40 CFR 63.5995 - What are my monitoring installation, operation, and maintenance requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... paragraphs (a) and (b)(1) through (8) of this section. (1) Locate the temperature sensor in a position that provides a representative temperature. (2) For a non-cryogenic temperature range, use a temperature sensor... value, whichever is larger. (3) For a cryogenic temperature range, use a temperature sensor with a...
Host selection and lethality of attacks by sea lampreys (Petromyzon marinus) in laboratory studies
Swink, William D.
2003-01-01
Parasitic-phase sea lampreys (Petromyzon marinus) are difficult to study in the wild. A series of laboratory studies (1984-1995) of single attacks on lake trout (Salvelinus namaycush), rainbow trout (Oncorhynchus mykiss), and burbot (Lota lota) examined host size selection; determined the effects of host size, host species, host strain, and temperature on host mortality; and estimated the weight of hosts killed per lamprey. Rainbow trout were more able and burbot less able to survive attacks than lake trout. Small sea lampreys actively selected the larger of two small hosts; larger sea lampreys attacked larger hosts in proportion to the hosts' body sizes, but actively avoided shorter hosts (a?? 600 mm) when larger were available. Host mortality was significantly less for larger (43-44%) than for smaller hosts (64%). However, the yearly loss of hosts per sea lamprey was less for small hosts (range, 6.8-14.2 kg per sea lamprey) than larger hosts (range, 11.4-19.3 kg per sea lamprey). Attacks at the lower of two temperature ranges (6.1-11.8A?C and 11.1-15.0A?C) did not significantly reduce the percentage of hosts killed (54% vs. 69%, p > 0.21), but longer attachment times at lower temperatures reduced the number of hosts attacked (33 vs. 45), and produced the lowest loss of hosts (6.6 kg per sea lamprey). Low temperature appeared to offset other factors that increase host mortality. Reanalysis of 789 attacks pooled from these studies, using forward stepwise logistic regression, also identified mean daily temperature as the dominant factor affecting host mortality. Observations in Lakes Superior, Huron, and Ontario support most laboratory results.
Miller, Colleen R; Latimer, Christopher E; Zuckerberg, Benjamin
2018-05-01
Allen's rule predicts that homeotherms inhabiting cooler climates will have smaller appendages, while those inhabiting warmer climates will have larger appendages relative to body size. Birds' bills tend to be larger at lower latitudes, but few studies have tested whether modern climate change and urbanization affect bill size. Our study explored whether bill size in a wide-ranging bird would be larger in warmer, drier regions and increase with rising temperatures. Furthermore, we predicted that bill size would be larger in densely populated areas, due to urban heat island effects and the higher concentration of supplementary foods. Using measurements from 605 museum specimens, we explored the effects of climate and housing density on northern cardinal bill size over an 85-year period across the Linnaean subspecies' range. We quantified the geographic relationships between bill surface area, housing density, and minimum temperature using linear mixed effect models and geographically weighted regression. We then tested whether bill surface area changed due to housing density and temperature in three subregions (Chicago, IL., Washington, D.C., and Ithaca, NY). Across North America, cardinals occupying drier regions had larger bills, a pattern strongest in males. This relationship was mediated by temperature such that birds in warm, dry areas had larger bills than those in cool, dry areas. Over time, female cardinals' bill size increased with warming temperatures in Washington, D.C., and Ithaca. Bill size was smaller in developed areas of Chicago, but larger in Washington, D.C., while there was no pattern in Ithaca, NY. We found that climate and urbanization were strongly associated with bill size for a wide-ranging bird. These biogeographic relationships were characterized by sex-specific differences, varying relationships with housing density, and geographic variability. It is likely that anthropogenic pressures will continue to influence species, potentially promoting microevolutionary changes over space and time.
Temperature Dependence of the Thermal Conductivity of Single Wall Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Osman, Mohamed A.; Srivastava, Deepak
2000-01-01
The thermal conductivity of several single wall carbon nanotubes (CNT) has been calculated over a temperature range of 100-500 K using molecular dynamics simulations with Tersoff-Brenner potential for C-C interactions. In all cases, starting from similar values at 100K, thermal conductivities show a peaking behavior before falling off at higher temperatures. The peak position shifts to higher temperatures for nanotubes of larger diameter, and no significant dependence on the tube chirality is observed. It is shown that this phenomenon is due to onset of Umklapp scattering, which shifts to higher temperatures for nanotubes of larger diameter.
Cryogenic fiber optic temperature sensor and method of manufacturing the same
NASA Technical Reports Server (NTRS)
Kochergin, Vladimir (Inventor)
2012-01-01
This invention teaches the fiber optic sensors temperature sensors for cryogenic temperature range with improved sensitivity and resolution, and method of making said sensors. In more detail, the present invention is related to enhancement of temperature sensitivity of fiber optic temperature sensors at cryogenic temperatures by utilizing nanomaterials with a thermal expansion coefficient that is smaller than the thermal expansion coefficient of the optical fiber but larger in absolute value than the thermal expansion coefficient of the optical fiber at least over a range of temperatures.
NASA Astrophysics Data System (ADS)
Weiss, Monika; Thatje, Sven; Heilmayer, Olaf
2010-06-01
Phenotypic plasticity is an important but often ignored ability that enables organisms, within species-specific physiological limits, to respond to gradual or sudden extrinsic changes in their environment. In the marine realm, the early ontogeny of decapod crustaceans is among the best known examples to demonstrate a temperature-dependent phenotypic response. Here, we present morphometric results of larvae of the hairy crab Cancer setosus, the embryonic development of which took place at different temperatures at two different sites (Antofagasta, 23°45' S; Puerto Montt, 41°44' S) along the Chilean Coast. Zoea I larvae from Puerto Montt were significantly larger than those from Antofagasta, when considering embryonic development at the same temperature. Larvae from Puerto Montt reared at 12 and 16°C did not differ morphometrically, but sizes of larvae from Antofagasta kept at 16 and 20°C did, being larger at the colder temperature. Zoea II larvae reared in Antofagasta at three temperatures (16, 20, and 24°C) showed the same pattern, with larger larvae at colder temperatures. Furthermore, larvae reared at 24°C, showed deformations, suggesting that 24°C, which coincides with temperatures found during strong EL Niño events, is indicative of the upper larval thermal tolerance limit. C. setosus is exposed to a wide temperature range across its distribution range of about 40° of latitude. Phenotypic plasticity in larval offspring does furthermore enable this species to locally respond to the inter-decadal warming induced by El Niño. Morphological plasticity in this species does support previously reported energetic trade-offs with temperature throughout early ontogeny of this species, indicating that plasticity may be a key to a species’ success to occupy a wide distribution range and/or to thrive under highly variable habitat conditions.
Sheth, Seema N; Angert, Amy L
2014-10-01
The geographic ranges of closely related species can vary dramatically, yet we do not fully grasp the mechanisms underlying such variation. The niche breadth hypothesis posits that species that have evolved broad environmental tolerances can achieve larger geographic ranges than species with narrow environmental tolerances. In turn, plasticity and genetic variation in ecologically important traits and adaptation to environmentally variable areas can facilitate the evolution of broad environmental tolerance. We used five pairs of western North American monkeyflowers to experimentally test these ideas by quantifying performance across eight temperature regimes. In four species pairs, species with broader thermal tolerances had larger geographic ranges, supporting the niche breadth hypothesis. As predicted, species with broader thermal tolerances also had more within-population genetic variation in thermal reaction norms and experienced greater thermal variation across their geographic ranges than species with narrow thermal tolerances. Species with narrow thermal tolerance may be particularly vulnerable to changing climatic conditions due to lack of plasticity and insufficient genetic variation to respond to novel selection pressures. Conversely, species experiencing high variation in temperature across their ranges may be buffered against extinction due to climatic changes because they have evolved tolerance to a broad range of temperatures. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
NASA Technical Reports Server (NTRS)
Smart, Marshall C.; Tomcsi, Michael R.; Hwang, C.; Whitcanack, L. D.; Bugga, Ratnakumar V.; Nagata, Mikito; Visco, Vince; Tsukamoto, Hisashi
2012-01-01
Demonstration of wide operating temperature range Li-ion electrolytes Methyl propionate-based wide operating temperature range electrolytes were demonstrated to provide dramatic improvement of the low temperature capability of Quallion prototype Li-ion cells (MCMB-LiNiCoAlO2). Some formulations were observed to deliver over 60% of the room temperature capacity using a 5C rate at - 40oC !! Represents over a 4-fold improvement over the baseline electrolyte system. Demonstrated operational capability of a number of systems over a wide temperature range (-40 to +70 C) Demonstrated reasonably good long term cycle life performance at high temperature (i.e., at +40deg and +50 C) A number of formulations containing electrolytes additives (i.e., FEC, VC, LiBOB, and lithium oxalate) have been shown to have enhanced lithium kinetics at low temperature and promising high temperature resilience. Demonstrated good performance in larger capacity (12 Ah) Quallion Li-ion cells with methyl propionate-based electrolytes. Current efforts focused upon performing life studies and the impact upon low temperature capability.
NASA Astrophysics Data System (ADS)
Chen, Xiangping; Duan, Haiming; Cao, Biaobing; Long, Mengqiu
2018-03-01
The high-temperature first-principle molecular dynamics method used to obtain the low energy configurations of clusters [L. L. Wang and D. D. Johnson, PRB 75, 235405 (2007)] is extended to a considerably large temperature range by combination with the quenching technique. Our results show that there are strong correlations between the possibilities for obtaining the ground-state structure and the temperatures. Larger possibilities can be obtained at relatively low temperatures (as corresponds to the pre-melting temperature range). Details of the structural correlation with the temperature are investigated by taking the Pt13 cluster as an example, which suggests a quite efficient method to obtain the lowest-energy geometries of metal clusters.
Conductor-backed coplanar waveguide resonators of Y-Ba-Cu-O and Tl-Ba-Ca-Cu-O on LaAlO3
NASA Technical Reports Server (NTRS)
Miranda, F. A.; Bhasin, K. B.; Stan, M. A.; Kong, K. S.; Itoh, T.
1992-01-01
Conductor-backed coplanar waveguide (CBCPW) resonators operating at 10.8 GHz have been fabricated from Tl-Ba-Ca-O (TBCCO) and Y-Ba-Cu-O (YBCO) thin films on LaAlO3. The resonators consist of a coplanar waveguide (CPW) patterned on the superconducting film side of the LaAlO3 substrate with a gold ground plane coated on the opposite side. These resonators were tested in the temperature range from 14 to 106 K. At 77 K, the best of our TBCCO and YBCO resonators have an unloaded quality factor (Qo) 7 and 4 times, respectively, larger than that of a similar all-gold resonator. In this study, the Qo's of the TBCCO resonators were larger than those of their YBCO counterparts throughout the aforementioned temperature range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobas, Miroslav; Weber, Thomas; Steurer, Walter
The three-dimensional (3D) difference Patterson (autocorrelation) function of a disordered quasicrystal (Edagawa phase) has been analyzed. 3D diffuse x-ray diffraction data were collected in situ at 300, 1070, and 1120 K. A method, the punch-and-fill technique, has been developed for separating diffuse scattering and Bragg reflections. Its potential and limits are discussed in detail. The different Patterson maps are interpreted in terms of intercluster correlations as a function of temperature. Both at high and low temperatures, the clusters decorate the vertices of the same quasiperiodic covering. At low temperatures, for the disordered part of the structure, short-range intercluster correlations aremore » present, whereas at higher temperatures, medium-range intercluster correlations are formed. This indicates disorder mainly inside clusters at low temperatures, whereas at higher temperatures disorder takes place inside larger superclusters. Qualitatively, the Patterson maps may be interpreted by intercluster correlations mainly inside pentagonal superclusters below 1120 K, and inside the larger decagonal superclusters at 1120 K. The results of our diffraction study are published in two parts. Part I focuses on the 3D Patterson analysis based on experimental data, Part II reports modeling of structural disorder in decagonal Al-Co-Ni.« less
Morley, N J; Adam, M E; Lewis, J W
2010-09-01
The production of cercariae from their snail host is a fundamental component of transmission success in trematodes. The emergence of Echinoparyphium recurvatum (Trematoda: Echinostomatidae) cercariae from Lymnaea peregra was studied under natural sunlight conditions, using naturally infected snails of different sizes (10-17 mm) within a temperature range of 10-29 degrees C. There was a single photoperiodic circadian cycle of emergence with one peak, which correlated with the maximum diffuse sunlight irradiation. At 21 degrees C the daily number of emerging cercariae increased with increasing host snail size, but variations in cercarial emergence did occur between both individual snails and different days. There was only limited evidence of cyclic emergence patterns over a 3-week period, probably due to extensive snail mortality, particularly those in the larger size classes. Very few cercariae emerged in all snail size classes at the lowest temperature studied (10 degrees C), but at increasingly higher temperatures elevated numbers of cercariae emerged, reaching an optimum between 17 and 25 degrees C. Above this range emergence was reduced. At all temperatures more cercariae emerged from larger snails. Analysis of emergence using the Q10 value, a measure of physiological processes over temperature ranges, showed that between 10 and 21 degrees C (approximately 15 degrees C) Q10 values exceeded 100 for all snail size classes, indicating a substantially greater emergence than would be expected for normal physiological rates. From 14 to 25 degrees C (approximately 20 degrees C) cercarial emergence in most snail size classes showed little change in Q10, although in the smallest size class emergence was still substantially greater than the typical Q10 increase expected over this temperature range. At the highest range of 21-29 degrees C (approximately 25 degrees C), Q10 was much reduced. The importance of these results for cercarial emergence under global climate change is discussed.
Diel stream temperature regimes of Bukovsky regions of the conterminous United States
NASA Astrophysics Data System (ADS)
Ferencz, Stephen B.; Cardenas, M. Bayani
2017-03-01
Stream temperature which varies over daily to seasonal timescales is a primary control on myriad ecological, biogeochemical, and physical processes. Yet geographic patterns of its diel variations have not been fully characterized. Using daily temperature records spanning 15 years (2000-2014), monthly averaged mean daily temperature and diel temperature range were calculated for streams distributed across six Bukovsky regions of the conterminous U.S. Across all six regions, diel temperature fluctuations were lowest during the winter, around 1-2°C. During the summer there was wide distribution in diel temperatures (2°C-12°C). The regions revealed distinct differences in diel patterns for small and medium streams, but not for large streams. Small and medium streams exhibited notable hysteresis in their annual progression of diel temperature ranges, with larger diel temperature fluctuations in the spring than in the fall.
A Model of Loggerhead Sea Turtle (Caretta caretta) Habitat and Movement in the Oceanic North Pacific
Abecassis, Melanie; Senina, Inna; Lehodey, Patrick; Gaspar, Philippe; Parker, Denise; Balazs, George; Polovina, Jeffrey
2013-01-01
Habitat preferences for juvenile loggerhead turtles in the North Pacific were investigated with data from two several-year long tagging programs, using 224 satellite transmitters deployed on wild and captive-reared turtles. Animals ranged between 23 and 81 cm in straight carapace length. Tracks were used to investigate changes in temperature preferences and speed of the animals with size. Average sea surface temperatures along the tracks ranged from 18 to 23 °C. Bigger turtles generally experienced larger temperature ranges and were encountered in warmer surface waters. Seasonal differences between small and big turtles suggest that the larger ones dive deeper than the mixed layer and subsequently target warmer surface waters to rewarm. Average swimming speeds were under 1 km/h and increased with size for turtles bigger than 30 cm. However, when expressed in body lengths per second (bl s−1), smaller turtles showed much higher swimming speeds (>1 bl s −1) than bigger ones (0.5 bl s−1). Temperature and speed values at size estimated from the tracks were used to parameterize a habitat-based Eulerian model to predict areas of highest probability of presence in the North Pacific. The model-generated habitat index generally matched the tracks closely, capturing the north-south movements of tracked animals, but the model failed to replicate observed east-west movements, suggesting temperature and foraging preferences are not the only factors driving large-scale loggerhead movements. Model outputs could inform potential bycatch reduction strategies. PMID:24039901
Evaluating thermoregulation in reptiles: the fallacy of the inappropriately applied method.
Seebacher, Frank; Shine, Richard
2004-01-01
Given the importance of heat in most biological processes, studies on thermoregulation have played a major role in understanding the ecology of ectothermic vertebrates. It is, however, difficult to assess whether body temperature is actually regulated, and several techniques have been developed that allow an objective assessment of thermoregulation. Almost all recent studies on reptiles follow a single methodology that, when used correctly, facilitates comparisons between species, climates, and so on. However, the use of operative temperatures in this methodology assumes zero heat capacity of the study animals and is, therefore, appropriate for small animals only. Operative temperatures represent potentially available body temperatures accurately for small animals but can substantially overestimate the ranges of body temperature available to larger animals whose slower rates of heating and cooling mean that they cannot reach equilibrium if they encounter operative temperatures that change rapidly through either space or time. This error may lead to serious misinterpretations of field data. We derive correction factors specific for body mass and rate of movement that can be used to estimate body temperature null distributions of larger reptiles, thereby overcoming this methodological problem.
NASA Astrophysics Data System (ADS)
Cheng, Yuanhui; Zhang, Huamin; Lai, Qinzhi; Li, Xianfeng; Zheng, Qiong; Xi, Xiaoli; Ding, Cong
2014-03-01
The recently proposed high power density zinc-nickel single flow batteries (ZNBs) exhibit great potential for larger scale energy storage. The urgent needs are in the research into temperature adaptability of ZNBs before practical utilization. Furthermore, making clear their polarization distribution is essential to direct the further improvement of battery performance. Here, we focus on the trends in the polarization distribution and effect of temperature on the performance of ZNBs. The result shows that ZNBs can operate in the temperature range from 0 °C to 40 °C with acceptable energy efficiency (53%-79.1%) at 80 mA cm-2. The temperature sensitivity of coulombic efficiency and energy efficiency are 0.65% °C-1 and 0.98% °C-1 at 0 °C-20 °C, respectively. The positive polarization is much larger than the negative polarization at all studied temperatures. The charge overpotential of the positive electrode is more sensitive to temperature. These results enable us to better evaluate the application prospect of ZNBs and point a clear struggling orientation to further improve the battery performance.
Temperature dependence of piezoelectric properties for textured SBN ceramics.
Kimura, Masahiko; Ogawa, Hirozumi; Kuroda, Daisuke; Sawada, Takuya; Higuchi, Yukio; Takagi, Hiroshi; Sakabe, Yukio
2007-12-01
Temperature dependences of piezoelectric properties were studied for h001i textured ceramics of bismuth layer-structured ferroelectrics, SrBi(2)Nb(2)O(9) (SBN). The textured ceramics with varied orientation degrees were fabricated by templated, grain-growth method, and the temperature dependences of resonance frequency were estimated. Excellent temperature stability of resonance frequency was obtained for the 76% textured ceramics. The resonance frequency of the 76% textured specimens varied almost linearly over a wide temperature range. Therefore, the variation was slight, even in a high temperature region above 150 degrees C. Temperature stability of a quartz crystal oscillator is generally higher than that of a ceramic resonator around room temperature. The variation of resonance frequency for the 76% textured SrBi(2)Nb(2)O(9) was larger than that of oscillation frequency for a typical quartz oscillator below 150 degrees C also in this study. However, the variation of the textured SrBi(2)Nb(2)O(9) was smaller than that of the quartz oscillator over a wide temperature range from -50 to 250 degrees C. Therefore, textured SrBi(2)Nb(2)O(9) ceramics is a major candidate material for the resonators used within a wide temperature range.
Ice nucleation rates near ˜225 K
NASA Astrophysics Data System (ADS)
Amaya, Andrew J.; Wyslouzil, Barbara E.
2018-02-01
We have measured the ice nucleation rates, Jice, in supercooled nano-droplets with radii ranging from 6.6 nm to 10 nm and droplet temperatures, Td, ranging from 225 K to 204 K. The initial temperature of the 10 nm water droplets is ˜250 K, i.e., well above the homogeneous nucleation temperature for micron sized water droplets, TH ˜235 K. The nucleation rates increase systematically from ˜1021 cm-3 s-1 to ˜1022 cm-3 s-1 in this temperature range, overlap with the nucleation rates of Manka et al. [Phys. Chem. Chem. Phys. 14, 4505 (2012)], and suggest that experiments with larger droplets would extrapolate smoothly the rates of Hagen et al. [J. Atmos. Sci. 38, 1236 (1981)]. The sharp corner in the rate data as temperature drops is, however, difficult to match with available theory even if we correct classical nucleation theory and the physical properties of water for the high internal pressure of the nanodroplets.
Asymmetry of projected increases in extreme temperature distributions
Kodra, Evan; Ganguly, Auroop R.
2014-01-01
A statistical analysis reveals projections of consistently larger increases in the highest percentiles of summer and winter temperature maxima and minima versus the respective lowest percentiles, resulting in a wider range of temperature extremes in the future. These asymmetric changes in tail distributions of temperature appear robust when explored through 14 CMIP5 climate models and three reanalysis datasets. Asymmetry of projected increases in temperature extremes generalizes widely. Magnitude of the projected asymmetry depends significantly on region, season, land-ocean contrast, and climate model variability as well as whether the extremes of consideration are seasonal minima or maxima events. An assessment of potential physical mechanisms provides support for asymmetric tail increases and hence wider temperature extremes ranges, especially for northern winter extremes. These results offer statistically grounded perspectives on projected changes in the IPCC-recommended extremes indices relevant for impacts and adaptation studies. PMID:25073751
Mao, Shan; Cui, Qingfeng; Piao, Mingxu; Zhao, Lidong
2016-05-01
A mathematical model of diffraction efficiency and polychromatic integral diffraction efficiency affected by environment temperature change and incident angle for three-layer diffractive optics with different dispersion materials is put forward, and its effects are analyzed. Taking optical materials N-FK5 and N-SF1 as the substrates of multilayer diffractive optics, the effect on diffraction efficiency and polychromatic integral diffraction efficiency with intermediate materials POLYCARB is analyzed with environment temperature change as well as incident angle. Therefore, three-layer diffractive optics can be applied in more wide environmental temperature ranges and larger incident angles for refractive-diffractive hybrid optical systems, which can obtain better image quality. Analysis results can be used to guide the hybrid imaging optical system design for optical engineers.
Viscosity, relaxation time, and dynamics within a model asphalt of larger molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Derek D.; Greenfield, Michael L., E-mail: greenfield@egr.uri.edu
2014-01-21
The dynamics properties of a new “next generation” model asphalt system that represents SHRP AAA-1 asphalt using larger molecules than past models is studied using molecular simulation. The system contains 72 molecules distributed over 12 molecule types that range from nonpolar branched alkanes to polar resins and asphaltenes. Molecular weights range from 290 to 890 g/mol. All-atom molecular dynamics simulations conducted at six temperatures from 298.15 to 533.15 K provide a wealth of correlation data. The modified Kohlrausch-Williams-Watts equation was regressed to reorientation time correlation functions and extrapolated to calculate average rotational relaxation times for individual molecules. The rotational relaxationmore » rate of molecules decreased significantly with increasing size and decreasing temperature. Translational self-diffusion coefficients followed an Arrhenius dependence. Similar activation energies of ∼42 kJ/mol were found for all 12 molecules in the model system, while diffusion prefactors spanned an order of magnitude. Viscosities calculated directly at 533.15 K and estimated at lower temperatures using the Debye-Stokes-Einstein relationship were consistent with experimental data for asphalts. The product of diffusion coefficient and rotational relaxation time showed only small changes with temperature above 358.15 K, indicating rotation and translation that couple self-consistently with viscosity. At lower temperatures, rotation slowed more than diffusion.« less
Phosphor thermometry on a rotating flame holder for combustion applications
NASA Astrophysics Data System (ADS)
Xavier, Pradip; Selle, Laurent; Oztarlik, Gorkem; Poinsot, Thierry
2018-02-01
This study presents a method to measure wall temperatures of a rotating flame holder, which could be used as a combustion control device. Laser-induced phosphorescence is found to be a reliable technique to gather such experimental data. The paper first investigates how the coating (thickness, emissivity and lifetime) influence the flame stabilization. While the low thermal conductivity of the coating is estimated to induce a temperature difference of only 0.08-0.4 K, the emissivity increases by 40%. Nevertheless, the transient and steady-state flame locations are not affected. Second, because temperature measurements on the rotating cylinder are likely to fail due the long phosphor lifetimes, we modify the classical point-wise arrangement. We propose to illuminate a larger area, and to correct the signal with a distortion function that accounts for the displacement of the target. An analytical distortion function is derived and compared to measured ones. It shows that the range of measurements is limited by the signal extinction and the rapid distortion function decay. A diagram summarizes the range of operating conditions where measurements are valid. Finally, these experimental data are used to validate direct numerical simulations. Cylinder temperature variations within the precision of these measurements are shown not to influence the flame location, but larger deviations highlight different trends for the two asymmetric flame branches.
Langille, B L; Crisp, B
1980-09-01
The temperature dependence of the viscosity of blood from frogs and turtles has been assessed for temperatures between 5 and 40 degrees C. Viscosity of turtles' blood was, on average, reduced from 3.50 +/- 0.16 to 2.13 +/- 0.10 cP between 10 and 30 degrees C, a decline of 39%. Even larger changes in viscosity were observed for frogs' blood with viscosity falling from 4.55 +/- 0.32 to 2.55 +/- 0.25 cP over the same temperature range, a change of 44%. Blood viscosity was highly correlated with hematocrit in both species at all temperatures. Viscosity of blood from both frogs and turtles showed a large standard deviation at all temperatures and this was attributed to large individual-to-individual variations in hematocrit. Turtles heat faster than they cool, regardless of whether tests are performed at temperatures above or below the range of thermal preference. The effect of temperature dependence of blood viscosity on heating and cooling rates is demonstrated.
Plant Distribution Data Show Broader Climatic Limits than Expert-Based Climatic Tolerance Estimates
Curtis, Caroline A.; Bradley, Bethany A.
2016-01-01
Background Although increasingly sophisticated environmental measures are being applied to species distributions models, the focus remains on using climatic data to provide estimates of habitat suitability. Climatic tolerance estimates based on expert knowledge are available for a wide range of plants via the USDA PLANTS database. We aim to test how climatic tolerance inferred from plant distribution records relates to tolerance estimated by experts. Further, we use this information to identify circumstances when species distributions are more likely to approximate climatic tolerance. Methods We compiled expert knowledge estimates of minimum and maximum precipitation and minimum temperature tolerance for over 1800 conservation plant species from the ‘plant characteristics’ information in the USDA PLANTS database. We derived climatic tolerance from distribution data downloaded from the Global Biodiversity and Information Facility (GBIF) and corresponding climate from WorldClim. We compared expert-derived climatic tolerance to empirical estimates to find the difference between their inferred climate niches (ΔCN), and tested whether ΔCN was influenced by growth form or range size. Results Climate niches calculated from distribution data were significantly broader than expert-based tolerance estimates (Mann-Whitney p values << 0.001). The average plant could tolerate 24 mm lower minimum precipitation, 14 mm higher maximum precipitation, and 7° C lower minimum temperatures based on distribution data relative to expert-based tolerance estimates. Species with larger ranges had greater ΔCN for minimum precipitation and minimum temperature. For maximum precipitation and minimum temperature, forbs and grasses tended to have larger ΔCN while grasses and trees had larger ΔCN for minimum precipitation. Conclusion Our results show that distribution data are consistently broader than USDA PLANTS experts’ knowledge and likely provide more robust estimates of climatic tolerance, especially for widespread forbs and grasses. These findings suggest that widely available expert-based climatic tolerance estimates underrepresent species’ fundamental niche and likely fail to capture the realized niche. PMID:27870859
NASA Technical Reports Server (NTRS)
Faith, T. J.; Obenschain, A. F.
1974-01-01
Empirical equations have been derived from measurements of solar cell photovoltaic characteristics relating light-generated current and open circuit voltage to cell temperature, intensity of illumination and 1-MeV electron fluence. Both 2-ohm-cm and 10-ohm-cm cells were tested over the temperature range from 120 to 470 K, the illumination intensity range from 5 to 1830 mW/sq cm, and the electron fluence range from 1 x 10 to the 13th to 1 x 10 to the 16th electrons/sq cm. The normalized temperature coefficient of the light generated current varies as the 0.18 power of the fluence for temperatures above approximately 273 K and is independent of fluence at lower temperatures. At 140 mW/sq cm, a power law expression was derived which shows that the light-generated current decreases at a rate proportional to the 0.153 power of the fluence for both resistivities. The coefficient of the expression is larger for 2-ohm-cm cells; consequently, the advantage for 10-ohm-cm cells increased with increasing fluence.
Lee, Whan-Hee; Lim, Youn-Hee; Dang, Tran Ngoc; Seposo, Xerxes; Honda, Yasushi; Guo, Yue-Liang Leon; Jang, Hye-Min; Kim, Ho
2017-08-31
Interest in the health effects of extremely low/high ambient temperature and the diurnal temperature range (DTR) on mortality as representative indices of temperature variability is growing. Although numerous studies have reported on these indices independently, few studies have provided the attributes of ambient temperature and DTR related to mortality, concurrently. In this study, we aimed to investigate and compare the mortality risk attributable to ambient temperature and DTR. The study included data of 63 cities in five East-Asian countries/regions during various periods between 1972 and 2013. The attributable risk of non-accidental death to ambient temperature was 9.36% (95% confidence interval [CI]: 8.98-9.69%) and to DTR was 0.59% (95% CI: 0.53-0.65%). The attributable cardiovascular mortality risks to ambient temperature (15.63%) and DTR (0.75%) are higher than the risks to non-accidental/respiratory-related mortality. We verified that ambient temperature plays a larger role in temperature-associated mortality, and cardiovascular mortality is susceptible to ambient temperature and DTR.
Thermal behavior of an experimental 2.5-kWh lithium/iron sulfide battery
NASA Astrophysics Data System (ADS)
Chen, C. C.; Olszanski, T. W.; Gibbard, H. F.
1981-10-01
The thermal energy generation and the gross thermal energy balance in the battery systems was studied. High temperature lithium/iron sulfide batteries for electric vehicle applications were developed. The preferred battery temperature range during operation and idle periods is 400 to 500 C. Thermal management is an essential part of battery design, the battery requires a thermal insulation vessel to minimize heat loss and heating and cooling systems to control temperature. Results of temperature measurements performed on a 2.5-kWh battery module, which was built to gain information for the design of larger systems are reported.
BKT phase transition in a 2D system with long-range dipole-dipole interaction
NASA Astrophysics Data System (ADS)
Fedichev, P. O.; Men'shikov, L. I.
2012-01-01
We consider phase transitions in 2D XY-like systems with long-range dipole-dipole interactions and demonstrate that BKT-type phase transition always occurs separating the ordered (ferroelectric) and the disordered (paraelectric) phases. The low-temperature phase corresponds to a thermal state with bound vortex-antivortex pairs characterized by linear attraction at large distances. Using the Maier-Schwabl topological charge model, we show that bound vortex pairs polarize and screen the vortex-antivortex interaction, leaving only the logarithmic attraction at sufficiently large separations between the vortices. At higher temperatures the pairs dissociate and the phase transition similar to BKT occurs, though at a larger temperature than in a system without the dipole-dipole interaction.
Large magnetic entropy change in multiferroic HoFeO3 single crystal
NASA Astrophysics Data System (ADS)
Das, Moumita; Mandal, Prabhat
2018-04-01
In this article magnetic and magnetocaloric properties of HoFeO3 single crystal have been investigated by magnetization measurement in the temperature range 6-30K and near spin reorientation transition (TSR) region 45-61K. Remarkably large and reversible magnetic entropy change (-ΔSm) = 27J/kg K, has been observed for a field change of 0-6T near 9.5K due to metamagnetic transition. The value of ΔSm is 6J/kg K at 6T near TSR. This magnetocaloric parameter is larger than previously reported value along [100] crystallographic axis due to its anisotropic nature along different axis. This value is larger than some of the potential magnetic refrigerants in the same temperature range which is not reported previously. The ΔSm is also quite large for a small and moderate field change. For an example the values of ΔSmax are 7 and 12 J/kg K for field change of 2 and 3T. The large value of this magnetocaloric parameter suggests that HoFeO3 could be considered as a potential refrigerant material for low-temperature magnetic refrigeration technology to liquefaction the hydrogen and helium in fuel industry.
AlGaInAs EML having high extinction ratios fabricated by identical epitaxial layer technique
NASA Astrophysics Data System (ADS)
Deng, Qiufang; Guo, Lu; Liang, Song; Sun, Siwei; Xie, Xiao; Zhu, Hongliang; Wang, Wei
2018-04-01
AlGaInAs electroabsorption-modulated lasers (EMLs) fabricated by identical epitaxial layer technique are demonstrated. The EML device shows an infinite characteristic temperature when the temperature ranges from 20 oC to 30 oC. The integrated modulator has static extinction ratios of larger than 20 dB at a reverse bias voltage of - 2 V. The small signal modulation bandwidth of the modulator is larger than 11 GHz. At 10 Gb/s data modulation, the dynamic extinction ratio is about 9.5 dB in a back to back test configuration. Because only a simple fabrication procedure is needed, our EMLs are promising low cost light sources for optical fiber transmission applications.
Dissociative charge transfer of H/+/ ions with H2 and D2 molecules from 78 to 330 K
NASA Technical Reports Server (NTRS)
Johnsen, R.; Chen, A.; Biondi, M. A.
1980-01-01
The dissociative charge transfer of He(+) ions with H2 and D2 molecules has been studied using a temperature-variable drift-tube mass-spectrometer apparatus over the temperature range 78 to 330 K. The binary rate coefficients are small at 300 K, approximately 10 to the -13th to 10 to the -14th cu cm/sec, and only slightly larger at 78 K. Termolecular contributions to the binary rate coefficients are found to be small at 330 K but increase substantially with decreasing temperature. Two-body charge transfer with D2 is found to be slower than with H2 by a factor of 10, in good agreement with recent theoretical predictions, although the measured values of the rate coefficients are larger by a factor of about 4 than the predicted values.
NASA Astrophysics Data System (ADS)
Jang, D. H.; Kim, W. J.
2018-05-01
The tensile deformation behavior and processing maps of commercial 5182 and 7075 aluminum alloy sheets with similarly fine grain sizes (about 8 μm) were examined and compared over the temperature range of 423-723 K. The 5182 aluminum alloy with equiaxed grains exhibited larger strain rate sensitivity exponent ( m) values than the 7075 aluminum alloy with elongated grains under most of the testing conditions. The fracture strain behaviors of the two alloys as a function of strain rate and temperature followed the trend in their m values. In the processing maps, the power dissipation parameter values of the 5182 aluminum alloy were larger than those of the 7075 aluminum alloy and the instability domains of the 5182 aluminum alloy were smaller compared to that of the 7075 aluminum alloy, implying that the 5182 aluminum alloy had a better hot workability than the 7075 aluminum alloy.
Frictional strength of ground dolerite gouge at a wide range of slip rates
NASA Astrophysics Data System (ADS)
Wada, Jun-ichi; Kanagawa, Kyuichi; Kitajima, Hiroko; Takahashi, Miki; Inoue, Atsuyuki; Hirose, Takehiro; Ando, Jun-ichi; Noda, Hiroyuki
2016-04-01
We conducted a series of rotary-shear friction experiments on ground dolerite gouges, in which the amount of adsorbed moisture increases with grinding time (tgr), at room temperature and humidity, a normal stress of 2 MPa, and constant equivalent slip rates (Veqs) ranging from 20 µm/s to 1.3 m/s. Their frictional strength changed with Veq and tgr in three different ways depending on Veq and the gouge temperature (T). At Veq ≤ 1.3 cm/s, T did not exceed 80°C, and the steady state friction coefficient (μss) ranged from 0.59 to 0.80. μss changes little with Veq, while μss at a given Veq systematically increases with tgr probably due to moisture-adsorbed strengthening of gouges. At Veq = 4 cm/s, T exceeded 100°C, and dehydration of gouges resulted in roughly the same μss values (0.60-0.66) among gouges with different periods of tgr. At Veq ≥ 13 cm/s, T reached 160-500°C, and μss dramatically decreases with Veq to 0.08-0.26 at Veq = 1.3 m/s, while μss at a given Veq systematically decreases with tgr. At these fast Veqs, dehydration of gouges likely occurred too fast for water vapor to completely escape out from the gouge layer. Therefore, faster dehydration at faster Veq possibly resulted in a larger pore pressure increase and lower frictional strength. In addition, because gouges with longer periods of tgr contain larger amounts of adsorbed moisture, they became weaker due to larger increases in pore pressure and hence larger amounts of reduction in frictional strength.
Spectroscopic studies of clusterization of methanol molecules isolated in a nitrogen matrix
NASA Astrophysics Data System (ADS)
Vaskivskyi, Ye.; Doroshenko, I.; Chernolevska, Ye.; Pogorelov, V.; Pitsevich, G.
2017-12-01
IR absorption spectra of methanol isolated in a nitrogen matrix are recorded at temperatures ranging from 9 to 34 K. The changes in the spectra with increasing matrix temperature are analyzed. Based on quantum-chemical calculations of the geometric and spectral parameters of different methanol clusters, the observed absorption bands are identified. The cluster composition of the sample is determined at each temperature. It is shown that as the matrix is heated there is a redistribution among the different cluster structures in the sample, from smaller to larger clusters.
Fracture toughness of copper-base alloys for ITER applications: A preliminary report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, D.J.; Zinkle, S.J.; Rowcliffe, A.F.
1997-04-01
Oxide-dispersion strengthened copper alloys and a precipitation-hardened copper-nickel-beryllium alloy showed a significant reduction in toughness at elevated temperature (250{degrees}C). This decrease in toughness was much larger than would be expected from the relatively modest changes in the tensile properties over the same temperature range. However, a copper-chromium-zirconium alloy strengthened by precipitation showed only a small decrease in toughness at the higher temperatures. The embrittled alloys showed a transition in fracture mode, from transgranular microvoid coalescence at room temperature to intergranular with localized ductility at high temperatures. The Cu-Cr-Zr alloy maintained the ductile microvoid coalescence failure mode at all test temperatures.
NASA Astrophysics Data System (ADS)
Cao, Q.; Qiu, L. M.; Zhi, X. Q.; Han, L.; Gan, Z. H.; Zhang, X. B.; Zhang, X. J.; Sun, D. M.
2013-12-01
The impedance magnitude is important for the design and operation of a Stirling pulse tube cryocooler (SPTC). However, the influence of the impedance magnitude on the SPTC working at liquid-helium temperatures is still not clear due to the complexity of refrigeration mechanism at this temperature range. In this study, the influence of the impedance magnitude on the viscous and thermal losses has been investigated, which contributes to the overall refrigeration efficiency. Different from the previous study at liquid nitrogen temperatures, it has been found and verified experimentally that a higher impedance magnitude may result in a larger mass flow rate accompanied with larger losses in the warmer region, hence the refrigeration efficiency is lowered. Numerical simulation is carried out in SPTCs of different geometry dimensions and working parameters, and the experimental study is carried out in a three-stage SPTC. A minimum no-load refrigeration temperature is achieved with an appropriate impedance magnitude that is determined by the combination of frequency and precooling temperature. A lowest temperature of 4.76 K is achieved at 28 Hz and a precooling temperature of 22.6 K, which is the lowest temperature ever achieved with He-4 for SPTCs. Impedance magnitude optimization is clearly an important consideration for the design of a 4 K SPTC.
Ambient temperature and emergency room admissions for acute coronary syndrome in Taiwan
NASA Astrophysics Data System (ADS)
Liang, Wen-Miin; Liu, Wen-Pin; Chou, Sze-Yuan; Kuo, Hsien-Wen
2008-01-01
Acute coronary syndrome (ACS) is an important public health problem around the world. Since there is a considerable seasonal fluctuation in the incidence of ACS, climatic temperature may have an impact on the onset of this disease. The objective of this study was to assess the relationship between the average daily temperature, diurnal temperature range and emergency room (ER) admissions for ACS in an ER in Taichung City, Taiwan. A longitudinal study was conducted which assessed the correlation of the average daily temperature and the diurnal temperature range to ACS admissions to the ER of the city’s largest hospital. Daily ER admissions for ACS and ambient temperature were collected from 1 January 2000 to 31 March 2003. The Poisson regression model was used in the analysis after adjusting for the effects of holiday, season, and air pollutant concentrations. The results showed that there was a negative significant association between the average daily temperature and ER admissions for ACS. ACS admissions to the ER increased 30% to 70% when the average daily temperature was lower than 26.2°C. A positive association between the diurnal temperature range and ACS admissions was also noted. ACS admissions increased 15% when the diurnal temperature range was over 8.3°C. The data indicate that patients suffering from cardiovascular disease must be made aware of the increased risk posed by lower temperatures and larger changes in temperature. Hospitals and ERs should take into account the increased demand of specific facilities during colder weather and wider temperature variations.
Land surface temperature measurements from EOS MODIS data
NASA Technical Reports Server (NTRS)
Wan, Zhengming
1994-01-01
A generalized split-window method for retrieving land-surface temperature (LST) from AVHRR and MODIS data has been developed. Accurate radiative transfer simulations show that the coefficients in the split-window algorithm for LST must depend on the viewing angle, if we are to achieve a LST accuracy of about 1 K for the whole scan swath range (+/-55.4 deg and +/-55 deg from nadir for AVHRR and MODIS, respectively) and for the ranges of surface temperature and atmospheric conditions over land, which are much wider than those over oceans. We obtain these coefficients from regression analysis of radiative transfer simulations, and we analyze sensitivity and error by using results from systematic radiative transfer simulations over wide ranges of surface temperatures and emissivities, and atmospheric water vapor abundance and temperatures. Simulations indicated that as atmospheric column water vapor increases and viewing angle is larger than 45 deg it is necessary to optimize the split-window method by separating the ranges of the atmospheric column water vapor and lower boundary temperature, and the surface temperature into tractable sub-ranges. The atmospheric lower boundary temperature and (vertical) column water vapor values retrieved from HIRS/2 or MODIS atmospheric sounding channels can be used to determine the range where the optimum coefficients of the split-window method are given. This new LST algorithm not only retrieves LST more accurately but also is less sensitive than viewing-angle independent LST algorithms to the uncertainty in the band emissivities of the land-surface in the split-window and to the instrument noise.
The impact of anisotropy and interaction range on the self-assembly of Janus ellipsoids
NASA Astrophysics Data System (ADS)
Ruth, D. P.; Gunton, J. D.; Rickman, J. M.; Li, Wei
2014-12-01
We assess the roles of anisotropy and interaction range on the self-assembly of Janus colloidal particles. In particular, Monte Carlo simulation is employed to investigate the propensity for the formation of aggregates in a spheroidal model of a colloid having a relatively short-ranged interaction that is consistent with experimentally realizable systems. By monitoring the equilibrium distribution of aggregates as a function of temperature and density, we identify a "micelle" transition temperature and discuss its dependence on particle shape. We find that, unlike systems with longer ranged interactions, this system does not form micelles below a transition temperature at low density. Rather, larger clusters comprising 20-40 particles characterize the transition. We then examine the dependence of the second virial coefficient on particle shape and well width to determine how these important system parameters affect aggregation. Finally, we discuss possible strategies suggested by this work to promote self-assembly for the encapsulation of particles.
Twilight and nighttime ionospheric temperatures from oxygen 6300- and 5577-A spectral-line profiles.
NASA Technical Reports Server (NTRS)
Feibelman, W. A.; Hake, R. D., Jr.; Sipler, D. P.; Biondi , M. A.
1972-01-01
Use of Fabry-Perot interferometer measurements of atomic-oxygen 6300- and 5577-A line profiles from twilight and nightglow to determine the neutral temperatures in the F2 and E regions of the earth's ionosphere. The exospheric temperatures determined from the 6300-A profiles are usually somewhat higher than the temperatures calculated from Jacchia's model, and differences as large as about 300 K are noted when the exospheric temperature equals 1500 to 1600 K. The postsunset and predawn rate of change of the exospheric temperature is often substantially larger than the Jacchia prediction. The 5577-A (E region) measured temperatures range from 200 to 220 K on quiet nights to 500 to 600 K during geomagnetic storms.
Estimating extreme stream temperatures by the standard deviate method
NASA Astrophysics Data System (ADS)
Bogan, Travis; Othmer, Jonathan; Mohseni, Omid; Stefan, Heinz
2006-02-01
It is now widely accepted that global climate warming is taking place on the earth. Among many other effects, a rise in air temperatures is expected to increase stream temperatures indefinitely. However, due to evaporative cooling, stream temperatures do not increase linearly with increasing air temperatures indefinitely. Within the anticipated bounds of climate warming, extreme stream temperatures may therefore not rise substantially. With this concept in mind, past extreme temperatures measured at 720 USGS stream gauging stations were analyzed by the standard deviate method. In this method the highest stream temperatures are expressed as the mean temperature of a measured partial maximum stream temperature series plus its standard deviation multiplied by a factor KE (standard deviate). Various KE-values were explored; values of KE larger than 8 were found physically unreasonable. It is concluded that the value of KE should be in the range from 7 to 8. A unit error in estimating KE translates into a typical stream temperature error of about 0.5 °C. Using a logistic model for the stream temperature/air temperature relationship, a one degree error in air temperature gives a typical error of 0.16 °C in stream temperature. With a projected error in the enveloping standard deviate dKE=1.0 (range 0.5-1.5) and an error in projected high air temperature d Ta=2 °C (range 0-4 °C), the total projected stream temperature error is estimated as d Ts=0.8 °C.
NASA Astrophysics Data System (ADS)
Massa, Gioia D.; Chase, Elaine; Santini, Judith B.; Mitchell, Cary A.
2015-04-01
Strawberry (Fragaria x ananassa L.) is a promising candidate crop for space life-support systems with desirable sensory quality and health attributes. Day-neutral cultivars such as 'Seascape' are adaptable to a range of photoperiods, including short days that would save considerable energy for crop lighting without reductions in productivity or yield. Since photoperiod and temperature interact to affect strawberry growth and development, several diurnal temperature regimes were tested under a short photoperiod of 10 h per day for effects on yield and quality attributes of 'Seascape' strawberry during production cycles longer than 270 days. The coolest day/night temperature regime, 16°/8 °C, tended to produce smaller numbers of larger fruit than did the intermediate temperature range of 18°/10 °C or the warmest regime, 20°/12 °C, both of which produced similar larger numbers of smaller fruit. The intermediate temperature regime produced the highest total fresh mass of berries over an entire production cycle. Independent experiments examined either organoleptic or physicochemical quality attributes. Organoleptic evaluation indicated that fruit grown under the coolest temperature regime tended to score the highest for both hedonic preference and descriptive evaluation of sensory attributes related to sweetness, texture, aftertaste, and overall approval. The physicochemical quality attributes Brix, pH, and sugar/acid ratio were highest for fruits harvested from the coolest temperature regime and lower for those from the warmer temperature regimes. The cool-regime fruits also were lowest in titratable acidity. The yield parameters fruit number and size oscillated over the course of a production cycle, with a gradual decline in fruit size under all three temperature regimes. Brix and titratable acidity both decreased over time for all three temperature treatments, but sugar/acid ratio remained highest for the cool temperature regime over the entire production period. Periodic rejuvenation or replacement of strawberry propagules may be needed to maintain both quality and quantity of strawberry yield in space.
Temperature-Correlated Changes in Phytoplankton Community Structure Are Restricted to Polar Waters.
Ward, Ben A
2015-01-01
Globally distributed observations of size-fractionated chlorophyll a and temperature were used to incorporate temperature dependence into an existing semi-empirical model of phytoplankton community size structure. The additional temperature-dependent term significantly increased the model's ability to both reproduce and predict observations of chlorophyll a size-fractionation at temperatures below 2°C. The most notable improvements were in the smallest (picoplankton) size-class, for which overall model fit was more than doubled, and predictive skill was increased by approximately 40%. The model was subsequently applied to generate global maps for three phytoplankton size classes, on the basis of satellite-derived estimates of surface chlorophyll a and sea surface temperature. Polar waters were associated with marked decline in the chlorophyll a biomass of the smallest cells, relative to lower latitude waters of equivalent total chlorophyll a. In the same regions a complementary increase was seen in the chlorophyll a biomass of larger size classes. These findings suggest that a warming and stratifying ocean will see a poleward expansion of the habitat range of the smallest phytoplankton, with the possible displacement of some larger groups that currently dominate. There was no evidence of a strong temperature dependence in tropical or sub-tropical regions, suggesting that future direct temperature effects on community structure at lower latitudes may be small.
Effect of Flame Temperature and Fuel Composition on Sooting Tendency in a Research Combustor.
1981-12-01
fuel blends containing alkyl benzenes, methyl naphthalenes, tetralin and Indene were prepared with hydrogen contents ranging from 11.5 to 14.2 percent...must be added in larger quantities than methyl naphthalene. The S1 sensitivity for fuels containing alkyl benzenes was less at most operating...different concentrations of alkyl benzenes, methyl naphthalenes, tetralin, and indene, with hydrogen contents ranging from 11.5 to 14.2 percent, were burned
Langer, Martin R.; Weinmann, Anna E.; Lötters, Stefan; Bernhard, Joan M.; Rödder, Dennis
2013-01-01
Species-range expansions are a predicted and realized consequence of global climate change. Climate warming and the poleward widening of the tropical belt have induced range shifts in a variety of marine and terrestrial species. Range expansions may have broad implications on native biota and ecosystem functioning as shifting species may perturb recipient communities. Larger symbiont-bearing foraminifera constitute ubiquitous and prominent components of shallow water ecosystems, and range shifts of these important protists are likely to trigger changes in ecosystem functioning. We have used historical and newly acquired occurrence records to compute current range shifts of Amphistegina spp., a larger symbiont-bearing foraminifera, along the eastern coastline of Africa and compare them to analogous range shifts currently observed in the Mediterranean Sea. The study provides new evidence that amphisteginid foraminifera are rapidly progressing southwestward, closely approaching Port Edward (South Africa) at 31°S. To project future species distributions, we applied a species distribution model (SDM) based on ecological niche constraints of current distribution ranges. Our model indicates that further warming is likely to cause a continued range extension, and predicts dispersal along nearly the entire southeastern coast of Africa. The average rates of amphisteginid range shift were computed between 8 and 2.7 km year−1, and are projected to lead to a total southward range expansion of 267 km, or 2.4° latitude, in the year 2100. Our results corroborate findings from the fossil record that some larger symbiont-bearing foraminifera cope well with rising water temperatures and are beneficiaries of global climate change. PMID:23405081
Langer, Martin R; Weinmann, Anna E; Lötters, Stefan; Bernhard, Joan M; Rödder, Dennis
2013-01-01
Species-range expansions are a predicted and realized consequence of global climate change. Climate warming and the poleward widening of the tropical belt have induced range shifts in a variety of marine and terrestrial species. Range expansions may have broad implications on native biota and ecosystem functioning as shifting species may perturb recipient communities. Larger symbiont-bearing foraminifera constitute ubiquitous and prominent components of shallow water ecosystems, and range shifts of these important protists are likely to trigger changes in ecosystem functioning. We have used historical and newly acquired occurrence records to compute current range shifts of Amphistegina spp., a larger symbiont-bearing foraminifera, along the eastern coastline of Africa and compare them to analogous range shifts currently observed in the Mediterranean Sea. The study provides new evidence that amphisteginid foraminifera are rapidly progressing southwestward, closely approaching Port Edward (South Africa) at 31°S. To project future species distributions, we applied a species distribution model (SDM) based on ecological niche constraints of current distribution ranges. Our model indicates that further warming is likely to cause a continued range extension, and predicts dispersal along nearly the entire southeastern coast of Africa. The average rates of amphisteginid range shift were computed between 8 and 2.7 km year(-1), and are projected to lead to a total southward range expansion of 267 km, or 2.4° latitude, in the year 2100. Our results corroborate findings from the fossil record that some larger symbiont-bearing foraminifera cope well with rising water temperatures and are beneficiaries of global climate change.
Examination of diurnal temperature range at coterminous U.S. stations during Sept. 8-17, 2001
NASA Astrophysics Data System (ADS)
van Wijngaarden, W. A.
2012-07-01
The tragic events of Sept. 11, 2001 resulted in suspension of commercial flights over North America. It has been suggested that the diurnal temperature range (DTR) increased due to an absence of airplane contrails. This study examined hourly data observed at 288 stations. The average DTR, temperature, maximum/minimum temperature and relative humidity were found for each day in 2001 and compared to the average value occurring during 1975-2005. For the coterminous U.S., the DTR averaged over the period Sept. 11-14, 2001 was about 1°C larger than that found for the 3 days prior and after the flight ban. However, the day-to-day DTR does not correlate well with the flight ban. Plots of the change in DTR throughout North America during Sept. 8-17 show changes consistent with the natural progression of weather systems.
The role of thermal physiology in recent declines of birds in a biodiversity hotspot.
Milne, Robyn; Cunningham, Susan J; Lee, Alan T K; Smit, Ben
2015-01-01
We investigated whether observed avian range contractions and population declines in the Fynbos biome of South Africa were mechanistically linked to recent climate warming. We aimed to determine whether there were correlations between preferred temperature envelope, or changes in temperature within species' ranges, and recent changes in range and population size, for 12 Fynbos-resident bird species, including six that are endemic to the biome. We then measured the physiological responses of each species at air temperatures ranging from 24 to 42°C to determine whether physiological thermal thresholds could provide a mechanistic explanation for observed population trends. Our data show that Fynbos-endemic species occupying the coolest regions experienced the greatest recent reductions in range and population size (>30% range reduction between 1991 and the present). In addition, species experiencing the largest increases in air temperature within their ranges showed the greatest declines. However, evidence for a physiological mechanistic link between warming and population declines was equivocal, with only the larger species showing low thermal thresholds for their body mass, compared with other birds globally. In addition, some species appear more vulnerable than others to air temperatures in their ranges above physiological thermal thresholds. Of these, the high-altitude specialist Cape rockjumper (Chaetops frenatus) seems most at risk from climate warming. This species showed: (i) the lowest threshold for increasing evaporative water loss at high temperatures; and (ii) population declines specifically in those regions of its range recording significant warming trends. Our findings suggest that caution must be taken when attributing causality explicitly to thermal stress, even when population trends are clearly correlated with rates of warming. Studies explicitly investigating the mechanisms underlying such correlations will be key to appropriate conservation planning.
The role of thermal physiology in recent declines of birds in a biodiversity hotspot
Milne, Robyn; Cunningham, Susan J; Lee, Alan T K
2015-01-01
Abstract We investigated whether observed avian range contractions and population declines in the Fynbos biome of South Africa were mechanistically linked to recent climate warming. We aimed to determine whether there were correlations between preferred temperature envelope, or changes in temperature within species' ranges, and recent changes in range and population size, for 12 Fynbos-resident bird species, including six that are endemic to the biome. We then measured the physiological responses of each species at air temperatures ranging from 24 to 42°C to determine whether physiological thermal thresholds could provide a mechanistic explanation for observed population trends. Our data show that Fynbos-endemic species occupying the coolest regions experienced the greatest recent reductions in range and population size (>30% range reduction between 1991 and the present). In addition, species experiencing the largest increases in air temperature within their ranges showed the greatest declines. However, evidence for a physiological mechanistic link between warming and population declines was equivocal, with only the larger species showing low thermal thresholds for their body mass, compared with other birds globally. In addition, some species appear more vulnerable than others to air temperatures in their ranges above physiological thermal thresholds. Of these, the high-altitude specialist Cape rockjumper (Chaetops frenatus) seems most at risk from climate warming. This species showed: (i) the lowest threshold for increasing evaporative water loss at high temperatures; and (ii) population declines specifically in those regions of its range recording significant warming trends. Our findings suggest that caution must be taken when attributing causality explicitly to thermal stress, even when population trends are clearly correlated with rates of warming. Studies explicitly investigating the mechanisms underlying such correlations will be key to appropriate conservation planning. PMID:27293732
High-pressure cell for terahertz time-domain spectroscopy.
Zhang, Wei; Nickel, Daniel; Mittleman, Daniel
2017-02-06
We introduce a sample cell that can be used for pressure-dependent terahertz time-domain spectroscopy. Compared with traditional far-IR spectroscopy with a diamond anvil cell, the larger aperture permits measurements down to much lower frequencies as low as 3.3 cm-1 (0.1 THz), giving access to new spectroscopic results. The pressure tuning range reaches up to 34.4 MPa, while the temperature range is from 100 to 473 K. With this large range of tuning parameters, we are able to map out phase diagrams of materials based on their THz spectrum, as well as to track the changing of the THz spectrum within a single phase as a function of temperature and pressure. Pressure-dependent THz-TDS results for nitrogen and R-camphor are shown as an example.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smedskjaer, Morten M., E-mail: mos@bio.aau.dk; Bauchy, Mathieu; Mauro, John C.
The properties of glass are determined not only by temperature, pressure, and composition, but also by their complete thermal and pressure histories. Here, we show that glasses of identical composition produced through thermal annealing and through quenching from elevated pressure can result in samples with identical density and mean interatomic distances, yet different bond angle distributions, medium-range structures, and, thus, macroscopic properties. We demonstrate that hardness is higher when the density increase is obtained through thermal annealing rather than through pressure-quenching. Molecular dynamics simulations reveal that this arises because pressure-quenching has a larger effect on medium-range order, while annealing hasmore » a larger effect on short-range structures (sharper bond angle distribution), which ultimately determine hardness according to bond constraint theory. Our work could open a new avenue towards industrially useful glasses that are identical in terms of composition and density, but with differences in thermodynamic, mechanical, and rheological properties due to unique structural characteristics.« less
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Chen, Liangyu; Spry, David J.; Beheim, Glenn M.; Chang, Carl W.
2014-01-01
This work reports DC electrical characterization of a 76 mm diameter 4H-SiC JFET test wafer fabricated as part of NASA's on-going efforts to realize medium-scale ICs with prolonged and stable circuit operation at temperatures as high as 500 degC. In particular, these measurements provide quantitative parameter ranges for use in JFET IC design and simulation. Larger than expected parameter variations were observed both as a function of position across the wafer as well as a function of ambient testing temperature from 23 degC to 500 degC.
Slowdown of Interhelical Motions Induces a Glass Transition in RNA
Frank, Aaron T.; Zhang, Qi; Al-Hashimi, Hashim M.; Andricioaei, Ioan
2015-01-01
RNA function depends crucially on the details of its dynamics. The simplest RNA dynamical unit is a two-way interhelical junction. Here, for such a unit—the transactivation response RNA element—we present evidence from molecular dynamics simulations, supported by nuclear magnetic resonance relaxation experiments, for a dynamical transition near 230 K. This glass transition arises from the freezing out of collective interhelical motional modes. The motions, resolved with site-specificity, are dynamically heterogeneous and exhibit non-Arrhenius relaxation. The microscopic origin of the glass transition is a low-dimensional, slow manifold consisting largely of the Euler angles describing interhelical reorientation. Principal component analysis over a range of temperatures covering the glass transition shows that the abrupt slowdown of motion finds its explanation in a localization transition that traps probability density into several disconnected conformational pools over the low-dimensional energy landscape. Upon temperature increase, the probability density pools then flood a larger basin, akin to a lakes-to-sea transition. Simulations on transactivation response RNA are also used to backcalculate inelastic neutron scattering data that match previous inelastic neutron scattering measurements on larger and more complex RNA structures and which, upon normalization, give temperature-dependent fluctuation profiles that overlap onto a glass transition curve that is quasi-universal over a range of systems and techniques. PMID:26083927
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jasperson, Louis V.; McDougal, Rubin J.; Diky, Vladimir
Here in this paper we report liquid-liquid mutual solubilities for binary aqueous mixtures involving 2-, 3-, and 4-ethylphenol, 2-, 3-, and 4-methoxyphenol, benzofuran, and 1H-indene for the temperature range (300 < T/K < 360). Measurements in the water-rich phase for (2-ethylphenol + water) were extended to T = 440 K to facilitate comparison with literature values. Liquid-liquid equilibrium tie-line determinations were made for four ternary systems involving (water + toluene) mixed with a third component; phenol, 3-ethylphenol, 4-methoxyphenol, or 2,4-dimethylphenol. Literature values at higher temperatures are available for the three (ethylphenol + water) systems, and, in general, good agreement ismore » seen. The ternary system (water + toluene + phenol) has been studied previously with inconsistent results reported in the literature, and one report is shown to be anomalous. All systems are modeled with the predictive methods NIST-Modified-UNIFAC and NIST-COSMO-SAC, with generally good success in the temperature range of interest (300 < T/K < 360). This work is part of a larger project on the testing and development of predictive phase equilibrium models for compound types occurring in catalytic fast pyrolysis of biomass, and background information for the larger project is provided.« less
Jasperson, Louis V.; McDougal, Rubin J.; Diky, Vladimir; ...
2016-11-02
Here in this paper we report liquid-liquid mutual solubilities for binary aqueous mixtures involving 2-, 3-, and 4-ethylphenol, 2-, 3-, and 4-methoxyphenol, benzofuran, and 1H-indene for the temperature range (300 < T/K < 360). Measurements in the water-rich phase for (2-ethylphenol + water) were extended to T = 440 K to facilitate comparison with literature values. Liquid-liquid equilibrium tie-line determinations were made for four ternary systems involving (water + toluene) mixed with a third component; phenol, 3-ethylphenol, 4-methoxyphenol, or 2,4-dimethylphenol. Literature values at higher temperatures are available for the three (ethylphenol + water) systems, and, in general, good agreement ismore » seen. The ternary system (water + toluene + phenol) has been studied previously with inconsistent results reported in the literature, and one report is shown to be anomalous. All systems are modeled with the predictive methods NIST-Modified-UNIFAC and NIST-COSMO-SAC, with generally good success in the temperature range of interest (300 < T/K < 360). This work is part of a larger project on the testing and development of predictive phase equilibrium models for compound types occurring in catalytic fast pyrolysis of biomass, and background information for the larger project is provided.« less
Electron temperature from x-ray continuum measurements on the NIF
NASA Astrophysics Data System (ADS)
Jarrott, Leonard; Bachmann, Benjamin; Benedetti, Robin; Izumi, Nobuhiko; Khan, Shahab; Landen, Otto; Ma, Tammy; Nagel, Sabrina; Pak, Arthur; Patel, Prav; Schneider, Marilyn; Springer, Paul; LLNL Collaboration
2017-10-01
We report on measurements of the electron temperature within the hot spot of inertially confined, layered implosions on the NIF using a titanium differential filtering x-ray diagnostic. The electron temperature from x-ray emission is insensitive to non-thermal velocity flows as is the case with ion temperature measurements and is thus a critical parameter in interpreting stagnated hot spot conditions. Here we discuss measurements using titanium filters ranging from 10 μm to 1mm in thickness with a sensitivity band of 10-30keV coupled with penumbral pinholes. The use of larger pinhole diameters increases x-ray fluence improving sensitivity of photon energies with minimal attenuation from the compressed fuel/shell. This diagnostic has been fielded on a series of cryogenic shots with DT ion temperatures ranging from 2-5keV. Analysis of the measurement will be presented along with a comparison against simulated electron temperatures and x-ray spectra as well as a comparison to DT ion temperature measurements. This work was performed under the auspices of U.S. DoE by LLNL under Contract No. DE-AC52-07NA27344.
Amillastre, Emilie; Aceves-Lara, César-Arturo; Uribelarrea, Jean-Louis; Alfenore, Sandrine; Guillouet, Stéphane E
2012-08-01
The impact of the temperature on an industrial yeast strain was investigated in very high ethanol performance fermentation fed-batch process within the range of 30-47 °C. As previously observed with a lab strain, decoupling between growth and glycerol formation occurred at temperature of 36 °C and higher. A dynamic model was proposed to describe the impact of the temperature on the total and viable biomass, ethanol and glycerol production. The model validation was implemented with experimental data sets from independent cultures under different temperatures, temperature variation profiles and cultivation modes. The proposed model fitted accurately the dynamic evolutions for products and biomass concentrations over a wide range of temperature profiles. R2 values were above 0.96 for ethanol and glycerol in most experiments. The best results were obtained at 37 °C in fed-batch and chemostat cultures. This dynamic model could be further used for optimizing and monitoring the ethanol fermentation at larger scale. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Krasowski, Michael J.; Chen, Liang-Yu; Prokop, Norman F.
2009-01-01
The NASA Glenn Research Center has previously reported prolonged stable operation of simple prototype 6H-SiC JFET integrated circuits (logic gates and amplifier stages) for thousands of hours at +500 C. This paper experimentally investigates the ability of these 6H-SiC JFET devices and integrated circuits to also function at cold temperatures expected to arise in some envisioned applications. Prototype logic gate ICs experimentally demonstrated good functionality down to -125 C without changing circuit input voltages. Cascaded operation of gates at cold temperatures was verified by externally wiring gates together to form a 3-stage ring oscillator. While logic gate output voltages exhibited little change across the broad temperature range from -125 C to +500 C, the change in operating frequency and power consumption of these non-optimized logic gates as a function of temperature was much larger and tracked JFET channel conduction properties.
High temperature annealing of ion irradiated tungsten
Ferroni, Francesco; Yi, Xiaoou; Arakawa, Kazuto; ...
2015-03-21
In this study, transmission electron microscopy of high temperature annealing of pure tungsten irradiated by self-ions was conducted to elucidate microstructural and defect evolution in temperature ranges relevant to fusion reactor applications (500–1200°C). Bulk isochronal and isothermal annealing of ion irradiated pure tungsten (2 MeV W + ions, 500°C, 1014 W +/cm 2) with temperatures of 800, 950, 1100 and 1400°C, from 0.5 to 8 h, was followed by ex situ characterization of defect size, number density, Burgers vector and nature. Loops with diameters larger than 2–3 nm were considered for detailed analysis, among which all loops had View themore » MathML source and were predominantly of interstitial nature. In situ annealing experiments from 300 up to 1200°C were also carried out, including dynamic temperature ramp-ups. These confirmed an acceleration of loop loss above 900°C. At different temperatures within this range, dislocations exhibited behaviour such as initial isolated loop hopping followed by large-scale rearrangements into loop chains, coalescence and finally line–loop interactions and widespread absorption by free-surfaces at increasing temperatures. An activation energy for the annealing of dislocation length was obtained, finding E a=1.34±0.2 eV for the 700–1100°C range.« less
Latitudinal and interhemispheric variation of stratospheric effects on mesospheric ice layer trends
NASA Astrophysics Data System (ADS)
Lübken, F.-J.; Berger, U.
2011-02-01
Latitudinal and interhemispheric differences of model results on trends in mesospheric ice layers and background conditions are analyzed. The model nudges to European Centre for Medium-Range Weather Forecasts data below ˜45 km. Greenhouse gas concentrations in the mesosphere are kept constant. Temperature trends in the mesosphere mainly come from shrinking of the stratosphere and from dynamical effects. Water vapor increases at noctilucent cloud (NLC) heights and decreases above due to increased freeze drying caused by temperature trends. There is no tendency for ice clouds in the Northern Hemisphere for extending farther southward with time. Trends of NLC albedo are similar to satellite measurements, but only if a time period longer than observations is considered. Ice cloud trends get smaller if albedo thresholds relevant to satellite instruments are applied, in particular at high polar latitudes. This implies that weak and moderate NLC is favored when background conditions improve for NLC formation, whereas strong NLC benefits less. Trends of ice cloud parameters are generally smaller in the Southern Hemisphere (SH) compared to the Northern Hemisphere (NH), consistent with observations. Trends in background conditions have counteracting effects on NLC: temperature trends would suggest stronger ice increase in the SH, and water vapor trends would suggest a weaker increase. Larger trends in NLC brightness or occurrence rates are not necessarily associated with larger (more negative) temperature trends. They can also be caused by larger trends of water vapor caused by larger freeze drying, which in turn can be caused by generally lower temperatures and/or more background water. Trends of NLC brightness and occurrence rates decrease with decreasing latitude in both hemispheres. The latitudinal variation of these trends is primarily determined by induced water vapor trends. Trends in NLC altitudes are generally small. Stratospheric temperature trends vary differently with altitude in the NH and SH but add up to similar trends at mesospheric cloud heights.
Unusual kinetics of thermal decay of dim-light photoreceptors in vertebrate vision
Guo, Ying; Sekharan, Sivakumar; Liu, Jian; Batista, Victor S.; Tully, John C.; Yan, Elsa C. Y.
2014-01-01
We present measurements of rate constants for thermal-induced reactions of the 11-cis retinyl chromophore in vertebrate visual pigment rhodopsin, a process that produces noise and limits the sensitivity of vision in dim light. At temperatures of 52.0–64.6 °C, the rate constants fit well to an Arrhenius straight line with, however, an unexpectedly large activation energy of 114 ± 8 kcal/mol, which is much larger than the 60-kcal/mol photoactivation energy at 500 nm. Moreover, we obtain an unprecedentedly large prefactor of 1072±5 s−1, which is roughly 60 orders of magnitude larger than typical frequencies of molecular motions! At lower temperatures, the measured Arrhenius parameters become more normal: Ea = 22 ± 2 kcal/mol and Apref = 109±1 s−1 in the range of 37.0–44.5 °C. We present a theoretical framework and supporting calculations that attribute this unusual temperature-dependent kinetics of rhodopsin to a lowering of the reaction barrier at higher temperatures due to entropy-driven partial breakup of the rigid hydrogen-bonding network that hinders the reaction at lower temperatures. PMID:25002518
Unusual kinetics of thermal decay of dim-light photoreceptors in vertebrate vision.
Guo, Ying; Sekharan, Sivakumar; Liu, Jian; Batista, Victor S; Tully, John C; Yan, Elsa C Y
2014-07-22
We present measurements of rate constants for thermal-induced reactions of the 11-cis retinyl chromophore in vertebrate visual pigment rhodopsin, a process that produces noise and limits the sensitivity of vision in dim light. At temperatures of 52.0-64.6 °C, the rate constants fit well to an Arrhenius straight line with, however, an unexpectedly large activation energy of 114 ± 8 kcal/mol, which is much larger than the 60-kcal/mol photoactivation energy at 500 nm. Moreover, we obtain an unprecedentedly large prefactor of 10(72±5) s(-1), which is roughly 60 orders of magnitude larger than typical frequencies of molecular motions! At lower temperatures, the measured Arrhenius parameters become more normal: Ea = 22 ± 2 kcal/mol and Apref = 10(9±1) s(-1) in the range of 37.0-44.5 °C. We present a theoretical framework and supporting calculations that attribute this unusual temperature-dependent kinetics of rhodopsin to a lowering of the reaction barrier at higher temperatures due to entropy-driven partial breakup of the rigid hydrogen-bonding network that hinders the reaction at lower temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yong-Jie; Yuan, Qiang-Hua; Li, Fei
2013-11-15
An atmospheric pressure plasma jet is generated by dual sinusoidal wave (50 kHz and 2 MHz). The dual-frequency plasma jet exhibits the advantages of both low frequency and radio frequency plasmas, namely, the long plasma plume and the high electron density. The radio frequency ignition voltage can be reduced significantly by using dual-frequency excitation compared to the conventional radio frequency without the aid of the low frequency excitation source. A larger operating range of α mode discharge can be obtained using dual-frequency excitation which is important to obtain homogeneous and low-temperature plasma. A larger controllable range of the gas temperaturemore » of atmospheric pressure plasma could also be obtained using dual-frequency excitation.« less
Electricity generation of single-chamber microbial fuel cells at low temperatures.
Cheng, Shaoan; Xing, Defeng; Logan, Bruce E
2011-01-15
Practical applications of microbial fuel cells (MFCs) for wastewater treatment will require operation of these systems over a wide range of wastewater temperatures. MFCs at room or higher temperatures (20-35°C) are relatively well studied compared those at lower temperatures. MFC performance was examined here over a temperature range of 4-30°C in terms of startup time needed for reproducible power cycles, and performance. MFCs initially operated at 15°C or higher all attained a reproducible cycles of power generation, but the startup time to reach stable operation increased from 50 h at 30°C to 210 h at 15°C. At temperatures below 15°C, MFCs did not produce appreciable power even after one month of operation. If an MFC was first started up at temperature of 30°C, however, reproducible cycles of power generation could then be achieved at even the two lowest temperatures of 4°C and 10°C. Power production increased linearly with temperature at a rate of 33±4 mW °C(-1), from 425±2 mW m(-2) at 4°C to 1260±10 mW m(-2) at 30°C. Coulombic efficiency decreased by 45% over this same temperature range, or from CE=31% at 4°C to CE=17% at 30°C. These results demonstrate that MFCs can effectively be operated over a wide range of temperatures, but our findings have important implications for the startup of larger scale reactors where low wastewater temperatures could delay or prevent adequate startup of the system. Copyright © 2010 Elsevier B.V. All rights reserved.
Thermal boundary resistance between sapphire and aluminum monocrystals at low temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahling, S.; Engert, J.; Gladun, A.
1981-12-01
The thermal boundary resistance at boundaries between monocrystalline sapphire and monocrystalline aluminum and between monocrystalline sapphire and polycrystalline aluminum has been measured in the temperature range from 0.1 to 6 K with aluminum in the superconducting and normal states. The ratio of the thermal boundary resistance of the aluminum monocrystals in the superconducting state to that in the normal state increases as the temperature is lowered, reaches a maximum at about 0.13 K, and decreases at still lower temperatures. At the maximum, the thermal boundary resistance in the superconducting state is two orders of magnitude larger than the resistance inmore » the normal state.« less
NASA Technical Reports Server (NTRS)
Benson, R. F.
1973-01-01
The electron temperatures deduced from Alouette 2 diffuse resonance observations are compared with the temperature obtained from the Alouette 2 cylindrical electrostatic probe experiment using data from 5 mid-to-high latitude telemetry stations. The probe temperature is consistently higher than the diffuse resonance temperature. The average difference ranged from approximately 10% to 40% with the lower values occurring at the lowest altitudes sampled (near 500 km) and at high latitudes (dip latitude greater than 55 deg), and the larger values occurring at high altitudes and lower latitudes. The discrepancy appears to be of geophysical origin since it is dependent on the location of the data sample. The present observations support the view that the often observed radar backscatter - probe electron temperature discrepancy is also of geophysical origin.
A corresponding-states framework for the description of the Mie family of intermolecular potentials
NASA Astrophysics Data System (ADS)
Ramrattan, N. S.; Avendaño, C.; Müller, E. A.; Galindo, A.
2015-05-01
The Mie (λr, λa) intermolecular pair potential has been suggested as an alternative to the traditional Lennard-Jones (12-6) potential for modelling real systems both via simulation and theory as its implementation leads to an accuracy and flexibility in the determination of thermophysical properties that cannot be obtained when potentials of fixed range are considered. An additional advantage of using variable-range potentials is noted in the development of coarse-grained models where, as the superatoms become larger, the effective potentials are seen to become softer. However, the larger number of parameters that characterise the Mie potential (λr, λa, σ, ɛ) can hinder a rational study of the particular effects that each individual parameter have on the observed thermodynamic properties and phase equilibria, and higher degeneracy of models is observed. Here a three-parameter corresponding states model is presented in which a cohesive third parameter α is proposed following a perturbation expansion and assuming a mean-field limit. It is shown that in this approximation the free energy of any two Mie systems sharing the same value of α will be the same. The parameter α is an explicit function of the repulsive and attractive exponents and consequently dictates the form of the intermolecular pair potential. Molecular dynamics simulations of a variety of Mie systems over a range of values of α are carried out and the solid-liquid, liquid-vapour and vapour-solid phase boundaries for the systems considered are presented. Using the simulation data, we confirm that systems of the same α exhibit conformal phase behaviour for the fluid-phase properties as well as for the solid-fluid boundary, although larger differences are noted in the solid region; these can be related to the approximations in the definition of the parameter. Furthermore, it is found that the temperature range over which the vapour-liquid envelope of a given Mie system is stable follows a linear dependency with α when expressed as the ratio of the critical-point temperature to the triple-point temperature. The limit where potentials of the Mie family will not present a stable fluid envelope is predicted in terms of the parameter α and the result is found to be in excellent agreement with previous studies. This unique relation between the fluid range and the cohesive parameter α is shown to be useful to limit the pairs of Mie exponents that can be used in coarse-grained potentials to treat real systems in order to obtain temperature ranges of stability for the fluid envelope consistent with experiment.
