero and negative thermal expansion observed in many anomalous thermal expansion materials such as ZrW2O8 and ScF3.

  16. Photonic crystal surface-emitting lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chua, Song Liang; Lu, Ling; Soljacic, Marin

    2015-06-23

    A photonic-crystal surface-emitting laser (PCSEL) includes a gain medium electromagnetically coupled to a photonic crystal whose energy band structure exhibits a Dirac cone of linear dispersion at the center of the photonic crystal's Brillouin zone. This Dirac cone's vertex is called a Dirac point; because it is at the Brillouin zone center, it is called an accidental Dirac point. Tuning the photonic crystal's band structure (e.g., by changing the photonic crystal's dimensions or refractive index) to exhibit an accidental Dirac point increases the photonic crystal's mode spacing by orders of magnitudes and reduces or eliminates the photonic crystal's distributed in-planemore » feedback. Thus, the photonic crystal can act as a resonator that supports single-mode output from the PCSEL over a larger area than is possible with conventional PCSELs, which have quadratic band edge dispersion. Because output power generally scales with output area, this increase in output area results in higher possible output powers.« less

  17. The ordering of symmetric diblock copolymers: A comparison of self-consistent-field and density functional approaches

    NASA Astrophysics Data System (ADS)

    Nath, Shyamal K.; McCoy, John D.; Curro, John G.; Saunders, Randall S.

    1997-02-01

    Polymer reference interaction site model (PRISM) based density functional (DF) theory is used to evaluate the structure and thermodynamics of structurally symmetric, freely jointed, diblock chains with 0.50 volume fraction. These results are compared to the results of self-consistent-field (SCF) theory. Agreement between the predictions of the SCF and DF theories is found for the lamella spacing well above the order-disorder transition (ODT) and for the qualitative behavior of the interfacial thickness as a function of both chain length and Flory-Huggins χ parameter. Disagreement is found for the magnitude of the interfacial thickness where DF theory indicates that the thickness is 1.7±0.2 times larger than that predicted by SCF theory. It appears that behavior on the monomer length scale is sensitive to system specific details which are neglected by SCF theory.

  18. Microstructure changes of on the extruded high-amylose bionanocomposites as affected by moisture content via synchrotron radiation studies

    NASA Astrophysics Data System (ADS)

    Liu, Huihua; Chaudhary, Deeptangshu

    2014-08-01

    The crystalline domain changes and lamellar structure observations of sorbitol-plasticized starch nanocomposite had been investigated via synchrotron. Strong interactions were found between amylose-sorbitol, resulting in reduced inter-helix spacing of the starch polymer. Achievable dspacing of nanoclay was confirmed to be correlated to the moisture content (mc) within the nanocomposites. SAXS diffraction patterns changed from circular (high mc samples) to elliptical (low mc samples), indicating the formation of long periodic structure and increased heterogeneities of the electron density within the samples. Two different domains sized at around 90 Å and 350 Å were found for the low mc samples. However, only the ~90 Å domain was observed in high mc samples. Formation of the 380 Å domain is attributed to the retrogradation behaviour in the absence of water molecules. Meanwhile, the nucleation effect of nanoclay is another factor leading to the emergence of the larger crystalline domain.

  19. Physical properties of glasses exposed to Earth-facing and trailing-side environments on LDEF

    NASA Technical Reports Server (NTRS)

    Wiedlocher, David E.; Kinser, Donald L.; Weller, Robert A.; Weeks, Robert A.; Mendenhall, Marcus H.

    1993-01-01

    The exposure of 108 glass samples and 12 glass-ceramic samples to Earth-orbit environments permitted measurements which establish the effects of each environment. Examination of five glass types and one glass ceramic located on both the Earth-facing side and the trailing edge revealed no reduction in strength within experimental limits. Strength measurements subjected less than 5 percent of the sample surface area to stresses above 90 percent of the glass's failure strength. Seven micrometeorite or space debris impacts occurred on trailing edge samples. One of those impacts occurred in a location which was subjected to 50 percent of the applied stress at failure. Micrometeorite or space debris impacts were not observed on Earth-facing samples. The physical shape and structure of the impact sites were carefully examined using stereographic scanning electron microscopy. These impacts induce a stress concentration at the damaged region which influences mechanical strength. The flaw size produced by such damage was examined to determine the magnitude of strength degradation in micrometeorite or space-debris impacted glasses. Scanning electron microscopy revealed topographical details of impact sites which included central melt zones and glass fiber production. The overall crater structure is similar to much larger impacts of large meteorite on the Moon in that the melt crater is surrounded by shocked regions of material which fracture zones and spall areas. Residual stresses arising from shock compression and cooling of the fused zone cannot currently be included in fracture mechanics analyses based on simple flaw size examination.

  20. Study of multipactor suppression of microwave components using perforated waveguide technology for space applications

    NASA Astrophysics Data System (ADS)

    Ye, Ming; Li, Yun; He, Yongning; Daneshmand, Mojgan

    2017-05-01

    With the development of space technology, microwave components with increased power handling capability and reduced weight have been urgently required. In this work, the perforated waveguide technology is proposed to suppress the multipactor effect of high power microwave components. Meanwhile, this novel method has the advantage of reducing components' weight, which makes it to have great potential in space applications. The perforated part of the waveguide components can be seen as an electron absorber (namely, its total electron emission yield is zero) since most of the electrons impacting on this part will go out of the components. Based on thoroughly benchmarked numerical simulation procedures, we simulated an S band and an X band waveguide transformer to conceptually verify this idea. Both electron dynamic simulations and electrical loss simulations demonstrate that the perforation technology can improve the multipactor threshold at least ˜8 dB while maintaining the acceptable insertion loss level compared with its un-perforated components. We also found that the component with larger minimum gap is easier to achieve multipactor suppression. This effect is interpreted by a parallel plate waveguide model. What's more, to improve the multipactor threshold of the X band waveguide transformer with a minimum gap of ˜0.1 mm, we proposed a perforation structure with the slope edge and explained its mechanism. Future study will focus on further optimization of the perforation structure, size, and distribution to maximize the comprehensive performances of microwave components.

  1. Environmental barriers and enablers to physical activity participation among rural adults: a qualitative study.

    PubMed

    Cleland, Verity; Hughes, Clarissa; Thornton, Lukar; Squibb, Kathryn; Venn, Alison; Ball, Kylie

    2015-08-01

    Social-ecological models of health behaviour acknowledge environmental influences, but research examining how the environment shapes physical activity in rural settings is limited. This study aimed to explore the environmental factors that act as barriers or facilitators to physical activity participation among rural adults. Forty-nine adults from three regions of rural Tasmania, Australia, participated in semi-structured interviews that explored features of the environment that supported or hindered physical activity. Interviews were digitally recorded, transcribed verbatim and analysed thematically. Four key themes emerged: functionality, diversity, spaces and places for all and realistic expectations. 'Functionality' included connectivity with other destinations, distance, safety, continuity, supporting infrastructure and surfacing. While there was limited 'diversity' of structured activities and recreational facilities, the importance of easy and convenient access to a natural environment that accommodated physical activity was highlighted. 'Spaces and places for all' highlighted the importance of shared-use areas, particularly those that were family- and dog-friendly. Despite desires for more physical activity opportunities, many participants had 'realistic expectations' of what was feasible in rural settings. Functionality, diversity, spaces and places for all and realistic expectations were identified as considerations important for physical activity among rural adults. Further research using quantitative approaches in larger samples is needed to confirm these findings. SO WHAT? Urban-centric views of environmental influences on physical activity are unlikely to be entirely appropriate for rural areas. Evidence-based recommendations are provided for creating new or modifying existing infrastructure to support active living in rural settings.

  2. Reversible and Irreversible Behavior of Glass-forming Materials from the Standpoint of Hierarchical Dynamical Facilitation

    NASA Astrophysics Data System (ADS)

    Keys, Aaron

    2013-03-01

    Using molecular simulation and coarse-grained lattice models, we study the dynamics of glass-forming liquids above and below the glass transition temperature. In the supercooled regime, we study the structure, statistics, and dynamics of excitations responsible for structural relaxation for several atomistic models of glass-formers. Excitations (or soft spots) are detected in terms of persistent particle displacements. At supercooled conditions, we find that excitations are associated with correlated particle motions that are sparse and localized, and the statistics and dynamics of these excitations are facilitated and hierarchical. Excitations at one point in space facilitate the birth and death of excitations at neighboring locations, and space-time excitation structures are microcosms of heterogeneous dynamics at larger scales. Excitation-energy scales grow logarithmically with the characteristic size of the excitation, giving structural-relaxation times that can be predicted quantitatively from dynamics at short time scales. We demonstrate that these same physical principles govern the dynamics of glass-forming systems driven out-of-equilibrium by time-dependent protocols. For a system cooled and re-heated through the glass transition, non-equilibrium response functions, such as heat capacities, are notably asymmetric in time, and the response to melting a glass depends markedly on the cooling protocol by which the glass was formed. We introduce a quantitative description of this behavior based on the East model, with parameters determined from reversible transport data, that agrees well with irreversible differential scanning calorimetry. We find that the observed hysteresis and asymmetric response is a signature of an underlying dynamical transition between equilibrium melts with no trivial spatial correlations and non-equilibrium glasses with correlation lengths that are both large and dependent upon the rate at which the glass is prepared. The correlation length corresponds to the size of amorphous domains bounded by excitations that remain frozen on the observation time scale, thus forming stripes when viewed in space and time. We elucidate properties of the striped phase and show that glasses of this type, traditionally prepared through cooling, can be considered a finite-size realization of the inactive phase formed by the s-ensemble in the space-time thermodynamic limit.

  3. A hypercube compact neural network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rostykus, P.L.; Somani, A.K.

    1988-09-01

    A major problem facing implementation of neural networks is the connection problem. One popular tradeoff is to remove connections. Random disconnection severely degrades the capabilities. The hypercube based Compact Neural Network (CNN) has structured architecture combined with a rearrangement of the memory vectors gives a larger input space and better degradation than a cost equivalent network with more connections. The CNNs are based on a Hopfield network. The changes from the Hopfield net include states of -1 and +1 and when a node was evaluated to 0, it was not biased either positive or negative, instead it resumed its previousmore » state. L = PEs, N = memories and t/sub ij/s is the weights between i and j.« less

  4. Microgravity

    NASA Image and Video Library

    2004-04-15

    This is an image of a colloidal crystal from the CDOT-2 investigation flown on STS-95. There are so many colloidal particles in this sample that it behaves like a glass. In the laboratory on Earth, the sample remained in an amorphous state, showing no sign of crystal growth. In microgravity the sample crystallized in 3 days, as did the other glassy colloidal samples examined in the CDOT-2 experiment. During the investigation, crystallization occurred in samples that had a volume fraction (number of particles per total volume) larger than the formerly reported glass transition of 0.58. This has great implications for theories of the structural glass transition. These crystals were strong enough to survive space shuttle re-entry and landing.

  5. Acoustic Measurements of Small Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Kenny, R. Jeremy

    2010-01-01

    Rocket acoustic noise can induce loads and vibration on the vehicle as well as the surrounding structures. Models have been developed to predict these acoustic loads based on scaling existing solid rocket motor data. The NASA Marshall Space Flight Center acoustics team has measured several small solid rocket motors (thrust below 150,000 lbf) to anchor prediction models. This data will provide NASA the capability to predict the acoustic environments and consequent vibro-acoustic response of larger rockets (thrust above 1,000,000 lbf) such as those planned for the NASA Constellation program. This paper presents the methods used to measure acoustic data during the static firing of small solid rocket motors and the trends found in the data.

  6. The cosmic web and microwave background fossilize the first turbulent combustion

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.; Keeler, R. Norris

    2016-10-01

    Collisional fluid mechanics theory predicts a turbulent hot big bang at Planck conditions from large, negative, turbulence stresses below the Fortov-Kerr limit (< -10113 Pa). Big bang turbulence fossilized when quarks formed, extracting the mass energy of the universe by extreme negative viscous stresses of inflation, expanding to length scales larger than the horizon scale ct. Viscous-gravitational structure formation by fragmentation was triggered at big bang fossil vorticity turbulence vortex lines during the plasma epoch, as observed by the Planck space telescope. A cosmic web of protogalaxies, protogalaxyclusters, and protogalaxysuperclusters that formed in turbulent boundary layers of the spinning voids are hereby identified as expanding turbulence fossils that falsify CDMHC cosmology.

  7. Fine-scale population dynamics in a marine fish species inferred from dynamic state-space models.

    PubMed

    Rogers, Lauren A; Storvik, Geir O; Knutsen, Halvor; Olsen, Esben M; Stenseth, Nils C

    2017-07-01

    Identifying the spatial scale of population structuring is critical for the conservation of natural populations and for drawing accurate ecological inferences. However, population studies often use spatially aggregated data to draw inferences about population trends and drivers, potentially masking ecologically relevant population sub-structure and dynamics. The goals of this study were to investigate how population dynamics models with and without spatial structure affect inferences on population trends and the identification of intrinsic drivers of population dynamics (e.g. density dependence). Specifically, we developed dynamic, age-structured, state-space models to test different hypotheses regarding the spatial structure of a population complex of coastal Atlantic cod (Gadus morhua). Data were from a 93-year survey of juvenile (age 0 and 1) cod sampled along >200 km of the Norwegian Skagerrak coast. We compared two models: one which assumes all sampled cod belong to one larger population, and a second which assumes that each fjord contains a unique population with locally determined dynamics. Using the best supported model, we then reconstructed the historical spatial and temporal dynamics of Skagerrak coastal cod. Cross-validation showed that the spatially structured model with local dynamics had better predictive ability. Furthermore, posterior predictive checks showed that a model which assumes one homogeneous population failed to capture the spatial correlation pattern present in the survey data. The spatially structured model indicated that population trends differed markedly among fjords, as did estimates of population parameters including density-dependent survival. Recent biomass was estimated to be at a near-record low all along the coast, but the finer scale model indicated that the decline occurred at different times in different regions. Warm temperatures were associated with poor recruitment, but local changes in habitat and fishing pressure may have played a role in driving local dynamics. More generally, we demonstrated how state-space models can be used to test evidence for population spatial structure based on survey time-series data. Our study shows the importance of considering spatially structured dynamics, as the inferences from such an approach can lead to a different ecological understanding of the drivers of population declines, and fundamentally different management actions to restore populations. © 2017 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  8. Potential Large Decadal Missions Enabled by Nasas Space Launch System

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Hopkins, Randall C.; Schnell, Andrew; Smith, David Alan; Jackman, Angela; Warfield, Keith R.

    2016-01-01

    Large space telescope missions have always been limited by their launch vehicle's mass and volume capacities. The Hubble Space Telescope (HST) was specifically designed to fit inside the Space Shuttle and the James Webb Space Telescope (JWST) is specifically designed to fit inside an Ariane 5. Astrophysicists desire even larger space telescopes. NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultra-high-contrast spectroscopy and coronagraphy. AURA's "From Cosmic Birth to Living Earth" report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries. NASA's "Planning for the 2020 Decadal Survey" calls for a Habitable Exoplanet Imaging (HabEx) and a LUVOIR as well as Far-IR and an X-Ray Surveyor missions. Packaging larger space telescopes into existing launch vehicles is a significant engineering complexity challenge that drives cost and risk. NASA's planned Space Launch System (SLS), with its 8 or 10-m diameter fairings and ability to deliver 35 to 45-mt of payload to Sun-Earth-Lagrange-2, mitigates this challenge by fundamentally changing the design paradigm for large space telescopes. This paper reviews the mass and volume capacities of the planned SLS, discusses potential implications of these capacities for designing large space telescope missions, and gives three specific mission concept implementation examples: a 4-m monolithic off-axis telescope, an 8-m monolithic on-axis telescope and a 12-m segmented on-axis telescope.

  9. Designing astrophysics missions for NASA's Space Launch System

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip; Hopkins, Randall C.; Schnell, Andrew; Smith, David Alan; Jackman, Angela; Warfield, Keith R.

    2016-10-01

    Large space telescope missions have always been limited by their launch vehicle's mass and volume capacities. The Hubble Space Telescope was specifically designed to fit inside the Space Shuttle and the James Webb Space Telescope was specifically designed to fit inside an Ariane 5. Astrophysicists desire even larger space telescopes. NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultrahigh-contrast spectroscopy and coronagraphy. Association of Universities for Research in Astronomy's "From Cosmic Birth to Living Earth" report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries. NASA's "Planning for the 2020 Decadal Survey" calls for a Habitable Exoplanet Imaging (HabEx) and an LUVOIR as well as Far-IR and an X-ray Surveyor missions. Packaging larger space telescopes into existing launch vehicles is a significant engineering complexity challenge that drives cost and risk. NASA's planned Space Launch System (SLS), with its 8- or 10-m diameter fairings and ability to deliver 35 to 45 mt of payload to Sun-Earth-Lagrange-2, mitigates this challenge by fundamentally changing the design paradigm for large space telescopes. This paper introduces the mass and volume capacities of the planned SLS, provides a simple mass allocation recipe for designing large space telescope missions to this capacity, and gives three specific mission concept implementation examples: a 4-m monolithic off-axis telescope, an 8-m monolithic on-axis telescope, and a 12-m segmented on-axis telescope.

  10. Potential large missions enabled by NASA's space launch system

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip; Hopkins, Randall C.; Schnell, Andrew; Smith, David A.; Jackman, Angela; Warfield, Keith R.

    2016-07-01

    Large space telescope missions have always been limited by their launch vehicle's mass and volume capacities. The Hubble Space Telescope (HST) was specifically designed to fit inside the Space Shuttle and the James Webb Space Telescope (JWST) is specifically designed to fit inside an Ariane 5. Astrophysicists desire even larger space telescopes. NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultra-high-contrast spectroscopy and coronagraphy. AURA's "From Cosmic Birth to Living Earth" report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries. NASA's "Planning for the 2020 Decadal Survey" calls for a Habitable Exoplanet Imaging (HabEx) and a LUVOIR as well as Far-IR and an X-Ray Surveyor missions. Packaging larger space telescopes into existing launch vehicles is a significant engineering complexity challenge that drives cost and risk. NASA's planned Space Launch System (SLS), with its 8 or 10-m diameter fairings and ability to deliver 35 to 45-mt of payload to Sun-Earth-Lagrange-2, mitigates this challenge by fundamentally changing the design paradigm for large space telescopes. This paper reviews the mass and volume capacities of the planned SLS, discusses potential implications of these capacities for designing large space telescope missions, and gives three specific mission concept implementation examples: a 4-m monolithic off-axis telescope, an 8-m monolithic on-axis telescope and a 12-m segmented on-axis telescope.

  11. Band warping, band non-parabolicity, and Dirac points in electronic and lattice structures

    NASA Astrophysics Data System (ADS)

    Resca, Lorenzo; Mecholsky, Nicholas A.; Pegg, Ian L.

    2017-10-01

    We illustrate at a fundamental level the physical and mathematical origins of band warping and band non-parabolicity in electronic and vibrational structures. We point out a robust presence of pairs of topologically induced Dirac points in a primitive-rectangular lattice using a p-type tight-binding approximation. We analyze two-dimensional primitive-rectangular and square Bravais lattices with implications that are expected to generalize to more complex structures. Band warping is shown to arise at the onset of a singular transition to a crystal lattice with a larger symmetry group, which allows the possibility of irreducible representations of higher dimensions, hence band degeneracy, at special symmetry points in reciprocal space. Band warping is incompatible with a multi-dimensional Taylor series expansion, whereas band non-parabolicities are associated with multi-dimensional Taylor series expansions to all orders. Still band non-parabolicities may merge into band warping at the onset of a larger symmetry group. Remarkably, while still maintaining a clear connection with that merging, band non-parabolicities may produce pairs of conical intersections at relatively low-symmetry points. Apparently, such conical intersections are robustly maintained by global topology requirements, rather than any local symmetry protection. For two p-type tight-binding bands, we find such pairs of conical intersections drifting along the edges of restricted Brillouin zones of primitive-rectangular Bravais lattices as lattice constants vary relatively to each other, until these conical intersections merge into degenerate warped bands at high-symmetry points at the onset of a square lattice. The conical intersections that we found appear to have similar topological characteristics as Dirac points extensively studied in graphene and other topological insulators, even though our conical intersections have none of the symmetry complexity and protection afforded by the latter more complex structures.

  12. Numerical investigations of MRI RF field induced heating for external fixation devices

    PubMed Central

    2013-01-01

    Background The magnetic resonance imaging (MRI) radio frequency (RF) field induced heating on external fixation devices can be very high in the vicinity of device screws. Such induced RF heating is related to device constructs, device placements, as well as the device insertion depth into human subjects. In this study, computational modeling is performed to determine factors associated with such induced heating. Methods Numerical modeling, based on the finite-difference time-domain (FDTD) method, is used to evaluate the temperature rises near external device screw tips inside the ASTM phantom for both 1.5-T and 3-T MRI systems. The modeling approach consists of 1) the development of RF coils for 1.5-T and 3-T, 2) the electromagnetic simulations of energy deposition near the screw tips of external fixation devices, and 3) the thermal simulations of temperature rises near the tips of these devices. Results It is found that changing insertion depth and screw spacing could largely affect the heating of these devices. In 1.5-T MRI system, smaller insertion depth and larger pin spacing will lead to higher temperature rise. However, for 3-T MRI system, the relation is not very clear when insertion depth is larger than 5 cm or when pin spacing became larger than 20 cm. The effect of connection bar material on device heating is also studied and the heating mechanism of the device is analysed. Conclusions Numerical simulation is used to study RF heating for external fixation devices in both 1.5-T and 3-T MRI coils. Typically, shallower insertion depth and larger pin spacing with conductive bar lead to higher RF heating. The heating mechanism is explained using induced current along the device and power decay inside ASTM phantom. PMID:23394173

  13. Otoliths developed in microgravity

    NASA Technical Reports Server (NTRS)

    Wiederhold, M. L.; Harrison, J. L.; Parker, K.; Nomura, H.

    2000-01-01

    Little is known about mechanisms that regulate the development of the otoliths in the gravity-sensing organs. Several reported experiments suggest that the growth of the otoliths is adjusted to produce a test mass of the appropriate weight. If this is the case, larger than normal otoliths would be expected in animals reared in reduced gravity and a reduced mass, relative to 1-g controls, would be expected in animals reared at elevated g. In gastropod mollusks, the gravity-sensing organ is the statocyst, a spherical organ whose wall is made largely of sensory receptor cells with motile cilia facing the lumen. Dense statoconia in the cyst lumen interact with cilia of receptor cells at the bottom of the cyst and action potentials in their axons carry information on direction and magnitude of gravity and linear acceleration. In the marine mollusk, Aplysia californica, larvae reared at 2 to 5-g, the volume of statoconia was reduced in a graded manner, compared to 1-g control animals. In the statocyst of the fresh-water pond snail, Biomphalaria glabrata, reared in space in the Closed Equilibrated Biological Aquatic System (CEBAS), the number and total volume of statoconia was increased approximately 50%, relative to ground-reared controls. Lychakov found the utricular otolith to be 30% larger in space-reared Xenopus, whereas we found the saccular otolith to be significantly larger in newt larvae reared in space. In cichlid fish reared on a centrifuge, the saccular otolith was smaller than in 1-g controls. Here, we demonstrate that the otoliths of late-stage embryos of the swordtail fish, Xiphophorus helleri, reared in space on STS-89 and STS-90 (Neurolab) were significantly larger than those of ground-controls reared in functionally identical hardware.

  14. Practical Considerations for Using Constant Force Springs in Space-Based Mechanisms

    NASA Technical Reports Server (NTRS)

    Williams, R. Brett; Fisher, Charles D.; Gallon, John C.

    2013-01-01

    Mechanical springs are a common element in mechanism from all walks of life; cars, watches, appliances, and many others. These springs generally exhibit a linear relationship between force and deflection. In small mechanisms, deflections are small so the variation in spring force between one position and another are generally small and do not influence the design or functionality of the device. However, as the spacecraft industry drives towards larger, deployable satellites, the distances a spring or springs must function over can become considerable so much so that the structural integrity of the device may be impacted. As such, an increasingly common mechanism element is the constant force spring- one that provides a constant force regardless of deflection. These elements are commonly in the conceptual design phase to deal with system-level large deflections, but in the detailed design or integration test phase they can pose significant implementation issues. This article addresses some of the detailed issues in order for these constant force springs to be properly designed into space systems.

  15. Space Use of African Wild Dogs in Relation to Other Large Carnivores

    PubMed Central

    Darnell, Angela M.; Graf, Jan A.; Somers, Michael J.; Slotow, Rob; Szykman Gunther, Micaela

    2014-01-01

    Interaction among species through competition is a principle process structuring ecological communities, affecting behavior, distribution, and ultimately the population dynamics of species. High competition among large African carnivores, associated with extensive diet overlap, manifests in interactions between subordinate African wild dogs (Lycaon pictus) and dominant lions (Panthera leo) and spotted hyenas (Crocuta crocuta). Using locations of large carnivores in Hluhluwe-iMfolozi Park, South Africa, we found different responses from wild dogs to their two main competitors. Wild dogs avoided lions, particularly during denning, through a combination of spatial and temporal avoidance. However, wild dogs did not exhibit spatial or temporal avoidance of spotted hyenas, likely because wild dog pack sizes were large enough to adequately defend their kills. Understanding that larger carnivores affect the movements and space use of other carnivores is important for managing current small and fragmented carnivore populations, especially as reintroductions and translocations are essential tools used for the survival of endangered species, as with African wild dogs. PMID:24896638

  16. Space use of African wild dogs in relation to other large carnivores.

    PubMed

    Darnell, Angela M; Graf, Jan A; Somers, Michael J; Slotow, Rob; Szykman Gunther, Micaela

    2014-01-01

    Interaction among species through competition is a principle process structuring ecological communities, affecting behavior, distribution, and ultimately the population dynamics of species. High competition among large African carnivores, associated with extensive diet overlap, manifests in interactions between subordinate African wild dogs (Lycaon pictus) and dominant lions (Panthera leo) and spotted hyenas (Crocuta crocuta). Using locations of large carnivores in Hluhluwe-iMfolozi Park, South Africa, we found different responses from wild dogs to their two main competitors. Wild dogs avoided lions, particularly during denning, through a combination of spatial and temporal avoidance. However, wild dogs did not exhibit spatial or temporal avoidance of spotted hyenas, likely because wild dog pack sizes were large enough to adequately defend their kills. Understanding that larger carnivores affect the movements and space use of other carnivores is important for managing current small and fragmented carnivore populations, especially as reintroductions and translocations are essential tools used for the survival of endangered species, as with African wild dogs.

  17. Voxel Advanced Digital-Manufacturing for Earth and Regolith in Space Project

    NASA Technical Reports Server (NTRS)

    Zeitlin, Nancy; Mueller, Robert P.

    2015-01-01

    A voxel is a discrete three-dimensional (3D) element of material that is used to construct a larger 3D object. It is the 3D equivalent of a pixel. This project will conceptualize and study various approaches in order to develop a proof of concept 3D printing device that utilizes regolith as the material of the voxels. The goal is to develop a digital printer head capable of placing discrete self-aligning voxels in additive layers in order to fabricate small parts that can be given structural integrity through a post-printing sintering or other binding process. The quicker speeds possible with the voxel 3D printing approach along with the utilization of regolith material as the substrate will advance the use of this technology to applications for In-Situ Resource Utilization (ISRU), which is key to reducing logistics from Earth to Space, thus making long-duration human exploration missions to other celestial bodies more possible.

  18. KSC-2014-4506

    NASA Image and Video Library

    2014-11-17

    CAPE CANAVERAL, Fla. -- A water moccasin snake travels across the gravel surface near the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA’s Kennedy Space Center in Florida. Nearby, the haunch, a structure that will support the launch vehicle on the ML, arrives by flatbed truck at the park site. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018. Photo credit: NASA/Kim Shiflett

  19. KSC-2014-4074

    NASA Image and Video Library

    2014-09-22

    CAPE CANAVERAL, Fla. – A crane is used to move the final large steel beam into position for installation on the base of the Mobile Launcher, or ML, at the Mobile Launcher Park Site at NASA's Kennedy Space Center in Florida. Construction workers on lifts monitor the progress to begin attaching the final large beam to the ML structure. The ML is being modified and strengthened to accommodate the weight, size and thrust at launch of NASA's Space Launch System, or SLS, and Orion spacecraft. In 2013, the agency awarded a contract to J.P. Donovan Construction Inc. of Rockledge, Fla., to modify the ML, which is one of the key elements of ground support equipment that is being upgraded by the Ground Systems Development and Operations Program at Kennedy. The existing 24-foot exhaust hole is being enlarged and strengthened for the larger, heavier SLS rocket. The ML will carry the SLS rocket and Orion spacecraft to Launch Pad 39B for its first uncrewed mission, Exploration Mission-1, in 2018. Photo credit: NASA/Daniel Casper

  20. Scalable real space pseudopotential density functional codes for materials in the exascale regime

    NASA Astrophysics Data System (ADS)

    Lena, Charles; Chelikowsky, James; Schofield, Grady; Biller, Ariel; Kronik, Leeor; Saad, Yousef; Deslippe, Jack

    Real-space pseudopotential density functional theory has proven to be an efficient method for computing the properties of matter in many different states and geometries, including liquids, wires, slabs, and clusters with and without spin polarization. Fully self-consistent solutions using this approach have been routinely obtained for systems with thousands of atoms. Yet, there are many systems of notable larger sizes where quantum mechanical accuracy is desired, but scalability proves to be a hindrance. Such systems include large biological molecules, complex nanostructures, or mismatched interfaces. We will present an overview of our new massively parallel algorithms, which offer improved scalability in preparation for exascale supercomputing. We will illustrate these algorithms by considering the electronic structure of a Si nanocrystal exceeding 104 atoms. Support provided by the SciDAC program, Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences. Grant Numbers DE-SC0008877 (Austin) and DE-FG02-12ER4 (Berkeley).

  1. Energy-efficient constellations design and fast decoding for space-collaborative MIMO visible light communications

    NASA Astrophysics Data System (ADS)

    Zhu, Yi-Jun; Liang, Wang-Feng; Wang, Chao; Wang, Wen-Ya

    2017-01-01

    In this paper, space-collaborative constellations (SCCs) for indoor multiple-input multiple-output (MIMO) visible light communication (VLC) systems are considered. Compared with traditional VLC MIMO techniques, such as repetition coding (RC), spatial modulation (SM) and spatial multiplexing (SMP), SCC achieves the minimum average optical power for a fixed minimum Euclidean distance. We have presented a unified SCC structure for 2×2 MIMO VLC systems and extended it to larger MIMO VLC systems with more transceivers. Specifically for 2×2 MIMO VLC, a fast decoding algorithm is developed with decoding complexity almost linear in terms of the square root of the cardinality of SCC, and the expressions of symbol error rate of SCC are presented. In addition, bit mappings similar to Gray mapping are proposed for SCC. Computer simulations are performed to verify the fast decoding algorithm and the performance of SCC, and the results demonstrate that the performance of SCC is better than those of RC, SM and SMP for indoor channels in general.

  2. Observation of dynamic atom-atom correlation in liquid helium in real space

    DOE PAGES

    Dmowski, W.; Diallo, S. O.; Lokshin, K.; ...

    2017-05-04

    Liquid 4He becomes superfluid and flows without resistance below temperature 2.17 K. Superfluidity has been a subject of intense studies and notable advances were made in elucidating the phenomenon by experiment and theory. Nevertheless, details of the microscopic state, including dynamic atom–atom correlations in the superfluid state, are not fully understood. Here using a technique of neutron dynamic pair-density function (DPDF) analysis we show that 4He atoms in the Bose–Einstein condensate have environment significantly different from uncondensed atoms, with the interatomic distance larger than the average by about 10%, whereas the average structure changes little through the superfluid transition. DPDFmore » peak not seen in the snap-shot pair-density function is found at 2.3 Å, and is interpreted in terms of atomic tunnelling. The real space picture of dynamic atom–atom correlations presented here reveal characteristics of atomic dynamics not recognized so far, compelling yet another look at the phenomenon.« less

  3. Observation of dynamic atom-atom correlation in liquid helium in real space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dmowski, W.; Diallo, S. O.; Lokshin, K.

    Liquid 4He becomes superfluid and flows without resistance below temperature 2.17 K. Superfluidity has been a subject of intense studies and notable advances were made in elucidating the phenomenon by experiment and theory. Nevertheless, details of the microscopic state, including dynamic atom–atom correlations in the superfluid state, are not fully understood. Here using a technique of neutron dynamic pair-density function (DPDF) analysis we show that 4He atoms in the Bose–Einstein condensate have environment significantly different from uncondensed atoms, with the interatomic distance larger than the average by about 10%, whereas the average structure changes little through the superfluid transition. DPDFmore » peak not seen in the snap-shot pair-density function is found at 2.3 Å, and is interpreted in terms of atomic tunnelling. The real space picture of dynamic atom–atom correlations presented here reveal characteristics of atomic dynamics not recognized so far, compelling yet another look at the phenomenon.« less

  4. Observation of dynamic atom-atom correlation in liquid helium in real space.

    PubMed

    Dmowski, W; Diallo, S O; Lokshin, K; Ehlers, G; Ferré, G; Boronat, J; Egami, T

    2017-05-04

    Liquid 4 He becomes superfluid and flows without resistance below temperature 2.17 K. Superfluidity has been a subject of intense studies and notable advances were made in elucidating the phenomenon by experiment and theory. Nevertheless, details of the microscopic state, including dynamic atom-atom correlations in the superfluid state, are not fully understood. Here using a technique of neutron dynamic pair-density function (DPDF) analysis we show that 4 He atoms in the Bose-Einstein condensate have environment significantly different from uncondensed atoms, with the interatomic distance larger than the average by about 10%, whereas the average structure changes little through the superfluid transition. DPDF peak not seen in the snap-shot pair-density function is found at 2.3 Å, and is interpreted in terms of atomic tunnelling. The real space picture of dynamic atom-atom correlations presented here reveal characteristics of atomic dynamics not recognized so far, compelling yet another look at the phenomenon.

  5. Around Marshall

    NASA Image and Video Library

    1976-01-06

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was originally designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage. Modifications to the S-IC Test Stand began in 1975 to accommodate space shuttle external tank testing. This photo is of the horizontal liquid oxygen tanks.

  6. Simulations of radiation-damaged 3D detectors for the Super-LHC

    NASA Astrophysics Data System (ADS)

    Pennicard, D.; Pellegrini, G.; Fleta, C.; Bates, R.; O'Shea, V.; Parkes, C.; Tartoni, N.

    2008-07-01

    Future high-luminosity colliders, such as the Super-LHC at CERN, will require pixel detectors capable of withstanding extremely high radiation damage. In this article, the performances of various 3D detector structures are simulated with up to 1×1016 1 MeV- neq/cm2 radiation damage. The simulations show that 3D detectors have higher collection efficiency and lower depletion voltages than planar detectors due to their small electrode spacing. When designing a 3D detector with a large pixel size, such as an ATLAS sensor, different electrode column layouts are possible. Using a small number of n+ readout electrodes per pixel leads to higher depletion voltages and lower collection efficiency, due to the larger electrode spacing. Conversely, using more electrodes increases both the insensitive volume occupied by the electrode columns and the capacitive noise. Overall, the best performance after 1×1016 1 MeV- neq/cm2 damage is achieved by using 4-6 n+ electrodes per pixel.

  7. Effect of the space environment on materials flown on the EURECA/TICCE-HVI experiment

    NASA Technical Reports Server (NTRS)

    Maag, Carl R.; Stevenson, Tim J.; Tanner, William G.; Borg, Janet

    1995-01-01

    The primary benefit of accurately quantifying and characterizing the space environmental effects on materials is longer instrument and spacecraft life. Knowledge of the limits of materials allows the designer to optimize the spacecraft design so that the required life is achieved. Materials such as radiator coatings that have excellent durability result in the design of smaller radiators than a radiator coated with a lower durability coating. This may reduce the weight of the spacecraft due to a more optimum design. Another benefit of characterizing materials is the quantification of outgassing properties. Spacecraft which have ultraviolet or visible sensor payloads are susceptible to contamination by outgassed volatile materials. Materials with known outgassing characteristics can be restricted in these spacecraft. Finally, good data on material characteristics improves the ability of analytical models to predict material performance. A flight experiment was conducted on the European Space Agency's European Retrievable Carrier (EuReCa) as part of the Timeband Capture Cell Experiment (TICCE). Our main objective was to gather additional data on the dust and debris environments, with the focus on understanding growth as a function of size (mass) for hypervelocity particles 1E-06 cm and larger. In addition to enumerating particle impacts, hypervelocity particles were to be captured and returned intact. Measurements were performed post-flight to determine the flux density, diameters, and subsequent effects on various optical, thermal control and structural materials. In addition to these principal measurements, the experiment also provided a structure and sample holders for the exposure of passive material samples to the space environment, e.g., the effects of thermal cycling, atomic oxygen, etc. Preliminary results are presented, including the techniques used for intact capture of particles.