Albright, Thomas P; Mutiibwa, Denis; Gerson, Alexander R; Smith, Eric Krabbe; Talbot, William A; O'Neill, Jacqueline J; McKechnie, Andrew E; Wolf, Blair O
2017-02-28
Extreme high environmental temperatures produce a variety of consequences for wildlife, including mass die-offs. Heat waves are increasing in frequency, intensity, and extent, and are projected to increase further under climate change. However, the spatial and temporal dynamics of die-off risk are poorly understood. Here, we examine the effects of heat waves on evaporative water loss (EWL) and survival in five desert passerine birds across the southwestern United States using a combination of physiological data, mechanistically informed models, and hourly geospatial temperature data. We ask how rates of EWL vary with temperature across species; how frequently, over what areas, and how rapidly lethal dehydration occurs; how EWL and die-off risk vary with body mass; and how die-off risk is affected by climate warming. We find that smaller-bodied passerines are subject to higher rates of mass-specific EWL than larger-bodied counterparts and thus encounter potentially lethal conditions much more frequently, over shorter daily intervals, and over larger geographic areas. Warming by 4 °C greatly expands the extent, frequency, and intensity of dehydration risk, and introduces new threats for larger passerine birds, particularly those with limited geographic ranges. Our models reveal that increasing air temperatures and heat wave occurrence will potentially have important impacts on the water balance, daily activity, and geographic distribution of arid-zone birds. Impacts may be exacerbated by chronic effects and interactions with other environmental changes. This work underscores the importance of acute risks of high temperatures, particularly for small-bodied species, and suggests conservation of thermal refugia and water sources.
Mutiibwa, Denis; Gerson, Alexander. R.; Smith, Eric Krabbe; Talbot, William A.; O’Neill, Jacqueline J.; McKechnie, Andrew E.; Wolf, Blair O.
2017-01-01
Extreme high environmental temperatures produce a variety of consequences for wildlife, including mass die-offs. Heat waves are increasing in frequency, intensity, and extent, and are projected to increase further under climate change. However, the spatial and temporal dynamics of die-off risk are poorly understood. Here, we examine the effects of heat waves on evaporative water loss (EWL) and survival in five desert passerine birds across the southwestern United States using a combination of physiological data, mechanistically informed models, and hourly geospatial temperature data. We ask how rates of EWL vary with temperature across species; how frequently, over what areas, and how rapidly lethal dehydration occurs; how EWL and die-off risk vary with body mass; and how die-off risk is affected by climate warming. We find that smaller-bodied passerines are subject to higher rates of mass-specific EWL than larger-bodied counterparts and thus encounter potentially lethal conditions much more frequently, over shorter daily intervals, and over larger geographic areas. Warming by 4 °C greatly expands the extent, frequency, and intensity of dehydration risk, and introduces new threats for larger passerine birds, particularly those with limited geographic ranges. Our models reveal that increasing air temperatures and heat wave occurrence will potentially have important impacts on the water balance, daily activity, and geographic distribution of arid-zone birds. Impacts may be exacerbated by chronic effects and interactions with other environmental changes. This work underscores the importance of acute risks of high temperatures, particularly for small-bodied species, and suggests conservation of thermal refugia and water sources. PMID:28193891
Self-learning kinetic Monte Carlo simulations of diffusion in ferromagnetic α -Fe–Si alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandipati, Giridhar; Jiang, Xiujuan; Vemuri, Rama S.
Diffusion in α-Fe-Si alloys is studied using AKSOME, an on-lattice self-learning KMC code, in the ferromagnetic state. Si diffusivity in the α-Fe matrix were obtained with and without the magnetic disorder in various temperature ranges. In addition we studied vacancy diffusivity in ferromagnetic α-Fe at various Si concentrations up to 12.5at.% in the temperature range of 350–550 K. The results were compared with available experimental and theoretical values in the literature. Local Si-atom dependent activation energies for vacancy hops were calculated using a broken-model and were stored in a database. The migration barrier and prefactors for Si-diffusivity were found tomore » be in reasonable agreement with available modeling results in the literature. Magnetic disorder has a larger effect on the prefactor than on the migration barrier. Prefactor was approximately an order of magnitude and the migration barrier a tenth of an electron-volt higher with magnetic disorder when compared to a fully ferromagnetic ordered state. In addition, the correlation between various have a larger effect on the Si-diffusivity extracted in various temperature range than the magnetic disorder. In the case of vacancy diffusivity, the migration barrier more or less remained constant while the prefactor decreased with increasing Si concentration in the disordered or A2-phase of Fe-Si alloy. Important vacancy-Si/Fe atom exchange processes and their activation barriers were also identified and discuss the effect of energetics on the formation of ordered phases in Fe-Si alloys.« less
A Passive Temperature-Sensing Antenna Based on a Bimetal Strip Coil.
Shi, Xianwei; Yang, Fan; Xu, Shenheng; Li, Maokun
2017-03-23
A passive temperature-sensing antenna is presented in this paper, which consists of a meandering dipole, a bimetal strip and a back cavity. The meandering dipole is divided into two parts: the lower feeding part and the upper radiating part, which maintain electric contact during operation. As a sensing component, a bimetal strip coil offers a twisting force to rotate the lower feeding part of the antenna when the temperature varies. As a result, the effective length of the dipole antenna changes, leading to a shift of the resonant frequency. Furthermore, a metal back cavity is added to increase the antenna's quality factor Q, which results in a high-sensitivity design. An antenna prototype is designed, fabricated, and measured, which achieves a sensitivity larger than 4.00 MHz/°C in a temperature range from 30 °C to 50 °C and a read range longer than 4 m. Good agreement between the simulation and measurement results is obtained.
A Passive Temperature-Sensing Antenna Based on a Bimetal Strip Coil
Shi, Xianwei; Yang, Fan; Xu, Shenheng; Li, Maokun
2017-01-01
A passive temperature-sensing antenna is presented in this paper, which consists of a meandering dipole, a bimetal strip and a back cavity. The meandering dipole is divided into two parts: the lower feeding part and the upper radiating part, which maintain electric contact during operation. As a sensing component, a bimetal strip coil offers a twisting force to rotate the lower feeding part of the antenna when the temperature varies. As a result, the effective length of the dipole antenna changes, leading to a shift of the resonant frequency. Furthermore, a metal back cavity is added to increase the antenna’s quality factor Q, which results in a high-sensitivity design. An antenna prototype is designed, fabricated, and measured, which achieves a sensitivity larger than 4.00 MHz/°C in a temperature range from 30 °C to 50 °C and a read range longer than 4 m. Good agreement between the simulation and measurement results is obtained. PMID:28333076
Temperature- and pressure-dependent absorption cross sections of gaseous hydrocarbons at 3.39 µm
NASA Astrophysics Data System (ADS)
Klingbeil, A. E.; Jeffries, J. B.; Hanson, R. K.
2006-07-01
The pressure- and temperature-dependent absorption cross sections of several neat hydrocarbons and multi-component fuels are measured using a 3.39 µm helium-neon laser. Absorption cross section measurements are reported for methane, ethylene, propane, n-heptane, iso-octane, n-decane, n-dodecane, JP-10, gasoline and jet-A with an estimated uncertainty of less than 3.5%. The experimental conditions range from 298 to 673 K and from 500 to 2000 Torr with nitrogen as the bath gas. An apparatus is designed to facilitate these measurements, and specific care is taken to ensure the compositional accuracy of the hydrocarbon/N2 mixtures. The absorption cross sections of the smallest hydrocarbons, methane and ethylene, vary with temperature and pressure. The cross sections of larger hydrocarbons show negligible dependence on pressure and only a weak dependence on temperature. The reported data increase the range of conditions and the number of hydrocarbons for which cross section measurements are available at the HeNe laser wavelength.
Xie, Shi-Jie; Qian, Hu-Jun; Lu, Zhong-Yuan
2014-01-28
We present results of molecular dynamics simulations for coarse-grained polymer brushes in a wide temperature range to investigate the factors that affect the glass transition in these systems. We focus on the influences of free surface, polymer-substrate interaction strength, grafting density, and chain length not only on the change of glass transition temperature Tg, but also the fragility D of the glass former. It is found that the confinement can enhance the dependence of the Tg on the cooling rate as compared to the bulk melt. Our layer-resolved analysis demonstrates that it is possible to control the glass transition temperature Tg of polymer brushes by tuning the polymer-substrate interaction strength, the grafting density, and the chain length. Moreover, we find quantitative differences in the influence range of the substrate and the free surface on the density and dynamics. This stresses the importance of long range cooperative motion in glass formers near the glass transition temperature. Furthermore, the string-like cooperative motion analysis demonstrates that there exists a close relation among glass transition temperature Tg, fragility D, and string length ⟨S⟩. The polymer brushes that possess larger string length ⟨S⟩ tend to have relatively higher Tg and smaller D. Our results suggest that confining a fragile glass former through forming polymer brushes changes not only the glass transition temperature Tg, but also the very nature of relaxation process.
Dominguez-Espinosa, Gustavo; Díaz-Calleja, Ricardo; Riande, Evaristo; Gargallo, Ligia; Radic, Deodato
2005-09-15
The relaxation behavior of poly(2,3-dichlorobenzyl methacrylate) is studied by broadband dielectric spectroscopy in the frequency range of 10(-1)-10(9) Hz and temperature interval of 303-423 K. The isotherms representing the dielectric loss of the glassy polymer in the frequency domain present a single absorption, called beta process. At temperatures close to Tg, the dynamical alpha relaxation already overlaps with the beta process, the degree of overlapping increasing with temperature. The deconvolution of the alpha and beta relaxations is facilitated using the retardation spectra calculated from the isotherms utilizing linear programming regularization parameter techniques. The temperature dependence of the beta relaxation presents a crossover associated with a change in activation energy of the local processes. The distance between the alpha and beta peaks, expressed as log(fmax;beta/fmax;alpha) where fmax is the frequency at the peak maximum, follows Arrhenius behavior in the temperature range of 310-384 K. Above 384 K, the distance between the peaks remains nearly constant and, as a result, the a onset temperature exhibited for many polymers is not reached in this system. The fraction of relaxation carried out through the alpha process, without beta assistance, is larger than 60% in the temperature range of 310-384 K where the so-called Williams ansatz holds.
Temperature dependent magnon-phonon coupling in bcc Fe from theory and experiment.
Körmann, F; Grabowski, B; Dutta, B; Hickel, T; Mauger, L; Fultz, B; Neugebauer, J
2014-10-17
An ab initio based framework for quantitatively assessing the phonon contribution due to magnon-phonon interactions and lattice expansion is developed. The theoretical results for bcc Fe are in very good agreement with high-quality phonon frequency measurements. For some phonon branches, the magnon-phonon interaction is an order of magnitude larger than the phonon shift due to lattice expansion, demonstrating the strong impact of magnetic short-range order even significantly above the Curie temperature. The framework closes the previous simulation gap between the ferro- and paramagnetic limits.
Chromium Diffusion Doping on ZnSe Crystals
NASA Technical Reports Server (NTRS)
Journigan, Troy D.; Chen, K.-T.; Chen, H.; Burger, A.; Schaffers, K.; Page, R. H.; Payne, S. A.
1997-01-01
Chromium doped zinc selenide crystal have recently been demonstrated to be a promising material for near-IR room temperature tunable lasers which have an emission range of 2-3 micrometers. In this study a new diffusion doping process has been developed for incorporation of Cr(+2) ion into ZnSe wafers. This process has been successfully performed under isothermal conditions, at temperatures above 800 C. Concentrations in excess of 10(exp 19) Cr(+2) ions/cu cm, an order of magnitude larger than previously reported in melt grown ZnSe material, have been obtained by diffusion doping, as estimated from optical absorption measurements. The diffusivity was estimated to be about 10(exp -8) sq cm/sec using a thin film diffusion model. Resistivity was derived from current-voltage measurements and in the range of 10(exp 13) and 10(exp 16) omega-cm. The emission spectra and temperature dependent lifetime data will also be presented and discussed.
Preparation of CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films on Si substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Yukio; Yamaguchi, Toshiyuki; Suzuki, Masayoshi
For fabricating efficient tandem solar cells, CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films have been prepared on Si(100), Si(110) and Si(111) substrates in the temperature range (R.T.{approximately}400 C) by rf sputtering. From EPMA analysis, these sputtered thin films are found to be nearly stoichiometric over the whole substrate temperature range, irrespective of the azimuth plane of the Si substrate. XPS studies showed that the compositional depth profile in these thin films is uniform. X-ray diffraction analysis indicated that all the thin films had a chalcopyrite structure. CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films were strongly oriented along the (112) plane with increasingmore » the substrate temperature, independent of the azimuth plane of the Si substrate, suggesting the larger grain growth.« less
A Contextual Fire Detection Algorithm for Simulated HJ-1B Imagery.
Qian, Yonggang; Yan, Guangjian; Duan, Sibo; Kong, Xiangsheng
2009-01-01
The HJ-1B satellite, which was launched on September 6, 2008, is one of the small ones placed in the constellation for disaster prediction and monitoring. HJ-1B imagery was simulated in this paper, which contains fires of various sizes and temperatures in a wide range of terrestrial biomes and climates, including RED, NIR, MIR and TIR channels. Based on the MODIS version 4 contextual algorithm and the characteristics of HJ-1B sensor, a contextual fire detection algorithm was proposed and tested using simulated HJ-1B data. It was evaluated by the probability of fire detection and false alarm as functions of fire temperature and fire area. Results indicate that when the simulated fire area is larger than 45 m(2) and the simulated fire temperature is larger than 800 K, the algorithm has a higher probability of detection. But if the simulated fire area is smaller than 10 m(2), only when the simulated fire temperature is larger than 900 K, may the fire be detected. For fire areas about 100 m(2), the proposed algorithm has a higher detection probability than that of the MODIS product. Finally, the omission and commission error were evaluated which are important factors to affect the performance of this algorithm. It has been demonstrated that HJ-1B satellite data are much sensitive to smaller and cooler fires than MODIS or AVHRR data and the improved capabilities of HJ-1B data will offer a fine opportunity for the fire detection.
Evidence for unseen companions around T Tauri stars
NASA Technical Reports Server (NTRS)
Marsh, Kenneth A.; Mahoney, Michael J.
1992-01-01
The observed spectral energy distributions of HK Tau, T Tau, and R Y Tau exhibit shallow (but significant) dips at mid-infrared wavelengths. This behavior can be explained by the existence of discrete gaps in their circumstellar disks since, if the temperature in the disks decreases monotonically outward, a gap would result in a range of "missing" temperatures. The gap centers for the three objects occur at radial distances of 0.5, 1.4, and 1.6 AU, respectively, while the corresponding ratios of outer to inner radii of the gaps are 6:1, 7:1, and 15:1, respectively. Larger mid-infrared dips are observed for SU Aur and GM Aur and are interpreted as correspondingly larger gaps, with almost complete clearing of the inner region of the disk in the latter case. The gaps in all cases are consistent with the tidal effects of either companion stars or planets.
Analysis of Er{sup 3+} and Ho{sup 3+} codoped fluoroindate glasses as wide range temperature sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haro-Gonzalez, P., E-mail: patharo@ull.es; Leon-Luis, S.F.; Gonzalez-Perez, S.
2011-07-15
Graphical abstract: The sensor sensitivity as a function of the temperature of erbium and holmium doped fluoroindate glasses. A wide temperature range from 20 K to 425 K is covered with a sensitivity larger than 0.0005. Highlights: {yields} The FIR technique has been carried out in fluoroindate glass sample. {yields} The Er doped fluoroindate sample has a maximum sensitivity of 0.0028 K{sup -1} at 425 K. {yields} The Ho doped fluoroindate sample has a maximum sensitivity of 0.0036 K{sup -1} at 59 K. -- Abstract: The fluorescence intensity ratio technique for two fluoroindate glass samples has been carried out. Themore » green emissions at 523 nm and at 545 nm in a 0.1 mol% of Er{sup 3+} doped fluoroindate glass was studied in a wide range of temperature from 125 K to 425 K with a maximum sensitivity of 0.0028 K{sup -1} for 425 K. In a sample doped with 0.1 mol% of Ho{sup 3+} the emissions at 545 nm and at 750 nm were analyzed as a function of temperature from 20 K to 300 K obtaining a maximum sensitivity of 0.0036 K{sup -1} at 59 K. Using both fluoroindate glass samples a wide temperature range from 20 K to 425 K is easily covered pumping with two low-cost diode laser at 406 nm and 473 nm.« less
NASA Astrophysics Data System (ADS)
Rahman, Gul; Rahman, Altaf Ur
2017-12-01
Thermoelectric properties of cubic (C) and tetragonal (T) BaTiO3 (BTO) and PbTiO3 (PTO) are investigated using density functional theory together with semiclassical Boltzmann's transport theory. Both electron and hole doped BTO and PTO are considered in 300-500 K temperature range. We observed that C-BTO has larger power factor(PF) when doped with holes, whereas n-type carrier concentration in C-PTO has larger PF. Comparing both BTO and PTO, C-PTO has larger figure of merit ZT. Tetragonal distortion reduces the Seebeck coefficient S in n-doped PTO, and the electronic structures revealed that such reduction in S is mainly caused by the increase in the optical band gaps (Γ - Γ and Γ-X).
Drude-type conductivity of charged sphere colloidal crystals: Density and temperature dependence
NASA Astrophysics Data System (ADS)
Medebach, Martin; Jordán, Raquel Chuliá; Reiber, Holger; Schöpe, Hans-Joachim; Biehl, Ralf; Evers, Martin; Hessinger, Dirk; Olah, Julianna; Palberg, Thomas; Schönberger, Ernest; Wette, Patrick
2005-09-01
We report on extensive measurements in the low-frequency limit of the ac conductivity of colloidal fluids and crystals formed from charged colloidal spheres suspended in de-ionized water. Temperature was varied in a range of 5°C<Θ<35°C and the particle number density n between 0.2 and 25μm-3 for the larger, respectively, 2.75 and 210μm-3 for the smaller of two investigated species. At fixed Θ the conductivity increased linearly with increasing n without any significant change at the fluid-solid phase boundary. At fixed n it increased with increasing Θ and the increase was more pronounced for larger n. Lacking a rigorous electrohydrodynamic treatment for counterion-dominated systems we describe our data with a simple model relating to Drude's theory of metal conductivity. The key parameter is an effectively transported particle charge or valence Z*. All temperature dependencies other than that of Z* were taken from literature. Within experimental resolution Z* was found to be independent of n irrespective of the suspension structure. Interestingly, Z* decreases with temperature in near quantitative agreement with numerical calculations.
Highlighting non-uniform temperatures close to liquid/solid surfaces
NASA Astrophysics Data System (ADS)
Noirez, L.; Baroni, P.; Bardeau, J. F.
2017-05-01
The present experimental measurements reveal that similar to external fields such as electric, magnetic, or flow fields, the vicinity of a solid surface can preclude the liquid molecules from relaxing to equilibrium, generating located non-uniform temperatures. The non-uniform temperature zone extends up to several millimeters within the liquid with a lower temperature near the solid wall (reaching ΔT = -0.15 °C ± 0.02 °C in the case of liquid water) counterbalanced at larger distances by a temperature rise. These effects highlighted by two independent methods (thermistor measurement and infra-red emissivity) are particularly pronounced for highly wetting surfaces. The scale over which non-uniform temperatures are extended indicates that the effect is assisted by intermolecular interactions, in agreement with recent developments showing that liquids possess finite shear elasticity and theoretical approaches integrating long range correlations.
NASA Astrophysics Data System (ADS)
Kang, Yura; Yoo, Chang-Hyoung; Nam, Deok-Hui; Lee, Myung-Hyun; Seo, Won-Seon; Hong, Suklyun; Jeong, Seong-Min
2018-03-01
In this study, we thermodynamically reviewed the suitable growth process conditions of α-SiC in the Si-C-H system using tetramethylsilane (TMS) and in the Si-C-H-Cl system using methyltrichlorosilane (MTS). In the Si-C-H-Cl system, pure solid SiC was obtained at high temperatures under a larger range of hydrogen dilution ratios than that tolerated in the Si-C-H system. X-ray diffraction and micro-Raman analysis of the products obtained at 1900, 2000, and 2100 °C showed that the α-SiC becomes more dominant with increasing temperature in the Si-C-H-Cl system. While TMS was unsuitable for high temperature processing due to its high C/Si ratio, MTS was found to be appropriate for growing α-SiC crystals at high temperatures under a range of conditions. These results indicate that a novel method to grow α-SiC single crystals through HTCVD using MTS as a precursor could be established.
Nonlinear climate sensitivity and its implications for future greenhouse warming.
Friedrich, Tobias; Timmermann, Axel; Tigchelaar, Michelle; Elison Timm, Oliver; Ganopolski, Andrey
2016-11-01
Global mean surface temperatures are rising in response to anthropogenic greenhouse gas emissions. The magnitude of this warming at equilibrium for a given radiative forcing-referred to as specific equilibrium climate sensitivity ( S )-is still subject to uncertainties. We estimate global mean temperature variations and S using a 784,000-year-long field reconstruction of sea surface temperatures and a transient paleoclimate model simulation. Our results reveal that S is strongly dependent on the climate background state, with significantly larger values attained during warm phases. Using the Representative Concentration Pathway 8.5 for future greenhouse radiative forcing, we find that the range of paleo-based estimates of Earth's future warming by 2100 CE overlaps with the upper range of climate simulations conducted as part of the Coupled Model Intercomparison Project Phase 5 (CMIP5). Furthermore, we find that within the 21st century, global mean temperatures will very likely exceed maximum levels reconstructed for the last 784,000 years. On the basis of temperature data from eight glacial cycles, our results provide an independent validation of the magnitude of current CMIP5 warming projections.
Nonlinear climate sensitivity and its implications for future greenhouse warming
Friedrich, Tobias; Timmermann, Axel; Tigchelaar, Michelle; Elison Timm, Oliver; Ganopolski, Andrey
2016-01-01
Global mean surface temperatures are rising in response to anthropogenic greenhouse gas emissions. The magnitude of this warming at equilibrium for a given radiative forcing—referred to as specific equilibrium climate sensitivity (S)—is still subject to uncertainties. We estimate global mean temperature variations and S using a 784,000-year-long field reconstruction of sea surface temperatures and a transient paleoclimate model simulation. Our results reveal that S is strongly dependent on the climate background state, with significantly larger values attained during warm phases. Using the Representative Concentration Pathway 8.5 for future greenhouse radiative forcing, we find that the range of paleo-based estimates of Earth’s future warming by 2100 CE overlaps with the upper range of climate simulations conducted as part of the Coupled Model Intercomparison Project Phase 5 (CMIP5). Furthermore, we find that within the 21st century, global mean temperatures will very likely exceed maximum levels reconstructed for the last 784,000 years. On the basis of temperature data from eight glacial cycles, our results provide an independent validation of the magnitude of current CMIP5 warming projections. PMID:28861462
Quantum tunneling of oxygen atoms on very cold surfaces.
Minissale, M; Congiu, E; Baouche, S; Chaabouni, H; Moudens, A; Dulieu, F; Accolla, M; Cazaux, S; Manicó, G; Pirronello, V
2013-08-02
Any evolving system can change state via thermal mechanisms (hopping a barrier) or via quantum tunneling. Most of the time, efficient classical mechanisms dominate at high temperatures. This is why an increase of the temperature can initiate the chemistry. We present here an experimental investigation of O-atom diffusion and reactivity on water ice. We explore the 6-25 K temperature range at submonolayer surface coverages. We derive the diffusion temperature law and observe the transition from quantum to classical diffusion. Despite the high mass of O, quantum tunneling is efficient even at 6 K. As a consequence, the solid-state astrochemistry of cold regions should be reconsidered and should include the possibility of forming larger organic molecules than previously expected.
Campanulaceae: a family with small seeds that require light for germination
Koutsovoulou, Katerina; Daws, Matthew I.; Thanos, Costas A.
2014-01-01
Background and Aims The Campanulaceae is a large cosmopolitan family, but is understudied in terms of germination, and seed biology in general. Small seed mass (usually in the range 10–200 µg) is a noteworthy trait of the family, and having small seeds is commonly associated with a light requirement. Thus, the purpose of this study was to investigate the effect of light on germination in 131 taxa of the Campanulaceae family, from all five continents of its distribution. Methods For all taxa, seed germination was tested in light (8 or 12 h photoperiod) and continuous darkness under constant and alternating temperatures. For four taxa, the effect of light on germination was examined over a wide range of temperatures on a thermogradient plate, and the possible substitution of the light requirement by gibberellic acid and nitrate was examined in ten taxa. Key Results For all 131 taxa, seed germination was higher in light than in darkness for every temperature tested. Across species, the light requirement decreased significantly with increasing seed mass. For larger seeded species, germination in the dark reached higher levels under alternating than under constant temperatures. Gibberellic acid promoted germination in darkness whereas nitrates partially substituted for a light requirement only in species showing some dark germination. Conclusions A light requirement for germination, observed in virtually all taxa examined, constitutes a collective characteristic of the family. It is postulated that smaller seeded taxa might germinate only on the soil surface or at shallow depths, while larger seeded species might additionally germinate when buried in the soil if cued to do so by fluctuating temperatures. PMID:24232382
Selectivity and self-diffusion of CO2 and H2 in a mixture on a graphite surface
Trinh, Thuat T.; Vlugt, Thijs J. H.; Hägg, May-Britt; Bedeaux, Dick; Kjelstrup, Signe
2013-01-01
We performed classical molecular dynamics (MD) simulations to understand the mechanism of adsorption from a gas mixture of CO2 and H2 (mole fraction of CO2 = 0.30) and diffusion along a graphite surface, with the aim to help enrich industrial off-gases in CO2, separating out H2. The temperature of the system in the simulation covered typical industrial conditions for off-gas treatment (250–550 K). The interaction energy of single molecules CO2 or H2 on graphite surface was calculated with classical force fields (FFs) and with Density Functional Theory (DFT). The results were in good agreement. The binding energy of CO2 on graphite surface is three times larger than that of H2. At lower temperatures, the selectivity of CO2 over H2 is five times larger than at higher temperatures. The position of the dividing surface was used to explain how the adsorption varies with pore size. In the temperature range studied, the self-diffusion coefficient of CO2 is always smaller than of H2. The temperature variation of the selectivities and the self-diffusion coefficient imply that the carbon molecular sieve membrane can be used for gas enrichment of CO2. PMID:24790965
Habitable Zones Around Main-Sequence Stars: Dependence on Planetary Mass
NASA Technical Reports Server (NTRS)
Kopparapu, Ravi Kumar; Ramirez, Ramses M.; Kotte, James Schottel; Kasting, James F.; Domagal-Goldman, Shawn; Eymet, Vincent
2014-01-01
The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1M and 5M. Assuming H2O-(inner HZ) and CO2-(outer HZ) dominated atmospheres, and scaling the background N2 atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (approx.10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H2O column depth. For larger planets, the H2O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing long-wave radiation. Hence the inner edge moves inward (approx.7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs.
Deformation of high performance concrete plate under humid tropical weather
NASA Astrophysics Data System (ADS)
Niken, C.; Elly, T.; Supartono, FX; Laksmi, I.
2018-03-01
This paper presents the relationship between surrounding relative humidity and temperature on deformation behavior of one sample concrete plate with compressive strength of 60MPa. This research was done in Indonesia that is in humid tropical weather. A specimens measuring 3000 mm × 1600 mm × 150 mm were used. The behavior was obtained by using four embedded vibrating wire strain gauges (VWESG). As a result there is a very strong relationship between humidity and deformation at the age range of 7 until 21 days. The largest deformation occurs in the corner and the fluctuation of deformation in side position is larger than in the corner and in the middle. The peaks of surrounding relative humidity were fully followed by the deepest valley of deformation on time in the corner, while in another position the range delay time was 8 - 11 hours. There is a strong relationship between surrounding temperature and deformation at the range of 7 until 14 days. The influenced of surrounding relative humidity to concrete behavior is faster and longer than surrounding temperature. The influence of surrounding temperature in humid tropical weather was shorter than in non-humid tropical weather.
Tiffan, K.F.; Kock, T.J.; Connor, W.P.; Steinhorst, R.K.; Rondorf, D.W.
2009-01-01
This study investigated behavioural thermoregulation by subyearling fall (autumn) Chinook salmon Oncorhynchus tshawytscha in a reservoir on the Snake River, Washington, U.S.A. During the summer, temperatures in the reservoir varied from 23?? C on the surface to 11?? C at 14 m depth. Subyearlings implanted with temperature-sensing radio transmitters were released at the surface at temperatures >20?? C during three blocks of time in summer 2004. Vertical profiles were taken to measure temperature and depth use as the fish moved downstream over an average of 5??6-7??2 h and 6??0-13??8 km. The majority of the subyearlings maintained average body temperatures that differed from average vertical profile temperatures during most of the time they were tracked. The mean proportion of the time subyearlings tracked within the 16-20?? C temperature range was larger than the proportion of time this range was available, which confirmed temperature selection opposed to random use. The subyearlings selected a depth and temperature combination that allowed them to increase their exposure to temperatures of 16-20?? C when temperatures 20?? C were available at lower and higher positions in the water column. A portion of the subyearlings that selected a temperature c. 17??0?? C during the day, moved into warmer water at night coincident with an increase in downstream movement rate. Though subyearlings used temperatures outside of the 16-20?? C range part of the time, behavioural thermoregulation probably reduced the effects of intermittent exposure to suboptimal temperatures. By doing so, it might enhance growth opportunity and life-history diversity in the population of subyearlings studied.
Steenbergen, Krista G; Gaston, Nicola
2013-10-07
First-principles Born-Oppenheimer molecular dynamics simulations of small gallium clusters, including parallel tempering, probe the distinction between cluster and molecule in the size range of 7-12 atoms. In contrast to the larger sizes, dynamic measures of structural change at finite temperature demonstrate that Ga7 and Ga8 do not melt, suggesting a size limit to melting in gallium exists at 9 atoms. Analysis of electronic structure further supports this size limit, additionally demonstrating that a covalent nature cannot be identified for clusters larger than the gallium dimer. Ga9, Ga10 and Ga11 melt at greater-than-bulk temperatures, with no evident covalent character. As Ga12 represents the first small gallium cluster to melt at a lower-than-bulk temperature, we examine the structural properties of each cluster at finite temperature in order to probe both the origins of greater-than-bulk melting, as well as the significant differences in melting temperatures induced by a single atom addition. Size-sensitive melting temperatures can be explained by both energetic and entropic differences between the solid and liquid phases for each cluster. We show that the lower-than-bulk melting temperature of the 12-atom cluster can be attributed to persistent pair bonding, reminiscent of the pairing observed in α-gallium. This result supports the attribution of greater-than-bulk melting in gallium clusters to the anomalously low melting temperature of the bulk, due to its dimeric structure.
HINDERED DIFFUSION OF ASPHALTENES AT EVALUATED TEMPERATURE AND PRESSURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
JAMES A. GUIN; SURYA VADLAMANI
1998-10-03
During this time period, the PhD student working on this project, Mr. X. Yang, graduated and has obtained employment with Michelin Tire Company in their research and development laboratory. A new MS student, Mr. Surya Vadlamani, is now working on the project. The work conducted in this time period will form part of Mr. Vadlamani�s MS thesis. Also during the current time period, a no-cost extension was obtained for the project, which will allow Mr. Vadlamani to complete the research work required for the MS degree in chemical engineering. Since Mr. Vadlamani was new to the project and in ordermore » to provide appropriate training, it was necessary to conduct some experimental work in the same ranges as performed earlier by Mr. Yang in order to provide continuity and insure duplication of the experimental data. The new data obtained by Mr. Vadlamani agree well in general with the earlier data obtained by Mr. Yang and extend the earlier data to a higher temperature range. Specifically, during this time period, uptake experiments were performed at temperatures from 25 0 C to 300 o C for the adsorptive diffusion of quinoline in cyclohexane and mineral oil onto alumina catalyst pellets. These experiments were conducted in a 40 cm 3 microautoclave, as contrasted with the previous work done in the much larger 1-liter autoclave. The use of the microautoclave is more economical from both a purchasing and waste disposal standpoint due to the small quantities of solvents and catalysts utilized, and is also significantly safer at the higher temperatures. Model simulation results showed that the mathematical model incorporating diffusion and adsorption mechanisms satisfactorily fitted the adsorptive diffusion of quinoline onto the alumina catalyst in a fairly wide temperature range of 25 o C to 300 o C. The logarithm of the adsorption constant, obtained by simulating the experimental data with the model solution, was found to be linearly dependent on temperature. The data obtained using the microautoclave agreed well with the previous data obtained using the larger 1-liter autoclave.« less
Liu, Siyuan; Li, Xiaoxi; Chen, Ling; Li, Lin; Li, Bing; Zhu, Jie
2017-11-01
From the view of multi-scale structures of hydroxypropyl starch (HPS)/carbon nanotube (CNT) nanocomposite films, the film physicochemical properties were affected by comprehensive factors including molecular interaction, short range molecular conformation, crystalline structure and aggregated structure. The less original HPS hydrogen bonding that was broken, less decreased order of HPS short range molecular conformation, lower film crystallinity and larger size of micro-ordered regions contributed to higher tensile strength and Young's modulus of the film with CNT content of 0.5% (g/g, CNT in HPS). The higher film overall crystallinity and larger size of micro-ordered regions of the film with CNT content of 0.05%-0.3% compared with those of control contributed to better film barrier property. The addition of CNT with the content of 0.05%-0.5% broke the original HPS hydrogen bonding and decreased the order of starch short range molecular conformation, which counteracted the positive effect of CNT on the thermal stability of the material, thus thermal degradation temperature of these nanocomposite films did not increase. But the sharp increase of film crystallinity increased film thermal degradation temperature. This study provided a better understanding of film physicochemical properties changes which guides to rational design of starch-based nanocomposite films for packaging and coating application. Copyright © 2017. Published by Elsevier B.V.
By-Pass Diode Temperature Tests of a Solar Array Coupon under Space Thermal Environment Conditions
NASA Technical Reports Server (NTRS)
Wright, Kenneth H.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie; Wu, Gordon
2016-01-01
By-Pass diodes are a key design feature of solar arrays and system design must be robust against local heating, especially with implementation of larger solar cells. By-Pass diode testing was performed to aid thermal model development for use in future array designs that utilize larger cell sizes that result in higher string currents. Testing was performed on a 56-cell Advanced Triple Junction solar array coupon provided by SSL. Test conditions were vacuum with cold array backside using discrete by-pass diode current steps of 0.25 A ranging from 0 A to 2.0 A.
Garrad, R; Booth, D T; Furlong, M J
2016-04-01
Temperature is arguably the most important abiotic factor influencing the life history of ectotherms. It limits survival and affects all physiological and metabolic processes, including energy and nutrient procurement and processing, development and growth rates, locomotion ability and ultimately reproductive success. However, the influence of temperature on the energetic cost of development has not been thoroughly investigated. We show that in the diamondback moth [Plutella xylostella L. (Lepidoptera: Plutellidae)] rearing temperature (range 10-30°C) affected growth and development rates, the energetic cost of development and fecundity. Rearing at lower temperatures increased development times and slowed growth rate, but resulted in larger adult mass. Fecundity was lowest at 10°C, highest at 15°C and intermediate at temperatures of 20°C and above. At a given rearing temperature fecundity was correlated with pupal mass and most eggs were laid on the first day of oviposition, there was no correlation between total eggs laid and adult longevity. The highest production cost was incurred at 10°C; this decreased with increasing temperature, was minimized in the range 20-25°C, and then increased again at 30°C. These minimized production costs occurred at temperatures close to the intrinsic optimum temperature for this species and may reflect the rearing temperature for optimal fitness. Thus at sub-optimal temperatures greater food resources are required during the development period. Predicted increased temperatures at the margins of the current core distribution of P. xylostella could ameliorate current seasonal effects on fecundity, thereby increasing the probability of winter survival leading to more resilient range expansion and an increased probability of pest outbreaks.
Behrens, Michael D.; Lafferty, Kevin D.
2012-01-01
We studied diet variation in an omnivorous fish across its range, which allowed us to test predictions about the effect of ocean temperature and habitat on herbivory. Throughout most of its geographic range, from Southern California to central Baja California, the opaleye (Girella nigricans) fed primarily on red and green algae, but there was significant variation in the amount of algal material in the diet among sites. The proportion of algal material in the diet was related to habitat, with algae making up a larger proportion of a fish’s diet in algal-dominated habitats than in urchin barrens. Independent of habitat, the proportion of algal material in the diet increased with environmental temperature. Analyses of stable isotopes revealed similar changes in trophic position and confirmed that these associations with diet persisted over relatively long time scales. The shift to a more herbivorous diet at warmer temperatures is in agreement with past laboratory studies on this species that show a diet-dependent change in performance with temperature and can indicate a diet shift across the species’ geographic range to meet its physiological demands. A possible plastic response to herbivory was a longer gut relative to body size. The results of this study are consistent with past findings that associate temperature with increases in the relative diversity of herbivorous fishes in tropical parts of the ocean. PMID:23029302
Kanji, Z A; Abbatt, J P D
2010-01-21
The University of Toronto Continuous Flow Diffusion Chamber (UT-CFDC) was used to study ice formation onto monodisperse Arizona Test Dust (ATD) particles. The onset relative humidity with respect to ice (RH(i)) was measured as a function of temperature in the range 251-223 K for 100 nm ATD particles. It was found that for 0.1% of the particles to freeze, water saturation was required at all temperatures except 223 K where particles activated at RH(i) below water saturation. At this temperature, where deposition mode freezing is occurring, we find that the larger the particle size, the lower the onset RH(i). We also demonstrate that the total number of particles present may influence the onset RH(i) observed. The surface area for ice activation, aerosol size, and temperature must all be considered when reporting onset values of ice formation onto ATD mineral dust particles. In addition, we calculate nucleation rates and contact angles of ice germs with ATD aerosols which indicate that there exists a range of active sites on the surface with different efficiencies for activating ice formation.
A new method for inferring carbon monoxide concentrations from gas filter radiometer data
NASA Technical Reports Server (NTRS)
Wallio, H. A.; Reichle, H. G., Jr.; Casas, J. C.; Gormsen, B. B.
1981-01-01
A method for inferring carbon monoxide concentrations from gas filter radiometer data is presented. The technique can closely approximate the results of more costly line-by-line radiative transfer calculations over a wide range of altitudes, ground temperatures, and carbon monoxide concentrations. The technique can also be used over a larger range of conditions than those used for the regression analysis. Because the influence of the carbon monoxide mixing ratio requires only addition, multiplication and a minimum of logic, the method can be implemented on very small computers or microprocessors.
Measurement of the Solar Absorptance and Thermal Emittance of Lunar Simulants
NASA Technical Reports Server (NTRS)
Gaier, James R.; Street, Kenneth W.; Gutafson, Robert J.
2010-01-01
The first comparative study of the reflectance spectra of lunar simulants is presented. All of the simulants except one had a wavelength-dependant reflectivity ( ( )) near 0.10 over the wavelength range of 8 to 25 m, so they are highly emitting at room temperature and lower. The 300 K emittance ( ) of all the lunar simulants except one ranged from 0.884 to 0.906. The 300 K of JSC Mars-1 simulant was 0.927. There was considerably more variation in the lunar simulant reflectance in the solar spectral range (250 to 2500 nm) than in the thermal infrared. Larger particle size simulants reflected much less than those with smaller particle size. As expected, the lunar highlands simulants were more reflective in this wavelength range than the lunar mare simulants. The integrated solar absorptance ( ) of the simulants ranged from 0.413 to 0.817 for those with smaller particles, and 0.669 to 0.906 for those with larger particles. Although spectral differences were observed, the for the simulants appears to be similar to that of lunar soils (0.65 to 0.88). These data are now available to be used in modeling the effects of dust on thermal control surfaces.
NASA Technical Reports Server (NTRS)
Das, D. K.; Kumar, K.; Frost, R. T.; Chang, C. W.
1980-01-01
Techniques for containerless melting and solidification of the samarium-cobalt alloy without excessive oxidation were developed. The rationale for extending these experiments in a weightless environment is also discussed. The effect of oxygen content from 0.15 to 0.63 weight percent and grain size in the range of 2 to 10 micrometers has been examined on arc-plasma-sprayed SmCo5 magnets. Contrary to expectations, the larger grain sizes tended to improve the coercivities. This was attributed to an increase in homogeneity resulting from higher temperature treatments used to produce larger grain size. No significant differences in coercivity were observed on the basis of oxygen content in the range examined. It is expected that more meaningful data on the relationship between oxygen content and coercivity will be seen when the oxygen content can be lowered to less than 0.1 weight percent.
A > 4 MGy radiation tolerant 8 THzOhm transimpedance amplifier with 50 dB dynamic range
NASA Astrophysics Data System (ADS)
Verbeeck, J.; Steyaert, M.; Leroux, P.
2013-02-01
A 130 nm Transimpedance Amplifier has been developed with a 255 MHz bandwidth, 90 dBΩ transimpedance gain and a dynamic input range of 1:325 or 50 dB for a photo-diode capacitance of 0.75 pF. The equivalent integrated input noise is 160 nA @ 25°C. The gain of the voltage amplifier, used in the transimpedance amplifier (TIA), degrades less than 3% over a temperature range from -40 °C up to 125 °C. The TIA and attenuator exhibit a radiation tolerance larger than 4 MGy, as evidenced by radiation assessment.
Ramírez-Valiente, Jose Alberto; Sánchez-Gómez, David; Aranda, Ismael; Valladares, Fernando
2010-05-01
Plants distributed across a wide range of environmental conditions are submitted to differential selective pressures. Long-term selection can lead to the development of adaptations to the local environment, generating ecotypic differentiation. Additionally, plant species can cope with this environmental variability by phenotypic plasticity. In this study, we examine the importance of both processes in coping with environmental heterogeneity in the Mediterranean sclerophyllous cork oak Quercus suber. For this purpose, we measured growth and key functional traits at the leaf level in 9-year-old plants across 2 years of contrasting precipitation (2005 and 2006) in a common garden. Plants were grown from acorns originated from 13 populations spanning a wide range of climates along the distribution range of the species. The traits measured were: leaf size (LS), specific leaf area (SLA), carbon isotope discrimination (Delta(13)C) and leaf nitrogen content per unit mass (N(mass)). Inter-population differences in LS, SLA and Delta(13)C were found. These differences were associated with rainfall and temperature at the sites of origin, suggesting local adaptation in response to diverging climates. Additionally, SLA and LS exhibited positive responses to the increase in annual rainfall. Year effect explained 28% of the total phenotypic variance in LS and 2.7% in SLA. There was a significant genotype x environment interaction for shoot growth and a phenotypic correlation between the difference in shoot growth among years and the annual mean temperature at origin. This suggests that populations originating from warm sites can benefit more from wet conditions than populations from cool sites. Finally, we investigated the relationships between functional traits and aboveground growth by several regression models. Our results showed that plants with lower SLA presented larger aboveground growth in a dry year and plants with larger leaf sizes displayed larger growth rates in both years. Overall, the study supports the adaptive value of SLA and LS for cork oak under a Mediterranean climate and their potentially important role for dealing with varying temperature and rainfall regimes through both local adaptation and phenotypic plasticity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Jingli; Chen, Cun; Wang, Gang
This study explores the temporal scaling behavior induced shear-branching structure in response to variant temperatures and strain rates during plastic deformation of Zr-based bulk metallic glass (BMG). The data analysis based on the compression tests suggests that there are two states of shear-branching structures: the fractal structure with a long-range order at an intermediate temperature of 223 K and a larger strain rate of 2.5 × 10 –2 s –1; the disordered structure dominated at other temperature and strain rate. It can be deduced from the percolation theory that the compressive ductility, ec, can reach the maximum value at themore » intermediate temperature. Furthermore, a dynamical model involving temperature is given for depicting the shear-sliding process, reflecting the plastic deformation has fractal structure at the temperature of 223 K and strain rate of 2.5 × 10 –2 s –1.« less
Effects of climate change on water quality in the Yaquina ...
As part of a larger study to examine the effect of climate change (CC) on estuarine resources, we simulated the effect of rising sea level, alterations in river discharge, and increasing atmospheric temperatures on water quality in the Yaquina Estuary. Due to uncertainty in the effects of climate change, initial model simulations were performed for different steady river discharge rates that span the historical range in inflow, and for a range of increases in sea level and atmospheric temperature. Model simulations suggest that in the central portion of the estuary (19 km from mouth), a 60-cm increase in sea level will result in a 2-3 psu change in salinity across a broad range of river discharges. For the oligohaline portion of the estuary, salinity increases associated with a rise in sea level of 60 cm are only apparent at low river discharge rates (< 50 m3 s-1). Simulations suggest that the water temperatures near the mouth of the estuary will decrease due to rising sea level, while water temperatures in upriver portions of the estuary will increase due to rising atmospheric temperatures. We present results which demonstrate how the interaction of changes in river discharge, rising sea level, and atmospheric temperature associated with climate change produce non-linear patterns in the response of estuarine salinity and temperature, which vary with location inside the estuary and season. We also will discuss the importance of presenting results in a mann
Carnley, Mark V.
2015-01-01
The Pressure Water Level Data Logger manufactured by Infinities USA, Inc., was evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility for conformance with the manufacturer’s stated accuracy specifications for measuring pressure throughout the device’s operating temperature range and with the USGS accuracy requirements for water-level measurements. The Pressure Water Level Data Logger (Infinities Logger) is a submersible, sealed, water-level sensing device with an operating pressure range of 0 to 11.5 feet of water over a temperature range of −18 to 49 degrees Celsius. For the pressure range tested, the manufacturer’s accuracy specification of 0.1 percent of full scale pressure equals an accuracy of ±0.138 inch of water. Three Infinities Loggers were evaluated, and the testing procedures followed and results obtained are described in this report. On the basis of the test results, the device is poorly compensated for temperature. For the three Infinities Loggers, the mean pressure differences varied from –4.04 to 5.32 inches of water and were not within the manufacturer’s accuracy specification for pressure measurements made within the temperature-compensated range. The device did not meet the manufacturer’s stated accuracy specifications for pressure within its temperature-compensated operating range of –18 to 49 degrees Celsius or the USGS accuracy requirements of no more than 0.12 inch of water (0.01 foot of water) or 0.10 percent of reading, whichever is larger. The USGS accuracy requirements are routinely examined and reported when instruments are evaluated at the Hydrologic Instrumentation Facility. The estimated combined measurement uncertainty for the pressure cycling test was ±0.139 inch of water, and for temperature, the cycling test was ±0.127 inch of water for the three Infinities Loggers.
A Contextual Fire Detection Algorithm for Simulated HJ-1B Imagery
Qian, Yonggang; Yan, Guangjian; Duan, Sibo; Kong, Xiangsheng
2009-01-01
The HJ-1B satellite, which was launched on September 6, 2008, is one of the small ones placed in the constellation for disaster prediction and monitoring. HJ-1B imagery was simulated in this paper, which contains fires of various sizes and temperatures in a wide range of terrestrial biomes and climates, including RED, NIR, MIR and TIR channels. Based on the MODIS version 4 contextual algorithm and the characteristics of HJ-1B sensor, a contextual fire detection algorithm was proposed and tested using simulated HJ-1B data. It was evaluated by the probability of fire detection and false alarm as functions of fire temperature and fire area. Results indicate that when the simulated fire area is larger than 45 m2 and the simulated fire temperature is larger than 800 K, the algorithm has a higher probability of detection. But if the simulated fire area is smaller than 10 m2, only when the simulated fire temperature is larger than 900 K, may the fire be detected. For fire areas about 100 m2, the proposed algorithm has a higher detection probability than that of the MODIS product. Finally, the omission and commission error were evaluated which are important factors to affect the performance of this algorithm. It has been demonstrated that HJ-1B satellite data are much sensitive to smaller and cooler fires than MODIS or AVHRR data and the improved capabilities of HJ-1B data will offer a fine opportunity for the fire detection. PMID:22399950
NASA Technical Reports Server (NTRS)
Feibelman, W. A.; Hake, R. D., Jr.; Sipler, D. P.; Biondi, M. A.
1971-01-01
Fabry-Perot interferometer measurements of atomic oxygen 6300 A and 5577 A line profiles from twilight and nightglow are used to determine the neutral temperatures in F2 and E regions of the earth's ionosphere. The exospheric temperatures T sub n (infinity) determined from the 6300 A profiles are usually somewhat higher than those calculated from Jacchia's model, with differences as large as approximately 300 K noted when T sub n (infinity) = 1500 to 1600 K. The post-sunset and pre-dawn rate of change of T sub n (infinity) is often substantially larger than the Jacchia prediction. The 5577 A (E-region) measured temperatures range from 200 to 220 K on quiet nights to 500 to 600 K during geomagnetic storms.
Quasielastic neutron scattering study of water confined in carbon nanopores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mavila Chathoth, Suresh; Mamontov, Eugene; Kolesnikov, Alexander I
2011-01-01
Microscopic dynamics of water confined in nanometer and sub-nanometer pores of carbide-derived carbon (CDC) were investigated using quasielastic neutron scattering (QENS). The temperature dependence of the average relaxation time, {tau}, exhibits super-Arrhenius behavior that could be described by Vogel-Fulcher-Tammann (VFT) law in the range from 250 K to 190 K; below this temperature, {tau} follows Arrhenius temperature dependence. The temperature of the dynamic crossover between the two regimes in water confined in the CDC pores is similar to that observed for water in hydrophobic confinement of the larger size, such as 14 {angstrom} ordered mesoporous carbon (CMK) and 16 {angstrom}more » double-wall carbon nanotubes. Thus, the dynamical behavior of water remains qualitatively unchanged even in the very small hydrophobic pores.« less
High-Temperature High-Power Packaging Techniques for HEV Traction Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barlow, F.D.; Elshabini, A.
A key issue associated with the wider adoption of hybrid-electric vehicles (HEV) and plug in hybrid-electric vehicles (PHEV) is the implementation of the power electronic systems that are required in these products [1]. To date, many consumers find the adoption of these technologies problematic based on a financial analysis of the initial cost versus the savings available from reduced fuel consumption. Therefore, one of the primary industry goals is the reduction in the price of these vehicles relative to the cost of traditional gasoline powered vehicles. Part of this cost reduction must come through optimization of the power electronics requiredmore » by these vehicles. In addition, the efficiency of the systems must be optimized in order to provide the greatest range possible. For some drivers, any reduction in the range associated with a potential HEV or PHEV solution in comparison to a gasoline powered vehicle represents a significant barrier to adoption and the efficiency of the power electronics plays an important role in this range. Likewise, high efficiencies are also important since lost power further complicates the thermal management of these systems. Reliability is also an important concern since most drivers have a high level of comfort with gasoline powered vehicles and are somewhat reluctant to switch to a less proven technology. Reliability problems in the power electronics or associated components could not only cause a high warranty cost to the manufacturer, but may also taint these technologies in the consumer's eyes. A larger vehicle offering in HEVs is another important consideration from a power electronics point of view. A larger vehicle will need more horsepower, or a larger rated drive. In some ways this will be more difficult to implement from a cost and size point of view. Both the packaging of these modules and the thermal management of these systems at competitive price points create significant challenges. One way in which significant cost reduction of these systems could be achieved is through the use of a single coolant loop for both the power electronics as well as the internal combustion engine (ICE) [2]. This change would reduce the complexity of the cooling system which currently relies on two loops to a single loop [3]. However, the current nominal coolant temperature entering these inverters is 65 C [3], whereas a normal ICE coolant temperature would be much higher at approximately 100 C. This change in coolant temperature significantly increases the junction temperatures of the devices and creates a number of challenges for both device fabrication and the assembly of these devices into inverters and converters for HEV and PHEV applications. With this change in mind, significant progress has been made on the use of SiC devices for inverters that can withstand much higher junction temperatures than traditional Si based inverters [4,5,6]. However, a key problem which the single coolant loop and high temperature devices is the effective packaging of these devices and related components into a high temperature inverter. The elevated junction temperatures that exist in these modules are not compatible with reliable inverters based on existing packaging technology. This report seeks to provide a literature survey of high temperature packaging and to highlight the issues related to the implementation of high temperature power electronic modules for HEV and PHEV applications. For purposes of discussion, it will be assumed in this report that 200 C is the targeted maximum junction temperature.« less
Cellular Convection in a Chamber with a Warm Surface Raft
NASA Astrophysics Data System (ADS)
Whitehead, John; Shea, Erin; Behn, Mark
2011-11-01
We calculate velocity and temperature fields for Rayleigh-Benard convection in a chamber with a warm raft that can float along the top surface for Rayleigh number up to Ra=20,000. Two-dimensional, infinite Prandtl number, Boussinesq approximation equations are numerically advanced in time from a motionless state in a chamber of length L' and depth D'. We consider cases with an insulated raft and a raft of fixed temperature. Either oscillatory or stationary flow exists. The case of an insulated raft has three governing parameters: Ra, scaled chamber length L=L'/D', and scaled raft width W. For W=0 and L=1, the marginal state is at Ra=779.3. For smallest W (determined by numerical grid size) and Ra <790 the raft approaches the center monotonically in time. For 790
Microstructure and electrical properties of CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, S. F.; Zhang, J. L.; Zheng, P.
2006-04-15
CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) ceramics are prepared by the conventional solid-state reaction method under various sintering temperatures from 1000 to 1120 deg. C at an interval of 10 deg. C. Microstructures and crystalline structures are examined by scanning electronic microscopy and x-ray diffraction, respectively. Dielectric properties and complex impedances are investigated within the frequency range of 40 Hz-110 MHz over the temperature region from room temperature to 350 deg. C. It has been disclosed that the microstructures can be categorized into three different types: type A (with the small but uniform grain sizes), type B (with the bimodal distributionmore » of grain sizes) and type C (with the large and uniform grain sizes), respectively. The largeness of low-frequency dielectric permittivity at room temperature is closely related to the microstructure. Ceramics with different types of microstructures show the diverse temperature-dependent behaviors of electrical properties. However, the existence of some common characteristics is also found among them. For all of the ceramics, a Debye-type relaxation emerges in the frequency range of 100 Hz-100 kHz at high measuring temperatures, which has the larger dielectric dispersion strength than the one known in the frequency range above 100 kHz. Thus, the high-temperature dielectric dispersion exhibits a large low-frequency response and two Debye-type relaxations. Furthermore, all of the ceramics show three semicircles in the complex impedance plane. These semicircles are considered to represent individually different electrical mechanisms, among which the one in the low-frequency range arises most probably from the contribution of the domain boundaries, and the other two are ascribed to the contributions of the domains and the grain boundaries, respectively.« less
Comparison of microtweezers based on three lateral thermal actuator configurations
NASA Astrophysics Data System (ADS)
Luo, J. K.; Flewitt, A. J.; Spearing, S. M.; Fleck, N. A.; Milne, W. I.
2005-06-01
Thermal actuator-based microtweezers with three different driving configurations have been designed, fabricated and characterized. Finite element analysis has been used to model the device performance. It was found that one configuration of microtweezer, based on two lateral bimorph thermal actuators, has a small displacement (tip opening of the tweezers) and a very limited operating power range. An alternative configuration consisting of two horizontal hot bars with separated beams as the arms can deliver a larger displacement with a much-extended operating power range. This structure can withstand a higher temperature due to the wider beams used, and has flexible arms for increased displacement. Microtweezers driven by a number of chevron structures in parallel have similar maximum displacements but at a cost of higher power consumption. The measured temperature of the devices confirms that the device with the chevron structure can deliver the largest displacement for a given working temperature, while the bimorph thermal actuator design has the highest operating temperature at the same power due to its thin hot arm, and is prone to structural failure.
River-aquifer exchanges in the Yakima River basin, Washington
Vaccaro, J.J.
2011-01-01
Five categories of data are analyzed to enhance understanding of river-aquifer exchanges-the processes by which water moves between stream channels and the adjacent groundwater system-in the Yakima River basin. The five datasets include (1) results of chemical analyses of water for tritium (3H, a radioactive isotope of hydrogen) and the ratios of the stable isotopes of hydrogen (2H/1H) and oxygen (18O/16O), (2) series of stream discharge measurements within specified reaches (seepage investigations or 'runs'), (3) vertical hydraulic gradients (between stream stage and hydraulic heads the underlying aquifer) measured using mini-piezometers, (4) groundwater levels and water temperature in shallow wells near stream channels, and (5) thermal profiles (continuous records of water temperature along river reaches). Exchanges are described in terms of streamflow, vertical hydraulic gradients, groundwater temperature and levels, and streamflow temperature, and where appropriate, the exchanges are discussed in terms of their relevance to and influence on salmonid habitat. The isotope data shows that the ultimate source of surface and groundwater is meteoric water derived from atmospheric precipitation. Water from deep wells has a different isotopic composition than either shallow groundwater or surface water, indicating that the deep groundwater system contributes, at most, only a small component of the surface-water discharge. The isotope data confirms that river-aquifer exchanges involve primarily modern streamflow and modern, shallow groundwater. Net exchanges of water for 46 stream sections investigated with seepage runs ranged from nearly zero to 1,071 ft3/s for 28 gaining sections, and -3 to -242 ft3/s for 18 losing sections. The magnitude of the upper 50 percent of the net gains is an order of magnitude larger than those for net losses. The sections have a normalized net exchange (as absolute value) that fully ranged from near 0 to 65.6 (ft3/s)/mi. Gaining-section values ranged from about 0.1 to 65.6 (ft3/s)/mi, and losing section values ranged from about -0.1 to -35.4 (ft3/s)/mi. Gains are much more vigorous than the losses with 55 percent being larger than 3.0 (ft3/s)/ mi, whereas, only 6 percent of the negative net exchanges were larger than 3.0 (ft3/s)/mi. Gains and losses for 167 measured reaches within the 46 sections ranged from about 70 to -75 (ft3/s)/mi, and ranged more than 5 orders of magnitude. The median values for the gains and losses were 5.1 and -4.4 (ft3/s)/mi, respectively. The magnitude of the gains was larger than the losses; more than 40 percent of the gains were greater than 10 (ft3/s)/mi, and only about 25 percent of the losses were greater than 10 (ft3/s)/mi. Reaches with large gains are identified and these reaches represent potentially important areas for various life stages of salmonids and possibly for preservation or restoration of that habitat. Ninety-nine measurements of vertical hydraulic gradients (VHGs) were made using mini-piezometers. The median for the measurements was -0.35 ft/ft (negative values indicate downward flow), and in terms of absolute values, the median was 0.05 ft/ft. The VHGs tended to be small. Seventy VHG values were negative (indicating streamflow losses), and 29 were positive (indicating streamflow gains). VHGs vary more than 4 orders of magnitude, and in terms of magnitudes, 65 percent were less than 0.1 ft/ft. The negative VHG values are not only more prevalent but are larger than the positive values. The magnitudes of almost 50 percent of the negative VHGs are greater than 0.05 ft/ft and only 33 percent of the positive VHGs are greater than 0.05 ft/ft. The percentile distribution of the VHG data, which is similar to the shape of the seepage data distribution, shows that beyond the 80th percentile, the positive values become much larger, indicating that the largest VHGs have a different controlling mechanism. The VHGs were formulated in terms of fluxes per unit are
A Precise Calibration Technique for Measuring High Gas Temperatures
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman A.; Schultz, Donald F.
2000-01-01
A technique was developed for direct measurement of gas temperatures in the range of 2050 K 2700 K with improved accuracy and reproducibility. The technique utilized the low-emittance of certain fibrous materials, and the uncertainty of the technique was United by the uncertainty in the melting points of the materials, i.e., +/-15 K. The materials were pure, thin, metal-oxide fibers whose diameters varied from 60 microns to 400 microns in the experiments. The sharp increase in the emittance of the fibers upon melting was utilized as indication of reaching a known gas temperature. The accuracy of the technique was confirmed by both calculated low emittance values of transparent fibers, of order 0.01, up to a few degrees below their melting point and by the fiber-diameter independence of the results. This melting-point temperature was approached by increments not larger than 4 K, which was accomplished by controlled increases of reactant flow rates in hydrogen-air and/or hydrogen-oxygen flames. As examples of the applications of the technique, the gas-temperature measurements were used: (a) for assessing the uncertainty in inferring gas temperatures from thermocouple measurements, and (b) for calibrating an IR camera to measure gas temperatures. The technique offers an excellent calibration reference for other gas-temperature measurement methods to improve their accuracy and reliably extending their temperature range of applicability.
A Precise Calibration Technique for Measuring High Gas Temperatures
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman A.; Schultz, Donald F.
1999-01-01
A technique was developed for direct measurement of gas temperatures in the range of 2050 K - 2700 K with improved accuracy and reproducibility. The technique utilized the low-emittance of certain fibrous Materials, and the uncertainty of the technique was limited by the uncertainty in the melting points of the materials, i.e., +/- 15 K. The materials were pure, thin, metal-oxide fibers whose diameters varied from 60 mm to 400 mm in the experiments. The sharp increase in the emittance of the fibers upon melting was utilized as indication of reaching a known gas temperature. The accuracy of the technique was confirmed by both calculated low emittance values of transparent fibers, of order 0.01, up to a few degrees below their melting point and by the fiber-diameter independence of the results. This melting-point temperature was approached by increments not larger than 4 K, which was accomplished by controlled increases of reactant flow rates in hydrogen-air and/or hydrogen- oxygen flames. As examples of the applications of the technique, the gas-temperature measurements were used (a) for assessing the uncertainty in infering gas temperatures from thermocouple measurements, and (b) for calibrating an IR camera to measure gas temperatures. The technique offers an excellent calibration reference for other gas-temperature measurement methods to improve their accuracy and reliably extending their temperature range of applicability.
NASA Astrophysics Data System (ADS)
Dhama, Pallavi; Kumar, Aparabal; Banerji, P.
2018-04-01
In this paper, we explored the effect of sintering temperature on the microstructure, thermal and electrical properties of iodine doped indium selenide in the temperature range 300 - 700 K. Samples were prepared by a collaborative process of vacuum melting, ball milling and spark plasma sintering at 570 K, 630 K and 690 K. Single phase samples were obtained at higher sintering temperature as InSe is stable only at lower temperature. With increasing sintering temperature, densities of the samples were found to improve with larger grain size formation. Negative values of Seebeck coefficient were observed which indicates n-type carrier transport. Seebeck coefficient increases with sintering temperature and found to be the highest for the sample sintered at 690 K. Thermal conductivity found to be lower in the samples sintered at lower temperatures. The maximum thermoelectric figure of merit found to be ˜ 1 at 700 K due to the enhanced power factor as a result of improved microstructure.
Synthetic Analysis of the Effective Elastic Thickness of the Lithosphere in China
NASA Astrophysics Data System (ADS)
Lu, Z.; Li, C.
2017-12-01
Effective elastic thickness (Te) represents the response of the lithosphere to a long-term (larger than 105 years) geological loading and reflects the deformation mechanism of plate and its thermodynamic state. Temperature and composition of the lithosphere, coupling between crust and lithospheric mantle, and lithospheric structures affect Te. Regional geology in China is quite complex, influenced by the subduction of the Pacific and Philippine Sea plates in the east and the collision of the Eurasia plate with the India-Australia plate in the southwest. Te can help understand the evolution and strength of the lithospheres in different areas and tectonic units. Here we apply the multitaper coherence method to estimate Te in China using the topography (ETOPO1) and Bouguer gravity anomalies (WGM2012) , at different window sizes (600km*600km, 800km*800km, 1000km*1000km) and moving steps. The lateral variation of Te in China coincides well with the geology. The old stable cratons or basins always correspond to larger Te, whereas the oceanic lithosphere or active orogen blocks tend to get smaller Te. We further correlate Te to curie-point depths (Zb) and heat flow to understand how temperature influences the strength of the lithosphere. Despite of a complex correlation between Te and Zb, good positive correlations are found in the North China Block, Tarim Basin, and Lower Yangtze, showing strong influence of temperature on lithospheric strength. Conversely, the Tibetan Plateau, Upper and Middle Yangtze, and East China Sea Basin even show negative correlation, suggesting that lithospheric structures and compositions play more important roles than temperature in these blocks. We also find that earthquakes tend to occur preferably in a certain range of Te. Deeper earthquakes are more likely to occur where the lithosphere is stronger with larger Te. Crust with a larger Te may also have a deeper ductile-brittle boundary, along which deep large earthquakes tend to cluster.
NASA Technical Reports Server (NTRS)
Shemesh, Aldo; Peteet, Dorothy
1997-01-01
The first oxygen isotope analysis of biogenic opal from lake sediments, from the Allerod/Younger Dryas transition in a core from Linsley Pond, Connecticut, gives an average estimate of a 6 C drop in temperature during the Younger Dryas. This shift represents temperatures during the bloom season, and may be less than the winter temperature drop. The sharp transition itself, with a duration of about 200 years, suggests that the temperature decrease may have been as large as 12 C. Previous estimates of the Allerod/Younger Dryas temperature shifts are controversial, and range from 3-20 C, suggesting that further interdisciplinary research on the same samples is warranted. One way that global climate change manifests itself is by redistributing energy throughout the globe. The Northern Hemisphere latitudinal temperature gradient during the late-glacial is at present a controversial topic. The magnitude of air temperature shifts during the Allerod/Younger Dryas (YD) oscillation are estimated from mid-latitude pollen records surrounding the North Atlantic to be 3-5 C in Europe [Lowe et al., 19941 and 3-4 C in the eastern US [Peteet et al., 1993]. In contrast, lake temperatures estimates derived from aquatic midge larvae in the Canadian eastern maritimes and Maine range from 6-20 C, with larger shifts at more southern sites [Levesque et al., 1997]. The magnitude of YD cooling in Greenland ice cores ranges from at least 7 C from the Bolling warming [Dansgaard et al., 1989] to 15 C - a more recent estimate from borehole temperatures [Cuffey et al., 1995]. The ice core geochemical records reveal that massive frequent and short-term (decadal or less) changes in atmospheric composition occurred throughout this event, suggesting a very dynamic circulation [Mayewski et al., 1993).
HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: DEPENDENCE ON PLANETARY MASS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopparapu, Ravi Kumar; Ramirez, Ramses M.; Kasting, James F.
2014-06-01
The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1 M {sub ⊕} and 5 M {sub ⊕}. Assuming H{sub 2}O-(inner HZ) and CO{sub 2}-(outer HZ) dominated atmospheres, and scaling the background N{sub 2} atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will havemore » less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (∼10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H{sub 2}O column depth. For larger planets, the H{sub 2}O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing longwave radiation. Hence the inner edge moves inward (∼7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs.« less
Streicher, Jeffrey W; Cox, Christian L; Birchard, Geoffrey F
2012-04-01
Although well documented in vertebrates, correlated changes between metabolic rate and cardiovascular function of insects have rarely been described. Using the very large cockroach species Gromphadorhina portentosa, we examined oxygen consumption and heart rate across a range of body sizes and temperatures. Metabolic rate scaled positively and heart rate negatively with body size, but neither scaled linearly. The response of these two variables to temperature was similar. This correlated response to endogenous (body mass) and exogenous (temperature) variables is likely explained by a mutual dependence on similar metabolic substrate use and/or coupled regulatory pathways. The intraspecific scaling for oxygen consumption rate showed an apparent plateauing at body masses greater than about 3 g. An examination of cuticle mass across all instars revealed isometric scaling with no evidence of an ontogenetic shift towards proportionally larger cuticles. Published oxygen consumption rates of other Blattodea species were also examined and, as in our intraspecific examination of G. portentosa, the scaling relationship was found to be non-linear with a decreasing slope at larger body masses. The decreasing slope at very large body masses in both intraspecific and interspecific comparisons may have important implications for future investigations of the relationship between oxygen transport and maximum body size in insects.
1935-2004 Water Vapor Trends at the Summit of Mount Washington, NH
NASA Astrophysics Data System (ADS)
Seidel, T. M.; Grant, A. N.; Pszenny, A. A.
2005-12-01
As part of an ongoing effort to digitize and analyze the unique historical climate record from the summit of Mount Washington, water vapor mixing ratios calculated from synoptic (six-hourly) sling psychrometer and related data will be presented. The Mount Washington Observatory, located at 44°16'N, 71°18'W, 1914 m ASL, has been recording meteorological conditions since 1932. A continuous record of hourly and synoptic data exists from 1935 to the present. Previous work with hourly temperature data has shown an increase in annual temperature of 0.3°C over this 69-year interval, with larger increases during spring and winter, and a decrease in diurnal temperature range (A. Grant et al., J. Climate, in press). Preliminary examination of the synoptic psychrometric data suggests a decrease in annual dew point of approximately 0.4°C, with larger decreases in fall and winter than during the other seasons. Decreasing dew points are expected under two conditions: drier air or constant water vapor with increasing temperature. Other dew point climatologies of the continental United States for the second half of the 20th century have shown mixed results, with increased dew points evident at some stations, decreased dew points at others, and no clear regional patterns.
Seasonal radiative modeling of Titan's stratospheric temperatures at low latitudes
NASA Astrophysics Data System (ADS)
Bézard, Bruno; Vinatier, Sandrine; Achterberg, Richard K.
2018-03-01
We have developed a seasonal radiative-dynamical model of Titan's stratosphere to investigate the temporal variation of temperatures in the 0.2-4 mbar range observed by the Cassini/CIRS spectrometer. The model incorporates gas and aerosol vertical profiles derived from Cassini/CIRS and Huygens/DISR data to calculate the radiative heating and cooling rate profiles as a function of time and latitude. At 20°S in 2007, the heating rate is larger than the cooling rate at all altitudes, and more specifically by 20-35% in the 0.1-5 mbar range. A new calculation of the radiative relaxation time as a function of pressure level is presented, leading to time constants significantly lower than previous estimates. At 6°N around spring equinox, the radiative equilibrium profile is warmer than the observed one at all levels. Adding adiabatic cooling in the energy equation, with a vertical upward velocity profile approximately constant in pressure coordinates below the 0.02-mbar level (corresponding to 0.03-0.05 cm s-1 at 1 mbar), allows us to reproduce the observed profile quite well. The velocity profile above the ∼0.5-mbar level is however affected by uncertainties in the haze density profile. The model shows that the change in insolation due to Saturn's orbital eccentricity is large enough to explain the observed 4-K decrease in equatorial temperatures around 1 mbar between 2009 and 2016. At 30°N and S, the radiative model predicts seasonal variations of temperature much larger than observed. A seasonal modulation of adiabatic cooling/heating is needed to reproduce the temperature variations observed from 2005 to 2016 between 0.2 and 4 mbar. At 1 mbar, the derived vertical velocities vary in the range -0.05 (winter solstice) to 0.16 (summer solstice) cm s-1 at 30°S, -0.01 (winter solstice) to 0.14 (summer solstice) cm s-1 at 30°N, and 0.03-0.07 cm s-1 at the equator.
The Complex Relationship between Weather and Dengue Virus Transmission in Thailand
Campbell, Karen M.; Lin, C. D.; Iamsirithaworn, Sopon; Scott, Thomas W.
2013-01-01
Using a novel analytical approach, weather dynamics and seasonal dengue virus transmission cycles were profiled for each Thailand province, 1983–2001, using monthly assessments of cases, temperature, humidity, and rainfall. We observed systematic differences in the structure of seasonal transmission cycles of different magnitude, the role of weather in regulating seasonal cycles, necessary versus optimal transmission “weather-space,” basis of large epidemics, and predictive indicators that estimate risk. Larger epidemics begin earlier, develop faster, and are predicted at Onset change-point when case counts are low. Temperature defines a viable range for transmission; humidity amplifies the potential within that range. This duality is central to transmission. Eighty percent of 1.2 million severe dengue cases occurred when mean temperature was 27–29.5°C and mean humidity was > 75%. Interventions are most effective when applied early. Most cases occur near Peak, yet small reductions at Onset can substantially reduce epidemic magnitude. Monitoring the Quiet-Phase is fundamental in effectively targeting interventions pre-emptively. PMID:23958906
The complex relationship between weather and dengue virus transmission in Thailand.
Campbell, Karen M; Lin, C D; Iamsirithaworn, Sopon; Scott, Thomas W
2013-12-01
Using a novel analytical approach, weather dynamics and seasonal dengue virus transmission cycles were profiled for each Thailand province, 1983-2001, using monthly assessments of cases, temperature, humidity, and rainfall. We observed systematic differences in the structure of seasonal transmission cycles of different magnitude, the role of weather in regulating seasonal cycles, necessary versus optimal transmission "weather-space," basis of large epidemics, and predictive indicators that estimate risk. Larger epidemics begin earlier, develop faster, and are predicted at Onset change-point when case counts are low. Temperature defines a viable range for transmission; humidity amplifies the potential within that range. This duality is central to transmission. Eighty percent of 1.2 million severe dengue cases occurred when mean temperature was 27-29.5°C and mean humidity was > 75%. Interventions are most effective when applied early. Most cases occur near Peak, yet small reductions at Onset can substantially reduce epidemic magnitude. Monitoring the Quiet-Phase is fundamental in effectively targeting interventions pre-emptively.
Wawrzkiewicz-Jałowiecka, Agata; Dworakowska, Beata; Grzywna, Zbigniew J
2017-10-01
Large-conductance, voltage dependent, Ca 2+ -activated potassium channels (BK) are transmembrane proteins that regulate many biological processes by controlling potassium flow across cell membranes. Here, we investigate to what extent temperature (in the range of 17-37°C with ΔT=5°C step) is a regulating parameter of kinetic properties of the channel gating and memory effect in the series of dwell-time series of subsequent channel's states, at membrane depolarization and hyperpolarization. The obtained results indicate that temperature affects strongly the BK channels' gating, but, counterintuitively, it exerts no effect on the long-range correlations, as measured by the Hurst coefficient. Quantitative differences between dependencies of appropriate channel's characteristics on temperature are evident for different regimes of voltage. Examining the characteristics of BK channel activity as a function of temperature allows to estimate the net activation energy (E act ) and changes of thermodynamic parameters (ΔH, ΔS, ΔG) by channel opening. Larger E act corresponds to the channel activity at membrane hyperpolarization. The analysis of entropy and enthalpy changes of closed to open channel's transition suggest the entropy-driven nature of the increase of open state probability during voltage activation and supports the hypothesis about the voltage-dependent geometry of the channel vestibule. Copyright © 2017 Elsevier B.V. All rights reserved.
FORMATION OF URANIUM PRECIPITATES
Googin, J.M. Jr.
1959-03-17
A method is described for precipitation of uranium peroxide from uranium- containing solutions so as to obtain larger aggregates which facilitates washings decantations filtrations centrifugations and the like. The desired larger aggregate form is obtained by maintaining the pH of the solution in the approximate range of 1 to 3 and the temperature at about 25 deg C or below while carrytng out the precipitation. Then prior to removal of the precipitate a surface active sulfonated bicarboxyacids such as di-octyl sodium sulfo-succinates is incorporated in an anount of the order of 0.01 to 0.05 percent by weights and the slurry is allowed to ripen for about one-half hour at a temperatare below 10 deg C.
NASA Astrophysics Data System (ADS)
Patel, N.; Mariazzi, S.; Toniutti, L.; Checchetto, R.; Miotello, A.; Dirè, S.; Brusa, R. S.
2007-09-01
Three series of silica thin films with thicknesses in the 300 nm range were deposited by spin coating on Si substrates using different compositions of the sol precursors. Film samples were thermally treated in static air at temperatures ranging from 300 to 900 °C. The effect of sol precursors and thermal treatment temperature on the film porosity was analysed by Fourier transform infrared (FTIR) spectroscopy, depth profiling with positron annihilation spectroscopy (DP-PAS) and the analysis of the capacitance-voltage (C-V) characteristic. The maximum of the total porosity was found to occur at a temperature of 600 °C when removal of porogen and OH groups was completed. Film densification due to the collapsing of the pores was observed after drying at 900 °C. DP-PAS provides evidence that the increase in the total porosity is related to a progressive increase in the pore size. The increase in the pore size never gives rise to the onset of connected porosity. In the silica film samples prepared using a low acidity sol precursor, the pore size is always lower than 1 nm. By increasing the acid catalyst ratio in the sol, larger pores are formed. Pores with size larger than 2.3 nm can be obtained by adding porogen to the sol. In each series of silica film samples the shift of the antisymmetric Si-O-Si transversal optical (TO3) mode upon thermal treatment correlates with a change of the pore size as evidenced by DP-PAS analysis. The pore microstructure of the three series of silica films is different at all the examined treatment temperatures and depends on the composition of the precursor sol.
Assessing the concept of structure sensitivity or insensitivity for sub-nanometer catalyst materials
NASA Astrophysics Data System (ADS)
Crampton, Andrew S.; Rötzer, Marian D.; Ridge, Claron J.; Yoon, Bokwon; Schweinberger, Florian F.; Landman, Uzi; Heiz, Ueli
2016-10-01
The nature of the nano-catalyzed hydrogenation of ethylene, yielding benchmark information pertaining to the concept of structure sensitivity/insensitivity and its applicability at the bottom of the catalyst particle size-range, is explored with experiments on size-selected Ptn (n = 7-40) clusters soft-landed on MgO, in conjunction with first-principles simulations. As in the case of larger particles both the direct ethylene hydrogenation channel and the parallel hydrogenation-dehydrogenation ethylidyne-producing route must be considered, with the fundamental uncovering that at the < 1 nm size-scale the reaction exhibits characteristics consistent with structure sensitivity, in contrast to the structure insensitivity found for larger particles. In this size-regime, the chemical properties can be modulated and tuned by a single atom, reflected by the onset of low temperature hydrogenation at T > 150 K catalyzed by Ptn (n ≥ 10) clusters, with maximum room temperature reactivity observed for Pt13 using a pulsed molecular beam technique. Structure insensitive behavior, inherent for specific cluster sizes at ambient temperatures, can be induced in the more active sizes, e.g. Pt13, by a temperature increase, up to 400 K, which opens dehydrogenation channels leading to ethylidyne formation. This reaction channel was, however found to be attenuated on Pt20, as catalyst activity remained elevated after the 400 K step. Pt30 displayed behavior which can be understood from extrapolating bulk properties to this size range; in particular the calculated d-band center. In the non-scalable sub-nanometer size regime, however, precise control of particle size may be used for atom-by-atom tuning and manipulation of catalyzed hydrogenation activity and selectivity.