  8. Effect of the space environment on materials flown on the EURECA/TICCE-HVI experiment

    NASA Astrophysics Data System (ADS)

    Maag, Carl R.; Stevenson, Tim J.; Tanner, William G.; Borg, Janet

    1995-02-01

    The primary benefit of accurately quantifying and characterizing the space environmental effects on materials is longer instrument and spacecraft life. Knowledge of the limits of materials allows the designer to optimize the spacecraft design so that the required life is achieved. Materials such as radiator coatings that have excellent durability result in the design of smaller radiators than a radiator coated with a lower durability coating. This may reduce the weight of the spacecraft due to a more optimum design. Another benefit of characterizing materials is the quantification of outgassing properties. Spacecraft which have ultraviolet or visible sensor payloads are susceptible to contamination by outgassed volatile materials. Materials with known outgassing characteristics can be restricted in these spacecraft. Finally, good data on material characteristics improves the ability of analytical models to predict material performance. A flight experiment was conducted on the European Space Agency's European Retrievable Carrier (EuReCa) as part of the Timeband Capture Cell Experiment (TICCE). Our main objective was to gather additional data on the dust and debris environments, with the focus on understanding growth as a function of size (mass) for hypervelocity particles 1E-06 cm and larger. In addition to enumerating particle impacts, hypervelocity particles were to be captured and returned intact. Measurements were performed post-flight to determine the flux density, diameters, and subsequent effects on various optical, thermal control and structural materials. In addition to these principal measurements, the experiment also provided a structure and sample holders for the exposure of passive material samples to the space environment, e.g., the effects of thermal cycling, atomic oxygen, etc. Preliminary results are presented, including the techniques used for intact capture of particles.

  9. Imaging the nuclear environment of NGC 1365 with the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Kristen, Helmuth; Jorsater, Steven; Lindblad, Per Olof; Boksenberg, Alec

    1997-12-01

    The region surrounding the active nucleus of the barred spiral galaxy NGC 1365 is observed in the [Oiii] lambda 5007 line and neighbouring continuum using the Faint Object Camera (FOC) aboard the Hubble Space Telescope (HST). In the continuum light numerous bright ``super star clusters'' (SSCs) are seen in the nuclear region. They tend to fall on an elongated ring around the nucleus and contribute about 20 % of the total continuum flux in this wavelength regime. Without applying any extinction correction the brightest SSCs have an absolute luminosity M_B=-14fm1 +/- 0fm3 and are very compact with radii R la 3 pc. Complementary ground-based spectroscopy gives an extinction estimate A_B = 2fm5 +/- 0fm5 towards these regions, indicating a true luminosity M_B = -16fm6 +/- 0fm6 . The bright compact radio source NGC 1365:A is found to coincide spatially with one of the SSCs. We conclude that it is a ``radio supernova''. The HST observations resolve the inner structure of the conical outflow previously seen in the [Oiii] lambda 5007 line in ground-based observations, and reveal a complicated structure of individual emission-line clouds, some of which gather in larger agglomerations. The total luminosity in the [Oiii] line amounts to L_[OIII] =~ 3.7x 10(40) erg s(-1) where about 40 % is emitted by the clouds. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555, and observations at the European Southern Observatory (ESO), La Silla, Chile.

  10. Vlasov Simulation Study of Landau Damping Near the Persisting to Arrested Transition

    NASA Astrophysics Data System (ADS)

    Vinas, A. F.; Klimas, A. J.; Araneda, J. A.

    2017-12-01

    A 1-D electrostatic filtered Vlasov-Poisson simulation study is discussed. The transition from persisting to arrested Landau damping that is produced by increasing the strength of a sinusoidal perturbation on a background Vlasov-Poisson equilibrium is explored. Emphasis is placed on observed features of the electron phase-space distribution when the perturbation strength is near the transition value. A single ubiquitous waveform is found perturbing the space-averaged phase space distribution at almost any time in all of the simulations; the sole exception is the saturation stage that can occur at the end of the arrested damping scenario. This waveform contains relatively strong, very narrow structures in velocity bracketing ±vres - the velocities at which electrons must move to traverse the dominant field mode wavelength in one of its oscillation periods - and propagating with ±vres respectively. Local streams of electrons are found in these structures crossing the resonant velocities from low speed to high speed during Landau damping and from high speed to low speed during Landau growth. At the arrest time, when the field strength is briefly constant, these streams vanish. It is conjectured that the expected transfer of energy between electrons and field during Landau growth or damping has been visualized for the first time. No evidence is found in the phase-space distribution to support recent well established discoveries of a second order phase transition in the electric field evolution. While trapping is known to play a role for larger perturbation strengths, it is shown that trapping plays no role at any time in any of the simulations near the transition perturbation strength.

  11. Ten-Year Results in a Cottonwood Plantation Spacing Study

    Treesearch

    R. M. Krinard; Robert L. Johnson

    1975-01-01

    During the first 10 years, unthinned cottonwood planted at four spacings grew from 2.8 to 3.4 cords per acre per year in trees 5.0 inches in d.b.h. and larger. Two basal area controlled thinning treatments did not increase yields. Initial spacings were 4 by 9, 8 by 9, 12 by 12, and 16 by 18 feet on Commerce-Convent soils. Only trees at the widest spacing averaged an...

  12. Beyond and between academia and business: How Austrian biotechnology researchers describe high-tech startup companies as spaces of knowledge production.

    PubMed

    Fochler, Maximilian

    2016-04-01

    Research and innovation policy has invested considerable effort in creating new institutional spaces at the interface of academia and business. High-tech startups founded by academic entrepreneurs have been central to these policy imaginaries. These companies offer researchers new possibilities beyond and between academia and larger industry. However, the field of science and technology studies has thus far shown only limited interest in understanding these companies as spaces of knowledge production. This article analyses how researchers working in small and medium-sized biotechnology companies in Vienna, Austria, describe the cultural characteristics of knowledge production in this particular institutional space. It traces how they relate these characteristics to other institutional spaces they have experienced in their research biographies, such as in academia or larger corporations. It shows that the reasons why researchers decide to work in biotechnology companies and how they organize their work are deeply influenced by their perception of deficiencies in the conditions for epistemic work in contemporary academia and, to a lesser degree, in industry.

  13. Creating Inclusive Physical Activity Spaces: The Case of Body-Positive Yoga.

    PubMed

    Pickett, Andrew C; Cunningham, George B

    2017-09-01

    Within the modern cultural climate, those in larger bodies face high levels of weight stigma, particularly in sport and physical activity spaces, which serves as a strong barrier to their participation. However, given the strong link between physical activity and general health and well-being for participants, it is important to explore strategies that encourage participation of these individuals. Thus, the current research examined strategies that physical activity instructors use to develop inclusive exercise spaces for all body sizes. This study employed a series of semistructured qualitative interviews (n = 9) with instructors of body-inclusive yoga classes to explore the ways in which they encourage participation for those in larger bodies. Emergent themes from the current study suggested support for 6 factors for creating body-inclusive physical activity spaces: authentic leadership, a culture of inclusion, a focus on health, inclusive language, leader social activism, and a sense of community. This study revealed that leaders must intentionally cultivate inclusion in their spaces to encourage those in nonconforming bodies to participate. These findings have important health and management implications for the sport and physical activity context and provide a basic outline of practical strategies that practitioners can use to foster inclusion in their spaces.

  14. Audiovisual integration in depth: multisensory binding and gain as a function of distance.

    PubMed

    Noel, Jean-Paul; Modi, Kahan; Wallace, Mark T; Van der Stoep, Nathan

    2018-07-01

    The integration of information across sensory modalities is dependent on the spatiotemporal characteristics of the stimuli that are paired. Despite large variation in the distance over which events occur in our environment, relatively little is known regarding how stimulus-observer distance affects multisensory integration. Prior work has suggested that exteroceptive stimuli are integrated over larger temporal intervals in near relative to far space, and that larger multisensory facilitations are evident in far relative to near space. Here, we sought to examine the interrelationship between these previously established distance-related features of multisensory processing. Participants performed an audiovisual simultaneity judgment and redundant target task in near and far space, while audiovisual stimuli were presented at a range of temporal delays (i.e., stimulus onset asynchronies). In line with the previous findings, temporal acuity was poorer in near relative to far space. Furthermore, reaction time to asynchronously presented audiovisual targets suggested a temporal window for fast detection-a range of stimuli asynchronies that was also larger in near as compared to far space. However, the range of reaction times over which multisensory response enhancement was observed was limited to a restricted range of relatively small (i.e., 150 ms) asynchronies, and did not differ significantly between near and far space. Furthermore, for synchronous presentations, these distance-related (i.e., near vs. far) modulations in temporal acuity and multisensory gain correlated negatively at an individual subject level. Thus, the findings support the conclusion that multisensory temporal binding and gain are asymmetrically modulated as a function of distance from the observer, and specifies that this relationship is specific for temporally synchronous audiovisual stimulus presentations.

  15. Study of thermal stability of spontaneously grown superlattice structures by metalorganic vapor phase epitaxy in AlxGa1-xAs/GaAs heterostructure

    NASA Astrophysics Data System (ADS)

    Pradhan, A.; Maitra, T.; Mukherjee, S.; Mukherjee, S.; Satpati, B.; Nayak, A.; Bhunia, S.

    2018-04-01

    Spontaneous superlattice ordering in a length scale larger than an atomic layer has been observed in AlxGa1-xAs layers grown on (100) GaAs substrates by metalorganic vapor phase epitaxy. Transmission electron microscopic image clearly revealed superlattice structures and the selected area electron diffraction showed closely spaced superlattice spots around the main diffraction pattern. High resolution x-ray diffraction showed distinct and sharp superlattice peaks symmetrically positioned around the central (004) Bragg peak and the similar measurement for (002) planes, which is quasi-forbidden for Bragg reflections showed only superlattice peaks. Thermal annealing studies showed the superlattice structure was stable up to 800 °C and disappeared after annealing at 900 °C retaining the crystallinity of the epilayer. Study of inter-diffusivitiesin such superlattice structures has been carried out using high temperaturex-ray diffraction results. Here we present (004) x-ray θ-2θ scans of the AlGaAs/GaAs (100) sample with annealing time for different temperatures. Conclusions regarding interdiffusion in such superlattice structures are drawn from high temperature X-ray measurements.

  16. A Large Radius Human Centrifuge: The Human Hypergravity Havitat

    NASA Astrophysics Data System (ADS)

    van Loon, J. J. W. A.

    2008-06-01

    Life on Earth has developed at unit gravity, 9.81 m/s2, but how would plants and animals have evolved on a larger planet, i.e. larger than Earth? We are able to address this question simply by studies using centrifuges. In the past decades numerous experiments have been performed on cells, plants and animals grown for longer durations, even multi generations, under hypergravity conditions. Based on these studies we have gained interesting insights in the physiological process of these systems when exposed to artificial gravity. Animals and plants adapt themselves to this new high-g environment. Information of adaptation to hyper-g in mammals is interesting, or maybe even proof vital, for future human space flight programs especially in light of long duration missions to Moon and Mars. We know from long duration animal studies that numerous physiological processes and structures like muscles, bones, neuro-vestibular, or the cardiovascular system are affected. However, humans have never been exposed to a hyper-g environment for long durations. Human studies are mostly in the order of hours at most. Current work on human centrifuges is all focused on short arm systems to apply artificial gravity in long duration space missions. In this paper we want to address the possible usefulness of a large radius human centrifuge on Earth, or even on Moon or Mars, for both basic research and possible applications. In such a centrifuge a group of humans may be exposed to hypergravity for, in principle, an unlimited period of time.

  17. Space Science

    NASA Image and Video Library

    2004-01-01

    Released to commemorate the 14th anniversary of NASA’s Hubble Space Telescope (HST) is the image of a galaxy cataloged as AM 0644-741. Resembling a diamond encrusted bracelet, the ring of brilliant blue star clusters wraps around a yellowish nucleus of what was once a normal spiral galaxy. Located 300 million light years away in the direction of the southern constellation Dorado, the sparkling blue ring is 150,000 light years in diameter, making it larger than our entire home galaxy, the Milky Way. Ring galaxies are a striking example of how collisions between galaxies can dramatically change their structure, while triggering the formation of new stars. Typically one galaxy plunges directly into the disk of another one. The ring that pierced through this galaxy’s ring is out of the image but is visible in larger-field images. The soft galaxy visible to the left of the ring galaxy is a coincidental background galaxy which is not interacting with the ring. Rampant star formation explains why the ring is so blue. It is continuously forming massive, young, hot stars. Another sign of robust star formation is the pink regions along the ring. These are rare clouds of glowing hydrogen gas, fluorescing because of the strong ultraviolet light from the newly formed stars. The Hubble Heritage Team used the Hubble Advanced Camera for Surveys to take this image using a combination of four separate filters that isolate blue, green, red, and near-infrared light to create the color image.

  18. Use of Smoothed Measured Winds to Predict and Assess Launch Environments

    NASA Technical Reports Server (NTRS)

    Cordova, Henry S.; Leahy, Frank; Adelfang, Stanley; Roberts, Barry; Starr, Brett; Duffin, Paul; Pueri, Daniel

    2011-01-01

    Since many of the larger launch vehicles are operated near their design limits during the ascent phase of flight to optimize payload to orbit, it often becomes necessary to verify that the vehicle will remain within certification limits during the ascent phase as part of the go/no-go review made prior to launch. This paper describes the approach used to predict Ares I-X launch vehicle structural air loads and controllability prior to launch which represents a distinct departure from the methodology of the Space Shuttle and Evolved Expendable Launch Vehicle (EELV) programs. Protection for uncertainty of key environment and trajectory parameters is added to the nominal assessment of launch capability to ensure that critical launch trajectory variables would be within the integrated vehicle certification envelopes. This process was applied by the launch team as a key element of the launch day go/no-go recommendation. Pre-launch assessments of vehicle launch capability for NASA's Space Shuttle and the EELV heavy lift versions require the use of a high-resolution wind profile measurements, which have relatively small sample size compared with low-resolution profile databases (which include low-resolution balloons and radar wind profilers). The approach described in this paper has the potential to allow the pre-launch assessment team to use larger samples of wind measurements from low-resolution wind profile databases that will improve the accuracy of pre-launch assessments of launch availability with no degradation of mission assurance or launch safety.

  19. The Human Centrifuge

    NASA Astrophysics Data System (ADS)

    van Loon, Jack J. W. A.

    2009-01-01

    Life on Earth has developed at unit gravity, 9.81 m/s2, which was a major factor especially when vertebrates emerged from water onto land in the late Devonian, some 375 million years ago. But how would nature have evolved on a larger planet? We are able to address this question simply in experiments using centrifuges. Based on these studies we have gained valuable insights in the physiological process in plants and animals. They adapt to a new steady state suitable for the high-g environments applied. Information on mammalian adaptations to hyper-g is interesting or may be even vital for human space exploration programs. It has been shown in long duration animal hypergravity studies, ranging from snails, rats to primates, that various structures like muscles, bones, neuro-vestibular, or the cardio-vascular system are affected. However, humans have never been exposed to a hyper-g environment for long durations. Centrifuge studies involving humans are mostly in the order of hours. The current work on human centrifuges are all focused on short arm systems to apply short periods of artificial gravity in support of long duration space missions in ISS or to Mars. In this paper we will address the possible usefulness of a large human centrifuge on Earth. In such a centrifuge a group of humans can be exposed to hypergravity for, in principle, an unlimited period of time like living on a larger planet. The input from a survey under scientists working in the field of gravitational physiology, but also other disciplines, will be discussed.

  20. Diversity, Conflict, and Recognition in Hospital Medical Practice.

    PubMed

    Fortin, Sylvie; Maynard, Serge

    2018-03-01

    The hospital is a place of encounter between health care providers, patients and family members, the healthy and the suffering, migrants and non-migrants, as well as social and cultural minorities, and majorities of various backgrounds. It is also a space where multiple conceptions of care, life, quality of life, and death are enacted, sometimes inhibiting mutual understanding between caregivers and the cared for, a scenario that in turn may provoke conflict. Through the lens of conflict, we explore in this article the theme of Otherness within the clinic, basing analysis on an ethnographic study conducted in recent years in three cosmopolitan Canadian cities. Daily practices and-on a larger scale-the social space of the clinic become material here for reflecting on recognition (and non-recognition) of the Other as actors in the clinical encounter. The examination of structural and situational conditions that contribute to the emergence of conflict offers an understanding of the diversity of values that pervade the clinic. By way of conclusion, we argue that recognition of diversity, at least on the part of practitioners, is a key condition for the emergence of a pluralist normativity in the social space of the clinic.

  1. On the Space-Time Structure of Sheared Turbulence

    NASA Astrophysics Data System (ADS)

    de Maré, Martin; Mann, Jakob

    2016-09-01

    We develop a model that predicts all two-point correlations in high Reynolds number turbulent flow, in both space and time. This is accomplished by combining the design philosophies behind two existing models, the Mann spectral velocity tensor, in which isotropic turbulence is distorted according to rapid distortion theory, and Kristensen's longitudinal coherence model, in which eddies are simultaneously advected by larger eddies as well as decaying. The model is compared with data from both observations and large-eddy simulations and is found to predict spatial correlations comparable to the Mann spectral tensor and temporal coherence better than any known model. Within the developed framework, Lagrangian two-point correlations in space and time are also predicted, and the predictions are compared with measurements of isotropic turbulence. The required input to the models, which are formulated as spectral velocity tensors, can be estimated from measured spectra or be derived from the rate of dissipation of turbulent kinetic energy, the friction velocity and the mean shear of the flow. The developed models can, for example, be used in wind-turbine engineering, in applications such as lidar-assisted feed forward control and wind-turbine wake modelling.

  2. Connecting Molecular Dynamics Simulations and Fluids Density Functional Theory of Block Copolymers

    NASA Astrophysics Data System (ADS)

    Hall, Lisa

    Increased understanding and precise control over the nanoscale structure and dynamics of microphase separated block copolymers would advance development of mechanically robust but conductive materials for battery electrolytes, among other applications. Both coarse-grained molecular dynamics (MD) simulations and fluids (classical) density functional theory (fDFT) can capture the microphase separation of block copolymers, using similar monomer-based chain models and including local packing effects. Equilibrium free energies of various microphases are readily accessible from fDFT, which allows us to efficiently determine the equilibrium nanostructure over a large parameter space. Meanwhile, MD allows us to visualize specific polymer conformations in 3D over time and to calculate dynamic properties. The fDFT density profiles are used to initialize the MD simulations; this ensures the MD proceeds in the appropriate microphase separated state rather than in a metastable structure (useful especially for nonlamellar structures). The simulations equilibrate more quickly than simulations initialized with a random state, which is significant especially for long chains. We apply these methods to study the interfacial behavior and microphase separated structure of diblock and tapered block copolymers. Tapered copolymers consist of pure A and B monomer blocks on the ends separated by a tapered region that smoothly varies from A to B (or from B to A for an inverse taper). Intuitively, tapering increases the segregation strength required for the material to microphase separate and increases the width of the interfacial region. Increasing normal taper length yields a lower domain spacing and increased polymer mobility, while larger inverse tapers correspond to even lower domain spacing but decreased mobility. Thus the changes in dynamics with tapering cannot be explained by mapping to a diblock system at an adjusted effective segregation strength. This material is based upon work supported by the National Science Foundation under Grant 1454343 and the Department of Energy under Grant DE-SC0014209.

  3. Laparoscopic and robotic adrenal surgery: transperitoneal approach.

    PubMed

    Okoh, Alexis K; Berber, Eren

    2015-10-01

    Recent advances in technology and the need to decrease surgical morbidity have led a rapid progress in laparoscopic adrenalectomy (LA) over the past decade. Robotics is attractive to the surgeon owing to the 3-dimensional image quality, articulating instruments, and stable surgical platform. The safety and efficacy of robotic adrenalectomy (RA) have been demonstrated by several reports. In addition, RA has been shown to provide similar outcomes compared to LA. Development of adrenal surgery has involved the description of several surgical approaches including the anterior transperitoneal, lateral transperitoneal (LT) and posterior retroperitoneal (PR). Among these, the most frequently preferred technique is LT adrenalectomy, primarily due to the surgeon's familiarity of the operative field, wider working space and visibility. The LT technique is suitable for the resection of larger, unilateral tumors and in scenarios where conversion to an open transperitoneal approach is warranted, it offers a lesser burden. Also, the larger view of the entire abdominal cavity and excellent exposure of both adrenal glands and surrounding structures provided by the LT technique render it safe and feasible in pediatric and pregnant individuals.

  4. Laparoscopic and robotic adrenal surgery: transperitoneal approach

    PubMed Central

    Okoh, Alexis K.

    2015-01-01

    Recent advances in technology and the need to decrease surgical morbidity have led a rapid progress in laparoscopic adrenalectomy (LA) over the past decade. Robotics is attractive to the surgeon owing to the 3-dimensional image quality, articulating instruments, and stable surgical platform. The safety and efficacy of robotic adrenalectomy (RA) have been demonstrated by several reports. In addition, RA has been shown to provide similar outcomes compared to LA. Development of adrenal surgery has involved the description of several surgical approaches including the anterior transperitoneal, lateral transperitoneal (LT) and posterior retroperitoneal (PR). Among these, the most frequently preferred technique is LT adrenalectomy, primarily due to the surgeon’s familiarity of the operative field, wider working space and visibility. The LT technique is suitable for the resection of larger, unilateral tumors and in scenarios where conversion to an open transperitoneal approach is warranted, it offers a lesser burden. Also, the larger view of the entire abdominal cavity and excellent exposure of both adrenal glands and surrounding structures provided by the LT technique render it safe and feasible in pediatric and pregnant individuals. PMID:26425457

  5. Fresnel Lorentz Microscopy Imaging of Domains in Fe3O4 Nanoparticle Arrays

    NASA Astrophysics Data System (ADS)

    Majetich, S. A.; Evarts, E. R.; Hogg, C.; Yamamoto, K.; Hirayama, T.

    2009-03-01

    Fresnel Lorentz microscopy was used to study the magnetic domain structures of self-assembled nanoparticle arrays as a function of temperature, from 24 to 605 C. 11 nm diameter Fe3O4 nanoparticles with an edge-to-edge spacing of 2.5 nm form magnetic domains through magnetostatic interactions alone. At room temperature stripe domains were evident in monolayer arrays. The average domain size in monolayer regions is larger than that in bilayers. Mean field theories predict a reduced stabilization energy for bilayers, relative to that for monolayers. The domain wall positions were fairly stable up to 500 C, though the contrast in the walls diminished, indicating reduced magnetic order. Above 500 C there were large temperature-dependent changes. The walls surrounding the smaller domains disappeared at lower temperatures than those of the larger domains. Some magnetic contrast was visible up to 575 C, close to the Curie temperature of Fe3O4 (585 C). Transmission electron microscopy after cooling showed that the particle shape and position in the ordered arrays had been preserved during the high temperature imaging experiments.

  6. Collective behavior of bulk nanobubbles produced by alternating polarity electrolysis.

    PubMed

    Postnikov, Alexander V; Uvarov, Ilia V; Penkov, Nikita V; Svetovoy, Vitaly B

    2017-12-21

    Nanobubbles in liquids are mysterious gaseous objects with exceptional stability. They promise a wide range of applications, but their production is not well controlled and localized. Alternating polarity electrolysis of water is a tool that can control the production of bulk nanobubbles in space and time without generating larger bubbles. Using the schlieren technique, the detailed three-dimensional structure of a dense cloud of nanobubbles above the electrodes is visualized. It is demonstrated that the thermal effects produce a different schlieren pattern and have different dynamics. A localized volume enriched with nanobubbles can be separated from the parent cloud and exists on its own. This volume demonstrates buoyancy, from which the concentration of nanobubbles is estimated as 2 × 10 18 m -3 . This concentration is smaller than that in the parent cloud. Dynamic light scattering shows that the average size of nanobubbles during the process is 60-80 nm. The bubbles are observed 15 minutes after switching off the electrical pulses but their size is shifted to larger values of about 250 nm. Thus, an efficient way to generate and control nanobubbles is proposed.

  7. Focusing on the big picture: urban vegetation and eco ...

    EPA Pesticide Factsheets

    Trees and vegetation can be key components of urban green infrastructure and green spaces such as parks and residential yards. Large trees, characterized by broad canopies, and high leaf and stem volumes, can intercept a substantial amount of stormwater while promoting evapotranspiration and reducing stormwater runoff and pollutant loads. Urban vegetation cover, height, and volume are likely to be affected not only by local climatic characteristics, but also by complex socio-economic dynamics resulting from management practices and resident’s preferences. We examine the benefits provided by private greenspace and present preliminary findings related to the climatic and socio-economic drivers correlated with structural complexity of residential urban vegetation. We use laser (LiDAR) and multispectral remotely-sensed data collected throughout 1400+ neighborhoods and 1.2+ million residential yards across 8 US cities to carry out this analysis. We discuss principles and opportunities to enhance stormwater management using residential greenspace, as well as the larger implications for decentralized stormwater management at city-wide scale. We discuss principles and opportunities to enhance stormwater management using residential greenspace, as well as the larger implications for decentralized stormwater management at city-wide scale.

  8. The redshift-space neighborhoods of 36 loose groups. 2: Analysis

    NASA Technical Reports Server (NTRS)

    Ramella, Massimo; Geller, Margaret J.; Hurchra, John P.; Thorstensen, John R.

    1995-01-01

    We explore the kinematics of 36 rich RGH89 groups identified from the first two complete slices of the CfA redshift survey. These groups have more than five members identified by a friends-of-friends algorithm at a number density contrast delta rho/rho greater than or equal to 80. To examine the stability of the determination of the velocity dispersion for these systems, we compare results for the original 232 members with results for a larger redshift sample, including 334 fainter members in the redshift neighborhoods. On average, we double the number of group members in each system. The observed distribution of velocity dispersions is stable. In fact, the velocity dispersion based on the original members identified in the CfA redshift survey is a reliable predictor of the value for the enlarged sample in an individual group. The velocity dispersion is thus a stable physical parameter for discrimination among systems galaxies. A larger sample of groups, particularly one selected from a distance limited catalog, should provide an interesting constraint on models for the formation of large-scale structure. We take H(sub 0) = km/s/Mpc.

  9. Low eigenvalues of the entanglement Hamiltonian, localization length, and rare regions in one-dimensional disordered interacting systems

    NASA Astrophysics Data System (ADS)

    Berkovits, Richard

    2018-03-01

    The properties of the low-lying eigenvalues of the entanglement Hamiltonian and their relation to the localization length of a disordered interacting one-dimensional many-particle system are studied. The average of the first entanglement Hamiltonian level spacing is proportional to the ground-state localization length and shows the same dependence on the disorder and interaction strength as the localization length. This is the result of the fact that entanglement is limited to distances of order of the localization length. The distribution of the first entanglement level spacing shows a Gaussian-type behavior as expected for level spacings much larger than the disorder broadening. For weakly disordered systems (localization length larger than sample length), the distribution shows an additional peak at low-level spacings. This stems from rare regions in some samples which exhibit metalliclike behavior of large entanglement and large particle-number fluctuations. These intermediate microemulsion metallic regions embedded in the insulating phase are discussed.

  10. On the Prediction of Solar Cell Degradation in Space

    NASA Astrophysics Data System (ADS)

    Bourgoin, J. C.; Boizot, B.; Khirouni, K.; Khorenko, V.

    2014-08-01

    We discuss the validity of the procedure which is used to predict End Of Life performances of a solar cell in space. This procedure consists to measure the performances of the cell after it has been irradiated at the EOL fluence during a time ti very short compared to the duration tm of the mission in space, i.e. with a considerably larger flux. We show that this procedure is valid only when the defects created by the irradiation do not anneal (thermally or by carrier injection) with a time constant shorter than tm or larger than ti. This can be a common situation since annealing of irradiation induced defects occurs in all type of cells, at least in specific conditions (temperature, intensity of illumination, flux and nature of irradiating particles). Using modeling, we illustrate the effect of injection or thermal annealing on EOL prediction in the case GaInP, material at the heart of modern high efficiency space solar cells.

  11. Proper Motions and Structural Parameters of the Galactic Globular Cluster M71

    NASA Astrophysics Data System (ADS)

    Cadelano, M.; Dalessandro, E.; Ferraro, F. R.; Miocchi, P.; Lanzoni, B.; Pallanca, C.; Massari, D.

    2017-02-01

    By exploiting two ACS/HST data sets separated by a temporal baseline of ˜7 years, we have determined the relative stellar proper motions (PMs; providing membership) and the absolute PM of the Galactic globular cluster M71. The absolute PM has been used to reconstruct the cluster orbit within a Galactic, three-component, axisymmetric potential. M71 turns out to be in a low-latitude disk-like orbit inside the Galactic disk, further supporting the scenario in which it lost a significant fraction of its initial mass. Since large differential reddening is known to affect this system, we took advantage of near-infrared, ground-based observations to re-determine the cluster center and density profile from direct star counts. The new structural parameters turn out to be significantly different from the ones quoted in the literature. In particular, M71 has a core and a half-mass radii almost 50% larger than previously thought. Finally, we estimate that the initial mass of M71 was likely one order of magnitude larger than its current value, thus helping to solve the discrepancy with the observed number of X-ray sources. Based on observations collected with the NASA/ESA HST (GO10775, GO12932), obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555.

  12. Cardiac hypertrophy and structural and metabolic remodeling related to seasonal dormancy in the first annual cycle in tegu lizards.

    PubMed

    da Silveira, Lilian Cristina; do Nascimento, Lucas Francisco R; Colquhoun, Alison; Abe, Augusto S; de Souza, Silvia Cristina R

    2013-07-01

    Morpho-functional adjustments in the heart of juvenile tegu lizards (Tupinambis merianae) were analyzed at distinct seasonal periods to investigate how the demands of growth and of energy saving are reconciled during the first annual cycle. The relative ventricular mass (Mv) was 31% and 69% larger in late autumn and winter dormancy, respectively, compared to early autumn. This effect did not persist during unfed arousal, suggesting that protein accumulates in the heart during hypometabolism and is degraded on arousal. Both the hypertrophy and the atrophy were disproportionate in the largest individuals. In contrast, Mv was smaller in lizards that were starved during spring activity compared to fed lizards, this effect being larger in smaller individuals. In late autumn and winter dormancy the spongy myocardium had 8% of the section area covered by lacunary spaces, which expanded after food intake during arousal and reached 29% in spring activity together with higher density of cardiomyocytes. Total and soluble proteins per mass unity were unchanged, and maximum activities of selected enzymes suggest sustained glycolytic and aerobic capacities during hypometabolism. Results indicate that important structural adjustments occur in the heart in anticipation of dormancy, and that the protein balance in the tissue is maintained at winter temperatures ~17°C. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. The importance of momentum transfer in collision-induced breakups in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Reynolds, Robert C.; Lillie, Brian J.

    1991-01-01

    Although there is adequate information on larger objects in low Earth orbit, specifically those objects larger than about 10 cm in diameter, there is little direct information on objects from this size down to 1 mm. Yet, this is the sized regime where objects acting as projectiles represent the ability to seriously damage or destroy a functioning spacecraft if they collide with it. The observed consequences of known collisional breakups in orbit indicates no significant momentum transfer in the resulting debris cloud. The position taken in this paper is that this is an observational selection effect: what is seen in these events is an explosion-like breakup of the target structure arising from shock waves introduced into the structure by the collision, but one that occurs significantly after the collision processes are completed; the collision cloud, in which there is momentum transfer, consists of small, unobserved fragments. Preliminary computations of the contribution of one known collisional breakup, Solwind at 500 km in 1985, and Cosmos 1275 in 1981, assume no momentum transfer on breakup and indicate that these two events are the dominant contributors to the current millimeter and centimeter population. A different story would emerge if momentum transfer was taken into account. The topics covered include: (1) observation of on-orbit collisional breakups; (2) a model for momentum transfer; and (3) velocity space representation of breakup clouds.

  14. Ligand design by a combinatorial approach based on modeling and experiment: application to HLA-DR4

    NASA Astrophysics Data System (ADS)

    Evensen, Erik; Joseph-McCarthy, Diane; Weiss, Gregory A.; Schreiber, Stuart L.; Karplus, Martin

    2007-07-01

    Combinatorial synthesis and large scale screening methods are being used increasingly in drug discovery, particularly for finding novel lead compounds. Although these "random" methods sample larger areas of chemical space than traditional synthetic approaches, only a relatively small percentage of all possible compounds are practically accessible. It is therefore helpful to select regions of chemical space that have greater likelihood of yielding useful leads. When three-dimensional structural data are available for the target molecule this can be achieved by applying structure-based computational design methods to focus the combinatorial library. This is advantageous over the standard usage of computational methods to design a small number of specific novel ligands, because here computation is employed as part of the combinatorial design process and so is required only to determine a propensity for binding of certain chemical moieties in regions of the target molecule. This paper describes the application of the Multiple Copy Simultaneous Search (MCSS) method, an active site mapping and de novo structure-based design tool, to design a focused combinatorial library for the class II MHC protein HLA-DR4. Methods for the synthesizing and screening the computationally designed library are presented; evidence is provided to show that binding was achieved. Although the structure of the protein-ligand complex could not be determined, experimental results including cross-exclusion of a known HLA-DR4 peptide ligand (HA) by a compound from the library. Computational model building suggest that at least one of the ligands designed and identified by the methods described binds in a mode similar to that of native peptides.

  15. Numerical Simulations of Silverpit Crater Collapse

    NASA Technical Reports Server (NTRS)

    Collins, G. S.; Ivanov, B. A.; Turtle, E. P.; Melosh, H. J.

    2003-01-01

    The Silverpit crater is a recently discovered, 60-65 Myr old complex crater, which lies buried beneath the North Sea, about 150 km east of Britain. High-resolution images of Silverpit's subsurface structure, provided by three-dimensional seismic reflection data, reveal an inner-crater morphology similar to that expected for a 5-8 km diameter terrestrial crater. The crater walls show evidence of terrace-style slumping and there is a distinct central uplift, which may have produced a central peak in the pristine crater morphology. However, Silverpit is not a typical 5-km diameter terrestrial crater, because it exhibits multiple, concentric rings outside the main cavity. External concentric rings are normally associated with much larger impact structures, for example Chicxulub on Earth, or Orientale on the Moon. Furthermore, external rings associated with large impacts on the terrestrial planets and moons are widely-spaced, predominantly inwardly-facing, asymmetric scarps. However, the seismic data show that the external rings at Silverpit represent closely-spaced, concentric faultbound graben, with both inwardly and outwardly facing fault-scarps. This type of multi-ring structure directly analogous to the Valhalla-type multi-ring basins found on the icy satellites. Thus, the presence and style of the multiple rings at Silverpit is surprising given both the size of the crater and its planetary setting. A further curiosity of the Silverpit structure is that the external concentric rings appear to be extensional features on the West side of the crater and compressional features on the East side. The crater also lies in a local depression, thought to be created by postimpact movement of a salt layer buried beneath the crater.

  16. Temperature dependence of polyhedral cage volumes in clathrate hydrates

    USGS Publications Warehouse

    Chakoumakos, B.C.; Rawn, C.J.; Rondinone, A.J.; Stern, L.A.; Circone, S.; Kirby, S.H.; Ishii, Y.; Jones, C.Y.; Toby, B.H.

    2003-01-01

    The polyhedral cage volumes of structure I (sI) (carbon dioxide, methane, trimethylene oxide) and structure II (sII) (methane-ethane, propane, tetrahydrofuran, trimethylene oxide) hydrates are computed from atomic positions determined from neutron powder-diffraction data. The ideal structural formulas for sI and sII are, respectively, S2L6 ?? 46H2O and S16L???8 ?? 136H2O, where S denotes a polyhedral cage with 20 vertices, L a 24-cage, and L??? a 28-cage. The space-filling polyhedral cages are defined by the oxygen atoms of the hydrogen-bonded network of water molecules. Collectively, the mean cage volume ratio is 1.91 : 1.43 : 1 for the 28-cage : 24-cage : 20-cage, which correspond to equivalent sphere radii of 4.18, 3.79, and 3.37 A??, respectively. At 100 K, mean polyhedral volumes are 303.8, 227.8, and 158.8 A??3 for the 28-cage, 24-cage, and 20-cage, respectively. In general, the 20-cage volume for a sII is larger than that of a sI, although trimethylene oxide is an exception. The temperature dependence of the cage volumes reveals differences between apparently similar cages with similar occupants. In the case of trimethylene oxide hydrate, which forms both sI and sII, the 20-cages common to both structures contract quite differently. From 220 K, the sII 20-cage exhibits a smooth monotonic reduction in size, whereas the sI 20-cage initially expands upon cooling to 160 K, then contracts more rapidly to 10 K, and overall the sI 20-cage is larger than the sII 20-cage. The volumes of the large cages in both structures contract monotonically with decreasing temperature. These differences reflect reoriented motion of the trimethyelene oxide molecule in the 24-cage of sI, consistent with previous spectroscopic and calorimetric studies. For the 20-cages in methane hydrate (sI) and a mixed methane-ethane hydrate (sII), both containing methane as the guest molecule, the temperature dependence of the 20-cage volume in sII is much less than that in sI, but sII is overall larger in volume.