Environmental controls on leaf wax δD ratios in surface peats across the monsoonal region of China
NASA Astrophysics Data System (ADS)
Huang, X.; Xue, J.; Wang, X.; Meyers, P. A.
2015-09-01
Leaf wax molecular and isotopic ratios are generally considered robust isotopic paleohydrologic proxies. Here we evaluate the proxy value of the molecular distributions and hydrogen isotopic compositions of long chain n-alkanes (δDalk) in surface peats collected from peatlands across a range of annual air temperatures from 1 to 15 °C and a range of annual mean precipitation from 720 to 2070 mm in the monsoonal region of China. The alkane ratios (ACL and CPI) and δDalk values show relatively large variations in multiple samples from a single site, highlighting the complexity of these ratios at a small spatial scale. In the montane Zoigê peatland, the apparent fractionation between precipitation and δDalk is more positive than in the other six sites, which is possibly an effect of the higher conductivity of the water in this high elevation site (3500 m a.s.l.). At a larger spatial scale, the site-averaged CPI ratios and the δDalk values of n-C29 and n-C31 alkanes show significant correlation with the air temperature and precipitation. These results support the application of the CPI ratio and the δDalk ratios of n-C29 and n-C31 alkanes as sensitive paleohydrologic proxies on millennial and larger timescales.
Generation and emplacement of fine-grained ejecta in planetary impacts
Ghent, R.R.; Gupta, V.; Campbell, B.A.; Ferguson, S.A.; Brown, J.C.W.; Fergason, R.L.; Carter, L.M.
2010-01-01
We report here on a survey of distal fine-grained ejecta deposits on the Moon, Mars, and Venus. On all three planets, fine-grained ejecta form circular haloes that extend beyond the continuous ejecta and other types of distal deposits such as run-out lobes or ramparts. Using Earth-based radar images, we find that lunar fine-grained ejecta haloes represent meters-thick deposits with abrupt margins, and are depleted in rocks 1cm in diameter. Martian haloes show low nighttime thermal IR temperatures and thermal inertia, indicating the presence of fine particles estimated to range from ???10??m to 10mm. Using the large sample sizes afforded by global datasets for Venus and Mars, and a complete nearside radar map for the Moon, we establish statistically robust scaling relationships between crater radius R and fine-grained ejecta run-out r for all three planets. On the Moon, ???R-0.18 for craters 5-640km in diameter. For Venus, radar-dark haloes are larger than those on the Moon, but scale as ???R-0.49, consistent with ejecta entrainment in Venus' dense atmosphere. On Mars, fine-ejecta haloes are larger than lunar haloes for a given crater size, indicating entrainment of ejecta by the atmosphere or vaporized subsurface volatiles, but scale as R-0.13, similar to the ballistic lunar scaling. Ejecta suspension in vortices generated by passage of the ejecta curtain is predicted to result in ejecta run-out that scales with crater size as R1/2, and the wind speeds so generated may be insufficient to transport particles at the larger end of the calculated range. The observed scaling and morphology of the low-temperature haloes leads us rather to favor winds generated by early-stage vapor plume expansion as the emplacement mechanism for low-temperature halo materials. ?? 2010 Elsevier Inc.
Dinkelacker, V; Voets, T; Neher, E; Moser, T
2000-11-15
Maturation of exocytic vesicles to the release-ready state is regulated by several factors, including intracellular calcium concentration ([Ca(2+)](int)) and the state of protein phosphorylation. Here we investigated the effects of temperature on the recovery from depletion of the readily releasable pool (RRP) of vesicles in adrenal chromaffin cells. Exocytosis and [Ca(2+)](int) were monitored by combined membrane capacitance and fura-2 measurements. At higher temperatures, a faster pool refilling and a larger RRP size were observed. The time constants of the recovery from depletion ranged from 3.6 to 1.1 sec (22 and 37 degrees C, respectively) yielding a Q(10) of 2.3. The changes of the Ca(2+) signal between the different temperatures could not account for the differences in recovery kinetics. At 32 and 37 degrees C, we observed a transient overfilling of the RRP after pool depletion, which stands in clear contrast to the sustained secretory depression seen at lower temperatures. The overshoot in RRP size was very prominent in cells with lower basal [Ca(2+)](int), hence with a large difference between prestimulus and poststimulus [Ca(2+)](int). In cells with higher basal [Ca(2+)](int), the pool was larger under steady-state conditions but showed less overfilling on stimulation. We conclude that vesicle maturation is markedly accelerated at physiological temperature, thus allowing for a rapid adaptation of the pool size to the relatively short-lived Ca(2+) transient.
NASA Technical Reports Server (NTRS)
Brabbs, T. A.; Brokaw, R. S.
1982-01-01
Exponential free radical growth constants were measured for formaldehyde carbon monoxide-oxygen systems by monitoring the growth of oxygen atom concentration as manifested by CO flame band emission. Data were obtained over the temperature range of 1200 to 2000 K. The data were analyzed using a formaldehyde oxidation mechanism involving 12 elementary reaction steps. The computed growth constants are roughly in accord with experimental values, but are much more temperature dependent. The data was also analyzed assuming formaldehyde is rapidly decomposed to carbon monoxide and hydrogen. Growth constants computed for the resulting carbon monoxide hydrogen oxygen mixtures have a temperature dependence similar to experiments; however, for most mixtures, the computed growth constants were larger than experimental values.
The wave numbers of supercritical surface tension driven Benard convection
NASA Technical Reports Server (NTRS)
Koschmieder, E. L.; Switzer, D. W.
1991-01-01
The cell size or the wave numbers of supercritical hexagonal convection cells in primarily surface tension driven convection on a uniformly heated plate was studied experimentally in thermal equilibrium in thin layers of silicone oil of large aspect ratio. It was found that the cell size decreases with increased temperature difference in the slightly supercritical range, and that the cell size is unique within the experimental error. It was also observed that the cell size reaches a minimum and begins to increase at larger temperature differences. This reversal of the rate of change of the wave number with temperature difference is attributed to influences of buoyancy on the fluid motion. The consequences of buoyancy were tested with three fluid layers of different depth.
The wavenumbers of supercritical surface-tension-driven Benard convection
NASA Technical Reports Server (NTRS)
Koschmieder, E. L.; Switzer, D. W.
1992-01-01
The cell size or the wavenumbers of supercritical hexagonal convection cells in primarily surface-tension-driven convection on a uniformly heated plate has been studied experimentally in thermal equilibrium in thin layers of silicone oil of large aspect ratio. It has been found that the cell size decreases with increased temperature difference in the slightly supercritical range, and that the cell size is unique within the experimental error. It has also been observed that the cell size reaches a minimum and begins to increase at larger temperature differences. This reversal of the rate of change of the wavenumber with temperature difference is attributed to influences of buoyancy on the fluid motion. The consequences of buoyancy have been tested with three fluid layers of different depth.
Long-range interactions in magnetic bilayer above the critical temperature
NASA Astrophysics Data System (ADS)
de Souza, R. M. V.; Pereira, T. A. S.; Godoy, M.; de Arruda, A. S.
2018-01-01
In this paper we have studied the stabilization of the long-range order in (z ; x) -plane of two isotropic Heisenberg ferromagnetic monolayers coupled by a short-range exchange interaction (J⊥), by a long range dipole-dipole interactions and a magnetic field. We have applied a magnetic field along of the z-direction to study the thermodynamic properties above the critical temperature. The dispersion relation ω and the magnetization are given as function of dipolar anisotropy parameter defined as Ed =(gμ) 2 S /a3J∥ and for other Hamiltonian parameters, and they are calculated by the double-time Zubarev-Tyablikov Green's functions in the random-phase approximation (RPA). The results show that the system is unstable for values of Ed ≥ 0.012 with external magnetic field ranging between H /J∥ = 0 and 10-3. The instability appears for Ed larger then Edc = 0.0158 with H /J∥ = 10-5, Edc = 0.02885 with H /J∥ = 10-4, and Edc = 0.115 with H /J∥ = 10-3, i.e., a small magnetic field is sufficient to maintain the magnetic order in a greater range of the dipolar interaction.
Range of monthly mean hourly land surface air temperature diurnal cycle over high northern latitudes
NASA Astrophysics Data System (ADS)
Wang, Aihui; Zeng, Xubin
2014-05-01
Daily maximum and minimum temperatures over global land are fundamental climate variables, and their difference represents the diurnal temperature range (DTR). While the differences between the monthly averaged DTR (MDTR) and the range of monthly averaged hourly temperature diurnal cycle (RMDT) are easy to understand qualitatively, their differences have not been quantified over global land areas. Based on our newly developed in situ data (Climatic Research Unit) reanalysis (Modern-Era Retrospective analysis for Research and Applications) merged hourly temperature data from 1979 to 2009, RMDT in January is found to be much smaller than that in July over high northern latitudes, as it is much more affected by the diurnal radiative forcing than by the horizontal advection of temperature. In contrast, MDTR in January is comparable to that in July over high northern latitudes, but it is much larger than January RMDT, as it primarily reflects the movement of lower frequency synoptic weather systems. The area-averaged RMDT trends north of 40°N are near zero in November, December, and January, while the trends of MDTR are negative. These results suggest the need to use both the traditional MDTR and RMDT suggested here in future observational and modeling studies. Furthermore, MDTR and its trend are more sensitive to the starting hour of a 24 h day used in the calculations than those for RMDT, and this factor also needs to be considered in model evaluations using observational data.
Titan's stratospheric temperature asymmetry: a radiative origin?
Bézard, B; Coustenis, A; McKay, C P
1995-02-01
During the 1981 Voyager encounter, Titan's stratosphere exhibited a large thermal asymmetry, with high northern latitudes being colder than comparable southern latitudes. Given the short radiative time constant, this asymmetry would not be expected at the season of the Voyager observations (spring equinox), if the infrared and solar opacity sources were distributed symmetrically. We have investigated the radiative budget of Titan's stratosphere, using two selections of Voyager IRIS spectra recorded at symmetric northern and southern latitudes. In the region 0.1-1 mbar, temperatures are 7 K colder at 50 degrees N than at 53 degrees S and the difference reaches approximately 13 K at 5 mbar. On the other hand, the northern region is strongly enriched in nitriles and hydrocarbons, and the haze optical depth derived from the continuum emission between 8 and 15 micrometers is twice as large as in the south. Cooling rate profiles have been computed at the two locations, using the gas and haze abundances derived from the IRIS measurements. We find that, despite lower temperatures, the cooling rate profiles in the pressure range 0.15-5 mbar are 20 to 40% larger in the north than in the south, because of the enhanced concentrations of infrared radiators. Because the northern hemisphere appears darker than the southern one in the Voyager images, enhanced solar heating is also expected to take place at 50 degrees N. Solar heating rate profiles have been calculated, with two different assumptions on the origin of the hemispheric asymmetry. In the most likely case where it results from a variation in the absorbance of the haze material, the heating rates are found to be 12-15% larger at the northern location than at the southern one, a smaller increase than that in the cooling rates. If the lower albedo in the north results from an increase in the particle number density, a 55 to 75% difference is found for the pressure range 0.15-5 mbar, thus larger than that calculated for the cooling rates. Considering the uncertainties in the haze model, dynamical heat transport may significantly contribute to the meridional temperature gradients observed in the stratosphere. On the other hand, the latitudinal variation in gas and haze composition may be sufficient to explain the entire temperature asymmetry observed, without invoking a lag in the thermal response of the atmosphere due to dynamical inertia.
Heiland, Ines; Bodenstein, Christian; Hinze, Thomas; Weisheit, Olga; Ebenhoeh, Oliver; Mittag, Maria; Schuster, Stefan
2012-06-01
Endogenous circadian rhythms allow living organisms to anticipate daily variations in their natural environment. Temperature regulation and entrainment mechanisms of circadian clocks are still poorly understood. To better understand the molecular basis of these processes, we built a mathematical model based on experimental data examining temperature regulation of the circadian RNA-binding protein CHLAMY1 from the unicellular green alga Chlamydomonas reinhardtii, simulating the effect of temperature on the rates by applying the Arrhenius equation. Using numerical simulations, we demonstrate that our model is temperature-compensated and can be entrained to temperature cycles of various length and amplitude. The range of periods that allow entrainment of the model depends on the shape of the temperature cycles and is larger for sinusoidal compared to rectangular temperature curves. We show that the response to temperature of protein (de)phosphorylation rates play a key role in facilitating temperature entrainment of the oscillator in Chlamydomonas reinhardtii. We systematically investigated the response of our model to single temperature pulses to explain experimentally observed phase response curves.
The effect of temperature on pulsed positive streamer discharges in air over the range 292 K–1438 K
NASA Astrophysics Data System (ADS)
Ono, Ryo; Ishikawa, Yuta
2018-05-01
The effect of temperature on pulsed positive streamer discharges in air is measured by comparing atmospheric-pressure, high-temperature discharges with low-pressure, room-temperature discharges at the same air densities n and discharge voltages. Both discharges have the same reduced electric field E/n, so the differences between the two discharges only depend on the temperature, which is varied from 292 K to 1438 K. Temperature affects the discharge pulse energy most significantly; at 1438 K, the energy of an atmospheric-pressure discharge pulse is approximately 30 times larger than that of the corresponding 20.5 kPa, room-temperature discharge. Temperature also affects the shapes of the streamers when K, but no significant effect is observed for K. There is also no significant temperature effect on the spatially integrated intensity of N2(C–B) emission. However, temperature strongly affects the ratio of the integrated emission intensity to the discharge energy. No effect of the temperature is observed on the propagation velocity of the primary streamer or on the length of the secondary streamer.
Effect of temperature on photosynthesis and growth in marine Synechococcus spp.
Mackey, Katherine R M; Paytan, Adina; Caldeira, Ken; Grossman, Arthur R; Moran, Dawn; McIlvin, Matthew; Saito, Mak A
2013-10-01
In this study, we develop a mechanistic understanding of how temperature affects growth and photosynthesis in 10 geographically and physiologically diverse strains of Synechococcus spp. We found that Synechococcus spp. are able to regulate photochemistry over a range of temperatures by using state transitions and altering the abundance of photosynthetic proteins. These strategies minimize photosystem II (PSII) photodamage by keeping the photosynthetic electron transport chain (ETC), and hence PSII reaction centers, more oxidized. At temperatures that approach the optimal growth temperature of each strain when cellular demand for reduced nicotinamide adenine dinucleotide phosphate (NADPH) is greatest, the phycobilisome (PBS) antenna associates with PSII, increasing the flux of electrons into the ETC. By contrast, under low temperature, when slow growth lowers the demand for NADPH and linear ETC declines, the PBS associates with photosystem I. This favors oxidation of PSII and potential increase in cyclic electron flow. For Synechococcus sp. WH8102, growth at higher temperatures led to an increase in the abundance of PBS pigment proteins, as well as higher abundance of subunits of the PSII, photosystem I, and cytochrome b6f complexes. This would allow cells to increase photosynthetic electron flux to meet the metabolic requirement for NADPH during rapid growth. These PBS-based temperature acclimation strategies may underlie the larger geographic range of this group relative to Prochlorococcus spp., which lack a PBS.
Tanaka, Kazuhiro; Watari, Yasuhiko
2017-06-01
The onion fly Delia antiqua advances its eclosion timing with decreasing temperature amplitude to compensate for a depth-dependent phase delay of the zeitgeber. To elucidate whether or not naturally occurring day-to-day variations in the amplitude of soil temperature cycle disturb this compensatory response, we monitored daily variations in the temperature amplitude in natural soils and evaluated the impact on adult eclosion timing. Our results indicated that both median and variance of the soil temperature amplitude become smaller as depth increases. Insertion of a larger temperature fluctuation into the thermoperiod with smaller temperature amplitude induced a stronger phase delay, while insertion of a smaller temperature fluctuation into the thermoperiod with larger temperature amplitude had a weaker phase-advancing effect. It is therefore expected that larger diurnal temperature fluctuations disturb the compensatory response, particularly if they occur at deeper locations, while smaller temperature fluctuations do so only at shallower locations. Under natural conditions, however, the probability of occurrence of smaller or larger temperature fluctuations in shallower or deeper soils, respectively, is relatively small. Thus, naturally occurring day-to-day variations in the temperature amplitude rarely disturb the compensatory response, thereby having a subtle or negligible impact on adult eclosion timing.
Zeng, Lixia; Zhou, Xianming; Cheng, Rui; Wang, Xing; Ren, Jieru; Lei, Yu; Ma, Lidong; Zhao, Yongtao; Zhang, Xiaoan; Xu, Zhongfeng
2017-07-25
Secondary electron emission yield from the surface of SiC ceramics induced by Xe 17+ ions has been measured as a function of target temperature and incident energy. In the temperature range of 463-659 K, the total yield gradually decreases with increasing target temperature. The decrease is about 57% for 3.2 MeV Xe 17+ impact, and about 62% for 4.0 MeV Xe 17+ impact, which is much larger than the decrease observed previously for ion impact at low charged states. The yield dependence on the temperature is discussed in terms of work function, because both kinetic electron emission and potential electron emission are influenced by work function. In addition, our experimental data show that the total electron yield gradually increases with the kinetic energy of projectile, when the target is at a constant temperature higher than room temperature. This result can be explained by electronic stopping power which plays an important role in kinetic electron emission.
Kraemer, Benjamin M; Chandra, Sudeep; Dell, Anthony I; Dix, Margaret; Kuusisto, Esko; Livingstone, David M; Schladow, S Geoffrey; Silow, Eugene; Sitoki, Lewis M; Tamatamah, Rashid; McIntyre, Peter B
2017-05-01
Climate warming is expected to have large effects on ecosystems in part due to the temperature dependence of metabolism. The responses of metabolic rates to climate warming may be greatest in the tropics and at low elevations because mean temperatures are warmer there and metabolic rates respond exponentially to temperature (with exponents >1). However, if warming rates are sufficiently fast in higher latitude/elevation lakes, metabolic rate responses to warming may still be greater there even though metabolic rates respond exponentially to temperature. Thus, a wide range of global patterns in the magnitude of metabolic rate responses to warming could emerge depending on global patterns of temperature and warming rates. Here we use the Boltzmann-Arrhenius equation, published estimates of activation energy, and time series of temperature from 271 lakes to estimate long-term (1970-2010) changes in 64 metabolic processes in lakes. The estimated responses of metabolic processes to warming were usually greatest in tropical/low-elevation lakes even though surface temperatures in higher latitude/elevation lakes are warming faster. However, when the thermal sensitivity of a metabolic process is especially weak, higher latitude/elevation lakes had larger responses to warming in parallel with warming rates. Our results show that the sensitivity of a given response to temperature (as described by its activation energy) provides a simple heuristic for predicting whether tropical/low-elevation lakes will have larger or smaller metabolic responses to warming than higher latitude/elevation lakes. Overall, we conclude that the direct metabolic consequences of lake warming are likely to be felt most strongly at low latitudes and low elevations where metabolism-linked ecosystem services may be most affected. © 2016 John Wiley & Sons Ltd.
Quasielastic neutron scattering study of water confined in carbon nanopores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chathoth, S. M.; Mamontov, E.; Kolesnikov, A. I.
2011-07-26
Microscopic dynamics of water confined in nanometer and sub-nanometer pores of carbide-derived carbon (CDC) were investigated using quasielastic neutron scattering (QENS). The temperature dependence of the average relaxation time, ‹τ›, exhibits super-Arrhenius behavior that could be described by Vogel-Fulcher-Tammann (VFT) law in the range from 250 K to 190 K; below this temperature, ‹τ› follows Arrhenius temperature dependence. The temperature of the dynamic crossover between the two regimes in water confined in the CDC pores is similar to that observed for water in hydrophobic confinement of the larger size, such as 14 Å ordered mesoporous carbon (CMK) and 16 Åmore » double-wall carbon nanotubes. Thus, the dynamical behavior of water remains qualitatively unchanged even in the very small hydrophobic pores.« less
NASA Technical Reports Server (NTRS)
Stanford, J. L.; Short, D. A.
1981-01-01
Global microwave brightness temperature measurements are analyzed to investigate the range of meridional wavelengths 2000-3000 km where spectral studies reveal larger than expected variance. The data, from the TIROS-N Microwave Sounding Unit, are sensitive to lower stratospheric temperatures (30-150 mb). The results reveal striking temperature anomalies with short meridional wavelengths (2000-3000 km) and long zonal wavelengths (zonal wavenumbers 1-4). The anomalies, with amplitudes approximately 1-2 K, extend from the equatorial region to at least as high as 70 deg N and 70 deg S during January 1979. The features exhibit slow eastward movement or else are nearly stationary for several days. In the Northern Hemisphere, comparison with NMC data reveals that the strongest features tend to be associated with major jet streams.
Low LET radiolysis escape yields for reducing radicals and H2 in pressurized high temperature water
NASA Astrophysics Data System (ADS)
Sterniczuk, Marcin; Yakabuskie, Pamela A.; Wren, J. Clara; Jacob, Jasmine A.; Bartels, David M.
2016-04-01
Low Linear Energy Transfer (LET) radiolysis escape yields (G values) are reported for the sum (G(radH)+G(e-)aq) and for G(H2) in subcritical water up to 350 °C. The scavenger system 1-10 mM acetate/0.001 M hydroxide/0.00048 M N2O was used with simultaneous mass spectroscopic detection of H2 and N2 product. Temperature-dependent measurements were carried out with 2.5 MeV electrons from a van de Graaff accelerator, while room temperature calibration measurements were done with a 60Co gamma source. The concentrations and dose range were carefully chosen so that initial spur chemistry is not perturbed and the N2 product yield corresponds to those reducing radicals that escape recombination in pure water. In comparison with a recent review recommendation of Elliot and Bartels (AECL report 153-127160-450-001, 2009), the measured reducing radical yield is seven percent smaller at room temperature but in fairly good agreement above 150 °C. The H2 escape yield is in good agreement throughout the temperature range with several previous studies that used much larger radical scavenging rates. Previous analysis of earlier high temperature measurements of Gesc(radOH) is shown to be flawed, although the actual G values may be nearly correct. The methodology used in the present report greatly reduces the range of possible error and puts the high temperature escape yields for low-LET radiation on a much firmer quantitative foundation than was previously available.
Li, Sinan; Lin, Shengtao; Cheng, Yi; Matsunaga, Terry O; Eckersley, Robert J; Tang, Meng-Xing
2015-05-01
Phase-change contrast agents in the form of nanoscale droplets can be activated into microbubbles by ultrasound, extending the contrast beyond the vasculature. This article describes simultaneous optical and acoustical measurements for quantifying the ultrasound activation of phase-change contrast agents over a range of concentrations. In experiments, decafluorobutane-based nanodroplets of different dilutions were sonicated with a high-pressure activation pulse and two low-pressure interrogation pulses immediately before and after the activation pulse. The differences between the pre- and post-interrogation signals were calculated to quantify the acoustic power scattered by the microbubbles activated over a range of droplet concentrations. Optical observation occurred simultaneously with the acoustic measurement, and the pre- and post-microscopy images were processed to generate an independent quantitative indicator of the activated microbubble concentration. Both optical and acoustic measurements revealed linear relationships to the droplet concentration at a low concentration range <10(8)/mL when measured at body temperature. Further increases in droplet concentration resulted in saturation of the acoustic interrogation signal. Compared with body temperature, room temperature was found to produce much fewer and larger bubbles after ultrasound droplet activation. Copyright © 2015. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Bassett, Will P.; Dlott, Dana D.
2016-06-01
A new emission apparatus with high time resolution and high dynamic range was used to study shock-induced ignition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in the form of ultrafine powder (4 ± 3 μm particle size), over a range of impact velocities (0.8-4.3 km s-1) and impact durations (2.5-16 ns). A graybody model was used to extract graybody emissivities and time-dependent temperatures from a few ns to 100 μs. The emission transients consisted of three parts: a 6700 K nanosecond burst during the shocks, a 4000-4500 K temperature spike near 0.3 μs followed by a ˜3300 K tail extending out to ˜100 μs. These temperatures varied remarkably little with impact velocity and duration, while the emission intensities and emissivities changed by over an order of magnitude. The emissivity changes were interpreted with a hot spot model, where hot spot temperatures reached a maximum of 6700 K and the hot spot volume fractions increased from 5% to 100% as impact velocity increased from 1 to 3 km s-1. Changing shock durations in the 2.5-16 ns range had noticeable effects on the microsecond emission. The 0.3 μs temperature spike was much smaller or absent with 2.5 ns shocks, but prominent with longer durations. An explanation for these effects was put forth that invoked the formation of carbon-rich clusters during the shock. In this view, cluster formation was minimal with 2.5 ns shocks, but longer-duration shocks produced increasingly larger clusters, and the 0.3 μs temperature spikes represented cluster ignition.
Influence of carrier density on the electronic cooling channels of bilayer graphene
NASA Astrophysics Data System (ADS)
Limmer, T.; Houtepen, A. J.; Niggebaum, A.; Tautz, R.; Da Como, E.
2011-09-01
We study the electronic cooling dynamics in a single flake of bilayer graphene by femtosecond transient absorption probing the photon-energy range 0.25-1.3 eV. From the transients, we extract the carrier cooling curves for different initial temperatures and densities of the photoexcited electrons and holes. Two regimes of carrier cooling, dominated by optical and acoustic phonons emission, are clearly identified. For increasing carrier density, the crossover between the two regimes occurs at larger carrier temperatures, since cooling via optical phonons experiences a bottleneck. Acoustic phonons, which are less sensitive to saturation, show an increasing contribution at high density.
High Temperature Performance Evaluation of a Compliant Foil Seal
NASA Technical Reports Server (NTRS)
Salehi, Mohsen; Heshmat, Hooshang; Walton, James F., II
2001-01-01
The key points to be gleaned from the effort reported herein are that the CFS (Compliant Foil Seal) has been demonstrated in conjunction with a foil bearing in a small gas turbine simulator at temperatures as high as 1000 F and outperformed a comparable brush seal. Having demonstrated the feasibility of the CFS, it would appear that this new seal design has application potential in a wide range of machines. What remains is to demonstrate performance at higher pressure ratios, consistent performance at large rotor excursions and the ability to manufacture the seal in much larger sizes exceeding by an order of magnitude that which has been tested to date.
Soft chemistry routes to GeS2 nanoparticles
NASA Astrophysics Data System (ADS)
Courthéoux, Laurence; Mathiaud, Romain; Ribes, Michel; Pradel, Annie
2018-04-01
Spherical GeS2 particles are prepared by a low temperature liquid route with TEOG as germanium precursor and either H2S or thioacetamide (TAA) as sulfur precursors. The size and agglomeration of the particles change depending upon the temperature and nature of the solvent. Most synthesis lead to preparing amorphous GeS2. When the reaction kinetic is slowed down by using TAA at 25 °C, the obtained GeS2 product presents a larger order in the range of few Å as proven by Raman spectroscopy, even though it is still an amorphous compound as suggested by X-Ray diffraction and TEM experiments.
2015-07-01
already use hydrogen for weather balloons . Besides cost, hydrogen has other advantages over helium. Hydrogen has more lift than helium, so larger...of water vapor entering the gas stream, and avoid damaging the balloon /aerostat (aerostats typically have an operational temperature range of -50 to...Aerostats: “Gepard” Tethered Aerostats with Mobile Mooring Systems. Available at http://rosaerosystems.com/aero/obj7. Accessed June 4, 2015. 11
NASA Technical Reports Server (NTRS)
Schaefer, Bradley E.; Liller, William
1990-01-01
Variations in astronomical refraction near the horizon are examined. Sunset timings, a sextant mounted on a tripod, and a temperature profile are utilized to derive the variations in refraction data, collected from 7 locations. It is determined that the refraction ranges from 0.234 to 1.678 deg with an rms deviation of 0.16, and it is observed that the variation is larger than previously supposed. Some applications for the variation of refraction value are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anjos, Daniela M; Mamontov, Eugene; Brown, Gilbert M
We used quasielastic neutron scattering (QENS) to study the dynamics of phenanthrenequinone (PQ) on the surface of onion-like carbon (OLC), or so called carbon onions, as a function of surface coverage and temperature. For both the high- and low-coverage samples, we observed two diffusion processes; a faster process and nearly an order of magnitude slower process. On the high-coverage surface, the slow diffusion process is of long-range translational character, whereas the fast diffusion process is spatially localized on the length scale of ~ 4.7 . On the low-coverage surface, both diffusion processes are spatially localized; on the same length scalemore » of ~ 4.7 for the fast diffusion and a somewhat larger length scale for the slow diffusion. Arrhenius temperature dependence is observed except for the long-range diffusion on the high-coverage surface. We attribute the fast diffusion process to the generic localized in-cage dynamics of PQ molecules, and the slow diffusion process to the long-range translational dynamics of PQ molecules, which, depending on the coverage, may be either spatially restricted, or long-range. On the low-coverage surface, uniform surface coverage is not attained, and the PQ molecules experience the effect of spatial constraints on their long-range translational dynamics. Unexpectedly, the dynamics of PQ molecules on OLC as a function of temperature and surface coverage bears qualitative resemblance to the dynamics of water molecules on oxide surfaces, including practically temperature-independent residence times for the low-coverage surface. The dynamics features that we observed may be universal across different classes of surface adsorbates.« less
Donaldson, Michael E; Davy, Christina M; Vanderwolf, Karen J; Willis, Craig K R; Saville, Barry J; Kyle, Christopher J
2018-02-23
Pseudogymnoascus destructans is the causal agent of bat white-nose syndrome (WNS), which is devastating some North American bat populations. Previous transcriptome studies provided insight regarding the molecular mechanisms involved in WNS; however, it is unclear how different environmental parameters could influence pathogenicity. This information could be useful in developing management strategies to mitigate the negative impacts of P. destructans on bats. We cultured three P. destructans isolates from Atlantic Canada on two growth media (potato dextrose agar and Sabouraud dextrose agar) that differ in their nitrogen source, and at two separate incubation temperatures (4 C and 15 C) that approximate the temperature range of bat hibernacula during the winter and a temperature within its optimal mycelial growth range. We conducted RNA sequencing to determine transcript levels in each sample and performed differential gene expression (DGE) analyses to test the influence of growth medium and incubation temperature on gene expression. We also compared our in vitro results with previous RNA-sequencing data sets generated from P. destructans growing on the wings of a susceptible host, Myotis lucifugus. Our findings point to a critical role for substrate and incubation temperature in influencing the P. destructans transcriptome. DGE analyses suggested that growth medium plays a larger role than temperature in determining P. destructans gene expression and that although the psychrophilic fungus responds to different nitrogen sources, it may have evolved for continued growth at a broad range of low temperatures. Further, our data suggest that down-regulation of the RNA-interference pathway and increased fatty acid metabolism are involved in the P. destructans-bat interaction. Finally, we speculate that to reduce the activation of host defense responses, P. destructans minimizes changes in the expression of genes encoding secreted proteins during bat colonization.
NASA Astrophysics Data System (ADS)
Le Gal, R.; Herbst, E.; Xie, C.; Li, A.; Guo, H.
2016-11-01
Based on recent Herschel results, the ortho-to-para ratio (OPR) of NH2 has been measured towards the following high-mass star-forming regions: W31C (G10.6-0.4), W49N (G43.2-0.1), W51 (G49.5-0.4), and G34.3+0.1. The OPR at thermal equilibrium ranges from the statistical limit of three at high temperatures to infinity as the temperature tends toward zero, unlike the case of H2. Depending on the position observed along the lines-of-sight, the OPR was found to lie either slightly below the high temperature limit of three (in the range 2.2-2.9) or above this limit ( 3.5, ≳ 4.2, and ≳5.0). In low temperature interstellar gas, where the H2 is para-enriched, our nearly pure gas-phase astrochemical models with nuclear-spin chemistry can account for anomalously low observed NH2-OPR values. We have tentatively explained OPR values larger than three by assuming that spin thermalization of NH2 can proceed at least partially by H-atom exchange collisions with atomic hydrogen, thus increasing the OPR with decreasing temperature. In this paper, we present quasi-classical trajectory calculations of the H-exchange reaction NH2 + H, which show the reaction to proceed without a barrier, confirming that the H-exchange will be efficient in the temperature range of interest. With the inclusion of this process, our models suggest both that OPR values below three arise in regions with temperatures ≳20-25 K, depending on time, and values above three but lower than the thermal limit arise at still lower temperatures.
Hemoglobin Dynamics in Red Blood Cells: Correlation to Body Temperature
Stadler, A. M.; Digel, I.; Artmann, G. M.; Embs, J. P.; Zaccai, G.; Büldt, G.
2008-01-01
A transition in hemoglobin behavior at close to body temperature has been discovered recently by micropipette aspiration experiments on single red blood cells (RBCs) and circular dichroism spectroscopy on hemoglobin solutions. The transition temperature was directly correlated to the body temperatures of a variety of species. In an exploration of the molecular basis for the transition, we present neutron scattering measurements of the temperature dependence of hemoglobin dynamics in whole human RBCs in vivo. The data reveal a change in the geometry of internal protein motions at 36.9°C, at human body temperature. Above that temperature, amino acid side-chain motions occupy larger volumes than expected from normal temperature dependence, indicating partial unfolding of the protein. Global protein diffusion in RBCs was also measured and the findings compared favorably with theoretical predictions for short-time self-diffusion of noncharged hard-sphere colloids. The results demonstrated that changes in molecular dynamics in the picosecond time range and angstrom length scale might well be connected to a macroscopic effect on whole RBCs that occurs at body temperature. PMID:18708462
Improved operation of graded-channel SOI nMOSFETs down to liquid helium temperature
NASA Astrophysics Data System (ADS)
Pavanello, Marcelo Antonio; de Souza, Michelly; Ribeiro, Thales Augusto; Martino, João Antonio; Flandre, Denis
2016-11-01
This paper presents the operation of Graded-Channel (GC) Silicon-On-Insulator (SOI) nMOSFETs at low temperatures down to liquid helium temperature in comparison to standard uniformly doped transistors. Devices from two different technologies have been measured and show that the mobility increase rate with temperature for GC SOI transistors is similar to uniformly doped devices for temperatures down to 90 K. However, at liquid helium temperature the rate of mobility increase is larger in GC SOI than in standard devices because of the different mobility scattering mechanisms. The analog properties of GC SOI devices have been investigated down to 4.16 K and show that because of its better transconductance and output conductance, an intrinsic voltage gain improvement with temperature is also obtained for devices in the whole studied temperature range. GC devices are also capable of reducing the impact ionization due to the high electric field in the drain region, increasing the drain breakdown voltage of fully-depleted SOI MOSFETs at any studied temperature and the kink voltage at 4.16 K.
Hemoglobin dynamics in red blood cells: correlation to body temperature.
Stadler, A M; Digel, I; Artmann, G M; Embs, J P; Zaccai, G; Büldt, G
2008-12-01
A transition in hemoglobin behavior at close to body temperature has been discovered recently by micropipette aspiration experiments on single red blood cells (RBCs) and circular dichroism spectroscopy on hemoglobin solutions. The transition temperature was directly correlated to the body temperatures of a variety of species. In an exploration of the molecular basis for the transition, we present neutron scattering measurements of the temperature dependence of hemoglobin dynamics in whole human RBCs in vivo. The data reveal a change in the geometry of internal protein motions at 36.9 degrees C, at human body temperature. Above that temperature, amino acid side-chain motions occupy larger volumes than expected from normal temperature dependence, indicating partial unfolding of the protein. Global protein diffusion in RBCs was also measured and the findings compared favorably with theoretical predictions for short-time self-diffusion of noncharged hard-sphere colloids. The results demonstrated that changes in molecular dynamics in the picosecond time range and angstrom length scale might well be connected to a macroscopic effect on whole RBCs that occurs at body temperature.
NASA Astrophysics Data System (ADS)
Nagendra, U.; Peterson, C.
2013-12-01
Forest disturbances such as tornadoes are expected to raise soil temperatures and increase soil respiration. Opening canopy gaps allows solar radiation to heat the forest floor, and damaged plant roots provide fuel for decomposition. Patches of disturbed forest can range from low severity (some defoliation, broken branches) to high severity (uprooted or snapped trees). Disturbance severity affects plant population and community processes, such as regeneration mode, species diversity, and community structure. We expect disturbance severity to also affect ecosystem processes such as soil respiration. Severe disturbances cause more distinct, and often larger, canopy gaps than mild disturbances, and damage more standing biomass, both above- and below-ground. We would expect these larger gaps and greater litter amounts to increase soil temperature and respiration in more severely disturbed forest patches. In April 2011, a moderate (EF-3) tornado damaged portions of the Chattahoochee National Forest in NE Georgia, USA. Our lab has been characterizing the damage and regeneration in sections of the forest since summer 2011. In Spring 2013, we installed 4 iButton temperature sensors in each of 14 plots across a range of disturbance severity (for a total of 56 sensors). Severity was determined by percent of initial tree basal area downed by the tornado, and ranged from 8% to 100% basal area down. The iButtons monitored soil temperature at a depth of 5 cm every hour for 85 days. In July 2013, integrated 24-hour soil respiration was measured at the same locations using soda lime absorption in sealed PVC collars. Soil temperature at 5 cm averaged 12.66 °C. Contrary to expectations, average daily temperatures did not increase with greater plot damage severity (R2 = 0.001). Daily variation was only slightly higher in plots of very high severity. Overall, soil temperatures appeared to have returned to pre-disturbance temperatures more quickly than expected. Results for upcoming months will be presented at the meeting. Soil respiration was relatively high in all plots (4.49 +/-1.19 g C m-2 hr-1). Contrary to expectations, respiration did not vary significantly with plot damage severity (R2 = 0.0676). The temperature and respiration data together suggest potentially rapid ecosystem recovery after these types of wind disturbances. The flush of understory growth in open patches may insulate the forest floor from solar radiation, even though the forest canopy is still open. These unexpected preliminary results may indicate that ecosystem processes in southern forests are more resilient to disturbances than previously thought. Although forests become carbon sinks immediately after disturbances, they may return to carbon neutral or sink status relatively quickly, given the right circumstances.
Fristoe, Trevor S; Burger, Joseph R; Balk, Meghan A; Khaliq, Imran; Hof, Christian; Brown, James H
2015-12-29
The extent to which different kinds of organisms have adapted to environmental temperature regimes is central to understanding how they respond to climate change. The Scholander-Irving (S-I) model of heat transfer lays the foundation for explaining how endothermic birds and mammals maintain their high, relatively constant body temperatures in the face of wide variation in environmental temperature. The S-I model shows how body temperature is regulated by balancing the rates of heat production and heat loss. Both rates scale with body size, suggesting that larger animals should be better adapted to cold environments than smaller animals, and vice versa. However, the global distributions of ∼9,000 species of terrestrial birds and mammals show that the entire range of body sizes occurs in nearly all climatic regimes. Using physiological and environmental temperature data for 211 bird and 178 mammal species, we test for mass-independent adaptive changes in two key parameters of the S-I model: basal metabolic rate (BMR) and thermal conductance. We derive an axis of thermal adaptation that is independent of body size, extends the S-I model, and highlights interactions among physiological and morphological traits that allow endotherms to persist in a wide range of temperatures. Our macrophysiological and macroecological analyses support our predictions that shifts in BMR and thermal conductance confer important adaptations to environmental temperature in both birds and mammals.
NASA Technical Reports Server (NTRS)
Remsberg, Ellis E.
2007-01-01
Previously published analyses for the seasonal and longer-period cycles in middle atmosphere temperature versus pressure (or T(p)) from the Halogen Occultation Experiment (HALOE) are extended to just over 14 years and updated to properly account for the effects of autocorrelation in its time series of zonally-averaged data. The updated seasonal terms and annual averages are provided, and they can be used to generate temperature distributions that are representative of the period 1991-2005. QBO-like terms have also been resolved and are provided, and they exhibit good consistency across the range of latitudes and pressure-altitudes. Further, exploratory analyses of the residuals from each of the 221 time series have yielded significant 11-yr solar cycle (or SC-like) and linear trend terms at a number of latitudes and levels. The amplitudes of the SC-like terms for the upper mesosphere agree reasonably with calculations of the direct solar radiative effects for T(p). Those SC amplitudes increase by about a factor of 2 from the lower to the upper mesosphere and are also larger at the middle than at the low latitudes. The diagnosed cooling trends for the subtropical latitudes are in the range, -0.5 to -1.0 K/decade, which is in good agreement with the findings from models of the radiative effects on pressure surfaces due to known increases in atmospheric CO2. The diagnosed trends are somewhat larger than predicted with models for the upper mesosphere of the northern hemisphere middle latitudes.
Wide-Temperature Electronics for Thermal Control of Nanosats
NASA Technical Reports Server (NTRS)
Dickman, John Ellis; Gerber, Scott
2000-01-01
This document represents a presentation which examines the wide and low-temperature electronics required for NanoSatellites. In the past, larger spacecraft used Radioisotope Heating Units (RHU's). The advantage of the use of these electronics is that they could eliminate or reduce the requirement for RHU's, reduce system weight and simplify spacecraft design by eliminating containment/support structures for RHU's. The Glenn Research Center's Wide/Low Temperature Power Electronics Program supports the development of power systems capable of reliable, efficient operation over wide and low temperature ranges. Included charts review the successes and failures of various electronic devices, the IRF541 HEXFET, The NE76118n-Channel GaAS MESFET, the Lithium Carbon Monofluoride Primary Battery, and a COTS DC-DC converter. The preliminary result of wide/low temperature testing of CTS and custom parts and power circuit indicate that through careful selection of components and technologies it is possible to design and build power circuits which operate from room temperature to near 100K.
Ren, Jingli; Chen, Cun; Wang, Gang; ...
2017-03-22
This study explores the temporal scaling behavior induced shear-branching structure in response to variant temperatures and strain rates during plastic deformation of Zr-based bulk metallic glass (BMG). The data analysis based on the compression tests suggests that there are two states of shear-branching structures: the fractal structure with a long-range order at an intermediate temperature of 223 K and a larger strain rate of 2.5 × 10 –2 s –1; the disordered structure dominated at other temperature and strain rate. It can be deduced from the percolation theory that the compressive ductility, ec, can reach the maximum value at themore » intermediate temperature. Furthermore, a dynamical model involving temperature is given for depicting the shear-sliding process, reflecting the plastic deformation has fractal structure at the temperature of 223 K and strain rate of 2.5 × 10 –2 s –1.« less
NASA Astrophysics Data System (ADS)
Drury, Anna Joy; John, Cédric M.
2016-10-01
Understanding past changes in sea surface temperatures (SSTs) is crucial; however, existing proxies for reconstructing past SSTs are hindered by unknown ancient seawater composition (foraminiferal Mg/Ca and δ18O) or reflect subsurface temperatures (TEX86) or have a limited applicable temperature range (U37k'). We examine clumped isotope (Δ47) thermometry to fossil coccolith-rich material as an SST proxy, as clumped isotopes are independent of original seawater composition and applicable to a wide temperature range and coccolithophores are widespread and dissolution resistant. The Δ47-derived temperatures from <63, <20, <10, and 2-5 μm size fractions of two equatorial Pacific late Miocene-early Pliocene sediment samples (c1; c2) range between ˜18 and 29°C, with c1 temperatures consistently above c2. Removing the >63 μm fraction removes most nonmixed layer components; however, the Δ47-derived temperatures display an unexpected slight decreasing trend with decreasing size fraction. This unexpected trend could partly arise because larger coccoliths (5-12 μm) are removed during the size fraction separation process. The c1 and <63 μm c2 Δ47-derived temperatures are comparable to concurrent U37k' SSTs. The <20, <10, and 2-5 μm c2 Δ47-derived temperatures are consistently cooler than expected. The Δ47-U37k' temperature offset is probably caused by abiotic/diagenetic calcite present in the c2 2-5 μm fraction (˜53% by area), which potentially precipitated at bottom water temperatures of ˜6°C. Our results indicate that clumped isotopes on coccolith-rich sediment fractions have potential as an SST proxy, particularly in tropical regions, providing that careful investigation of the appropriate size fraction for the region and time scale is undertaken.
Vapor-liquid equilibrium and critical asymmetry of square well and short square well chain fluids.
Li, Liyan; Sun, Fangfang; Chen, Zhitong; Wang, Long; Cai, Jun
2014-08-07
The critical behavior of square well fluids with variable interaction ranges and of short square well chain fluids have been investigated by grand canonical ensemble Monte Carlo simulations. The critical temperatures and densities were estimated by a finite-size scaling analysis with the help of histogram reweighting technique. The vapor-liquid coexistence curve in the near-critical region was determined using hyper-parallel tempering Monte Carlo simulations. The simulation results for coexistence diameters show that the contribution of |t|(1-α) to the coexistence diameter dominates the singular behavior in all systems investigated. The contribution of |t|(2β) to the coexistence diameter is larger for the system with a smaller interaction range λ. While for short square well chain fluids, longer the chain length, larger the contribution of |t|(2β). The molecular configuration greatly influences the critical asymmetry: a short soft chain fluid shows weaker critical asymmetry than a stiff chain fluid with same chain length.
Optical Modulation of BST/STO Thin Films in the Terahertz Range
NASA Astrophysics Data System (ADS)
Zeng, Ying; Shi, Songjie; Zhou, Ling; Ling, Furi; Yao, Jianquan
2018-04-01
The {Ba}_{0.7} {Sr}_{0.3} {TiO}3 (BST) thin film (30.3 nm) deposited on a {SrTiO}3 (STO) film/silicon substrate sample was modulated by 532 nm continuous-wave laser in the range of 0.2-1 THz at room temperature. The refractive index variation was observed to linearly increase at the highest 3.48 for 0.5 THz with the pump power increasing to 400 mW. It was also found that the BST/STO sample had a larger refractive index variation and was more sensitive to the external optical field than a BST monolayer due to the epitaxial strain induced by the STO film. The electric displacement-electric field loops results revealed that the increasing spontaneous polarization with the STO film that was induced was responsible for the larger refractive index variation of the BST/STO sample. In addition, the real and imaginary part of the permittivity were observed increasing along with the external field increasing, due to the soft mode hardening.
Optical Modulation of BST/STO Thin Films in the Terahertz Range
NASA Astrophysics Data System (ADS)
Zeng, Ying; Shi, Songjie; Zhou, Ling; Ling, Furi; Yao, Jianquan
2018-07-01
The {Ba}_{0.7} {Sr}_{0.3} {TiO}3 (BST) thin film (30.3 nm) deposited on a {SrTiO}3 (STO) film/silicon substrate sample was modulated by 532 nm continuous-wave laser in the range of 0.2-1 THz at room temperature. The refractive index variation was observed to linearly increase at the highest 3.48 for 0.5 THz with the pump power increasing to 400 mW. It was also found that the BST/STO sample had a larger refractive index variation and was more sensitive to the external optical field than a BST monolayer due to the epitaxial strain induced by the STO film. The electric displacement-electric field loops results revealed that the increasing spontaneous polarization with the STO film that was induced was responsible for the larger refractive index variation of the BST/STO sample. In addition, the real and imaginary part of the permittivity were observed increasing along with the external field increasing, due to the soft mode hardening.
Scaling properties of ballistic nano-transistors
2011-01-01
Recently, we have suggested a scale-invariant model for a nano-transistor. In agreement with experiments a close-to-linear thresh-old trace was found in the calculated ID - VD-traces separating the regimes of classically allowed transport and tunneling transport. In this conference contribution, the relevant physical quantities in our model and its range of applicability are discussed in more detail. Extending the temperature range of our studies it is shown that a close-to-linear thresh-old trace results at room temperatures as well. In qualitative agreement with the experiments the ID - VG-traces for small drain voltages show thermally activated transport below the threshold gate voltage. In contrast, at large drain voltages the gate-voltage dependence is weaker. As can be expected in our relatively simple model, the theoretical drain current is larger than the experimental one by a little less than a decade. PMID:21711899
Continued development of abradable gas path seals. [for gas turbine engines
NASA Technical Reports Server (NTRS)
Shiembob, L. T.
1975-01-01
Major program objectives were the continued development of NiCrAlY feltmetal and honeycomb systems for knife edge seal applications in the 1144 to 1366 K temperature range, and to initiate abradable seal material evaluation for blade tip seal applications in the 1366 to 1589 K temperature range. Larger fiber size, higher density feltmetal showed greatly improved erosion resistance with a slight reduction in abradability compared to the baseline feltmetal. Pack aluminide coating of the honeycomb extended the oxidation resistance and slightly improved the abradability of this material. Evaluation through selected abradability, erosion and oxidation testing, and pertinent metallography led to selection of a plasma sprayed yttria stabilized zirconia (ZrO2)/CoCrAlY layered system as the system with the most potential to meet the 1589 K requirement for blade tip seals. This system demonstrated structural integrity, erosion resistance, and some degree of abradability.
NASA Astrophysics Data System (ADS)
Wang, Hung-Ta; Kang, B. S.; Ren, F.; Fitch, R. C.; Gillespie, J. K.; Moser, N.; Jessen, G.; Jenkins, T.; Dettmer, R.; Via, D.; Crespo, A.; Gila, B. P.; Abernathy, C. R.; Pearton, S. J.
2005-10-01
Pt-gated AlGaN /GaN high electron mobility transistors can be used as room-temperature hydrogen gas sensors at hydrogen concentrations as low as 100ppm. A comparison of the changes in drain and gate current-voltage (I-V) characteristics with the introduction of 500ppm H2 into the measurement ambient shows that monitoring the change in drain-source current provides a wider gate voltage operation range for maximum detection sensitivity and higher total current change than measuring the change in gate current. However, over a narrow gate voltage range, the relative sensitivity of detection by monitoring the gate current changes is up to an order of magnitude larger than that of drain-source current changes. In both cases, the changes are fully reversible in <2-3min at 25°C upon removal of the hydrogen from the ambient.
Submesoscale-selective compensation of fronts in a salinity-stratified ocean.
Spiro Jaeger, Gualtiero; Mahadevan, Amala
2018-02-01
Salinity, rather than temperature, is the leading influence on density in some regions of the world's upper oceans. In the Bay of Bengal, heavy monsoonal rains and runoff generate strong salinity gradients that define density fronts and stratification in the upper ~50 m. Ship-based observations made in winter reveal that fronts exist over a wide range of length scales, but at O(1)-km scales, horizontal salinity gradients are compensated by temperature to alleviate about half the cross-front density gradient. Using a process study ocean model, we show that scale-selective compensation occurs because of surface cooling. Submesoscale instabilities cause density fronts to slump, enhancing stratification along-front. Specifically for salinity fronts, the surface mixed layer (SML) shoals on the less saline side, correlating sea surface salinity (SSS) with SML depth at O(1)-km scales. When losing heat to the atmosphere, the shallower and less saline SML experiences a larger drop in temperature compared to the adjacent deeper SML on the salty side of the front, thus correlating sea surface temperature (SST) with SSS at the submesoscale. This compensation of submesoscale fronts can diminish their strength and thwart the forward cascade of energy to smaller scales. During winter, salinity fronts that are dynamically submesoscale experience larger temperature drops, appearing in satellite-derived SST as cold filaments. In freshwater-influenced regions, cold filaments can mark surface-trapped layers insulated from deeper nutrient-rich waters, unlike in other regions, where they indicate upwelling of nutrient-rich water and enhanced surface biological productivity.
Smith, F.A.; Betancourt, J.L.
2003-01-01
Animals respond to climatic change by adapting or by altering distributional patterns. How an animal responds is influenced by where it is positioned within its geographic range; the probability of extirpation is increased near range boundaries. Here, we examine the impact of Holocene climatic fluctuations on a small mammalian herbivore, the bushy-tailed woodrat (Neotoma cinerea), at five locations within south central Idaho and northwestern Utah. Previous work demonstrated that woodrats adapt to temperature shifts by altering body size. We focus here on the relationship between body mass, temperature, and location within the geographic range. Body mass is estimated by measuring fossil fecal pellets, a technique validated in earlier work. Overall, we find the predicted phenotypic response to climate change: Animals were larger during cold periods, and smaller during warmer episodes. However, we also identify several time periods when changes in environmental temperature exceeded the adaptive flexibility of N. cinerea. A smaller-bodied species, the desert woodrat (N. lepida) apparently invaded lower elevation sites during the mid-Holocene, despite being behaviorally and physically subordinate to N. cinerea. Analysis of contemporary patterns of body size and thermal tolerances for both woodrat species suggests this was because of the greater heat tolerance of N. lepida. The robust spatial relationship between contemporary body size and ambient temperature is used as a proxy to reconstruct local climate during the Holocene. ?? 2003 Elsevier Science (USA). All rights reserved.
Contrasting model complexity under a changing climate in a headwaters catchment.
NASA Astrophysics Data System (ADS)
Foster, L.; Williams, K. H.; Maxwell, R. M.
2017-12-01
Alpine, snowmelt-dominated catchments are the source of water for more than 1/6th of the world's population. These catchments are topographically complex, leading to steep weather gradients and nonlinear relationships between water and energy fluxes. Recent evidence suggests that alpine systems are more sensitive to climate warming, but these regions are vastly simplified in climate models and operational water management tools due to computational limitations. Simultaneously, point-scale observations are often extrapolated to larger regions where feedbacks can both exacerbate or mitigate locally observed changes. It is critical to determine whether projected climate impacts are robust to different methodologies, including model complexity. Using high performance computing and an integrated model of a representative headwater catchment we determined the hydrologic response from 30 projected climate changes to precipitation, temperature and vegetation for the Rocky Mountains. Simulations were run with 100m and 1km resolution, and with and without lateral subsurface flow in order to vary model complexity. We found that model complexity alters nonlinear relationships between water and energy fluxes. Higher-resolution models predicted larger changes per degree of temperature increase than lower resolution models, suggesting that reductions to snowpack, surface water, and groundwater due to warming may be underestimated in simple models. Increases in temperature were found to have a larger impact on water fluxes and stores than changes in precipitation, corroborating previous research showing that mountain systems are significantly more sensitive to temperature changes than to precipitation changes and that increases in winter precipitation are unlikely to compensate for increased evapotranspiration in a higher energy environment. These numerical experiments help to (1) bracket the range of uncertainty in published literature of climate change impacts on headwater hydrology; (2) characterize the role of precipitation and temperature changes on water supply for snowmelt-dominated downstream basins; and (3) identify which climate impacts depend on the scale of simulation.
Spectroellipsometric studies of sol-gel derived Sr0.6Ba0.4Nb2O6 films
NASA Astrophysics Data System (ADS)
Ho, Melanie M. T.; Tang, T. B.; Mak, C. L.; Pang, G. K. H.; Chan, K. Y.; Wong, K. H.
2006-10-01
Sr0.6Ba0.4Nb2O6 (SBN) films have been fabricated on (001)Si substrates by a sol-gel technique. The annealing process was carried out in air at various temperatures ranging from 200to700°C. Studies using x-ray diffractometry, high resolution transmission electron microscopy, and scanning electron microscopy showed that polycrystalline films, with a grain size of about 100nm, were obtained only for annealing temperatures ⩾600°C. The optical properties of these sol-gel derived SBN films were studied by spectroscopic ellipsometry (SE). In the analysis of the measured SE spectra, a triple-layer Lorentz model has been developed and used to deduce the optical properties of the SBN films. Our systematic SE measurements revealed that the refractive indices of the SBN films increase with the annealing temperature. This increase is more pronounced at around the crystallization temperature, i.e., between 500 and 600°C. The extinction coefficients of the films also exhibit a similar trend, showing a zero value for amorphous films and larger values for films annealed at above 600°C. Our results demonstrate that while crystallization helps to raise the refractive index of the film due to film densification, it also promotes scattering by grain boundary, resulting in a larger extinction coefficient.
NASA Astrophysics Data System (ADS)
Laakso, Ilkka
2009-06-01
This paper presents finite-difference time-domain (FDTD) calculations of specific absorption rate (SAR) values in the head under plane-wave exposure from 1 to 10 GHz using a resolution of 0.5 mm in adult male and female voxel models. Temperature rise due to the power absorption is calculated by the bioheat equation using a multigrid method solver. The computational accuracy is investigated by repeating the calculations with resolutions of 1 mm and 2 mm and comparing the results. Cubically averaged 10 g SAR in the eyes and brain and eye-averaged SAR are calculated and compared to the corresponding temperature rise as well as the recommended limits for exposure. The results suggest that 2 mm resolution should only be used for frequencies smaller than 2.5 GHz, and 1 mm resolution only under 5 GHz. Morphological differences in models seemed to be an important cause of variation: differences in results between the two different models were usually larger than the computational error due to the grid resolution, and larger than the difference between the results for open and closed eyes. Limiting the incident plane-wave power density to smaller than 100 W m-2 was sufficient for ensuring that the temperature rise in the eyes and brain were less than 1 °C in the whole frequency range.
Real-Gas Effects on Binary Mixing Layers
NASA Technical Reports Server (NTRS)
Okong'o, Nora; Bellan, Josette
2003-01-01
This paper presents a computational study of real-gas effects on the mean flow and temporal stability of heptane/nitrogen and oxygen/hydrogen mixing layers at supercritical pressures. These layers consist of two counterflowing free streams of different composition, temperature, and density. As in related prior studies reported in NASA Tech Briefs, the governing conservation equations were the Navier-Stokes equations of compressible flow plus equations for the conservation of total energy and of chemical- species masses. In these equations, the expressions for heat fluxes and chemical-species mass fluxes were derived from fluctuation-dissipation theory and incorporate Soret and Dufour effects. Similarity equations for the streamwise velocity, temperature, and mass fractions were derived as approximations to the governing equations. Similarity profiles showed important real-gas, non-ideal-mixture effects, particularly for temperature, in departing from the error-function profile, which is the similarity solution for incompressible flow. The temperature behavior was attributed to real-gas thermodynamics and variations in Schmidt and Prandtl numbers. Temporal linear inviscid stability analyses were performed using the similarity and error-function profiles as the mean flow. For the similarity profiles, the growth rates were found to be larger and the wavelengths of highest instability shorter, relative to those of the errorfunction profiles and to those obtained from incompressible-flow stability analysis. The range of unstable wavelengths was found to be larger for the similarity profiles than for the error-function profiles
Tan, Dezhi; Zhang, Wenjin; Wang, Xiaofan; Koirala, Sandhaya; Miyauchi, Yuhei; Matsuda, Kazunari
2017-08-31
Layered materials, such as graphene, transition metal dichalcogenides and black phosphorene, have been established rapidly as intriguing building blocks for optoelectronic devices. Here, we introduce highly polarization sensitive, broadband, and high-temperature-operation photodetectors based on multilayer germanium sulfide (GeS). The GeS photodetector shows a high photoresponsivity of about 6.8 × 10 3 A W -1 , an extremely high specific detectivity of 5.6 × 10 14 Jones, and broad spectral response in the wavelength range of 300-800 nm. More importantly, the GeS photodetector has high polarization sensitivity to incident linearly polarized light, which provides another degree of freedom for photodetectors. Tremendously enhanced photoresponsivity is observed with a temperature increase, and high responsivity is achievable at least up to 423 K. The establishment of larger photoinduced reduction of the Schottky barrier height will be significant for the investigation of the photoresponse mechanism of 2D layered material-based photodetectors. These attributes of high photocurrent generation in a wide temperature range, broad spectral response, and polarization sensitivity coupled with environmental stability indicate that the proposed GeS photodetector is very suitable for optoelectronic applications.
Observations and model predictions of water skin temperatures at MTI core site lakes and reservoirs
NASA Astrophysics Data System (ADS)
Garrett, Alfred J.; Kurzeja, Robert J.; O'Steen, Byron L.; Parker, Matthew J.; Pendergast, Malcolm M.; Villa-Aleman, Eliel; Pagnutti, Mary A.
2001-08-01
The Savannah River Technology Center (SRTC) measured water skin temperatures at four of the Multi-spectral Thermal Imager (MTI) core sites. The depression of the skin temperature relative to the bulk water temperature ((Delta) T) a few centimeters below the surface is a complex function of the weather conditions, turbulent mixing in the water and the bulk water temperature. Observed skin temperature depressions range from near zero to more than 1.0 degree(s)C. Skin temperature depressions tend to be larger when the bulk water temperature is high, but large depressions were also observed in cool bodies of water in calm conditions at night. We compared (Delta) T predictions from three models (SRTC, Schlussel and Wick) against measured (Delta) T's from 15 data sets taken at the MTI core sites. The SRTC and Wick models performed somewhat better than the Schlussel model, with RMSE and average absolute errors of about 0.2 degree(s)C, relative to 0.4 degree(s)C for the Schlussel model. The average observed (Delta) T for all 15 databases was -0.7 degree(s)C.
The alcohol-sensing behaviour of SnO2 nanorods prepared by a facile solid state reaction
NASA Astrophysics Data System (ADS)
Gao, F.; Ren, X. P.; Wan, W. J.; Zhao, Y. P.; Li, Y. H.; Zhao, H. Y.
2017-02-01
SnO2 nanorods with the range of 12-85 nm in diameter were fabricated by a facile solid state reaction in the medium of NaCl-KCl mixture at room temperature and calcined at 600, 680, 760 and 840 oC, respectively. The XRD, TEM and XPS were employed to characterize the structure and morphology of the SnO2 nanorods. The influence of the calcination temperature on the gas sensing behaviour of the SnO2 nanorods with different diameter was investigated. The result showed that all the sensors had good response to alcohol. The response of the gracile nanorods prepared at a low calcined temperature demonstrated significantly better than the thick nanorods prepared at a high calcined temperature. The mechanism was attributed to the nonstoichiometric ratio of Sn/O and larger surface area of the gracile nanorods to enhance the oxygen surface adsorption.
Ultraslow dielectric relaxation process in supercooled polyhydric alcohols
NASA Astrophysics Data System (ADS)
Yomogida, Yoshiki; Minoguchi, Ayumi; Nozaki, Ryusuke
2006-04-01
Complex permittivity was obtained on glycerol, xylitol, sorbitol and sorbitol-xylitol mixtures in the supercooled liquid state in the frequency range between 10μHz and 500MHz at temperatures near and above the glass transition temperature. For all the materials, a dielectric relaxation process was observed in addition to the well-known structural α and Johari-Goldstein β relaxation process [G. P. Johari and M. Goldstein, J. Chem. Phys. 53, 2372 (1970)]. The relaxation time for the new process is always larger than that for the α process. The relaxation time shows non-Arrhenius temperature dependence with correlation to the behavior of the α process and it depends on the molecular size systematically. The dielectric relaxation strength for the new process shows the effect of thermal history and decreases exponentially with time at a constant temperature. It can be considered that a nonequilibrium dynamics causes the new process.
Zebarjadi, Mona; Esfarjani, Keivan; Bian, Zhixi; Shakouri, Ali
2011-01-12
Coherent potential approximation is used to study the effect of adding doped spherical nanoparticles inside a host matrix on the thermoelectric properties. This takes into account electron multiple scatterings that are important in samples with relatively high volume fraction of nanoparticles (>1%). We show that with large fraction of uniform small size nanoparticles (∼1 nm), the power factor can be enhanced significantly. The improvement could be large (up to 450% for GaAs) especially at low temperatures when the mobility is limited by impurity or nanoparticle scattering. The advantage of doping via embedded nanoparticles compared to the conventional shallow impurities is quantified. At the optimum thermoelectric power factor, the electrical conductivity of the nanoparticle-doped material is larger than that of impurity-doped one at the studied temperature range (50-500 K) whereas the Seebeck coefficient of the nanoparticle doped material is enhanced only at low temperatures (∼50 K).
Understanding Arctic Surface Temperature Differences in Reanalyses
NASA Technical Reports Server (NTRS)
Cullather, Richard; Zhao, Bin; Shuman, Christopher; Nowicki, Sophie
2017-01-01
Reanalyses in the Arctic are widely used for model evaluation and for understanding contemporary climate change. Nevertheless, differences among reanalyses in fundamental meteorological variables including surface air temperature are large. A review of surface temperature differences is presented with a particular focus on differences in contemporary reanalyses. An important consideration is the significant differences in Arctic surfaces, including the central Arctic Ocean, the Greenland Ice Sheet, and non-glaciated land. While there is significant correlation among reanalyses in annual time series, there is substantial disagreement in mean values. For the period 1980-2013, the trend in annual temperature ranges from 0.3 to 0.7K per decade. Over the central Arctic Ocean, differences in mean values and trends are larger. Most of the uncertainty is associated with winter months. This is likely associated with the constraint imposed by melting processes (i.e. 0 deg. Celsius), rather than seasonal changes to the observing system.
Kinetics of nucleation and crystallization in poly(e-caprolactone) (PCL)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuravlev, Evgeny; Schmelzer, Jurn; Wunderlich, Bernhard
2011-01-01
The recently developed differential fast scanning calorimetry (DFSC) is used for a new look at the crystal growth of poly(3-caprolactone) (PCL) from 185 K, below the glass transition temperature, to 330 K, close to the equilibrium melting temperature. The DFSC allows temperature control of the sample and determination of its heat capacity using heating rates from 50 to 50,000 K/s. The crystal nucleation and crystallization halftimes were determined simultaneously. The obtained halftimes cover a range from 3 102 s (nucleation at 215 K) to 3 109 s (crystallization at 185 K). After attempting to analyze the experiments with the classicalmore » nucleation and growth model, developed for systems consisting of small molecules, a new methodology is described which addresses the specific problems of crystallization of flexible linear macromolecules. The key problems which are attempted to be resolved concern the differences between the structures of the various entities identified and their specific role in the mechanism of growth. The structures range from configurations having practically unmeasurable latent heats of ordering (nuclei) to being clearly-recognizable, ordered species with rather sharp disordering endotherms in the temperature range from the glass transition to equilibrium melting for increasingly perfect and larger crystals. The mechanisms and kinetics of growth involve also a detailed understanding of the interaction with the surrounding rigid-amorphous fraction (RAF) in dependence of crystal size and perfection.« less
Espinosa-Garcia, Joaquin; Rangel, Cipriano; Suleimanov, Yury V
2017-07-26
We have developed an analytical full-dimensional potential energy surface, named PES-2017, for the gas-phase hydrogen abstraction reaction between the cyano radical and methane. This surface is fitted using high-level ab initio information as input. Using the PES-2017 surface, a kinetics study was performed via two theoretical approaches: variational transition-state theory with multidimensional tunnelling (VTST-MT) and ring polymer molecular dynamics (RPMD). The results are compared with the experimental data. In the whole temperature range analysed, 300-1500 K, both theories agree within a factor of <2, reproducing the experimental behaviour taking into account the experimental uncertainties. At high temperatures, where the recrossing effects dominate and the RPMD theory is exact, both theories differ by a factor of about 20%; while at low temperatures this difference is larger, 45%. Note that in this temperature regime, the tunnelling effect is negligible. The CN + CH 4 /CD 4 kinetic isotope effects are important, reproducing the scarce experimental evidence. The good agreement with the ab initio information used in the fitting process (self-consistency test) and with the kinetic behaviour in a wide temperature range gives confidence and strength to the new surface.
The Effects of Forming Parameters on Conical Ring Rolling Process
Meng, Wen; Zhao, Guoqun; Guan, Yanjin
2014-01-01
The plastic penetration condition and biting-in condition of a radial conical ring rolling process with a closed die structure on the top and bottom of driven roll, simplified as RCRRCDS, were established. The reasonable value range of mandrel feed rate in rolling process was deduced. A coupled thermomechanical 3D FE model of RCRRCDS process was established. The changing laws of equivalent plastic strain (PEEQ) and temperature distributions with rolling time were investigated. The effects of ring's outer radius growth rate and rolls sizes on the uniformities of PEEQ and temperature distributions, average rolling force, and average rolling moment were studied. The results indicate that the PEEQ at the inner layer and outer layer of rolled ring are larger than that at the middle layer of ring; the temperatures at the “obtuse angle zone” of ring's cross-section are higher than those at “acute angle zone”; the temperature at the central part of ring is higher than that at the middle part of ring's outer surfaces. As the ring's outer radius growth rate increases at its reasonable value ranges, the uniformities of PEEQ and temperature distributions increase. Finally, the optimal values of the ring's outer radius growth rate and rolls sizes were obtained. PMID:25202716
Magnetic properties and thermal stability of Ti-doped CrO2 films
NASA Astrophysics Data System (ADS)
Zhang, Z.; Cheng, M.; Lu, Z.; Yu, Z.; Liu, S.; Liang, R.; Liu, Y.; Shi, J.; Xiong, R.
2018-04-01
Chromium dioxide (CrO2) is a striking half metal material which may have important applications in the field of spintronics. However, pure CrO2 film is metastable at room temperature and the synthesis process can be only performed in a narrow temperature range of 390-410 °C with TiO2 used as substrate material. Here, we report the preparation and investigation of (1 0 0) oriented Ti-doped CrO2 films on TiO2 substrates. It is found that Ti-doped films can maintain pure rutile phase even after a 510 °C post-annealing, showing much better thermal stability than pure CrO2 films. Ti-doped films can be prepared in a wider temperature window (390-470 °C), which may be attributed to the improvement of thermal stability. The broadening of process window may be beneficial for further improvement of film quality by optimizing growth temperature in a larger range. In addition to the improvement of thermal stability, the magnetic properties of Ti-doped CrO2 are also found to be tuned by Ti doping: saturation magnetizations of Ti-doped films at room temperature are significantly lower, and magnetic anisotropy decreases as the Ti-concentration increases, which is beneficial for decreasing switching current density in STT-based spintronic devices.
NASA Astrophysics Data System (ADS)
Ganbavale, G.; Zuend, A.; Marcolli, C.; Peter, T.
2015-01-01
This study presents a new, improved parameterisation of the temperature dependence of activity coefficients in the AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) model applicable for aqueous as well as water-free organic solutions. For electrolyte-free organic and organic-water mixtures the AIOMFAC model uses a group-contribution approach based on UNIFAC (UNIversal quasi-chemical Functional-group Activity Coefficients). This group-contribution approach explicitly accounts for interactions among organic functional groups and between organic functional groups and water. The previous AIOMFAC version uses a simple parameterisation of the temperature dependence of activity coefficients, aimed to be applicable in the temperature range from ~ 275 to ~ 400 K. With the goal to improve the description of a wide variety of organic compounds found in atmospheric aerosols, we extend the AIOMFAC parameterisation for the functional groups carboxyl, hydroxyl, ketone, aldehyde, ether, ester, alkyl, aromatic carbon-alcohol, and aromatic hydrocarbon to atmospherically relevant low temperatures. To this end we introduce a new parameterisation for the temperature dependence. The improved temperature dependence parameterisation is derived from classical thermodynamic theory by describing effects from changes in molar enthalpy and heat capacity of a multi-component system. Thermodynamic equilibrium data of aqueous organic and water-free organic mixtures from the literature are carefully assessed and complemented with new measurements to establish a comprehensive database, covering a wide temperature range (~ 190 to ~ 440 K) for many of the functional group combinations considered. Different experimental data types and their processing for the estimation of AIOMFAC model parameters are discussed. The new AIOMFAC parameterisation for the temperature dependence of activity coefficients from low to high temperatures shows an overall improvement of 28% in comparison to the previous model version, when both versions are compared to our database of experimentally determined activity coefficients and related thermodynamic data. When comparing the previous and new AIOMFAC model parameterisations to the subsets of experimental data with all temperatures below 274 K or all temperatures above 322 K (i.e. outside a 25 K margin of the reference temperature of 298 K), applying the new parameterisation leads to 37% improvement in each of the two temperature ranges considered. The new parameterisation of AIOMFAC agrees well with a large number of experimental data sets. Larger model-measurement discrepancies were found particularly for some of the systems containing multi-functional organic compounds. The affected systems were typically also poorly represented at room temperature and further improvements will be necessary to achieve better performance of AIOMFAC in these cases (assuming the experimental data are reliable). The performance of the AIOMFAC parameterisation is typically better for systems containing relatively small organic compounds and larger deviations may occur in mixtures where molecules of high structural complexity such as highly oxygenated compounds or molecules of high molecular mass (e.g. oligomers) prevail. Nevertheless, the new parameterisation enables the calculation of activity coefficients for a wide variety of different aqueous/water-free organic solutions down to the low temperatures present in the upper troposphere.
NASA Astrophysics Data System (ADS)
Caicedo, J. A.; Uman, M. A.; Pilkey, J. T.
2018-01-01
We present the first lightning evolution studies, via the Lightning Mapping Array (LMA) and radar, performed in North Central Florida. Parts of three winter/spring frontal storms (cold season) and two complete summer (warm season) multicell storms are studied. Storm parameters measured are as follows: total number of flashes, flash-type classification, first flashes, flash initiation altitude, flash initiation power, flash rate (flashes per minute), charge structure, altitude and temperature ranges of the inferred charge regions, atmospheric isotherm altitude, radar base reflectivity (dBZ), and radar echo tops (EET). Several differences were found between summer multicell and winter/spring frontal storms in North Central Florida: (1) in winter/spring storms, the range of altitudes that all charge regions occupy is up to 1 km lower in altitude than in summer storms, as are the 0°C, -10°C, and -20°C isotherms; (2) lightning activity in summer storms is highly correlated with changes in radar signatures, in particular, echo tops; and (3) the LMA average initiation power of all flash types in winter/frontal storms is about an order of magnitude larger than that for summer storms. In relation to storms in other geographical locations, North Central Florida seasonal storms were found to have similarities in most parameters studied with a few differences, examples in Florida being (1) colder initiation altitudes for intracloud flashes, (2) charge regions occupying larger ranges of atmospheric temperatures, and (3) winter/spring frontal storms not having much lightning activity in the stratiform region.
Randomly diluted eg orbital-ordered systems.
Tanaka, T; Matsumoto, M; Ishihara, S
2005-12-31
Dilution effects on the long-range ordered state of the doubly degenerate e(g) orbital are investigated. Quenched impurities without the orbital degree of freedom are introduced in the orbital model where the long-range order is realized by the order-from-disorder mechanism. It is shown by Monte Carlo simulations and the cluster-expansion method that a decrease in the orbital-ordering temperature by dilution is substantially larger than that in the randomly diluted spin models. Tilting of orbital pseudospins around impurities is the essence of this dilution effect. The present theory provides a new viewpoint for the recent resonant x-ray scattering experiments in KCu(1-x)Zn(x)F(3).
The susceptibility critical exponent for a nonaqueous ionic binary mixture near a consolute point
NASA Technical Reports Server (NTRS)
Zhang, Kai C.; Briggs, Matthew E.; Gammon, Robert W.; Levelt Sengers, J. M. H.
1992-01-01
We report turbidity measurements of a nonaqueous ionic solution of triethyl n-hexylammonium triethyl n-hexylboride in diphenyl ether. A classical susceptibility critical exponent gamma = 1.01 +/- 0.01 is obtained over the reduced temperature range t between values of 0.1 and 0.0001. The best fits of the sample transmission had a standard deviation of 0.39 percent over this range. Ising and spherical model critical exponents are firmly excluded. The correlation length amplitude xi sub 0 from fitting is 1.0 +/- 0.2 nm which is much larger than values found in neutral fluids and some aqueous binary mixtures.
Compatibility of segmented thermoelectric generators
NASA Technical Reports Server (NTRS)
Snyder, J.; Ursell, T.
2002-01-01
It is well known that power generation efficiency improves when materials with appropriate properties are combined either in a cascaded or segmented fashion across a temperature gradient. Past methods for determining materials used in segmentation weremainly concerned with materials that have the highest figure of merit in the temperature range. However, the example of SiGe segmented with Bi2Te3 and/or various skutterudites shows a marked decline in device efficiency even though SiGe has the highest figure of merit in the temperature range. The origin of the incompatibility of SiGe with other thermoelectric materials leads to a general definition of compatibility and intrinsic efficiency. The compatibility factor derived as = (Jl+zr - 1) a is a function of only intrinsic material properties and temperature, which is represented by a ratio of current to conduction heat. For maximum efficiency the compatibility factor should not change with temperature both within a single material, and in the segmented leg as a whole. This leads to a measure of compatibility not only between segments, but also within a segment. General temperature trends show that materials are more self compatible at higher temperatures, and segmentation is more difficult across a larger -T. The compatibility factor can be used as a quantitative guide for deciding whether a material is better suited for segmentation orcascading. Analysis of compatibility factors and intrinsic efficiency for optimal segmentation are discussed, with intent to predict optimal material properties, temperature interfaces, and/or currentheat ratios.
Behavioral responses of Atlantic cod to sea temperature changes.
Freitas, Carla; Olsen, Esben Moland; Moland, Even; Ciannelli, Lorenzo; Knutsen, Halvor
2015-05-01
Understanding responses of marine species to temperature variability is essential to predict impacts of future climate change in the oceans. Most ectotherms are expected to adjust their behavior to avoid extreme temperatures and minimize acute changes in body temperature. However, measuring such behavioral plasticity in the wild is challenging. Combining 4 years of telemetry-derived behavioral data on juvenile and adult (30-80 cm) Atlantic cod (Gadus morhua), and in situ ocean temperature measurements, we found a significant effect of sea temperature on cod depth use and activity level in coastal Skagerrak. During summer, cod were found in deeper waters when sea surface temperature increased. Further, this effect of temperature was stronger on larger cod. Diel vertical migration, which consists in a nighttime rise to shallow feeding habitats, was stronger among smaller cod. As surface temperature increased beyond ∼15°C, their vertical migration was limited to deeper waters. In addition to larger diel vertical migrations, smaller cod were more active and travelled larger distances compared to larger specimens. Cold temperatures during winter tended, however, to reduce the magnitude of diel vertical migrations, as well as the activity level and distance moved by those smaller individuals. Our findings suggest that future and ongoing rises in sea surface temperature may increasingly deprive cod in this region from shallow feeding areas during summer, which may be detrimental for local populations of the species.
Behavioral responses of Atlantic cod to sea temperature changes
Freitas, Carla; Olsen, Esben Moland; Moland, Even; Ciannelli, Lorenzo; Knutsen, Halvor
2015-01-01
Understanding responses of marine species to temperature variability is essential to predict impacts of future climate change in the oceans. Most ectotherms are expected to adjust their behavior to avoid extreme temperatures and minimize acute changes in body temperature. However, measuring such behavioral plasticity in the wild is challenging. Combining 4 years of telemetry-derived behavioral data on juvenile and adult (30–80 cm) Atlantic cod (Gadus morhua), and in situ ocean temperature measurements, we found a significant effect of sea temperature on cod depth use and activity level in coastal Skagerrak. During summer, cod were found in deeper waters when sea surface temperature increased. Further, this effect of temperature was stronger on larger cod. Diel vertical migration, which consists in a nighttime rise to shallow feeding habitats, was stronger among smaller cod. As surface temperature increased beyond ∼15°C, their vertical migration was limited to deeper waters. In addition to larger diel vertical migrations, smaller cod were more active and travelled larger distances compared to larger specimens. Cold temperatures during winter tended, however, to reduce the magnitude of diel vertical migrations, as well as the activity level and distance moved by those smaller individuals. Our findings suggest that future and ongoing rises in sea surface temperature may increasingly deprive cod in this region from shallow feeding areas during summer, which may be detrimental for local populations of the species. PMID:26045957
Steinhoff, Daniel F.; Monaghan, Andrew J.; Eisen, Lars; Barlage, Michael J.; Hopson, Thomas M.; Tarakidzwa, Isaac; Ortiz-Rosario, Karielys; Lozano-Fuentes, Saul; Hayden, Mary H.; Bieringer, Paul E.; Welsh Rodríguez, Carlos M.
2017-01-01
The mosquito virus vector Aedes (Ae.) aegypti exploits a wide range of containers as sites for egg laying and development of the immature life stages, yet the approaches for modeling meteorologically sensitive container water dynamics have been limited. This study introduces the Water Height and Temperature in Container Habitats Energy Model (WHATCH’EM), a state-of-the-science, physically based energy balance model of water height and temperature in containers that may serve as development sites for mosquitoes. The authors employ WHATCH’EM to model container water dynamics in three cities along a climatic gradient in México ranging from sea level, where Ae. aegypti is highly abundant, to ~2100 m, where Ae. aegypti is rarely found. When compared with measurements from a 1-month field experiment in two of these cities during summer 2013, WHATCH’EM realistically simulates the daily mean and range of water temperature for a variety of containers. To examine container dynamics for an entire season, WHATCH’EM is also driven with field-derived meteorological data from May to September 2011 and evaluated for three commonly encountered container types. WHATCH’EM simulates the highly nonlinear manner in which air temperature, humidity, rainfall, clouds, and container characteristics (shape, size, and color) determine water temperature and height. Sunlight exposure, modulated by clouds and shading from nearby objects, plays a first-order role. In general, simulated water temperatures are higher for containers that are larger, darker, and receive more sunlight. WHATCH’EM simulations will be helpful in understanding the limiting meteorological and container-related factors for proliferation of Ae. aegypti and may be useful for informing weather-driven early warning systems for viruses transmitted by Ae. aegypti. PMID:29123363
Gutierrel, Silvia M M; Schofield, Pam; Prodocimo, Viviane
2016-01-01
Astronotus ocellatus (oscar), is native to the Amazon basin and, although it has been introduced to many countries, little is known regarding its tolerances for salinity and temperature. In this report, we provide data on the tolerance of A. ocellatus to abrupt and gradual changes in salinity, its high and low temperature tolerance, and information on how salinity, temperature, and fish size interact to affect survival. Fish were able to survive abrupt transfer to salinities as high as 16 ppt with no mortality. When salinity change was gradual (2 ppt/day), fish in the warm-temperature experiment (28°C) survived longer than fish in the cool-temperature experiment (18°C). Larger fish survived longer than smaller ones at the higher salinities when the temperature was warm, but when the temperature was cool fish size had little effect on survival. In the temperature-tolerance experiments, fish survived from 9 to 41°C for short periods of time. Overall, the species showed a wide range of temperature and salinity tolerance. Thus, in spite of the tropical freshwater origin of this species, physiological stress is not likely to hinder its dispersal to brackish waters, especially when temperatures are warm.
Wu, Jingjin; Zhao, Yinchao; Zhao, Ce Zhou; Yang, Li; Lu, Qifeng; Zhang, Qian; Smith, Jeremy; Zhao, Yongming
2016-08-13
The 4 at. % zirconium-doped zinc oxide (ZnO:Zr) films grown by atomic layer deposition (ALD) were annealed at various temperatures ranging from 350 to 950 °C. The structural, electrical, and optical properties of rapid thermal annealing (RTA) treated ZnO:Zr films have been evaluated to find out the stability limit. It was found that the grain size increased at 350 °C and decreased between 350 and 850 °C, while creeping up again at 850 °C. UV-vis characterization shows that the optical band gap shifts towards larger wavelengths. The Hall measurement shows that the resistivity almost keeps constant at low annealing temperatures, and increases rapidly after treatment at 750 °C due to the effect of both the carrier concentration and the Hall mobility. The best annealing temperature is found in the range of 350-550 °C. The ZnO:Zr film-coated glass substrates show good optical and electrical performance up to 550 °C during superstrate thin film solar cell deposition.
Atomically layer-by-layer diffusion of oxygen/hydrogen in highly epitaxial PrBaCo2O5.5+δ thin films
NASA Astrophysics Data System (ADS)
Bao, Shanyong; Xu, Xing; Enriquez, Erik; Mace, Brennan E.; Chen, Garry; Kelliher, Sean P.; Chen, Chonglin; Zhang, Yamei; Whangbo, Myung-Hwan; Dong, Chuang; Zhang, Qinyu
2015-12-01
Single-crystalline epitaxial thin films of PrBaCo2O5.5+δ (PrBCO) were prepared, and their resistance R(t) under a switching flow of oxidizing and reducing gases were measured as a function of the gas flow time t in the temperature range of 200-800 °C. During the oxidation cycle under O2, the PrBCO films exhibit fast oscillations in their dR(t)/dt vs. t plots, which reflect the oxidation processes, Co2+/Co3+ → Co3+ and Co3+ → Co3+/Co4+, that the Co atoms of PrBCO undergo. Each oscillation consists of two peaks, with larger and smaller peaks representing the oxygen/hydrogen diffusion through the (BaO)(CoO2)(PrO)(CoO2) layers of PrBCO via the oxygen-vacancy-exchange mechanism. This finding paves a significant avenue for cathode materials operating in low-temperature solid-oxide-fuel-cell devices and for chemical sensors with wide range of operating temperature.
Wu, Jingjin; Zhao, Yinchao; Zhao, Ce Zhou; Yang, Li; Lu, Qifeng; Zhang, Qian; Smith, Jeremy; Zhao, Yongming
2016-01-01
The 4 at. % zirconium-doped zinc oxide (ZnO:Zr) films grown by atomic layer deposition (ALD) were annealed at various temperatures ranging from 350 to 950 °C. The structural, electrical, and optical properties of rapid thermal annealing (RTA) treated ZnO:Zr films have been evaluated to find out the stability limit. It was found that the grain size increased at 350 °C and decreased between 350 and 850 °C, while creeping up again at 850 °C. UV–vis characterization shows that the optical band gap shifts towards larger wavelengths. The Hall measurement shows that the resistivity almost keeps constant at low annealing temperatures, and increases rapidly after treatment at 750 °C due to the effect of both the carrier concentration and the Hall mobility. The best annealing temperature is found in the range of 350–550 °C. The ZnO:Zr film-coated glass substrates show good optical and electrical performance up to 550 °C during superstrate thin film solar cell deposition. PMID:28773816
Hatakeyama, Tetsuhiro S.; Kaneko, Kunihiko
2012-01-01
Circadian clocks—ubiquitous in life forms ranging from bacteria to multicellular organisms—often exhibit intrinsic temperature compensation; the period of circadian oscillators is maintained constant over a range of physiological temperatures, despite the expected Arrhenius form for the reaction coefficient. Observations have shown that the amplitude of the oscillation depends on the temperature but the period does not; this suggests that although not every reaction step is temperature independent, the total system comprising several reactions still exhibits compensation. Here we present a general mechanism for such temperature compensation. Consider a system with multiple activation energy barriers for reactions, with a common enzyme shared across several reaction steps. The steps with the highest activation energy rate-limit the cycle when the temperature is not high. If the total abundance of the enzyme is limited, the amount of free enzyme available to catalyze a specific reaction decreases as more substrates bind to the common enzyme. We show that this change in free enzyme abundance compensates for the Arrhenius-type temperature dependence of the reaction coefficient. Taking the example of circadian clocks with cyanobacterial proteins KaiABC, consisting of several phosphorylation sites, we show that this temperature compensation mechanism is indeed valid. Specifically, if the activation energy for phosphorylation is larger than that for dephosphorylation, competition for KaiA shared among the phosphorylation reactions leads to temperature compensation. Moreover, taking a simpler model, we demonstrate the generality of the proposed compensation mechanism, suggesting relevance not only to circadian clocks but to other (bio)chemical oscillators as well. PMID:22566655
Hatakeyama, Tetsuhiro S; Kaneko, Kunihiko
2012-05-22
Circadian clocks--ubiquitous in life forms ranging from bacteria to multicellular organisms--often exhibit intrinsic temperature compensation; the period of circadian oscillators is maintained constant over a range of physiological temperatures, despite the expected Arrhenius form for the reaction coefficient. Observations have shown that the amplitude of the oscillation depends on the temperature but the period does not; this suggests that although not every reaction step is temperature independent, the total system comprising several reactions still exhibits compensation. Here we present a general mechanism for such temperature compensation. Consider a system with multiple activation energy barriers for reactions, with a common enzyme shared across several reaction steps. The steps with the highest activation energy rate-limit the cycle when the temperature is not high. If the total abundance of the enzyme is limited, the amount of free enzyme available to catalyze a specific reaction decreases as more substrates bind to the common enzyme. We show that this change in free enzyme abundance compensates for the Arrhenius-type temperature dependence of the reaction coefficient. Taking the example of circadian clocks with cyanobacterial proteins KaiABC, consisting of several phosphorylation sites, we show that this temperature compensation mechanism is indeed valid. Specifically, if the activation energy for phosphorylation is larger than that for dephosphorylation, competition for KaiA shared among the phosphorylation reactions leads to temperature compensation. Moreover, taking a simpler model, we demonstrate the generality of the proposed compensation mechanism, suggesting relevance not only to circadian clocks but to other (bio)chemical oscillators as well.
Optimization of MgF2-deposition temperature for far UV Al mirrors.
De Marcos, Luis V Rodríguez; Larruquert, Juan I; Méndez, José A; Gutiérrez-Luna, Nuria; Espinosa-Yáñez, Lucía; Honrado-Benítez, Carlos; Chavero-Royán, José; Perea-Abarca, Belén
2018-04-02
Progress towards far UV (FUV) coatings with enhanced reflectance is invaluable for future space missions, such as LUVOIR. This research starts with the procedure developed to enhance MgF 2 -protected Al reflectance through depositing MgF 2 on a heated aluminized substrate [Quijada et al., Proc. SPIE 8450, 84502H (2012)] and it establishes the optimum deposition temperature of the MgF 2 protective film for Al mirrors with a reflectance as high as ~90% at 121.6 nm. Al films were deposited at room temperature and protected with a MgF 2 film deposited at various temperatures ranging from room temperature to 350°C. It has been found that mirror reflectance in the short FUV range continuously increases with MgF 2 deposition temperature up to 250°C, whereas reflectance decreases at temperatures of 300°C and up. The short-FUV reflectance of mirrors deposited at 250°C only slightly decreased over time by less than 1%, compared to a larger decay for standard coatings prepared at room temperature. Al mirrors protected with MgF 2 deposited at room temperature that were later annealed displayed a similar reflectance enhancement that mirrors protected at high temperatures. MgF 2 and Al roughness as well as MgF 2 density were analyzed by x-ray grazing incidence reflectometry. A noticeable reduction in both Al and MgF 2 roughness, as well as an increase of MgF 2 density, were measured for films deposited at high temperatures. On the other hand, it was found a strong correlation between the protective-layer deposition temperature (or post-deposition annealing temperature) and the pinhole open area in Al films, which could be prevented with a somewhat thicker Al film.
Self-Sorting of Bidispersed Colloidal Particles Near Contact Line of an Evaporating Sessile Droplet.
Patil, Nagesh D; Bhardwaj, Rajneesh; Sharma, Atul
2018-06-13
Here, we investigate deposit patterns and associated morphology formed after the evaporation of an aqueous droplet containing mono- and bidispersed colloidal particles. In particular, the combined effect of substrate heating and particle diameter is investigated. We employ high-speed visualization, optical microscopy, and scanning electron microscopy to characterize the evaporating droplets, particle motion, and deposit morphology, respectively. In the context of monodispersed colloidal particles, an inner deposit and a typical ring form for smaller and larger particles, respectively, on a nonheated surface. The formation of the inner deposit is attributed to early depinning of the contact line, explained by a mechanistic model based on the balance of several forces acting on a particle near the contact line. At larger substrate temperature, a thin ring with inner deposit forms, explained by the self-pinning of the contact line and advection of the particles from the contact line to the center of the droplet due to the Marangoni flow. In the context of bidispersed colloidal particles, self-sorting of the colloidal particles within the ring occurs at larger substrate temperature. The smaller particles deposit at the outermost edge compared to the larger particles, and this preferential deposition in a stagnation region near the contact line is due to the spatially varying height of the liquid-gas interface above the substrate. The sorting occurs at a smaller ratio of the diameters of the smaller and larger particles. At larger substrate temperature and larger ratio, the particles do not get sorted and mix into each other. Our measurements show that there exists a critical substrate temperature as well as a diameter ratio to achieve the sorting. We propose regime maps on substrate temperature-particle diameter and substrate temperature-diameter ratio plane for mono- and bidispersed solutions, respectively.
XPS and STEM studies of Allende acid insoluble residues
NASA Technical Reports Server (NTRS)
Housley, R. M.; Clarke, D. R.
1980-01-01
Data on Allende acid residues obtained both before and after etching with hot HNO3 are presented. X-ray photoelectron spectra show predominantly carbonaceous material plus Fe-deficient chromite in both cases. The HNO3 oxidizes the carbonaceous material to some extent. The small chromites in these residues have a wide range of compositions somewhat paralleling those observed in larger Allende chromites and in Murchison chromites, especially in the high Al contents; however, they are deficient in divalent cations, which makes them metastable and indicates that they must have formed at relatively low temperatures. It is suggested that they formed by precipitation of Cr(3+) and Fe(3+) from olivine at low temperature or during rapid cooling.
Tropical behavior of mesospheric ozone as observed by SMM
NASA Technical Reports Server (NTRS)
Aikin, A. C.; Kendig, D. J.
1992-01-01
The seasonal behavior of low latitude mesospheric ozone, as observed by the SMM satellite solar occultation experiment, is detailed for the 1985-1989 period. Annual as well as semi-annual waves are observed in the 50-70 km altitude region. In the latitude range of +/- 30 deg the ozone phase and amplitude are functions of temperature and seasonal changes in solar flux. Temperature is the controlling factor for the equatorial region and seasonal changes in solar flux become more dominant at latitudes outside the equatorial zone (greater than +/- 15 deg). There is a hemispheric asymmetry in the ozone annual wave in the 20-30 deg region, with Northern Hemispheric ozone having a larger amplitude than Southern Hemispheric ozone.
Temporal profile of body temperature in acute ischemic stroke: relation to infarct size and outcome.
Geurts, Marjolein; Scheijmans, Féline E V; van Seeters, Tom; Biessels, Geert J; Kappelle, L Jaap; Velthuis, Birgitta K; van der Worp, H Bart
2016-11-21
High body temperatures after ischemic stroke have been associated with larger infarct size, but the temporal profile of this relation is unknown. We assess the relation between temporal profile of body temperature and infarct size and functional outcome in patients with acute ischemic stroke. In 419 patients with acute ischemic stroke we assessed the relation between body temperature on admission and during the first 3 days with both infarct size and functional outcome. Infarct size was measured in milliliters on CT or MRI after 3 days. Poor functional outcome was defined as a modified Rankin Scale score ≥3 at 3 months. Body temperature on admission was not associated with infarct size or poor outcome in adjusted analyses. By contrast, each additional 1.0 °C in body temperature on day 1 was associated with 0.31 ml larger infarct size (95% confidence interval (CI) 0.04-0.59), on day 2 with 1.13 ml larger infarct size(95% CI, 0.83-1.43), and on day 3 with 0.80 ml larger infarct size (95% CI, 0.48-1.12), in adjusted linear regression analyses. Higher peak body temperatures on days two and three were also associated with poor outcome (adjusted relative risks per additional 1.0 °C in body temperature, 1.52 (95% CI, 1.17-1.99) and 1.47 (95% CI, 1.22-1.77), respectively). Higher peak body temperatures during the first days after ischemic stroke, rather than on admission, are associated with larger infarct size and poor functional outcome. This suggests that prevention of high temperatures may improve outcome if continued for at least 3 days.
Flow properties of the solar wind obtained from white light data and a two-fluid model
NASA Technical Reports Server (NTRS)
Habbal, Shadia Rifai; Esser, Ruth; Guhathakurta, Madhulika; Fisher, Richard
1994-01-01
The flow properties of the solar wind from 1 R(sub s) to 1 AU were obtained using a two fluid model constrained by density and scale height temperatures derived from white light observations, as well as knowledge of the electron temperature in coronal holes. The observations were obtained with the white light coronographs on SPARTAN 201-1 and at Mauna Loa (Hawaii), in a north polar coronal hole from 1.16 to 5.5 R(sub s) on 11 Apr. 1993. By specifying the density, temperature, Alfven wave velocity amplitude and heating function at the coronal base, it was found that the model parameters fit well the constraints of the empirical density profiles and temperatures. The optimal range of the input parameters was found to yield a higher proton temperature than electron temperature in the inner corona. The results indicate that no preferential heating of the protons at larger distances is needed to produce higher proton than electron temperatures at 1 AU, as observed in the high speed solar wind.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Gendy, AA; Bertino, M; Clifford, D
Attainment of magnetic order in nanoparticles at room temperature is an issue of critical importance for many different technologies. For ordinary ferromagnetic materials, a reduction in size leads to decreased magnetic anisotropy and results in superparamagnetic relaxations. If, instead, anisotropy could be enhanced at reduced particle sizes, then it would be possible to attain stable magnetic order at room temperature. Herein, we provide experimental evidence substantiating the synthesis of a cobalt iron carbide phase (CoFe2C) of nanoparticles. Structural characterization of the CoFe2C carbide phase was performed by transmission electron microscopy, electron diffraction and energy electron spectroscopy. X-ray diffraction was alsomore » performed as a complimentary analysis. Magnetic characterization of the carbide phase revealed a blocking temperature, TB, of 790K for particles with a domain size as small as 5 +/- 1 nm. The particles have magnetocrystalline anisotropy of 4.662 +/- 10 6 J/m(3), which is ten times larger than that of Co nanoparticles. Such colossal anisotropy leads to thermally stable long range magnetic order. Moreover, the thermal stability constant is much larger than that of the commonly used FePt nanoparticles. With thermal stability and colossal anisotropy, the CoFe2C nanoparticles have huge potential for enhanced magnetic data storage devices. (C) 2015 AIP Publishing LLC.« less
Heat capacities and thermal conductivities of AmO 2 and AmO 1.5
NASA Astrophysics Data System (ADS)
Nishi, Tsuyoshi; Itoh, Akinori; Ichise, Kenichi; Arai, Yasuo
2011-07-01
The thermal diffusivity of AmO 2 was measured from 473 to 773 K and that of AmO 1.5 between 473 and 1373 K using a laser flash method. The enthalpy increment of AmO 2 was measured from 335 to 1081 K and that of AmO 1.5 between 335 and 1086 K using drop calorimetry. The heat capacities of AmO 2 and AmO 1.5 were derived from the enthalpy increment measurements. The thermal conductivity was determined from the measured thermal diffusivity, heat capacity and bulk density. The heat capacities of AmO 2 was found larger than that of AmO 1.5. The thermal conductivities of AmO 2 and AmO 1.5 were found to decrease with increasing temperature in the investigated temperature range. The thermal conductivity of AmO 1.5 with A -type hexagonal structure was smaller than that of AmO 2 with C-type fluorite structure but larger than that of sub-stoichiometric AmO 1.73.
Effect of soil texture on the microwave emission from soils
NASA Technical Reports Server (NTRS)
Schmugge, T. J.
1980-01-01
The intensity brightness temperature of the microwave emission from the soil is determined primarily by its dielectric properties. The large difference between the dielectric constant of water and that of dry soil produces a strong dependence of the soil's dielectric constant on its moisture content. This dependence is effected by the texture of the soil because the water molecules close to the particle surface are tightly bound and do not contribute significantly to the dielectric properties. Since this surface area is a function of the particle size distribution (soil texture), being larger for clay soils with small particles, and smaller for sandy soils with larger particles; the dielectric properties will depend on soil texture. Laboratory measurements of the dielectric constant for soils are summarized. The dependence of the microwave emission on texture is demonstrated by measurements of brightness temperature from an aircraft platform for a wide range of soil textures. It is concluded that the effect of soil texture differences on the observed values can be normalized by expressing the soil moisture values as a percent field capacity for the soil.
Influence of smooth temperature variation on hotspot ignition
NASA Astrophysics Data System (ADS)
Reinbacher, Fynn; Regele, Jonathan David
2018-01-01
Autoignition in thermally stratified reactive mixtures originates in localised hotspots. The ignition behaviour is often characterised using linear temperature gradients and more recently constant temperature plateaus combined with temperature gradients. Acoustic timescale characterisation of plateau regions has been successfully used to characterise the type of mechanical disturbance that will be created from a plateau core ignition. This work combines linear temperature gradients with superelliptic cores in order to more accurately account for a local temperature maximum of finite size and the smooth temperature variation contained inside realistic hotspot centres. A one-step Arrhenius reaction is used to model a H2-air reactive mixture. Using the superelliptic approach a range of behaviours for temperature distributions are investigated by varying the temperature profile between the gradient only and plateau and gradient bounding cases. Each superelliptic case is compared to a respective plateau and gradient case where simple acoustic timescale characterisation may be performed. It is shown that hot spots equivalent with excitation-to-acoustic timescale ratios sufficiently greater than unity exhibit behaviour very similar to a simple plateau-gradient model. However, for larger hot spots with timescale ratios sufficiently less than unity the reaction behaviour is highly dependent on the smooth temperature profile contained within the core region.
An allowable cladding peak temperature for spent nuclear fuels in interim dry storage
NASA Astrophysics Data System (ADS)
Cha, Hyun-Jin; Jang, Ki-Nam; Kim, Kyu-Tae
2018-01-01
Allowable cladding peak temperatures for spent fuel cladding integrity in interim dry storage were investigated, considering hydride reorientation and mechanical property degradation behaviors of unirradiated and neutron irradiated Zr-Nb cladding tubes. Cladding tube specimens were heated up to various temperatures and then cooled down under tensile hoop stresses. Cool-down specimens indicate that higher heat-up temperature and larger tensile hoop stress generated larger radial hydride precipitation and smaller tensile strength and plastic hoop strain. Unirradiated specimens generated relatively larger radial hydride precipitation and plastic strain than did neutron irradiated specimens. Assuming a minimum plastic strain requirement of 5% for cladding integrity maintenance in interim dry storage, it is proposed that a cladding peak temperature during the interim dry storage is to keep below 250 °C if cladding tubes are cooled down to room temperature.
NASA Astrophysics Data System (ADS)
Booth, B. B. B.; Bernie, D.; McNeall, D.; Hawkins, E.; Caesar, J.; Boulton, C.; Friedlingstein, P.; Sexton, D.
2012-09-01
We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission driven rather than concentration driven perturbed parameter ensemble of a Global Climate Model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration driven simulations (with 10-90 percentile ranges of 1.7 K for the aggressive mitigation scenario up to 3.9 K for the high end business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 degrees (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission driven experiments, they do not change existing expectations (based on previous concentration driven experiments) on the timescale that different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration pathways used to drive GCM ensembles lies towards the lower end of our simulated distribution. This design decision (a legecy of previous assessments) is likely to lead concentration driven experiments to under-sample strong feedback responses in concentration driven projections. Our ensemble of emission driven simulations span the global temperature response of other multi-model frameworks except at the low end, where combinations of low climate sensitivity and low carbon cycle feedbacks lead to responses outside our ensemble range. The ensemble simulates a number of high end responses which lie above the CMIP5 carbon cycle range. These high end simulations can be linked to sampling a number of stronger carbon cycle feedbacks and to sampling climate sensitivities above 4.5 K. This latter aspect highlights the priority in identifying real world climate sensitivity constraints which, if achieved, would lead to reductions on the uppper bound of projected global mean temperature change. The ensembles of simulations presented here provides a framework to explore relationships between present day observables and future changes while the large spread of future projected changes, highlights the ongoing need for such work.
Contributions of different degrees of freedom to thermal transport in the C60 molecular crystal
NASA Astrophysics Data System (ADS)
Kumar, Sushant; Shao, Cheng; Lu, Simon; McGaughey, Alan J. H.
2018-03-01
Three models of the C60 molecular crystal are studied using molecular dynamics simulations to resolve the roles played by intermolecular and intramolecular degrees of freedom (DOF) in its structural, mechanical, and thermal properties at temperatures between 35 and 400 K. In the full DOF model, all DOF are active. In the rigid body model, the intramolecular DOF are frozen, such that only center of mass (COM) translations and molecular rotations/librations are active. In the point mass model, the molecule is replaced by a point mass, such that only COM translations are active. The zero-pressure lattice constants and bulk moduli predicted from the three models fall within ranges of 0.15 and 20%. The thermal conductivity of the point mass model is the largest across the temperature range, showing a crystal-like temperature dependence (i.e., it decreases with increasing temperature) due to the presence of phonon modes associated with the COM translations. The rigid body model thermal conductivity is the smallest and follows two distinct regimes. It is crystal-like at low temperatures and becomes temperature invariant at high temperatures. The latter is typical of the behavior of an amorphous material. By calculating the rotational diffusion coefficient, the transition between the two regimes is found to occur at the temperature where the molecules begin to rotate freely. Above this temperature, phonons related to COM translations are scattered by the rotational DOF. The full DOF model thermal conductivity is larger than that of the rigid body model, indicating that intramolecular DOF contribute to thermal transport.
Long-range interacting systems in the unconstrained ensemble.
Latella, Ivan; Pérez-Madrid, Agustín; Campa, Alessandro; Casetti, Lapo; Ruffo, Stefano
2017-01-01
Completely open systems can exchange heat, work, and matter with the environment. While energy, volume, and number of particles fluctuate under completely open conditions, the equilibrium states of the system, if they exist, can be specified using the temperature, pressure, and chemical potential as control parameters. The unconstrained ensemble is the statistical ensemble describing completely open systems and the replica energy is the appropriate free energy for these control parameters from which the thermodynamics must be derived. It turns out that macroscopic systems with short-range interactions cannot attain equilibrium configurations in the unconstrained ensemble, since temperature, pressure, and chemical potential cannot be taken as a set of independent variables in this case. In contrast, we show that systems with long-range interactions can reach states of thermodynamic equilibrium in the unconstrained ensemble. To illustrate this fact, we consider a modification of the Thirring model and compare the unconstrained ensemble with the canonical and grand-canonical ones: The more the ensemble is constrained by fixing the volume or number of particles, the larger the space of parameters defining the equilibrium configurations.
Fristoe, Trevor S.; Burger, Joseph R.; Balk, Meghan A.; Khaliq, Imran; Hof, Christian; Brown, James H.
2015-01-01
The extent to which different kinds of organisms have adapted to environmental temperature regimes is central to understanding how they respond to climate change. The Scholander–Irving (S-I) model of heat transfer lays the foundation for explaining how endothermic birds and mammals maintain their high, relatively constant body temperatures in the face of wide variation in environmental temperature. The S-I model shows how body temperature is regulated by balancing the rates of heat production and heat loss. Both rates scale with body size, suggesting that larger animals should be better adapted to cold environments than smaller animals, and vice versa. However, the global distributions of ∼9,000 species of terrestrial birds and mammals show that the entire range of body sizes occurs in nearly all climatic regimes. Using physiological and environmental temperature data for 211 bird and 178 mammal species, we test for mass-independent adaptive changes in two key parameters of the S-I model: basal metabolic rate (BMR) and thermal conductance. We derive an axis of thermal adaptation that is independent of body size, extends the S-I model, and highlights interactions among physiological and morphological traits that allow endotherms to persist in a wide range of temperatures. Our macrophysiological and macroecological analyses support our predictions that shifts in BMR and thermal conductance confer important adaptations to environmental temperature in both birds and mammals. PMID:26668359
Dynamic spectral shifts of molecular anions in organic glasses. [Pulse radiolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huddleston, R.K.; Miller, J.R.
1982-06-24
Time-dependent spectra of the radical anions of pyromellitic dianhydride and p-dinitrobenzene have been observed after formation by pulse radiolysis in frozen 2-methyltetrahydrofuran and triacetin glasses. At temperatures near the glass transition, the spectra shift toward the blue over the entire observed time range 100 ns to 100 s), while at temperatures well below the glass transition, the spectral shifts can be stopped or greatly slowed. The magnitudes of the shifts are not large (typically approx. = to 10 nm), but because they are larger than the vibrational line widths, dramatic kinetics may be observed: the absorbance grows or decays bymore » more than a factor of five at some wavelengths. The observations are consistent with a solvent molecule reorientation mechanism for spectral shifts of molecular ions in low-temperature organic glasses. 6 figures.« less
Preliminary infrared radiometry of the night side of mercury from mariner 10.
Chase, S C; Miner, E D; Morrison, D; Münch, G; Neugebauer, G; Schroeder, M
1974-07-12
The infrared radiometer on Mariner 10 measured the thermal emission from the planet with a spatial resolution element as small as 40 kilometers in a broad wavelength band centered at 45 micrometers. The minimum brightness temperature (near local midnight) in these near-equatorial scans was 100 degrees K. Along the track observed, the temperature declined steadily from local sunset to near midnight, behaving as would be expected for a homogeneous, porous material with a thermal inertia of 0.0017 cal cm(-2) sec(-(1/2)) degrees K(-1), a value only slightly larger than that of the moon. From near midnight to dawn, however, the temperature fluctuated over a range of about 10 degrees K, implying the presence of regions having thermal inertia as high as 0.003 cal cm(-2) sec-(1/2) degrees K(-1).
Short-range optical air data measurements for aircraft control using rotational Raman backscatter.
Fraczek, Michael; Behrendt, Andreas; Schmitt, Nikolaus
2013-07-15
A first laboratory prototype of a novel concept for a short-range optical air data system for aircraft control and safety was built. The measurement methodology was introduced in [Appl. Opt. 51, 148 (2012)] and is based on techniques known from lidar detecting elastic and Raman backscatter from air. A wide range of flight-critical parameters, such as air temperature, molecular number density and pressure can be measured as well as data on atmospheric particles and humidity can be collected. In this paper, the experimental measurement performance achieved with the first laboratory prototype using 532 nm laser radiation of a pulse energy of 118 mJ is presented. Systematic measurement errors and statistical measurement uncertainties are quantified separately. The typical systematic temperature, density and pressure measurement errors obtained from the mean of 1000 averaged signal pulses are small amounting to < 0.22 K, < 0.36% and < 0.31%, respectively, for measurements at air pressures varying from 200 hPa to 950 hPa but constant air temperature of 298.95 K. The systematic measurement errors at air temperatures varying from 238 K to 308 K but constant air pressure of 946 hPa are even smaller and < 0.05 K, < 0.07% and < 0.06%, respectively. A focus is put on the system performance at different virtual flight altitudes as a function of the laser pulse energy. The virtual flight altitudes are precisely generated with a custom-made atmospheric simulation chamber system. In this context, minimum laser pulse energies and pulse numbers are experimentally determined, which are required using the measurement system, in order to meet measurement error demands for temperature and pressure specified in aviation standards. The aviation error margins limit the allowable temperature errors to 1.5 K for all measurement altitudes and the pressure errors to 0.1% for 0 m and 0.5% for 13000 m. With regard to 100-pulse-averaged temperature measurements, the pulse energy using 532 nm laser radiation has to be larger than 11 mJ (35 mJ), regarding 1-σ (3-σ) uncertainties at all measurement altitudes. For 100-pulse-averaged pressure measurements, the laser pulse energy has to be larger than 95 mJ (355 mJ), respectively. Based on these experimental results, the laser pulse energy requirements are extrapolated to the ultraviolet wavelength region as well, resulting in significantly lower pulse energy demand of 1.5 - 3 mJ (4-10 mJ) and 12-27 mJ (45-110 mJ) for 1-σ (3-σ) 100-pulse-averaged temperature and pressure measurements, respectively.
Cellular convection in a chamber with a warm surface raft
NASA Astrophysics Data System (ADS)
Whitehead, J. A.; Shea, Erin; Behn, Mark D.
2011-10-01
We calculate velocity and temperature fields for Rayleigh-Benard convection in a chamber with a warm raft that floats along the top surface for Rayleigh number up to Ra = 20 000. Two-dimensional, infinite Prandtl number, Boussinesq approximation equations are numerically advanced in time from a motionless state in a chamber of length L' and depth D'. We consider cases with an insulated raft and a raft of fixed temperature. Either oscillatory or stationary flow exists. In the case with an insulated raft over a fluid, there are only three parameters that govern the system: Rayleigh number (Ra), scaled chamber length (L = L'/D'), and scaled raft width (W). For W = 0 and L = 1, linear theory shows that the marginal state without a raft is at a Rayleigh number of 23π4=779.3, but we find that for the smallest W (determined by numerical grid size) the raft approaches the center monotonically in time for Ra<790. For 790
Er-doped sesquioxides for 1.5-micron lasers - spectroscopic comparisons
NASA Astrophysics Data System (ADS)
Merkle, Larry D.; Ter-Gabrielyan, Nikolay
2013-05-01
Due to the favorable thermal properties of sesquioxides as hosts for rare earth laser ions, we have recently studied the spectroscopy of Er:Lu2O3 in the 1400-1700 nm wavelength range, and here report its comparison with our earlier results on Er:Y2O3 and Er:Sc2O3. These studies include absorption and fluorescence spectra, fluorescence lifetimes, and inference of absorption and stimulated emission cross sections, all as a function of temperature. At room temperature, optical absorption limits practical laser operation to wavelengths longer than about 1620 nm. In that spectral range, the strongest stimulated emission peak is that at 1665 nm in Er:Sc2O3, with an effective cross section considerably larger than those of Er:Y2O3 and Er:Lu2O3. At 77K, the absorption is weak enough for efficient laser operation at considerably shorter wavelengths, where there are peaks with much larger stimulated emission cross sections. The three hosts all have peaks near 1575-1580 nm with comparably strong cross sections. As we have reported earlier, it is possible to lase even shorter wavelengths efficiently at this temperature, in particular the line at 1558 nm in Er:Sc2O3. Our new spectroscopic studies of Er:Lu2O3 indicate that its corresponding peak, like that of Er:Sc2O3, has a less favorable ratio of stimulated emission to absorption cross sections. Reasons for the differences will be discussed. We conclude that for most operating scenarios, Er:Sc2O3 is the most promising of the Er-doped sesquioxides studied for laser operation around 1.5-1.6 microns.
Entropy in Spacetime and Topological Hair
NASA Astrophysics Data System (ADS)
Hyun, Young-Hwan; Kim, Yoonbai
2018-01-01
Global topological soliton of the hedgehog ansatz is added to de Sitter spacetime in arbitrary dimensions larger than three, and then thermodynamic law is checked at the cosmological horizon. All geometric and thermodynamic quantities are varied in the presence of a long-range interacting matter distribution with negative pressure, however the entropy-area relation is satisfied in the exact form. Its geometry involves deficit solid angle but maintains a single horizon which allows unique temperature normalization, different from the case of Schwarzschild-de Sitter spacetime.
Temperature dependence of the HNO3 UV absorption cross sections
NASA Technical Reports Server (NTRS)
Burkholder, James B.; Talukdar, Ranajit K.; Ravishankara, A. R.; Solomon, Susan
1993-01-01
The temperature dependence of the HNO3 absorption cross sections between 240 and 360 K over the wavelength range 195 to 350 nm has been measured using a diode array spectrometer. Absorption cross sections were determined using both (1) absolute pressure measurements at 298 K and (2) a dual absorption cell arrangement in which the absorption spectrum at various temperatures is measured relative to the room temperature absorption spectrum. The HNO3 absorption spectrum showed a temperature dependence which is weak at short wavelengths but stronger at longer wavelengths which are important for photolysis in the lower stratosphere. The 298 K absorption cross sections were found to be larger than the values currently recommended for atmospheric modeling (DeMore et al., 1992). Our absorption cross section data are critically compared with the previous measurements of both room temperature and temperature-dependent absorption cross sections. Temperature-dependent absorption cross sections of HNO3 are recommended for use in atmospheric modeling. These temperature dependent HNO3 absorption cross sections were used in a two-dimensional dynamical-photochemical model to demonstrate the effects of the revised absorption cross sections on loss rate of HNO3 and the abundance of NO2 in the stratosphere.
NASA Astrophysics Data System (ADS)
Chen, Y. Q.; Xu, X. B.; Lei, Z. F.; Y Liao, X.; Wang, X.; Zeng, C.; En, Y. F.; Huang, Y.
2015-01-01
A metal-ferroelectric (SrBi2Ta2O9)-insulator (HfTaO)-semiconductor capacitor was fabricated, and the temperature dependence of its electrical properties was investigated. Within the temperature range of 300-220 K, the maximum memory window is up to 1.26 V, and it could be attributed to a higher coercive field of the ferroelectric film at a lower temperature, which is induced by the deeper and more box-shaped potential well based on the defect-domain interaction model. The memory window decreases with increasing temperature from 300 to 400 K, and the larger sweep voltage leads to a smaller memory window at a higher temperature, which could be attributed to temperature-dependent polarization of the ferroelectric film and charge injection from an Si substrate of the capacitor. With the temperature increasing from 220 to 400 K, the leakage current density increases with temperature by about one order, and the corresponding conduction mechanism is discussed. The results could provide useful guidelines for design and application of ferroelectric memory.
NASA Astrophysics Data System (ADS)
Aung, T. T.; Fujii, T.; Amo, M.; Suzuki, K.
2017-12-01
Understanding potential of methane flux from the Pleistocene fore-arc basin filled turbiditic sedimentary formation along the eastern Nankai Trough is important in the quantitative assessment of gas hydrate resources. We considered generated methane could exist in sedimentary basin in the forms of three major components, and those are methane in methane hydrate, free gas and methane dissolved in water. Generation of biomethane strongly depends on microbe activity and microbes in turn survive in diverse range of temperature, salinity and pH. This study aims to understand effect of reaction temperature and total organic carbon on generation of biomethane and its components. Biomarker analysis and cultural experiment results of the core samples from the eastern Nankai Trough reveal that methane generation rate gets peak at various temperature ranging12.5°to 35°. Simulation study of biomethane generation was made using commercial basin scale simulator, PetroMod, with different reaction temperature and total organic carbon to predict how these effect on generation of biomethane. Reaction model is set by Gaussian distribution with constant hydrogen index and standard deviation of 1. Series of simulation cases with peak reaction temperature ranging 12.5°to 35° and total organic carbon of 0.6% to 3% were conducted and analyzed. Simulation results show that linear decrease in generation potential while increasing reaction temperature. But decreasing amount becomes larger in the model with higher total organic carbon. At higher reaction temperatures, >30°, extremely low generation potential was found. This is due to the fact that the source formation modeled is less than 1 km in thickness and most of formation do not reach temperature more than 30°. In terms of the components, methane in methane hydrate and free methane increase with increasing TOC. Drastic increase in free methane was observed in the model with 3% of TOC. Methane amount dissolved in water shows almost same for all models.
Volpe, V; Brunetti, B; Gigli, G; Lapi, A; Vecchio Ciprioti, S; Ciccioli, A
2017-11-16
The evaporation/decomposition behavior of the imidazolium ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMImPF 6 ) was investigated in the overall temperature range 425-551 K by means of the molecular-effusion-based techniques Knudsen effusion mass loss (KEML) and Knudsen effusion mass spectrometry (KEMS), using effusion orifices of different size (from 0.2 to 3 mm in diameter). Specific effusion fluxes measured by KEML were found to depend markedly on the orifice size, suggesting the occurrence of a kinetically delayed evaporation/decomposition process. KEMS experiments revealed that other species are present in the vapor phase besides the intact ion pair BMImPF 6 (g) produced by the simple evaporation BMImPF 6 (l) = BMImPF 6 (g), with relative abundances depending on the orifice size-the larger the orifice, the larger the contribution of the BMImPF 6 (g) species. By combining KEML and KEMS results, the conclusion is drawn that in the investigated temperature range, when small effusion orifices are used, a significant part of the mass loss/volatility of BMImPF 6 is due to molecular products formed by decomposition/dissociation processes rather than to evaporated intact ion pairs. Additional experiments performed by nonisothermal thermogravimetry-differential thermal analysis (TG-DTA) further support the evidence of simultaneous evaporation/decomposition, although the conventional decomposition temperature derived from TG curves is much higher than the temperatures covered in effusion experiments. Partial pressures of the BMImPF 6 (g) species were derived from KEMS spectra and analyzed by second- and third-law methods giving a value of Δ evap H 298K ° = 145.3 ± 2.9 kJ·mol -1 for the standard evaporation enthalpy of BMImPF 6 . A comparison is done with the behavior of the 1-butyl-3-methylimidazolium bis(trifluoromethyl)sulfonylimide (BMImNTf 2 ) ionic liquid.
Submesoscale-selective compensation of fronts in a salinity-stratified ocean
Spiro Jaeger, Gualtiero; Mahadevan, Amala
2018-01-01
Salinity, rather than temperature, is the leading influence on density in some regions of the world’s upper oceans. In the Bay of Bengal, heavy monsoonal rains and runoff generate strong salinity gradients that define density fronts and stratification in the upper ~50 m. Ship-based observations made in winter reveal that fronts exist over a wide range of length scales, but at O(1)-km scales, horizontal salinity gradients are compensated by temperature to alleviate about half the cross-front density gradient. Using a process study ocean model, we show that scale-selective compensation occurs because of surface cooling. Submesoscale instabilities cause density fronts to slump, enhancing stratification along-front. Specifically for salinity fronts, the surface mixed layer (SML) shoals on the less saline side, correlating sea surface salinity (SSS) with SML depth at O(1)-km scales. When losing heat to the atmosphere, the shallower and less saline SML experiences a larger drop in temperature compared to the adjacent deeper SML on the salty side of the front, thus correlating sea surface temperature (SST) with SSS at the submesoscale. This compensation of submesoscale fronts can diminish their strength and thwart the forward cascade of energy to smaller scales. During winter, salinity fronts that are dynamically submesoscale experience larger temperature drops, appearing in satellite-derived SST as cold filaments. In freshwater-influenced regions, cold filaments can mark surface-trapped layers insulated from deeper nutrient-rich waters, unlike in other regions, where they indicate upwelling of nutrient-rich water and enhanced surface biological productivity. PMID:29507874
The mass and speed dependence of meteor air plasma temperatures
NASA Technical Reports Server (NTRS)
Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.
2004-01-01
The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.
Frustrated magnetism and caloric effects in Mn-based antiperovskite nitrides: Ab initio theory
NASA Astrophysics Data System (ADS)
Zemen, J.; Mendive-Tapia, E.; Gercsi, Z.; Banerjee, R.; Staunton, J. B.; Sandeman, K. G.
2017-05-01
We model changes of magnetic ordering in Mn-based antiperovskite nitrides driven by biaxial lattice strain at zero and at finite temperature. We employ a noncollinear spin-polarized density functional theory to compare the response of the geometrically frustrated exchange interactions to a tetragonal symmetry breaking (the so called piezomagnetic effect) across a range of Mn3AN (A = Rh, Pd, Ag, Co, Ni, Zn, Ga, In, Sn) at zero temperature. Building on the robustness of the effect we focus on Mn3GaN and extend our study to finite temperature using the disordered local moment (DLM) first-principles electronic structure theory to model the interplay between the ordering of Mn magnetic moments and itinerant electron states. We discover a rich temperature-strain magnetic phase diagram with two previously unreported phases stabilized by strains larger than 0.75% and with transition temperatures strongly dependent on strain. We propose an elastocaloric cooling cycle crossing two of the available phase transitions to achieve simultaneously a large isothermal entropy change (due to the first-order transition) and a large adiabatic temperature change (due to the second-order transition).
The mass and speed dependence of meteor air plasma temperatures.
Jenniskens, Peter; Laux, Christophe O; Wilson, Michael A; Schaller, Emily L
2004-01-01
The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.
Experimental study on thermal storage performance of binary mixtures of fatty acids
NASA Astrophysics Data System (ADS)
Yan, Quanying; Zhang, Jing; Liu, Chao; Liu, Sha; Sun, Xiangyu
2018-02-01
We selected five kinds of fatty acids including the capric acid, stearic acid, lauric acid, palmitic acid and myristic acid and mixed them to prepare10 kinds of binary mixtures of fatty acids according to the predetermined proportion,tested the phase change temperature and latent heat of mixtures by differential scanning calorimetry(DSC). In order to find the fatty acid mixture which has suitable phase change temperature, the larger phase change latent heat and can be used for phase change wall. The results showed that the phase change temperature and latent heats of the binary mixtures of fatty acids decreased compared with the single component;The phase change temperature of the binary mixtures of fatty acids containing capric acid were lower, the range was roughly 20∼30°C,and latent heat is large,which are ideal phase change materials for phase change wall energy storage;The phase change temperature of the binary mixtures consisting of other fatty acids were still high,didn’t meet the temperature requirements of the wall energy storage.
A local sensor for joint temperature and velocity measurements in turbulent flows
NASA Astrophysics Data System (ADS)
Salort, Julien; Rusaouën, Éléonore; Robert, Laurent; du Puits, Ronald; Loesch, Alice; Pirotte, Olivier; Roche, Philippe-E.; Castaing, Bernard; Chillà, Francesca
2018-01-01
We present the principle for a micro-sensor aimed at measuring local correlations of turbulent velocity and temperature. The operating principle is versatile and can be adapted for various types of flow. It is based on a micro-machined cantilever, on the tip of which a platinum resistor is patterned. The deflection of the cantilever yields an estimate for the local velocity, and the impedance of the platinum yields an estimate for the local temperature. The velocity measurement is tested in two turbulent jets: one with air at room temperature which allows us to compare with well-known calibrated reference anemometers, and another one in the GReC jet at CERN with cryogenic gaseous helium which allows a much larger range of resolved turbulent scales. The recording of temperature fluctuations is tested in the Barrel of Ilmenau which provides a controlled turbulent thermal flow in air. Measurements in the wake of a heated or cooled cylinder demonstrate the capability of the sensor to display the cross correlation between temperature and velocity correctly.
Hetem, Robyn S; Mitchell, Duncan; de Witt, Brenda A; Fick, Linda G; Maloney, Shane K; Meyer, Leith C R; Fuller, Andrea
2018-05-31
As one of the few felids that is predominantly diurnal, cheetahs (Acinonyx jubatus Von Schreber, 1775) can be exposed to high heat loads in their natural habitat. Little is known about long-term patterns of body temperature and activity (including hunting) in cheetahs because long-term concurrent measurements of body temperature and activity never have been reported for cheetahs, or indeed for any free-living felid. We report here body temperature and locomotor activity measured with implanted data loggers over seven months in five free-living cheetahs in Namibia. Air temperature ranged from a maximum of 39ºC in summer to -2ºC in winter. Cheetahs had higher (∼0.4 ºC) maximum 24h body temperatures, later acrophase (∼1 h), with larger fluctuations in the range of the 24h body temperature rhythm (∼0.4 ºC) during a hot-dry period than during a cool-dry period, but maintained homeothermy irrespective of the climatic conditions. As ambient temperatures increased, the cheetahs shifted from a diurnal to a crepuscular activity pattern, with reduced activity between 9:00 and 15:00 and increased nocturnal activity. The timing of hunts followed the general pattern of activity; the cheetahs hunted when they were on the move. Cheetahs hunted if an opportunity presented itself, on occasion they hunted in the midday heat or in total darkness (new moon). Biologging revealed insights into cheetah biology that are not accessible by traditional observer-based techniques. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Rebaudo, François; Faye, Emile; Dangles, Olivier
2016-01-01
A large body of literature has recently recognized the role of microclimates in controlling the physiology and ecology of species, yet the relevance of fine-scale climatic data for modeling species performance and distribution remains a matter of debate. Using a 6-year monitoring of three potato moth species, major crop pests in the tropical Andes, we asked whether the spatiotemporal resolution of temperature data affect the predictions of models of moth performance and distribution. For this, we used three different climatic data sets: (i) the WorldClim dataset (global dataset), (ii) air temperature recorded using data loggers (weather station dataset), and (iii) air crop canopy temperature (microclimate dataset). We developed a statistical procedure to calibrate all datasets to monthly and yearly variation in temperatures, while keeping both spatial and temporal variances (air monthly temperature at 1 km² for the WorldClim dataset, air hourly temperature for the weather station, and air minute temperature over 250 m radius disks for the microclimate dataset). Then, we computed pest performances based on these three datasets. Results for temperature ranging from 9 to 11°C revealed discrepancies in the simulation outputs in both survival and development rates depending on the spatiotemporal resolution of the temperature dataset. Temperature and simulated pest performances were then combined into multiple linear regression models to compare predicted vs. field data. We used an additional set of study sites to test the ability of the results of our model to be extrapolated over larger scales. Results showed that the model implemented with microclimatic data best predicted observed pest abundances for our study sites, but was less accurate than the global dataset model when performed at larger scales. Our simulations therefore stress the importance to consider different temperature datasets depending on the issue to be solved in order to accurately predict species abundances. In conclusion, keeping in mind that the mismatch between the size of organisms and the scale at which climate data are collected and modeled remains a key issue, temperature dataset selection should be balanced by the desired output spatiotemporal scale for better predicting pest dynamics and developing efficient pest management strategies.
Rebaudo, François; Faye, Emile; Dangles, Olivier
2016-01-01
A large body of literature has recently recognized the role of microclimates in controlling the physiology and ecology of species, yet the relevance of fine-scale climatic data for modeling species performance and distribution remains a matter of debate. Using a 6-year monitoring of three potato moth species, major crop pests in the tropical Andes, we asked whether the spatiotemporal resolution of temperature data affect the predictions of models of moth performance and distribution. For this, we used three different climatic data sets: (i) the WorldClim dataset (global dataset), (ii) air temperature recorded using data loggers (weather station dataset), and (iii) air crop canopy temperature (microclimate dataset). We developed a statistical procedure to calibrate all datasets to monthly and yearly variation in temperatures, while keeping both spatial and temporal variances (air monthly temperature at 1 km² for the WorldClim dataset, air hourly temperature for the weather station, and air minute temperature over 250 m radius disks for the microclimate dataset). Then, we computed pest performances based on these three datasets. Results for temperature ranging from 9 to 11°C revealed discrepancies in the simulation outputs in both survival and development rates depending on the spatiotemporal resolution of the temperature dataset. Temperature and simulated pest performances were then combined into multiple linear regression models to compare predicted vs. field data. We used an additional set of study sites to test the ability of the results of our model to be extrapolated over larger scales. Results showed that the model implemented with microclimatic data best predicted observed pest abundances for our study sites, but was less accurate than the global dataset model when performed at larger scales. Our simulations therefore stress the importance to consider different temperature datasets depending on the issue to be solved in order to accurately predict species abundances. In conclusion, keeping in mind that the mismatch between the size of organisms and the scale at which climate data are collected and modeled remains a key issue, temperature dataset selection should be balanced by the desired output spatiotemporal scale for better predicting pest dynamics and developing efficient pest management strategies. PMID:27148077
Predator size divergence depends on community context.
Okuzaki, Yutaka; Sota, Teiji
2018-05-09
Body size is a multi-functional trait related to various fitness components, but the relative importance of different selection pressures is seldom resolved. In Carabus japonicus beetles, of which the larvae exclusively prey on earthworms, adult body size is related to the presence/absence of a larger congener and habitat temperature. In sympatry, C. japonicus consistently exhibits smaller body size which is effective for avoiding interspecific mating, but in allopatry, it shows size variation unrelated to temperature. Here, we show that this predator-size variation is attributed to prey-size variation, associated with high phylogenetic diversity in earthworm communities. In allopatry, the predator size was larger where larger prey occurred. Larger adult size may have been selected because larger females produce larger larvae, which can subdue larger prey. Thus, in the absence of a larger congener, variation in prey body size had a pronounced effect on geographic body size divergence in C. japonicus. © 2018 John Wiley & Sons Ltd/CNRS.
Development and evaluation of a bioenergetics model for bull trout
Mesa, Matthew G.; Welland, Lisa K.; Christiansen, Helena E.; Sauter, Sally T.; Beauchamp, David A.
2013-01-01
We conducted laboratory experiments to parameterize a bioenergetics model for wild Bull Trout Salvelinus confluentus, estimating the effects of body mass (12–1,117 g) and temperature (3–20°C) on maximum consumption (C max) and standard metabolic rates. The temperature associated with the highest C max was 16°C, and C max showed the characteristic dome-shaped temperature-dependent response. Mass-dependent values of C max (N = 28) at 16°C ranged from 0.03 to 0.13 g·g−1·d−1. The standard metabolic rates of fish (N = 110) ranged from 0.0005 to 0.003 g·O2·g−1·d−1 and increased with increasing temperature but declined with increasing body mass. In two separate evaluation experiments, which were conducted at only one ration level (40% of estimated C max), the model predicted final weights that were, on average, within 1.2 ± 2.5% (mean ± SD) of observed values for fish ranging from 119 to 573 g and within 3.5 ± 4.9% of values for 31–65 g fish. Model-predicted consumption was within 5.5 ± 10.9% of observed values for larger fish and within 12.4 ± 16.0% for smaller fish. Our model should be useful to those dealing with issues currently faced by Bull Trout, such as climate change or alterations in prey availability.
NASA Astrophysics Data System (ADS)
Arif, Mohd.; Sanger, Amit; Vilarinho, Paula M.; Singh, Arun
2018-04-01
Nanocrystalline ZnO thin films were deposited on glass substrate via sol-gel dip-coating technique then annealed at 300°C, 400°C, and 500°C for 1 h. Their optical, structural, and morphological properties were studied using ultraviolet-visible (UV-Vis) spectrophotometry, x-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). XRD diffraction revealed that the crystalline nature of the thin films increased with increasing annealing temperature. The c-axis orientation improved, and the grain size increased, as indicated by increased intensity of the (002) plane peak at 2θ = 34.42° corresponding to hexagonal ZnO crystal. The average crystallite size of the thin films ranged from 13 nm to 23 nm. Increasing the annealing temperature resulted in larger crystallite size and higher crystallinity with increased surface roughness. The grain size according to SEM analysis was in good agreement with the x-ray diffraction data. The optical bandgap of the thin films narrowed with increasing annealing temperature, lying in the range of 3.14 eV to 3.02 eV. The transmission of the thin films was as high as 94% within the visible region. The thickness of the thin films was 400 nm, as measured by ellipsometry, after annealing at the different temperatures of 300°C, 400°C, and 500°C.
NASA Astrophysics Data System (ADS)
Baribeau, J.-M.; Lockwood, D. J.; Syme, R. W. G.
1996-08-01
We have used x-ray diffraction, specular reflectivity, and diffuse scattering, complemented by Raman spectroscopy, to study the interfaces in a series of (0.5 nm Ge/2 nm Si)50 atomic layer superlattices on (001)Si grown by molecular beam epitaxy in the temperature range 150-650 °C. X-ray specular reflectivity revealed that the structures have a well-defined periodicity with interface widths of about 0.2-0.3 nm in the 300-590 °C temperature range. Offset reflectivity scans showed that the diffuse scattering peaks at values of perpendicular wave vector transfer corresponding to the superlattice satellite peaks, indicating that the interfaces are vertically correlated. Transverse rocking scans of satellite peaks showed a diffuse component corresponding to an interface corrugation of typical length scale of ˜0.5 μm. The wavelength of the undulations is a minimum along the miscut direction and is typically 30-40 times larger than the surface average terrace width assuming monolayer steps, independently of the magnitude of the wafer misorientation. The amplitude of the undulation evolves with growth temperature and is minimum for growth at ˜460 °C and peaks at ˜520 °C. Raman scattering showed the chemical abruptness of the interfaces at low growth temperatures and indicated a change in the growth mode near 450 °C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erfani, Ehsan; Mitchell, David L.
Here, ice particle mass- and projected area-dimension ( m- D and A- D) power laws are commonly used in the treatment of ice cloud microphysical and optical properties and the remote sensing of ice cloud properties. Although there has long been evidence that a single m- D or A- D power law is often not valid over all ice particle sizes, few studies have addressed this fact. This study develops self-consistent m- D and A- D expressions that are not power laws but can easily be reduced to power laws for the ice particle size (maximum dimension or D) rangemore » of interest, and they are valid over a much larger D range than power laws. This was done by combining ground measurements of individual ice particle m and D formed at temperature T < –20 °C during a cloud seeding field campaign with 2-D stereo (2D-S) and cloud particle imager (CPI) probe measurements of D and A, and estimates of m, in synoptic and anvil ice clouds at similar temperatures. The resulting m- D and A- D expressions are functions of temperature and cloud type (synoptic vs. anvil), and are in good agreement with m- D power laws developed from recent field studies considering the same temperature range (–60 °C < T < –20 °C).« less
Analysis of multimode BDK doped POF gratings for temperature sensing
NASA Astrophysics Data System (ADS)
Luo, Yanhua; Wu, Wenxuan; Wang, Tongxin; Cheng, Xusheng; Zhang, Qijin; Peng, Gang-Ding; Zhu, Bing
2012-10-01
We report a temperature sensor based on a Bragg grating written in a benzil dimethyl ketal (BDK) doped multimode (MM) polymer optical fiber (POF) for the first time to our knowledge. The thermal response was further analyzed in view of theory and experiment. In theory, with the order of the reflected mode increasing from 1st to 60th order, for MM silica fiber Bragg grating (FBG) the temperature sensitivity will increase linearly from 16.2 pm/°C to 17.5 pm/°C, while for MM polymer FBG the temperature sensitivity (absolute value) will increase linearly from -79.5 pm/°C to -104.4 pm/°C. In addition, temperature sensitivity of MM polymer FBG exhibits almost 1 order larger mode order dependence than that of MM silica FBG. In experiment, the Bragg wavelength shift will decline linearly as the temperature rises, contrary to that of MM silica FBG. The temperature sensitivity of MM polymer FBG is ranged from -0.097 nm/°C to -0.111 nm/°C, more than 8 times that of MM silica FBG, showing great potential used as a temperature sensor.
NASA Technical Reports Server (NTRS)
Antolovich, Stephen D.; Saxena, Ashok; Cullers, Cheryl
1992-01-01
One of the ongoing challenges of the aerospace industry is to develop more efficient turbine engines. Greater efficiency entails reduced specific strength and larger temperature gradients, the latter of which means higher operating temperatures and increased thermal conductivity. Continued development of nickel-based superalloys has provided steady increases in engine efficiency and the limits of superalloys have probably not been realized. However, other material systems are under intense investigation for possible use in high temperature engines. Ceramic, intermetallic, and various composite systems are being explored in an effort to exploit the much higher melting temperatures of these systems. NiAl is considered a potential alternative to conventional superalloys due to its excellent oxidation resistance, low density, and high melting temperature. The fact that NiAl is the most common coating for current superalloy turbine blades is a tribute to its oxidation resistance. Its density is one-third that of typical superalloys and in most temperature ranges its thermal conductivity is twice that of common superalloys. Despite these many advantages, NiAl requires more investigation before it is ready to be used in engines. Binary NiAl in general has poor high-temperature strength and low-temperature ductility. On-going research in alloy design continues to make improvements in the high-temperature strength of NiAl. The factors controlling low temperature ductility have been identified in the last few years. Small, but reproducible ductility can now be achieved at room temperature through careful control of chemical purity and processing. But the mechanisms controlling the transition from brittle to ductile behavior are not fully understood. Research in the area of fatigue deformation can aid the development of the NiAl system in two ways. Fatigue properties must be documented and optimized before NiAl can be applied to engineering systems. More importantly though, probing the deformation mechanisms operating in fatigue will lead to a better understanding of NiAl's unique characteristics. Low cycle fatigue properties have been reported on binary NiAl in the past year, yet those studies were limited to two temperature ranges: room temperature and near 1000 K. Eventually, fatigue property data will be needed for a wide range of temperatures and compositions. The intermediate temperature range near the brittle-to-ductile transition was chosen for this study to ascertain whether the sharp change occurring in monotonic behavior also occurs under cyclic conditions. An effort was made to characterize the dislocation structures which evolved during fatigue testing and comment on their role in the deformation process.
NASA Astrophysics Data System (ADS)
Han, M. J.; Duan, Z. H.; Zhang, J. Z.; Zhang, S.; Li, Y. W.; Hu, Z. G.; Chu, J. H.
2013-10-01
Highly transparent CuCr1-xMgxO2 (0 ≤ x ≤ 12%) films were prepared on (001) sapphire substrates by sol-gel method. The microstructure, phonon modes, optical band gap, and electrical transport properties have been systematically discussed. It was found that Mg-doping improved the crystal quality and enhanced the (00l) preferred orientation. The spectral transmittance of films approaches about 70%-75% in the visible-near-infrared wavelength region. With increasing Mg-composition, the optical band gap first declines and climbs up due to the band gap renormalization and Burstein-Moss effect. The direct and indirect band gaps of CuCr0.94Mg0.06O2 film are 3.00 and 2.56 eV, respectively. In addition, it shows a crossover from the thermal activation behavior to that of three-dimensional variable range hopping from temperature-dependent electrical conductivity. The crossover temperature decreases with increasing Mg-doping composition, which can be ascribed to the change of spin-charge coupling between the hole and the local spin at Cr site. It should be noted that the electrical conductivity of CuCr1-xMgxO2 films becomes larger with increasing x value. The highest electrical conductivity of 3.85 S cm-1 at room temperature for x = 12% is four-order magnitude larger than that (8.81 × 10-4 S cm-1) for pure CuCrO2 film. The high spectral transmittance and larger conductivity indicate that Mg-doped CuCrO2 films are promising for optoelectronic device applications.
NASA Astrophysics Data System (ADS)
Jones, R. W.; Renfrew, I. A.; Orr, A.; Webber, B. G. M.; Holland, D. M.; Lazzara, M. A.
2016-06-01
The glaciers within the Amundsen Sea Embayment (ASE), West Antarctica, are amongst the most rapidly retreating in Antarctica. Meteorological reanalysis products are widely used to help understand and simulate the processes causing this retreat. Here we provide an evaluation against observations of four of the latest global reanalysis products within the ASE region—the European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-I), Japanese 55-year Reanalysis (JRA-55), Climate Forecast System Reanalysis (CFSR), and Modern Era Retrospective-Analysis for Research and Applications (MERRA). The observations comprise data from four automatic weather stations (AWSs), three research vessel cruises, and a new set of 38 radiosondes all within the period 2009-2014. All four reanalyses produce 2 m temperature fields that are colder than AWS observations, with the biases varying from approximately -1.8°C (ERA-I) to -6.8°C (MERRA). Over the Amundsen Sea, spatially averaged summertime biases are between -0.4°C (JRA-55) and -2.1°C (MERRA) with notably larger cold biases close to the continent (up to -6°C) in all reanalyses. All four reanalyses underestimate near-surface wind speed at high wind speeds (>15 m s-1) and exhibit dry biases and relatively large root-mean-square errors (RMSE) in specific humidity. A comparison to the radiosonde soundings shows that the cold, dry bias at the surface extends into the lower troposphere; here ERA-I and CFSR reanalyses provide the most accurate profiles. The reanalyses generally contain larger temperature and humidity biases, (and RMSE) when a temperature inversion is observed, and contain larger wind speed biases (~2 to 3 m s-1), when a low-level jet is observed.
NASA Astrophysics Data System (ADS)
Armstrong, R. W.; Balasubramanian, N.
2017-08-01
It is shown that: (i) nano-grain nickel flow stress and hardness data at ambient temperature follow a Hall-Petch (H-P) relation over a wide range of grain size; and (ii) accompanying flow stress and strain rate sensitivity measurements follow an analogous H-P relationship for the reciprocal "activation volume", (1/v*) = (1/A*b) where A* is activation area. Higher temperature flow stress measurements show a greater than expected reduction both in the H-P kɛ and in v*. The results are connected with smaller nano-grain size (< ˜20 nm) measurements exhibiting grain size weakening behavior that extends to larger grain size when tested at very low imposed strain rates.
Pressure effect on the long-range order in CeB6
NASA Astrophysics Data System (ADS)
Sera, M.; Ikeda, S.; Iwakubo, H.; Uwatoko, Y.; Hane, S.; Kosaka, M.; Kunii, S.
2006-08-01
The pressure effect of CeB6 was investigated. The pressure dependence of the Néel temperature, TN and the critical field from the antiferro-magnetic phase III to antiferro-quadrupolar phase II, HcIII-II of CeB6 exhibits the unusual pressure dependence that the suppression rate of HcIII-II is much larger than that of TN. In order to explain this unusual result, we have performed the mean field calculation for the 4-sublattice model assuming that the pressure dependence of TN, the antiferro-octupolar and quadrupolar temperatures, Toct and TQ as follows; dTN/dP<0, dToct/dP>dTQ/dP>0 and could explain the unusual pressure dependence of TN and HcIII-II.
NASA Astrophysics Data System (ADS)
Okamoto, Naoki; Kataoka, Kentaro; Saito, Takeyasu
2017-07-01
A manufacturing method for SnS using a one-step electrochemical technique was developed. The sulfide semiconductor was formed by electrodeposition using an aqueous bath at low temperatures. The sulfide semiconductor particles produced were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The highest current density at which SnS was formed was 1800 mA/cm2 at a bath temperature of 293 K, which is 36 times larger than that in a previous deposition process. Analysis of the chronoamperometric current-time transients indicated that in the potential range from -1100 to -2000 mV vs saturated calomel electrode (SCE), the electrodeposition of SnS can be explained by an instantaneous nucleation model.
Damage Accumulation in Silica Glass Nanofibers.
Bonfanti, Silvia; Ferrero, Ezequiel E; Sellerio, Alessandro L; Guerra, Roberto; Zapperi, Stefano
2018-06-06
The origin of the brittle-to-ductile transition, experimentally observed in amorphous silica nanofibers as the sample size is reduced, is still debated. Here we investigate the issue by extensive molecular dynamics simulations at low and room temperatures for a broad range of sample sizes, with open and periodic boundary conditions. Our results show that small sample-size enhanced ductility is primarily due to diffuse damage accumulation, that for larger samples leads to brittle catastrophic failure. Surface effects such as boundary fluidization contribute to ductility at room temperature by promoting necking, but are not the main driver of the transition. Our results suggest that the experimentally observed size-induced ductility of silica nanofibers is a manifestation of finite-size criticality, as expected in general for quasi-brittle disordered networks.
NASA Astrophysics Data System (ADS)
Bose, Vipin C.; Biju, V.
2015-02-01
Nanostructured Mn3O4 sample with an average crystallite size of ˜15 nm is synthesized via the reduction of potassium permanganate using hydrazine. The average particle size obtained from the Transmission Electron Microscopy analysis is in good agreement with the average crystallite size estimated from X-ray diffraction analysis. The presence of Mn4+ ions at the octahedral sites is inferred from the results of Raman, UV-visible absorption and X-ray photoelectron spectroscopy analyzes. DC electrical conductivity of the sample in the temperature range 313-423 K, is about five orders of magnitude larger than that reported for single crystalline Mn3O4 sample. The dominant conduction mechanism is identified to be of the polaronic hopping of holes between cations in the octahedral sites. The zero field cooled and field cooled magnetization of the sample is studied in the range 20-300 K. The Curie temperature for the sample is about 45 K, below which the sample is ferrimagnetic. A blocking temperature of 35 K is observed in the field cooled curve. It is observed that the sample shows hysteresis at temperatures below the Curie temperature with no saturation, even at an applied field (20 kOe). The presence of an ordered core and disordered surface of spin arrangements is observed from the magnetization studies. Above the Curie temperature, the sample shows linear dependence of magnetization on applied field with no hysteresis characteristic of paramagnetic phase.
Bioinspired large-scale aligned porous materials assembled with dual temperature gradients
Bai, Hao; Chen, Yuan; Delattre, Benjamin; Tomsia, Antoni P.; Ritchie, Robert O.
2015-01-01
Natural materials, such as bone, teeth, shells, and wood, exhibit outstanding properties despite being porous and made of weak constituents. Frequently, they represent a source of inspiration to design strong, tough, and lightweight materials. Although many techniques have been introduced to create such structures, a long-range order of the porosity as well as a precise control of the final architecture remain difficult to achieve. These limitations severely hinder the scale-up fabrication of layered structures aimed for larger applications. We report on a bidirectional freezing technique to successfully assemble ceramic particles into scaffolds with large-scale aligned, lamellar, porous, nacre-like structure and long-range order at the centimeter scale. This is achieved by modifying the cold finger with a polydimethylsiloxane (PDMS) wedge to control the nucleation and growth of ice crystals under dual temperature gradients. Our approach could provide an effective way of manufacturing novel bioinspired structural materials, in particular advanced materials such as composites, where a higher level of control over the structure is required. PMID:26824062
Cooler butterflies lay larger eggs: developmental plasticity versus acclimation.
Fischer, Klaus; Eenhoorn, Evelien; Bot, Adriane N M; Brakefield, Paul M; Zwaan, Bas J
2003-01-01
We use a full factorial design to investigate the effects of maternal and paternal developmental temperature, as well as female oviposition temperature, on egg size in the butterfly Bicyclus anynana. Butterflies were raised at two different temperatures and mated in four possible sex-by-parental-temperature crosses. The mated females were randomly divided between high and low oviposition temperatures. On the first day after assigning the females to different temperatures, only female developmental temperature affected egg size. Females reared at the lower temperature laid larger eggs than those reared at a higher temperature. When eggs were measured again after an acclimation period of 10 days, egg size was principally determined by the prevailing temperature during oviposition, with females ovipositing at a lower temperature laying larger eggs. In contrast to widely used assumptions, the effects of developmental temperature were largely reversible. Male developmental temperature did not affect egg size in either of the measurements. Overall, developmental plasticity and acclimation in the adult stage resulted in very similar patterns of egg size plasticity. Consequently, we argue that the most important question when testing the significance of acclamatory changes is not at which stage a given plasticity is induced, but rather whether plastic responses to environmental change are adaptive or merely physiological constraints. PMID:14561294
NASA Astrophysics Data System (ADS)
Okumuş, Mustafa
2017-11-01
In this study, the thermal and optical properties of quartet mixtures formed at different weight ratios (1:1:1:1 and 1.5:1:1:1) from liquid crystals 4-octyloxy-4‧-cyanobiphenyl (8OCB), 4-hexylbenzoic acid, 4-(octyloxy)benzoic acid and 4-(decyloxy)benzoic acid were investigated by differential scanning calorimeter (DSC) and polarized optic microscopy (POM). The phase transition temperatures of the novel quartet mixtures measured in the DSC experiments are in line with the POM experiments. The experimental results clearly show that the novel liquid crystal mixtures have displayed pure liquid crystalline properties. According to the phase diagram drawn from DSC results, the nematic range of the novel mixture at the eutectic point is larger than the nematic ranges of the components. The mesomorphic structures of produced homolog complex mixtures are found to be smectic and nematic phases. But the smectic phase cannot be observed in the novel complex 1.5:1:1:1 mixture during continuous cooling. The nematic range of the novel complex 1.5:1:1:1 mixture is bigger than the nematic range of the novel complex 1:1:1:1 mixture with increasing 8OCB. Also, the nematic-to-isotropic phase transition temperature decreases with increasing the weight ratio of 8OCB in the complex quartet mixture. Another interesting result is that the produced mixtures are to be like a medical cream at room temperatures. Furthermore, order parameter and thermal stability factor of the transitions are also calculated.
Deportment and management of metals produced during combustion of CCA-treated timbers.
Rogers, Joseph M; Stewart, Mary; Petrie, James G; Haynes, Brian S
2007-01-31
Experiments were conducted to study CCA-treated wood combustion over a range of temperature and oxygen concentrations with a view to understanding the factors affecting energy and metals recovery from waste treated timber. CCA-treated wood was burned in a furnace at temperatures from 400 to 940 degrees C and oxygen concentrations between 5 and 21%. The ash and condensed volatiles were digested for total concentrations of metals and subjected to leaching tests to determine the stabilized concentrations of metals. Arsenic volatilisation increased with increasing furnace temperature whereas the copper and chromium reported mainly to the ash product. The effect of oxygen concentration was weak although it appeared that more arsenic volatilises at higher oxygen concentrations. However, a larger proportion of the arsenic in the ash generated at lower oxygen concentrations is solubilised during leaching tests, with the result that the concentration of stabilized arsenic in the ash is relatively unaffected by oxygen concentration.
Influence of soil environmental parameters on thoron exhalation rate.
Hosoda, M; Tokonami, S; Sorimachi, A; Ishikawa, T; Sahoo, S K; Furukawa, M; Shiroma, Y; Yasuoka, Y; Janik, M; Kavasi, N; Uchida, S; Shimo, M
2010-10-01
Field measurements of thoron exhalation rates have been carried out using a ZnS(Ag) scintillation detector with an accumulation chamber. The influence of soil surface temperature and moisture saturation on the thoron exhalation rate was observed. When the variation of moisture saturation was small, the soil surface temperature appeared to induce a strong effect on the thoron exhalation rate. On the other hand, when the variation of moisture saturation was large, the influence of moisture saturation appeared to be larger than the soil surface temperature. The number of data ranged over 405, and the median was estimated to be 0.79 Bq m(-2) s(-1). Dependence of geology on the thoron exhalation rate from the soil surface was obviously found, and a nationwide distribution map of the thoron exhalation rate from the soil surface was drawn by using these data. It was generally high in the southwest region than in the northeast region.
Phase coexistence and pinning of charge density waves by interfaces in chromium
NASA Astrophysics Data System (ADS)
Singer, A.; Patel, S. K. K.; Uhlíř, V.; Kukreja, R.; Ulvestad, A.; Dufresne, E. M.; Sandy, A. R.; Fullerton, E. E.; Shpyrko, O. G.
2016-11-01
We study the temperature dependence of the charge density wave (CDW) in a chromium thin film using x-ray diffraction. We exploit the interference between the CDW satellite peaks and Laue oscillations to determine the amplitude, the phase, and the period of the CDW. We find discrete half-integer periods of CDW in the film and switching of the number of periods by one upon cooling/heating with a thermal hysteresis of 20 K. The transition between different CDW periods occurs over a temperature range of 30 K, slightly larger than the width of the thermal hysteresis. A comparison with simulations shows that the phase transition occurs as a variation of the volume fraction of two distinct phases with well-defined periodicities. The phase of the CDW is constant for all temperatures, and we attribute it to strong pinning of the CDW by the mismatch-induced strain at the film-substrate interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menges, F.; Spieser, M.; Riel, H.