  17. Effects of fuel cetane number on the structure of diesel spray combustion: An accelerated Eulerian stochastic fields method

    NASA Astrophysics Data System (ADS)

    Jangi, Mehdi; Lucchini, Tommaso; Gong, Cheng; Bai, Xue-Song

    2015-09-01

    An Eulerian stochastic fields (ESF) method accelerated with the chemistry coordinate mapping (CCM) approach for modelling spray combustion is formulated, and applied to model diesel combustion in a constant volume vessel. In ESF-CCM, the thermodynamic states of the discretised stochastic fields are mapped into a low-dimensional phase space. Integration of the chemical stiff ODEs is performed in the phase space and the results are mapped back to the physical domain. After validating the ESF-CCM, the method is used to investigate the effects of fuel cetane number on the structure of diesel spray combustion. It is shown that, depending of the fuel cetane number, liftoff length is varied, which can lead to a change in combustion mode from classical diesel spray combustion to fuel-lean premixed burned combustion. Spray combustion with a shorter liftoff length exhibits the characteristics of the classical conceptual diesel combustion model proposed by Dec in 1997 (http://dx.doi.org/10.4271/970873), whereas in a case with a lower cetane number the liftoff length is much larger and the spray combustion probably occurs in a fuel-lean-premixed mode of combustion. Nevertheless, the transport budget at the liftoff location shows that stabilisation at all cetane numbers is governed primarily by the auto-ignition process.

  18. The perfection and defect structure of organic hourglass inclusion K 2SO 4 crystals

    NASA Astrophysics Data System (ADS)

    Vetter, William M.; Totsuka, Hirono; Dudley, Michael; Kahr, Bart

    2002-06-01

    Hourglass inclusion crystals of K 2SO 4 were grown from aqueous solutions containing the dye acid fuchsin, and studied by synchrotron white-beam X-ray topography and reciprocal space mapping. Both self-nucleated and larger, seeded dye-included crystals were prepared, as well as comparable undoped crystals. While the dye modified the crystals' habit strongly, X-ray topographs showed it had no influence on their dislocation configurations, which were typical for solution-grown crystals. No kinematical contrast arising from the presence of the dye was observed that indicated dye-induced strain in the crystal lattice. Growth sector boundaries were visible in the dyed crystals but not in undoped crystals, implying there was a slightly higher lattice mismatch across growth sector boundaries in the dye-included crystals. Reciprocal space maps of small areas on an hourglass inclusion crystal within either a dye-included growth sector or an undoped growth sector showed single peaks with the same perfect crystal rocking curve width and no dilatation or tilt of the host lattice resulting from the dye's presence. These results showed hourglass inclusion crystals can be grown in which the presence of the dye disturbs the crystalline structure of the host salt minimally, and that hourglass inclusions have the nature of a solid solution.

  19. Structure and interactions of fully hydrated dioleoylphosphatidylcholine bilayers.

    PubMed Central

    Tristram-Nagle, S; Petrache, H I; Nagle, J F

    1998-01-01

    This study focuses on dioleoylphosphatidylcholine (DOPC) bilayers near full hydration. Volumetric data and high-resolution synchrotron x-ray data are used in a method that compares DOPC with well determined gel phase dipalmitoylphosphatidylcholine (DPPC). The key structural quantity obtained is fully hydrated area/lipid A0 = 72.2 +/- 1.1 A2 at 30 degrees C, from which other quantities such as thickness of the bilayer are obtained. Data for samples over osmotic pressures from 0 to 56 atmospheres give an estimate for the area compressibility of KA = 188 dyn/cm. Obtaining the continuous scattering transform and electron density profiles requires correction for liquid crystal fluctuations. Quantitation of these fluctuations opens an experimental window on the fluctuation pressure, the primary repulsive interaction near full hydration. The fluctuation pressure decays exponentially with water spacing, in agreement with analytical results for soft confinement. However, the ratio of decay length lambda(fl) = 5.8 A to hydration pressure decay length lambda = 2.2 A is significantly larger than the value of 2 predicted by analytical theory and close to the ratio obtained in recent simulations. We also obtain the traditional osmotic pressure versus water spacing data. Our analysis of these data shows that estimates of the Hamaker parameter H and the bending modulus Kc are strongly coupled. PMID:9675192

  20. High-molecular-weight fibronectin synthesized by adenoid cystic carcinoma cells of salivary gland origin.

    PubMed

    Toyoshima, K; Kimura, S; Cheng, J; Oda, Y; Mori, K J; Saku, T

    1999-03-01

    To understand the morphogenesis of characteristic cribriform structures and the frequent invasion of salivary adenoid cystic carcinomas (ACC) along such basement membrane-rich structures as peripheral nerves, we have isolated fibronectin (FN) from the culture media of ACC3 cells established from a parotid ACC and characterized its glycosylation and alternative splicing status. FN isolated from ACC3 cells (ACC-FN) showed a molecular mass of 315 kDa in SDS-PAGE and was less heterogeneous and larger than plasma FN (pFN) or FNs from other cell sources. Differential enzymatic treatments of immunoprecipitated ACC-FN with neuraminidase, peptide-N-glycosidase F and endo-alpha-N-acetylgalactosaminidase revealed that ACC-FN was composed of a polypeptide chain of 270 kDa, with 10 kDa each of N-linked and O-linked oligosaccharide chains. Reverse transcription polymerase chain reaction (RT-PCR), in-situ hybridization, and immunofluorescence studies showed that most ACC-FNs contained ED-A, ED-B and IIICS regions in the molecules. This alternative splicing status of ACC-FN seemed to contribute to its less heterogeneous and larger molecular form. Cell attachment assay demonstrated that ACC-FN was more potent than pFN in adhesion of ACC3 cells. The results indicated that ACC-FN may function as a substrate for attachment of ACC3 cells, or that ACC3 cells trap and retain ACC-FN in their pericellular space. This isoform of FN may play an important role in the mode of invasion of ACC and the formation of stromal pseudocysts in the characteristic cribriform structure of ACC.

  1. Density perturbation mode structure of high frequency compressional and global Alfvén eigenmodes in the National Spherical Torus Experiment using a novel reflectometer analysis technique

    NASA Astrophysics Data System (ADS)

    Crocker, N. A.; Kubota, S.; Peebles, W. A.; Rhodes, T. L.; Fredrickson, E. D.; Belova, E.; Diallo, A.; LeBlanc, B. P.; Sabbagh, S. A.

    2018-01-01

    Reflectometry measurements of compressional (CAE) and global (GAE) Alfvén eigenmodes are analyzed to obtain the amplitude and spatial structure of the density perturbations associated with the modes. A novel analysis technique developed for this purpose is presented. The analysis also naturally yields the amplitude and spatial structure of the density contour radial displacement, which is found to be 2-4 times larger than the value estimated directly from the reflectometer measurements using the much simpler ‘mirror approximation’. The modes were driven by beam ions in a high power (6 MW) neutral beam heated H-mode discharge (#141398) in the National Spherical Torus Experiment. The results of the analysis are used to assess the contribution of the modes to core energy transport and ion heating. The total displacement amplitude of the modes, which is shown to be larger than previously estimated (Crocker et al 2013 Nucl. Fusion 53 43017), is compared to the predicted threshold (Gorelenkov et al 2010 Nucl. Fusion 50 84012) for the anomalously high heat diffusion inferred from transport modeling in similar NSTX discharges. The results of the analysis also have strong implications for the energy transport via coupling of CAEs to kinetic Alfvén waves seen in simulations with the Hybrid MHD code (Belova et al 2015 Phys. Rev. Lett. 115 15001). Finally, the amplitudes of the observed CAEs fall well below the threshold for causing significant ion heating by stochastic velocity space diffusion (Gates et al 2001 Phys. Rev. Lett. 87 205003).

  2. Greatly Increasing Trapped Ion Populations for Mobility Separations Using Traveling Waves in Structures for Lossless Ion Manipulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Liulin; Ibrahim, Yehia M.; Garimella, Sandilya V. B.

    The initial use of traveling waves (TW) for ion mobility (IM) separations using a structures for lossless ion manipulations (SLIM) employed an ion funnel trap (IFT) to accumulate ions from a continuous electrospray ionization source, and limited to injected ion populations of ~106 charges due to the onset of space charge effects in the trapping region. Additional limitations arise due to the loss of resolution for the injection of ions over longer periods (e.g. in extended pulses). In this work a new SLIM ‘flat funnel’ (FF) module has been developed and demonstrated to enable the accumulation of much larger ionmore » populations and their injection for IM separations. Ion current measurements indicate a capacity of ~3.2×108 charges for the extended trapping volume, over an order of magnitude greater than the IFT. The orthogonal ion injection into a funnel shaped separation region can greatly reduce space charge effects during the initial IM separation stage, and the gradually reduced width of the path allows the ion packet to be increasingly compressed in the lateral dimension as the separation progresses, allowing e.g. efficient transmission through conductance limits or compatibility with subsequent ion manipulations. This work examined the TW, RF, and DC confining field SLIM parameters involved in ion accumulation, injection, transmission and separation in the FF IM module using both direct ion current and MS measurements. Wide m/z range ion transmission is demonstrated, along with significant increases in signal to noise (S/N) ratios due to the larger ion populations injected. Additionally, we observed a reduction in the chemical background, which was attributed to more efficient desolvation of solvent related clusters over the extended ion accumulation periods. The TW SLIM FF IM module is anticipated to be especially effective as a front end for long path SLIM IM separation modules.« less

  3. In vivo delineation of subdivisions of the human amygdaloid complex in a high-resolution group template

    PubMed Central

    Tyszka, J. Michael; Pauli, Wolfgang M.

    2016-01-01

    The nuclei of the human amygdala remain difficult to distinguish in individual subject structural magnetic resonance images. However, interpretation of the amygdala’s role in whole brain networks requires accurate localization of functional activity to a particular nucleus or subgroup of nuclei. To address this, we constructed high spatial resolution, three-dimensional templates, using joint high accuracy diffeomorphic registration of T1- and T2-weighted structural images from 168 typical adults between 22 and 35 years old released by the Human Connectome Project. Several internuclear boundaries are clearly visible in these templates, which would otherwise be impossible to delineate in individual subject data. A probabilistic atlas of major nuclei and nuclear groups was constructed in this template space and mapped back to individual spaces by inversion of the individual diffeomorphisms. Group level analyses revealed a slight (approximately 2%) bias towards larger total amygdala and nuclear volumes in the right hemisphere. No substantial sex or age differences were found in amygdala volumes normalized to total intracranial volume, or subdivision volumes normalized to amygdala volume. The current delineation provides a finer parcellation of the amygdala with more accurate external boundary definition than current histology-based atlases when used in conjunction with high accuracy registration methods, such as diffeomorphic warping. These templates and delineation are intended to be an open and evolving resource for future functional and structural imaging studies of the human amygdala. PMID:27354150

  4. Operations and support cost modeling of conceptual space vehicles

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles

    1994-01-01

    The University of Dayton is pleased to submit this annual report to the National Aeronautics and Space Administration (NASA) Langley Research Center which documents the development of an operations and support (O&S) cost model as part of a larger life cycle cost (LCC) structure. It is intended for use during the conceptual design of new launch vehicles and spacecraft. This research is being conducted under NASA Research Grant NAG-1-1327. This research effort changes the focus from that of the first two years in which a reliability and maintainability model was developed to the initial development of an operations and support life cycle cost model. Cost categories were initially patterned after NASA's three axis work breakdown structure consisting of a configuration axis (vehicle), a function axis, and a cost axis. A revised cost element structure (CES), which is currently under study by NASA, was used to established the basic cost elements used in the model. While the focus of the effort was on operations and maintenance costs and other recurring costs, the computerized model allowed for other cost categories such as RDT&E and production costs to be addressed. Secondary tasks performed concurrent with the development of the costing model included support and upgrades to the reliability and maintainability (R&M) model. The primary result of the current research has been a methodology and a computer implementation of the methodology to provide for timely operations and support cost analysis during the conceptual design activities.

  5. A Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST)

    NASA Astrophysics Data System (ADS)

    Conti, Alberto; Arenberg, Jonathan; Baldauf, Brian

    2017-01-01

    The “Search for Life” (direct imaging of earth-like planets) will require extremely stable telescopes with apertures in the 10 m to 20 m range. Such apertures are larger than what can be delivered to space using current or planned future launch vehicles. Building and assembling large telescopes in space is therefore likely to require not only multiple launches but importantly assembly in spce. As a result, space-based telescopes with large apertures will require major changes to our conventional telescope design and architecture.Here we report on the concept for the Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST) to demonstrates the on-orbit robotic and/or astronaut assembly of an optical telescope in space. MODEST is a proposed International Space Station (ISS demonstration that will make use of the standard Express Logistics Carriers (ELCs) and can mounted to one of a variety of ISS pallets.MODEST will provides significant risk reduction for the next generation of space observatories, and demonstrates the technology needed to assemble a six-mirror phased telescope. Key modest features include the use of an active primary optical surface with wavefront feedback control to allow on-orbit optimization, and the precise surface control to meet optical system wavefront and stability requirements.MODEST will also be used to evaluate advances in lightweight mirror and metering structure materials such as SiC or Carbon Fiber Reinforced Polymer (CFRP) that have excellent mechanical and thermal properties, e.g. high stiffness, high modulus, high thermal conductivity, and low thermal expansion. Mirrors built from these materials can be rapidly replicated in a highly cost effective manner, making them an excellent candidate for a low cost, high performance Optical Telescope Assembly paving the way for enabling affordable solutions for the next generation of large aperture space-based telescope.MODEST post-assembly value includes space, ground, and environmental studies, a testbed for new instruments, and a tool for student’s exploration of space.

  6. Vascularization of the trachea in the bottlenose dolphin: comparison with bovine and evidence for evolutionary adaptations to diving

    NASA Astrophysics Data System (ADS)

    Ballarin, Cristina; Bagnoli, Paola; Peruffo, Antonella; Cozzi, Bruno

    2018-04-01

    The rigid structure of the mammalian trachea is functional to maintain constant patency and airflow during breathing, but no gas exchange takes place through its walls. The structure of the organ in dolphins shows increased rigidity of the tracheal cartilaginous rings and the presence of vascular lacunae in the submucosa. However, no actual comparison was ever made between the size and capacity of the vascular lacunae of the dolphin trachea and the potentially homologous structures of terrestrial mammals. In the present study, the extension of the lacunae has been compared between the bottlenose dolphin and the bovine, a closely related terrestrial Cetartiodactyla. Our results indicate that the extension of the blood spaces in the submucosa of dolphins is over 12 times larger than in the corresponding structure of the bovines. Furthermore, a microscopic analysis revealed the presence of valve-like structures in the walls of the cetacean lacunae. The huge difference in size suggests that the lacunae are not merely a product of individual physiological plasticity, but may constitute a true adaptive evolutionary character, functional to life in the aquatic environment. The presence of valve-like structures may be related to the regulation of blood flow, and curtail excessive compression under baric stress at depth.

  7. Nucleolar structure and proliferation activity of Arabidopsis root cells from seedlings germinated on the International Space Station

    NASA Astrophysics Data System (ADS)

    Matía, Isabel; González-Camacho, Fernando; Marco, Roberto; Kiss, John Z.; Gasset, Gilbert; Medina, Francisco-Javier

    Seeds of Arabidopsis thaliana were sent to the International Space Station in the "Cervantes Mission" (Spanish Soyuz Mission). Seed germination was initiated in flight by supplying culture medium. Seedlings were grown for 4 days at 22 °C, and growth was stopped by the addition of paraformaldehyde fixative. Once back on the ground, samples were immediately processed for microscopy. A ground control experiment was simultaneously replicated. Glutaraldehyde-fixed root cells from seedlings grown in the Biorack on board of the Space Shuttle (STS-84 Mission) in similar conditions were also ultrastructurally examined. The length of seedlings grown at 1 g was conspicuously shorter than parallel samples grown under microgravity. We examined the morphology of the root meristematic cells, with a focus on their nucleoli in the cortex and stele. In general, root cortical cells proliferate at a higher rate and their nucleoli are more active than those of stele cells. While the stele showed longer cells with larger nucleoli in the flight samples, cortical cells from space-grown seedlings were shorter, more numerous and more densely packed than ground controls. However, nucleoli were smaller and less active in fast proliferating flight cells than in the ground controls. This reduced level of ribosome synthesis in the flight samples is probably the result of an accelerated cell cycle. An altered rate of cell proliferation may be detrimental for the plant and could be the reason for the reported smaller size of older space-grown seedlings. Finally, two-dimensional protein electrophoresis showed noticeable differences between space samples and ground controls.

  8. Phase Stabilization of Ammonium Nitrate

    DTIC Science & Technology

    2008-11-04

    substance into the ammonium nitrate crystal structure. Salts containing ions larger or smaller than either ammonium or nitrate ions have been used...introducing another substance into the ammonium nitrate crystal structure. Salts containing ions larger or smaller than either ammonium or nitrate...two ionic attachment points should yield a nonmigrating salt due to difficulty of having simultaneous dissociation of two ionic structures

  9. Operational Art of Maritime Straits

    DTIC Science & Technology

    2008-10-29

    13  Operation CHEETAH ...Operational Art Paradigm Shift A strait is a narrow body of water navigationally constricted on two sides and usually connects two larger bodies of...level of risk. Space Space, in the terms of straits, encompasses more than just the body of water. Control of the approaches, shorelines and

  10. Are the Elderly Overhoused? Definitions of Space Utilization and Policy Implications.

    ERIC Educational Resources Information Center

    Lane, Terry Saunders; Feins, Judith D.

    1985-01-01

    Examined whether elderly-headed households live in dwellings too large for their needs. Demonstrates that most elderly households do not underutilize housing space. When homes of the elderly are on the market, new occupants include a wide range of household types, not just younger, larger families. (NRB)

  11. Dual Enrollment as a Liminal Space

    ERIC Educational Resources Information Center

    Hofmann, Eric; Voloch, Daniel

    2012-01-01

    Dual enrollment is a place between high school and college that is neither exclusively one nor the other. Dual enrollment inhabits a space where larger questions about higher education--the cultural practices, norms, institutional relationships and interactions, and the overall "business" of learning--are grappled with on a daily basis. To the…

  12. Situative Creativity: Larger Physical Spaces Facilitate Thinking of Novel Uses for Everyday Objects

    ERIC Educational Resources Information Center

    Chan, Joel; Nokes-Malach, Timothy J.

    2016-01-01

    People often use spatial metaphors (e.g., think "laterally," "outside the box") to describe exploration of the problem space during creative problem solving. In this paper, we probe the potential cognitive underpinnings of these spatial metaphors. Drawing on theories of situative cognition, semantic foraging theory, and…

  13. Ultra-Slow Dielectric Relaxation Process in Polyols

    NASA Astrophysics Data System (ADS)

    Yomogida, Yoshiki; Minoguchi, Ayumi; Nozaki, Ryusuke

    2004-04-01

    Dielectric relaxation processes with relaxation times larger than that for the structural α process are reported for glycerol, xylitol, sorbitol and their mixtures for the first time. Appearance of this ultra-slow process depends on cooling rate. More rapid cooling gives larger dielectric relaxation strength. However, relaxation time is not affected by cooling rate and shows non-Arrhenius temperature dependence with correlation to the α process. It can be considered that non-equilibrium dynamic structure causes the ultra-slow process. Scale of such structure would be much larger than that of the region for the cooperative molecular orientations for the α process.