The thermal radiative near field transport between vanadium dioxide and silicon oxide at submicron distances is expected to exhibit a strong dependence on the state of vanadium dioxide which undergoes a metal-insulator transition near room temperature. We report the measurement of near field thermal transport between a heated silicon oxide micro-sphere and a vanadium dioxide thin film on a titanium oxide (rutile) substrate. The temperatures of the 15 nm vanadium dioxide thin film varied to be below and above the metal-insulator-transition, and the sphere temperatures were varied in a range between 100 and 200 °C. The measurements were performed using a vacuum-basedmore » scanning thermal microscope with a cantilevered resistive thermal sensor. We observe a thermal conductivity per unit area between the sphere and the film with a distance dependence following a power law trend and a conductance contrast larger than 2 for the two different phase states of the film.« less
Large magnetization and high Curie temperature in highly disordered nanoscale Fe2CrAl thin films
NASA Astrophysics Data System (ADS)
Dulal, Rajendra P.; Dahal, Bishnu R.; Forbes, Andrew; Pegg, Ian L.; Philip, John
2017-02-01
We have successfully grown nanoscale Fe2CrAl thin films on polished Si/SiO2 substrates using an ultra-high vacuum deposition with a base pressure of 9×10-10 Torr. The thickness of thin films ranges from 30 to 100 nm. These films exhibit cubic crystal structure with lattice disorder and display ferromagnetic behavior. The Curie temperature is greater than 400 K, which is much higher than that reported for bulk Fe2CrAl. The magnetic moments of the films varies from 2.5 to 2.8 μB per formula unit, which is larger than the reported bulk values. Thus, the disordered nanoscale Fe2CrAl films exhibit strong Fe-Fe exchange interactions through Fe-Cr-Fe and Fe-Al-Fe layers, resulting in both a large magnetization and a high Curie temperature.
NASA Astrophysics Data System (ADS)
Chaturvedi, Smita; Shyam, Priyank; Bag, Rabindranath; Shirolkar, Mandar M.; Kumar, Jitender; Kaur, Harleen; Singh, Surjeet; Awasthi, A. M.; Kulkarni, Sulabha
2017-07-01
In transition metal oxides, quantum confinement arising from a large surface to volume ratio often gives rise to novel physicochemical properties at nanoscale. Their size-dependent properties have potential applications in diverse areas, including therapeutics, imaging, electronic devices, communication systems, sensors, and catalysis. We have analyzed the structural, magnetic, dielectric, and thermal properties of weakly ferromagnetic SmFe O3 nanoparticles of sizes of about 55 and 500 nm. The nanometer-size particles exhibit several distinct features that are neither observed in their larger-size variants nor reported previously for the single crystals. In particular, for the 55-nm particle, we observe a sixfold enhancement of compensation temperature, an unusual rise in susceptibility in the temperature range 550 to 630 K due to spin pinning, and a coupled antiferromagnetic-ferroelectric transition, directly observed in the dielectric constant.
Scanning Probe Microscopies and Their Applications Towards the Study of Superconductors
NASA Astrophysics Data System (ADS)
Helfrich, Jennifer Ann
1995-11-01
The invention of the scanning tunneling microscope (STM) in 1982 made it possible to study surfaces and structures at resolutions previously believed unattainable. Adapting the STM for low temperatures makes it possible to study superconductors with new methods and to obtain valuable information. This thesis describes a novel low temperature STM (LTSTM) that was designed and built at Northwestern University for the purpose of studying superconductors in the mixed state. At low temperatures, this LTSTM has a scan range an order of magnitude larger than other LTSTM's designed elsewhere. It is capable of low temperature imaging and obtaining dI/dV vs. V curves. A detailed study of magnetic force microscopy (MFM) probes is also presented. The fields and forces between probe and surface were computer modeled. These results are compared with results from electron holographs of MFM probes. The final section of the thesis describes an a.c. susceptibility measurement on a UPt_3 sphere. Results are presented and discussed.
Bachegowda, Lohith S; Cheng, Yan H; Long, Thomas; Shaz, Beth H
2017-01-01
-Substantial variability between different antibody titration methods prompted development and introduction of uniform methods in 2008. -To determine whether uniform methods consistently decrease interlaboratory variation in proficiency testing. -Proficiency testing data for antibody titration between 2009 and 2013 were obtained from the College of American Pathologists. Each laboratory was supplied plasma and red cells to determine anti-A and anti-D antibody titers by their standard method: gel or tube by uniform or other methods at different testing phases (immediate spin and/or room temperature [anti-A], and/or anti-human globulin [AHG: anti-A and anti-D]) with different additives. Interlaboratory variations were compared by analyzing the distribution of titer results by method and phase. -A median of 574 and 1100 responses were reported for anti-A and anti-D antibody titers, respectively, during a 5-year period. The 3 most frequent (median) methods performed for anti-A antibody were uniform tube room temperature (147.5; range, 119-159), uniform tube AHG (143.5; range, 134-150), and other tube AHG (97; range, 82-116); for anti-D antibody, the methods were other tube (451; range, 431-465), uniform tube (404; range, 382-462), and uniform gel (137; range, 121-153). Of the larger reported methods, uniform gel AHG phase for anti-A and anti-D antibodies had the most participants with the same result (mode). For anti-A antibody, 0 of 8 (uniform versus other tube room temperature) and 1 of 8 (uniform versus other tube AHG), and for anti-D antibody, 0 of 8 (uniform versus other tube) and 0 of 8 (uniform versus other gel) proficiency tests showed significant titer variability reduction. -Uniform methods harmonize laboratory techniques but rarely reduce interlaboratory titer variance in comparison with other methods.
Influence of smooth temperature variation on hotspot ignition
Reinbacher, Fynn; Regele, Jonathan David
2017-10-06
Autoignition in thermally stratified reactive mixtures originates in localised hotspots. The ignition behaviour is often characterised using linear temperature gradients and more recently constant temperature plateaus combined with temperature gradients. Acoustic timescale characterisation of plateau regions has been successfully used to characterise the type of mechanical disturbance that will be created from a plateau core ignition. This work combines linear temperature gradients with superelliptic cores in order to more accurately account for a local temperature maximum of finite size and the smooth temperature variation contained inside realistic hotspot centres. A one-step Arrhenius reaction is used to model a H 2–airmore » reactive mixture. Using the superelliptic approach a range of behaviours for temperature distributions are investigated by varying the temperature profile between the gradient only and plateau and gradient bounding cases. Each superelliptic case is compared to a respective plateau and gradient case where simple acoustic timescale characterisation may be performed. It is shown that hot spots equivalent with excitation-to-acoustic timescale ratios sufficiently greater than unity exhibit behaviour very similar to a simple plateau-gradient model. Furthermore, for larger hot spots with timescale ratios sufficiently less than unity the reaction behaviour is highly dependent on the smooth temperature profile contained within the core region.« less
Influence of smooth temperature variation on hotspot ignition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinbacher, Fynn; Regele, Jonathan David
Autoignition in thermally stratified reactive mixtures originates in localised hotspots. The ignition behaviour is often characterised using linear temperature gradients and more recently constant temperature plateaus combined with temperature gradients. Acoustic timescale characterisation of plateau regions has been successfully used to characterise the type of mechanical disturbance that will be created from a plateau core ignition. This work combines linear temperature gradients with superelliptic cores in order to more accurately account for a local temperature maximum of finite size and the smooth temperature variation contained inside realistic hotspot centres. A one-step Arrhenius reaction is used to model a H 2–airmore » reactive mixture. Using the superelliptic approach a range of behaviours for temperature distributions are investigated by varying the temperature profile between the gradient only and plateau and gradient bounding cases. Each superelliptic case is compared to a respective plateau and gradient case where simple acoustic timescale characterisation may be performed. It is shown that hot spots equivalent with excitation-to-acoustic timescale ratios sufficiently greater than unity exhibit behaviour very similar to a simple plateau-gradient model. Furthermore, for larger hot spots with timescale ratios sufficiently less than unity the reaction behaviour is highly dependent on the smooth temperature profile contained within the core region.« less
Shoeib, Mahiba; Harner, Tom
2002-05-01
Octanol-air partition coefficients (Koa) were measured directly for 19 organochlorine (OC) pesticides over the temperature range of 5 to 35 degrees C. Values of log Koa at 25 degrees C ranged over three orders of magnitude, from 7.4 for hexachlorobenzene to 10.1 for 1,1-dichloro-2,2-bis(p-chlorophenyl) ethane. Measured values were compared to values calculated as KowRT/H (where R is the ideal gas constant [8.314 J mol(-1) K(-1)], T is absolute temperature, and H is Henry's law constant) were, in general, larger. Discrepancies of up to three orders of magnitude were observed, highlighting the need for direct measurements of Koa. Plots of Koa versus inverse absolute temperature exhibited a log-linear correlation. Enthalpies of phase transition between octanol and air (deltaHoa) were determined from the temperature slopes and were in the range of 56 to 105 kJ mol(-1) K(-1). Activity coefficients in octanol (gamma(o)) were determined from Koa and reported supercooled liquid vapor pressures (pL(o)), and these were in the range of 0.3 to 12, indicating near-ideal solution behavior. Differences in Koa values for structural isomers of hexachlorocyclohexane were also explored. A Koa-based model was described for predicting the partitioning of OC pesticides to aerosols and used to calculate particulate fractions at 25 and -10 degrees C. The model also agreed well with experimental results for several OC pesticides that were equilibrated with urban aerosols in the laboratory. A log-log regression of the particle-gas partition coefficient versus Koa had a slope near unity, indicating that octanol is a good surrogate for the aerosol organic matter.
Results from EDGES High-band. I. Constraints on Phenomenological Models for the Global 21 cm Signal
NASA Astrophysics Data System (ADS)
Monsalve, Raul A.; Rogers, Alan E. E.; Bowman, Judd D.; Mozdzen, Thomas J.
2017-09-01
We report constraints on the global 21 cm signal due to neutral hydrogen at redshifts 14.8≥slant z≥slant 6.5. We derive our constraints from low-foreground observations of the average sky brightness spectrum conducted with the EDGES High-band instrument between 2015 September 7 and October 26. Observations were calibrated by accounting for the effects of antenna beam chromaticity, antenna and ground losses, signal reflections, and receiver parameters. We evaluate the consistency between the spectrum and phenomenological models for the global 21 cm signal. For tanh-based representations of the ionization history during the epoch of reionization, we rule out, at ≥slant 2σ significance, models with duration of up to {{Δ }}z=1 at z≈ 8.5 and higher than {{Δ }}z=0.4 across most of the observed redshift range under the usual assumption that the 21 cm spin temperature is much larger than the temperature of the cosmic microwave background during reionization. We also investigate a “cold” intergalactic medium (IGM) scenario that assumes perfect Lyα coupling of the 21 cm spin temperature to the temperature of the IGM, but that the latter is not heated by early stars or stellar remants. Under this assumption, we reject tanh-based reionization models of duration {{Δ }}z≲ 2 over most of the observed redshift range. Finally, we explore and reject a broad range of Gaussian models for the 21 cm absorption feature expected in the First Light era. As an example, we reject 100 mK Gaussians with duration (full width at half maximum) {{Δ }}z≤slant 4 over the range 14.2≥slant z≥slant 6.5 at ≥slant 2σ significance.
Dinosaur energetics: setting the bounds on feasible physiologies and ecologies.
Clarke, Andrew
2013-09-01
The metabolic status of dinosaurs has long been debated but remains unresolved as no consistent picture has emerged from a range of anatomical and isotopic evidence. Quantitative analysis of dinosaur energetics, based on general principles applicable to all vertebrates, shows that many features of dinosaur lifestyle are compatible with a physiology similar to that of extant lizards, scaled up to dinosaur body masses and temperatures. The analysis suggests that sufficient metabolic scope would have been available to support observed dinosaur growth rates and allow considerable locomotor activity, perhaps even migration. Since at least one dinosaur lineage evolved true endothermy, this study emphasizes there was no single dinosaur physiology. Many small theropods were insulated with feathers and appear to have been partial or full endotherms. Uninsulated small taxa, and all juveniles, presumably would have been ectothermic, with consequent diurnal and seasonal variations in body temperature. In larger taxa, inertial homeothermy would have resulted in warm and stable body temperatures but with a basal metabolism significantly below that of extant mammals or birds of the same size. It would appear that dinosaurs exhibited a range of metabolic levels to match the broad spectrum of ecological niches they occupied.
NASA Astrophysics Data System (ADS)
Mialdun, A.; Ryzhkov, I.; Khlybov, O.; Lyubimova, T.; Shevtsova, V.
2018-01-01
We report on the measurement of Soret (ST) coefficients in the ternary system toluene (T)-methanol (M)-cyclohexane (Ch) onboard the International Space Station in the experiment selectable optical diagnostic instrument/DCMIX2 (Diffusion Coefficients Measurement in ternary mIXtures). Nine experiments were conducted in the range of mean temperatures between 298.15 K and 306.15 K in the mixture with composition 0.62 (T)-0.31 (M)-0.07 (Ch) in mass fractions. A linear dependence of the Soret coefficients on temperature was established for the ternary mixture. It has also been found that, over considered range of mean temperatures, the Soret coefficients of toluene are small and positive, while the Soret coefficients for methanol are negative and, at least, two times larger. The present work also presents a comprehensive study of possible methodologies to process raw data from the Soret experiment in ternary mixtures. All the experiments were processed by seven different schemes and two of them were identified as the most reliable. We also investigate the error propagation and explain the reasons for the discrepancy of the results obtained by different schemes.
Penetrative convection at high Rayleigh numbers
NASA Astrophysics Data System (ADS)
Toppaladoddi, Srikanth; Wettlaufer, John S.
2018-04-01
We study penetrative convection of a fluid confined between two horizontal plates, the temperatures of which are such that a temperature of maximum density lies between them. The range of Rayleigh numbers studied is Ra=[0.01 ,4 ]106,108 and the Prandtl numbers are Pr=1 and 11.6. An evolution equation for the growth of the convecting region is obtained through an integral energy balance. We identify a new nondimensional parameter, Λ , which is the ratio of temperature difference between the stable and unstable regions of the flow; larger values of Λ denote increased stability of the upper stable layer. We study the effects of Λ on the flow field using well-resolved lattice Boltzmann simulations and show that the characteristics of the flow depend sensitively upon it. For the range Λ = , we find that for a fixed Ra the Nusselt number, Nu, increases with decreasing Λ . We also investigate the effects of Λ on the vertical variation of convective heat flux and the Brunt-Väisälä frequency. Our results clearly indicate that in the limit Λ →0 the problem reduces to that of the classical Rayleigh-Bénard convection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Gendy, Ahmed A., E-mail: aelgendy@vcu.edu, E-mail: ecarpenter2@vcu.edu, E-mail: snkhanna@vcu.edu; Nanotechnology and Nanometrology Lab., National institute for standards; Bertino, Massimo
Attainment of magnetic order in nanoparticles at room temperature is an issue of critical importance for many different technologies. For ordinary ferromagnetic materials, a reduction in size leads to decreased magnetic anisotropy and results in superparamagnetic relaxations. If, instead, anisotropy could be enhanced at reduced particle sizes, then it would be possible to attain stable magnetic order at room temperature. Herein, we provide experimental evidence substantiating the synthesis of a cobalt iron carbide phase (CoFe{sub 2}C) of nanoparticles. Structural characterization of the CoFe{sub 2}C carbide phase was performed by transmission electron microscopy, electron diffraction and energy electron spectroscopy. X-ray diffractionmore » was also performed as a complimentary analysis. Magnetic characterization of the carbide phase revealed a blocking temperature, T{sub B}, of 790 K for particles with a domain size as small as 5 ± 1 nm. The particles have magnetocrystalline anisotropy of 4.6 ± 2 × 10{sup 6 }J/m{sup 3}, which is ten times larger than that of Co nanoparticles. Such colossal anisotropy leads to thermally stable long range magnetic order. Moreover, the thermal stability constant is much larger than that of the commonly used FePt nanoparticles. With thermal stability and colossal anisotropy, the CoFe{sub 2}C nanoparticles have huge potential for enhanced magnetic data storage devices.« less
Wagman, J. J.; Carlo, Jeremy P.; Gaudet, J.; ...
2016-03-14
We present time-of-flight neutron-scattering measurements on single crystals of La 2-xBa xCuO 4 (LBCO) with 0 ≤ x ≤ 0.095 and La 2-xSr xCuO 4 (LSCO) with x = 0.08 and 0.11. This range of dopings spans much of the phase diagram relevant to high temperature cuprate superconductivity, ranging from insulating, three dimensional commensurate long range antiferromagnetic order for x ≤ 0.02 to two dimensional (2D) incommensurate antiferromagnetism co-existing with superconductivity for x ≥ 0.05. Previous work on lightly doped LBCO with x = 0.035 showed a clear resonant enhancement of the inelastic scattering coincident with the low energy crossingsmore » of the highly dispersive spin excitations and quasi-2D optic phonons. The present work extends these measurements across the phase diagram and shows this enhancement to be a common feature to this family of layered quantum magnets. Furthermore we show that the low temperature, low energy magnetic spectral weight is substantially larger for samples with non-superconducting ground states relative to any of the samples with superconducting ground states. Lastly spin gaps, suppression of low energy magnetic spectral weight, are observed in both superconducting LBCO and LSCO samples, consistent with previous observations for superconducting LSCO« less
Cacho, J I; Campillo, N; Viñas, P; Hernández-Córdoba, M
2015-02-06
A method using direct sample introduction (DSI) coupled to gas chromatography-mass spectrometry (GC-MS) is developed for the determination of six phthalate esters (dimethyl, diethyl, dibutyl, butylbenzyl, diethylhexyl and dioctyl phthalate) in cleaning products. The different variables involved in the DSI step, including venting time and temperature, vaporisation time and temperature, injector heating temperature and gas flow rate and pressure, were evaluated and optimised using Taguchi orthogonal arrays. The proposed method, using calibration against methanolic standards, showed good linearity in the 0.05-15 μg g(-1) range and good repeatability, with RSD values ranging from 3.5% to 5.7%. Quantification limits between 0.010 and 0.041 μg g(-1), depending on the compound, were attained, while recovery assays provided values from 83% to 115%. Twenty-seven cleaning products were analysed using the DSI-GC-MS method, being four phthalates (dimethyl, diethyl, dibutyl and diethylhexyl phthalate) found in fourteen of them at concentration levels in the 0.1-21 μg g(-1) range. Compared with the most common GC injection technique, which uses the split/splitless injector, the proposed DSI procedure provided larger peak areas and lower detection limits, as result of the greater injected volume and reduction in noise. Copyright © 2014 Elsevier B.V. All rights reserved.
Size-frequency distributions along a latitudinal gradient in Middle Permian fusulinoideans.
Zhang, Yichun; Payne, Jonathan L
2012-01-01
Geographic gradients in body size within and among living species are commonly used to identify controls on the long-term evolution of organism size. However, the persistence of these gradients over evolutionary time remains largely unknown because ancient biogeographic variation in organism size is poorly documented. Middle Permian fusulinoidean foraminifera are ideal for investigating the temporal persistence of geographic gradients in organism size because they were diverse and abundant along a broad range of paleo-latitudes during this interval (~275-260 million years ago). In this study, we determined the sizes of Middle Permian fusulinoidean fossils from three different paleo-latitudinal zones in order to examine the relationship between the size of foraminifers and regional environment. We recovered the following results: keriothecal fusulinoideans are substantially larger than nonkeriothecal fusulinoideans; fusulinoideans from the equatorial zone are typically larger than those from the north and south transitional zones; neoschwagerinid specimens within a single species are generally larger in the equatorial zone than those in both transitional zones; and the nonkeriothecal fusulinoideans Staffellidae and Schubertellidae have smaller size in the north transitional zone. Fusulinoidean foraminifers differ from most other marine taxa in exhibiting larger sizes closer to the equator, contrary to Bergmann's rule. Meridional variation in seasonality, water temperature, nutrient availability, and carbonate saturation level are all likely to have favored or enabled larger sizes in equatorial regions. Temporal variation in atmospheric oxygen concentrations have been shown to account for temporal variation in fusulinoidean size during Carboniferous and Permian time, but oxygen availability appears unlikely to explain biogeographic variation in fusulinoidean sizes, because dissolved oxygen concentrations in seawater typically increase away from the equator due to declining seawater temperatures. Consequently, our findings highlight the fact that spatial gradients in organism size are not always controlled by the same factors that govern temporal trends within the same clade.
Size-Frequency Distributions along a Latitudinal Gradient in Middle Permian Fusulinoideans
Zhang, Yichun; Payne, Jonathan L.
2012-01-01
Geographic gradients in body size within and among living species are commonly used to identify controls on the long-term evolution of organism size. However, the persistence of these gradients over evolutionary time remains largely unknown because ancient biogeographic variation in organism size is poorly documented. Middle Permian fusulinoidean foraminifera are ideal for investigating the temporal persistence of geographic gradients in organism size because they were diverse and abundant along a broad range of paleo-latitudes during this interval (∼275–260 million years ago). In this study, we determined the sizes of Middle Permian fusulinoidean fossils from three different paleo-latitudinal zones in order to examine the relationship between the size of foraminifers and regional environment. We recovered the following results: keriothecal fusulinoideans are substantially larger than nonkeriothecal fusulinoideans; fusulinoideans from the equatorial zone are typically larger than those from the north and south transitional zones; neoschwagerinid specimens within a single species are generally larger in the equatorial zone than those in both transitional zones; and the nonkeriothecal fusulinoideans Staffellidae and Schubertellidae have smaller size in the north transitional zone. Fusulinoidean foraminifers differ from most other marine taxa in exhibiting larger sizes closer to the equator, contrary to Bergmann's rule. Meridional variation in seasonality, water temperature, nutrient availability, and carbonate saturation level are all likely to have favored or enabled larger sizes in equatorial regions. Temporal variation in atmospheric oxygen concentrations have been shown to account for temporal variation in fusulinoidean size during Carboniferous and Permian time, but oxygen availability appears unlikely to explain biogeographic variation in fusulinoidean sizes, because dissolved oxygen concentrations in seawater typically increase away from the equator due to declining seawater temperatures. Consequently, our findings highlight the fact that spatial gradients in organism size are not always controlled by the same factors that govern temporal trends within the same clade. PMID:22685590
Relationship between notch strengthening threshold and mechanical property for ductile cast iron
NASA Astrophysics Data System (ADS)
Ikeda, T.; Noda, N.-A.; Sano, Y.; Umetani, T.; Kai, N.
2018-06-01
In this study, dynamic tensile tests were conducted at the various strain rates and temperatures for traditional ductile cast iron. Then, the notch strength {σ }{{B}}{{noth}} and the static tensile strength at room temperature {σ }{{B,}\\quad {{RT}}}{{smooth}} were discussed in terms of the strain rate- temperature parameter R, which is known to be useful for evaluating the combined influence of strain rate and temperature. This study focuses on the notch strengthening threshold R ≧ R th where {σ }{{B}}{{noth}} is larger than {σ }{{B,}\\quad {{RT}}}{{smooth}} and therefore notched components can be used safely. In other words, if R ≧ R th, {σ }{{B,}\\quad {{RT}}}{{smooth}} can be used to evaluate notched components in mechanical design to prevent the instantaneous fracture. In this study, it was found that the R th value can be predicted from the static tensile property and Brinell hardness. Since the traditional ductile cast iron considered in this paper has a broad range of mechanical properties, the present approach and discussion can be applied to evaluate other materials under various temperature and strain rate.
Strong magnon-phonon coupling in NaFeAs studied by neutron scattering
NASA Astrophysics Data System (ADS)
Li, Yu; Yamani, Zahra; Song, Yu; Zhang, Chenglin; Dai, Pengcheng
We carried on inelastic neutron scattering experiment on the triple axis spectrometer in CNBC in Chalk River. We measured both the phonon and magnon in NaFeAs single crystals and their temperature dependence. Since structural transition temperature (TS) and the magnetic transition temperature (T N) are well separated in NaFeAs, it provides us an unique chance to exclude the consequence or magnetic order and focus on the so called nematic phase. As the previous paper on BaFe2As2, we observed the strong phonon softening nearby the structural transition temperature at very small q (q<0.1). This makes the phonon in NaFeAs deviate from the classical linear dispersion relationship for acoustic phonons. Besides the phonon softening, we also observe phonon hardening at a larger q range when the temperature goes down. This is accompanied by the stiffening of the magnons which can be represented by the linewidth of the low energy magnetic peaks. Our results suggest that there is strong coupling between the phonons and magnons in NaFeAs.
Cryogenic Refractive Index and Coefficient of Thermal Expansion for the S-TIH1 Glass
NASA Technical Reports Server (NTRS)
Quijada, Manuel A.; Leviton, Douglas; Content, David
2013-01-01
Using the CHARMS facility at NASA GSFC, we have measured the cryogenic refractive index of the Ohara S-TIH1 glass from 0.40 to 2.53 micrometers and from 120 to 300 K. We have also examined the spectral dispersion and thermo-optic coefficients (dn/dT). We also derived temperature-dependent Sellmeier models from which refractive index may be calculated for any wavelength and temperature within the stated ranges of each model. The S-TIH1 glass we tested exhibited unusual behavior in the thermo-optic coefficient. We found that for delta < 0.5 micrometers, the index of refraction decrease with a decrease in temperature (positive dn/dT). However, the situation was reversed for delta larger than 0.63 micrometers, where the index will increase with a decrease in temperature (negative dn/dT). We also measured the coefficient of thermal expansion (CTE) for the similar batch of S-TIH1 glass in order to understand its thermal properties. The CTE showed a monotonic change with a decrease in temperature.
Sensitivities of seismic velocities to temperature, pressure and composition in the lower mantle
NASA Astrophysics Data System (ADS)
Trampert, Jeannot; Vacher, Pierre; Vlaar, Nico
2001-08-01
We calculated temperature, pressure and compositional sensitivities of seismic velocities in the lower mantle using latest mineral physics data. The compositional variable refers to the volume proportion of perovskite in a simplified perovskite-magnesiowüstite mantle assemblage. The novelty of our approach is the exploration of a reasonable range of input parameters which enter the lower mantle extrapolations. This leads to realistic error bars on the sensitivities. Temperature variations can be inferred throughout the lower mantle within a good degree of precision. Contrary to the uppermost mantle, modest compositional changes in the lower mantle can be detected by seismic tomography, with a larger uncertainty though. A likely trade-off between temperature and composition will be largely determined by uncertainties in tomography itself. Given current sources of uncertainties on recent data, anelastic contributions to the temperature sensitivities (calculated using Karato's approach) appear less significant than previously thought. Recent seismological determinations of the ratio of relative S to P velocity heterogeneity can be entirely explain by thermal effects, although isolated spots beneath Africa and the Central Pacific in the lowermost mantle may ask for a compositional origin.
NASA Technical Reports Server (NTRS)
Lovrich, T. N.; Schwartz, S. H.
1975-01-01
The dimensionless parameters associated with the thermal stratification and pressure history of a heated container of liquid and its vapor were examined. The Modified Grashof number, the Fourier number, and an Interface number were parameterized using a single test liquid, Freon 113. Cylindrical test tanks with spherical dome end caps were built. Blanket heaters covered the tanks and thermocouples monitored the temperatures of the liquid, the ullage, the tank walls, and the foam insulation encapsulating the tank. A centrifuge was used for the 6 inch tank to preserve the same scaling parameter values between it and the larger tanks. Tests were conducted over a range of Gr* values and the degree of scaling was checked by comparing the dimensionless pressures and temperatures for each scaled pair of tests. Results indicate that the bulk liquid temperature, the surface temperature of the liquid, and the tank pressure can be scaled with the three dimensionless parameters. Some deviation was, however, found in the detailed temperature profiles between the scaled pairs of tests.
NASA Astrophysics Data System (ADS)
Booth, B. B. B.; Bernie, D.; McNeall, D.; Hawkins, E.; Caesar, J.; Boulton, C.; Friedlingstein, P.; Sexton, D. M. H.
2013-04-01
We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission-driven rather than concentration-driven perturbed parameter ensemble of a global climate model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration-driven simulations (with 10-90th percentile ranges of 1.7 K for the aggressive mitigation scenario, up to 3.9 K for the high-end, business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 K (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission-driven experiments, they do not change existing expectations (based on previous concentration-driven experiments) on the timescales over which different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in the case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration scenarios used to drive GCM ensembles, lies towards the lower end of our simulated distribution. This design decision (a legacy of previous assessments) is likely to lead concentration-driven experiments to under-sample strong feedback responses in future projections. Our ensemble of emission-driven simulations span the global temperature response of the CMIP5 emission-driven simulations, except at the low end. Combinations of low climate sensitivity and low carbon cycle feedbacks lead to a number of CMIP5 responses to lie below our ensemble range. The ensemble simulates a number of high-end responses which lie above the CMIP5 carbon cycle range. These high-end simulations can be linked to sampling a number of stronger carbon cycle feedbacks and to sampling climate sensitivities above 4.5 K. This latter aspect highlights the priority in identifying real-world climate-sensitivity constraints which, if achieved, would lead to reductions on the upper bound of projected global mean temperature change. The ensembles of simulations presented here provides a framework to explore relationships between present-day observables and future changes, while the large spread of future-projected changes highlights the ongoing need for such work.
NASA Astrophysics Data System (ADS)
Kitazawa, Takafumi; Kishida, Takanori; Kawasaki, Takeshi; Takahashi, Masashi
2017-11-01
We have prepared the 2D spin crossover complexes Fe(L)2Pd(CN)4 (L = py : 1a; py-D5 : 1b and py-15N : 1c). 1a has been characterised by 57Fe Mossbauer spectroscopic measurements, single crystal X-ray determination and SQUID measurements. The Mössbauer spectra for 1a indicate that the iron(II) spin states are in high spin states at 298 K and are in low spin states at 77 K. The crystal structures of 1a at 298 K and 90 K also show the high spin state and the low spin state respectively, associated with the Fe(II)-N distances. The spin transition temperature range of 1a is higher than that of Fe(py)2Ni(CN)4 since Pd(II) ions are larger and heavier than Ni(II) ions. SQUID data indicate isotope effects among 1a, 1b and 1c are observed in very small shifts of the transition temperatures probably due to larger and heavier Pd(II) ions. The delicate shifts would be associated with subtle balances between different vibrations around Fe(II) atoms and electronic factors.
Pulse measurement of the hot spot current in a NbTiN superconducting filament
NASA Astrophysics Data System (ADS)
Harrabi, K.; Mekki, A.; Kunwar, S.; Maneval, J. P.
2018-02-01
We have studied the voltage response of superconducting NbTiN filaments to a step-pulse of over-critical current I > Ic. The current induces the destruction of the Cooper pairs and initiates different mechanisms of dissipation depending on the bath temperature T. For the sample investigated, and for T above a certain T*, not far from Tc, the resistance manifests itself in the form of a phase-slip center, which turns into a normal hot spot (HS) as the step-pulse is given larger amplitudes. However, at all temperatures below T*, the destruction of superconductivity still occurs at Ic(T), but leads directly to an ever-growing HS. By lowering the current amplitude during the pulse, one can produce a steady HS and thus define a threshold HS current Ih(T). That is achieved by combining two levels of current, the first and larger one to initiate an HS, the second one to search for constant voltage response. The double diagram of the functions Ic(T) and Ih(T) was plotted in the T-range Tc/2 < T < Tc, and their crossing found at T* = (8.07 ± 0.07) K.
Photosystem II Photoinactivation, Repair, and Protection in Marine Centric Diatoms1[OA
Wu, Hongyan; Roy, Suzanne; Alami, Meriem; Green, Beverley R.; Campbell, Douglas A.
2012-01-01
Revised Version Diatoms are important contributors to aquatic primary production, and can dominate phytoplankton communities under variable light regimes. We grew two marine diatoms, the small Thalassiosira pseudonana and the large Coscinodiscus radiatus, across a range of temperatures and treated them with a light challenge to understand their exploitation of variable light environments. In the smaller T. pseudonana, photosystem II (PSII) photoinactivation outran the clearance of PSII protein subunits, particularly in cells grown at sub- or supraoptimal temperatures. In turn the absorption cross section serving PSII photochemistry was down-regulated in T. pseudonana through induction of a sustained phase of nonphotochemical quenching that relaxed only slowly over 30 min of subsequent low-light incubation. In contrast, in the larger diatom C. radiatus, PSII subunit turnover was sufficient to counteract a lower intrinsic susceptibility to photoinactivation, and C. radiatus thus did not need to induce sustained nonphotochemical quenching under the high-light treatment. T. pseudonana thus incurs an opportunity cost of sustained photosynthetic down-regulation after the end of an upward light shift, whereas the larger C. radiatus can maintain a balanced PSII repair cycle under comparable conditions. PMID:22829321
2013-01-01
The extensive diversity of microalgae provides an opportunity to undertake bioprospecting for species possessing features suited to commercial scale cultivation. The outdoor cultivation of microalgae is subject to extreme temperature fluctuations; temperature tolerant microalgae would help mitigate this problem. The waters of the Roman Baths, which have a temperature range between 39°C and 46°C, were sampled for microalgae. A total of 3 green algae, 1 diatom and 4 cyanobacterial species were successfully isolated into ‘unialgal’ culture. Four isolates were filamentous, which could prove advantageous for low energy dewatering of cultures using filtration. Lipid content, profiles and growth rates of the isolates were examined at temperatures of 20, 30, 40°C, with and without nitrogen starvation and compared against the oil producing green algal species, Chlorella emersonii. Some isolates synthesized high levels of lipids, however, all were most productive at temperatures lower than those of the Roman Baths. The eukaryotic algae accumulated a range of saturated and polyunsaturated FAMEs and all isolates generally showed higher lipid accumulation under nitrogen deficient conditions (Klebsormidium sp. increasing from 1.9% to 16.0% and Hantzschia sp. from 31.9 to 40.5%). The cyanobacteria typically accumulated a narrower range of FAMEs that were mostly saturated, but were capable of accumulating a larger quantity of lipid as a proportion of dry weight (M. laminosus, 37.8% fully saturated FAMEs). The maximum productivity of all the isolates was not determined in the current work and will require further effort to optimise key variables such as light intensity and media composition. PMID:23369619
ISO Key Project: Exploring the Full Range of Quasar/AGN Properties
NASA Technical Reports Server (NTRS)
Wilkes, B.
2001-01-01
The origin of the infrared emission in Active Galactic Nuclei (AGN), whose strength is comparable to the optical/ultra-violet (OUV) emission, is generally thought to be a combination of thermal emission from dust and non-thermal, synchrotron emission. Although data are sparse, particularly in the far-infrared, the broad wavelength range of this emission suggests a wide range of temperatures and a combination of AGN and starburst heating mechanisms. The strength of the non-thermal emission is expected to be related to the radio emission. While this scenario is well-established, basic questions, such as the spatial and temperature distribution of the dust, the relative importance of AGN and starburst heating, and the significance of the non-thermal contribution, remain largely undetermined. The wide wavelength range of the Infrared Space Observatory (ISO) combined with its arcmin spatial resolution and increased sensitivity facilitated the observation of a larger subset of the AGN population than previously covered, allowing these questions to be investigated in more detail. This paper will review the spectral energy distributions (SED) of AGN with particular emphasis on the infrared emission and on ISO contributions to our knowledge. Preliminary results from ISO observations of X-ray selected and high-redshift AGN will be described.
Rountrey, Adam N; Coulson, Peter G; Meeuwig, Jessica J; Meekan, Mark
2014-08-01
Ecological modeling shows that even small, gradual changes in body size in a fish population can have large effects on natural mortality, biomass, and catch. However, efforts to model the impact of climate change on fish growth have been hampered by a lack of long-term (multidecadal) data needed to understand the effects of temperature on growth rates in natural environments. We used a combination of dendrochronology techniques and additive mixed-effects modeling to examine the sensitivity of growth in a long-lived (up to 70 years), endemic marine fish, the western blue groper (Achoerodus gouldii), to changes in water temperature. A multi-decadal biochronology (1952-2003) of growth was constructed from the otoliths of 56 fish collected off the southwestern coast of Western Australia, and we tested for correlations between the mean index chronology and a range of potential environmental drivers. The chronology was significantly correlated with sea surface temperature in the region, but common variance among individuals was low. This suggests that this species has been relatively insensitive to past variations in climate. Growth increment and age data were also used in an additive mixed model to predict otolith growth and body size later this century. Although growth was relatively insensitive to changes in temperature, the model results suggested that a fish aged 20 in 2099 would have an otolith about 10% larger and a body size about 5% larger than a fish aged 20 in 1977. Our study shows that species or populations regarded as relatively insensitive to climate change could still undergo significant changes in growth rate and body size that are likely to have important effects on the productivity and yield of fisheries. © 2014 John Wiley & Sons Ltd.
Quantitative Analysis of Temperature Dependence of Raman shift of monolayer WS2
NASA Astrophysics Data System (ADS)
Huang, Xiaoting; Gao, Yang; Yang, Tianqi; Ren, Wencai; Cheng, Hui-Ming; Lai, Tianshu
2016-08-01
We report the temperature-dependent evolution of Raman spectra of monolayer WS2 directly CVD-grown on a gold foil and then transferred onto quartz substrates over a wide temperature range from 84 to 543 K. The nonlinear temperature dependence of Raman shifts for both and A1g modes has been observed. The first-order temperature coefficients of Raman shifts are obtained to be -0.0093 (cm-1/K) and -0.0122 (cm-1/K) for and A1g peaks, respectively. A physical model, including thermal expansion and three- and four-phonon anharmonic effects, is used quantitatively to analyze the observed nonlinear temperature dependence. Thermal expansion coefficient (TEC) of monolayer WS2 is extracted from the experimental data for the first time. It is found that thermal expansion coefficient of out-plane mode is larger than one of in-plane mode, and TECs of and A1g modes are temperature-dependent weakly and strongly, respectively. It is also found that the nonlinear temperature dependence of Raman shift of mode mainly originates from the anharmonic effect of three-phonon process, whereas one of A1g mode is mainly contributed by thermal expansion effect in high temperature region, revealing that thermal expansion effect cannot be ignored.
Respiration of resting honeybees
Kovac, Helmut; Stabentheiner, Anton; Hetz, Stefan K.; Petz, Markus; Crailsheim, Karl
2011-01-01
The relation between the respiratory activity of resting honeybees and ambient temperature (Ta) was investigated in the range of 5–40 °C. Bees were kept in a temperature controlled flow through respirometer chamber where their locomotor and endothermic activity, as well as abdominal ventilatory movements was recorded by infrared thermography. Surprisingly, true resting bees were often weakly endothermic (thorax surface up to 2.8 °C warmer than abdomen) at a Ta of 14–30 °C. Above 33 °C many bees cooled their body via evaporation from their mouthparts. A novel mathematical model allows description of the relationship of resting (standard) metabolic rate and temperature across the entire functional temperature range of bees. In chill coma (<11 °C) bees were ectothermic and CO2 release was mostly continuous. CO2 release rate (nl s−1) decreased from 9.3 at 9.7 °C to 5.4 at 5 °C. At a Ta of >11 °C CO2 was released discontinuously. In the bees’ active temperature range mean CO2 production rate (nl s−1) increased sigmoidally (10.6 at 14.1 °C, 24.1 at 26.5 °C, and 55.2 at 38.1 °C), coming to a halt towards the upper lethal temperature. This was primarily accomplished by an exponential increase in gas exchange frequency (0.54 and 3.1 breaths min−1 at 14.1 and 38.1 °C) but not in released CO2 volume per respiratory cycle (1487 and 1083 nl cycle−1 at 14.1 and 38.1 °C). Emission of CO2 bursts was mostly (98%) accompanied by abdominal ventilation movements even in small CO2 bursts. Larger bursts coincided with a longer duration of active ventilation. An increased amount of CO2 expelled per unit time of ventilation indicates a higher efficiency of ventilation at high ambient temperatures. PMID:17707395
Mechanism-Based Design for High-Temperature, High-Performance Composites. Book 3.
1997-09-01
l(e-ß):(e-ß)--4(e:ß) 2 = el3 + -4(en-e33f, (77) 7 2 = 62:a-(e:a)2 = e?2 + 4, (78) where n = e2, ß = I-nn = eiei +e3e3, and the Cartesian...relation, the particles most susceptible to fracture are those at the larger size range of the population . Thus, with increasing standard deviation of...strength variability is associated exclusively with a single population of flaws. The second is based on comparisons of mean strengths of two or more
NASA Astrophysics Data System (ADS)
Shetty, Rahul; Glover, Simon C.; Dullemond, Cornelis P.; Ostriker, Eve C.; Harris, Andrew I.; Klessen, Ralf S.
2011-08-01
We investigate how the X factor, the ratio of the molecular hydrogen column density (?) to velocity-integrated CO intensity (W), is determined by the physical properties of gas in model molecular clouds (MCs). The synthetic MCs are results of magnetohydrodynamic simulations, including a treatment of chemistry. We perform radiative transfer calculations to determine the emergent CO intensity, using the large velocity gradient approximation for estimating the CO population levels. In order to understand why observations generally find cloud-averaged values of X = XGal˜ 2 × 1020 cm-2 K-1 km-1 s, we focus on a model representing a typical Milky Way MC. Using globally integrated ? and W reproduces the limited range in X found in observations and a mean value X = XGal= 2.2 × 1020 cm-2 K-1 km-1 s. However, we show that when considering limited velocity intervals, X can take on a much larger range of values due to CO line saturation. Thus, the X factor strongly depends on both the range in gas velocities and the volume densities. The temperature variations within individual MCs do not strongly affect X, as dense gas contributes most to setting the X factor. For fixed velocity and density structure, gas with higher temperatures T has higher W, yielding X ∝ T-1/2 for T ˜ 20-100 K. We demonstrate that the linewidth-size scaling relationship does not influence the X factor - only the range in velocities is important. Clouds with larger linewidths σ, regardless of the linewidth-size relationship, have a higher W, corresponding to a lower value of X, scaling roughly as X ∝σ-1/2. The 'mist' model, often invoked to explain a constant XGal consisting of optically thick cloudlets with well-separated velocities, does not accurately reflect the conditions in a turbulent MC. We propose that the observed cloud-averaged values of X ˜ XGal are simply a result of the limited range in ?, temperatures and velocities found in Galactic MCs - a nearly constant value of X therefore does not require any linewidth-size relationship, or that MCs are virialized objects. Since gas properties likely differ (albeit even slightly) from cloud to cloud, masses derived through a standard value of the X factor should only be considered as a rough first estimate. For temperatures T ˜ 10-20 K, velocity dispersions σ˜ 1-6 km s-1and ? cm-2, we find cloud-averaged values X ˜ 2-4 × 1020 cm-2 K-1 km-1 s for solar-metallicity models.
NASA Astrophysics Data System (ADS)
Singh, A.; Saraswati, P. K.; Pande, K.; Sanyal, P.
2015-12-01
The reports of inter-species variability to intra-test heterogeneity in Mg/Ca in several species of foraminifera have raised question about its use in estimation of seawater temperatures and necessitate field and culture studies to verify it for species from different habitats. In this study, we attempt to investigate if Mg/Ca in larger benthic foraminifera (LBF) could be a potential proxy of seawater temperatures for shallow marine carbonates. The samples were collected in different seasons from coral reef at Akajima (Okinawa, Japan). The Ca and Mg of 13 species of LBF and small benthic foraminifera from the same season were determined to examine variation in Mg/Ca among the species calcified under presumably the same temperature and salinity conditions. We also analyzed Amphistegina lessoni from different seasons for Ca, Mg and δ18O to determine variation in Mg/Ca with temperature and see how the two proxies of temperatures, Mg/Ca and δ18O, correlate in the same species. The species cluster about two distinctly separated Mg/Ca values. The first group comprising species of Amphistegina, Gypsina, Ammonia and Elphidium have relatively lower Mg/Ca, varying from 30 to 45 mmol/mol. The second group, having average Mg/Ca ranging from ~110 to 170 mmol/mol, includes species of Schlumbergerella, Baculogypsinoides, Baculogypsina, Heterostegina, Operculina, Calcarina, Amphisorus, Alveolinella and Poroeponides. The result suggests large interspecies variability implying vital effect in foraminiferal Mg/Ca. There is no distinct difference in Mg/Ca values between porcelaneous and hyaline types or symbiont-bearing and symbiont-free types. In Amphistegina lessoni the variation in Mg/Ca between individuals of the same season is as large as variation across the seasons. There is no correlation between Mg/Ca and seawater temperature. Lack of correlation between Mg/Ca and δ18O further suggests that Mg/Ca in the species is not primarily controlled by temperature.
Experimental Study of Combined Forced and Free Laminar Convection in a Vertical Tube
NASA Technical Reports Server (NTRS)
Hallman, Theodore M.
1961-01-01
An apparatus was built to verify an analysis of combined forced and free convection in a vertical tube with uniform wall heat flux and to determine the limits of the analysis. The test section was electrically heated by resistance heating of the tube wall and was instrumented with thermocouples in such a way that detailed thermal entrance heat-transfer coefficients could be obtained for both upflow and downflow and any asymmetry in wall temperature could be detected. The experiments showed that fully developed heat-transfer results, predicted by a previous analysis, were confirmed over the range of Rayleigh numbers investigated. The concept of "locally fully developed" heat transfer was established. This concept involves the assumption that the fully developed heat-transfer analysis can be applied locally even though the Rayleigh number is varying along the tube because of physical-property variations with temperature. Thermal entrance region data were obtained for pure forced convection and for combined forced and free convection. The analysis of laminar pure forced convection in the thermal entrance region conducted by Siegel, Sparrow, and Hallman was experimentally confirmed. A transition to an eddy motion, indicated by a fluctuation in wall temperature was found in many of the upflow runs. A stability correlation was found. The fully developed Nusselt numbers in downflow were below those for pure forced convection but fell about 10 percent above the analytical curve. Quite large circumferential variations in wall temperature were observed in downflow as compaired with those encountered in upflow, and the fully developed Nussalt numbers reported are based on average wall temperatures determined by averaging the readings of two diametrically opposite wall thermocouples at each axial position. With larger heating rates in downflow the wall temperature distributions strongly suggested a cell flow near the bottom. At still larger heating rates the wall temperatures varied in a periodic way.
Creep and stress rupture of oxide dispersion strengthened mechanically alloyed Inconel alloy MA 754
NASA Technical Reports Server (NTRS)
Howson, T. E.; Tien, J. K.; Stulga, J. E.
1980-01-01
The creep and stress rupture behavior of the mechanically alloyed oxide dispersion strengthened nickel-base alloy MA 754 was studied at 760, 982 and 1093 C. Tensile specimens with a fine, highly elongated grain structure, oriented parallel and perpendicular to the longitudinal grain direction were tested at various stresses in air under constant load. It was found that the apparent stress dependence was large, with power law exponents ranging from 19 to 33 over the temperature range studied. The creep activation energy, after correction for the temperature dependence of the elastic modulus, was close to but slightly larger than the activation energy for self diffusion. Rupture was intergranular and the rupture ductility as measured by percentage elongation was generally low, with values ranging from 0.5 to 16 pct. The creep properties are rationalized by describing the creep rates in terms of an effective stress which is the applied stress minus a resisting stress consistent with the alloy microstructure. Values of the resisting stress obtained through a curve fitting procedure are found to be close to the values of the particle by-pass stress for this oxide dispersion strengthened alloy, as calculated from the measured oxide particle distribution.
The Far-Infrared Spectral Energy Distributions of Quasars
NASA Technical Reports Server (NTRS)
Wilkes, Belinda J.; West, Donald K. (Technical Monitor)
2001-01-01
The origin of the infrared emission in Active Galactic Nuclei (AGN), whose strength is comparable to the optical/ultraviolet (OUV) emission, is generally thought to be a combination of thermal emission from dust and non-thermal, synchrotron emission. Although data are sparse, particularly in the far-infrared, the broad wavelength range of this emission suggests a wide range of temperatures and a combination of AGN and starburst heating mechanisms. The strength of the non-thermal emission is expected to be related to the radio emission. While this scenario is well-established, basic questions, such as the spatial and temperature distribution of the dust, the relative importance of AGN and starburst heating, and the significance of the non-thermal contribution remain largely undetermined. The wide wavelength range of the Infrared Space Observatory (ISO) combined with its arcmin spatial resolution and increased sensitivity facilitated the observation of a larger subset of the AGN population than previously covered, allowing these questions to be investigated in more detail. This paper will review the spectral energy distributions (SED) of AGN with particular emphasis on the infrared emission and on ISO's contributions to our knowledge. Preliminary results from ISO observations of X-ray selected and high-redshift AGN will be described.
Crucial effect of melt homogenization on the fragility of non-stoichiometric chalcogenides
NASA Astrophysics Data System (ADS)
Ravindren, Sriram; Gunasekera, K.; Tucker, Z.; Diebold, A.; Boolchand, P.; Micoulaut, M.
2014-04-01
The kinetics of homogenization of binary AsxSe100 - x melts in the As concentration range 0% < x < 50% are followed in Fourier Transform (FT)-Raman profiling experiments, and show that 2 g sized melts in the middle concentration range 20% < x < 30% take nearly two weeks to homogenize when starting materials are reacted at 700 °C. In glasses of proven homogeneity, we find molar volumes to vary non-monotonically with composition, and the fragility index M displays a broad global minimum in the 20% < x < 30% range of x wherein M< 20. We show that properly homogenized samples have a lower measured fragility when compared to larger under-reacted melts. The enthalpy of relaxation at Tg, ΔHnr(x) shows a minimum in the 27% < x < 37% range. The super-strong nature of melt compositions in the 20% < x < 30% range suppresses melt diffusion at high temperatures leading to the slow kinetics of melt homogenization.
Magnetization reversal behavior and magnetocaloric effect in SmCr0.85Mn0.15O3 chromites
NASA Astrophysics Data System (ADS)
Kumar, Surendra; Coondoo, Indrani; Vasundhara, M.; Patra, Ajit K.; Kholkin, Andrei L.; Panwar, Neeraj
2017-01-01
We have synthesized SmCr0.85Mn0.15O3 (SCMO) chromites through the ceramic route. The compound crystallized into a distorted orthorhombic structure with the Pnma space group, which was confirmed from the Rietveld refinement of x-ray powder diffraction patterns. Neel temperature, noticed at 168 K from the temperature variation of magnetisation, smaller than that reported for SmCrO3, indicated the influence of Mn3+ substitution on decreasing the antiferromagnetic ordering. A phenomenon of magnetization reversal was observed in the SCMO compound. At low magnetic fields, i.e., 500 Oe, a single compensation temperature (defined as the temperature where magnetization became zero) around 106 K was observed in the field cooled magnetization curve. However, with the application of higher magnetic fields, i.e., under an applied field of 1000 Oe, a second compensation temperature was noticed around 8 K. With a further increase in the magnetic field, the magnetization remained positive in both field cooled and zero field cooled protocols. A normal magnetocaloric effect was observed through an indirect method of field dependence of magnetisation measured in the temperature range of 2-152 K. The magnetic entropy change (-ΔS) of ˜11.36 J kg-1 K-1 along with the relative cooling power (RCP) of ˜175.89 J kg-1 was obtained in the temperature range of 10-20 K for an applied field of 90 kOe, and their values at 50 kOe applied field were, respectively, almost twenty and forty times larger in magnitude in comparison to those for the SmCrO3 compound. The relatively large values of ΔS and RCP make the studied compound a potential candidate for magnetic refrigeration applications at low temperatures.
Shell structures in aluminum nanocontacts at elevated temperatures
2012-01-01
Aluminum nanocontact conductance histograms are studied experimentally from room temperature up to near the bulk melting point. The dominant stable configurations for this metal show a very early crossover from shell structures at low wire diameters to ionic subshell structures at larger diameters. At these larger radii, the favorable structures are temperature-independent and consistent with those expected for ionic subshell (faceted) formations in face-centered cubic geometries. When approaching the bulk melting temperature, these local stability structures become less pronounced as shown by the vanishing conductance histogram peak structure. PMID:22325572
High pressure and high temperature apparatus
Voronov, Oleg A.
2005-09-13
A design for high pressure/high temperature apparatus and reaction cell to achieve .about.30 GPa pressure in .about.1 cm volume and .about.100 GPa pressure in .about.1 mm volumes and 20-5000.degree. C. temperatures in a static regime. The device includes profiled anvils (28) action on a reaction cell (14, 16) containing the material (26) to be processed. The reaction cell includes a heater (18) surrounded by insulating layers and screens. Surrounding the anvils are cylindrical inserts and supporting rings (30-48) whose hardness increases towards the reaction cell. These volumes may be increased considerably if applications require it, making use of presses that have larger loading force capability, larger frames and using larger anvils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaucage, Timothy R; Beenfeldt, Eric P; Speakman, Scott A
Among the langasite family of crystals (LGX), the three most popular materials are langasite (LGS, La3Ga5SiO14), langatate (LGT, La3Ga5.5Ta0.5O14) and langanite (LGN, La3Ga5.5Nb0.5O14). The LGX crystals have received significant attention for acoustic wave (AW) device applications due to several properties, which include: (1) piezoelectric constants about two and a half times those of quartz, thus allowing the design of larger bandwidth filters; (2) existence of temperature compensated orientations; (3) high density, with potential for reduced vibration and acceleration sensitivity; and (4) possibility of operation at high temperatures, since the LGX crystals do not present phase changes up to their meltingmore » point above 1400degC. The LGX crystals' capability to operate at elevated temperatures calls for an investigation on the growth quality and the consistency of these materials' properties at high temperature. One of the fundamental crystal properties is the thermal expansion coefficients in the entire temperature range where the material is operational. This work focuses on the measurement of the LGT thermal expansion coefficients from room temperature (25degC) to 1200degC. Two methods of extracting the thermal expansion coefficients have been used and compared: (a) dual push-rod dilatometry, which provides the bulk expansion; and (b) x-ray powder diffraction, which provides the lattice expansion. Both methods were performed over the entire temperature range and considered multiple samples taken from <001> Czochralski grown LGT material. The thermal coefficients of expansion were extracted by approximating each expansion data set to a third order polynomial fit over three temperature ranges reported in this work: 25degC to 400degC, 400degC to 900degC, 900degC to 1200degC. An accuracy of fit better than 35ppm for the bulk expansion and better than 10ppm for the lattice expansion have been obtained with the aforementioned polynomial fitting. The percentage difference between the bulk and the lattice fitted expansion responses over the entire temperature range of 25degC to 1200degC is less than 2% for the three crystalline axes, which indicates the high quality and growth consistency of the LGT crystal measured« less
Effect of Metal Doping and Vacancies on the Thermal Conductivity of Monolayer Molybdenum Diselenide.
Yarali, Milad; Brahmi, Hatem; Yan, Zhequan; Li, Xufan; Xie, Lixin; Chen, Shuo; Kumar, Satish; Yoon, Mina; Xiao, Kai; Mavrokefalos, Anastassios
2018-02-07
It is well understood that defect engineering can give rise to exotic electronic properties in transition-metal dichalcogenides, but to this date, there is no detailed study to illustrate how defects can be engineered to tailor their thermal properties. Here, through combined experimental and theoretical approaches based on the first-principles density functional theory and Boltzmann transport equations, we have explored the effect of lattice vacancies and substitutional tungsten (W) doping on the thermal transport of the suspended molybdenum diselenide (MoSe 2 ) monolayers grown by chemical vapor deposition (CVD). The results show that even though the isoelectronic substitution of the W atoms for Mo atoms in CVD-grown Mo 0.82 W 018 Se 2 monolayers reduces the Se vacancy concentration by 50% compared to that found in the MoSe 2 monolayers, the thermal conductivity remains intact in a wide temperature range. On the other hand, Se vacancies have a detrimental effect for both samples and more so in the Mo 0.82 W 018 Se 2 monolayers, which results in thermal conductivity reduction up to 72% for a vacancy concentration of 4%. This is because the mass of the W atom is larger than that of the Mo atom, and missing a Se atom at a vacancy site results in a larger mass difference and therefore kinetic energy and potential energy difference. Furthermore, the monotonically increasing thermal conductivity with temperature for both systems at low temperatures indicates the importance of boundary scattering over defects and phonon-phonon scattering at these temperatures.
Interplay of long-range and short-range Coulomb interactions in an Anderson-Mott insulator
NASA Astrophysics Data System (ADS)
Baćani, Mirko; Novak, Mario; Orbanić, Filip; Prša, Krunoslav; Kokanović, Ivan; Babić, Dinko
2017-07-01
In this paper, we tackle the complexity of coexisting disorder and Coulomb electron-electron interactions (CEEIs) in solids by addressing a strongly disordered system with intricate CEEIs and a screening that changes both with charge carrier doping level Q and temperature T . We report on an experimental comparative study of the T dependencies of the electrical conductivity σ and magnetic susceptibility χ of polyaniline pellets doped with dodecylbenzenesulfonic acid over a wide range. This material is special within the class of doped polyaniline by exhibiting in the electronic transport a crossover between a low-T variable range hopping (VRH) and a high-T nearest-neighbor hopping (NNH) well below room temperature. Moreover, there is evidence of a soft Coulomb gap ΔC in the disorder band, which implies the existence of a long-range CEEI. Simultaneously, there is an onsite CEEI manifested as a Hubbard gap U and originating in the electronic structure of doped polyaniline, which consists of localized electron states with dynamically varying occupancy. Therefore, our samples represent an Anderson-Mott insulator in which long-range and short-range CEEIs coexist. The main result of the study is the presence of a crossover between low- and high-T regimes not only in σ (T ) but also in χ (T ) , the crossover temperature T* being essentially the same for both observables over the entire doping range. The relatively large electron localization length along the polymer chains results in U being small, between 12 and 20 meV for the high and low Q , respectively. Therefore, the thermal energy at T* is sufficiently large to lead to an effective closing of the Hubbard gap and the consequent appearance of NNH in the electronic transport within the disorder band. ΔC is considerably larger than U , decreasing from 190 to 30 meV as Q increases, and plays the role of an activation energy in the NNH.
Honjo, N.; Bonnichsen, B.; Leeman, W.P.; Stormer, J.C.
1992-01-01
Voluminous mid-Miocene rhyolitic ash-flow tuffs and lava flows are exposed along the northern and southern margins of the central and western Snake River Plain. These rhyolites are essentially anhydrous with the general mineral assemblage of plagioclase ??sanidine ?? quartz + augite + pigeonite ?? hypersthene ?? fayalitic olivine + Fe-Ti oxides + apatite + zircon which provides an opportunity to compare feldspar, pyroxene, and Fe-Ti oxide equilibration temperatures for the same rocks. Estimated pyroxene equilibration temperatures (based on the geothermometers of Lindsley and coworkers) range from 850 to 1000??C, and these are well correlated with whole-rock compositions. With the exception of one sample, agreement between the two-pyroxene thermometers tested is well within 50??C. Fe-Ti oxide geothermometers applied to fresh magnetite and ilmenite generally yield temperatures about 50 to 100??C lower than the pyroxene temperatures, and erratic results are obtained if these minerals exhibit effects of subsolidus oxidation and exsolution. Results of feldspar thermometry are more complicated, and reflect uncertainties in the thermometer calibrations as well as in the degree of attainment of equilibrium between plagioclase and sanidine. In general, temperatures obtained using the Ghiorso (1984) and Green and Usdansky (1986) feldspar thermometers agree with the pyroxene temperatures within the respective uncertainties. However, uncertainties in the feldspar temperatures are the larger of the two (and exceed ??60??C for many samples). The feldspar thermometer of Fuhrman and Lindsley (1988) produces systematically lower temperatures for many of the samples studied. The estimated pyroxene temperatures are considered most representative of actual magmatic temperatures for these rhyolites. This range of temperatures is significantly higher than those for rhyolites from many other suites, and is consistent with the hypothesis that the Snake River Plain rhyolitic magmas formed by partial fusion of relatively dry (e.g. granulitic) crustal lithologies. ?? 1992 Springer-Verlag.
Misfit strain phase diagrams of epitaxial PMN–PT films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khakpash, N.; Khassaf, H.; Rossetti, G. A.
Misfit strain–temperature phase diagrams of three compositions of (001) pseudocubic (1 − x)·Pb (Mg{sub l/3}Nb{sub 2/3})O{sub 3} − x·PbTiO{sub 3} (PMN–PT) thin films are computed using a phenomenological model. Two (x = 0.30, 0.42) are located near the morphotropic phase boundary (MPB) of bulk PMN–PT at room temperature (RT) and one (x = 0.70) is located far from the MPB. The results show that it is possible to stabilize an adaptive monoclinic phase over a wide range of misfit strains. At RT, the stability region of this phase is much larger for PMN–PT compared to barium strontium titanate and lead zirconate titanate films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fallon, C., E-mail: colm.fallon5@mail.dcu.ie; Hayden, P.; Walsh, N.
We present the results of a time and space resolved optical-spectroscopic study of colliding plasmas formed at the front surfaces of flat and inclined Cu slab targets as a function of both the distance and the wedge angle between them for angles ranging from 100° to 180° (laterally colliding plasmas). The key parameters studied are stagnation layer density, temperature, duration, and kinetics of atomic/ionic spatial distributions and all have been found to vary significantly with wedge angle. It is found that the density and temperature of the stagnation layer decrease with increasing wedge angle. It is also found that themore » larger the wedge angle, the tighter and more well defined the stagnation layer formed.« less
Environmental effects on the compressive properties - Thermosetting vs. thermoplastic composites
NASA Technical Reports Server (NTRS)
Haque, A.; Jeelani, S.
1992-01-01
The influence of moisture and temperature on the compressive properties of graphite/epoxy and APC-2 materials systems was investigated to assess the viability of using APC-2 instead of graphite/epoxy. Data obtained indicate that the moisture absorption rate of T-300/epoxy is higher than that of APC-2. Thick plate with smaller surface area absorbs less moisture than thin plate with larger surface area. The compressive strength and modulus of APC-2 are higher than those of T-300/epoxy composite, and APC-2 sustains higher compressive strength in the presence of moisture. The compressive strength and modulus decrease with the increase of temperature in the range of 23-100 C. The compression failure was in the form of delamination, interlaminar shear, and end brooming.
Surface Selective Oxide Reduction During the Intercritical Annealing of Medium Mn Steel
NASA Astrophysics Data System (ADS)
Jo, Kyoung Rae; Cho, Lawrence; Oh, Jong Han; Kim, Myoung Soo; Kang, Ki Cheol; De Cooman, Bruno C.
2017-08-01
Third generation advanced high-strength steels achieve an excellent strength-ductility balance using a cost-effective alloy composition. During the continuous annealing of medium Mn steel, the formation of an external selective oxide layer of MnO has a negative impact on the coating quality after galvanizing. A procedure to reduce the selective oxide was therefore developed. It involves annealing in the temperature range of 1073 K to 1323 K (800 °C to 1050 °C) in a HNx gas atmosphere. Annealing at higher temperatures and the use of larger H2 volume fractions are shown to make the gas atmosphere reducing with respect to MnO. The reduction of the surface MnO layer was observed by SEM, GDOES, and cross-sectional TEM analysis.
Polymorphism in 2-X-adamantane derivatives (X = Cl, Br).
Negrier, Philippe; Barrio, María; Tamarit, Josep Ll; Mondieig, Denise
2014-08-14
The polymorphism of two 2-X-adamantane derivatives, X = Cl, X = Br, has been studied by X-ray powder diffraction and normal- and high-pressure (up to 300 MPa) differential scanning calorimetry. 2-Br-adamantane displays a low-temperature orthorhombic phase (space group P212121, Z = 4) and a high-temperature plastic phase (Fm3̅m, Z = 4) from 277.9 ± 1.0 K to the melting point at 413.4 ± 1.0 K. 2-Cl-adamantane presents a richer polymorphic behavior through the temperature range studied. At low temperature it displays a triclinic phase (P1̅, Z = 2), which transforms to a monoclinic phase (C2/c, Z = 8) at 224.4 ± 1.0 K, both phases being ordered. Two high-temperature orientationally disordered are found for this compound, one hexagonal (P63/mcm, Z = 6) at ca. 241 K and the highest one, cubic (Fm3̅m, Z = 4), being stable from 244 ± 1.0 K up to the melting point at 467.5 ± 1.0 K. No additional phase appears due to the increase in pressure within the studied range. The intermolecular interactions are found to be weak, especially for the 2-Br-adamantane compound for which the Br···Br as well as C-Br···H distances are larger than the addition of the van der Waals radii, thus confirming the availability of this compound for building up diamondoid blocks.
NASA Astrophysics Data System (ADS)
Liu, Yao; Li, Qing Xuan; Wan, Ling Yu; Kucukgok, Bahadir; Ghafari, Ehsan; Ferguson, Ian T.; Zhang, Xiong; Wang, Shuchang; Feng, Zhe Chuan; Lu, Na
2017-11-01
A series of AlxGa1-xN/AlN/Sapphire films with x = 0.35-0.75 and different thickness of epi-layer were prepared by metalorganic chemical vapor deposition (MOCVD). Spectroscopic ellipsometry (SE) was used to study the temperature-dependent refractive indices and optical bandgaps of the AlxGa1-xN films ranging from 300 to 823 K. Parametric semiconductor (PSEMI) models were used to describe the dielectric functions of AlGaN/AlN layers. The fitting results of refractive index, energy bandgap, thickness and surface roughness at 300 K are in good agreement with photoluminescence (PL), scanning electron microscopy (SEM) measurements and the existing literature. Our finding indicates that the crystal quality of the samples with x = 0.47 and 0.60 are better than those with x = 0.35 and 0.75. As the temperature rises, the increasing of refractive index for the low Al content AlxGa1-xN layers is stronger than that of high Al content in the transparent region, and the reduction of bandgap with high Al content is larger than that of low Al content. For all the samples (x = 0.35-0.75), an analytical expression for temperature-dependent refractive index in the wavelength range of 195-1650 nm was obtained using the Sellmeier law, and the quantitative analysis of the SE-derived temperature-dependent bandgap was conducted by using the Bose-Einstein equation.
Jiang, S C; Zhang, X X
2005-12-01
A two-dimensional model was developed to model the effects of dynamic changes in the physical properties on tissue temperature and damage to simulate laser-induced interstitial thermotherapy (LITT) treatment procedures with temperature monitoring. A modified Monte Carlo method was used to simulate photon transport in the tissue in the non-uniform optical property field with the finite volume method used to solve the Pennes bioheat equation to calculate the temperature distribution and the Arrhenius equation used to predict the thermal damage extent. The laser light transport and the heat transfer as well as the damage accumulation were calculated iteratively at each time step. The influences of different laser sources, different applicator sizes, and different irradiation modes on the final damage volume were analyzed to optimize the LITT treatment. The numerical results showed that damage volume was the smallest for the 1,064-nm laser, with much larger, similar damage volumes for the 980- and 850-nm lasers at normal blood perfusion rates. The damage volume was the largest for the 1,064-nm laser with significantly smaller, similar damage volumes for the 980- and 850-nm lasers with temporally interrupted blood perfusion. The numerical results also showed that the variations in applicator sizes, laser powers, heating durations and temperature monitoring ranges significantly affected the shapes and sizes of the thermal damage zones. The shapes and sizes of the thermal damage zones can be optimized by selecting different applicator sizes, laser powers, heating duration times, temperature monitoring ranges, etc.
Thermal Inactivation Characteristics of Bacillus subtilis Spores at Ultrahigh Temperatures1
Edwards, J. L.; Busta, F. F.; Speck, M. L.
1965-01-01
The thermal inactivation characteristics of Bacillus subtilis A spores suspended in skim milk with the use of large-scale ultrahigh temperature (UHT) processing equipment were investigated in terms of survival as measured with two plating media. Data on survival immediately after UHT treatments were recorded in temperature-survivor curves, time-survivor curves, and decimal reduction time (DRT) curves. The temperature-survivor curves emphasized that inactivation is accelerated more by increases in the treatment temperature than by increases in the exposure time. Time-survivor curves and DRT curves were not linear. Generally, exceedingly concave time-survivor curves were observed with the standard plating medium; however, only slightly concave curves were observed when CaCl2 and sodium dipicolinate were added to the medium. For a given UHT sample, larger D values were obtained by use of the medium with the added CaCl2 and sodium dipicolinate. The DRT curves of all data were concave and appeared to have two discrete slopes (zD values). The zD values observed in the upper UHT range (above 260 F; 127 C) were twice those observed at lower test temperatures. PMID:4956036
The Charging of Dust Grains in the Inner Heliosheath
NASA Astrophysics Data System (ADS)
Avinash, K.; Slavin, J.; Zank, G. P.; Frisch, P.
2008-12-01
Equilibrium electric charge and surface potential on a dust grain in the heliosheath are calculated. The grain is charged due to heliosheath plasma flux, photo electrons flux, secondary electron emission flux and transmission flux. Realistically, the heliosheath plasma consists of solar electrons, solar wind ions [SWI] and pick up ions [PUI]. These species interact differently with TS and thus have different characteristics down stream in the heliosheath. The PUI suffer multiple reflections at TS and are accelerated to high energies in the range of ~ 106 K. The solar electrons, on the other hand, are heated adiabatically through the TS and have temperature in the range ~ 5x105 K. The SWI may have a smaller temperature typically in the range 1-5x104 K The density of electrons could be in the range ~5 x 10-4 cm-3, while the ratio of PUI to SWI density could range from 0.1 to 0.5. Taking into account these parameters, grain charging due to different plasma species and other fluxes mentioned earlier, is calculated. Our results show that (a) surface potential is very sensitive to electron temp. It goes through a maxima and for realistic values close to or less than 5x105 K it can be as big as 26V which is twice the value calculated by Kimura and Mann1. This may have implications for electrostatic disruption and the size distribution of dust particles in the heliosheath. With PUI density the surface potential increases about 10 to 20 %. Though temperature of PUI is significantly larger than that of electrons, it is not large enough to make up for the mass ratio of electrons to protons. On account small temperature and electron/proton mass ratio, the effect of SWI on dust charge is very weak. (1) H. Kimura and I. Mann, Ap.J. 499, 454 (1998).
NASA Technical Reports Server (NTRS)
Hwang, Eunsook S.; Copeland, Richard A.
1997-01-01
The temperature dependence of the collisional removal of O2 molecules in the upsilon = 9 level of the A(sup 3)Sigma(sup +)(sub u) electronic state has been studied for the colliders O2 and N2, over the temperature range 150 to 300 K. In a cooled flow cell, the output of a pulsed dye laser excites the O2 to the upsilon = 9 level of the A(sup 3)Sigma(sup +)(sub u) state, and the output of a time-delayed second laser monitors the temporal evolution of this level via a resonance-enhanced ionization. We find the u thermally averaged removal cross section for O2 collisions is constant (approx. 10 A(sup 2)) between room temperature and 200 K, then increases rapidly with decreasing temperature, doubling by 150 K. In contrast, the N2 cross section at 225 K is approx. 8% smaller and gradually increases to a value at 150 K that is approx. 60% larger than the room temperature value. The difference between the temperature dependence of the O2 and N2 collision cross section implies that the removal by oxygen becomes more important at the lower temperatures found in the mesosphere, but removal by N2 still dominates.
NASA Astrophysics Data System (ADS)
Sheng, Jie; Zhu, Qiaoming; Cao, Shijie; You, Yang
2017-05-01
This paper helps in study of the relationship between the photovoltaic power generation of large scale “fishing and PV complementary” grid-tied photovoltaic system and meteorological parameters, with multi-time scale power data from the photovoltaic power station and meteorological data over the same period of a whole year. The result indicates that, the PV power generation has the most significant correlation with global solar irradiation, followed by diurnal temperature range, sunshine hours, daily maximum temperature and daily average temperature. In different months, the maximum monthly average power generation appears in August, which related to the more global solar irradiation and longer sunshine hours in this month. However, the maximum daily average power generation appears in October, this is due to the drop in temperature brings about the improvement of the efficiency of PV panels. Through the contrast of monthly average performance ratio (PR) and monthly average temperature, it is shown that, the larger values of monthly average PR appears in April and October, while it is smaller in summer with higher temperature. The results concluded that temperature has a great influence on the performance ratio of large scale grid-tied PV power system, and it is important to adopt effective measures to decrease the temperature of PV plant properly.
NASA Astrophysics Data System (ADS)
Romano, S.
1992-01-01
The present paper considers a classical system, consisting of n-component unit vectors (n=2 or 3), associated with a one-dimensional lattice \\{uk||k∈openZ\\}, and interacting via a translationally invariant pair potential of the long-range, ferromagnetic and anisotropic form W=Wjk=-ɛ||j-k||-2(auj,nuk,n +b tsumλ
Elemental and cooperative diffusion in a liquid, supercooled liquid and glass resolved
NASA Astrophysics Data System (ADS)
Cassar, Daniel R.; Lancelotti, Ricardo F.; Nuernberg, Rafael; Nascimento, Marcio L. F.; Rodrigues, Alisson M.; Diz, Luiza T.; Zanotto, Edgar D.
2017-07-01
The diffusion mechanisms controlling viscous flow, structural relaxation, liquid-liquid phase separation, crystal nucleation, and crystal growth in multicomponent glass-forming liquids are of great interest and relevance in physics, chemistry, materials, and glass science. However, the diffusing entities that control each of these important dynamic processes are still unknown. The main objective of this work is to shed some light on this mystery, advancing the knowledge on this phenomenon. For that matter, we measured the crystal growth rates, the viscosity, and lead diffusivities in PbSiO3 liquid and glass in a wide temperature range. We compared our measured values with published data covering 16 orders of magnitude. We suggest that above a certain temperature range Td (1.2Tg-1.3Tg), crystal growth and viscous flow are controlled by the diffusion of silicon and lead. Below this temperature, crystal growth and viscous flow are more sluggish than the diffusion of silicon and lead. Therefore, Td marks the temperature where decoupling between the (measured) cationic diffusivity and the effective diffusivities calculated from viscosity and crystal growth rates occurs. We reasonably propose that the nature or size of the diffusional entities controlling viscous flow and crystal growth below Td is quite different; the slowest is the one controlling viscous flow, but both processes require cooperative movements of some larger structural units rather than jumps of only one or a few isolated atoms.
Erfani, Ehsan; Mitchell, David L.
2016-04-07
Here, ice particle mass- and projected area-dimension ( m- D and A- D) power laws are commonly used in the treatment of ice cloud microphysical and optical properties and the remote sensing of ice cloud properties. Although there has long been evidence that a single m- D or A- D power law is often not valid over all ice particle sizes, few studies have addressed this fact. This study develops self-consistent m- D and A- D expressions that are not power laws but can easily be reduced to power laws for the ice particle size (maximum dimension or D) rangemore » of interest, and they are valid over a much larger D range than power laws. This was done by combining ground measurements of individual ice particle m and D formed at temperature T < –20 °C during a cloud seeding field campaign with 2-D stereo (2D-S) and cloud particle imager (CPI) probe measurements of D and A, and estimates of m, in synoptic and anvil ice clouds at similar temperatures. The resulting m- D and A- D expressions are functions of temperature and cloud type (synoptic vs. anvil), and are in good agreement with m- D power laws developed from recent field studies considering the same temperature range (–60 °C < T < –20 °C).« less
Characteristics of fall chum salmon spawning habitat on a mainstem river in Interior Alaska
Burril, Sean E.; Zimmerman, Christian E.; Finn, James E.
2010-01-01
Chum salmon (Oncorhynchus keta) are the most abundant species of salmon spawning in the Yukon River drainage system, and they support important personal use, subsistence, and commercial fisheries. Chum salmon returning to the Tanana River in Interior Alaska are a significant contribution to the overall abundance of Yukon River chum salmon and an improved understanding of habitat use is needed to improve conservation of this important resource. We characterized spawning habitat of chum salmon using the mainstem Tanana River as part of a larger study to document spawning distributions and habitat use in this river. Areas of spawning activity were located using radiotelemetry and aerial helicopter surveys. At 11 spawning sites in the mainstem Tanana River, we recorded inter-gravel and surface-water temperatures and vertical hydraulic gradient (an indication of the direction of water flux) in substrate adjacent to salmon redds. At all locations, vertical hydraulic gradient adjacent to redds was positive, indicating that water was upwelling through the gravel. Inter-gravel temperatures adjacent to redds generally were warmer than surface water at most locations and were more stable than surface-water temperature. Inter-gravel water temperature adjacent to redds ranged from 2.6 to 5.8 degrees Celsius, whereas surface-water temperature ranged from greater than 0 to 5.5 degrees Celsius. Some sites were affected more by extremes in air temperature than others. At these sites, inter-gravel water temperature profiles were variable (with ranges similar to those observed in surface water), suggesting that even though upwelling habitats provide a stable thermal incubation environment, eggs and embryos still may be affected by extremes in air temperature. Fine sand and silt covered redds at multiple sites and were evidence of increased river flow during the winter months, which may be a potential source of increased mortality during egg-to-fry development. This study provides documentation of spawning by fall chum salmon and is the first study to continuously measure inter-gravel water temperature at sites in the mainstem Tanana River.