  14. Structural and functional bases of inhibited temperament.

    PubMed

    Clauss, Jacqueline A; Seay, April L; VanDerKlok, Ross M; Avery, Suzanne N; Cao, Aize; Cowan, Ronald L; Benningfield, Margaret M; Blackford, Jennifer Urbano

    2014-12-01

    Children born with an inhibited temperament are at heightened risk for developing anxiety, depression and substance use. Inhibited temperament is believed to have a biological basis; however, little is known about the structural brain basis of this vulnerability trait. Structural MRI scans were obtained from 84 (44 inhibited, 40 uninhibited) young adults. Given previous findings of amygdala hyperactivity in inhibited individuals, groups were compared on three measures of amygdala structure. To identify novel substrates of inhibited temperament, a whole brain analysis was performed. Functional activation and connectivity were examined across both groups. Inhibited adults had larger amygdala and caudate volume and larger volume predicted greater activation to neutral faces. In addition, larger amygdala volume predicted greater connectivity with subcortical and higher order visual structures. Larger caudate volume predicted greater connectivity with the basal ganglia, and less connectivity with primary visual and auditory cortex. We propose that larger volume in these salience detection regions may result in increased activation and enhanced connectivity in response to social stimuli. Given the strong link between inhibited temperament and risk for psychiatric illness, novel therapeutics that target these brain regions and related neural circuits have the potential to reduce rates of illness in vulnerable individuals. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  15. Sparse aperiodic arrays for optical beam forming and LIDAR.

    PubMed

    Komljenovic, Tin; Helkey, Roger; Coldren, Larry; Bowers, John E

    2017-02-06

    We analyze optical phased arrays with aperiodic pitch and element-to-element spacing greater than one wavelength at channel counts exceeding hundreds of elements. We optimize the spacing between waveguides for highest side-mode suppression providing grating lobe free steering in full visible space while preserving the narrow beamwidth. Optimum waveguide placement strategies are derived and design guidelines for sparse (> 1.5 λ and > 3 λ average element spacing) optical phased arrays are given. Scaling to larger array areas by means of tiling is considered.

  16. Space-Charge Effect on Residual Energy Under Intense Ultrashort Pulse Laser

    NASA Astrophysics Data System (ADS)

    Chen, Shi-gang; Wang, You-qin; Nie, Xiaebo

    1996-12-01

    Can the space-charge effect reduce the above-threshold-ionization (ATI) energy? This problem is analyzed by using the technique of multiple-time-scale perturbation. As the optical frequency is much larger than the plasma frequency, the space-charge effect is then reduced to the ponderomotive effect. It is found that the ponderomotive effect on residual energy is great as half plasma period is larger than pulse length, however, it cannot reduce the ATI energy over the whole density range. The relevant experiments are analyzed. Their results support our conclusions. Finally, it is pointed out that for a given pulse laser there may be a density range available for optical field ionization x-ray laser over which only the ATI heating plays role. The project supported by the National Natural Science Foundation of China and the Science Foundation of the Chinese Academy of Engineering Physics

  17. Scale Effects on Magnet Systems of Heliotron-Type Reactors

    NASA Astrophysics Data System (ADS)

    S, Imagawa; A, Sagara

    2005-02-01

    For power plants heliotron-type reactors have attractive advantages, such as no current-disruptions, no current-drive, and wide space between helical coils for the maintenance of in-vessel components. However, one disadvantage is that a major radius has to be large enough to obtain large Q-value or to produce sufficient space for blankets. Although the larger radius is considered to increase the construction cost, the influence has not been understood clearly, yet. Scale effects on superconducting magnet systems have been estimated under the conditions of a constant energy confinement time and similar geometrical parameters. Since the necessary magnetic field with a larger radius becomes lower, the increase rate of the weight of the coil support to the major radius is less than the square root. The necessary major radius will be determined mainly by the blanket space. The appropriate major radius will be around 13 m for a reactor similar to the Large Helical Device (LHD).

  18. Phase change in liquid face seals

    NASA Technical Reports Server (NTRS)

    Hughes, W. F.; Winowich, N. S.; Birchak, M. J.; Kennedy, W. C.

    1978-01-01

    A study is made of boiling (or phase change) in liquid face seals. An appropriate model is set up and approximate solutions obtained. Some practical illustrative examples are given. Major conclusions are that (1) boiling may occur more often than has been suspected particularly when the sealed liquid is near saturation conditions, (2) the temperature variation in a seal clearance region may not be very great and the main reason for boiling is the flashing which occurs as the pressure decreases through the seal clearance, and (3) there are two separate values of the parameter film-thickness/angular-velocity-squared (and associated radii where phase change takes place) which provide the same separating force under a given set of operating conditions. For a given speed seal face excursions about the larger spacing are stable, but excursions about the smaller spacing are unstable, leading to a growth to the larger spacing or a catastrophic collapse.

  19. Fuselage Structure Response to Boundary Layer, Tonal Sound, and Jet Noise

    NASA Technical Reports Server (NTRS)

    Maestrello, L.

    2004-01-01

    Experiments have been conducted to study the response of curved aluminum and graphite-epoxy fuselage structures to flow and sound loads from turbulent boundary layer, tonal sound, and jet noise. Both structures were the same size. The aluminum structure was reinforced with tear stoppers, while the graphite-epoxy structure was not. The graphite-epoxy structure weighed half as much as the aluminum structure. Spatiotemporal intermittence and chaotic behavior of the structural response was observed, as jet noise and tonal sound interacted with the turbulent boundary layer. The fundamental tone distributed energy to other components via wave interaction with the turbulent boundary layer. The added broadband sound from the jet, with or without a shock, influenced the responses over a wider range of frequencies. Instantaneous spatial correlation indicates small localized spatiotemporal regions of convected waves, while uncorrelated patterns dominate the larger portion of the space. By modifying the geometry of the tear stoppers between panels and frame, the transmitted and reflected waves of the aluminum panels were significantly reduced. The response level of the graphite-epoxy structure was higher, but the noise transmitted was nearly equal to that of the aluminum structure. The fundamental shock mode is between 80 deg and 150 deg and the first harmonic is between 20 deg and 80 deg for the underexpanded supersonic jet impinging on the turbulent boundary layer influencing the structural response. The response of the graphite-epoxy structure due to the fundamental mode of the shock impingement was stabilized by an externally fixed oscillator.

  20. Parallel seed-based approach to multiple protein structure similarities detection

    DOE PAGES

    Chapuis, Guillaume; Le Boudic-Jamin, Mathilde; Andonov, Rumen; ...

    2015-01-01

    Finding similarities between protein structures is a crucial task in molecular biology. Most of the existing tools require proteins to be aligned in order-preserving way and only find single alignments even when multiple similar regions exist. We propose a new seed-based approach that discovers multiple pairs of similar regions. Its computational complexity is polynomial and it comes with a quality guarantee—the returned alignments have both root mean squared deviations (coordinate-based as well as internal-distances based) lower than a given threshold, if such exist. We do not require the alignments to be order preserving (i.e., we consider nonsequential alignments), which makesmore » our algorithm suitable for detecting similar domains when comparing multidomain proteins as well as to detect structural repetitions within a single protein. Because the search space for nonsequential alignments is much larger than for sequential ones, the computational burden is addressed by extensive use of parallel computing techniques: a coarse-grain level parallelism making use of available CPU cores for computation and a fine-grain level parallelism exploiting bit-level concurrency as well as vector instructions.« less

  1. A new look at the Lake Superior biomass size spectrum

    USGS Publications Warehouse

    Yurista, Peder M.; Yule, Daniel L.; Balge, Matt; VanAlstine, Jon D.; Thompson, Jo A.; Gamble, Allison E.; Hrabik, Thomas R.; Kelly, John R.; Stockwell, Jason D.; Vinson, Mark

    2014-01-01

    We synthesized data from multiple sampling programs and years to describe the Lake Superior pelagic biomass size structure. Data consisted of Coulter counts for phytoplankton, optical plankton counts for zooplankton, and acoustic surveys for pelagic prey fish. The size spectrum was stable across two time periods separated by 5 years. The primary scaling or overall slope of the normalized biomass size spectra for the combined years was −1.113, consistent with a previous estimate for Lake Superior (−1.10). Periodic dome structures within the overall biomass size structure were fit to polynomial regressions based on the observed sub-domes within the classical taxonomic positions (algae, zooplankton, and fish). This interpretation of periodic dome delineation was aligned more closely with predator–prey size relationships that exist within the zooplankton (herbivorous, predacious) and fish (planktivorous, piscivorous) taxonomic positions. Domes were spaced approximately every 3.78 log10 units along the axis and with a decreasing peak magnitude of −4.1 log10 units. The relative position of the algal and herbivorous zooplankton domes predicted well the subsequent biomass domes for larger predatory zooplankton and planktivorous prey fish.

  2. Pseudoparasitic Liesegang structures in perirenal hemorrhagic cysts.

    PubMed

    Sneige, N; Dekmezian, R H; Silva, E G; Cartwright, J; Ayala, A G

    1988-02-01

    Periodic structures with equally spaced radial striations identified as Liesegang-like rings were seen in two male patients' hemorrhagic perirenal cysts. The patients, one 48 and the other 60 years old, had acute right-flank pain and anemia; both had nephrectomy. The rings, initially believed to represent parasites (Dioctophyma renale), were from 8 to 500 micron in diameter and had uniform, pink-tan, radially striated double walls. Multiple small rings within a larger ring predominated in one case. Morphologically, the rings differed from D. renale when compared with specimens from animals infected naturally or experimentally with the giant kidney worm. Histochemical and immunoperoxidase tests for iron, calcium, mucopolysaccharides, amyloid, keratin, and hemoglobin had negative results. Energy-dispersive x-ray elemental analysis demonstrated no detectable elements; ultrastructurally, however, the rings displayed a fine fibrillary composition with a concentric and radial pattern. These rings are believed to be an end product of a phenomenon resembling or are, in fact, the Liesegang phenomenon. Because these Liesegang-like structures may be mistaken for parasites on fine-needle aspiration or surgical specimens of hemorrhagic areas, pathologists should be aware of them.

  3. Influence of CdTe Deposition Temperature and Window Thickness on CdTe Grain Size and Lifetime After CdCl 2 Recrystallization

    DOE PAGES

    Amarasinghe, Mahisha; Colegrove, Eric; Moutinho, Helio; ...

    2018-01-23

    Grain structure influences both transport and recombination in CdTe solar cells. Larger grains generally are obtained with higher deposition temperatures, but commercially it is important to avoid softening soda-lime glass. Furthermore, depositing at lower temperatures can enable different substrates and reduced cost in the future. We examine how initial deposition temperatures and morphology influence grain size and lifetime after CdCl 2 recrystallization. Techniques are developed to estimate grain distribution quickly with low-cost optical microscopy, which compares well with electron backscatter diffraction data providing corroborative assessments of exposed CdTe grain structures. Average grain size increases as a function of CdCl 2more » temperature. For lower temperature close-spaced sublimation CdTe depositions, there can be more stress and grain segregation during recrystallization. However, the resulting lifetimes and grain sizes are similar to high-temperature CdTe depositions. The grain structures and lifetimes are largely independent of the presence and/or interdiffusion of Se at the interface, before and after the CdCl 2 treatment.« less

  4. Multiscale time-dependent density functional theory: Demonstration for plasmons.

    PubMed

    Jiang, Jiajian; Abi Mansour, Andrew; Ortoleva, Peter J

    2017-08-07

    Plasmon properties are of significant interest in pure and applied nanoscience. While time-dependent density functional theory (TDDFT) can be used to study plasmons, it becomes impractical for elucidating the effect of size, geometric arrangement, and dimensionality in complex nanosystems. In this study, a new multiscale formalism that addresses this challenge is proposed. This formalism is based on Trotter factorization and the explicit introduction of a coarse-grained (CG) structure function constructed as the Weierstrass transform of the electron wavefunction. This CG structure function is shown to vary on a time scale much longer than that of the latter. A multiscale propagator that coevolves both the CG structure function and the electron wavefunction is shown to bring substantial efficiency over classical propagators used in TDDFT. This efficiency follows from the enhanced numerical stability of the multiscale method and the consequence of larger time steps that can be used in a discrete time evolution. The multiscale algorithm is demonstrated for plasmons in a group of interacting sodium nanoparticles (15-240 atoms), and it achieves improved efficiency over TDDFT without significant loss of accuracy or space-time resolution.

  5. Electric modulation of conduction in multiferroic Ni-doped GaFeO3 ceramics

    NASA Astrophysics Data System (ADS)

    Ghani, Awais; Yang, Sen; Rajput, S. S.; Ahmed, S.; Murtaza, Adil; Zhou, Chao; Yu, Zhonghai; Zhang, Yin; Song, Xiaoping; Ren, Xiaobing

    2018-06-01

    In this work, the effects of Ni substitution on the electrical leakage and multiferroic properties of GaFeO3 were examined. Structural analysis of grown ceramics using x-ray diffraction and Raman shows that all ceramics have pure phases with an orthorhombic structure and space group. Ni substitutions slightly modify lattice parameters and induce lattice distortion within the same crystalline structure. It is observed that with increasing Ni-content up to 0.10, the magnetic transition temperature () increases from 196 K to 407 K. Ni-doped samples showed better ferroelectric properties and a drastic reduction in leakage current (~three orders of magnitude) at room temperature. Enhanced characteristics behavior is observed for 10% Ni substitution (GaFe0.9Ni0.1O3) and higher substitution leads to deterioration of properties with a larger leakage current. It is proposed that the role of Ni substitution can reduce hopping between Fe+3 and Fe+2 as well as suppressing the oxygen vacancies. This work would open new possibilities for integrating polycrystalline GaFeO3 at room temperature for magnetoelectric applications.

  6. A Survey of Protein Structures from Archaeal Viruses

    PubMed Central

    Dellas, Nikki; Lawrence, C. Martin; Young, Mark J.

    2013-01-01

    Viruses that infect the third domain of life, Archaea, are a newly emerging field of interest. To date, all characterized archaeal viruses infect archaea that thrive in extreme conditions, such as halophilic, hyperthermophilic, and methanogenic environments. Viruses in general, especially those replicating in extreme environments, contain highly mosaic genomes with open reading frames (ORFs) whose sequences are often dissimilar to all other known ORFs. It has been estimated that approximately 85% of virally encoded ORFs do not match known sequences in the nucleic acid databases, and this percentage is even higher for archaeal viruses (typically 90%–100%). This statistic suggests that either virus genomes represent a larger segment of sequence space and/or that viruses encode genes of novel fold and/or function. Because the overall three-dimensional fold of a protein evolves more slowly than its sequence, efforts have been geared toward structural characterization of proteins encoded by archaeal viruses in order to gain insight into their potential functions. In this short review, we provide multiple examples where structural characterization of archaeal viral proteins has indeed provided significant functional and evolutionary insight. PMID:25371334

  7. Influence of CdTe Deposition Temperature and Window Thickness on CdTe Grain Size and Lifetime After CdCl 2 Recrystallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amarasinghe, Mahisha; Colegrove, Eric; Moutinho, Helio

    Grain structure influences both transport and recombination in CdTe solar cells. Larger grains generally are obtained with higher deposition temperatures, but commercially it is important to avoid softening soda-lime glass. Furthermore, depositing at lower temperatures can enable different substrates and reduced cost in the future. We examine how initial deposition temperatures and morphology influence grain size and lifetime after CdCl 2 recrystallization. Techniques are developed to estimate grain distribution quickly with low-cost optical microscopy, which compares well with electron backscatter diffraction data providing corroborative assessments of exposed CdTe grain structures. Average grain size increases as a function of CdCl 2more » temperature. For lower temperature close-spaced sublimation CdTe depositions, there can be more stress and grain segregation during recrystallization. However, the resulting lifetimes and grain sizes are similar to high-temperature CdTe depositions. The grain structures and lifetimes are largely independent of the presence and/or interdiffusion of Se at the interface, before and after the CdCl 2 treatment.« less

  8. Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold.

    PubMed

    Blakeney, Bryan A; Tambralli, Ajay; Anderson, Joel M; Andukuri, Adinarayana; Lim, Dong-Jin; Dean, Derrick R; Jun, Ho-Wook

    2011-02-01

    A limiting factor of traditional electrospinning is that the electrospun scaffolds consist entirely of tightly packed nanofiber layers that only provide a superficial porous structure due to the sheet-like assembly process. This unavoidable characteristic hinders cell infiltration and growth throughout the nanofibrous scaffolds. Numerous strategies have been tried to overcome this challenge, including the incorporation of nanoparticles, using larger microfibers, or removing embedded salt or water-soluble fibers to increase porosity. However, these methods still produce sheet-like nanofibrous scaffolds, failing to create a porous three-dimensional scaffold with good structural integrity. Thus, we have developed a three-dimensional cotton ball-like electrospun scaffold that consists of an accumulation of nanofibers in a low density and uncompressed manner. Instead of a traditional flat-plate collector, a grounded spherical dish and an array of needle-like probes were used to create a Focused, Low density, Uncompressed nanoFiber (FLUF) mesh scaffold. Scanning electron microscopy showed that the cotton ball-like scaffold consisted of electrospun nanofibers with a similar diameter but larger pores and less-dense structure compared to the traditional electrospun scaffolds. In addition, laser confocal microscopy demonstrated an open porosity and loosely packed structure throughout the depth of the cotton ball-like scaffold, contrasting the superficially porous and tightly packed structure of the traditional electrospun scaffold. Cells seeded on the cotton ball-like scaffold infiltrated into the scaffold after 7 days of growth, compared to no penetrating growth for the traditional electrospun scaffold. Quantitative analysis showed approximately a 40% higher growth rate for cells on the cotton ball-like scaffold over a 7 day period, possibly due to the increased space for in-growth within the three-dimensional scaffolds. Overall, this method assembles a nanofibrous scaffold that is more advantageous for highly porous interconnectivity and demonstrates great potential for tackling current challenges of electrospun scaffolds. 2010 Elsevier Ltd. All rights reserved.

  9. Volumetric analysis of cerebrospinal fluid and brain parenchyma in a patient with hydranencephaly and macrocephaly--case report.

    PubMed

    Radoš, Milan; Klarica, Marijan; Mučić-Pucić, Branka; Nikić, Ines; Raguž, Marina; Galkowski, Valentina; Mandić, Dora; Orešković, Darko

    2014-08-28

    The aim of this study was to perform for the first time the intracranial volumetric analysis of cerebrospinal fluid (CSF) and brain parenchyma in the supratentorial and infratentorial space in a 30-year-old female patient with hydranencephaly and macrocephaly. A head scan performed using a 3T magnetic resonance was followed by manual segmentation of the brain parenchyma and CSF on T2 coronal brain sections. The volume of CSF and brain parenchyma was measured separately for the supratentorial and infratentorial space. The total volume of the intracranial space was 3645.5 cm3. In the supratentorial space, the volume of CSF was 3375.2 cm3 and the volume of brain parenchyma was 80.3 cm3. In the infratentorial space, the volume of CSF was 101.3 cm3 and the volume of the brain parenchyma was 88.7 cm3. In the supratentorial space, there was severe malacia of almost all brain parenchyma with no visible remnants of the choroid plexuses. Infratentorial structures of the brainstem and cerebellum were hypoplastic but completely developed. Since our patient had no choroid plexuses in the supratentorial space and no obstruction between dural sinuses and CSF, development of hydrocephalus and macrocephaly cannot be explained by the classic hypothesis of CSF physiology with secretion, unidirectional circulation, and absorption as its basic postulates. However, the origin and turnover of the enormous amount of intracranial CSF volume, at least 10-fold larger than normal, and the mechanisms of macroencephaly development could be elucidated by the new hypothesis of CSF physiology recently published by our research team.

  10. Precision polymers and 3D DNA nanostructures: emergent assemblies from new parameter space.

    PubMed

    Serpell, Christopher J; Edwardson, Thomas G W; Chidchob, Pongphak; Carneiro, Karina M M; Sleiman, Hanadi F

    2014-11-05

    Polymer self-assembly and DNA nanotechnology have both proved to be powerful nanoscale techniques. To date, most attempts to merge the fields have been limited to placing linear DNA segments within a polydisperse block copolymer. Here we show that, by using hydrophobic polymers of a precisely predetermined length conjugated to DNA strands, and addressable 3D DNA prisms, we are able to effect the formation of unprecedented monodisperse quantized superstructures. The structure and properties of larger micelles-of-prisms were probed in depth, revealing their ability to participate in controlled release of their constituent nanostructures, and template light-harvesting energy transfer cascades, mediated through both the addressability of DNA and the controlled aggregation of the polymers.

  11. Nuclear reactor composite fuel assembly

    DOEpatents

    Burgess, Donn M.; Marr, Duane R.; Cappiello, Michael W.; Omberg, Ronald P.

    1980-01-01

    A core and composite fuel assembly for a liquid-cooled breeder nuclear reactor including a plurality of elongated coextending driver and breeder fuel elements arranged to form a generally polygonal bundle within a thin-walled duct. The breeder elements are larger in cross section than the driver elements, and each breeder element is laterally bounded by a number of the driver elements. Each driver element further includes structure for spacing the driver elements from adjacent fuel elements and, where adjacent, the thin-walled duct. A core made up of the fuel elements can advantageously include fissile fuel of only one enrichment, while varying the effective enrichment of any given assembly or core region, merely by varying the relative number and size of the driver and breeder elements.

  12. Intermolecular artifacts in probe microscope images of C60 assemblies

    NASA Astrophysics Data System (ADS)

    Jarvis, Samuel Paul; Rashid, Mohammad Abdur; Sweetman, Adam; Leaf, Jeremy; Taylor, Simon; Moriarty, Philip; Dunn, Janette

    2015-12-01

    Claims that dynamic force microscopy has the capability to resolve intermolecular bonds in real space continue to be vigorously debated. To date, studies have been restricted to planar molecular assemblies with small separations between neighboring molecules. Here we report the observation of intermolecular artifacts over much larger distances in 2D assemblies of C60 molecules, with compelling evidence that in our case the tip apex is terminated by a C60 molecule (rather than the CO termination typically exploited in ultrahigh resolution force microscopy). The complete absence of directional interactions such as hydrogen or halogen bonding, the nonplanar structure of C60, and the fullerene termination of the tip apex in our case highlight that intermolecular artifacts are ubiquitous in dynamic force microscopy.

  13. Experiment 3: Zeolite Crystal Growth in Microgravity- The USML-2 Mission

    NASA Technical Reports Server (NTRS)

    Bac, Nurcan; Warzywoda, Juliusz; Sacco, Albert, Jr.

    1998-01-01

    The extensive use of zeolites and their impact on the world's economy leads to many efforts to characterize their structure, and to improve the knowledge base for nucleation and growth of these crystals. The Zeolite Crystal Growth (ZCG) experiment on USML-2 aims to enhance the understanding of nucleation and growth of zeolite crystals while attempting to provide a means of controlling the defect concentration in microgravity. Zeolites A, X, Beta, and Silicalite were grown during the 16-day USML-2 mission. The solutions where the nucleation event was controlled yielded larger and more uniform crystals of better morphology and purity than their terrestrial/control counterparts. Space-grown Beta crystals were free of line defects while terrestrial/controls had substantial defects.

  14. Silent saviours: family members in a Bangladeshi hospital.

    PubMed

    Zaman, Shahaduz

    2013-01-01

    This paper is based on a larger ethnographic study that was conducted in a public hospital in Bangladesh and explores the experiences of family members who have kin in the hospital. The paper shows that family members are an integral part of the informal organisation of the Bangladeshi hospital. The obvious presence of family members in the ward has both structural and cultural dimensions. On one hand, it demonstrates the scarcity of manpower in the hospital, which is a result of general poverty in the country, and on the other hand, it manifests the deep cultural value of family in Bangladeshi life. The paper also shows how the hospital is an ambiguous space where both biomedical and domestic practices function simultaneously.

  15. DISCOVERY OF A RED GIANT WITH SOLAR-LIKE OSCILLATIONS IN AN ECLIPSING BINARY SYSTEM FROM KEPLER SPACE-BASED PHOTOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hekker, S.; Debosscher, J.; De Ridder, J.

    2010-04-20

    Oscillating stars in binary systems are among the most interesting stellar laboratories, as these can provide information on the stellar parameters and stellar internal structures. Here we present a red giant with solar-like oscillations in an eclipsing binary observed with the NASA Kepler satellite. We compute stellar parameters of the red giant from spectra and the asteroseismic mass and radius from the oscillations. Although only one eclipse has been observed so far, we can already determine that the secondary is a main-sequence F star in an eccentric orbit with a semi-major axis larger than 0.5 AU and orbital period longermore » than 75 days.« less

  16. Adsorption of methane on Zn(bdc)(ted)0.5 microporous metal-organic framework

    NASA Astrophysics Data System (ADS)

    Krungleviciute, Vaiva; Pramanik, Sanhita; Migone, Aldo; Li, Jing

    2011-03-01

    Zn(bdc)(ted)0.5 is metal-organic framework crystallized in a tetragonal space group with a 3D porous structure containing intersecting channels of two different sizes. The larger channels are parallel to the c axis and have a cross section 7.5 × 7.5 AA. The smaller channels are along both the a- and b-axes and have a cross section of 4.8 × 3.2 AA. We measured methane adsorption isotherms at several different temperatures between 82 and 102 K. We calculated the effective specific surface area, isosteric heat and binding energy values. Two distinct substeps were observed in the isotherms corresponding to two different adsorption sites. The origin of the substeps will be discussed.

  17. Purification, crystallization and preliminary X-ray structural studies of a 7.2 kDa cytotoxin isolated from the venom of Daboia russelli russelli of the Viperidae family

    PubMed Central

    Roy Choudhury, Subhasree; Gomes, Aparna; Gomes, Antony; Dattagupta, Jiban K.; Sen, Udayaditya

    2006-01-01

    A cytotoxin (MW 7.2 kDa) from Indian Russell’s viper (Daboia russelli russelli) venom possessing antiproliferative activity, cardiotoxicity, neurotoxicity and myotoxicity has been purified, characterized and crystallized. The crystals belong to the tetragonal space group P41, with unit-cell parameters a = b = 47.94, c = 50.2 Å. Larger crystals, which diffracted to 1.5 Å, were found to be twinned; diffraction data were therefore collected to 2.93 Å resolution using a smaller crystal. Molecular-replacement calculations identified two molecules of the protein in the asymmetric unit, which is in accordance with the calculated V M value. PMID:16511326

  18. Thermal and solutal conditions at the tips of a directional dendritic growth front

    NASA Technical Reports Server (NTRS)

    Mccay, T. D.; Mccay, Mary H.; Hopkins, John A.

    1991-01-01

    The line-of-sight averaged, time-dependent dendrite tip concentrations for the diffusion dominated vertical directional solidification of a metal model (ammonium chloride and water) were obtained by extrapolating exponentially fit diffusion layer profiles measured using a laser interferometer. The tip concentrations were shown to increase linearly with time throughout the diffusion dominated growth process for an initially stagnant dendritic array. The process was terminated for the cases chosen by convective breakdown suffered when the conditionally stable diffusion layer exceeded the critical Rayleigh criteria. The transient tip concentrations were determined to significantly exceed the values predicted for steady state, thus producing much larger constitutional undercoolings. This has ramifications for growth speeds, arm spacings and the dendritic structure itself.

  19. A first-order k-space model for elastic wave propagation in heterogeneous media.

    PubMed

    Firouzi, K; Cox, B T; Treeby, B E; Saffari, N

    2012-09-01

    A pseudospectral model of linear elastic wave propagation is described based on the first order stress-velocity equations of elastodynamics. k-space adjustments to the spectral gradient calculations are derived from the dyadic Green's function solution to the second-order elastic wave equation and used to (a) ensure the solution is exact for homogeneous wave propagation for timesteps of arbitrarily large size, and (b) also allows larger time steps without loss of accuracy in heterogeneous media. The formulation in k-space allows the wavefield to be split easily into compressional and shear parts. A perfectly matched layer (PML) absorbing boundary condition was developed to effectively impose a radiation condition on the wavefield. The staggered grid, which is essential for accurate simulations, is described, along with other practical details of the implementation. The model is verified through comparison with exact solutions for canonical examples and further examples are given to show the efficiency of the method for practical problems. The efficiency of the model is by virtue of the reduced point-per-wavelength requirement, the use of the fast Fourier transform (FFT) to calculate the gradients in k space, and larger time steps made possible by the k-space adjustments.

  20. Stellar imager (SI): enhancements to the mission enabled by the constellation architecture (Ares I/Ares V)

    NASA Astrophysics Data System (ADS)

    Carpenter, Kenneth G.; Karovska, Margarita; Lyon, Richard G.; Mozurkewich, D.; Schrijver, Carolus

    2009-08-01

    Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) with over 200x the resolution of HST. It will enable 0.1 milli-arcsec spectral imaging of stellar surfaces and the Universe in general and open an enormous new "discovery space" for astrophysics with its combination of high angular resolution, dynamic imaging, and spectral energy resolution. SI's goal is to study the role of magnetism in the Universe and revolutionize our understanding of: 1) Solar/Stellar Magnetic Activity and their impact on Space Weather, Planetary Climates, and Life, 2) Magnetic and Accretion Processes and their roles in the Origin & Evolution of Structure and in the Transport of Matter throughout the Universe, 3) the close-in structure of Active Galactic Nuclei and their winds, and 4) Exo-Solar Planet Transits and Disks. SI is a "Landmark/Discovery Mission" in 2005 Heliophysics Roadmap and a candidate UVOI in the 2006 Astrophysics Strategic Plan and is targeted for launch in the mid-2020's. It is a NASA Vision Mission and has been recommended for further study in a 2008 NRC report on missions potentially enabled/enhanced by an Ares V launch. In this paper, we discuss the science goals and required capabilities of SI, the baseline architecture of the mission assuming launch on one or more Delta rockets, and then the potential significant enhancements to the SI science and mission architecture that would be made possible by a launch in the larger volume Ares V payload fairing, and by servicing options under consideration in the Constellation program.

  1. Resonant magnetic scattering of polarized soft x rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sacchi, M.; Hague, C.F.; Gullikson, E.M.

    1997-04-01

    Magnetic effects on X-ray scattering (Bragg diffraction, specular reflectivity or diffuse scattering) are a well known phenomenon, and they also represent a powerful tool for investigating magnetic materials since it was shown that they are strongly enhanced when the photon energy is tuned across an absorption edge (resonant process). The resonant enhancement of the magnetic scattering has mainly been investigated at high photon energies, in order to match the Bragg law for the typical lattice spacings of crystals. In the soft X-ray range, even larger effects are expected, working for instance at the 2p edges of transition metals of themore » first row or at the 3d edges of rare earths (300-1500 eV), but the corresponding long wavelengths prevent the use of single crystals. Two approaches have been recently adopted in this energy range: (i) the study of the Bragg diffraction from artificial structures of appropriate 2d spacing; (ii) the analysis of the specular reflectivity, which contains analogous information but has no constraints related to the lattice spacing. Both approaches have their own specific advantages: for instance, working under Bragg conditions provides information about the (magnetic) periodicity in ordered structures, while resonant reflectivity can easily be related to electronic properties and absorption spectra. An important aspect common to all the resonant X-ray scattering techniques is the element selectivity inherent to the fact of working at a specific absorption edge: under these conditions, X-ray scattering becomes in fact a spectroscopy. Results are presented for films of iron and cobalt.« less

  2. Stellar Imager (SI): Enhancements to the Mission Enabled by the Constellation Architecture (Ares I/Ares V)

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Lyon, Richard G.; Karovska, Margarita; Mozurkwich, D.; Schrijver, Carolus

    2009-01-01

    Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) with over 200x the resolution of HST. It will enable 0.1 milli-aresec spectral imaging of stellar surfaces and the Universe in general and open an enormous new "discovery space" for astrophysics with its combination of high angular resolution, dynamic imaging , and spectral energy resolution. SI's goal is to study the role of magnetism in the Universe and revolutionize our understanding of 1) Solar/Stellar Magnetic Activity and their impact on Space Weather, Planetary Climates, and Life, 2) Magnetic and Accretion Processes and their roles in the Origin & Evolution of Structure and in the Transport of Matter throughout the Universe, 3) the close-in structure of Active Galactic Nuclei and their winds, and 4) Exo-Solar Planet Transits and Disks. SI is a "Landmark-Discovery Mission" in 2005 Heliophysics Roadmap and a candidate UVOI in the 2006 Astrophysics Strategic Plan and is targeted for launch in the mid-2020's. It is a NASA Vision Mission and has been recommended for further study in a 2008 NRC report on missions potentially enabled/enhanced by an Ares V launch. In this paper, we discuss the science goals and required capabilities of SI, the baseline architecture of the mission assuming launch on one or more Delta rockets, and then the potential significant enhancements to the SI science and mission architecture that would be made possible by a launch in the larger volume Ares V payload fairing, and by servicing options under consideration in the Constellation program.

  3. Superficial subarachnoid cerebrospinal fluid space expansion after surgical drainage of chronic subdural hematoma.

    PubMed

    Tosaka, Masahiko; Tsushima, Yoshito; Watanabe, Saiko; Sakamoto, Kazuya; Yodonawa, Masahiko; Kunimine, Hideo; Fujita, Haruyasu; Fujii, Takashi

    2015-07-01

    The present study examined the computed tomography (CT) findings after surgery and overnight drainage for chronic subdural hematoma (CSDH) to clear the significance of inner superficial subarachnoid CSF space and outer subdural hematoma cavity between the brain surface and the inner skull. A total of 73 sides in 60 patients were evaluated. Head CT was performed on the day after surgery and overnight drainage (1st CT), within 3 weeks of surgery (2nd CT), and more than 3 weeks after surgery (3rd CT). Subdural and subarachnoid spaces were identified to focus on density of fluid, shape of air collection, and location of silicone drainage tube, etc. Cases with subdural space larger than the subarachnoid CSF space were classified as Group SD between the brain and the skull. Cases with subarachnoid CSF space larger than the subdural space were classified as Group SA. Cases with extremely thin (<3 mm) spaces between the brain and the skull were classified as Group NS. Group SA, SD, and NS accounted for 31.9, 55.6 and 12.5% of cases on the 1st CT. No statistical differences were found between Groups SA, SD, and NS in any clinical factors, including recurrence. Group SA were found significantly more on 1st CT than on 2nd and 3rd CT. Subarachnoid CSF space sometimes expands between the brain and skull on CT after surgical overnight drainage. Expansion of the arachnoid space may be a passive phenomenon induced by overnight drainage and delayed re-expansion of the brain parenchyma.

  4. Propagative selection of tilted array patterns in directional solidification

    NASA Astrophysics Data System (ADS)

    Song, Younggil; Akamatsu, Silvère; Bottin-Rousseau, Sabine; Karma, Alain

    2018-05-01

    We investigate the dynamics of tilted cellular/dendritic array patterns that form during directional solidification of a binary alloy when a preferred-growth crystal axis is misoriented with respect to the temperature gradient. In situ experimental observations and phase-field simulations in thin samples reveal the existence of a propagative source-sink mechanism of array spacing selection that operates on larger space and time scales than the competitive growth at play during the initial solidification transient. For tilted arrays, tertiary branching at the diverging edge of the sample acts as a source of new cells with a spacing that can be significantly larger than the initial average spacing. A spatial domain of large spacing then invades the sample propagatively. It thus yields a uniform spacing everywhere, selected independently of the initial conditions, except in a small region near the converging edge of the sample, which acts as a sink of cells. We propose a discrete geometrical model that describes the large-scale evolution of the spatial spacing profile based on the local dependence of the cell drift velocity on the spacing. We also derive a nonlinear advection equation that predicts the invasion velocity of the large-spacing domain, and sheds light on the fundamental nature of this process. The models also account for more complex spacing modulations produced by an irregular dynamics at the source, in good quantitative agreement with both phase-field simulations and experiments. This basic knowledge provides a theoretical basis to improve the processing of single crystals or textured polycrystals for advanced materials.

  5. Optimization of Actuating Origami Networks

    NASA Astrophysics Data System (ADS)

    Buskohl, Philip; Fuchi, Kazuko; Bazzan, Giorgio; Joo, James; Gregory, Reich; Vaia, Richard

    2015-03-01

    Origami structures morph between 2D and 3D conformations along predetermined fold lines that efficiently program the form, function and mobility of the structure. By leveraging design concepts from action origami, a subset of origami art focused on kinematic mechanisms, reversible folding patterns for applications such as solar array packaging, tunable antennae, and deployable sensing platforms may be designed. However, the enormity of the design space and the need to identify the requisite actuation forces within the structure places a severe limitation on design strategies based on intuition and geometry alone. The present work proposes a topology optimization method, using truss and frame element analysis, to distribute foldline mechanical properties within a reference crease pattern. Known actuating patterns are placed within a reference grid and the optimizer adjusts the fold stiffness of the network to optimally connect them. Design objectives may include a target motion, stress level, or mechanical energy distribution. Results include the validation of known action origami structures and their optimal connectivity within a larger network. This design suite offers an important step toward systematic incorporation of origami design concepts into new, novel and reconfigurable engineering devices. This research is supported under the Air Force Office of Scientific Research (AFOSR) funding, LRIR 13RQ02COR.

  6. The [N II] Kinematics of R Aquarii

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Vogel, S. N.; VanBuren, D.; Strong, J. P.; Lyon, R. G.; Dorband, J. E.