Experimental evaluation of the pressure and temperature dependence of ion-induced nucleation.
Munir, Muhammad Miftahul; Suhendi, Asep; Ogi, Takashi; Iskandar, Ferry; Okuyama, Kikuo
2010-09-28
An experimental system for the study of ion-induced nucleation in a SO(2)/H(2)O/N(2) gas mixture was developed, employing a soft x-ray at different pressure and temperature levels. The difficulties associated with these experiments included the changes in physical properties of the gas mixture when temperature and pressure were varied. Changes in the relative humidity (RH) as a function of pressure and temperature also had a significant effect on the different behaviors of the mobility distributions of particles. In order to accomplish reliable measurement and minimize uncertainties, an integrated on-line control system was utilized. As the pressure decreased in a range of 500-980 hPa, the peak concentration of both ions and nanometer-sized particles decreased, which suggests that higher pressure tended to enhance the growth of particles nucleated by ion-induced nucleation. Moreover, the modal diameters of the measured particle size distributions showed a systematic shift to larger sizes with increasing pressure. However, in the temperature range of 5-20 °C, temperature increases had no significant effects on the mobility distribution of particles. The effects of residence time, RH (7%-70%), and SO(2) concentration (0.08-6.7 ppm) on ion-induced nucleation were also systematically investigated. The results show that the nucleation and growth were significantly dependent on the residence time, RH, and SO(2) concentration, which is in agreement with both a previous model and previous observations. This research will be inevitable for a better understanding of the role of ions in an atmospheric nucleation mechanism.
NASA Technical Reports Server (NTRS)
Spencer, J. W., Jr.; Nur, A. M.
1976-01-01
A description is presented of an experimental assembly which has been developed to conduct concurrent measurements of compressional and shear wave velocities in rocks at high temperatures and confining pressures and with independent control of the pore pressure. The apparatus was used in studies of the joint effects of temperature, external confining pressure, and internal pore water on sonic velocities in Westerly granite. It was found that at a given temperature, confining pressure has a larger accelerating effect on compressional waves in dry rock, whereas at a given confining pressure, temperature has a larger retarding effect on shear waves.
Ozolina, Karlina; Shiels, Holly A; Ollivier, Hélène; Claireaux, Guy
2016-01-01
Abstract The European sea bass (Dicentrarchus labrax) is an economically important fish native to the Mediterranean and Northern Atlantic. Its complex life cycle involves many migrations through temperature gradients that affect the energetic demands of swimming. Previous studies have shown large intraspecific variation in swimming performance and temperature tolerance, which could include deleterious and advantageous traits under the evolutionary pressure of climate change. However, little is known of the underlying determinants of this individual variation. We investigated individual variation in temperature tolerance in 30 sea bass by exposing them to a warm temperature challenge test. The eight most temperature-tolerant and eight most temperature-sensitive fish were then studied further to determine maximal swimming speed (UCAT), aerobic scope and post-exercise oxygen consumption. Finally, ventricular contractility in each group was determined using isometric muscle preparations. The temperature-tolerant fish showed lower resting oxygen consumption rates, possessed larger hearts and initially recovered from exhaustive exercise faster than the temperature-sensitive fish. Thus, whole-animal temperature tolerance was associated with important performance traits. However, the temperature-tolerant fish also demonstrated poorer maximal swimming capacity (i.e. lower UCAT) than their temperature-sensitive counterparts, which may indicate a trade-off between temperature tolerance and swimming performance. Interestingly, the larger relative ventricular mass of the temperature-tolerant fish did not equate to greater ventricular contractility, suggesting that larger stroke volumes, rather than greater contractile strength, may be associated with thermal tolerance in this species. PMID:27382468
Ozolina, Karlina; Shiels, Holly A; Ollivier, Hélène; Claireaux, Guy
2016-01-01
The European sea bass (Dicentrarchus labrax) is an economically important fish native to the Mediterranean and Northern Atlantic. Its complex life cycle involves many migrations through temperature gradients that affect the energetic demands of swimming. Previous studies have shown large intraspecific variation in swimming performance and temperature tolerance, which could include deleterious and advantageous traits under the evolutionary pressure of climate change. However, little is known of the underlying determinants of this individual variation. We investigated individual variation in temperature tolerance in 30 sea bass by exposing them to a warm temperature challenge test. The eight most temperature-tolerant and eight most temperature-sensitive fish were then studied further to determine maximal swimming speed (U CAT), aerobic scope and post-exercise oxygen consumption. Finally, ventricular contractility in each group was determined using isometric muscle preparations. The temperature-tolerant fish showed lower resting oxygen consumption rates, possessed larger hearts and initially recovered from exhaustive exercise faster than the temperature-sensitive fish. Thus, whole-animal temperature tolerance was associated with important performance traits. However, the temperature-tolerant fish also demonstrated poorer maximal swimming capacity (i.e. lower U CAT) than their temperature-sensitive counterparts, which may indicate a trade-off between temperature tolerance and swimming performance. Interestingly, the larger relative ventricular mass of the temperature-tolerant fish did not equate to greater ventricular contractility, suggesting that larger stroke volumes, rather than greater contractile strength, may be associated with thermal tolerance in this species.
NASA Astrophysics Data System (ADS)
Chen, Chun-Yuan; Chou, Jung-Chuan; Chou, Hsueh-Tao
2009-04-01
In this paper, we present a novel sensitive ion-sensitive field-effect transistor (ISFET) membrane based on Ba0.7Sr0.3TiO3 (BST)/SiO2 fabricated by sputtering deposition. The proposed device exhibits a linear shift in acidic solutions in the pH range from 1 to 10. The device sensitivity was about 50-55 mV/pH for different deposition times. We also examined the trapping behavior of the surface hydrated layer using the metal-insulator-semiconductor (MIS) structure. Results show that the hydration layer gives rise to stress polarity dependence of electron injection when immersed in pH buffer solutions. Injection from the gate electrode produces larger positive charges and interface state densities in contrast to the substrate injection, which causes simultaneous positive and negative charge trapping. A physical model that quantitatively describes the asymmetry associated with the hydrated diffusion layer is presented, and the temperature effects of BST/SiO2 ISFET devices in the range from 25 to 65 °C were examined. We observed that pH sensitivity increases with increasing temperature. The temperature coefficient of sensitivity (TCS) can be divided into two different ranges: 0.08 mV/pH °C between 25 and 45 °C, and 0.57 mV/pH °C between 45 and 65 °C. A better thermal stability is produced in the 25 and 45 °C range in comparison with other sensitive layers.
Food web structure shaped by habitat size and climate across a latitudinal gradient.
Romero, Gustavo Q; Piccoli, Gustavo C O; de Omena, Paula M; Gonçalves-Souza, Thiago
2016-10-01
Habitat size and climate are known to affect the trophic structure and dynamics of communities, but their interactive effects are poorly understood. Organisms from different trophic levels vary in terms of metabolic requirements and heat dissipation. Indeed, larger species such as keystone predators require more stable climatic conditions than their prey. Likewise, habitat size disproportionally affects large-sized predators, which require larger home ranges and are thus restricted to larger habitats. Therefore, food web structure in patchy ecosystems is expected to be shaped by habitat size and climate variations. Here we investigate this prediction using natural aquatic microcosm (bromeliad phytotelmata) food webs composed of litter resources (mainly detritus), detritivores, mesopredators, and top predators (damselflies). We surveyed 240 bromeliads of varying sizes (water retention capacity) across 12 open restingas in SE Brazil spread across a wide range of tropical latitudes (-12.6° to -27.6°, ca. 2,000 km) and climates (Δ mean annual temperature = 5.3°C). We found a strong increase in predator-to-detritivore mass ratio with habitat size, which was representative of a typical inverted trophic pyramid in larger ecosystems. However, this relationship was contingent among the restingas; slopes of linear models were steeper in more stable and favorable climates, leading to inverted trophic pyramids (and top-down control) being more pronounced in environments with more favorable climatic conditions. By contrast, detritivore-resource and mesopredator-detritivore mass ratios were not affected by habitat size or climate variations across latitudes. Our results highlight that the combined effects of habitat size, climate and predator composition are pivotal to understanding the impacts of multiple environmental factors on food web structure and dynamics. © 2016 by the Ecological Society of America.
Impacts of warming revealed by linking resource growth rates with consumer functional responses.
West, Derek C; Post, David M
2016-05-01
Warming global temperatures are driving changes in species distributions, growth and timing, but much uncertainty remains regarding how climate change will alter species interactions. Consumer-Resource interactions in particular can be strongly impacted by changes to the relative performance of interacting species. While consumers generally gain an advantage over their resources with increasing temperatures, nonlinearities can change this relation near temperature extremes. We use an experimental approach to determine how temperature changes between 5 and 30 °C will alter the growth of the algae Scenedesmus obliquus and the functional responses of the small-bodied Daphnia ambigua and the larger Daphnia pulicaria. The impact of warming generally followed expectations, making both Daphnia species more effective grazers, with the increase in feeding rates outpacing the increases in algal growth rate. At the extremes of our temperature range, however, warming resulted in a decrease in Daphnia grazing effectiveness. Between 25 and 30 °C, both species of Daphnia experienced a precipitous drop in feeding rates, while algal growth rates remained high, increasing the likelihood of algal blooms in warming summer temperatures. Daphnia pulicaria performed significantly better at cold temperatures than D. ambigua, but by 20 °C, there was no significant difference between the two species, and at 25 °C, D. ambigua outperformed D. pulicaria. Warming summer temperatures will favour the smaller D. ambigua, but only over a narrow temperature range, and warming beyond 25 °C could open D. ambigua to invasion from tropical species. By fitting our results to temperature-dependent functions, we develop a temperature- and density-dependent model, which produces a metric of grazing effectiveness, quantifying the grazer density necessary to halt algal growth. This approach should prove useful for tracking the transient dynamics of other density-dependent consumer-resource interactions, such as agricultural pests and biological-control agents. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Influence of Surrounding Dielectrics on the Data Retention Time of Doped Sb2Te Phase Change Material
NASA Astrophysics Data System (ADS)
Jedema, Friso; in `t Zandt, Micha; Wolters, Rob; Gravesteijn, Dirk
2011-02-01
The crystallization properties of as-deposited and laser written amorphous marks of doped Sb2Te phase change material are found to be only dependent on the top dielectric layer. A ZnS:SiO2 top dielectric layer yields a higher crystallization temperature and a larger crystal growth activation energy as compared to a SiO2 top dielectric layer, leading to superior data retention times at ambient temperatures. The observed correlation between the larger crystallization temperatures and larger crystal growth activation energies indicates that the viscosity of the phase change material in the amorphous state is dependent on the interfacial energy between the phase change material and the top dielectric layer.
Larger Daphnia at lower temperature: a role for cell size and genome configuration?
Jalal, Marwa; Wojewodzic, Marcin W; Laane, Carl Morten M; Hessen, Dag O
2013-09-01
Experiments with Daphnia magna and Daphnia pulex raised at 10 and 20 °C yielded larger adult size at the lower temperature. This must reflect increased cell size, increased cell numbers, or a combination of both. As it is difficult to achieve good estimates on cell size in crustaceans, we, therefore, measured nucleus and genome size using flow cytometry at 10 and 20 °C. DNA was stained with propidium iodide, ethidium bromide, and DAPI. Both nucleus and genome size estimates were elevated at 10 °C compared with 20 °C, suggesting that larger body size at low temperature could partly be accredited to an enlarged nucleus and thus cell size. Confocal microscopy observations confirmed the staining properties of fluorochromes. As differences in nucleotide numbers in response of growth temperature within a life span is unlikely, these results seem accredited to changed DNA-fluorochrome binding properties, presumably reflecting increased DNA condensation at low temperature. This implies that genome size comparisons may be impacted by ambient temperature in ectotherms. It also suggests that temperature-induced structural changes in the genome could affect cell size and for some species even body size.
NASA Astrophysics Data System (ADS)
Lu, Xian; Chu, Xinzhao; Li, Haoyu; Chen, Cao; Smith, John A.; Vadas, Sharon L.
2017-09-01
We present the first statistical study of gravity waves with periods of 0.3-2.5 h that are persistent and dominant in the vertical winds measured with the University of Colorado STAR Na Doppler lidar in Boulder, CO (40.1°N, 105.2°W). The probability density functions of the wave amplitudes in temperature and vertical wind, ratios of these two amplitudes, phase differences between them, and vertical wavelengths are derived directly from the observations. The intrinsic period and horizontal wavelength of each wave are inferred from its vertical wavelength, amplitude ratio, and a designated eddy viscosity by applying the gravity wave polarization and dispersion relations. The amplitude ratios are positively correlated with the ground-based periods with a coefficient of 0.76. The phase differences between the vertical winds and temperatures (φW -φT) follow a Gaussian distribution with 84.2±26.7°, which has a much larger standard deviation than that predicted for non-dissipative waves ( 3.3°). The deviations of the observed phase differences from their predicted values for non-dissipative waves may indicate wave dissipation. The shorter-vertical-wavelength waves tend to have larger phase difference deviations, implying that the dissipative effects are more significant for shorter waves. The majority of these waves have the vertical wavelengths ranging from 5 to 40 km with a mean and standard deviation of 18.6 and 7.2 km, respectively. For waves with similar periods, multiple peaks in the vertical wavelengths are identified frequently and the ones peaking in the vertical wind are statistically longer than those peaking in the temperature. The horizontal wavelengths range mostly from 50 to 500 km with a mean and median of 180 and 125 km, respectively. Therefore, these waves are mesoscale waves with high-to-medium frequencies. Since they have recently become resolvable in high-resolution general circulation models (GCMs), this statistical study provides an important and timely reference for them.
Coccia, Cristina; Calosi, Piero; Boyero, Luz; Green, Andy J.; Bilton, David T.
2013-01-01
Background Trichocorixa verticalis verticalis, a native of North America, is the only alien corixid identified in Europe. First detected in 1997 in southern Portugal, it has spread into south-west Spain including Doñana National Park. Its impact on native taxa in the same area is unclear, but it is the dominant species in several permanent, saline wetlands. Methodology/Principal Findings We investigated whether the ecophysiology of this alien species favours its spread in the Iberian Peninsula and its relative success in saline areas. We compared physiological responses to heating (Critical Thermal maximum), cooling (Critical Thermal minimum) and freezing (Super Cooling Point) in the native Sigara lateralis and introduced T. v. verticalis acclimated to different temperatures and salinities. The larger S. lateralis generally outperformed T. v. verticalis and appeared to possess a broader thermal tolerance range. In both taxa, CTmax was highest in animals exposed to a combination of high conductivities and relatively low acclimation temperatures. However, CTmax was generally higher in T. v. verticalis and lower in S. lateralis when acclimated at higher temperatures. CTmin were lower (greater tolerance to cold) after acclimation to high conductivities in T. v. verticalis, and following acclimation to low conductivities in S. lateralis. Both acclimation temperature and conductivity influenced corixids' freezing tolerance; however, only in T. v. verticalis did SCP decrease after exposure to both high temperature and conductivity. T. v. verticalis showed a higher range of mean responses over all treatments. Conclusions Whilst the native S. lateralis may have a broader thermal range, the alien species performs particularly well at higher salinities and temperatures and this ability may facilitate its invasion in Mediterranean areas. The greater plasticity of T. v. verticalis may further facilitate its spread in the future, as it may be more able to respond to climate shifts than the native species. PMID:23690984
The Influence of pH on Prokaryotic Cell Size and Temperature
NASA Astrophysics Data System (ADS)
Sundararajan, D.; Gutierrez, F.; Heim, N. A.; Payne, J.
2015-12-01
The pH of a habitat is essential to an organism's growth and success in its environment. Although most organisms maintain a neutral internal pH, their environmental pH can vary greatly. However, little research has been done concerning an organism's environmental pH across a wide range of taxa. We studied pH tolerance in prokaryotes and its relationship with biovolume, taxonomic classification, and ideal temperature. We had three hypotheses: pH and temperature are not correlated; pH tolerance is similar within taxonomic groups; and extremophiles have small cell sizes. To test these hypotheses, we used pH, size, and taxonomic data from The Prokaryotes. We found that the mean optimum external pH was neutral for prokaryotes as a whole and when divided by domain, phylum, and class. Using ANOVA to test for pH within and among group variances, we found that variation of pH in domains, phyla, classes, and families was greater than between them. pH and size did not show much of a correlation, except that the largest and smallest sized prokaryotes had nearly neutral pH. This seems significant because extremophiles need to divert more of their energy from growth to maintain a neutral internal pH. Acidophiles showed a larger range of optimum pH values than alkaliphiles. A similar result was seen with the minimum and maximum pH values of acidophiles and alkaliphiles. While acidophiles were spread out and had some alkaline maximum values, alkaliphiles had smaller ranges, and unlike some acidophiles that had pH minimums close to zero, alkaliphile pH maximums did not go beyond a pH of 12. No statistically significant differences were found between sizes of acidophiles and alkaliphiles. However, optimum temperatures of acidophiles and alkaliphiles did have a statistically significant difference. pH and temperature had a negative correlation. Therefore, pH seems to have a correlation with cell size, temperature, and taxonomy to some extent.
NASA Astrophysics Data System (ADS)
Wang, Xiu-Xia
2016-02-01
By employing the generalized Hellmann-Feynman theorem, the quantization of mesoscopic complicated coupling circuit is proposed. The ensemble average energy, the energy fluctuation and the energy distribution are investigated at finite temperature. It is shown that the generalized Hellmann-Feynman theorem plays the key role in quantizing a mesoscopic complicated coupling circuit at finite temperature, and when the temperature is lower than the specific temperature, the value of (\\vartriangle {hat {H}})2 is almost zero and the values of
Facilitating adaptation in montane plants to changing precipitation along an elevation gradient
Hess, Steve; Leopold, Christina
2017-01-01
Montane plant communities throughout the world have responded to changes in precipitation and temperature regimes by shifting ranges upward in elevation. Continued warmer, drier climate conditions have been documented and are projected to increase in high-elevation areas in Hawai‘i, consistent with climate change effects reported in other environments throughout the world. Organisms that cannot disperse or adapt biologically to projected climate scenarios in situ may decrease in distributional range and abundance over time. Restoration efforts will need to accommodate future climate change and account for the interactive effects of existing invasive species to ensure long-term persistence. As part of a larger, ongoing restoration effort, we hypothesized that plants from a lower-elevation forest ecotype would have higher rates of survival and growth compared to high-elevation forest conspecifics when grown in common plots along an elevation gradient. We monitored climate conditions at planting sites to identify whether temperature or rainfall influenced survival and growth after 20 weeks. We found that origin significantly affected survival in only one of three native montane species, Dodonaea viscosa. Contrary to our hypothesis, 75.2% of seedlings from high-elevation origin survived in comparison to 58.7% of seedlings from low elevation across the entire elevation gradient. Origin also influenced survival in linearized mixed models that controlled for temperature, precipitation, and elevation in D. viscosa and Chenopodium oahuense. Only C. oahuense seedlings had similar predictors of growth and survival. There were no common patterns of growth or survival between species, indicating that responses to changing precipitation and emperature regimes varied between montane plant species. Results also suggest that locally sourced seed is important to ensure highest survival at restoration sites. Further experimentation on larger spatial and temporal scales is necessary to determine the empirical responses of species and communities to changing climate in the full context of highly degraded Hawaiian ecosystems.
NASA Astrophysics Data System (ADS)
White, S. M.; Iwai, K.; Phillips, N. M.; Hills, R. E.; Hirota, A.; Yagoubov, P.; Siringo, G.; Shimojo, M.; Bastian, T. S.; Hales, A. S.; Sawada, T.; Asayama, S.; Sugimoto, M.; Marson, R. G.; Kawasaki, W.; Muller, E.; Nakazato, T.; Sugimoto, K.; Brajša, R.; Skokić, I.; Bárta, M.; Kim, S.; Remijan, A. J.; de Gregorio, I.; Corder, S. A.; Hudson, H. S.; Loukitcheva, M.; Chen, B.; De Pontieu, B.; Fleishmann, G. D.; Gary, D. E.; Kobelski, A.; Wedemeyer, S.; Yan, Y.
2017-07-01
The Atacama Large Millimeter/submillimeter Array (ALMA) radio telescope has commenced science observations of the Sun starting in late 2016. Since the Sun is much larger than the field of view of individual ALMA dishes, the ALMA interferometer is unable to measure the background level of solar emission when observing the solar disk. The absolute temperature scale is a critical measurement for much of ALMA solar science, including the understanding of energy transfer through the solar atmosphere, the properties of prominences, and the study of shock heating in the chromosphere. In order to provide an absolute temperature scale, ALMA solar observing will take advantage of the remarkable fast-scanning capabilities of the ALMA 12 m dishes to make single-dish maps of the full Sun. This article reports on the results of an extensive commissioning effort to optimize the mapping procedure, and it describes the nature of the resulting data. Amplitude calibration is discussed in detail: a path that uses the two loads in the ALMA calibration system as well as sky measurements is described and applied to commissioning data. Inspection of a large number of single-dish datasets shows significant variation in the resulting temperatures, and based on the temperature distributions, we derive quiet-Sun values at disk center of 7300 K at λ = 3 mm and 5900 K at λ = 1.3 mm. These values have statistical uncertainties of about 100 K, but systematic uncertainties in the temperature scale that may be significantly larger. Example images are presented from two periods with very different levels of solar activity. At a resolution of about 25'', the 1.3 mm wavelength images show temperatures on the disk that vary over about a 2000 K range. Active regions and plages are among the hotter features, while a large sunspot umbra shows up as a depression, and filament channels are relatively cool. Prominences above the solar limb are a common feature of the single-dish images.
QCD equation of state with almost physical quark masses
NASA Astrophysics Data System (ADS)
Cheng, M.; Christ, N. H.; Datta, S.; van der Heide, J.; Jung, C.; Karsch, F.; Kaczmarek, O.; Laermann, E.; Mawhinney, R. D.; Miao, C.; Petreczky, P.; Petrov, K.; Schmidt, C.; Soeldner, W.; Umeda, T.
2008-01-01
We present results on the equation of state in QCD with two light quark flavors and a heavier strange quark. Calculations with improved staggered fermions have been performed on lattices with temporal extent Nτ=4 and 6 on a line of constant physics with almost physical quark mass values; the pion mass is about 220 MeV, and the strange quark mass is adjusted to its physical value. High statistics results on large lattices are obtained for bulk thermodynamic observables, i.e. pressure, energy and entropy density, at vanishing quark chemical potential for a wide range of temperatures, 140MeV≤T≤800MeV. We present a detailed discussion of finite cutoff effects which become particularly significant for temperatures larger than about twice the transition temperature. At these high temperatures we also performed calculations of the trace anomaly on lattices with temporal extent Nτ=8. Furthermore, we have performed an extensive analysis of zero temperature observables including the light and strange quark condensates and the static quark potential at zero temperature. These are used to set the temperature scale for thermodynamic observables and to calculate renormalized observables that are sensitive to deconfinement and chiral symmetry restoration and become order parameters in the infinite and zero quark mass limits, respectively.
Bita, Craita E.; Gerats, Tom
2013-01-01
Global warming is predicted to have a general negative effect on plant growth due to the damaging effect of high temperatures on plant development. The increasing threat of climatological extremes including very high temperatures might lead to catastrophic loss of crop productivity and result in wide spread famine. In this review, we assess the impact of global climate change on the agricultural crop production. There is a differential effect of climate change both in terms of geographic location and the crops that will likely show the most extreme reductions in yield as a result of expected extreme fluctuations in temperature and global warming in general. High temperature stress has a wide range of effects on plants in terms of physiology, biochemistry and gene regulation pathways. However, strategies exist to crop improvement for heat stress tolerance. In this review, we present recent advances of research on all these levels of investigation and focus on potential leads that may help to understand more fully the mechanisms that make plants tolerant or susceptible to heat stress. Finally, we review possible procedures and methods which could lead to the generation of new varieties with sustainable yield production, in a world likely to be challenged both by increasing population, higher average temperatures and larger temperature fluctuations. PMID:23914193
Bita, Craita E; Gerats, Tom
2013-01-01
Global warming is predicted to have a general negative effect on plant growth due to the damaging effect of high temperatures on plant development. The increasing threat of climatological extremes including very high temperatures might lead to catastrophic loss of crop productivity and result in wide spread famine. In this review, we assess the impact of global climate change on the agricultural crop production. There is a differential effect of climate change both in terms of geographic location and the crops that will likely show the most extreme reductions in yield as a result of expected extreme fluctuations in temperature and global warming in general. High temperature stress has a wide range of effects on plants in terms of physiology, biochemistry and gene regulation pathways. However, strategies exist to crop improvement for heat stress tolerance. In this review, we present recent advances of research on all these levels of investigation and focus on potential leads that may help to understand more fully the mechanisms that make plants tolerant or susceptible to heat stress. Finally, we review possible procedures and methods which could lead to the generation of new varieties with sustainable yield production, in a world likely to be challenged both by increasing population, higher average temperatures and larger temperature fluctuations.
Physical characterization of dibasic calcium phosphate dihydrate and anhydrate.
Miyazaki, Tamaki; Sivaprakasam, Kannan; Tantry, Jaidev; Suryanarayanan, Raj
2009-03-01
The dehydration of different commercial brands of dibasic calcium phosphate dihydrate (DCPD; CaHPO(4).2H(2)O) was examined over a range of temperatures and water vapor pressures. To determine the main factors affecting the physical stability of DCPD, the baseline characterization of DCPD and dibasic calcium phosphate anhydrate (DCPA; CaHPO(4)) was conducted by thermogravimetric analysis, differential scanning calorimetry and X-ray diffractometry. The surface area and the DCPA content (present as an impurity) depended on the commercial source of DCPD. The larger particles contained a higher concentration of DCPA and the anhydrate exhibited a concentration-dependent acceleratory effect on the dehydration of DCPD. Unlike DCPD, DCPA is physically stable and resisted hydration even when dispersed in water for over 7 months in the temperature range of 4-50 degrees C. In dosage forms containing DCPD, there is a potential for phase transformation to DCPA, while the reverse transition, that is, DCPA --> DCPD appears to be extremely unlikely. Thus, the risk of physical transformation can be minimized by using DCPA in formulations. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association
Nucleophilic substitution rates and solubilities for methyl halides in seawater
NASA Astrophysics Data System (ADS)
Elliott, Scott; Rowland, F. Sherwood
1993-06-01
Ozone depletion potentials indicate that methyl bromide is among halogen containing gases which may be scheduled for international level regulation. The oceanic component of its global budget is currently unquantifiable because of a lack of surface seawater measurements. Given values for internal removal and for solubility, marine mixed layer modelling can set bounds for air-sea transfer. Rate constants have been measured in seawater, 0.5m NaCl and distilled water for attack on methyl bromide by the chief oceanic nucleophiles chloride ion and H2O, over much of the oceanographic temperature range (0°C to 22°C). Henry's Law constants have been determined for the same conditions. All results are consistent with classical aqueous phase research adjusted for ionic strength effects. The lifetime of methyl bromide with respect to chemical decay in seawater is three weeks at average surface temperatures, and a factor of ten larger and smaller at the extremes. Its dimensionless solubility ranges from 0.1 to 0.3. Analogous experiments are reported for the other natural methyl halides, CH3Cl and CH3I.
NASA Technical Reports Server (NTRS)
Poultney, S.; Chen, D.; Steinberg, G.; Wu, F.; Pires, A.; Miller, M. D.; Mcnally, M.
1980-01-01
Initial operation of the tunable diode lasers (TDL) showed that it was not possible to adjust the wavenumber to one selected a priori in the TDL tuning range. During operation, the operating point would change by 0.1/cm over the longer term with even larger changes occurring during some thermal cycles. Most changes during thermal cycling required using lower temperatures and higher currents to reach the former wavenumber (when it could be reached). In many cases, an operating point could be selected by changing TDL current and temperature to give both the desired wavenumber and most of the power in a single mode. The selection procedure had to be used after each thermal cycling. Wavenumber nonlinearities of about 10% over a 0.5 cm tuning range were observed. Diagnostics of the single mode selected by a grating monochromator showed wavenumber fine structure under certain operating conditions. The characteristics due to the TDL environment included short term wavenumber stability, the instrument lineshape function, and intermediate term wavenumber stability.
Colossal magnetic phase transition asymmetry in mesoscale FeRh stripes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhlir, V.; Arregi, J. A.; Fullerton, E. E.
Coupled order parameters in phase-transition materials can be controlled using various driving forces such as temperature, magnetic and electric field, strain, spin-polarized currents and optical pulses. Tuning the material properties to achieve efficient transitions would enable fast and low-power electronic devices. Here we show that the first-order metamagnetic phase transition in FeRh films becomes strongly asymmetric in mesoscale structures. In patterned FeRh stripes we observed pronounced supercooling and an avalanche-like abrupt transition from the ferromagnetic to the antiferromagnetic phase, while the reverse transition remains nearly continuous over a broad temperature range. Although modest asymmetry signatures have been found in FeRhmore » films, the effect is dramatically enhanced at the mesoscale. The activation volume of the antiferromagnetic phase is more than two orders of magnitude larger than typical magnetic heterogeneities observed in films. Finally, the collective behaviour upon cooling results from the role of long-range ferromagnetic exchange correlations that become important at the mesoscale and should be a general property of first-order metamagnetic phase transitions.« less
Colossal magnetic phase transition asymmetry in mesoscale FeRh stripes
Uhlir, V.; Arregi, J. A.; Fullerton, E. E.
2016-10-11
Coupled order parameters in phase-transition materials can be controlled using various driving forces such as temperature, magnetic and electric field, strain, spin-polarized currents and optical pulses. Tuning the material properties to achieve efficient transitions would enable fast and low-power electronic devices. Here we show that the first-order metamagnetic phase transition in FeRh films becomes strongly asymmetric in mesoscale structures. In patterned FeRh stripes we observed pronounced supercooling and an avalanche-like abrupt transition from the ferromagnetic to the antiferromagnetic phase, while the reverse transition remains nearly continuous over a broad temperature range. Although modest asymmetry signatures have been found in FeRhmore » films, the effect is dramatically enhanced at the mesoscale. The activation volume of the antiferromagnetic phase is more than two orders of magnitude larger than typical magnetic heterogeneities observed in films. Finally, the collective behaviour upon cooling results from the role of long-range ferromagnetic exchange correlations that become important at the mesoscale and should be a general property of first-order metamagnetic phase transitions.« less
Nonthermal response of YBa2Cu3O7-δ thin films to picosecond THz pulses
NASA Astrophysics Data System (ADS)
Probst, P.; Semenov, A.; Ries, M.; Hoehl, A.; Rieger, P.; Scheuring, A.; Judin, V.; Wünsch, S.; Il'in, K.; Smale, N.; Mathis, Y.-L.; Müller, R.; Ulm, G.; Wüstefeld, G.; Hübers, H.-W.; Hänisch, J.; Holzapfel, B.; Siegel, M.; Müller, A.-S.
2012-05-01
The photoresponse of YBa2Cu3O7-δ thin film microbridges with thicknesses between 15 and 50 nm was studied in the optical and terahertz frequency range. The voltage transients in response to short radiation pulses were recorded in real time with a resolution of a few tens of picoseconds. The bridges were excited by either femtosecond pulses at a wavelength of 0.8 μm or broadband (0.1-1.5 THz) picosecond pulses of coherent synchrotron radiation. The transients in response to optical radiation are qualitatively well explained in the framework of the two-temperature model with a fast component in the picosecond range and a bolometric nanosecond component whose decay time depends on the film thickness. The transients in the THz regime showed no bolometric component and had amplitudes up to three orders of magnitude larger than the two-temperature model predicts. Additionally THz field-dependent transients in the absence of DC bias were observed. We attribute the response in the THz regime to a rearrangement of vortices caused by high-frequency currents.
NASA Astrophysics Data System (ADS)
Y, Yusnenti F. M.; M, Othman; Mustapha, Mazli; I, MohdYusri
2016-02-01
A new Silicanizing process on formation of coating on mild steel using Tronoh Silica Sand (TSS) is presented. The process was performed in the temperature range 1000- 1100°C and with varying deposition time of 1-4 hours. Influence of the layer and the substrate constituents on the coating compatibility of the whole silicanized layer is described in detail. Morphology and structure of the silicanized layer were investigated by XRF, XRD and SEM. It is observed that diffusion coatings containing high concentrations of silica which profile distribution of SiO2 in the silicanized layer was encountered and the depth from the surface to the substrate was taken as the layer thickness. The results also depicted that a longer deposition time have tendency to produce a looser and larger grain a hence rougher layer. The silicanized layer composed of FeSi and Fe2SiO4 phases with preferred orientation within the experimental range. It is also found that longer deposition time and higher temperature resulted in an increase in SiO2 concentration on the substrate (mild steel).
NASA Astrophysics Data System (ADS)
Pančić, M.; Hansen, P. J.; Tammilehto, A.; Lundholm, N.
2015-07-01
The effects of ocean acidification and increased temperature on physiology of six strains of the polar diatom Fragilariopsis cylindrus from Greenland were investigated. Experiments were performed under manipulated pH levels (8.0, 7.7, 7.4, and 7.1) and different temperatures (1, 5, and 8 °C) to simulate changes from present to plausible future levels. Each of the 12 scenarios was run for 7 days, and a significant interaction between temperature and pH on growth was detected. By combining increased temperature and acidification, the two factors counterbalanced each other, and therefore no effect on the growth rates was found. However, the growth rates increased with elevated temperatures by ~ 20-50 % depending on the strain. In addition, a general negative effect of increasing acidification on growth was observed. At pH 7.7 and 7.4, the growth response varied considerably among strains. However, a more uniform response was detected at pH 7.1 with most of the strains exhibiting reduced growth rates by 20-37 % compared to pH 8.0. It should be emphasized that a significant interaction between temperature and pH was found, meaning that the combination of the two parameters affected growth differently than when considering one at a time. Based on these results, we anticipate that the polar diatom F. cylindrus will be unaffected by changes in temperature and pH within the range expected by the end of the century. In each simulated scenario, the variation in growth rates among the strains was larger than the variation observed due to the whole range of changes in either pH or temperature. Climate change may therefore not affect the species as such, but may lead to changes in the population structure of the species, with the strains exhibiting high phenotypic plasticity, in terms of temperature and pH tolerance towards future conditions, dominating the population.
NASA Astrophysics Data System (ADS)
Pančić, M.; Hansen, P. J.; Tammilehto, A.; Lundholm, N.
2015-03-01
The effects of ocean acidification and increased temperature on physiology of six strains of the polar diatom Fragilariopsis cylindrus from Greenland were investigated. Experiments were performed under manipulated pH levels (8.0, 7.7, 7.4, and 7.1) and different temperatures (1, 5 and 8 °C) to simulate changes from present to plausible future levels. Each of the 12 scenarios was run for 7 days, and a significant interaction between temperature and pH on growth was detected. By combining increased temperature and acidification, the two factors counterbalanced each other, and therefore no effect on the growth rates was found. However, the growth rates increased with elevated temperatures by ∼20-50% depending on the strain. In addition, a general negative effect of increasing acidification on growth was observed. At pH 7.7 and 7.4, the growth response varied considerably among strains. However, a more uniform response was detected at pH 7.1 with most of the strains exhibiting reduced growth rates by 20-37% compared to pH 8.0. It should be emphasized that a significant interaction between temperature and pH was found, meaning that the combination of the two parameters affected growth differently than when considering one at a time. Based on these results, we anticipate that the polar diatom F. cylindrus will be unaffected by changes in temperature and pH within the range expected by the end of the century. In each simulated scenario, the variation in growth rates among the strains was larger than the variation observed due to the whole range of changes in either pH or temperature. Climate change may therefore not affect the species as such, but may lead to changes in the population structure of the species, with the strains exhibiting high phenotypic plasticity, in terms of temperature and pH tolerance towards future conditions, dominating the population.
Comparison of transport properties models for numerical simulations of Mars entry vehicles
NASA Astrophysics Data System (ADS)
Hao, Jiaao; Wang, Jingying; Gao, Zhenxun; Jiang, Chongwen; Lee, Chunhian
2017-01-01
Effects of two different models for transport properties, including the approximate model and the collision integral model, on hypersonic flow simulations of Mars entry vehicles are numerically investigated. A least square fitting is firstly performed using the best-available data of collision integrals for Martian atmosphere species within the temperature range of 300-20,000 K. Then, the performance of these two transport properties models are compared for an equilibrium Martian atmosphere gas mixture at 10 kPa and temperatures ranging from 1000 to 10,000 K. Finally, four flight conditions chosen from the trajectory of the Mars Pathfinder entry vehicle are numerically simulated. It is indicated that the approximate model is capable of accurately providing the distributions of species mass fractions and temperatures in the flowfield. Both models give similar translational-rotational and vibrational heat fluxes. However, the chemical diffusion heat fluxes predicted by the approximate model are significantly larger than the results computed by the collision integral model, particularly in the vicinity of the forebody stagnation point, whose maximum relative error of 15% for the super-catalytic case. The diffusion model employed in the approximate model is responsible to the discrepancy. In addition, the wake structure is largely unaffected by the transport properties models.
Tavagnacco, Letizia; Gerelli, Yuri; Cesàro, Attilio; Brady, John W
2016-09-22
The dynamical and structural properties of caffeine solutions at the solubility limit have been investigated as a function of temperature by means of MD simulations, static and dynamic light scattering, and small angle neutron scattering experiments. A clear picture unambiguously supported by both experiment and simulation emerges: caffeine self-aggregation promotes the formation of two distinct types of clusters: linear aggregates of stacked molecules, formed by 2-14 caffeine molecules depending on the thermodynamic conditions and disordered branched aggregates with a size in the range 1000-3000 Å. While the first type of association is well-known to occur under room temperature conditions for both caffeine and other purine systems, such as nucleotides, the presence of the supramolecular aggregates has not been reported previously. MD simulations indicate that branched structures are formed by caffeine molecules in a T-shaped arrangement. An increase of the solubility limit (higher temperature but also higher concentration) broadens the distribution of cluster sizes, promoting the formation of stacked aggregates composed by a larger number of caffeine molecules. Surprisingly, the effect on the branched aggregates is rather limited. Their internal structure and size do not change considerably in the range of solubility limits investigated.
NASA Astrophysics Data System (ADS)
Mitsuya, Takuro; Takahashi, Kyohei; Nagashima, Kazushige
2014-09-01
"Storm glass" is a hermetically sealed glass tube containing a solution of camphor. In 19th-century England, the pattern and quantity of the crystals were observed and interpreted as a weather forecasting tool. In the present study, the appearance of camphor crystals under cyclic temperature change was studied in three sample solutions, the storm glass solution (quinary system), camphor-ethanol-water (ternary system), and camphor-ethanol (binary system), to elucidate the effect of components in the storm glass on the appearance of camphor crystals. Equilibrium temperatures of camphor crystals as a function of the camphor concentration were also obtained to estimate the quantity of camphor crystals precipitated in the solutions. During the temperature cycles, the crystal height increased and decreased. The ranges (local maxima and minima) of crystal heights gradually decreased to approximately a constant range. Not only the crystal height but also the amplitude of the height variation in the quinary and ternary systems were much larger than those in the binary system, although the estimated weights of crystals precipitated in the quinary and ternary systems were smaller than that in the binary system. This fact resulted from the formation of dendrites in the quinary and ternary systems, which caused high porosity of sedimented crystals.
Zhou, Liming; Dickinson, Robert E.; Tian, Yuhong; Vose, Russell S.; Dai, Yongjiu
2007-01-01
Increased clouds and precipitation normally decrease the diurnal temperature range (DTR) and thus have commonly been offered as explanation for the trend of reduced DTR observed for many land areas over the last several decades. Observations show, however, that the DTR was reduced most in dry regions and especially in the West African Sahel during a period of unprecedented drought. Furthermore, the negative trend of DTR in the Sahel appears to have stopped and may have reversed after the rainfall began to recover. This study develops a hypothesis with climate model sensitivity studies showing that either a reduction in vegetation cover or a reduction in soil emissivity would reduce the DTR by increasing nighttime temperature through increased soil heating and reduced outgoing longwave radiation. Consistent with empirical analyses of observational data, our results suggest that vegetation removal and soil aridation would act to reduce the DTR during periods of drought and human mismanagement over semiarid regions such as the Sahel and to increase the DTR with more rainfall and better human management. Other mechanisms with similar effects on surface energy balance, such as increased nighttime downward longwave radiation due to increased greenhouse gases, aerosols, and clouds, would also be expected to have a larger impact on DTR over drier regions. PMID:17986620
Satellite observations of surface temperature during the March 2015 total solar eclipse.
Good, Elizabeth
2016-09-28
The behaviour of remotely sensed land surface temperatures (LSTs) from the spinning-enhanced visible and infrared imager (SEVIRI) during the total solar eclipse of 20 March 2015 is analysed over Europe. LST is found to drop by up to several degrees Celcius during the eclipse, with the minimum LST occurring just after the eclipse mid-point (median=+1.5 min). The drop in LST is typically larger than the drop in near-surface air temperatures reported elsewhere, and correlates with solar obscuration (r=-0.47; larger obscuration = larger LST drop), eclipse duration (r=-0.62; longer duration = larger LST drop) and time (r=+0.37; earlier eclipse = larger LST drop). Locally, the LST drop is also correlated with vegetation (up to r=+0.6), with smaller LST drops occurring over more vegetated surfaces. The LSTs at locations near the coast and at higher elevation are also less affected by the eclipse. This study covers the largest area and uses the most observations of eclipse-induced surface temperature drops to date, and is the first full characterization of satellite LST during an eclipse (known to the author). The methods described could be applied to Geostationary Operational Environmental Satellite (GOES) LST data over North America during the August 2017 total solar eclipse.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Author(s).
Satellite observations of surface temperature during the March 2015 total solar eclipse
2016-01-01
The behaviour of remotely sensed land surface temperatures (LSTs) from the spinning-enhanced visible and infrared imager (SEVIRI) during the total solar eclipse of 20 March 2015 is analysed over Europe. LST is found to drop by up to several degrees Celcius during the eclipse, with the minimum LST occurring just after the eclipse mid-point (median=+1.5 min). The drop in LST is typically larger than the drop in near-surface air temperatures reported elsewhere, and correlates with solar obscuration (r=−0.47; larger obscuration = larger LST drop), eclipse duration (r=−0.62; longer duration = larger LST drop) and time (r=+0.37; earlier eclipse = larger LST drop). Locally, the LST drop is also correlated with vegetation (up to r=+0.6), with smaller LST drops occurring over more vegetated surfaces. The LSTs at locations near the coast and at higher elevation are also less affected by the eclipse. This study covers the largest area and uses the most observations of eclipse-induced surface temperature drops to date, and is the first full characterization of satellite LST during an eclipse (known to the author). The methods described could be applied to Geostationary Operational Environmental Satellite (GOES) LST data over North America during the August 2017 total solar eclipse. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550764
Triple-α reaction rate constrained by stellar evolution models
NASA Astrophysics Data System (ADS)
Suda, Takuma; Hirschi, Raphael; Fujimoto, Masayuki Y.
2012-11-01
We investigate the quantitative constraint on the triple-α reaction rate based on stellar evolution theory, motivated by the recent significant revision of the rate proposed by nuclear physics calculations. Targeted stellar models were computed in order to investigate the impact of that rate in the mass range of 0.8<=M/Msolar<=25 and in the metallicity range between Z = 0 and Z = 0.02. The revised rate has a significant impact on the evolution of low-and intermediate-mass stars, while its influence on the evolution of massive stars (M > 10Msolar) is minimal. We find that employing the revised rate suppresses helium shell flashes on AGB phase for stars in the initial mass range 0.8<=M/Msolar<=6, which is contradictory to what is observed. The absence of helium shell flashes is due to the weak temperature dependence of the revised triple-α reaction cross section at the temperature involved. In our models, it is suggested that the temperature dependence of the cross section should have at least ν > 10 at T = 1-1.2×108K where the cross section is proportional to Tν. We also derive the helium ignition curve to estimate the maximum cross section to retain the low-mass first red giants. The semi-analytically derived ignition curves suggest that the reaction rate should be less than ~ 10-29 cm6 s-1 mole-2 at ~ 107.8 K, which corresponds to about three orders of magnitude larger than that of the NACRE compilation.
A survey of eight hot Jupiters in secondary eclipse using WIRCam at CFHT
NASA Astrophysics Data System (ADS)
Martioli, Eder; Colón, Knicole D.; Angerhausen, Daniel; Stassun, Keivan G.; Rodriguez, Joseph E.; Zhou, George; Gaudi, B. Scott; Pepper, Joshua; Beatty, Thomas G.; Tata, Ramarao; James, David J.; Eastman, Jason D.; Wilson, Paul Anthony; Bayliss, Daniel; Stevens, Daniel J.
2018-03-01
We present near-infrared high-precision photometry for eight transiting hot Jupiters observed during their predicted secondary eclipses. Our observations were carried out using the staring mode of the WIRCam instrument on the Canada-France-Hawaii Telescope (CFHT). We present the observing strategies and data reduction methods which delivered time series photometry with statistical photometric precision as low as 0.11 per cent. We performed a Bayesian analysis to model the eclipse parameters and systematics simultaneously. The measured planet-to-star flux ratios allowed us to constrain the thermal emission from the day side of these hot Jupiters, as we derived the planet brightness temperatures. Our results combined with previously observed eclipses reveal an excess in the brightness temperatures relative to the blackbody prediction for the equilibrium temperatures of the planets for a wide range of heat redistribution factors. We find a trend that this excess appears to be larger for planets with lower equilibrium temperatures. This may imply some additional sources of radiation, such as reflected light from the host star and/or thermal emission from residual internal heat from the formation of the planet.
Rai, Neeraj; Maginn, Edward J
2012-01-01
Atomistic Monte Carlo simulations are used to compute vapour-liquid coexistence properties of a homologous series of [C(n)mim][NTf2] ionic liquids, with n = 1, 2, 4, 6. Estimates of the critical temperatures range from 1190 K to 1257 K, with longer cation alkyl chains serving to lower the critical temperature. Other quantities such as critical density, critical pressure, normal boiling point, and accentric factor are determined from the simulations. Vapour pressure curves and the temperature dependence of the enthalpy of vapourisation are computed and found to have a weak dependence on the length of the cation alkyl chain. The ions in the vapour phase are predominately in single ion pairs, although a significant number of ions are found in neutral clusters of larger sizes as temperature is increased. It is found that previous estimates of the critical point obtained from extrapolating experimental surface tension data agree reasonably well with the predictions obtained here, but group contribution methods and primitive models of ionic liquids do not capture many of the trends observed in the present study
Nielsen, Matthew E; Papaj, Daniel R
2015-01-01
Ectotherms increase in size dramatically during development, and this growth should have substantial effects on their body temperature and ability to thermoregulate. To better understand how this change in size affects temperature, we examined the direct effects of body size on body temperature in Battus philenor caterpillars, and also how body size affects both the expression and effectiveness of thermal refuge-seeking, a thermoregulatory behavior. Field studies of both live caterpillars and physical operative temperature models indicated that caterpillar body temperature increases with body size. The operative temperature models also showed that thermal refuges have a greater cooling effect for larger caterpillars, while a laboratory study found that larger caterpillars seek refuges at a lower temperature. Although the details may vary, similar connections between developmental growth, temperature, and thermoregulation should be common among ectotherms and greatly affect both their development and thermal ecology.
Resistance of a northwestern crayfish, Pacifastacus leniusculus (Dana), to elevated temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, C.D.; Genoway, R.G.; Merrill, J.A.
1975-04-01
Pacifastacus leniusculus from two populations in Washington State, the central Columbia River and a small tributary, were acclimated at 5/sup 0/C intervals and exposed to elevated temperatures in 48 hour thermal bioassays. The upper lethal temperature for both crayfish populations increased relatively slightly, from about 28.5 to 31.5/sup 0/C, over the entire acclimation range. A rise of 1/sup 0/C in test temperature often represented the difference between zero and total mortality when lethal limits were approached. The ultimate upper lethal temperature was near 32 to 33/sup 0/C. Statistically significant differences in thermal resistance patterns (slope and spacing of regression lines)more » occurred between the two crayfish populations at all acclimation levels, but resistance in terms of eventual mortality was similar for practical purposes. Moulting individuals were particularly susceptible to high temperature stress. Mature, pre-breeding female crayfish from the Columbia River during fall appeared less resistant, and egg-bearing females during winter more resistant, than other individuals. Larger crayfish from the Columbia River were slightly less resistant to elevated temperatures than smaller ones, and females were more resistant than males. The upper temperature triangle for P. leniusculus encompasses an area of 424/sup 0/C/sup 2/. This freshwater decapod is more tolerant of elevated temperatures than native salmonids, but less tolerant than some introduced ''warmwater'' fish.« less
Molecular dynamics equation of state for nonpolar geochemical fluids
NASA Astrophysics Data System (ADS)
Duan, Zhenhao; Møller, Nancy; Wears, John H.
1995-04-01
Remarkable agreement between molecular dynamics simulations and experimental measurements has been obtained for methane for a large range of intensive variables, including those corresponding to liquid/vapor coexistence. Using a simple Lennard-Jones potential the simulations not only predict the PVT properties up to 2000°C and 20,000 bar with errors less than 1.5%, but also reproduce phase equilibria well below 0°C with accuracy close to experiment. This two-parameter molecular dynamics equation of state (SOS) is accurate for a much larger range of temperatures and pressures than our previously published EOS with a total fifteen parameters or that of Angus et al. (1978) with thirty-three parameters. By simple scaling, it is possible to predict PVT and phase equilibria of other nonpolar and weakly polar species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fokidis, H.B., T.S. Risch and T.C. Glenn
Factors underlying the evolution of female-biased sexual size dimorphism in mammals are poorly understood. In an effort to better understand these factors we tested whether larger female southern flying squirrels, Glaucomys volans, gained reproductive advantages (larger litters or more male mates) and direct resource benefits, such as larger home ranges or access to more food (i.e. mast-producing trees). As dimorphism can vary with age in precocial breeding species, we compared females during their first reproduction and during a subsequent breeding attempt. Females were not significantly larger or heavier than males at first reproduction, but became about 7% heavier and 22%more » larger than males at subsequent breeding. Larger females produced larger litters and had home ranges containing a greater proportion of upland hardwood trees. Female body size was not associated with either multiple male mating or home range size, but females with larger home ranges had higher indexes of body condition. Females in precocial breeding flying squirrels initiate reproduction before sexual size dimorphism is evident, and thus, may be allocating resources to both reproduction and growth simultaneously, or delaying growth entirely. Larger females produce more pups and have access to more food resources. Thus, selection for increased female size may partly explain how female-biased sexual size dimorphism is maintained in this species.« less
NASA Astrophysics Data System (ADS)
Voisin, Guillaume; Mottez, Fabrice; Bonazzola, Silvano
2018-02-01
Electron-positron pair production by collision of photons is investigated in view of application to pulsar physics. We compute the absorption rate of individual gamma-ray photons by an arbitrary anisotropic distribution of softer photons, and the energy and angular spectrum of the outgoing leptons. We work analytically within the approximation that 1 ≫ mc2/E > ɛ/E, with E and ɛ the gamma-ray and soft-photon maximum energy and mc2 the electron mass energy. We give results at leading order in these small parameters. For practical purposes, we provide expressions in the form of Laurent series which give correct reaction rates in the isotropic case within an average error of ˜ 7 per cent. We apply this formalism to gamma-rays flying downward or upward from a hot neutron star thermally radiating at a uniform temperature of 106 K. Other temperatures can be easily deduced using the relevant scaling laws. We find differences in absorption between these two extreme directions of almost two orders of magnitude, much larger than our error estimate. The magnetosphere appears completely opaque to downward gamma-rays while there are up to ˜ 10 per cent chances of absorbing an upward gamma-ray. We provide energy and angular spectra for both upward and downward gamma-rays. Energy spectra show a typical double peak, with larger separation at larger gamma-ray energies. Angular spectra are very narrow, with an opening angle ranging from 10-3 to 10-7 radians with increasing gamma-ray energies.
NASA Astrophysics Data System (ADS)
Sazali, N. E. S.; Deraman, M.; Omar, R.; Othman, M. A. R.; Suleman, M.; Shamsudin, S. A.; Tajuddin, N. S. M.; Hanappi, M. F. Y. M.; Hamdan, E.; Nor, N. S. M.; Basri, N. H.
2016-11-01
In this study, we report the preparation of turbostratic-carbon/graphene from biomass amylose film by carbonization (N2 gas) and activation (CO2 gas) over different temperatures 600, 700, 800, 900, and 1000 °C, respectively. The Raman spectroscopy results of the produced samples show that the values of the ID/IG ratio ranging from 0.75 to 0.99 are comparable to that of the commercial multilayer graphene and KOH treated multilayer graphene. The X-ray diffraction results of the produced samples show that a small decrease in the d002 (˜0.62 %) and d100 (˜0.57 %) values and a larger decrease in Lc (˜8.6 %) and La (˜27.2 %) values occurs as the carbonization and activation temperature increases, indicating that the increase in temperature has an effect on the growth of microcrystallites during carbonization and activation. This study demonstrates the potential of the amylose film to be used as a precursor for producing graphene flakes.
Structure, dynamics, and thermodynamics of a family of potentials with tunable softness
NASA Astrophysics Data System (ADS)
Shi, Zane; Debenedetti, Pablo G.; Stillinger, Frank H.; Ginart, Paul
2011-08-01
We investigate numerically the structure, thermodynamics, and relaxation behavior of a family of (n, 6) Lennard-Jones-like glass-forming binary mixtures interacting via pair potentials with variable softness, fixed well depth, and fixed well depth location. These constraints give rise to progressively more negative attractive tails upon softening, for separations greater than the potential energy minimum. Over the range of conditions examined, we find only modest dependence of structure on softness. In contrast, decreasing the repulsive exponent from n = 12 to n = 7 causes the diffusivity to increase by as much as two orders of magnitude at fixed temperature and density, and produces mechanically stable packings (inherent structures) with cohesive energies that are, on average, ˜1.7 well depths per particle larger than for the corresponding Lennard-Jones (n = 12) case. The softer liquids have markedly higher entropies and lower Kauzmann temperatures than their Lennard-Jones (n = 12) counterparts, and they remain diffusive down to appreciably lower temperatures. We find that softening leads to a modest increase in fragility.
Thermal Quantum Discord and Super Quantum Discord Teleportation Via a Two-Qubit Spin-Squeezing Model
NASA Astrophysics Data System (ADS)
Ahadpour, S.; Mirmasoudi, F.
2018-04-01
We study thermal quantum correlations (quantum discord and super quantum discord) in a two-spin model in an external magnetic field and obtain relations between them and entanglement. We study their dependence on the magnetic field, the strength of the spin squeezing, and the temperature in detail. One interesting result is that when the entanglement suddenly disappears, quantum correlations still survive. We study thermal quantum teleportation in the framework of this model. The main goal is investigating the possibility of increasing the thermal quantum correlations of a teleported state in the presence of a magnetic field, strength of the spin squeezing, and temperature. We note that teleportation of quantum discord and super quantum discord can be realized over a larger temperature range than teleportation of entanglement. Our results show that quantum discord and super quantum discord can be a suitable measure for controlling quantum teleportation with fidelity. Moreover, the presence of entangled states is unnecessary for the exchange of quantum information.
Effect of pressure on the strength of olivine at room temperature
NASA Astrophysics Data System (ADS)
Proietti, Arnaud; Bystricky, Misha; Guignard, Jérémy; Béjina, Frédéric; Crichton, Wilson
2016-10-01
A fine grained fully-dense olivine aggregate was deformed in a D-DIA press at room temperature and pressures ranging from 3.5 to 6.8 GPa, at constant strain rates between 6 ×10-6 and 2.2 ×10-5 s-1. A weighted non-linear least square fit of a dataset including our results and data from other high-pressure studies to a low-temperature plasticity flow law yields a Peierls stress σP0 = 7.4 (0.5) GPa and an activation energy E∗ = 232 (60) kJ.mol-1. The dependence of the Peierls stress to pressure, σP = σP0 (1 + 0.09 P) , appears to be larger than the value predicted by the formulation proposed by Frost and Ashby (1982). With such a dependence, the activation volume is very small (V* = 1.6 (1.7) cm3.mol-1). Extrapolation to natural conditions yields a viscosity of 1023 -1024 Pa.s for a cold subducting slab at depths of 50-100 km.
Confinement effects in premelting dynamics
NASA Astrophysics Data System (ADS)
Pramanik, Satyajit; Wettlaufer, John
2017-11-01
We examine the effects of confinement on the dynamics of premelted films driven by thermomolecular pressure gradients. Our approach is to modify a well-studied setting in which the thermomolecular pressure gradient is driven by a temperature gradient parallel to an interfacially premelted elastic wall. The modification treats the increase in viscosity associated with the thinning of films studied in a wide variety of materials using a power law and we examine the consequent evolution of the elastic wall. We treat (i) a range of interactions that are known to underlie interfacial premelting and (ii) a constant temperature gradient wherein the thermomolecular pressure gradient is a constant. The difference between the cases with and without the proximity effect arises in the volume flux of premelted liquid. The proximity effect increases the viscosity as the film thickness decreases thereby requiring the thermomolecular pressure driven flux to be accommodated at larger temperatures where the premelted film thickness is the largest. Implications for experiment and observations of frost heave are discussed.
Experimental study of trimethyl aluminum decomposition
NASA Astrophysics Data System (ADS)
Zhang, Zhi; Pan, Yang; Yang, Jiuzhong; Jiang, Zhiming; Fang, Haisheng
2017-09-01
Trimethyl aluminum (TMA) is an important precursor used for metal-organic chemical vapor deposition (MOCVD) of most Al-containing structures, in particular of nitride structures. The reaction mechanism of TMA with ammonia is neither clear nor certain due to its complexity. Pyrolysis of trimethyl metal is the start of series of reactions, thus significantly affecting the growth. Experimental study of TMA pyrolysis, however, has not yet been conducted in detail. In this paper, a reflectron time-of-flight mass spectrometer is adopted to measure the TMA decomposition from room temperature to 800 °C in a special pyrolysis furnace, activated by soft X-ray from the synchrotron radiation. The results show that generation of methyl, ethane and monomethyl aluminum (MMA) indicates the start of the pyrolysis process. In the low temperature range from 25 °C to 700 °C, the main product is dimethyl aluminum (DMA) from decomposition of TMA. For temperatures larger than 700 °C, the main products are MMA, DMA, methyl and ethane.
Phase coexistence and pinning of charge density waves by interfaces in chromium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, A.; Patel, S. K. K.; Uhlíř, V.
We study the temperature dependence of the charge density wave (CDW) in a chromium thin film using x-ray diffraction. We exploit the interference between the CDW satellite peaks and Laue oscillations to determine the amplitude, the phase, and the period of the CDW. We find discrete half-integer periods of CDW in the film and switching of the number of periods by one upon cooling/heating with a thermal hysteresis of 20 K. The transition between different CDWperiods occurs over a temperature range of 30 K, slightly larger than the width of the thermal hysteresis. A comparison with simulations shows that themore » phase transition occurs as a variation of the volume fraction of two distinct phases with well-defined periodicities. The phase of the CDW is constant for all temperatures, and we attribute it to strong pinning of the CDW by the mismatch-induced strain at the film-substrate interface.« less
NASA Astrophysics Data System (ADS)
Gouge, M. J.; Combs, S. K.; Foust, C. R.; Milora, S. L.
Advanced plasma fueling systems for magnetic fusion confinement experiments are under development at Oak Ridge National Laboratory (ORNL). The general approach is that of producing and accelerating frozen hydrogenic pellets to speeds in the kilometer-per-second range using single shot and repetitive pneumatic (light-gas gun) pellet injectors. The millimeter-to-centimeter size pellets enter the plasma and continuously ablate because of the plasma electron heat flux, depositing fuel atoms along the pellet trajectory. This fueling method allows direct fueling in the interior of the hot plasma and is more efficient than the alternative method of injecting room temperature fuel gas at the wall of the plasma vacuum chamber. Single-stage pneumatic injectors based on the light-gas gun concept have provided hydrogenic fuel pellets in the speed range of 1 to 2 km/s in single-shot injector designs. Repetition rates up to 5 Hz have been demonstrated in repetitive injector designs. Future fusion reactor-scale devices may need higher pellet velocities because of the larger plasma size and higher plasma temperatures. Repetitive two-stage pneumatic injectors are under development at ORNL to provide long-pulse plasma fueling in the 3 to 5 km/s speed range. Recently, a repeating, two-stage light-gas gun achieved repetitive operation at 1 Hz with speeds in the range of 2 to 3 km/s.
Computation of Thermally Perfect Compressible Flow Properties
NASA Technical Reports Server (NTRS)
Witte, David W.; Tatum, Kenneth E.; Williams, S. Blake
1996-01-01
A set of compressible flow relations for a thermally perfect, calorically imperfect gas are derived for a value of c(sub p) (specific heat at constant pressure) expressed as a polynomial function of temperature and developed into a computer program, referred to as the Thermally Perfect Gas (TPG) code. The code is available free from the NASA Langley Software Server at URL http://www.larc.nasa.gov/LSS. The code produces tables of compressible flow properties similar to those found in NACA Report 1135. Unlike the NACA Report 1135 tables which are valid only in the calorically perfect temperature regime the TPG code results are also valid in the thermally perfect, calorically imperfect temperature regime, giving the TPG code a considerably larger range of temperature application. Accuracy of the TPG code in the calorically perfect and in the thermally perfect, calorically imperfect temperature regimes are verified by comparisons with the methods of NACA Report 1135. The advantages of the TPG code compared to the thermally perfect, calorically imperfect method of NACA Report 1135 are its applicability to any type of gas (monatomic, diatomic, triatomic, or polyatomic) or any specified mixture of gases, ease-of-use, and tabulated results.
Estimation of shelf life of natural rubber latex exam-gloves based on creep behavior.
Das, Srilekha Sarkar; Schroeder, Leroy W
2008-05-01
Samples of full-length glove-fingers cut from chlorinated and nonchlorinated latex medical examination gloves were aged for various times at several fixed temperatures and 25% relative humidity. Creep testing was performed using an applied stress of 50 kPa on rectangular specimens (10 mm x 8 mm) of aged and unaged glove fingers as an assessment of glove loosening during usage. Variations in creep curves obtained were compared to determine the threshold aging time when the amount of creep became larger than the initial value. These times were then used in various models to estimate shelf lives at lower temperatures. Several different methods of extrapolation were used for shelf-life estimation and comparison. Neither Q-factor nor Arrhenius activation energies, as calculated from 10 degrees C interval shift factors, were constant over the temperature range; in fact, both decreased at lower temperatures. Values of Q-factor and activation energies predicted up to 5 years of shelf life. Predictions are more sensitive to values of activation energy as the storage temperature departs from the experimental aging data. Averaging techniques for prediction of average activation energy predicted the longest shelf life as the curvature is reduced. Copyright 2007 Wiley Periodicals, Inc.
Clathrate type 2 hydrate formation in vacuo under astrophysical conditions
NASA Technical Reports Server (NTRS)
Blake, D. F.; Allamandola, L. J.; Sandford, S. A.; Freund, F.
1991-01-01
The properties of clathrate hydrates were used to explain the complex and poorly understood physical processes taking place within cometary nuclei and other icy solar system bodies. Most of all the experiments previously conducted used starting compositions which would yield clathrate types I hydrates. The main criterion for type I vs. type II clathrate hydrate formation is the size of the guest molecule. The stoichiometry of the two structure types is also quite different. In addition, the larger molecules which would form type II clathrate hydrates typically have lower vapor pressures. The result of these considerations is that at temperatures where we identified clathrate formation (120-130 K), it is more likely that type II clathrate hydrates will form. We also formed clathrate II hydrates of methanol by direct vapor deposition in the temperature range 125-135 K.
Environmental effects on the compressive properties - Thermosetting vs. thermoplastic composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haque, A.; Jeelani, S.
1992-02-01
The influence of moisture and temperature on the compressive properties of graphite/epoxy and APC-2 materials systems was investigated to assess the viability of using APC-2 instead of graphite/epoxy. Data obtained indicate that the moisture absorption rate of T-300/epoxy is higher than that of APC-2. Thick plate with smaller surface area absorbs less moisture than thin plate with larger surface area. The compressive strength and modulus of APC-2 are higher than those of T-300/epoxy composite, and APC-2 sustains higher compressive strength in the presence of moisture. The compressive strength and modulus decrease with the increase of temperature in the range ofmore » 23-100 C. The compression failure was in the form of delamination, interlaminar shear, and end brooming. 9 refs.« less
Edison and radiatively-cooled IR space observatories
NASA Technical Reports Server (NTRS)
Thronson, H. A.; Hawarden, T. G.; Bally, J.; Burnell, S. J. Bell; Penny, A. J.; Rapp, D.
1993-01-01
Radiative cooling of IR space telescopes is an alternative to embedding within massive cryostats and should offer advantages for future missions, including longer life, larger aperture for a fixed spacecraft size, lower cost due to less complex engineering, and easier ground handling. Relatively simple analyses of conventional designs show that it is possible to achieve telescope temperatures in the range of 25 to 40 K at distances from the sun of about 1 AU. Lower temperatures may be possible with 'open' designs or distant orbits. At approximately 25 K, an observatory will be limited by the celestial thermal background in the near- and mid-IR and by the confusion limit in the far-IR. We outline here our concept for a moderate aperture (approximately 1.75 m; Ariane 4 or Atlas launch) international space observatory for the next decade.
Damage evolution in viscoelastic polymers
NASA Astrophysics Data System (ADS)
Clements, B. E.
2000-04-01
Constitutive relations are derived for viscoelastic polymers. These relations are applicable to polymers for temperatures above their glass transition temperature and strain rates ranging from quasistatic up to shock regimes. Linear viscoelasticity is assumed for small tensile deformations but nonlinear effects, arising from void growth, become important at larger strains. Our void growth model is based on a generalization of Eshelby's Green's function solution to the problem of an ellipsoidal void in an elastic material. We apply our analysis to study the mechanical properties of polyvinyl acetate under dynamic loading conditions. Void concentration and aspect ratio considerations are found to be important in general deformation events. Uniaxial tension tends to favor aspect ratio change, while non-spherical voids are observed to evolve into spherical ones as tensile strain approaches triaxiality. [Research supported by the USDOE under contract W-7405-ENG-36
Smith, Eric Krabbe; O'Neill, Jacqueline J; Gerson, Alexander R; McKechnie, Andrew E; Wolf, Blair O
2017-09-15
We examined thermoregulatory performance in seven Sonoran Desert passerine bird species varying in body mass from 10 to 70 g - lesser goldfinch, house finch, pyrrhuloxia, cactus wren, northern cardinal, Abert's towhee and curve-billed thrasher. Using flow-through respirometry, we measured daytime resting metabolism, evaporative water loss and body temperature at air temperatures ( T air ) between 30 and 52°C. We found marked increases in resting metabolism above the upper critical temperature ( T uc ), which for six of the seven species fell within a relatively narrow range (36.2-39.7°C), but which was considerably higher in the largest species, the curve-billed thrasher (42.6°C). Resting metabolism and evaporative water loss were minimal below the T uc and increased with T air and body mass to maximum values among species of 0.38-1.62 W and 0.87-4.02 g H 2 O h -1 , respectively. Body temperature reached maximum values ranging from 43.5 to 45.3°C. Evaporative cooling capacity, the ratio of evaporative heat loss to metabolic heat production, reached maximum values ranging from 1.39 to 2.06, consistent with known values for passeriforms and much lower than values in taxa such as columbiforms and caprimulgiforms. These maximum values occurred at heat tolerance limits that did not scale with body mass among species, but were ∼50°C for all species except the pyrrhuloxia and Abert's towhee (48°C). High metabolic costs associated with respiratory evaporation appeared to drive the limited heat tolerance in these desert passeriforms, compared with larger desert columbiforms and galliforms that use metabolically more efficient mechanisms of evaporative heat loss. © 2017. Published by The Company of Biologists Ltd.
Extreme embrittlement of austenitic stainless steel irradiated to 75-81 dpa at 335-360{degrees}C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porollo, S.I.; Vorobjev, A.N.; Konobeev, Yu.V.
1997-04-01
It is generally accepted that void swelling of austenitic steels ceases below some temperature in the range 340-360{degrees}C, and exhibits relatively low swelling rates up to {approximately}400{degrees}C. This perception may not be correct at all irradiation conditions, however, since it was largely developed from data obtained at relatively high displacement rates in fast reactors whose inlet temperatures were in the range 360-370{degrees}C. There is an expectation, however, that the swelling regime can shift to lower temperatures at low displacement rates via the well-known {open_quotes}temperature shift{close_quotes} phenomenon. It is also known that the swelling rates at the lower end of themore » swelling regime increase continuously at a sluggish rate, never approaching the terminal 1%/dpa level within the duration of previous experiments. This paper presents the results of an experiment conducted in the BN-350 fast reactor in Kazakhstan that involved the irradiation of argon-pressurized thin-walled tubes (0-200 MPa hoop stress) constructed from Fe-16Cr-15Ni-3Mo-Nb stabilized steel in contact with the sodium coolant, which enters the reactor at {approx}270{degrees}C. Tubes in the annealed condition reached 75 dpa at 335{degrees}C, and another set in the 20% cold-worked condition reached 81 dpa at 360{degrees}C. Upon disassembly all tubes, except those in the stress-free condition, were found to have failed in an extremely brittle fashion. The stress-free tubes exhibited diameter changes that imply swelling levels ranging from 9 to 16%. It is expected that stress-enhancement of swelling induced even larger swelling levels in the stressed tubes.« less
The impact of changing the land surface scheme in ACCESS(v1.0/1.1) on the surface climatology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalczyk, Eva A.; Stevens, Lauren E.; Law, Rachel M.
The Community Atmosphere Biosphere Land Exchange (CABLE) model has been coupled to the UK Met Office Unified Model (UM) within the existing framework of the Australian Community Climate and Earth System Simulator (ACCESS), replacing the Met Office Surface Exchange Scheme (MOSES). Here we investigate how features of the CABLE model impact on present-day surface climate using ACCESS atmosphere-only simulations. The main differences attributed to CABLE include a warmer winter and a cooler summer in the Northern Hemisphere (NH), earlier NH spring runoff from snowmelt, and smaller seasonal and diurnal temperature ranges. The cooler NH summer temperatures in canopy-covered regions aremore » more consistent with observations and are attributed to two factors. Firstly, CABLE accounts for aerodynamic and radiative interactions between the canopy and the ground below; this placement of the canopy above the ground eliminates the need for a separate bare ground tile in canopy-covered areas. Secondly, CABLE simulates larger evapotranspiration fluxes and a slightly larger daytime cloud cover fraction. Warmer NH winter temperatures result from the parameterization of cold climate processes in CABLE in snow-covered areas. In particular, prognostic snow density increases through the winter and lowers the diurnally resolved snow albedo; variable snow thermal conductivity prevents early winter heat loss but allows more heat to enter the ground as the snow season progresses; liquid precipitation freezing within the snowpack delays the building of the snowpack in autumn and accelerates snow melting in spring. Altogether we find that the ACCESS simulation of surface air temperature benefits from the specific representation of the turbulent transport within and just above the canopy in the roughness sublayer as well as the more complex snow scheme in CABLE relative to MOSES.« less
NASA Astrophysics Data System (ADS)
Chang, Shihui; Xue, Fanfan; Zhou, Wenzheng; Zhang, Ji; Jian, Xiqi
2017-03-01
Usually, numerical simulation is used to predict the acoustic filed and temperature distribution of high intensity focused ultrasound (HIFU). In this paper, the simulated lesion volumes obtained by temperature threshold (TRT) 60 °C and equivalent thermal dose (ETD) 240 min were compared with the experimental results which were obtained by animal tissue experiment in vitro. In the simulation, the calculated model was established according to the vitro tissue experiment, and the Finite Difference Time Domain (FDTD) method was used to calculate the acoustic field and temperature distribution in bovine liver by the Westervelt formula and Pennes bio-heat transfer equation, and the non-linear characteristics of the ultrasound was considered. In the experiment, the fresh bovine liver was exposed for 8s, 10s, 12s under different power conditions (150W, 170W, 190W, 210W), and the exposure was repeated 6 times under the same dose. After the exposures, the liver was sliced and photographed every 0.2mm, and the area of the lesion region in every photo was calculated. Then, every value of the areas was multiplied by 0.2mm, and summed to get the approximation volume of the lesion region. The comparison result shows that the lesion volume of the region calculated by TRT 60 °C in simulation was much closer to the lesion volume obtained in experiment, and the volume of the region above 60 °C was larger than the experimental results, but the volume deviation was not exceed 10%. The volume of the lesion region calculated by ETD 240 min was larger than that calculated by TRT 60 °C in simulation, and the volume deviations were ranged from 4.9% to 23.7%.
The impact of changing the land surface scheme in ACCESS(v1.0/1.1) on the surface climatology
Kowalczyk, Eva A.; Stevens, Lauren E.; Law, Rachel M.; ...
2016-08-23
The Community Atmosphere Biosphere Land Exchange (CABLE) model has been coupled to the UK Met Office Unified Model (UM) within the existing framework of the Australian Community Climate and Earth System Simulator (ACCESS), replacing the Met Office Surface Exchange Scheme (MOSES). Here we investigate how features of the CABLE model impact on present-day surface climate using ACCESS atmosphere-only simulations. The main differences attributed to CABLE include a warmer winter and a cooler summer in the Northern Hemisphere (NH), earlier NH spring runoff from snowmelt, and smaller seasonal and diurnal temperature ranges. The cooler NH summer temperatures in canopy-covered regions aremore » more consistent with observations and are attributed to two factors. Firstly, CABLE accounts for aerodynamic and radiative interactions between the canopy and the ground below; this placement of the canopy above the ground eliminates the need for a separate bare ground tile in canopy-covered areas. Secondly, CABLE simulates larger evapotranspiration fluxes and a slightly larger daytime cloud cover fraction. Warmer NH winter temperatures result from the parameterization of cold climate processes in CABLE in snow-covered areas. In particular, prognostic snow density increases through the winter and lowers the diurnally resolved snow albedo; variable snow thermal conductivity prevents early winter heat loss but allows more heat to enter the ground as the snow season progresses; liquid precipitation freezing within the snowpack delays the building of the snowpack in autumn and accelerates snow melting in spring. Altogether we find that the ACCESS simulation of surface air temperature benefits from the specific representation of the turbulent transport within and just above the canopy in the roughness sublayer as well as the more complex snow scheme in CABLE relative to MOSES.« less
NASA Astrophysics Data System (ADS)
Habibi, Tahereh
2016-11-01
In this research larger benthic foraminiferal distribution and their paleoenvironmental characteristics are used to introduce biostratigraphic zonation, paleoenvironmental reconstruction and paleoecological interpretation of the Oligocene Asmari Formation in Fars Province. Two stratigraphic successions were examined for these purposes. The first (Khollar Section) is Rupelian in age and the second (Siakh Section) is of Chattian age. Recognized assemblage zones are: 1-Nummulites vascus-Nummulites fichteli and 2- Archaias asmaricus/hensoni-Miogypsinoides complanatus. Four microfacies types are identified according to the occurrence of the main biogenic components. They were arranged along the inner part of a carbonate platform. A shallowing upward trend in microfacies arrangement from Rupelian to Chattian times is considered according to the occurrence of larger benthic foraminifera. Two foraminiferal associations are recognized in the investigated sections. The identified foraminiferal associations represent a salinity value of 40-50 psu and a depth range of lower than 40 m, warm tropical and subtropical waters with temperature of 18-25 °C at Rupelian time. More restricted conditions through Chattian Stage has resulted in a shallower depth and higher salinity of more than 50 psu, with water temperature being higher than 20 °C in the oligotrophic to mesotrophic conditions. Restricted conditions in marine circulation is suggested to have controlled these associations.
Radiative transfer calculations of the diffuse ionized gas in disc galaxies with cosmic ray feedback
NASA Astrophysics Data System (ADS)
Vandenbroucke, Bert; Wood, Kenneth; Girichidis, Philipp; Hill, Alex S.; Peters, Thomas
2018-05-01
The large vertical scale heights of the diffuse ionized gas (DIG) in disc galaxies are challenging to model, as hydrodynamical models including only thermal feedback seem to be unable to support gas at these heights. In this paper, we use a three-dimensional Monte Carlo radiation transfer code to post-process disc simulations of the Simulating the Life-Cycle of Molecular Clouds project that include feedback by cosmic rays. We show that the more extended discs in simulations including cosmic ray feedback naturally lead to larger scale heights for the DIG which are more in line with observed scale heights. We also show that including a fiducial cosmic ray heating term in our model can help to increase the temperature as a function of disc scale height, but fails to reproduce observed DIG nitrogen and sulphur forbidden line intensities. We show that, to reproduce these line emissions, we require a heating mechanism that affects gas over a larger density range than is achieved by cosmic ray heating, which can be achieved by fine tuning the total luminosity of ionizing sources to get an appropriate ionizing spectrum as a function of scale height. This result sheds a new light on the relation between forbidden line emissions and temperature profiles for realistic DIG gas distributions.