    1998-01-01

    We report a kinematic study of the symbiotic star system R Aqr derived from [N H]lambda 6584 emission observations with a Fabry-Perot imaging spectrometer. The [N II] spatial structure of the R Aqr jet, first observed circa 1977, and surrounding hourglass-shaped nebulosity, due to an explosion approximately 660 years ago, are derived from 41 velocity planes spaced at approximately 12 km/s intervals. Fabry-Perot imagery shows the elliptical nebulosity comprising the waist of the hourglass shell is consistent with a circular ring expanding radially at 55 km/s as seen at an inclination angle, i approximately 70 deg. Fabry-Perot imagery shows the two-sided R Aqr jet is collimated flow in opposite directions. The intensity-velocity structure of the strong NE jet component is shown in contrast to the amorphous SW jet component. We offer a idealized schematic model for the R Aqr jet motion which results in a small-scale helical structure forming around a larger-scale helical path. The implications of such a jet model are discussed. We present a movie showing a side-by-side comparison of the spatial structure of the model and the data as a function of the 41 velocity planes.

  7. Simulation of self-assembly of polyzwitterions into vesicles

    DOE PAGES

    Mahalik, Jyoti P.; Muthukumar, Murugappan

    2016-08-19

    Using the Langevin dynamics method and a coarse-grained model, we have researched the formation of vesicles by hydrophobic polymers consisting of periodically placed zwitterion side groups in dilute salt-free aqueous solutions. The zwitterions, being permanent charge dipoles, provide long-range electrostatic correlations which are interfered by the conformational entropy of the polymer. Our simulations are geared towards gaining conceptual understanding in these correlated dipolar systems, where theoretical calculations are at present formidable. A competition between hydrophobic interactions and dipole-dipole interactions leads to a series of self-assembled structures. As the spacing d between the successive zwitterion side groups decreases, single chains undergomore » globule → disk → worm-like structures. We have calculated the Flory-Huggins χ parameter for these systems in terms of d and monitored the radius of gyration, hydrodynamic radius, spatial correlations among hydrophobic and dipole monomers, and dipole-dipole orientational correlation functions. During the subsequent stages of self-assembly, these structures lead to larger globules and vesicles as d is decreased up to a threshold value, below which no large scale morphology forms. Finally the vesicles form via a polynucleation mechanism whereby disk-like structures form first, followed by their subsequent merger.« less

  8. Pathways to the Professoriate: The Role of Self, Others, and Environment in Shaping Academic Career Aspirations

    ERIC Educational Resources Information Center

    Lindholm, Jennifer A.

    2004-01-01

    The findings reported here are part of a larger study that examined how faculty view the linkages between themselves and their institutional work environments; how they create a sense of personal space and belonging within their academic units and the larger university; and how their self-perceptions of organizational fit affect their professional…

  9. Wide-field Hubble Space Telescope Observations of the Globular Cluster System in NGC 1399

    NASA Astrophysics Data System (ADS)

    Puzia, Thomas H.; Paolillo, Maurizio; Goudfrooij, Paul; Maccarone, Thomas J.; Fabbiano, Giuseppina; Angelini, Lorella

    2014-05-01

    We present a comprehensive high spatial resolution imaging study of globular clusters (GCs) in NGC 1399, the central giant elliptical cD galaxy in the Fornax galaxy cluster, conducted with the Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST). Using a novel technique to construct drizzled point-spread function libraries for HST/ACS data, we accurately determine the fidelity of GC structural parameter measurements from detailed artificial star cluster experiments and show the superior robustness of the GC half-light radius, rh , compared with other GC structural parameters, such as King core and tidal radius. The measurement of rh for the major fraction of the NGC 1399 GC system reveals a trend of increasing rh versus galactocentric distance, R gal, out to about 10 kpc and a flat relation beyond. This trend is very similar for blue and red GCs, which are found to have a mean size ratio of r h, red/r h, blue = 0.82 ± 0.11 at all galactocentric radii from the core regions of the galaxy out to ~40 kpc. This suggests that the size difference between blue and red GCs is due to internal mechanisms related to the evolution of their constituent stellar populations. Modeling the mass density profile of NGC 1399 shows that additional external dynamical mechanisms are required to limit the GC size in the galaxy halo regions to rh ≈ 2 pc. We suggest that this may be realized by an exotic GC orbit distribution function, an extended dark matter halo, and/or tidal stress induced by the increased stochasticity in the dwarf halo substructure at larger galactocentric distances. We compare our results with the GC rh distribution functions in various galaxies and find that the fraction of extended GCs with rh >= 5 pc is systematically larger in late-type galaxies compared with GC systems in early-type galaxies. This is likely due to the dynamically more violent evolution of early-type galaxies. We match our GC rh measurements with radial velocity data from the literature and split the resulting sample at the median rh value into compact and extended GCs. We find that compact GCs show a significantly smaller line-of-sight velocity dispersion, langσcmprang = 225 ± 25 km s-1, than their extended counterparts, langσextrang = 317 ± 21 km s-1. Considering the weaker statistical correlation in the GC rh color and the GC rh -R gal relations, the more significant GC size-dynamics relation appears to be astrophysically more relevant and hints at the dominant influence of the GC orbit distribution function on the evolution of GC structural parameters. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555.

  10. Performing Mineral Hydration Experiments in the CheMin Diffractometer on Mars

    NASA Technical Reports Server (NTRS)

    Vaniman, D. T.; Yen, A. S.; Rampe, E. B.; Blake, D. F.; Chipera, S. J.; Morookian, J. M.; Ming, D. W.; Bristow, T. F.; Morris, R. V.; Geller, R.; hide

    2016-01-01

    Laboratory work is the cornerstone of experimental planetary geochemistry, mineralogy, and petrology, but much is to be gained by "experiments" while on a planet surface. Earth-bound experiments are often limited in ability to control multiple conditions relevant to planetary bodies (e.g. cycles in temperature and vapor pressure of water), but observations on-planet provide a unique opportunity where conditions are native to the planet and those affected by sampling and analysis can be constrained. The CheMin XRD instrument on Mars Science Laboratory has been able to test mineral hydration in samples held for up to 300 Mars days (sols). Clay minerals sampled at Yellowknife Bay early in the mission had both collapsed (10 Å) and expanded (13.2 Å) basal spacing. Collapsed interlayers were expected, but larger spacing was not; it was uncertain whether larger basal spacing would collapse on prolonged exposure to warmer conditions inside CheMin. Observation over several hundred sols showed no collapse, with the conclusion that expanded interlayer spacing was due to partial intercalation by metal-hydroxyl groups that resist dehydration. More recently, a sample of the Murray Formation, Oudam, provided the first XRD detection of gypsum and a chance to observe gypsum stability. Laboratory work suggests gypsum should be stable at Mars surface conditions, and indeed gypsum has been observed from orbit at higher latitudes and in thick veins at Yellowknife Bay by Mastcam reflectance spectra. Laboratory experiments have shown that on dehydration the gypsum would not become X-ray amorphous but would rather transform to a water-deficient bassanite structure. Over a period of 37 sols, it was observed that the Oudam sample in CheMin transformed from an assemblage of gypsum+anhydrite, to gypsum+bassanite+anhydrite, and finally to bassanite+anhydrite. Mg-sulfates were also anticipated but have not been observed in CheMin despite chemical evidence for their presence. Unlike gypsum, hydrated Mg-sulfates can transition to an X-ray amorphous form. Crystalline Mg-sulfates are expected higher in the section on Mount Sharp, where it should be possible to determine whether they persist or are destabilized after sampling, providing further insight into hydrous mineral stability at Mars near-equatorial conditions.

  11. Shell structures in aluminum nanocontacts at elevated temperatures

    PubMed Central

    2012-01-01

    Aluminum nanocontact conductance histograms are studied experimentally from room temperature up to near the bulk melting point. The dominant stable configurations for this metal show a very early crossover from shell structures at low wire diameters to ionic subshell structures at larger diameters. At these larger radii, the favorable structures are temperature-independent and consistent with those expected for ionic subshell (faceted) formations in face-centered cubic geometries. When approaching the bulk melting temperature, these local stability structures become less pronounced as shown by the vanishing conductance histogram peak structure. PMID:22325572

  12. HUBBLE SPACE TELESCOPE FAR ULTRAVIOLET SPECTROSCOPY OF THE RECURRENT NOVA T PYXIDIS

    PubMed Central

    Godon, Patrick; Sion, Edward M.; Starrfield, Sumner; Livio, Mario; Williams, Robert E.; Woodward, Charles E.; Kuin, Paul; Page, Kim L.

    2018-01-01

    With six recorded nova outbursts, the prototypical recurrent nova T Pyxidis (T Pyx) is the ideal cataclysmic variable system to assess the net change of the white dwarf mass within a nova cycle. Recent estimates of the mass ejected in the 2011 outburst ranged from a few ~10−5 M⊙ to 3.3 × 10−4 M⊙, and assuming a mass accretion rate of 10−8−10−7 M⊙ yr−1 for 44 yr, it has been concluded that the white dwarf in T Pyx is actually losing mass. Using NLTE disk modeling spectra to fit our recently obtained Hubble Space Telescope COS and STIS spectra, we find a mass accretion rate of up to two orders of magnitude larger than previously estimated. Our larger mass accretion rate is due mainly to the newly derived distance of T Pyx (4.8 kpc, larger than the previous 3.5 kpc estimate), our derived reddening of E(B − V) = 0.35 (based on combined IUE and GALEX spectra), and NLTE disk modeling (compared to blackbody and raw flux estimates in earlier works). We find that for most values of the reddening (0.25 ≤ E(B−V) ≤ 0.50) and white dwarf mass (0.70 M⊙ ≤ Mwd ≤ 1.35 M⊙) the accreted mass is larger than the ejected mass. Only for a low reddening (~0.25 and smaller) combined with a large white dwarf mass (0.9 M⊙ and larger) is the ejected mass larger than the accreted one. However, the best results are obtained for a larger value of reddening. PMID:29430290

  13. HUBBLE SPACE TELESCOPE FAR ULTRAVIOLET SPECTROSCOPY OF THE RECURRENT NOVA T PYXIDIS.

    PubMed

    Godon, Patrick; Sion, Edward M; Starrfield, Sumner; Livio, Mario; Williams, Robert E; Woodward, Charles E; Kuin, Paul; Page, Kim L

    2014-04-01

    With six recorded nova outbursts, the prototypical recurrent nova T Pyxidis (T Pyx) is the ideal cataclysmic variable system to assess the net change of the white dwarf mass within a nova cycle. Recent estimates of the mass ejected in the 2011 outburst ranged from a few ~10 -5 M ⊙ to 3.3 × 10 -4 M ⊙ , and assuming a mass accretion rate of 10 -8 -10 -7 M ⊙ yr -1 for 44 yr, it has been concluded that the white dwarf in T Pyx is actually losing mass. Using NLTE disk modeling spectra to fit our recently obtained Hubble Space Telescope COS and STIS spectra, we find a mass accretion rate of up to two orders of magnitude larger than previously estimated. Our larger mass accretion rate is due mainly to the newly derived distance of T Pyx (4.8 kpc, larger than the previous 3.5 kpc estimate), our derived reddening of E ( B - V ) = 0.35 (based on combined IUE and GALEX spectra), and NLTE disk modeling (compared to blackbody and raw flux estimates in earlier works). We find that for most values of the reddening (0.25 ≤ E ( B - V ) ≤ 0.50) and white dwarf mass (0.70 M ⊙ ≤ M wd ≤ 1.35 M ⊙ ) the accreted mass is larger than the ejected mass. Only for a low reddening (~0.25 and smaller) combined with a large white dwarf mass (0.9 M ⊙ and larger) is the ejected mass larger than the accreted one. However, the best results are obtained for a larger value of reddening.

  14. Comparison of inkjet-printed silver conductors on different microsystem substrates

    NASA Astrophysics Data System (ADS)

    Kruger, Jené; Bezuidenhout, Petroné H.; Joubert, Trudi-Heleen

    2016-02-01

    Applications for diagnostic and environmental point-of-need require processes and building blocks to add smart features to disposable biosensors on low-cost substrates. A novel method for producing such biosensors is printing electronics using additive technologies. This work contributes to the toolbox of processes, materials and components for printed electronics manufacturing - as well as rapid prototyping - of circuits. Printing protocols were developed to facilitate successful inkjet printing of nanosilver ink (Harima NPS-JL) onto different microsystem substrates using a functional printer (Dimatix DMP-3281). Photo paper is a standard inkjet substrate, which were compared with glass, polycarbonate (PC), plastic projector transparency foil, and polydimethylsiloxane (PDMS). Comparison attributes include physical and electrical properties. The layout design comprised dogbone elements of 8 mm length, and widths varying between 100 μm and 2 mm. All printed features were thermally cured for 1 hour at 120 °C. The physical characteristics were measured with a laser scanning microscope (Zeiss LSM-5) to determine the width, thickness and surface roughness of the printed features. An LCR meter (GW-Instek 8110) was used to measure the printed structures' electrical characteristics (resistance, capacitance and inductance). A lumped element model and layout design rules were extracted to assist in standardized design procedures. The model incorporates prediction of the bandwidth attainable with these structures. The layer thickness on all substrates is larger than the 1 μm on photo paper, and varies between 1.6 μm (PC) and 7 μm (PDMS). The spreading for PDMS is similar to photo paper, but since for the other substrates it is between 5 (glass) and 10 (PC) times larger than for photo paper, the layout design rules require large spacing, leading to larger area networks. Electrical probing on the PDMS is not consistent and results are inconclusive. For the other substrates, the comparative dogbone resistance (100 μm width) is significantly larger than the 2 Ω standard, varying from 12.6 Ω (PC) to 19.3 Ω (glass). The bandwidth relative to photo paper is smaller by a factor of between 6 (PC) and 9.5 (glass).

  15. Emissivity of half-space random media. [in passive remote sensing

    NASA Technical Reports Server (NTRS)

    Tsang, L.; Kong, J. A.

    1976-01-01

    Scattering of electromagnetic waves by a half-space random medium with three-dimensional correlation functions is studied with the Born approximation. The emissivity is calculated from a simple integral and is illustrated for various cases. The results are valid over a wavelength range smaller or larger than the correlation lengths.

  16. Exceptional Kids Need More Feet: Designing Barrier-Free Schools for Special-Education Students.

    ERIC Educational Resources Information Center

    Merritt, Edwin T.; Beaudin, James A.; Sells, Jeffrey A.

    2000-01-01

    A prime mover behind larger space requirements is expansion of legal entitlements for children with disabilities, under the Individuals with Disabilities Education Act. The list of architectural interventions has lengthened, and is matched by burgeoning effects on space and budgets. Nonphysical barriers must also be addressed. (MLH)

  17. Small-Scale Design Experiments as Working Space for Larger Mobile Communication Challenges

    ERIC Educational Resources Information Center

    Lowe, Sarah; Stuedahl, Dagny

    2014-01-01

    In this paper, a design experiment using Instagram as a cultural probe is submitted as a method for analyzing the challenges that arise when considering the implementation of social media within a distributed communication space. It outlines how small, iterative investigations can reveal deeper research questions relevant to the education of…

  18. Assessment of the perception of verticality and horizontality with self-paced saccades.

    PubMed

    Pettorossi, V E; Bambagioni, D; Bronstein, A M; Gresty, M A

    1998-07-01

    We investigated the ability of human subjects (Ss) to make self-paced saccades in the earth-vertical and horizontal directions (space-referenced task) and in the direction of the head-vertical and horizontal axis (self-referenced task) during whole body tilts of 0 degrees, 22.5 degrees, 45 degrees and 90 degrees in the frontal (roll) plane. Saccades were recorded in the dark with computerised video-oculography. During space-referenced tasks, the saccade vectors did not fully counter-rotate to compensate for larger angles of body tilt. This finding is in agreement with the 'A' effect reported for the visual vertical. The error was significantly larger for saccades intended to be space-horizontal than space-vertical. This vertico-horizontal dissociation implies greater difficulty in defining horizontality than verticality with the non-visual motor task employed. In contrast, normal Ss (and an alabyrinthine subject tested) were accurate in orienting saccades to their own (cranio-centric) vertical and horizontal axes regardless of tilt indicating that cranio-centric perception is robust and apparently not affected by gravitational influences.

  19. Effect of Subelement Spacing in Rrp Nb3Sn Deformed Strands

    NASA Astrophysics Data System (ADS)

    Barzi, E.; Turrioni, D.; Alsharo'a, M.; Field, M.; Hong, S.; Parrell, J.; Yamada, R.; Zhang, Y.; Zlobin, A. V.

    2008-03-01

    The Restacked Rod Process (RRP) is the Nb3Sn strand technology presently producing the largest critical current densities at 4.2 K and 12 T. However, when subject to transverse plastic deformation, RRP subelements (SE) merge into each other, creating larger filaments with a somewhat continuous barrier. In this case, the strand sees a larger effective filament size and its instability can dramatically increase locally leading to a cable quench. To reduce and possibly eliminate this effect, Oxford Instruments Superconducting Technology (OST) developed for FNAL a modified RRP strand design with larger Cu spacing between SE's arranged in a 60/61 array. Strand samples of this design with sizes from 0.7 to 1 mm were first evaluated for transport current properties. A comparison study was then performed between the regular 54/61 and the modified 60/61 design using 0.7 mm round and deformed strands. Finite element modeling of the deformed strands was also performed with ANSYS.

  20. The HR 4796A Debris System: Discovery of Extensive Exo-ring Dust Material

    NASA Astrophysics Data System (ADS)

    Schneider, Glenn; Debes, John H.; Grady, Carol A.; Gáspár, Andras; Henning, Thomas; Hines, Dean C.; Kuchner, Marc J.; Perrin, Marshall; Wisniewski, John P.

    2018-02-01

    The optically and IR-bright and starlight-scattering HR 4796A ringlike debris disk is one of the most- (and best-) studied exoplanetary debris systems. The presence of a yet-undetected planet has been inferred (or suggested) from the narrow width and inner/outer truncation radii of its r = 1.″05 (77 au) debris ring. We present new, highly sensitive Hubble Space Telescope (HST) visible-light images of the HR 4796A circumstellar debris system and its environment over a very wide range of stellocentric angles from 0.″32 (23 au) to ≈15″ (1100 au). These very high-contrast images were obtained with the Space Telescope Imaging Spectrograph (STIS) using six-roll PSF template–subtracted coronagraphy suppressing the primary light of HR 4796A, with three image-plane occulters, and simultaneously subtracting the background light from its close angular proximity M2.5V companion. The resulting images unambiguously reveal the debris ring embedded within a much larger, morphologically complex, and biaxially asymmetric exo-ring scattering structure. These images at visible wavelengths are sensitive to and map the spatial distribution, brightness, and radial surface density of micron-size particles over 5 dex in surface brightness. These particles in the exo-ring environment may be unbound from the system and interacting with the local ISM. Herein, we present a new morphological and photometric view of the larger-than-prior-seen HR 4796A exoplanetary debris system with sensitivity to small particles at stellocentric distances an order of magnitude greater than has previously been observed.

Top