Exchange of CO2 in Arctic tundra: impacts of meteorological variations and biological disturbance
NASA Astrophysics Data System (ADS)
López-Blanco, Efrén; Lund, Magnus; Williams, Mathew; Tamstorf, Mikkel P.; Westergaard-Nielsen, Andreas; Exbrayat, Jean-François; Hansen, Birger U.; Christensen, Torben R.
2017-10-01
An improvement in our process-based understanding of carbon (C) exchange in the Arctic and its climate sensitivity is critically needed for understanding the response of tundra ecosystems to a changing climate. In this context, we analysed the net ecosystem exchange (NEE) of CO2 in West Greenland tundra (64° N) across eight snow-free periods in 8 consecutive years, and characterized the key processes of net ecosystem exchange and its two main modulating components: gross primary production (GPP) and ecosystem respiration (Reco). Overall, the ecosystem acted as a consistent sink of CO2, accumulating -30 g C m-2 on average (range of -17 to -41 g C m-2) during the years 2008-2015, except 2011 (source of 41 g C m-2), which was associated with a major pest outbreak. The results do not reveal a marked meteorological effect on the net CO2 uptake despite the high interannual variability in the timing of snowmelt and the start and duration of the growing season. The ranges in annual GPP (-182 to -316 g C m-2) and Reco (144 to 279 g C m-2) were > 5 fold larger than the range in NEE. Gross fluxes were also more variable (coefficients of variation are 3.6 and 4.1 % respectively) than for NEE (0.7 %). GPP and Reco were sensitive to insolation and temperature, and there was a tendency towards larger GPP and Reco during warmer and wetter years. The relative lack of sensitivity of NEE to meteorology was a result of the correlated response of GPP and Reco. During the snow-free season of the anomalous year of 2011, a biological disturbance related to a larvae outbreak reduced GPP more strongly than Reco. With continued warming temperatures and longer growing seasons, tundra systems will increase rates of C cycling. However, shifts in sink strength will likely be triggered by factors such as biological disturbances, events that will challenge our forecasting of C states.
Damage buildup in Ar-ion-irradiated 3 C-SiC at elevated temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, J. B.; Bayu Aji, L. B.; Li, T. T.
Above room temperature, the accumulation of radiation damage in 3 C-SiC is strongly influenced by dynamic defect interaction processes and remains poorly understood. Here, we use a combination of ion channeling and transmission electron microscopy to study lattice disorder in 3 C-SiC irradiated with 500 keV Ar ions in the temperature range of 25–250 °C. Results reveal sigmoidal damage buildup for all the temperatures studied. For 150 °C and below, the damage level monotonically increases with ion dose up to amorphization. Starting at 200 °C, the shape of damage–depth profiles becomes anomalous, with the damage peak narrowing and moving tomore » larger depths and an additional shoulder forming close to the ion end of range. As a result, damage buildup curves for 200 and 250 °C exhibit an anomalous two-step shape, with a damage saturation stage followed by rapid amorphization above a critical ion dose, suggesting a nucleation-limited amorphization behavior. Despite their complexity, all damage buildup curves are well described by a phenomenological model based on an assumption of a linear dependence of the effective amorphization cross section on ion dose. Here, in contrast to the results of previous studies, 3 C-SiC can be amorphized by bombardment with 500 keV Ar ions even at 250 °C with a relatively large dose rate of ~2×10 13 cm -2 s -1, revealing a dominant role of defect interaction dynamics at elevated temperatures.« less
Damage buildup in Ar-ion-irradiated 3 C-SiC at elevated temperatures
Wallace, J. B.; Bayu Aji, L. B.; Li, T. T.; ...
2015-09-14
Above room temperature, the accumulation of radiation damage in 3 C-SiC is strongly influenced by dynamic defect interaction processes and remains poorly understood. Here, we use a combination of ion channeling and transmission electron microscopy to study lattice disorder in 3 C-SiC irradiated with 500 keV Ar ions in the temperature range of 25–250 °C. Results reveal sigmoidal damage buildup for all the temperatures studied. For 150 °C and below, the damage level monotonically increases with ion dose up to amorphization. Starting at 200 °C, the shape of damage–depth profiles becomes anomalous, with the damage peak narrowing and moving tomore » larger depths and an additional shoulder forming close to the ion end of range. As a result, damage buildup curves for 200 and 250 °C exhibit an anomalous two-step shape, with a damage saturation stage followed by rapid amorphization above a critical ion dose, suggesting a nucleation-limited amorphization behavior. Despite their complexity, all damage buildup curves are well described by a phenomenological model based on an assumption of a linear dependence of the effective amorphization cross section on ion dose. Here, in contrast to the results of previous studies, 3 C-SiC can be amorphized by bombardment with 500 keV Ar ions even at 250 °C with a relatively large dose rate of ~2×10 13 cm -2 s -1, revealing a dominant role of defect interaction dynamics at elevated temperatures.« less
NASA Astrophysics Data System (ADS)
Grist, Jeremy P.; Josey, Simon A.; Zika, Jan D.; Evans, Dafydd Gwyn; Skliris, Nikolaos
2016-12-01
A novel assessment of recent changes in air-sea freshwater fluxes has been conducted using a surface temperature-salinity framework applied to four atmospheric reanalyses. Viewed in the T-S space of the ocean surface, the complex pattern of the longitude-latitude space mean global Precipitation minus Evaporation (PME) reduces to three distinct regions. The analysis is conducted for the period 1979-2007 for which there is most evidence for a broadening of the (atmospheric) tropical belt. All four of the reanalyses display an increase in strength of the water cycle. The range of increase is between 2% and 30% over the period analyzed, with an average of 14%. Considering the average across the reanalyses, the water cycle changes are dominated by changes in tropical as opposed to mid-high latitude precipitation. The increases in the water cycle strength, are consistent in sign, but larger than in a 1% greenhouse gas run of the HadGEM3 climate model. In the model a shift of the precipitation/evaporation cells to higher temperatures is more evident, due to the much stronger global warming signal. The observed changes in freshwater fluxes appear to be reflected in changes in the T-S distribution of the Global Ocean. Specifically, across the diverse range of atmospheric reanalyses considered here, there was an acceleration of the hydrological cycle during 1979-2007 which led to a broadening of the ocean's salinity distribution. Finally, although the reanalyses indicate that the warm temperature tropical precipitation dominated water cycle change, ocean observations suggest that ocean processes redistributed the freshening to lower ocean temperatures.
NASA Astrophysics Data System (ADS)
Yuan, Guanghui; Zhang, Lei; Liang, Jiening; Cao, Xianjie; Guo, Qi; Yang, Zhaohong
2017-11-01
To assess the impacts of initial soil moisture (SMOIS) and the vegetation fraction (Fg) on the diurnal temperature range (DTR) in arid and semiarid regions in China, three simulations using the weather research and forecasting (WRF) model are conducted by modifying the SMOIS, surface emissivity and Fg. SMOIS affects the daily maximum temperature (Tmax) and daily minimum temperature (Tmin) by altering the distribution of available energy between sensible and latent heat fluxes during the day and by altering the surface emissivity at night. Reduced soil wetness can increase both the Tmax and Tmin, but the effect on the DTR is determined by the relative strength of the effects on Tmax and Tmin. Observational data from the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL) and the Shapotou Desert Research and Experimental Station (SPD) suggest that the magnitude of the SMOIS effect on the distribution of available energy during the day is larger than that on surface emissivity at night. In other words, SMOIS has a negative effect on the DTR. Changes in Fg modify the surface radiation and the energy budget. Due to the depth of the daytime convective boundary layer, the temperature in daytime is affected less than in nighttime by the radiation and energy budget. Increases in surface emissivity and decreases in soil heating resulting from increased Fg mainly decrease Tmin, thereby increasing the DTR. The effects of SMOIS and Fg on both Tmax and Tmin are the same, but the effects on DTR are the opposite.
Synthesis, physical and chemical properties, and potential applications of graphite fluoride fibers
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh; Long, Martin; Stahl, Mark
1987-01-01
Graphite fluoride fibers can be produced by fluorinating pristine or intercalated graphite fibers. The higher the degree of graphitization of the fibers, the higher the temperature needed to reach the same degree of fluorination. Pitched based fibers were fluorinated to flourine-to-carbon atom rations between 0 and 1. The graphite fluoride fibers with a fluorine-to-carbon atom ration near 1 have extensive visible structural damage. On the other hand, fluorination of fibers pretreated with bromine or fluorine and bromine result in fibers with a fluorine-to-carbon atom ratio nearly equal to 0.5 with no visible structural damage. The electrical resistivity of the fibers is dependent upon the fluorine to carbon atom ratio and ranged from .01 to 10 to the 11th ohm/cm. The thermal conductivity of these fibers ranged from 5 to 73 W/m-k, which is much larger than the thermal conductivity of glass, which is the regular filler in epoxy composites. If graphite fluoride fibers are used as a filler in epoxy or PTFE, the resulting composite may be a high thermal conductivity material with an electrical resistivity in either the insulator or semiconductor range. The electrically insulating product may provide heat transfer with lower temperature gradients than many current electrical insulators. Potential applications are presented.
Influence of sensor ingestion timing on consistency of temperature measures.
Goodman, Daniel A; Kenefick, Robert W; Cadarette, Bruce S; Cheuvront, Samuel N
2009-03-01
The validity and the reliability of using intestinal temperature (T int) via ingestible temperature sensors (ITS) to measure core body temperature have been demonstrated. However, the effect of elapsed time between ITS ingestion and T int measurement has not been thoroughly studied. Eight volunteers (six men and two women) swallowed ITS 5 h (ITS-5) and 29 h (ITS-29) before 4 h of varying intensity activity. T int was measured simultaneously from both ITS, and T int differences between the ITS-5 and the ITS-29 over the 4 h of activity were plotted and compared relative to a meaningful threshold of acceptance (+/-0.25 degrees C). The percentage of time in which the differences between paired ITS (ITS-5 vs ITS-29) were greater than or less than the threshold of acceptance was calculated. T int values showed no systematic bias, were normally distributed, and ranged from 36.94 degrees C to 39.24 degrees C. The maximum T int difference between paired ITS was 0.83 degrees C with a minimum difference of 0.00 degrees C. The typical magnitude of the differences (SE of the estimate) was 0.24 degrees C, and these differences were uniform across the entire range of observed temperatures. Paired T int measures fell outside of the threshold of acceptance 43.8% of the time during the 4 h of activity. The differences between ITS-5 and ITS-29 were larger than the threshold of acceptance during a substantial portion of the observed 4-h activity period. Ingesting an ITS more than 5 h before activity will not completely eliminate confounding factors but may improve accuracy and consistency of core body temperature.
Microstructure and optical properties of black chrome befor and after exposure to high temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lampert, C.M.; Washburn, J.
1979-01-01
the chemical and microstructural stability of the CHROM-ONYX type of black chrome solar coating was investigated at different temperatures and atmospheres. This was done to give a better understanding of the mechanism of solar energy selectivity and its variability when subjected to short term heat treatments. The as-plated structure was found to consist of a suspension of metallic chromium particles within the size range of 100A in a amorphous oxide matrix. this assembly was in turn formed into larger particles within the size range of 0.05 to 0.30 microns. Short term high temperature heat treatments were used to simulate stagnationmore » conditions. Samples were annealed in both air and vacuum, which resulted in similar characteristics. Annealing in air appeared to mildly accelerate optical degradation at high temperatures. For short term heat treatments below 300/sup 0/C the reflective and microstructural properties appeared to be unchanged. By in situ vacuum annealing of the coating above 400/sup 0/C microscrystalline Cr/sub 2/O/sub 3/ was identified. By observation of diffraction patterns it was concluded that a-Cr/sub 2/O/sub 3/ was transformed into crystalline Cr/sub 2/O/sub 3/. The Cr/sub 2/O/sub 3/ phase continued to grow at higher temperatures at the expense of chromium content. At temperatures above 500/sup 0/C in vacuum, a new phase identified as Cr/sub 3/O/sub 4/ formed. It was found that black chrome failed optically between 500 to 600/sup 0/C for 1 hour heat treatments in both air and vacuum; also the coating heated in air failed mechanically by peeling at 600/sup 0/C.« less
Microstructure and optical properties of black chrome before and after exposure to high temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lampert, C.M.; Washburn, J.
1979-01-01
The chemical and microstructural stability of the CHROM-ONYX type of black chrome solar coating was investigated at different temperatures and atmospheres. This was done to give a better understanding of the mechanism of solar energy selectivity and its variability when subjected to short term heat treatments. The as-plated structure was found to consist of a suspension of metallic chromium particles within the size range of 100A in an amorphous oxide matrix. This assembly was in turn formed into larger particles within the size range of 0.05-0.30 microns. Short term high temperature heat treatments were used to simulate stagnation conditions. Samplesmore » were annealed in both air and vacuum, which resulted in similar characteristics. Annealing in air appeared to mildly accelerate optical degradation at high temperatures. For short term heat treatments below 300/sup 0/C the reflective and microstructural properties appeared to be unchanged. By in situ vacuum annealing of the coating above 400/sup 0/C microcrystalline Cr/sub 2/O/sub 3/ was identified. By observation of diffraction patterns it was concluded that a-Cr/sub 2/O/sub 3/ was transformed into crystalline Cr/sub 2/O/sub 3/. The Cr/sub 2/O/sub 3/ phase continued to grow at higher temperatures at the expense of chromium content. At temperatures above 500/sup 0/C in vacuum, a new phase identified as NiCr/sub 2/O/sub 4/ formed. It was found that black chrome failed optically between 500-600/sup 0/C for 1 hour heat treatments in both air and vacuum; also the coating heated in air failed mechanically by peeling at 600/sup 0/C.« less
Sadler, Nik; Nieh, James C
2011-02-01
Insects that regulate flight muscle temperatures serve as crucial pollinators in a broad range of ecosystems, in part because they forage over a wide span of temperatures. Honey bees are a classic example and maintain their thoracic muscles at temperatures (T(th)) tuned to the caloric benefits of floral resources. Using infrared thermography, we tested the hypothesis that forager motivation to recruit nestmates for a food source is positively correlated with T(th). We trained bees to a sucrose feeder located 5-100 m from the nest. Recruiting foragers had a significantly higher average T(th) (2.7°C higher) when returning from 2.5 mol l(-1) sucrose (65% w/w) than when returning from 1.0 mol l(-1) sucrose (31% w/w). Foragers exhibited significantly larger thermal fluctuations the longer they spent inside the nest between foraging trips. The difference between maximum and minimum temperatures during a nest visit (T(range)) increased with total duration of the nest visit (0.7°C increase per additional min spent inside the nest). Bees that recruited nestmates (waggle or round danced) were significantly warmer, with a 1.4-1.5 times higher ΔT(th) (difference between T(th) and nest ambient air temperature) than bees who tremble danced or simply walked on the nest floor without recruiting between foraging bouts. However, recruiter T(th) was not correlated with finer-scale measures of motivation: the number of waggle dance circuits or waggle dance return phase duration. These results support the hypothesis that forager T(th) within the nest is correlated to broad-scale differences in foraging motivation.
Effects of Variable Surface Temperatures on the Dynamics of Convection within Enceladus' Ice Shell
NASA Astrophysics Data System (ADS)
Weller, M. B.; Fuchs, L.; Becker, T. W.; Soderlund, K. M.
2017-12-01
Despite Enceladus' relatively small size, observations reveal it as one of the more geologically active bodies in the solar system. Its surface is heavily deformed, including ridges, grooves, grabens, rifts, and folds that cover a significant fraction of the planet. Perhaps most notably, there is evidence of a hemispheric dichotomy between the south (the South Polar Terrain - SPT), and the remainder of the satellite. While the origin of the SPT has spurred much debate, ranging from oceans and tides to impacts, its existence suggests some form of localization process. Here, we use the mantle convection code CitcomS with temperature-dependent viscosity to address the effects of latitudinally variable surface temperature (due to differences in solar heating) for a range of internal heating rates (as proxy for tidal heating)on the convective vigor and planform within Enceladus' ice shell. Heterogeneous surface temperatures can produce a large, degree-1 upwelling with the other hemisphere fully dominated by a slower, colder downwelling. As internal heating decreases, the degree-1 upwelling forms and localizes, resulting in larger strain rates that arerestricted to 5-20% of the satellite. The remaining 80-95% of the surface remains cold and relatively quiescent, in general agreement with observations of Enceladus and the SPT today. These results show the initial degree-1 structure forms at a polar latitude, the region of greatest radial temperature contrast. This configuration is unstable, however, with the plume structure migrating towards a stable orientation at equatorial latitudes, the region of the highest absolute surface temperature. While an equatorial configuration is currently not witnessed on Enceladus,such a large and persistent dynamic structure could lead to reorientation of the satellite.
Larger temperature response of autumn leaf senescence than spring leaf-out phenology.
Fu, Yongshuo H; Piao, Shilong; Delpierre, Nicolas; Hao, Fanghua; Hänninen, Heikki; Liu, Yongjie; Sun, Wenchao; Janssens, Ivan A; Campioli, Matteo
2018-05-01
Climate warming is substantially shifting the leaf phenological events of plants, and thereby impacting on their individual fitness and also on the structure and functioning of ecosystems. Previous studies have largely focused on the climate impact on spring phenology, and to date the processes underlying leaf senescence and their associated environmental drivers remain poorly understood. In this study, experiments with temperature gradients imposed during the summer and autumn were conducted on saplings of European beech to explore the temperature responses of leaf senescence. An additional warming experiment during winter enabled us to assess the differences in temperature responses of spring leaf-out and autumn leaf senescence. We found that warming significantly delayed the dates of leaf senescence both during summer and autumn warming, with similar temperature sensitivities (6-8 days delay per °C warming), suggesting that, in the absence of water and nutrient limitation, temperature may be a dominant factor controlling the leaf senescence in European beech. Interestingly, we found a significantly larger temperature response of autumn leaf senescence than of spring leaf-out. This suggests a possible larger contribution of delays in autumn senescence, than of the advancement in spring leaf-out, to extending the growing season under future warmer conditions. © 2017 John Wiley & Sons Ltd.
Horváthová, Terézia; Antol, Andrzej; Czarnoleski, Marcin; Kramarz, Paulina; Bauchinger, Ulf; Labecka, Anna Maria; Kozłowski, Jan
2015-01-01
Abstract According to the temperature-size rule (TSR), ectotherms developing under cold conditions experience slower growth as juveniles but reach a larger size at maturity. Whether temperature alone causes this phenomenon is unknown, but oxygen limitation can play a role in the temperature-size relationship. Oxygen may become limited under warm conditions when the resulting higher metabolism creates a greater demand for oxygen, especially in larger individuals. We examined the independent effects of oxygen concentration (10% and 22% O2) and temperature (15 °C and 22 °C) on duration of ontogenic development, which takes place within the maternal brood pouch (marsupium), and juvenile growth in the terrestrial isopod common rough woodlouse (Porcellio scaber). Individuals inside the marsupium undergo the change from the aqueous to the gaseous environment. Under hypoxia, woodlice hatched from the marsupium sooner, but their subsequent growth was not affected by the level of oxygen. Marsupial development and juvenile growth were almost three times slower at low temperature, and marsupial development was longer in larger females but only in the cold treatment. These results show that temperature and oxygen are important ecological factors affecting developmental time and that the strength of the effect likely depends on the availability of oxygen in the environment. PMID:26261441
Horváthová, Terézia; Antol, Andrzej; Czarnoleski, Marcin; Kramarz, Paulina; Bauchinger, Ulf; Labecka, Anna Maria; Kozłowski, Jan
2015-01-01
According to the temperature-size rule (TSR), ectotherms developing under cold conditions experience slower growth as juveniles but reach a larger size at maturity. Whether temperature alone causes this phenomenon is unknown, but oxygen limitation can play a role in the temperature-size relationship. Oxygen may become limited under warm conditions when the resulting higher metabolism creates a greater demand for oxygen, especially in larger individuals. We examined the independent effects of oxygen concentration (10% and 22% O2) and temperature (15 °C and 22 °C) on duration of ontogenic development, which takes place within the maternal brood pouch (marsupium), and juvenile growth in the terrestrial isopod common rough woodlouse (Porcellioscaber). Individuals inside the marsupium undergo the change from the aqueous to the gaseous environment. Under hypoxia, woodlice hatched from the marsupium sooner, but their subsequent growth was not affected by the level of oxygen. Marsupial development and juvenile growth were almost three times slower at low temperature, and marsupial development was longer in larger females but only in the cold treatment. These results show that temperature and oxygen are important ecological factors affecting developmental time and that the strength of the effect likely depends on the availability of oxygen in the environment.
Dielectric studies on PEG-LTMS based polymer composites
NASA Astrophysics Data System (ADS)
Patil, Ravikumar V.; Praveen, D.; Damle, R.
2018-02-01
PEG LTMS based polymer composites were prepared and studied for dielectric constant variation with frequency and temperature as a potential candidate with better dielectric properties. Solution cast technique is used for the preparation of polymer composite with five different compositions. Samples show variation in dielectric constant with frequency and temperature. Dielectric constant is large at low frequencies and higher temperatures. Samples with larger space charges have shown larger dielectric constant. The highest dielectric constant observed was about 29244 for PEG25LTMS sample at 100Hz and 312 K.
Investigations on neutron irradiated 3D carbon fibre reinforced carbon composite material
NASA Astrophysics Data System (ADS)
Venugopalan, Ramani; Alur, V. D.; Patra, A. K.; Acharya, R.; Srivastava, D.
2018-04-01
As against conventional graphite materials carbon-carbon (C/C) composite materials are now being contemplated as the promising candidate materials for the high temperature and fusion reactor owing to their high thermal conductivity and high thermal resistance, better mechanical/thermal properties and irradiation stability. The current need is for focused research on novel carbon materials for future new generation nuclear reactors. The advantage of carbon-carbon composite is that the microstructure and the properties can be tailor made. The present study encompasses the irradiation of 3D carbon composite prepared by reinforcement using PAN carbon fibers for nuclear application. The carbon fiber reinforced composite was subjected to neutron irradiation in the research reactor DHRUVA. The irradiated samples were characterized by Differential Scanning Calorimetry (DSC), small angle neutron scattering (SANS), XRD and Raman spectroscopy. The DSC scans were taken in argon atmosphere under a linear heating program. The scanning was carried out at temperature range from 30 °C to 700 °C at different heating rates in argon atmosphere along with reference as unirradiated carbon composite. The Wigner energy spectrum of irradiated composite showed two peaks corresponding to 200 °C and 600 °C. The stored energy data for the samples were in the range 110-170 J/g for temperature ranging from 30 °C to 700 °C. The Wigner energy spectrum of irradiated carbon composite did not indicate spontaneous temperature rise during thermal annealing. Small angle neutron scattering (SANS) experiments have been carried out to investigate neutron irradiation induced changes in porosity of the composite samples. SANS data were recorded in the scattering wave vector range of 0.17 nm-1 to 3.5 nm-1. Comparison of SANS profiles of irradiated and unirradiated samples indicates significant change in pore morphology. Pore size distributions of the samples follow power law size distribution with different exponent. Narrowing of SANS profile of the irradiated sample indicates creation of significant number of larger pores due to neutron irradiation.
NASA Astrophysics Data System (ADS)
Sane, Sandeep Bhalchandra
This thesis contains three chapters, which describe different aspects of an investigation of the bulk response of Poly(Methyl Methacrylate) (PMMA). The first chapter describes the physical measurements by means of a Belcher/McKinney-type apparatus. Used earlier for the measurement of the bulk response of Poly(Vinyl Acetate), it was now adapted for making measurements at higher temperatures commensurate with the glass transition temperature of PMMA. The dynamic bulk compliance of PMMA was measured at atmospheric pressure over a wide range of temperatures and frequencies, from which the master curves for the bulk compliance were generated by means of the time-temperature superposition principle. It was found that the extent of the transition ranges for the bulk and shear response were comparable. Comparison of the shift factors for bulk and shear responses supports the idea that different molecular mechanisms contribute to shear and bulk deformations. The second chapter delineates molecular dynamics computations for the bulk response for a range of pressures and temperatures. The model(s) consisted of 2256 atoms formed into three polymer chains with fifty monomer units per chain per unit cell. The time scales accessed were limited to tens of pico seconds. It was found that, in addition to the typical energy minimization and temperature annealing cycles for establishing equilibrium models, it is advantageous to subject the model samples to a cycle of relatively large pressures (GPa-range) for improving the equilibrium state. On comparing the computations with the experimentally determined "glassy" behavior, one finds that, although the computations were limited to small samples in a physical sense, the primary limitation rests in the very short times (pico seconds). The molecular dynamics computations do not model the physically observed temperature sensitivity of PMMA, even if one employs a hypothetical time-temperature shift to account for the large difference in time scales between experiment and computation. The values computed by the molecular dynamics method do agree with the values measured at the coldest temperature and at the highest frequency of one kiloHertz. The third chapter draws on measurements of uniaxial, shear and Poisson response conducted previously in our laboratory. With the availability of four time or frequency-dependent material functions for the same material, the process of interconversion between different material functions was investigated. Computed material functions were evaluated against the direct experimental measurements and the limitations imposed on successful interconversion due to the experimental errors in the underlying physical data were explored. Differences were observed that are larger than the experimental errors would suggest.
NASA Astrophysics Data System (ADS)
Moix, Jeremy M.; Cao, Jianshu
2013-10-01
The hierarchical equations of motion technique has found widespread success as a tool to generate the numerically exact dynamics of non-Markovian open quantum systems. However, its application to low temperature environments remains a serious challenge due to the need for a deep hierarchy that arises from the Matsubara expansion of the bath correlation function. Here we present a hybrid stochastic hierarchical equation of motion (sHEOM) approach that alleviates this bottleneck and leads to a numerical cost that is nearly independent of temperature. Additionally, the sHEOM method generally converges with fewer hierarchy tiers allowing for the treatment of larger systems. Benchmark calculations are presented on the dynamics of two level systems at both high and low temperatures to demonstrate the efficacy of the approach. Then the hybrid method is used to generate the exact dynamics of systems that are nearly impossible to treat by the standard hierarchy. First, exact energy transfer rates are calculated across a broad range of temperatures revealing the deviations from the Förster rates. This is followed by computations of the entanglement dynamics in a system of two qubits at low temperature spanning the weak to strong system-bath coupling regimes.
NASA Astrophysics Data System (ADS)
Richardson, Robert R.; Zhao, Shi; Howey, David A.
2016-09-01
Estimating the temperature distribution within Li-ion batteries during operation is critical for safety and control purposes. Although existing control-oriented thermal models - such as thermal equivalent circuits (TEC) - are computationally efficient, they only predict average temperatures, and are unable to predict the spatially resolved temperature distribution throughout the cell. We present a low-order 2D thermal model of a cylindrical battery based on a Chebyshev spectral-Galerkin (SG) method, capable of predicting the full temperature distribution with a similar efficiency to a TEC. The model accounts for transient heat generation, anisotropic heat conduction, and non-homogeneous convection boundary conditions. The accuracy of the model is validated through comparison with finite element simulations, which show that the 2-D temperature field (r, z) of a large format (64 mm diameter) cell can be accurately modelled with as few as 4 states. Furthermore, the performance of the model for a range of Biot numbers is investigated via frequency analysis. For larger cells or highly transient thermal dynamics, the model order can be increased for improved accuracy. The incorporation of this model in a state estimation scheme with experimental validation against thermocouple measurements is presented in the companion contribution (http://www.sciencedirect.com/science/article/pii/S0378775316308163)
Moix, Jeremy M; Cao, Jianshu
2013-10-07
The hierarchical equations of motion technique has found widespread success as a tool to generate the numerically exact dynamics of non-Markovian open quantum systems. However, its application to low temperature environments remains a serious challenge due to the need for a deep hierarchy that arises from the Matsubara expansion of the bath correlation function. Here we present a hybrid stochastic hierarchical equation of motion (sHEOM) approach that alleviates this bottleneck and leads to a numerical cost that is nearly independent of temperature. Additionally, the sHEOM method generally converges with fewer hierarchy tiers allowing for the treatment of larger systems. Benchmark calculations are presented on the dynamics of two level systems at both high and low temperatures to demonstrate the efficacy of the approach. Then the hybrid method is used to generate the exact dynamics of systems that are nearly impossible to treat by the standard hierarchy. First, exact energy transfer rates are calculated across a broad range of temperatures revealing the deviations from the Förster rates. This is followed by computations of the entanglement dynamics in a system of two qubits at low temperature spanning the weak to strong system-bath coupling regimes.
Recovery Temperature, Transition, and Heat Transfer Measurements at Mach 5
NASA Technical Reports Server (NTRS)
Brinich, Paul F.
1961-01-01
Schlieren, recovery temperature, and heat-transfer measurements were made on a hollow cylinder and a cone with axes alined parallel to the stream. Both the cone and cylinder were equipped with various bluntnesses, and the tests covered a Reynolds number range up to 20 x 10(exp 6) at a free-stream Mach number of 4.95 and wall to free-stream temperature ratios from 1.8 to 5.2 (adiabatic). A substantial transition delay due to bluntness was found for both the cylinder and the cone. For the present tests (Mach 4.95), transition was delayed by a factor of 3 on the cylinder and about 2 on the cone, these delays being somewhat larger than those observed in earlier tests at Mach 3.1. Heat-transfer tests on the cylinder showed only slight effects of wall temperature level on transition location; this is to be contrasted to the large transition delays observed on conical-type bodies at low surface temperatures at Mach 3.1. The schlieren and the peak-recovery-temperature methods of detecting transition were compared with the heat-transfer results. The comparison showed that the first two methods identified a transition point which occurred just beyond the end of the laminar run as seen in the heat-transfer data.
Phase behavior and dynamics of a micelle-forming triblock copolymer system
NASA Astrophysics Data System (ADS)
Mohan, P. Harsha; Bandyopadhyay, Ranjini
2008-04-01
Synperonic F-108 (generic name, “pluronic”) is a micelle forming triblock copolymer of type ABA , where A is polyethylene oxide (PEO) and B is polypropylene oxide (PPO). At high temperatures, the hydrophobicity of the PPO chains increase, and the pluronic molecules, when dissolved in an aqueous medium, self-associate into spherical micelles with dense PPO cores and hydrated PEO coronas. At appropriately high concentrations, these micelles arrange in a face centered cubic lattice to show inverse crystallization, with the samples exhibiting high-temperature crystalline and low-temperature fluidlike phases. By studying the evolution of the elastic and viscous moduli as temperature is increased at a fixed rate, we construct the concentration-temperature phase diagram of Synperonic F-108. For a certain range of temperatures and at appropriate sample concentrations, we observe a predominantly elastic response. Oscillatory strain amplitude sweep measurements on these samples show pronounced peaks in the loss moduli, a typical feature of soft solids. The soft solidlike nature of these materials is further demonstrated by measuring their frequency-dependent mechanical moduli. The storage moduli are significantly larger than the loss moduli and are almost independent of the applied angular frequency. Finally, we perform strain rate frequency superposition experiments to measure the slow relaxation dynamics of this soft solid.
NASA Astrophysics Data System (ADS)
Wang, H. P.; Wei, B.
2009-02-01
The thermophysical properties of the liquid Ni-Si binary alloy system were investigated by the molecular dynamics method. The properties investigated include density, excessive volume, enthalpy, mixing enthalpy and specific heat at both superheated and undercooled states. It is found that the density decreases with an increase in the Si content, and so do the temperature coefficients. If the Si content is smaller than 30%, the density changes linearly with the temperature. If it is larger than 30%, the density is a quadratic function of the temperature. The simulated enthalpies of different composition alloys increase linearly with a rise in temperature. This indicates that the specific heats of Ni-Si alloys change little with temperature. The specific heat versus composition first decreases to a minimum value at 50% Si, then experiences a rise to a maximum value at 90% Si and finally falls again. According to the excessive volume and mixing enthalpy, it can be deduced that the Ni-Si alloy system seriously deviates from the ideal solution. Moreover, a comparison was also performed between the present results and the approximated values by the Neumann-Kopp rule. It reveals that this work provides reasonable data in a broad temperature range, especially for the metastable undercooled liquid state.
CO Depletion: A Microscopic Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cazaux, S.; Martín-Doménech, R.; Caro, G. M. Muñoz
In regions where stars form, variations in density and temperature can cause gas to freeze out onto dust grains forming ice mantles, which influences the chemical composition of a cloud. The aim of this paper is to understand in detail the depletion (and desorption) of CO on (from) interstellar dust grains. Experimental simulations were performed under two different (astrophysically relevant) conditions. In parallel, Kinetic Monte Carlo simulations were used to mimic the experimental conditions. In our experiments, CO molecules accrete onto water ice at temperatures below 27 K, with a deposition rate that does not depend on the substrate temperature.more » During the warm-up phase, the desorption processes do exhibit subtle differences, indicating the presence of weakly bound CO molecules, therefore highlighting a low diffusion efficiency. IR measurements following the ice thickness during the TPD confirm that diffusion occurs at temperatures close to the desorption. Applied to astrophysical conditions, in a pre-stellar core, the binding energies of CO molecules, ranging between 300 and 850 K, depend on the conditions at which CO has been deposited. Because of this wide range of binding energies, the depletion of CO as a function of A{sub V} is much less important than initially thought. The weakly bound molecules, easily released into the gas phase through evaporation, change the balance between accretion and desorption, which result in a larger abundance of CO at high extinctions. In addition, weakly bound CO molecules are also more mobile, and this could increase the reactivity within interstellar ices.« less
NASA Astrophysics Data System (ADS)
Parman, S. W.; Dann, J. C.; Grove, T. L.; de Wit, M. J.
1997-08-01
This paper provides new constraints on the crystallization conditions of the 3.49 Ga Barberton komatiites. The compositional evidence from igneous pyroxene in the olivine spinifex komatiite units indicates that the magma contained significant quantities of dissolved H2O. Estimates are made from comparisons of the compositions of pyroxene preserved in Barberton komatiites with pyroxene produced in laboratory experiments at 0.1 MPa (1 bar) under anhydrous conditions and at 100 and 200 MPa (1 and 2 kbar) under H2O-saturated conditions on an analog Barberton composition. Pyroxene thermobarometry on high-Ca clinopyroxene compositions from ten samples requires a range of minimum magmatic water contents of 6 wt.% or greater at the time of pyroxene crystallization and minimum emplacement pressures of 190 MPa (6 km depth). Since high-Ca pyroxene appears after 30% crystallization of olivine and spinel, the liquidus H2O contents could be 4 to 6 wt.% H2O. The liquidus temperature of the Barberton komatiite composition studied is between 1370 and 1400°C at 200 MPa under H2O-saturated conditions. When compared to the temperature-depth regime of modern melt generation environments, the komatiite mantle source temperatures are 200°C higher than the hydrous mantle melting temperatures inferred in modern subduction zone environments and 100°C higher than mean mantle melting temperatures estimated at mid-ocean ridges. When compared to previous estimates of komatiite liquidus temperatures, melting under hydrous conditions occurs at temperatures that are ˜ 250°C lower than previous estimates for anhydrous komatiite. Mantle melting by near-fractional, adiabatic decompression takes place in a melting column that spans ˜ 38 km depth range under hydrous conditions. This depth interval for melting is only slightly greater than that observed in modern mid-ocean ridge environments. In contrast, anhydrous fractional melting models of komatiite occur over a larger depth range (˜ 130 km) and place the base of the melting column into the transition zone.
Lattice constants and expansivities of gas hydrates from 10 K up to the stability limit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, T. C.; Falenty, A.; Kuhs, W. F.
2016-02-07
The lattice constants of hydrogenated and deuterated CH{sub 4}-, CO{sub 2}-, Xe- (clathrate structure type I) and N{sub 2}-hydrates (clathrate structure type II) from 10 K up to the stability limit were established in neutron- and synchrotron diffraction experiments and were used to derive the related thermal expansivities. The following results emerge from this analysis: (1) The differences of expansivities of structure type I and II hydrates are fairly small. (2) Despite the larger guest-size of CO{sub 2} as compared to methane, CO{sub 2}-hydrate has the smaller lattice constants at low temperatures, which is ascribed to the larger attractive guest-hostmore » interaction of the CO{sub 2}-water system. (3) The expansivity of CO{sub 2}-hydrate is larger than for CH{sub 4}-hydrate which leads to larger lattice constants for the former at temperatures above ∼150 K; this is likely due to the higher motional degrees of freedom of the CO{sub 2} guest molecules. (4) The cage occupancies of Xe- and CO{sub 2}-hydrates affect significantly the lattice constants. (5) Similar to ice Ih, the deuterated compounds have generally slightly larger lattice constants which can be ascribed to the somewhat weaker H-bonding. (6) Compared to ice Ih, the high temperature expansivities are about 50% larger; in contrast to ice Ih and the empty hydrate, there is no negative thermal expansion at low temperature. (7) A comparison of the experimental results with lattice dynamical work, with models based on an Einstein oscillator model, and results from inelastic neutron scattering suggest that the contribution of the guest atoms’ vibrational energy to thermal expansion is important, most prominently for CO{sub 2}- and Xe-hydrates.« less
Thermal Optical Properties of Lunar Dust Simulants and Their Constituents
NASA Technical Reports Server (NTRS)
Gaier, James R.; Ellis, Shaneise; Hanks, Nichole
2011-01-01
The total reflectance spectra of lunar simulant dusts (< 20 mm particles) were measured in order to determine their integrated solar absorptance (alpha) and their thermal emittance (epsilon) for the purpose of analyzing the effect of dust on the performance of thermal control surfaces. All of the simulants except one had a wavelength-dependent reflectivity (p (lambda)) near 0.10 over the wavelength range of 8 to 25 microns and so are highly emitting at room temperature and lower. The 300 K emittance (epsilon) of all the lunar simulants except one ranged from 0.78 to 0.92. The exception was Minnesota Lunar Simulant 1 (MLS-1), which has little or no glassy component. In all cases the epsilon was lower for the < 20 micron particles than for larger particles reported earlier. There was considerably more variation in the lunar simulant reflectance in the solar spectral range (250 to 2500 nm) than in the thermal infrared. As expected, the lunar highlands simulants were more reflective in this wavelength range than the lunar mare simulants. The integrated solar absorptance (alpha) of the simulants ranged from 0.39 to 0.75. This is lower than values reported earlier for larger particles of the same simulants (0.41 to 0.82), and for representative mare and highlands lunar soils (0.74 to 0.91). Since the of some mare simulants more closely matched that of highlands lunar soils, it is recommended that and values be the criteria for choosing a simulant for assessing the effects of dust on thermal control surfaces, rather than whether a simulant has been formulated as a highlands or a mare simulant.
Thermal Optical Properties of Lunar Dust Simulants and Their Constituents
NASA Technical Reports Server (NTRS)
Gaier, James R.; Ellis, Shaneise; Hanks, Nichole
2011-01-01
The total reflectance spectra of lunar simulant dusts (less than 20 micrometer particles) were measured in order to determine their integrated solar absorptance (alpha) and their thermal emittance (e) for the purpose of analyzing the effect of dust on the performance of thermal control surfaces. All of the simulants except one had a wavelength-dependant reflectivity (p(lambda)) near 0.10 over the wavelength range of 8 to 25 micrometers, and so are highly emitting at room temperature and lower. The 300 K emittance (epsilon) of all the lunar simulants except one ranged from 0.78 to 0.92. The exception was Minnesota Lunar Simulant 1 (MLS-1), which has little or no glassy component. In all cases the epsilon was lower for the less 20 micrometer particles than for larger particles reported earlier. There was considerably more variation in the lunar simulant reflectance in the solar spectral range (250 to 2500 nanometers) than in the thermal infrared. As expected, the lunar highlands simulants were more reflective in this wavelength range than the lunar mare simulants. The integrated solar absorptance (alpha) of the simulants ranged from 0.39 to 0.75. This is lower than values reported earlier for larger particles of the same simulants (0.41 to 0.82), and for representative mare and highlands lunar soils (0.74 to 0.91). Since the alpha of some mare simulants more closely matched that of highlands lunar soils, it is recommended that and values be the criteria for choosing a simulant for assessing the effects of dust on thermal control surfaces, rather than whether a simulant has been formulated as a highlands or a mare simulant.
NASA Astrophysics Data System (ADS)
Sahi, Qurat-ul-ain; Kim, Yong-Soo
2018-05-01
Knowledge of defects generation, their mobility, growth rate, and spatial distribution is the cornerstone for understanding the surface and structural evolution of a material used under irradiation conditions. In this study, molecular dynamics simulations were used to investigate the coupled effect of primary knock-on atom (PKA) energy and applied strain (uniaxial and hydrostatic) fields on primary radiation damage evolution in pure aluminum. Cascade damage simulations were carried out for PKA energy ranging between 1 and 20 keV and for applied strain values ranging between -2% and 2% at the fixed temperature of 300 K. Simulation results showed that as the atomic displacement cascade proceeds under uniaxial and hydrostatic strains, the peak and surviving number of Frenkel point defects increases with increasing tension; however, these increments were more prominent under larger volume changing deformations (hydrostatic strain). The percentage fraction of point defects that aggregate into clusters increases under tension conditions; compared to the reference conditions with no strain, these increases are around 13% and 7% for interstitials and vacancies, respectively (under 2% uniaxial strain), and 19% and 11% for interstitials and vacancies, respectively (under 2% hydrostatic strain). Clusters formed of vacancies and interstitials were both larger under tensile strain conditions, with increases in both the average and maximum cluster sizes. The rate of increase/decrease in the number of Frenkel pairs, their clustering, and their size distributions under expansion/compression strain conditions were higher for higher PKA energies. Overall, the present results suggest that strain effects should be considered carefully in radiation damage environments, specifically for conditions of low temperature and high radiation energy. Compressive strain conditions could be beneficial for materials used in nuclear reactor power systems.
The Role of Atmospheric Pressure on Surface Thermal Inertia for Early Mars Climate Modeling
NASA Astrophysics Data System (ADS)
Mischna, M.; Piqueux, S.
2017-12-01
On rocky bodies such as Mars, diurnal surface temperatures are controlled by the surface thermal inertia, which is a measure of the ability of the surface to store heat during the day and re-radiate it at night. Thermal inertia is a compound function of the near-surface regolith thermal conductivity, density and specific heat, with the regolith thermal conductivity being strongly controlled by the atmospheric pressure. For Mars, current best maps of global thermal inertia are derived from the Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor (MGS) spacecraft using bolometric brightness temperatures of the surface. Thermal inertia is widely used in the atmospheric modeling community to determine surface temperatures and to establish lower boundary conditions for the atmosphere. Infrared radiation emitted from the surface is key in regulating lower atmospheric temperatures and driving overall global circulation. An accurate map of surface thermal inertia is thus required to produce reasonable results of the present-day atmosphere using numerical Mars climate models. Not surprisingly, thermal inertia is also a necessary input into climate models of early Mars, which assume a thicker atmosphere, by as much as one to two orders of magnitude above the present-day 6 mb mean value. Early Mars climate models broadly, but incorrectly, assume the present day thermal inertia surface distribution. Here, we demonstrate that, on early Mars, when pressures were larger than today's, the surface layer thermal inertia was globally higher because of the increased thermal conductivity driven by the higher gas pressure in interstitial pore spaces within the soil. Larger thermal inertia reduces the diurnal range of surface temperature and will affect the size and timing of the modeled seasonal polar ice caps. Additionally, it will globally alter the frequency of when surface temperatures are modeled to exceed the liquid water melting point, and so results may need to be reassessed in light of lower `peak' global temperatures. We shall demonstrate the consequences of using properly calibrated thermal inertia maps for early Mars climate simulations, and propose simplified thermal inertia maps for use in such climate models.
DebriSat Pre Preshot Laboratory Analyses
2015-03-27
plate on up range side. MLI Down range Up range SBU Marking Witness Plates: Post Test (protected) 17 Surfaces of samples under Whipple plates are...s SBU Marking Witness Plates Post Test : Whipple Plates 59 Bottom Middle Top Up range is to the right – note sharp band of deposits on up range side...Marking Hold down plates: Post test 63 Up range Note larger deposit fragments on the down range plate. Similar larger deposits were observed on
Heat Capacity of Hydrous Silicate Melts
NASA Astrophysics Data System (ADS)
Robert, G.; Whittington, A. G.; Stechern, A.; Behrens, H.
2015-12-01
We determined the heat capacities of four series of glasses and liquids of basaltic and basaltic andesite compositions including two natural remelts from Fuego volcano, Guatemala, and two Fe-free analogs. The samples are low-alkali, Ca- and Mg-rich aluminosilicates with non-bridging oxygen to tetrahedrally-coordinated cation ratios (NBO/T) ranging between 0.33 and 0.67. Differential scanning calorimetry measurements were performed at atmospheric pressure between room temperature and ≈100 K above the glass transition for hydrous samples and up to ≈1800 K for dry samples. The water contents investigated range up to 5.34 wt.% (16.4 mol%). Water does not measurably affect the heat capacity of glasses (T
NASA Technical Reports Server (NTRS)
Bakes, E. L. O.; Tielens, A. G. G. M.
1994-01-01
We have theoretically modeled the gas heating associated with the photoelectric ejection of electrons from a size distribution of interstellar carbon grains which extends into the molecular domain. We have considered a wide range of physical conditions for the interstellar gas (1 less than G(sub 0) less than 10(exp 5), with G(sub 0) being the intensity of the incident far-UV field in units of the Habing interstellar radiation field; 2.5 x 10( exp -3) less than n(sub e) less than 75/cu cm, with n(sub e) being the electron density; 10 less than T less than 10,000 K, with T being the gas temperature). The results show that about half of the heating is due to grains less than 1500 C atoms (less than 15 A). The other half originates in somewhat larger grains (1500-4.5 x 10(exp 5) C atoms; 15 less than 100 A). While grains larger than this do absorb about half of the available far-UV photons, they do not contribute appreciably to the gas heating. This strong dependence of gas heating on size results from the decrease in yield and from the increased grain charge (hence larger Coulomb losses) with increasing grain size. We have determined the net photoelectric heating rate and evaluated a simple analytical expression for the heating efficiency, dependent only on G(sub 0), T, and n(sub e). This expression is accurate to 3% over the whole parameter range and is valid up to gas temperatures of 10(exp 4) K, at which point the dominant gas-dust heat exchange mechanism becomes the recombination of electrons with grains rather than photoelectric ejection. The calculated heating efficiency for neutral grains is in good agreement with that derived from observations of the diffuse interstellar clouds. Our results also agree well with the Far Infrared Absolute Spectrometer (FIRAS) observations on the Cosmic Background Explorer Satellite. Finally, our photoelectric heating efficiency is compared to previous studies.
NASA Astrophysics Data System (ADS)
Magee, Madeline R.; Wu, Chin H.
2017-12-01
Water temperatures and stratification are important drivers for ecological and water quality processes within lake systems, and changes in these with increases in air temperature and changes to wind speeds may have significant ecological consequences. To properly manage these systems under changing climate, it is important to understand the effects of increasing air temperatures and wind speed changes in lakes of different depths and surface areas. In this study, we simulate three lakes that vary in depth and surface area to elucidate the effects of the observed increasing air temperatures and decreasing wind speeds on lake thermal variables (water temperature, stratification dates, strength of stratification, and surface heat fluxes) over a century (1911-2014). For all three lakes, simulations showed that epilimnetic temperatures increased, hypolimnetic temperatures decreased, the length of the stratified season increased due to earlier stratification onset and later fall overturn, stability increased, and longwave and sensible heat fluxes at the surface increased. Overall, lake depth influences the presence of stratification, Schmidt stability, and differences in surface heat flux, while lake surface area influences differences in hypolimnion temperature, hypolimnetic heating, variability of Schmidt stability, and stratification onset and fall overturn dates. Larger surface area lakes have greater wind mixing due to increased surface momentum. Climate perturbations indicate that our larger study lakes have more variability in temperature and stratification variables than the smaller lakes, and this variability increases with larger wind speeds. For all study lakes, Pearson correlations and climate perturbation scenarios indicate that wind speed has a large effect on temperature and stratification variables, sometimes greater than changes in air temperature, and wind can act to either amplify or mitigate the effect of warmer air temperatures on lake thermal structure depending on the direction of local wind speed changes.
40 CFR 63.5725 - What are the requirements for monitoring and demonstrating continuous compliance?
Code of Federal Regulations, 2012 CFR
2012-07-01
... temperature monitoring device. (i) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a minimum tolerance of 2.2 °C or 0.75 percent of the temperature value, whichever is larger. (iii) Shield the temperature sensor system from electromagnetic...
40 CFR 63.5725 - What are the requirements for monitoring and demonstrating continuous compliance?
Code of Federal Regulations, 2010 CFR
2010-07-01
... temperature monitoring device. (i) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a minimum tolerance of 2.2 °C or 0.75 percent of the temperature value, whichever is larger. (iii) Shield the temperature sensor system from electromagnetic...
40 CFR 63.5725 - What are the requirements for monitoring and demonstrating continuous compliance?
Code of Federal Regulations, 2011 CFR
2011-07-01
... temperature monitoring device. (i) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a minimum tolerance of 2.2 °C or 0.75 percent of the temperature value, whichever is larger. (iii) Shield the temperature sensor system from electromagnetic...
Corcuera, Leyre; Gil-Pelegrin, Eustaquio; Notivol, Eduardo
2011-01-01
As part of a program to select maritime pine (Pinus pinaster Ait.) genotypes for resistance to low winter temperatures, we examined variation in photosystem II activity by chlorophyll fluorescence. Populations and families within populations from contrasting climates were tested during two consecutive winters through two progeny trials, one located at a continental and xeric site and one at a mesic site with Atlantic influence. We also obtained the LT₅₀, or the temperature that causes 50% damage, by controlled freezing and the subsequent analysis of chlorophyll fluorescence in needles and stems that were collected from populations at the continental trial site.P. pinaster showed sensitivity to winter stress at the continental site, during the colder winter. The combination of low temperatures, high solar irradiation and low precipitation caused sustained decreases in maximal photochemical efficiency (F(v)/F(m)), quantum yield of non-cyclic electron transport (Φ(PSII)) and photochemical quenching (qP). The variation in photochemical parameters was larger among families than among populations, and population differences appeared only under the harshest conditions at the continental site. As expected, the environmental effects (winter and site) on the photochemical parameters were much larger than the genotypic effects (population or family). LT₅₀ was closely related to the minimum winter temperatures of the population's range. The dark-adapted F(v)/F(m) ratio discriminated clearly between interior and coastal populations.In conclusion, variations in F(v)/F(m), Φ(PSII), qP and non-photochemical quenching (NPQ) in response to winter stress were primarily due to the differences between the winter conditions and the sites and secondarily due to the differences among families and their interactions with the environment. Populations from continental climates showed higher frost tolerance (LT₅₀) than coastal populations that typically experience mild winters. Therefore, LT₅₀, as estimated by F(v)/F(m), is a reliable indicator of frost tolerance among P. pinaster populations.
Corcuera, Leyre; Gil-Pelegrin, Eustaquio; Notivol, Eduardo
2011-01-01
As part of a program to select maritime pine (Pinus pinaster Ait.) genotypes for resistance to low winter temperatures, we examined variation in photosystem II activity by chlorophyll fluorescence. Populations and families within populations from contrasting climates were tested during two consecutive winters through two progeny trials, one located at a continental and xeric site and one at a mesic site with Atlantic influence. We also obtained the LT50, or the temperature that causes 50% damage, by controlled freezing and the subsequent analysis of chlorophyll fluorescence in needles and stems that were collected from populations at the continental trial site. P. pinaster showed sensitivity to winter stress at the continental site, during the colder winter. The combination of low temperatures, high solar irradiation and low precipitation caused sustained decreases in maximal photochemical efficiency (Fv/Fm), quantum yield of non-cyclic electron transport (ΦPSII) and photochemical quenching (qP). The variation in photochemical parameters was larger among families than among populations, and population differences appeared only under the harshest conditions at the continental site. As expected, the environmental effects (winter and site) on the photochemical parameters were much larger than the genotypic effects (population or family). LT50 was closely related to the minimum winter temperatures of the population's range. The dark-adapted Fv/Fm ratio discriminated clearly between interior and coastal populations. In conclusion, variations in Fv/Fm, ΦPSII, qP and non-photochemical quenching (NPQ) in response to winter stress were primarily due to the differences between the winter conditions and the sites and secondarily due to the differences among families and their interactions with the environment. Populations from continental climates showed higher frost tolerance (LT50) than coastal populations that typically experience mild winters. Therefore, LT50, as estimated by Fv/Fm, is a reliable indicator of frost tolerance among P. pinaster populations. PMID:22220195
Assessment of the uncertainty in future projection for summer climate extremes over the East Asia
NASA Astrophysics Data System (ADS)
Park, Changyong; Min, Seung-Ki; Cha, Dong-Hyun
2017-04-01
Future projections of climate extremes in regional and local scales are essential information needed for better adapting to climate changes. However, future projections hold larger uncertainty factors arising from internal and external processes which reduce the projection confidence. Using CMIP5 (Coupled Model Intercomparison Project Phase 5) multi-model simulations, we assess uncertainties in future projections of the East Asian temperature and precipitation extremes focusing on summer. In examining future projection, summer mean and extreme projections of the East Asian temperature and precipitation would be larger as time. Moreover, uncertainty cascades represent wider scenario difference and inter-model ranges with increasing time. A positive mean-extreme relation is found in projections for both temperature and precipitation. For the assessment of uncertainty factors for these projections, dominant uncertainty factors from temperature and precipitation change as time. For uncertainty of mean and extreme temperature, contributions of internal variability and model uncertainty declines after mid-21st century while role of scenario uncertainty grows rapidly. For uncertainty of mean precipitation projections, internal variability is more important than the scenario uncertainty. Unlike mean precipitation, extreme precipitation shows that the scenario uncertainty is expected to be a dominant factor in 2090s. The model uncertainty holds as an important factor for both mean and extreme precipitation until late 21st century. The spatial changes for the uncertainty factors of mean and extreme projections generally are expressed according to temporal changes of the fraction of total variance from uncertainty factors in many grids of the East Asia. ACKNOWLEDGEMENTS The research was supported by the Korea Meteorological Administration Research and Development program under grant KMIPA 2015-2083 and the National Research Foundation of Korea Grant funded by the Ministry of Science, ICT and Future Planning of Korea (NRF-2016M3C4A7952637) for its support and assistant in completion of the study.
Ozone Climate Penalty and Mortality in a Changing World
NASA Astrophysics Data System (ADS)
Hakami, A.; Zhao, S.; Pappin, A.; Mesbah, M.
2013-12-01
The expected increase in ozone concentrations with temperature is referred to as the climate penalty factor (CPF). Observed ozone trends have resulted in estimations of regional CPFs in the range of 1-3 ppb/K in the Eastern US, and larger values around the globe. We use the adjoint of a regional model (CMAQ) for attributing changes in ozone mortality and attainment metrics to increased temperature levels at each location in North America during the summer of 2007. Unlike previous forward sensitivity analysis studies, we estimate how changes in temperatures at various locations influence such policy-relevant metrics. Our analysis accounts for separate temperature impact pathways through gas-phase chemistry, moisture abundance, and biogenic emissions. We find that water vapor impact, while mostly negative, is positive and large for temperature changes in urban areas. We also find that increased biogenic emissions plays an important role in the overall temperature influence. Our simulations show a wide range of spatial variability in CPFs between -0.4 and 6.2 ppb/K with largest values in urban areas. We also estimate mortality-based CPFs of up to 4 deaths/K for each grid cell, again with large localization in urban areas. This amounts to an estimated 370 deaths/K for the 3-month period of the simulation. We find that this number is almost equivalent to 5% reduction in anthropogenic NOx emissions for each degree increase in temperature. We show how the CPF will change as the result progressive NOx emission controls from various anthropogenic sectors and sources at different locations. Our findings suggest that urban NOx control can be regarded as an adaptation strategy with regards to ozone air quality. Also, the strong temperature dependence in urban environments suggests that the health and attainment burden of urban heat island may be more substantial than previously thought. Spatial distribution of average adjoint-based CPFs Adjoint-based CPF and Mortality CPF (domainwide)
Quantum Discord Preservation for Two Quantum-Correlated Qubits in Two Independent Reserviors
NASA Astrophysics Data System (ADS)
Xu, Lan
2018-03-01
We investigate the dynamics of quantum discord using an exactly solvable model where two qubits coupled to independent thermal environments. The quantum discord is employed as a non-classical correlation quantifier. By studying the quantum discord of a class of initial states, we find discord remains preserve for a finite time. The effects of the temperature, initial-state parameter, system-reservoir coupling constant and temperature difference parameter of the two independent reserviors are also investigated. We discover that the quantum nature loses faster in high temperature, however, one can extend the time of quantum nature by choosing smaller system-reservoir coupling constant, larger certain initial-state parameter and larger temperature difference parameter.
Predicting Stream Temperature After Riparian Vegetation Removal
Bruce J. McGurk
1989-01-01
Removal of stream channel shading during timber harvest operations may raise the stream temperature and adversely affect desirable aquatic populations. Field work in California at one clearcut and one mature fir site demonstrated diurnal water temperature cycles and provided data to evaluate two stream temperature prediction techniques. Larger diurnal temperature...
Miller, Tricia A.; Brooks, Robert P.; Lanzone, Michael J.; Cooper, Jeff; O'Malley, Kieran; Brandes, David; Duerr, Adam E.; Katzner, Todd
2017-01-01
Movement behavior and its relationship to habitat provide critical information toward understanding the effects of changing environments on birds. The eastern North American population of Golden Eagles (Aquila chrysaetos) is a genetically distinct and small population of conservation concern. To evaluate the potential responses of this population to changing landscapes, we calculated the home range and core area sizes of 52 eagles of 6 age–sex classes during the summer and winter seasons. Variability in range size was related to variation in topography and open cover, and to age and sex. In summer, eagle ranges that were smaller had higher proportions of ridge tops and open cover and had greater topographic roughness than did larger ranges. In winter, smaller ranges had higher proportions of ridge tops, hillsides and cliffs, and open cover than did larger ranges. All age and sex classes responded similarly to topography and open cover in both seasons. Not surprisingly, adult eagles occupied the smallest ranges in both seasons. Young birds used larger ranges than adults, and subadults in summer used the largest ranges (>9,000 km2). Eastern adult home ranges in summer were 2–10 times larger than those reported for other populations in any season. Golden Eagles in eastern North America may need to compensate for generally lower-quality habitat in the region by using larger ranges that support access to adequate quantities of resources (prey, updrafts, and nesting, perching, and roosting sites) associated with open cover and diverse topography. Our results suggest that climate change–induced afforestation on the breeding grounds and ongoing land cover change from timber harvest and energy development on the wintering grounds may affect the amount of suitable habitat for Golden Eagles in eastern North America.
Experimental study on heat transfer performance of pulsating heat pipe with refrigerants
NASA Astrophysics Data System (ADS)
Wang, Xingyu; Jia, Li
2016-10-01
The effects of different refrigerants on heat transfer performance of pulsating heat pipe (PHP) are investigated experimentally. The working temperature of pulsating heat pipe is kept in the range of 20°C-50°C. The startup time of the pulsating heat pipe with refrigerants can be shorter than 4 min, when heating power is in the range of 10W?100W. The startup time decreases with heating power. Thermal resistances of PHP with filling ratio 20.55% were obviously larger than those with other filling ratios. Thermal resistance of the PHP with R134a is much smaller than that with R404A and R600a. It indicates that the heat transfer ability of R134a is better. In addition, a correlation to predict thermal resistance of PHP with refrigerants was suggested.
Limited temperature response to the very large AD 1258 volcanic eruption
NASA Astrophysics Data System (ADS)
Timmreck, Claudia; Lorenz, Stephan J.; Crowley, Thomas J.; Kinne, Stefan; Raddatz, Thomas J.; Thomas, Manu A.; Jungclaus, Johann H.
2009-11-01
The large AD 1258 eruption had a stratospheric sulfate load approximately ten times greater than the 1991 Pinatubo eruption. Yet surface cooling was not substantially larger than for Pinatubo (˜0.4 K). We apply a comprehensive Earth System Model to demonstrate that the size of the aerosol particles needs to be included in simulations, especially to explain the climate response to large eruptions. The temperature response weakens because increased density of particles increases collision rate and therefore aerosol growth. Only aerosol particle sizes substantially larger than observed after the Pinatubo eruption yield temperature changes consistent with terrestrial Northern Hemisphere summer temperature reconstructions. These results challenge an oft-held assumption of volcanic impacts not only with respect to the immediate or longer-term temperature response, but also any ecosystem response, including extinctions.
Seasonal variation of cold-induced vasooscillation on rabbit ear central artery.
Takeoka, M
1990-12-01
We studied the seasonal variation of vasooscillation of a rabbit ear central artery induced by exposure of the earlobes to - 7 degrees C liquid. The data were collected over a period of 10 years and analyzed by month. a) The index of arterial temperature fluctuation (IATF), i.e., activation index of cold-induced vasooscillation (CIVO), ranged from 114.5 +/- 26.7 (mean +/- SE) in January to 386.7 +/- 36.1 in June. A significant variation over all 12 months was revealed by analysis of variance (P less than 0.01). The values measured in May (317.1 +/- 47.3), June (386.7 +/- 36.1), and July (315.1 +/- 36.0) were significantly larger than those of other months. b) The monthly IATFs were correlated with the open air temperatures (r = 0.7017, P less than 0.05); however, the peak IATF occurred in June, while the peak open air temperature was in August. c) There was no seasonal variation of the arterial temperature either before or at 18-20 min after -7 degrees C immersion. Arterial temperature was not related to IATF during -7 degrees C exposure. d) When measuring-site temperature was steady, the thermistor temperature changed in parallel with the output from a laser blood volume meter. e) The CIVO was independent of systemic blood pressure and heart rate, which suggested that the occurrence of CIVO was regulated by changes in local vascular resistance.
Chen, Jianguo; Liu, Guoxi; Cheng, Jinrong; Dong, Shuxiang
2016-08-01
The actuation performance, strain hysteresis, and heat generation of the shear-bending mode actuators based on soft and hard BiScO3-PbTiO3 (BS-PT) ceramics were investigated under different thermal (from room temperature to 300 °C) and electrical loadings (from 2 to 10 kV/cm and from 1 to 1000 Hz). The actuator based on both soft and hard BS-PT ceramics worked stably at the temperature as high as 300 °C. The maximum working temperature of this shear-bending actuators is 150 °C higher than those of the traditional piezoelectric actuators based on commercial Pb(Zr, Ti)O3 materials. Furthermore, although the piezoelectric properties of soft-type ceramics based on BS-PT ceramics were superior to those of hard ceramics, the maximum displacement of the actuator based on hard ceramics was larger than that fabricated by soft ceramics at high temperature. The maximum displacement of the actuator based on hard ceramics was [Formula: see text] under an applied electric field of 10 kV/cm at 300 °C. The strain hysteresis and heat generation of the actuator based on hard ceramics was smaller than those of the actuator based on soft ceramics in the wide temperature range. These results indicated that the shear-bending actuator based on hard piezoelectric ceramics was more suitable for high-temperature piezoelectric applications.
NASA Astrophysics Data System (ADS)
Ren, Xiaodong; Yang, Zhou; Yang, Dong; Zhang, Xu; Cui, Dong; Liu, Yucheng; Wei, Qingbo; Fan, Haibo; Liu, Shengzhong (Frank)
2016-02-01
Regulating the temperature during the direction contact and intercalation process (DCIP) for the transition from PbI2 to CH3NH3PbI3 modulated the crystallinity, crystal grain size and crystal grain orientation of the perovskite films. Higher temperatures produced perovskite films with better crystallinity, larger grain size, and better photovoltaic performance. The best cell, which had a PCE of 12.9%, was obtained on a film prepared at 200 °C. Further open circuit voltage decay and film resistance characterization revealed that the larger grain size contributed to longer carrier lifetime and smaller carrier transport resistance, both of which are beneficial for solar cell devices.Regulating the temperature during the direction contact and intercalation process (DCIP) for the transition from PbI2 to CH3NH3PbI3 modulated the crystallinity, crystal grain size and crystal grain orientation of the perovskite films. Higher temperatures produced perovskite films with better crystallinity, larger grain size, and better photovoltaic performance. The best cell, which had a PCE of 12.9%, was obtained on a film prepared at 200 °C. Further open circuit voltage decay and film resistance characterization revealed that the larger grain size contributed to longer carrier lifetime and smaller carrier transport resistance, both of which are beneficial for solar cell devices. Electronic supplementary information (ESI) available: XRD patterns and statistic results of solar cell performance. See DOI: 10.1039/c5nr08935b
NASA Astrophysics Data System (ADS)
Mutiibwa, D.; Albright, T. P.; Wolf, B. O.; Mckechnie, A. E.; Gerson, A. R.; Talbot, W. A.; Sadoti, G.; O'Neill, J.; Smith, E.
2014-12-01
Extreme weather events can alter ecosystem structure and function and have caused mass mortality events in animals. With climate change, high temperature extremes are increasing in frequency and magnitude. To better understand the consequences of climate change, scientists have frequently employed correlative models based on species occurrence records. However, these approaches may be of limited utility in the context of extremes, as these are often outside historical ranges and may involve strong non-linear responses. Here we describe work linking physiological response informed by experimental data to geospatial climate datasets in order to mechanistically model the dynamics of dehydration risk to dessert passerine birds. Specifically, we modeled and mapped the occurrence of current (1980-2013) high temperature extremes and evaporative water loss rates for eight species of passerine birds ranging in size from 6.5-75g in the US Southwest portion of their range. We then explored the implications of a 4° C warming scenario. Evaporative water loss (EWL) across a range of high temperatures was measured in heat-acclimated birds captured in the field. We used the North American Land Data Assimilation System 2 dataset to obtain hourly estimates of EWL with a 14-km spatial grain. Assuming lethal dehydration occurs when water loss reaches 15% of body weight, we then produced maps of total daily EWL and time to lethal dehydration based on both current data and future scenarios. We found that milder events capable of producing dehydration in passerine birds over four or more hours were not uncommon over the Southwest, but rapid dehydration conditions (<3 hours) were rare. Under the warming scenario, the frequency and extent of dehydration events expanded greatly, often affecting areas several times larger than in present-day climate. Dehydration risk was especially high among smaller bodied passerines due to their higher mass-specific rates of water loss. Even after accounting for the moderating effects of microsite and topoclimatic refugia, the increase in occurrence of lethal dehydration risk is cause for concern. In particular, our results suggest that smaller bodied passerines may have difficulty in avoiding extirpation over portions of their current range in the desert southwest.
NASA Astrophysics Data System (ADS)
Timofeev, Evgeny; Kangas, Jorma; Vallinkoski, Matti
Quasi-periodic (consisting of a dozen electro-thermal structures, ETS) variations of ionospheric parameters during April, 10 and March, 23 1988 substorms were investigated using the data of EISCAT radars in Tromso. These variations were measured at the lower edge of dynamo-layer 106 km and include the ion and electron temperature, electron density and ionospheric electric field; all data were smoothed out using moving average with optimal lag window. It was shown that: 1) ETS clusters are observed when value of the electric field is < 10 mV/m and average electron density is about (5-10)*10 (4) /sm (3) , 2) For each ETS the envelop demonstrate the so called mirror symmetry, that is antiphased variations of the ion and electron temperature (when Ti increases and Te decreases), 3) The symmetry breaks when the electric field is larger than FB instability threshold (15-20 mVm), 4) The periods of these variations is in the range of 3-10 min, 5) The self-similarity of the scales is observed: smaller scales are included into the larger scales, 6) Temperature variations were accompanied by the electric field variations with amplitude of 4-7 mV/m, 7) Large scale structures (and sometimes dyads formed by two subsequent structures) were accompanied by the electric field rotation up to the whole circle. Specific ETS and plasma parameters variations can be interpreted as a result of Ekman-type instability in the dusty plasma of the dynamo layer. The mirror symmetry of plasma temperature variations is an evidence of a partial blocking of energy transfer between the ions and electrons at low values of the external electric field (below FB instability threshold) because the main energy in such a kind of plasma is attributed to dusty macro-particles (Fortov et al., 2010). Under these conditions the time scale of the dust particle energy variations are considerably larger than the corresponding scales of the temperature variations. According to our previous results (Timofeev et al, 2009-2013) the coherent increase of correlation coefficient (CC) of plasma temperature time variations and smoothed value of the electric field means that the CC can be used as an indicator of the ETS "rigidity" (hence the energy and charge of macro-particles). We used this coherence to estimate the time scale of the macro-particles energy growth (during preliminary phase of March 23, 1988 substorm) and get values of 12-19 min. In the present study we used the same event to estimate the time scale of the plasma temperatures mirror variations and obtained that they are at least 2-3 times shorter. Such a difference in the time scale determines the ETS formation. Finally, after FB instability excitation the electrons can quickly exchange their energy with plasmons, so that the mirror symmetry in temperature variations breaks down.
Cool habitats support darker and bigger butterflies in Australian tropical forests.
Xing, Shuang; Bonebrake, Timothy C; Tang, Chin Cheung; Pickett, Evan J; Cheng, Wenda; Greenspan, Sasha E; Williams, Stephen E; Scheffers, Brett R
2016-11-01
Morphology mediates the relationship between an organism's body temperature and its environment. Dark organisms, for example, tend to absorb heat more quickly than lighter individuals, which could influence their responses to temperature. Therefore, temperature-related traits such as morphology may affect patterns of species abundance, richness, and community assembly across a broad range of spatial scales. In this study, we examined variation in color lightness and body size within butterfly communities across hot and cool habitats in the tropical woodland-rainforest ecosystems of northeast Queensland, Australia. Using thermal imaging, we documented the absorption of solar radiation relative to color lightness and wingspan and then built a phylogenetic tree based on available sequences to analyze the effects of habitat on these traits within a phylogenetic framework. In general, darker and larger individuals were more prevalent in cool, closed-canopy rainforests than in immediately adjacent and hotter open woodlands. In addition, darker and larger butterflies preferred to be active in the shade and during crepuscular hours, while lighter and smaller butterflies were more active in the sun and midday hours-a pattern that held after correcting for phylogeny. Our ex situ experiment supported field observations that dark and large butterflies heated up faster than light and small butterflies under standardized environmental conditions. Our results show a thermal consequence of butterfly morphology across habitats and how environmental factors at a microhabitat scale may affect the distribution of species based on these traits. Furthermore, this study highlights how butterfly species might differentially respond to warming based on ecophysiological traits and how thermal refuges might emerge at microclimatic and habitat scales.
Hidalgo-Galiana, A; Monge, M; Biron, D G; Canals, F; Ribera, I; Cieslak, A
2016-01-01
Physiological changes associated with evolutionary and ecological processes such as diversification, range expansion or speciation are still incompletely understood, especially for non-model species. Here we study differences in protein expression in response to temperature in a western Mediterranean diving beetle species complex, using two-dimensional differential gel electrophoresis with one Moroccan and one Iberian population each of Agabus ramblae and Agabus brunneus. We identified proteins with significant expression differences after thermal treatments comparing them with a reference EST library generated from one of the species of the complex (A. ramblae). The colonisation during the Middle Pleistocene of the Iberian peninsula by A. ramblae, where maximum temperatures and seasonality are lower than in the ancestral north African range, was associated with changes in the response to 27 °C in proteins related to energy metabolism. The subsequent speciation of A. brunneus from within populations of Iberian A. ramblae was associated with changes in the expression of several stress-related proteins (mostly chaperons) when exposed to 4 °C. These changes are in agreement with the known tolerance to lower temperatures of A. brunneus, which occupies a larger geographical area with a wider range of climatic conditions. In both cases, protein expression changes paralleled the evolution of thermal tolerance and the climatic conditions experienced by the species. However, although the colonisation of the Iberian peninsula did not result in morphological change, the speciation process of A. brunneus within Iberia involved genetic isolation and substantial differences in male genitalia and body size and shape.
Cold tolerance of the Australian spur-throated locust, Austracris guttulosa.
Woodman, James D
2012-03-01
The cold tolerance of overwintering adult Spur-throated locusts, Austracris guttulosa, was examined using measures of supercooling point relative to gender, environmental acclimation and feeding state as well as mortality for a range of sub-zero temperature exposure treatments. Freezing was lethal and supercooling points ranged from -6 to -12.8°C, but were statistically independent of fresh mass, body water content, acclimation, and/or gut content in fed and starved individuals. A significant interaction effect of gender and feeding status showed that the larger bodied females had decreased supercooling capacity with increased food material in the digestive tract. Post-freezing dissections revealed differences in the amount of freshly consumed and retained food material in the digestive tract between fed and starved individuals of each gender, which could explain this effect based on inoculation of ice crystallisation by food particles. Above supercooling temperatures, neither gender nor the rate of cooling had a significant effect on mortality. When cooled from 25°C at 0.1 or 0.5°Cmin(-1) to a range of experimental minimum temperatures held for 3h, survival was ~74% to -7°C, but declined sharply to ~37% when cooled to -8°C or lower. Although the laboratory experiments reported here suggest that A. guttulosa is not freeze tolerant and unable to rapidly cold harden, exposure to typical cold and frosty nights that very rarely reach below -8°C as a night minimum in the field would be unlikely to cause mortality in the vast majority of overwintering aggregations. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Hidalgo-Galiana, A; Monge, M; Biron, D G; Canals, F; Ribera, I; Cieslak, A
2016-01-01
Physiological changes associated with evolutionary and ecological processes such as diversification, range expansion or speciation are still incompletely understood, especially for non-model species. Here we study differences in protein expression in response to temperature in a western Mediterranean diving beetle species complex, using two-dimensional differential gel electrophoresis with one Moroccan and one Iberian population each of Agabus ramblae and Agabus brunneus. We identified proteins with significant expression differences after thermal treatments comparing them with a reference EST library generated from one of the species of the complex (A. ramblae). The colonisation during the Middle Pleistocene of the Iberian peninsula by A. ramblae, where maximum temperatures and seasonality are lower than in the ancestral north African range, was associated with changes in the response to 27 °C in proteins related to energy metabolism. The subsequent speciation of A. brunneus from within populations of Iberian A. ramblae was associated with changes in the expression of several stress-related proteins (mostly chaperons) when exposed to 4 °C. These changes are in agreement with the known tolerance to lower temperatures of A. brunneus, which occupies a larger geographical area with a wider range of climatic conditions. In both cases, protein expression changes paralleled the evolution of thermal tolerance and the climatic conditions experienced by the species. However, although the colonisation of the Iberian peninsula did not result in morphological change, the speciation process of A. brunneus within Iberia involved genetic isolation and substantial differences in male genitalia and body size and shape. PMID:26328758
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganesh, Panchapakesan; Kent, Paul R; Mochalin, Vadym N
We simulate the experimentally observed graphitization of nanodiamonds into multi-shell onion-like carbon nanostructures, also called carbon onions, at different temperatures, using reactive force fields. The simulations include long-range Coulomb and van der Waals interactions. Our results suggest that long-range interactions play a crucial role in the phase-stability and the graphitization process. Graphitization is both enthalpically and entropically driven and can hence be controlled with temperature. The outer layers of the nanodiamond have a lower kinetic barrier toward graphitization irrespective of the size of the nanodiamond and graphitize within a few-hundred picoseconds, with a large volume increase. The inner core ofmore » the nanodiamonds displays a large size-dependent kinetic barrier, and graphitizes much more slowly with abrupt jumps in the internal energy. It eventually graphitizes by releasing pressure and expands once the outer shells have graphitized. The degree of transformation at a particular temperature is thereby determined by a delicate balance between the thermal energy, long-range interactions, and the entropic/enthalpic free energy gained by graphitization. Upon full graphitization, a multi-shell carbon nanostructure appears, with a shell-shell spacing of about {approx}3.4 {angstrom} for all sizes. The shells are highly defective with predominantly five- and seven-membered rings to curve space. Larger nanodiamonds with a diameter of 4 nm can graphitize into spiral structures with a large ({approx}29-atom carbon ring) pore opening on the outermost shell. Such a large one-way channel is most attractive for a controlled insertion of molecules/ions such as Li ions, water, or ionic liquids, for increased electrochemical capacitor or battery electrode applications.« less
Nonlinear temperature effects on multifractal complexity of metabolic rate of mice
Bogdanovich, Jose M.; Bozinovic, Francisco
2016-01-01
Complex physiological dynamics have been argued to be a signature of healthy physiological function. Here we test whether the complexity of metabolic rate fluctuations in small endotherms decreases with lower environmental temperatures. To do so, we examine the multifractal temporal scaling properties of the rate of change in oxygen consumption r(VO2), in the laboratory mouse Mus musculus, assessing their long range correlation properties across seven different environmental temperatures, ranging from 0 °C to 30 °C. To do so, we applied multifractal detrended fluctuation analysis (MF-DFA), finding that r(VO2) fluctuations show two scaling regimes. For small time scales below the crossover time (approximately 102 s), either monofractal or weak multifractal dynamics are observed depending on whether Ta < 15 °C or Ta > 15 °C respectively. For larger time scales, r(VO2) fluctuations are characterized by an asymptotic scaling exponent that indicates multifractal anti-persistent or uncorrelated dynamics. For both scaling regimes, a generalization of the multiplicative cascade model provides very good fits for the Renyi exponents τ(q), showing that the infinite number of exponents h(q) can be described by only two independent parameters, a and b. We also show that the long-range correlation structure of r(VO2) time series differs from randomly shuffled series, and may not be explained as an artifact of stochastic sampling of a linear frequency spectrum. These results show that metabolic rate dynamics in a well studied micro-endotherm are consistent with a highly non-linear feedback control system. PMID:27781179
Nonlinear temperature effects on multifractal complexity of metabolic rate of mice.
Labra, Fabio A; Bogdanovich, Jose M; Bozinovic, Francisco
2016-01-01
Complex physiological dynamics have been argued to be a signature of healthy physiological function. Here we test whether the complexity of metabolic rate fluctuations in small endotherms decreases with lower environmental temperatures. To do so, we examine the multifractal temporal scaling properties of the rate of change in oxygen consumption r ( VO 2 ), in the laboratory mouse Mus musculus , assessing their long range correlation properties across seven different environmental temperatures, ranging from 0 °C to 30 °C. To do so, we applied multifractal detrended fluctuation analysis (MF-DFA), finding that r(VO 2 ) fluctuations show two scaling regimes. For small time scales below the crossover time (approximately 10 2 s), either monofractal or weak multifractal dynamics are observed depending on whether T a < 15 °C or T a > 15 °C respectively. For larger time scales, r(VO 2 ) fluctuations are characterized by an asymptotic scaling exponent that indicates multifractal anti-persistent or uncorrelated dynamics. For both scaling regimes, a generalization of the multiplicative cascade model provides very good fits for the Renyi exponents τ ( q ), showing that the infinite number of exponents h(q) can be described by only two independent parameters, a and b . We also show that the long-range correlation structure of r(VO 2 ) time series differs from randomly shuffled series, and may not be explained as an artifact of stochastic sampling of a linear frequency spectrum. These results show that metabolic rate dynamics in a well studied micro-endotherm are consistent with a highly non-linear feedback control system.
Atomic-scale reversibility in sheared glasses
NASA Astrophysics Data System (ADS)
Fan, Meng; Wang, Minglei; Liu, Yanhui; Schroers, Jan; Shattuck, Mark; O'Hern, Corey
Systems become irreversible on a macroscopic scale when they are sheared beyond the yield strain and begin flowing. Using computer simulations of oscillatory shear, we investigate atomic scale reversibility. We employ molecular dynamics simulations to cool binary Lennard-Jones liquids to zero temperature over a wide range of cooling rates. We then apply oscillatory quasistatic shear at constant pressure to the zero-temperature glasses and identify neighbor-switching atomic rearrangement events. We determine the critical strain γ*, beyond which atoms in the system do not return to their original positions upon reversing the strain. We show that for more slowly cooled glasses, the average potential energy is lower and the typical size of atomic rearrangements is smaller, which correlates with larger γ*. Finally, we connect atomic- and macro-scale reversibility by determining the number of and correlations between the atomic rearrangements that occur as the system reaches the yield strain.
Dielectric Properties of Boron Nitride-Ethylene Glycol (BN-EG) Nanofluids
NASA Astrophysics Data System (ADS)
Fal, Jacek; Cholewa, Marian; Gizowska, Magdalena; Witek, Adam; ŻyŁa, GaweŁ
2017-02-01
This paper presents the results of experimental investigation of the dielectric properties of ethylene glycol (EG) with various load of boron nitride (BN) nanoparticles. The nanofuids were prepared by using a two-step method on the basis of commercially available BN nanoparticles. The measurements were carried out using the Concept 80 System (NOVOCONTROL Technologies GmbH & Co. KG, Montabaur, Germany) in a frequency range from 10 Hz to 10 MHz and temperatures from 278.15 K to 328.15 K. The frequency-dependent real (ɛ ^' }) and imaginary (ɛ ^' ' }) parts of the complex permittivity (ɛ ^*) and the alternating current (AC) conductivity are presented. Also, the effect of temperature and mass concentrations on the dielectric properties of BN-EG nanofluids are demonstrated. The results show that the most significant increase can be achieved for 20 wt.% of BN nanoparticles at 283.15 K and 288.15 K, that is eleven times larger than in the case of pure EG.
Negative-pressure-induced enhancement in a freestanding ferroelectric
NASA Astrophysics Data System (ADS)
Wang, Jin; Wylie-van Eerd, Ben; Sluka, Tomas; Sandu, Cosmin; Cantoni, Marco; Wei, Xian-Kui; Kvasov, Alexander; McGilly, Leo John; Gemeiner, Pascale; Dkhil, Brahim; Tagantsev, Alexander; Trodahl, Joe; Setter, Nava
2015-10-01
Ferroelectrics are widespread in technology, being used in electronics and communications, medical diagnostics and industrial automation. However, extension of their operational temperature range and useful properties is desired. Recent developments have exploited ultrathin epitaxial films on lattice-mismatched substrates, imposing tensile or compressive biaxial strain, to enhance ferroelectric properties. Much larger hydrostatic compression can be achieved by diamond anvil cells, but hydrostatic tensile stress is regarded as unachievable. Theory and ab initio treatments predict enhanced properties for perovskite ferroelectrics under hydrostatic tensile stress. Here we report negative-pressure-driven enhancement of the tetragonality, Curie temperature and spontaneous polarization in freestanding PbTiO3 nanowires, driven by stress that develops during transformation of the material from a lower-density crystal structure to the perovskite phase. This study suggests a simple route to obtain negative pressure in other materials, potentially extending their exploitable properties beyond their present levels.
Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed.
Heo, Hyeon Su; Park, Hyun Ju; Park, Young-Kwon; Ryu, Changkook; Suh, Dong Jin; Suh, Young-Woong; Yim, Jin-Heong; Kim, Seung-Soo
2010-01-01
The amount of waste furniture generated in Korea was over 2.4 million tons in the past 3 years, which can be used for renewable energy or fuel feedstock production. Fast pyrolysis is available for thermo-chemical conversion of the waste wood mostly into bio-oil. In this work, fast pyrolysis of waste furniture sawdust was investigated under various reaction conditions (pyrolysis temperature, particle size, feed rate and flow rate of fluidizing medium) in a fluidized-bed reactor. The optimal pyrolysis temperature for increased yields of bio-oil was 450 degrees C. Excessively smaller or larger feed size negatively affected the production of bio-oil. Higher flow and feeding rates were more effective for the production of bio-oil, but did not greatly affect the bio-oil yields within the tested ranges. The use of product gas as the fluidizing medium had a potential for increased bio-oil yields.
Validation and Continued Development of Methods for Spheromak Simulation
NASA Astrophysics Data System (ADS)
Benedett, Thomas
2017-10-01
The HIT-SI experiment has demonstrated stable sustainment of spheromaks. Determining how the underlying physics extrapolate to larger, higher-temperature regimes is of prime importance in determining the viability of the inductively-driven spheromak. It is thus prudent to develop and validate a computational model that can be used to study current results and study the effect of possible design choices on plasma behavior. An extended MHD model has shown good agreement with experimental data at 14 kHz injector operation. Efforts to extend the existing validation to a range of higher frequencies (36, 53, 68 kHz) using the PSI-Tet 3D extended MHD code will be presented, along with simulations of potential combinations of flux conserver features and helicity injector configurations and their impact on current drive performance, density control, and temperature for future SIHI experiments. Work supported by USDoE.
NASA Technical Reports Server (NTRS)
Tolbert, Margaret A.; Rossi, Michel J.; Golden, David M.
1988-01-01
The heterogeneous interactions of ClONO2, HCl, and HNO3 with sulfuric acid surfaces were studied using a Knudsen cell flow reactor. The surfaces studied, chosen to simulate global stratospheric particulate, were composed of 65-75 percent H2SO4 solutions at temperatures in the range -63 to -43 C. Heterogeneous loss, but not reaction, of HNO3 and HCl occurred on these surfaces; the measured sticking coefficients are reported. Chlorine nitrate reacted on the cold sulfuric acid surfaces, producing gas-phase HOCl and condensed HNO3. CLONO2 also reacted with HCl dissolved in the 65-percent H2SO4 solution at -63 C, forming gaseous Cl2. In all cases studied, the sticking and/or reaction coefficients were much larger for the 65-percent H2SO4 solution at -63 C than for the 75-percent solution at -43 C.
Arrigo, Kevin R
2014-01-01
Polar sea ice is one of the largest ecosystems on Earth. The liquid brine fraction of the ice matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving ice algal communities, generally dominated by diatoms, live at the ice/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea ice biomass, heterotrophic bacteria are also abundant. The sea ice ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the ice sinks through the water column and feeds benthic ecosystems. As sea ice extent declines, ice algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters.
Temperature-viscosity models reassessed.
Peleg, Micha
2017-05-04
The temperature effect on viscosity of liquid and semi-liquid foods has been traditionally described by the Arrhenius equation, a few other mathematical models, and more recently by the WLF and VTF (or VFT) equations. The essence of the Arrhenius equation is that the viscosity is proportional to the absolute temperature's reciprocal and governed by a single parameter, namely, the energy of activation. However, if the absolute temperature in K in the Arrhenius equation is replaced by T + b where both T and the adjustable b are in °C, the result is a two-parameter model, which has superior fit to experimental viscosity-temperature data. This modified version of the Arrhenius equation is also mathematically equal to the WLF and VTF equations, which are known to be equal to each other. Thus, despite their dissimilar appearances all three equations are essentially the same model, and when used to fit experimental temperature-viscosity data render exactly the same very high regression coefficient. It is shown that three new hybrid two-parameter mathematical models, whose formulation bears little resemblance to any of the conventional models, can also have excellent fit with r 2 ∼ 1. This is demonstrated by comparing the various models' regression coefficients to published viscosity-temperature relationships of 40% sucrose solution, soybean oil, and 70°Bx pear juice concentrate at different temperature ranges. Also compared are reconstructed temperature-viscosity curves using parameters calculated directly from 2 or 3 data points and fitted curves obtained by nonlinear regression using a larger number of experimental viscosity measurements.
Effects of Solar Heating by Aerosols and Trace Gases on the Temperature Structure Constant
1990-08-09
stratosphere. Thermosonde measurements taken in Hawaii at a time when the Kilauea volcano was active are consistent with larger diurnal variations beginning...instabilities. Again, this is consistent with the larger diurnal variations of C7n as measured by the thermosonde in Hawaii where the variations were larger and
The relative viscosity of NaNO 3 and NaNO 2 aqueous solutions
Reynolds, Jacob G.; Mauss, Billie M.; Daniel, Richard C.
2018-05-09
In aqueous solution, both nitrate and nitrite are planar, monovalent, and have the same elements but different sizes and charge densities. Comparing the viscosity of NaNO 2 and NaNO 3 aqueous solutions provides an opportunity to determine the relative importance of anion size versus strength of anion interaction with water. The viscosity of aqueous NaNO 2 and NaNO 3 were measured over a temperature and concentration range relevant to nuclear waste processing. The viscosity of NaNO 2 solutions was consistently larger than NaNO 3 under all conditions, even though nitrate is larger than nitrite. This was interpreted in terms ofmore » quantum mechanical charge field molecular dynamics calculations that indicate that nitrite forms more and stronger hydrogen bonds with water per oxygen atom than nitrate. Furthermore, these hydrogen bonds inhibit rotational motion required for fluid flow, thus increasing the nitrite solution viscosity relative to that of an equivalent nitrate solution.« less
The relative viscosity of NaNO 3 and NaNO 2 aqueous solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, Jacob G.; Mauss, Billie M.; Daniel, Richard C.
In aqueous solution, both nitrate and nitrite are planar, monovalent, and have the same elements but different sizes and charge densities. Comparing the viscosity of NaNO 2 and NaNO 3 aqueous solutions provides an opportunity to determine the relative importance of anion size versus strength of anion interaction with water. The viscosity of aqueous NaNO 2 and NaNO 3 were measured over a temperature and concentration range relevant to nuclear waste processing. The viscosity of NaNO 2 solutions was consistently larger than NaNO 3 under all conditions, even though nitrate is larger than nitrite. This was interpreted in terms ofmore » quantum mechanical charge field molecular dynamics calculations that indicate that nitrite forms more and stronger hydrogen bonds with water per oxygen atom than nitrate. Furthermore, these hydrogen bonds inhibit rotational motion required for fluid flow, thus increasing the nitrite solution viscosity relative to that of an equivalent nitrate solution.« less
Planetesimal Formation in the Warm, Inner Disk: Experiments with Tempered Dust
NASA Astrophysics Data System (ADS)
de Beule, Caroline; Landers, Joachim; Salamon, Soma; Wende, Heiko; Wurm, Gerhard
2017-03-01
It is an open question how elevated temperatures in the inner parts of protoplanetary disks influence the formation of planetesimals. We approach this problem here by studying the tensile strength of granular beds with dust samples tempered at different temperatures. We find via laboratory experiments that tempering at increasing temperatures is correlated with an increase in cohesive forces. We studied dust samples of palagonite (JSC Mars-1a) which were tempered for up to 200 hr at temperatures between 600 and 1200 K, and measured the relative tensile strengths of highly porous dust layers once the samples cooled to room temperature. Tempering increases the tensile strength from 800 K upwards. This change is accompanied by mineral transformations, the formation of iron oxide crystallites as analyzed by Mössbauer spectroscopy, changes in the number size distribution, and the morphology of the surface visible as cracks in larger grains. These results suggest a difference in the collisional evolution toward larger bodies with increasing temperature as collisional growth is fundamentally based on cohesion. While high temperatures might also increase sticking (not studied here), compositional evolution will already enhance the cohesion and the possibility of growing larger aggregates on the way toward planetesimals. This might lead to a preferred in situ formation of inner planets and explain the observed presence of dense inner planetary systems.
Planetesimal Formation in the Warm, Inner Disk: Experiments with Tempered Dust
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Beule, Caroline; Landers, Joachim; Salamon, Soma
2017-03-01
It is an open question how elevated temperatures in the inner parts of protoplanetary disks influence the formation of planetesimals. We approach this problem here by studying the tensile strength of granular beds with dust samples tempered at different temperatures. We find via laboratory experiments that tempering at increasing temperatures is correlated with an increase in cohesive forces. We studied dust samples of palagonite (JSC Mars-1a) which were tempered for up to 200 hr at temperatures between 600 and 1200 K, and measured the relative tensile strengths of highly porous dust layers once the samples cooled to room temperature. Temperingmore » increases the tensile strength from 800 K upwards. This change is accompanied by mineral transformations, the formation of iron oxide crystallites as analyzed by Mössbauer spectroscopy, changes in the number size distribution, and the morphology of the surface visible as cracks in larger grains. These results suggest a difference in the collisional evolution toward larger bodies with increasing temperature as collisional growth is fundamentally based on cohesion. While high temperatures might also increase sticking (not studied here), compositional evolution will already enhance the cohesion and the possibility of growing larger aggregates on the way toward planetesimals. This might lead to a preferred in situ formation of inner planets and explain the observed presence of dense inner planetary systems.« less
High-resolution, large dynamic range fiber-optic thermometer with cascaded Fabry-Perot cavities.
Liu, Guigen; Sheng, Qiwen; Hou, Weilin; Han, Ming
2016-11-01
The paradox between a large dynamic range and a high resolution commonly exists in nearly all kinds of sensors. Here, we propose a fiber-optic thermometer based on dual Fabry-Perot interferometers (FPIs) made from the same material (silicon), but with different cavity lengths, which enables unambiguous recognition of the dense fringes associated with the thick FPI over the free-spectral range determined by the thin FPI. Therefore, the sensor combines the large dynamic range of the thin FPI and the high resolution of the thick FPI. To verify this new concept, a sensor with one 200 μm thick silicon FPI cascaded by another 10 μm thick silicon FPI was fabricated. A temperature range of -50°C to 130°C and a resolution of 6.8×10-3°C were demonstrated using a simple average wavelength tracking demodulation. Compared to a sensor with only the thick silicon FPI, the dynamic range of the hybrid sensor was more than 10 times larger. Compared to a sensor with only the thin silicon FPI, the resolution of the hybrid sensor was more than 18 times higher.
Quantum path integral simulation of isotope effects in the melting temperature of ice Ih.
Ramírez, R; Herrero, C P
2010-10-14
The isotope effect in the melting temperature of ice Ih has been studied by free energy calculations within the path integral formulation of statistical mechanics. Free energy differences between isotopes are related to the dependence of their kinetic energy on the isotope mass. The water simulations were performed by using the q-TIP4P/F model, a point charge empirical potential that includes molecular flexibility and anharmonicity in the OH stretch of the water molecule. The reported melting temperature at ambient pressure of this model (T=251 K) increases by 6.5±0.5 and 8.2±0.5 K upon isotopic substitution of hydrogen by deuterium and tritium, respectively. These temperature shifts are larger than the experimental ones (3.8 and 4.5 K, respectively). In the classical limit, the melting temperature is nearly the same as that for tritiated ice. This unexpected behavior is rationalized by the coupling between intermolecular interactions and molecular flexibility. This coupling makes the kinetic energy of the OH stretching modes larger in the liquid than in the solid phase. However, the opposite behavior is found for intramolecular modes, which display larger kinetic energy in ice than in liquid water.
Ely, Craig R.; Fox, A.D.; Alisauskas, R.T.; Andreev, A.; Bromley, R.G.; Degtyarev, Andrei G.; Ebbinge, B.; Gurtovaya, E.N.; Kerbes, R.; Kondratyev, Alexander V.; Kostin, I.; Krechmar, A.V.; Litvin, K.E.; Miyabayashi, Y.; Moou, J.H.; Oates, R.M.; Orthmeyer, D.L.; Sabano, Yutaka; Simpson, S.G.; Solovieva, D.V.; Spindler, Michael A.; Syroechkovsky, Y.V.; Takekawa, John Y.; Walsh, A.
2005-01-01
Capsule: Greater White-fronted Geese show significant variation in body size from sampling locations throughout their circumpolar breeding range. Aims: To determine the degree of geographical variation in body size of Greater White-fronted Geese and identify factors contributing to any apparent patterns in variation. Methods: Structural measures of >3000 geese from 16 breeding areas throughout the Holarctic breeding range of the species were compared statistically. Results: Palearctic forms varied clinally, and increased in size from the smallest forms on the Kanin and Taimyr peninsulas in western Eurasia to the largest forms breeding in the Anadyr Lowlands of eastern Chukotka. Clinal variation was less apparent in the Nearctic, as both the smallest form in the Nearctic and the largest form overall (the Tule Goose) were from different breeding areas in Alaska. The Tule Goose was 25% larger than the smallest form. Birds from Greenland (A. a. flavirostris) were the second largest, although only slightly larger than geese from several North American populations. Body size was not correlated with breeding latitude but was positively correlated with temperature on the breeding grounds, breeding habitat, and migration distance. Body mass of Greater White-fronted Geese from all populations remained relatively constant during the period of wing moult. Morphological distinctness of eastern and western Palearctic forms concurs with earlier findings of complete range disjunction. Conclusions: Patterns of morphological variation in Greater White-fronted Geese across the Holarctic can be generally attributed to adaptation to variable breeding environments, migration requirements, and phylo-geographical histories.
NASA Technical Reports Server (NTRS)
Smart, M.C.; Ratnakumar, B.V.; Whitcanack, L. D.; Dewell, E. A.; Jones, L. E.; Salvo, C. G.; Puglia, F. J.; Cohen, S.; Gitzendanner, R.
2008-01-01
In 2009, JPL is planning to launch an unmanned rover mission to the planet Mars. This mission, referred to as the Mars Science Laboratory (MSL), will involve the use of a rover that is much larger than the previously developed Spirit and Opportunity Rovers for the 2003 Mars Exploration Rover (MER) mission, that are currently still in operation on the surface of the planet after more than three years. Part of the reason that the MER rovers have operated so successfully, far exceeding the required mission duration of 90 sols, is that they possess robust Li-ion batteries, manufactured by Yardney Technical Products, which have demonstrated excellent life characteristics. Given the excellent performance characteristics displayed, similar lithium-ion batteries have been projected to successfully meet the mission requirements of the up-coming MSL mission. Although comparable in many facets, such as being required to operate over a wide temperature range (-20 to 40 C), the MSL mission has more demanding performance requirements compared to the MER mission, including much longer mission duration (approx. 687 sols vs. 90 sols), higher power capability, and the need to withstand higher temperature excursions. In addition, due to the larger rover size, the MSL mission necessitates the use of a much larger battery to meet the energy, life, and power requirements. In order to determine the viability of meeting these requirements, a number of performance verification tests were performed on 10 Ah Yardney lithium-ion cells (MER design) under MSL-relevant conditions, including mission surface operation simulation testing. In addition, the performance of on-going ground life testing of 10 Ah MER cells and 8-cell batteries will be discussed in the context of capacity loss and impedance growth predictions.
Sorokin, Victor A; Valeev, Vladimir A; Gladchenko, Galina O; Degtiar, Marina V; Karachevtsev, Victor A; Blagoi, Yuri P
2003-01-15
Differential UV spectroscopy and thermal denaturation were used to study the Mg(2+) ion effect on the conformational equilibrium in poly A.2 poly U (A2U) and poly A . poly U (AU) solutions at low (0.01 M Na(+)) and high (0.1 M Na(+)) ionic strengths. Four complete phase diagrams were obtained for Mg(2+)-polynucleotide complexes in ranges of temperatures 20-96 degrees C and concentrations (10(-5)-10(-2)) M Mg(2+). Three of them have a 'critical' point at which the type of the conformational transition changes. The value of the 'critical' concentration ([Mg(t)(2+)](cr)=(4.5+/-1.0) x 10(-5) M) is nearly independent of the initial conformation of polynucleotides (AU, A2U) and of Na(+) contents in the solution. Such a value is observed for Ni(2+) ions too. The phase diagram of the (A2U+Mg(2+)) complex with 0.01 M Na(+) has no 'critical' point: temperatures of (3-->2) and (2-->1) transitions increase in the whole Mg(2+) range. In (AU+Mg(2+)) phase diagram at 0.01 M Na(+) the temperature interval in which triple helices are formed and destroyed is several times larger than at 0.1 M Na(+). Using the ligand theory, a qualitative thermodynamic analysis of the phase diagrams was performed.
Ordering Transformations in High-Entropy Alloys
NASA Astrophysics Data System (ADS)
Singh, Prashant; Johnson, Duane D.
The high-temperature disordered phase of multi-component alloys, including high-entropy alloys (HEA), generally must experience segregation or else passes through partially-ordered phases to reach the low-temperature, fully-ordered phase. Our first-principles KKR-CPA-based atomic short-range ordering (SRO) calculations (analyzed as concentration-waves) reveal the competing partially and fully ordered phases in HEA, and these phases can be then directly assessed from KKR-CPA results in larger unit cells [Phys. Rev. B 91, 224204 (2015)]. For AlxCrFeNiTi0.25, Liu et al. [J Alloys Compd 619, 610 (2015)] experimentally find FCC+BCC coexistence that changes to BCC with increasing Al (x from 0-to-1), which then exhibits a partially-ordered B2 at low temperatures. CALPHAD (Calculation of Phase Diagrams) predicts a region with L21+B2 coexistence. From KKR-CPA calculations, we find crossover versus Al from FCC+BCC coexistence to BCC, as observed, and regions for partially-order B2+L21 coexistence, as suggest by CALPHAD. Our combined first-principles KKR-CPA method provides a powerful approach in predicting SRO and completing long-range order in HEA and other complex alloys. Supported by the U.S. DOE, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. Work was performed at Ames Laboratory, which is operated by Iowa State University for the U.S. DOE under Contract #DE-AC02-07CH11358.
Cool Flames in Propane-Oxygen Premixtures at Low and Intermediate Temperatures at Reduced-Gravity
NASA Technical Reports Server (NTRS)
Pearlman, Howard; Foster, Michael; Karabacak, Devrez
2003-01-01
The Cool Flame Experiment aims to address the role of diffusive transport on the structure and the stability of gas-phase, non-isothermal, hydrocarbon oxidation reactions, cool flames and auto-ignition fronts in an unstirred, static reactor. These reactions cannot be studied on Earth where natural convection due to self-heating during the course of slow reaction dominates diffusive transport and produces spatio-temporal variations in the thermal and thus species concentration profiles. On Earth, reactions with associated Rayleigh numbers (Ra) less than the critical Ra for onset of convection (Ra(sub cr) approx. 600) cannot be achieved in laboratory-scale vessels for conditions representative of nearly all low-temperature reactions. In fact, the Ra at 1g ranges from 10(exp 4) - 10(exp 5) (or larger), while at reduced-gravity, these values can be reduced two to six orders of magnitude (below Ra(sub cr)), depending on the reduced-gravity test facility. Currently, laboratory (1g) and NASA s KC-135 reduced-gravity (g) aircraft studies are being conducted in parallel with the development of a detailed chemical kinetic model that includes thermal and species diffusion. Select experiments have also been conducted at partial gravity (Martian, 0.3gearth) aboard the KC-135 aircraft. This paper discusses these preliminary results for propane-oxygen premixtures in the low to intermediate temperature range (310- 350 C) at reduced-gravity.
NASA Astrophysics Data System (ADS)
Shi, Wei-Bin; Liang, Yan-Chun; Shao, Xu; Liu, Xiao-Wei; Zhao, Gang; Hammer, Francois; Zhang, Yong; Flores, Hector; Ruan, Gui-Ping; Zhou, Li
2014-07-01
We select 947 star-forming galaxies from SDSS-DR7 with [O III]λ4363 emission lines detected at a signal-to-noise ratio larger than 5σ. Their electron temperatures and direct oxygen abundances are then determined. We compare the results from different methods. t2, the electron temperature in the low ionization region, estimated from t3, that in the high ionization region, is compared using three analysis relations between t2 - t3. These show obvious differences, which result in some different ionic oxygen abundances. The results of t3, t2, O++/H+ and O+/H+ derived by using methods from IRAF and literature are also compared. The ionic abundances O++/H+ are higher than O+/H+ for most cases. The different oxygen abundances derived from Te and the strong-line ratios show a clear discrepancy, which is more obvious following increasing stellar mass and strong-line ratio R23. The sample of galaxies from SDSS with detected [O III]λ4363 have lower metallicites and higher star formation rates, so they may not be typical representatives of the whole population of galaxies. Adopting data objects from Andrews & Martini, Liang et al. and Lee et al. data, we derive new relations of stellar mass and metallicity for star-forming galaxies in a much wider stellar mass range: from 106 Msolar to 1011 Msolar.
Burnout current density of bismuth nanowires
NASA Astrophysics Data System (ADS)
Cornelius, T. W.; Picht, O.; Müller, S.; Neumann, R.; Völklein, F.; Karim, S.; Duan, J. L.
2008-05-01
Single bismuth nanowires with diameters ranging from 100nmto1μm were electrochemically deposited in ion track-etched single-pore polycarbonate membranes. The maximum current density the wires are able to carry was investigated by ramping up the current until failure occurred. It increases by three to four orders of magnitude for nanowires embedded in the template compared to bulk bismuth and rises with diminishing diameter. Simulations show that the wires are heated up electrically to the melting temperature. Since the surface-to-volume ratio rises with diminishing diameter, thinner wires dissipate the heat more efficiently to the surrounding polymer matrix and, thus, can tolerate larger current densities.
NASA Astrophysics Data System (ADS)
Žukovič, M.; Borovský, M.; Bobák, A.
2018-05-01
We study a stacked triangular lattice Ising model with both intra- and inter-plane antiferromagnetic interactions in a field, by Monte Carlo simulation. We find only one phase transition from a paramagnetic to a partially disordered phase, which is of second order and 3D XY universality class. At low temperatures we identify two highly degenerate phases: at smaller (larger) fields the system shows long-range ordering in the stacking direction (within planes) but not in the planes (stacking direction). Nevertheless, crossovers to these phases do not have a character of conventional phase transitions but rather linear-chain-like excitations.
Local oscillator chain for 1.55 to 1.75 THz with 100-(mu)W peak power
NASA Technical Reports Server (NTRS)
Maestrini, Alain; Ward, John S.; Javadi, Hamid; Tripon-Canseliet, Charlotte; Gill, John; Chattopadhyay, Goutam; Schlecht, Erich; Mehdi, Imran
2005-01-01
We report on the design and performance of a fix-tuned x2x 3x 3 frequency multiplier chain that covers 1.55-1.75 THz. The chain is nominally pumped with 100 mW at W-band. At 120 K the measured output power is larger than 4 (mu)W across the band with a peak power of 100 (mu) W at 1.665 THz. A similar chain operated at room temperature produced a peak power of 21 (mu)W. These power levels now make it possible to deploy multipixel heterodyne imaging arrays in this frequency range.
Room-temperature photodetection dynamics of single GaN nanowires.
González-Posada, F; Songmuang, R; Den Hertog, M; Monroy, E
2012-01-11
We report on the photocurrent behavior of single GaN n-i-n nanowires (NWs) grown by plasma-assisted molecular-beam epitaxy on Si(111). These structures present a photoconductive gain in the range of 10(5)-10(8) and an ultraviolet (350 nm) to visible (450 nm) responsivity ratio larger than 6 orders of magnitude. Polarized light couples with the NW geometry with a maximum photoresponse for polarization along the NW axis. The photocurrent scales sublinearly with optical power, following a I ~ P(β) law (β < 1) in the measured range with β increasing with the measuring frequency. The photocurrent time response remains in the millisecond range, which is in contrast to the persistent (hours) photoconductivity effects observed in two-dimensional photoconductors. The photocurrent is independent of the measuring atmosphere, either in the air or in vacuum. Results are interpreted taking into account the effect of surface states and the total depletion of the NW intrinsic region. © 2011 American Chemical Society
Catalytic copyrolysis of particle board and polypropylene over Al-MCM-48
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hannah; Choi, Suek Ju; Kim, Ji Man
Highlights: • Al-MCM-48 was used for catalytic copyrolysis of particle board and polypropylene. • Catalytic produced mainly hydrocarbons. • The hydrocarbons produced were mainly in the diesel range. - Abstract: Particle board and polypropylene (PP) at a mixing ratio of 1:1 were copyrolyzed over two Al-MCM-48 catalysts with Si/Al ratios of 20 and 80. The catalyst characteristics were examined by measuring the Brunauer-Emmett-Teller surface area, temperature programmed desorption of ammonia, and X-ray diffraction. The main pyrolysis products of particle board were oxygenates, acids, and phenolics, whereas a large quantity of hydrocarbons within the diesel fuel range was produced from copyrolysismore » with polypropylene. The catalytic copyrolysis of particle board and PP over the Al-MCM-48 catalysts produced bio-oil with a much larger hydrocarbon content than that from the catalytic pyrolysis of particle board only. The hydrocarbons produced were mainly in the diesel range, highlighting the potential for the production of high-quality fuel.« less
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a measurement sensitivity of 4 degrees Fahrenheit or 0.75 percent of the temperature value, whichever is larger. (iii) Shield the temperature sensor system from electromagnetic interference...
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a measurement sensitivity of 4 degrees Fahrenheit or 0.75 percent of the temperature value, whichever is larger. (iii) Shield the temperature sensor system from electromagnetic interference...
Low temperature tungsten spectroscopy on a Penning Ionization Discharge
NASA Astrophysics Data System (ADS)
Kumar, Deepak; Englesbe, Alexander; Stutman, Dan; Finkenthal, Michael
2011-10-01
Complete Tungsten divertor operation is being planned on many tokamaks including Tore Supra and ITER. Thus, low temperature tungsten spectroscopy is important for aiding the divertor diagnostics on larger machines. A Penning Ionization Discharge (PID) at the Johns Hopkins University produces steady state plasmas with Te ~ 2 eV, ne ~1013 cm-3 and a fast electron fraction at ~ 10 s eV. Similar bi-Maxwellian distributions, but with slightly higher electron temperatures, are found in the divertor plasmas of tokamaks. The two significant populating mechanisms for higher charge states in the PID are: (a) collisional excitation from bulk electrons, and (b) inner shell ionization from the fast electrons. The PID is diagnosed in a wide wavelength range - XUV, VUV and visible, to differentiate the two populating mechanisms. W is introduced in the PID by the sputtering of cathodes made of CuW alloy. Spectral emission from significantly higher charge states of W (up to W IV) has been observed in the experiment. This poster will describe results indicating the populating mechanism of W ions and also describe plans on upgrading the experiment to achieve higher temperatures which are closer to the divertor conditions. Supported by USDOE.
A quantitative study of the clustering of polycyclic aromatic hydrocarbons at high temperatures.
Totton, Tim S; Misquitta, Alston J; Kraft, Markus
2012-03-28
The clustering of polycyclic aromatic hydrocarbon (PAH) molecules is investigated in the context of soot particle inception and growth using an isotropic potential developed from the benchmark PAHAP potential. This potential is used to estimate equilibrium constants of dimerisation for five representative PAH molecules based on a statistical mechanics model. Molecular dynamics simulations are also performed to study the clustering of homomolecular systems at a range of temperatures. The results from both sets of calculations demonstrate that at flame temperatures pyrene (C(16)H(10)) dimerisation cannot be a key step in soot particle formation and that much larger molecules (e.g. circumcoronene, C(54)H(18)) are required to form small clusters at flame temperatures. The importance of using accurate descriptions of the intermolecular interactions is demonstrated by comparing results to those calculated with a popular literature potential with an order of magnitude variation in the level of clustering observed. By using an accurate intermolecular potential we are able to show that physical binding of PAH molecules based on van der Waals interactions alone can only be a viable soot inception mechanism if concentrations of large PAH molecules are significantly higher than currently thought.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zhu; Kronawitter, Coleman X.; Waluyo, Iradwikanari
Water adsorption and reaction on pure and Ni-modified CoOOH nanowires were investigated using ambient pressure photoemission spectroscopy (APPES). The unique capabilities of APPES enable us to observe water dissociation and monitor formation of surface species on pure and Ni-modified CoOOH under elevated pressures and temperatures for the first time. Over a large range of pressures (UHV to 1 Torr), water dissociates readily on the pure and Ni-modified CoOOH surfaces at 27 °C. With an increase in H 2O pressure, a greater degree of surface hydroxylation was observed for all samples. At 1 Torr H 2O, ratios of different oxygen speciesmore » indicate a transformation of CoOOH to CoO xH y in pure and Ni-modified CoOOH. In temperature dependent studies, desorption of weakly bound water and surface dehydroxylation were observed with increasing temperature. In conclusion, larger percentages of surface hydroxyl groups at higher temperatures were observed on Ni-modified CoOOH compared to pure CoOOH, which indicates an increased stability of surface hydroxyl groups on these Ni-modified surfaces.« less
Chen, Zhu; Kronawitter, Coleman X.; Waluyo, Iradwikanari; ...
2017-09-07
Water adsorption and reaction on pure and Ni-modified CoOOH nanowires were investigated using ambient pressure photoemission spectroscopy (APPES). The unique capabilities of APPES enable us to observe water dissociation and monitor formation of surface species on pure and Ni-modified CoOOH under elevated pressures and temperatures for the first time. Over a large range of pressures (UHV to 1 Torr), water dissociates readily on the pure and Ni-modified CoOOH surfaces at 27 °C. With an increase in H 2O pressure, a greater degree of surface hydroxylation was observed for all samples. At 1 Torr H 2O, ratios of different oxygen speciesmore » indicate a transformation of CoOOH to CoO xH y in pure and Ni-modified CoOOH. In temperature dependent studies, desorption of weakly bound water and surface dehydroxylation were observed with increasing temperature. In conclusion, larger percentages of surface hydroxyl groups at higher temperatures were observed on Ni-modified CoOOH compared to pure CoOOH, which indicates an increased stability of surface hydroxyl groups on these Ni-modified surfaces.« less
Rotational and vibrational nonequilibrium effects in rarefied, hypersonic flow
NASA Technical Reports Server (NTRS)
Boyd, Iain D.
1989-01-01
Results are reported for an investigation into the methods by which energy transfer is calculated in the Direct Simulation Monte Carlo method. Description is made of a recently developed energy exchange model that deals with the translational and rotational modes. A new model for simulating the transfer of energy between the translational and vibrational modes is also explained. This model allows the vibrational relaxation time to follow the temperature dependence predicted by the Landau-Teller theory at moderate temperatures. For temperatures in excess of about 8000K the vibrational model is extended to include an empirical result for the relaxation time. The effect of introducing these temperature dependent collision numbers into the DSMC technique is assessed by making calculations representative of the stagnation streamline of a hypersonic space vehicle. Both thermal and chemical nonequilibrium effects are included while the flow conditions have been chosen such that ionization and radiation may be neglected. The introduction of these new models is found to significantly affect the degree of thermal nonequilibrium observed in the flowfield. Larger, and more widely ranging, differences in the results obtained with the different energy exchange probabilities are found when a significant amount of internal energy is included in the calculation of chemical nonequilibrium.
Josephson Photodetectors via Temperature-to-Phase Conversion
NASA Astrophysics Data System (ADS)
Virtanen, P.; Ronzani, A.; Giazotto, F.
2018-05-01
We theoretically investigate the temperature-to-phase conversion (TPC) process occurring in dc superconducting quantum interferometers based on superconductor-normal-metal-superconductor (S -N -S ) mesoscopic Josephson junctions. In particular, we predict the temperature-driven rearrangement of the phase gradients in the interferometer under the fixed constraints of fluxoid quantization and supercurrent conservation. This mechanism allows sizeable phase variations across the junctions for suitable structure parameters and temperatures. We show that the TPC can be a basis for sensitive single-photon sensors or bolometers. We propose a radiation detector realizable with conventional materials and state-of-the-art nanofabrication techniques. Integrated with a superconducting quantum-interference proximity transistor as a readout setup, an aluminum-based TPC calorimeter can provide a large signal-to-noise ratio >100 in the 10-GHz-10-THz frequency range and a resolving power larger than 1 02 below 50 mK for terahertz photons. In the bolometric operation, electrical noise equivalent power of approximately 10-22 W /√{Hz } is predicted at 50 mK. This device can be attractive as a cryogenic single-photon sensor operating in the giga- and terahertz regime with applications in dark-matter searches.
NASA Astrophysics Data System (ADS)
Sahi, Qurat-ul-ain; Kim, Yong-Soo
2018-04-01
The understanding of radiation-induced microstructural defects in body-centered cubic (BCC) iron is of major interest to those using advanced steel under extreme conditions in nuclear reactors. In this study, molecular dynamics (MD) simulations were implemented to examine the primary radiation damage in BCC iron with displacement cascades of energy 1, 5, 10, 20, and 30 keV at temperatures ranging from 100 to 1000 K. Statistical analysis of eight MD simulations of collision cascades were carried out along each [110], [112], [111] and a high index [135] direction and the temperature dependence of the surviving number of point defects and the in-cascade clustering of vacancies and interstitials were studied. The peak time and the corresponding number of defects increase with increasing irradiation temperature and primary knock-on atom (PKA) energy. However, the final number of surviving point defects decreases with increasing lattice temperature. This is associated with the increase of thermal spike at high PKA energy and its long timespan at higher temperatures. Defect production efficiency (i.e., surviving MD defects, per Norgett-Robinson-Torrens displacements) also showed a continuous decrease with the increasing irradiation temperature and PKA energy. The number of interstitial clusters increases with both irradiation temperature and PKA energy. However, the increase in the number of vacancy clusters with PKA energy is minimal-to-constant and decreases as the irradiation temperature increases. Similarly, the probability and cluster size distribution for larger interstitials increase with temperature, whereas only smaller size vacancy clusters were observed at higher temperatures.
NASA Technical Reports Server (NTRS)
Hadley, H.
1980-01-01
The stratospheric and mesospheric sounder (SAMS) experiment on Nimbus 7 includes a 2 axis scanning mirror and 7 pressure modulator cells. The SAMS experiment is a limb sounding instrument to measure the temperature profile and minor constituents of the atmosphere. The limb scan requires small mirror steps over a 3 deg range, while the scan in azimuth is in larger steps over a 15 deg range. The mirror is plane, 20 cm in diameter, and of zero expansion glass-ceramic. It is supported on two tilt tables, fitted one on the other, with the axes at right angles. The angle of tilt is adjusted by means of recirculating ball screws which are ion plated with lead for lubrication and driven by stepper motors. The seven gas filled cells are each pressure modulated by a 3 cm diameter, 0.3 cm stroke piston which is supported by diaphragm springs and driven electromagnetically at the system's mechanical resonant frequency. The mean pressure of the filling gas, which is the atmospheric constituent being measured, is changed by varying the temperature of a suitable molecular sieve.
Climate change and infectious diseases in the Arctic: establishment of a circumpolar working group
Parkinson, Alan J.; Evengard, Birgitta; Semenza, Jan C.; Ogden, Nicholas; Børresen, Malene L.; Berner, Jim; Brubaker, Michael; Sjöstedt, Anders; Evander, Magnus; Hondula, David M.; Menne, Bettina; Pshenichnaya, Natalia; Gounder, Prabhu; Larose, Tricia; Revich, Boris; Hueffer, Karsten; Albihn, Ann
2014-01-01
The Arctic, even more so than other parts of the world, has warmed substantially over the past few decades. Temperature and humidity influence the rate of development, survival and reproduction of pathogens and thus the incidence and prevalence of many infectious diseases. Higher temperatures may also allow infected host species to survive winters in larger numbers, increase the population size and expand their habitat range. The impact of these changes on human disease in the Arctic has not been fully evaluated. There is concern that climate change may shift the geographic and temporal distribution of a range of infectious diseases. Many infectious diseases are climate sensitive, where their emergence in a region is dependent on climate-related ecological changes. Most are zoonotic diseases, and can be spread between humans and animals by arthropod vectors, water, soil, wild or domestic animals. Potentially climate-sensitive zoonotic pathogens of circumpolar concern include Brucella spp., Toxoplasma gondii, Trichinella spp., Clostridium botulinum, Francisella tularensis, Borrelia burgdorferi, Bacillus anthracis, Echinococcus spp., Leptospira spp., Giardia spp., Cryptosporida spp., Coxiella burnetti, rabies virus, West Nile virus, Hantaviruses, and tick-borne encephalitis viruses. PMID:25317383
Smit, Ben; McKechnie, Andrew E
2010-01-01
Numerous avian taxa use torpor, which involves pronounced reductions in body temperature (T(b)) to below normothermic levels. However, the occurrence of this phenomenon in owls (Strigidae) remains largely unknown. We investigated winter patterns of thermoregulation in the crepuscular 80-g pearl-spotted owlet Glaucidium perlatum and the strictly nocturnal 61-g African scops-owl Otus senegalensis by obtaining telemetric measurements of skin temperature (T(skin)) from free-ranging individuals in the Kalahari Desert of southern Africa. Pearl-spotted owlets remained homeothermic throughout the study period, whereas African scops-owls routinely used shallow torpor, with T(skin) reduced by 3.3 degrees -8.6 degrees C (pooled mean, 5.3+/- 1.1 degrees C) below normothermic levels for 3-4 h after sunrise. The mean lowest T(skin) recorded in three African scops-owl individuals was 29.0 degrees C +/- 0.1 degrees C. The thermoregulatory differences between these two species may be related to their diets and activity patterns. African scops-owls are almost exclusively insectivorous and experience a marked reduction in food availability on cold winter nights. In contrast, pearl-spotted owlets have more flexible activity patterns and include larger or diurnal vertebrate prey in their diet.
Wu, Chuang; Liu, Zhengyong; Zhang, A Ping; Guan, Bai-Ou; Tam, Hwa-Yaw
2014-09-08
We report an open-cavity optical fiber Fabry-Pérot interferometer (FPI) capable of measuring refractive index with very low temperature cross-sensitivity. The FPI was constructed by splicing a thin piece of C-shaped fiber between two standard single-mode fibers. The refractive index (RI) response of the FPI was characterized using water-ethanol mixtures with RI in the range of 1.33 to 1.36. The RI sensitivity was measured to be 1368 nm/RIU at the wavelength of 1600 nm with good linearity. Thanks to its all-glass structure, the FPI exhibits very low temperature cross-sensitivity of 3.04 × 10⁻⁷ RIU/°C. The effects of cavity length on the performance of the sensor were also studied. A shorter cavity gives rise to broader measurement range while offering larger detection limit, and vice versa. What's more, the effect of material dispersion of analyte on the sensitivity of open-cavity FPIs was identified for the first time. The sensor is compact in size and easy to fabricate. It is potentially useful for label-free optical sensing of chemical and biological samples.
NASA Astrophysics Data System (ADS)
Wang, Tao; Li, Qi
2018-03-01
Iwagaki oyster Crassostrea nippona occurs naturally along the coasts of Japan and Korea. Because of its unique flavor, delicious taste, edibility during the summer and high commercial value, it has been identified as a potential aquaculture species. To determine the optimum aquaculture conditions and provide necessary information for mass production of the juvenile, the effects of six salinities (15, 20, 25, 30, 35 and 40) and five temperatures (16, 20, 24, 28 and 32₿ on growth and survival of juvenile C. nippona were examined in this study. In the salinity experiment, the largest values of mean shell height and growth rate were observed at salinity 25 (20.96 ± 0.36 mm and 172.0 μm d↿, respectively), which were significantly different (P < 0.05) with those of other treatments, except at salinity 30 (20.56 ± 1.05 mm and 160.3 μm d↿, respectively) (P > 0.05). The maximum survival rate 84.44% was always observed at salinity 20, and there was no significant difference (P > 0.05) in survival rate among salinities varying between 15 and 35. In the temperature-related experiments, the highest growth and survival rates of juvenile were observed at 24₿(180.8 μm d↿ and 84.4%) and 28₿(190.7 μm d↿ and 83.3%), respectively, on day 20, and showed significantly (P < 0.05) larger size and higher survival rate than any other groups. Both juvenile survival and growth were significantly depressed at extreme salinities (15, 40) and temperatures (16₿ 32₿. Based on the results of the present study, a salinity range from 25 to 30 and a temperature range from 24 to 28₿are considered optimal conditions for survival and growth of juvenile C. nippona.
Elastic and viscous properties of the nematic dimer CB7CB
NASA Astrophysics Data System (ADS)
Babakhanova, Greta; Parsouzi, Zeinab; Paladugu, Sathyanarayana; Wang, Hao; Nastishin, Yu. A.; Shiyanovskii, Sergij V.; Sprunt, Samuel; Lavrentovich, Oleg D.
2017-12-01
We present a comprehensive set of measurements of optical, dielectric, diamagnetic, elastic, and viscous properties in the nematic (N) phase formed by a liquid crystalline dimer. The studied dimer, 1,7-bis-4-(4'-cyanobiphenyl) heptane (CB7CB), is composed of two rigid rodlike cyanobiphenyl segments connected by a flexible aliphatic link with seven methyl groups. CB7CB and other nematic dimers are of interest due to their tendency to adopt bent configurations and to form two states possessing a modulated nematic director structure, namely, the twist-bend nematic, NTB, and the oblique helicoidal cholesteric, C hOH , which occurs when the achiral dimer is doped with a chiral additive and exposed to an external electric or magnetic field. We characterize the material parameters as functions of temperature in the entire temperature range of the N phase, including the pretransitional regions near the N -NTB and N-to-isotropic (I) transitions. The splay constant K11 is determined by two direct and independent techniques, namely, detection of the Frederiks transition and measurement of director fluctuation amplitudes by dynamic light scattering (DLS). The bend K33 and twist K22 constants are measured by DLS. K33, being the smallest of the three constants, shows a strong nonmonotonous temperature dependence with a negative slope in both N-I and N -NTB pretransitional regions. The measured ratio K11/K22 is larger than 2 in the entire nematic temperature range. The orientational viscosities associated with splay, twist, and bend fluctuations in the N phase are comparable to those of nematics formed by rodlike molecules. All three show strong temperature dependence, increasing sharply near the N -NTB transition.
Kuffner, Ilsa; Jokiel, Paul L.; Rodgers, Kuulei; Andersson, Andreas; Mackenzie, Fred T.
2012-01-01
Measuring the strontium to calcium ratio in coral skeletons reveals information on seawater temperatures during skeletal deposition, but studies have shown additional variables may affect the ratio. Here we measured Sr/Ca in the reef coral, Montipora capitata, grown in six mesocosms continuously supplied with seawater from the adjacent reef flat. Three mesocosms were ambient controls, and three had seawater chemistry simulating "ocean acidification" (OA). We found that Sr/Ca was not affected by the OA treatment, and neither was coral calcification for these small colonies (larger colonies did show an OA effect). The lack of OA effects allowed us to test the hypothesis that coral growth rate can affect Sr/Ca using the natural range in calcification rates of the corals grown at the same temperature. We found that Sr/Ca was inversely related to calcification rate (Sr/Ca = 9.39 - 0.00404 mmol/mol * mg day-1 cm-2, R2 = 0.32). Using a previously published calibration curve for this species, a 22 mg day-1 colony-1 increase in calcification rate introduced a 1°C warmer temperature estimate, with the 27 corals reporting "temperatures" ranging from 24.9 to 28.9, with mean 26.6 ± 0.9°C SD. Our results lend support to hypotheses invoking kinetic processes and growth rate to explain vital effects on Sr/Ca. However, uncertainty in the slope of the regression of Sr/Ca on calcification and a low R-squared value lead us to conclude that Sr/Ca could still be a useful proxy in this species given sufficient replication or by including growth rate in the calibration.
Thermal conductivity of graphene mediated by strain and size
Kuang, Youdi; Shi, Sanqiang; Wang, Xinjiang; ...
2016-06-09
Based on first-principles calculations and full iterative solution of the linearized Boltzmann–Peierls transport equation for phonons, we systematically investigate effects of strain, size and temperature on the thermal conductivity k of suspended graphene. The calculated size-dependent and temperature-dependent k for finite samples agree well with experimental data. The results show that, contrast to the convergent room-temperature k = 5450 W/m-K of unstrained graphene at a sample size ~8 cm, k of strained graphene diverges with increasing the sample size even at high temperature. Out-of-plane acoustic phonons are responsible for the significant size effect in unstrained and strained graphene due tomore » their ultralong mean free path and acoustic phonons with wavelength smaller than 10 nm contribute 80% to the intrinsic room temperature k of unstrained graphene. Tensile strain hardens the flexural modes and increases their lifetimes, causing interesting dependence of k on sample size and strain due to the competition between boundary scattering and intrinsic phonon–phonon scattering. k of graphene can be tuned within a large range by strain for the size larger than 500 μm. These findings shed light on the nature of thermal transport in two-dimensional materials and may guide predicting and engineering k of graphene by varying strain and size.« less
Global metabolic impacts of recent climate warming.
Dillon, Michael E; Wang, George; Huey, Raymond B
2010-10-07
Documented shifts in geographical ranges, seasonal phenology, community interactions, genetics and extinctions have been attributed to recent global warming. Many such biotic shifts have been detected at mid- to high latitudes in the Northern Hemisphere-a latitudinal pattern that is expected because warming is fastest in these regions. In contrast, shifts in tropical regions are expected to be less marked because warming is less pronounced there. However, biotic impacts of warming are mediated through physiology, and metabolic rate, which is a fundamental measure of physiological activity and ecological impact, increases exponentially rather than linearly with temperature in ectotherms. Therefore, tropical ectotherms (with warm baseline temperatures) should experience larger absolute shifts in metabolic rate than the magnitude of tropical temperature change itself would suggest, but the impact of climate warming on metabolic rate has never been quantified on a global scale. Here we show that estimated changes in terrestrial metabolic rates in the tropics are large, are equivalent in magnitude to those in the north temperate-zone regions, and are in fact far greater than those in the Arctic, even though tropical temperature change has been relatively small. Because of temperature's nonlinear effects on metabolism, tropical organisms, which constitute much of Earth's biodiversity, should be profoundly affected by recent and projected climate warming.
Pothoczki, Szilvia; Pusztai, Laszlo; Bako, Imre
2018-06-12
Molecular dynamics computer simulations have been conducted for ethanol-water liquid mixtures in the water-rich side of the composition range, with 10, 20 and 30 mol % of the alcohol, at temperatures between room temperature and the experimental freezing point of the given mixture. All-atom type (OPLS) interatomic potentials have been assumed for ethanol, in combination with two kinds of rigid water models (SPC/E and TIP4P/2005). Both combinations have provided excellent reproductions of the experimental X-ray total structure factors at each temperature; this yielded a strong basis for further structural analyses. Beyond partial radial distribution functions, various descriptors of hydrogen bonded assemblies, as well as of the hydrogen bonded network have been determined. A clear tendency was observed towards that an increasing proportion of water molecules participate in hydrogen bonding with exactly 2 donor- and 2 acceptor sites as temperature decreases. Concerning larger assemblies held together by hydrogen bonding, the main focus was put on the properties of cyclic entities: it was found that, similarly to methanol-water mixtures, the number of hydrogen bonded rings has increased with lowering temperature. However, for ethanol-water mixtures the dominance of not the six-, but of the five-fold rings could be observed.
Eisenlord, Morgan E; Groner, Maya L; Yoshioka, Reyn M; Elliott, Joel; Maynard, Jeffrey; Fradkin, Steven; Turner, Margaret; Pyne, Katie; Rivlin, Natalie; van Hooidonk, Ruben; Harvell, C Drew
2016-03-05
Over 20 species of asteroids were devastated by a sea star wasting disease (SSWD) epizootic, linked to a densovirus, from Mexico to Alaska in 2013 and 2014. For Pisaster ochraceus from the San Juan Islands, South Puget Sound and Washington outer coast, time-series monitoring showed rapid disease spread, high mortality rates in 2014, and continuing levels of wasting in the survivors in 2015. Peak prevalence of disease at 16 sites ranged to 100%, with an overall mean of 61%. Analysis of longitudinal data showed disease risk was correlated with both size and temperature and resulted in shifts in population size structure; adult populations fell to one quarter of pre-outbreak abundances. In laboratory experiments, time between development of disease signs and death was influenced by temperature in adults but not juveniles and adult mortality was 18% higher in the 19 °C treatment compared to the lower temperature treatments. While larger ochre stars developed disease signs sooner than juveniles, diseased juveniles died more quickly than diseased adults. Unusual 2-3 °C warm temperature anomalies were coincident with the summer 2014 mortalities. We suggest these warm waters could have increased the disease progression and mortality rates of SSWD in Washington State. © 2016 The Authors.
Eisenlord, Morgan E.; Yoshioka, Reyn M.; Elliott, Joel; Maynard, Jeffrey; Fradkin, Steven; Turner, Margaret; Pyne, Katie; Rivlin, Natalie; van Hooidonk, Ruben; Harvell, C. Drew
2016-01-01
Over 20 species of asteroids were devastated by a sea star wasting disease (SSWD) epizootic, linked to a densovirus, from Mexico to Alaska in 2013 and 2014. For Pisaster ochraceus from the San Juan Islands, South Puget Sound and Washington outer coast, time-series monitoring showed rapid disease spread, high mortality rates in 2014, and continuing levels of wasting in the survivors in 2015. Peak prevalence of disease at 16 sites ranged to 100%, with an overall mean of 61%. Analysis of longitudinal data showed disease risk was correlated with both size and temperature and resulted in shifts in population size structure; adult populations fell to one quarter of pre-outbreak abundances. In laboratory experiments, time between development of disease signs and death was influenced by temperature in adults but not juveniles and adult mortality was 18% higher in the 19°C treatment compared to the lower temperature treatments. While larger ochre stars developed disease signs sooner than juveniles, diseased juveniles died more quickly than diseased adults. Unusual 2–3°C warm temperature anomalies were coincident with the summer 2014 mortalities. We suggest these warm waters could have increased the disease progression and mortality rates of SSWD in Washington State. PMID:26880844
Analysis and diagnosis of basal cell carcinoma (BCC) via infrared imaging
NASA Astrophysics Data System (ADS)
Flores-Sahagun, J. H.; Vargas, J. V. C.; Mulinari-Brenner, F. A.
2011-09-01
In this work, a structured methodology is proposed and tested through infrared imaging temperature measurements of a healthy control group to establish expected normality ranges and of basal cell carcinoma patients (a type of skin cancer) previously diagnosed through biopsies of the affected regions. A method of conjugated gradients is proposed to compare measured dimensionless temperature difference values (Δ θ) between two symmetric regions of the patient's body, that takes into account the skin, the surrounding ambient and the individual core temperatures and doing so, the limitation of the results interpretation for different individuals become simple and nonsubjective. The range of normal temperatures in different regions of the body for seven healthy individuals was determined, and admitting that the human skin exhibits a unimodal normal distribution, the normal range for each region was considered to be the mean dimensionless temperature difference plus/minus twice the standard deviation of the measurements (Δθ±2σ) in order to represent 95% of the population. Eleven patients with previously diagnosed basal cell carcinoma through biopsies were examined with the method, which was capable of detecting skin abnormalities in all cases. Therefore, the conjugated gradients method was considered effective in the identification of the basal cell carcinoma through infrared imaging even with the use of a low optical resolution camera (160 × 120 pixels) and a thermal resolution of 0.1 °C. The method could also be used to scan a larger area around the lesion in order to detect the presence of other lesions still not perceptible in the clinical exam. However, it is necessary that a temperature differences mesh-like mapping of the healthy human body skin is produced, so that the comparison of the patient Δ θ could be made with the exact region of such mapping in order to possibly make a more effective diagnosis. Finally, the infrared image analyzed through the conjugated gradients method could be useful in the definition of a better safety margin in the surgery for the removal of the lesion, both minimizing esthetics damage to the patient and possibly avoiding basal cell carcinoma recurrence.
Soft X-Ray Temperature Tidal Disruption Events from Stars on Deep Plunging Orbits
NASA Astrophysics Data System (ADS)
Dai, Lixin; McKinney, Jonathan C.; Miller, M. Coleman
2015-10-01
One of the puzzles associated with tidal disruption event candidates (TDEs) is that there is a dichotomy between the color temperatures of a few × 104 K for TDEs discovered with optical and UV telescopes and the color temperatures of a few × 105-106 K for TDEs discovered with X-ray satellites. Here, we propose that high-temperature TDEs are produced when the tidal debris of a disrupted star self-intersects relatively close to the supermassive black hole, in contrast to the more distant self-intersection that leads to lower color temperatures. In particular, we note from simple ballistic considerations that greater apsidal precession in an orbit is the key to closer self-intersection. Thus, larger values of β, the ratio of the tidal radius to the pericenter distance of the initial orbit, are more likely to lead to higher temperatures of more compact disks that are super-Eddington and geometrically and optically thick. For a given star and β, apsidal precession also increases for larger black hole masses, but larger black hole masses imply a lower temperature at the Eddington luminosity. Thus, the expected dependence of the temperature on the mass of the black hole is non-monotonic. We find that in order to produce a soft X-ray temperature TDE, a deep plunging stellar orbit with β > 3 is needed and a black hole mass of ≲5 × 106M⊙ is favored. Although observations of TDEs are comparatively scarce and are likely dominated by selection effects, it is encouraging that both expectations are consistent with current data.
Kink Waves in Non-isothermal Stratified Solar Waveguides: Effect of the External Magnetic Field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopin, I.; Nagorny, I., E-mail: lopin78@mail.ru
We study the effect of an external magnetic field on the properties of kink waves, propagating along a thin non-isothermal stratified and diverging magnetic flux tube. A wave equation, governing the propagation of kink waves under the adopted model is derived. It is shown that the vertical gradient of temperature introduces a spatially local cut-off frequency ω {sub c}. The vertical distribution of the cut-off frequency is calculated for the reference VAL-C model of the solar atmosphere and for different values of a ratio of external to internal magnetic fields. The results show that the cut-off frequency is negative belowmore » the temperature minimum due to the negative temperature gradient. In the chromosphere the cut-off frequency at a given height is smaller for a stronger external magnetic field. For the appropriate range of a ratio B{sub e} / B{sub i} ≈ 0–0.8, the cutoff lies in the range ω{sub c} ≈ 0.003–0.010 s{sup −1} (periods 600 < P{sub c} < 2000 s). The estimate of the cut-off frequency in the transition region is provided as well. In the propagating wave regime, the effective wave energy flux in the non-isothermal diverging flux tubes is the same as in the straight and homogeneous cylindrical waveguides. The obtained wave equation in the limit β = 0 is used to study the kink oscillations of non-isothermal coronal loops. It is found that the gradient of temperature along the coronal loops reduces the frequency ratio of the first overtone to the fundamental mode, i.e., ω{sub 2}/ ω{sub 1} < 2. This reduction grows for a larger ratio of temperature at the loop top to the temperature at the footpoints. Moreover, the effect of reduction is most pronounced for the steeper temperature profiles.« less
NASA Astrophysics Data System (ADS)
Jiang, Shengli; Huang, Xiao; He, Zhang; Buyers, Andrew
2018-01-01
To examine the effect of doping/co-doping on high-temperature phase compositions of YSZ, stand-alone YSZ and CeO2 and Nb2O5 co-doped YSZ samples were prepared using mechanical alloy and high-temperature sintering. XRD analysis was performed on these samples from room temperature to 1100 °C. The results show that the structure for the co-doped samples tends to be thermally stable when the test temperature is higher than a critical value. Monoclinic phase was dominant in Nb2O5 co-doped YSZ at temperatures lower than 600 °C, while for the YSZ and CeO2 co-doped YSZ, cubic/tetragonal phase was dominant in the whole test temperature range. The lattice parameters for all the samples increase with increasing test temperature generally. The lattice parameters for the two non-trivalent rare earth oxides co-doped YSZ show that the lattice parameter a for the cubic phase of the Ce4+ co-doped YSZ is consistently greater than that of 7YSZ which is related to the presence of larger radius of Ce4+ in the matrix. The lattice parameters a, b, c for the monoclinic phase of Ce4+ co-doped YSZ are much closer to each other than that of the Nb5+ co-doped YSZ, indicating the former has better tendency to form cubic/tetragonal phase, which is desired for vast engineering applications.
NASA Astrophysics Data System (ADS)
Jiang, Shengli; Huang, Xiao; He, Zhang; Buyers, Andrew
2018-05-01
To examine the effect of doping/co-doping on high-temperature phase compositions of YSZ, stand-alone YSZ and CeO2 and Nb2O5 co-doped YSZ samples were prepared using mechanical alloy and high-temperature sintering. XRD analysis was performed on these samples from room temperature to 1100 °C. The results show that the structure for the co-doped samples tends to be thermally stable when the test temperature is higher than a critical value. Monoclinic phase was dominant in Nb2O5 co-doped YSZ at temperatures lower than 600 °C, while for the YSZ and CeO2 co-doped YSZ, cubic/tetragonal phase was dominant in the whole test temperature range. The lattice parameters for all the samples increase with increasing test temperature generally. The lattice parameters for the two non-trivalent rare earth oxides co-doped YSZ show that the lattice parameter a for the cubic phase of the Ce4+ co-doped YSZ is consistently greater than that of 7YSZ which is related to the presence of larger radius of Ce4+ in the matrix. The lattice parameters a, b, c for the monoclinic phase of Ce4+ co-doped YSZ are much closer to each other than that of the Nb5+ co-doped YSZ, indicating the former has better tendency to form cubic/tetragonal phase, which is desired for vast engineering applications.
Effects of opioid peptides on thermoregulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, W.G.
1981-11-01
In a given species, injected opioid peptides usually cause changes in temperature similar to those caused by nonpeptide opioids. The main effect in those species most studied, the cat, rat, and mouse, is an increase in the level about which body temperature is regulated; there is a coordinated change in the activity of thermoregulatory effectors such that hyperthermia is produced in both hot and cold environments. Larger doses may depress thermoregulation, thereby causing body temperature to decrease in the cold. Elicitation of different patterns of response over a range of environmental temperatures and studies with naloxone and naltrexone indicate thatmore » stimulation of a number of different receptors by both peptide and nonpeptide opioids can evoke thermoregulatory responses. ..beta..-Endorphin is readily antagonized by naloxone whereas methionine-enkephalin can act on naloxone-insensitive receptors. Moreover, synthetic peptide analogs do not necessarily evoke the same response as does the related endogenous peptide. The lack of effect of naloxone on body temperature of subjects housed at usual laboratory temperature or on pyrogen-induced increases in body temperature indicates that an action of endogenous peptides on naloxone-sensitive receptors plays little, if any, role in normal thermoregulation or in fever. However, there is some evidence that such an action may be involved in responses to restraint or ambient temperature-induced stress. Further evaluation of possible physiological roles of endogenous opioid peptides will be facilitated when specific antagonists at other types of opioid receptors become available.« less
Kok, H Petra; Korshuize-van Straten, Linda; Bakker, Akke; de Kroon-Oldenhof, Rianne; Geijsen, Elisabeth D; Stalpers, Lukas J A; Crezee, Johannes
2017-11-15
Adequate tumor temperatures during hyperthermia are essential for good clinical response, but excessive heating of normal tissue should be avoided. This makes locoregional heating using phased array systems technically challenging. Online application of hyperthermia treatment planning could help to improve the heating quality. The aim of this study was to evaluate the clinical benefit of online treatment planning during treatment of pelvic tumors heated with the AMC-8 locoregional hyperthermia system. For online adaptive hyperthermia treatment planning, a graphical user interface was developed. Electric fields were calculated in a preprocessing step using our in-house-developed finite-difference-based treatment planning system. This allows instant calculation of the temperature distribution for user-selected phase-amplitude settings during treatment and projection onto the patient's computed tomographic scan for online visualization. Online treatment planning was used for 14 treatment sessions in 8 patients to reduce the patients' reports of hot spots while maintaining the same level of tumor heating. The predicted decrease in hot spot temperature should be at least 0.5°C, and the tumor temperature should decrease less than 0.2°C. These predictions were compared with clinical data: patient feedback about the hot spot and temperature measurements in the tumor region. In total, 17 hot spot reports occurred during the 14 sessions, and the alternative settings predicted the hot spot temperature to decrease by at least 0.5°C, which was confirmed by the disappearance of all 17 hot spot reports. At the same time, the average tumor temperature was predicted to change on average -0.01°C (range, -0.19°C to 0.34°C). The measured tumor temperature change was on average only -0.02°C (range, -0.26°C to 0.31°C). In only 2 cases the temperature decrease was slightly larger than 0.2°C, but at most it was 0.26°C. Online application of hyperthermia treatment planning is reliable and very useful to reduce hot spots without affecting tumor temperatures. Copyright © 2017 Elsevier Inc. All rights reserved.
Fast diffusion of silver in TiO2 nanotube arrays
Zhang, Wanggang; Liu, Yiming; Zhou, Diaoyu; Wang, Hui
2016-01-01
Summary Using magnetron sputtering and heat treatment, Ag@TiO2 nanotubes are prepared. The effects of heat-treatment temperature and heating time on the evolution of Ag nanofilms on the surface of TiO2 nanotubes and microstructure of Ag nanofilms are investigated by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. Ag atoms migrate mainly on the outmost surface of the TiO2 nanotubes, and fast diffusion of Ag atoms is observed. The diffusivity for the diffusion of Ag atoms on the outmost surface of the TiO2 nanotubes at 400 °C is 6.87 × 10−18 m2/s, which is three orders of magnitude larger than the diffusivities for the diffusion of Ag through amorphous TiO2 films. The activation energy for the diffusion of Ag atoms on the outmost surface of the TiO2 nanotubes in the temperature range of 300 to 500 °C is 157 kJ/mol, which is less than that for the lattice diffusion of Ag and larger than that for the grain boundary diffusion. The diffusion of Ag atoms leads to the formation of Ag nanocrystals on the outmost surface of TiO2 nanotubes. Probably there are hardly any Ag nanocrystals formed inside the TiO2 nanotubes through the migration of Ag. PMID:27547630
Piezoresistivity of Resin-Impregnated Carbon Nanotube Film at High Temperatures.
Li, Min; Zuo, Tianyi; Wang, Shaokai; Gu, Yizhuo; Gao, Limin; Li, Yanxia; Zhang, Zuoguang
2018-06-13
This paper presents the development of a continuous carbon nanotube (CNT) composite film sensor with a strain detecting range of 0-2% for structural composites. The strain-dependent resistance responses of continuous CNT film and its resin-impregnated composite films were investigated at temperatures as high as 200 °C. The results manifest that impregnation with resin leads to a much larger gauge factor than pristine film. Both the pristine and composite films show an increase in resistivity with increasing temperature. For different composite films, the ordering of gauge factors is consistent with that of the matrix moduli. This indicates that a resin matrix with higher modulus and strong interactions between CNTs/CNT bundles and the resin matrix are beneficial for enhancing the piezoresistive effect. The CNT/PAA composite film has a gauge factor of 4.3 at 150 °C, an order of magnitude higher than the metal foil sensor. Therefore, the CNT composite films have great potential for simultaneous application for reinforcement and as strain sensor to realise a multifunctional composite. © 2018 IOP Publishing Ltd.
Stokes-Einstein relation in liquid iron-nickel alloy up to 300 GPa
NASA Astrophysics Data System (ADS)
Cao, Q.-L.; Wang, P.-P.
2017-05-01
Molecular dynamic simulations were applied to investigate the Stokes-Einstein relation (SER) and the Rosenfeld entropy scaling law (ESL) in liquid Fe0.9Ni0.1 over a sufficiently broad range of temperatures (0.70 < T/Tm < 1.85 Tm is melting temperature) and pressures (from 50 GPa to 300 GPa). Our results suggest that the SER and ESL hold well in the normal liquid region and break down in the supercooled region under high-pressure conditions, and the deviation becomes larger with decreasing temperature. In other words, the SER can be used to calculate the viscosity of liquid Earth's outer core from the self-diffusion coefficients of iron/nickel and the ESL can be used to predict the viscosity and diffusion coefficients of liquid Earth's outer core form its structural properties. In addition, the pressure dependence of effective diameters cannot be ignored in the course of using the SER. Moreover, ESL provides a useful, structure-based probe for the validity of SER, while the ratio of the self-diffusion coefficients of the components cannot be used as a probe for the validity of SER.
Thermal-mechanical coupling effect on initial stage oxidation of Si(100) surface
NASA Astrophysics Data System (ADS)
Sun, Yu; Liu, Yilun; Chen, Xuefeng; Zhai, Zhi; Izumi, Satoshi
2018-04-01
The initial stage oxidation of biaxially strained Si(100) at temperatures ranging from 300 K to 1200 K has been investigated by Reactive Force Field Molecular Dynamics simulations. We reported that the oxidation process involving the reaction rate and the amount of absorbed O atoms could be enhanced by the coupling effect of higher temperatures and larger external tension. By fitting the simulation results, the relationship between absorbed oxygen and the coupling of temperature and strain was obtained. In probing the mechanism, we observed that there was a ballistic transport of O atoms, displaying an enhancement of inward penetration by external tension. Since such an inward transport was favored by thermal actuation, more O atoms penetrated into deeper layers when the 9% strained Si oxidized at 1200 K. Moreover, the evolution of stress in the surface region during the oxidation process was discussed, as well as the related oxide structure and the film quality. These present results may provide a way to understand the thermally-mechanically coupled chemical reactions and propose an effective approach to optimize microscale component processing in the electronic field.
Dynamic quadrupole interactions in semiconductors
NASA Astrophysics Data System (ADS)
Dang, Thien Thanh; Schell, Juliana; Lupascu, Doru C.; Vianden, Reiner
2018-04-01
The time differential perturbed angular correlation, TDPAC, technique has been used for several decades to study electric quadrupole hyperfine interactions in semiconductors such as dynamic quadrupole interactions (DQI) resulting from after-effects of the nuclear decay as well as static quadrupole interactions originating from static defects around the probe nuclei such as interstitial ions, stresses in the crystalline structure, and impurities. Nowadays, the quality of the available semiconductor materials is much better, allowing us to study purely dynamic interactions. We present TDPAC measurements on pure Si, Ge, GaAs, and InP as a function of temperature between 12 K and 110 K. The probe 111In (111Cd) was used. Implantation damage was recovered by thermal annealing. Si experienced the strongest DQI with lifetime, τg, increasing with rising temperature, followed by Ge. In contrast, InP and GaAs, which have larger band gaps and less electron concentration than Si and Ge in the same temperature range, presented no DQI. The results obtained also allow us to conclude that indirect band gap semiconductors showed the dynamic interaction, whereas the direct band gap semiconductors, restricted to GaAs and InP, did not.
NASA Astrophysics Data System (ADS)
Vajente, G.; Birney, R.; Ananyeva, A.; Angelova, S.; Asselin, R.; Baloukas, B.; Bassiri, R.; Billingsley, G.; Fejer, M. M.; Gibson, D.; Godbout, L. J.; Gustafson, E.; Heptonstall, A.; Hough, J.; MacFoy, S.; Markosyan, A.; Martin, I. W.; Martinu, L.; Murray, P. G.; Penn, S.; Roorda, S.; Rowan, S.; Schiettekatte, F.; Shink, R.; Torrie, C.; Vine, D.; Reid, S.; Adhikari, R. X.
2018-04-01
Brownian thermal noise in dielectric multilayer coatings limits the sensitivity of current and future interferometric gravitational wave detectors. In this work we explore the possibility of improving the mechanical losses of tantala, often used as the high refractive index material, by depositing it on a substrate held at elevated temperature. Promising results have been previously obtained with this technique when applied to amorphous silicon. We show that depositing tantala on a hot substrate reduced the mechanical losses of the as-deposited coating, but subsequent thermal treatments had a larger impact, as they reduced the losses to levels previously reported in the literature. We also show that the reduction in mechanical loss correlates with increased medium range order in the atomic structure of the coatings using x-ray diffraction and Raman spectroscopy. Finally, a discussion is included on our results, which shows that the elevated temperature deposition of pure tantala coatings does not appear to reduce mechanical loss in a similar way to that reported in the literature for amorphous silicon; and we suggest possible future research directions.
NASA Astrophysics Data System (ADS)
Maaz, K.; Karim, S.; Mumtaz, A.; Hasanain, S. K.; Liu, J.; Duan, J. L.
2009-06-01
Magnetic nanoparticles of nickel ferrite (NiFe 2O 4) have been synthesized by co-precipitation route using stable ferric and nickel salts with sodium hydroxide as the precipitating agent and oleic acid as the surfactant. X-ray diffraction (XRD) and transmission electron microscope (TEM) analyses confirmed the formation of single-phase nickel ferrite nanoparticles in the range 8-28 nm depending upon the annealing temperature of the samples during the synthesis. The size of the particles ( d) was observed to be increasing linearly with annealing temperature of the sample while the coercivity with particle size goes through a maximum, peaking at ˜11 nm and then decreases for larger particles. Typical blocking effects were observed below ˜225 K for all the prepared samples. The superparamagnetic blocking temperature ( T B) was found to be increasing with increasing particle size that has been attributed to the increased effective anisotropy energy of the nanoparticles. The saturation moment of all the samples was found much below the bulk value of nickel ferrite that has been attributed to the disordered surface spins or dead/inert layer in these nanoparticles.
The H2/CH4 ratio during serpentinization cannot reliably identify biological signatures
NASA Astrophysics Data System (ADS)
Huang, Ruifang; Sun, Weidong; Liu, Jinzhong; Ding, Xing; Peng, Shaobang; Zhan, Wenhuan
2016-09-01
Serpentinization potentially contributes to the origin and evolution of life during early history of the Earth. Serpentinization produces molecular hydrogen (H2) that can be utilized by microorganisms to gain metabolic energy. Methane can be formed through reactions between molecular hydrogen and oxidized carbon (e.g., carbon dioxide) or through biotic processes. A simple criterion, the H2/CH4 ratio, has been proposed to differentiate abiotic from biotic methane, with values approximately larger than 40 for abiotic methane and values of <40 for biotic methane. The definition of the criterion was based on two serpentinization experiments at 200 °C and 0.3 kbar. However, it is not clear whether the criterion is applicable at a wider range of temperatures. In this study, we performed sixteen experiments at 311-500 °C and 3.0 kbar using natural ground peridotite. Our results demonstrate that the H2/CH4 ratios strongly depend on temperature. At 311 °C and 3.0 kbar, the H2/CH4 ratios ranged from 58 to 2,120, much greater than the critical value of 40. By contrast, at 400-500 °C, the H2/CH4 ratios were much lower, ranging from 0.1 to 8.2. The results of this study suggest that the H2/CH4 ratios cannot reliably discriminate abiotic from biotic methane.