Sample records for largest river basins

  1. Spatial distribution and output characteristics of nonpoint source pollution in the Dongjiang River basin in south China

    NASA Astrophysics Data System (ADS)

    Rong, Q. Q.; Su, M. R.; Yang, Z. F.; Cai, Y. P.; Yue, W. C.; Dang, Z.

    2018-02-01

    In this research, the Dongjiang River basin was taken as the study area to analyze the spatial distribution and output characteristics of nonpoint source pollution, based on the export coefficient model. The results showed that the annual total nitrogen and phosphorus (i.e. TN and TP) loads from the Dongjiang River basin were 67916114.6 and 7215279.707 kg, respectively. Residents, forestland and pig were the main contributors for the TN load in the Dongjiang River basin, while residents, forestland and rainfed croplands were the three largest contributors for the TP load. The NPS pollution had a significant spatial variation in this area. The pollution loads overall decreased from the northeast to the southwest part of the basin. Also, the pollution loads from the gentle slope area were larger than those from steep slope areas. Among the ten tributary watersheds in the Dongjiang River basin, the TN and TP loads from the Hanxi River watershed were the largest. On the contrary, the Gongzhuang River watershed contributed least to the total pollution loads of the Dongjiang River basin. For the average pollution load intensities, Hanxi River watershed was still the largest. However, the smallest average TN and TP load intensities were in the Xinfeng River watershed.

  2. Ecosystem effects in the Lower Mississippi River Basin: Chapter L in 2011 Floods of the Central United States

    USGS Publications Warehouse

    Turnipseed, D. Phil; Allen, Yvonne C.; Couvillion, Brady R.; McKee, Karen L.; Vervaeke, William C.

    2014-01-01

    The 2011 Mississippi River flood in the Lower Mississippi River Basin was one of the largest flood events in recorded history, producing the largest or next to largest peak streamflow for the period of record at a number of streamgages on the lower Mississippi River. Ecosystem effects include changes to wetlands, nutrient transport, and land accretion and sediment deposition changes. Direct effects to the wetland ecosystems in the Lower Mississippi River Basin were minimized because of the expansive levee system built to pass floodwaters. Nutrients carried by the Mississippi River affect water quality in the Lower Mississippi River Basin. During 2011, nutrient fluxes in the lower Mississippi River were about average. Generally, nutrient delivery of the Mississippi and Atchafalaya Rivers contributes to the size of the hypoxic zone in the Gulf of Mexico. Based on available limited post-flood satellite imagery, some land expansion in both the Wax Lake and Atchafalaya River Deltas was observed. A wetland sediment survey completed in June 2011 indicated that recent sediment deposits were relatively thicker in the Atchafalaya and Mississippi River (Birdsfoot) Delta marshes compared to marshes farther from these rivers.

  3. Temporal and Spatial Variation of Water Yield Modulus in the Yangtze River Basin in Recent 60 Years

    NASA Astrophysics Data System (ADS)

    Shi, Xiaoqing; Weng, Baisha; Qin, Tianling

    2018-01-01

    The Yangtze River Basin is the largest river basin of Asia and the third largest river basin of the world, the gross water resources amount ranks first in the river basins of the country, and it occupies an important position in the national water resources strategic layout. Under the influence of climate change and human activities, the water cycle has changed. The temporal and spatial distribution of precipitation in the basin is more uneven and the floods are frequent. In order to explore the water yield condition in the Yangtze River Basin, we selected the Water Yield Modulus (WYM) as the evaluation index, then analyzed the temporal and spatial evolution characteristics of the WYM in the Yangtze River Basin by using the climate tendency method and the M-K trend test method. The results showed that the average WYM of the Yangtze River Basin in 1956-2015 are between 103,600 and 1,262,900 m3/km2, with an average value of 562,300 m3/km2, which is greater than the national average value of 295,000 m3/km2. The minimum value appeared in the northwestern part of the Tongtian River district, the maximum value appeared in the northeastern of Dongting Lake district. The rate of change in 1956-2015 is between -0.68/a and 0.79/a, it showed a downward trend in the western part but not significantly, an upward trend in the eastern part reached a significance level of α=0.01. The minimum value appeared in the Tongtian River district, the largest value appeared in the Hangjia Lake district, and the average tendency rate is 0.04/a in the whole basin.

  4. Assessment of metallic mineral resources in the Humboldt River Basin, Northern Nevada, with a section on Platinum-Group-Element (PGE) Potential of the Humboldt Mafic Complex

    USGS Publications Warehouse

    Wallace, Alan R.; Ludington, Steve; Mihalasky, Mark J.; Peters, Stephen G.; Theodore, Ted G.; Ponce, David A.; John, David A.; and Berger, Byron R.; Zientek, Michael L.; Sidder, Gary B.; Zierenberg, Robert A.

    2004-01-01

    The Humboldt River Basin is an arid to semiarid, internally drained basin that covers approximately 43,000 km2 in northern Nevada. The basin contains a wide variety of metallic and nonmetallic mineral deposits and occurrences, and, at various times, the area has been one of the Nation's leading or important producers of gold, silver, copper, mercury, and tungsten. Nevada currently (2003) is the third largest producer of gold in the world and the largest producer of silver in the United States. Current exploration for additional mineral deposits focuses on many areas in northern Nevada, including the Humboldt River Basin.

  5. Flood of May 23, 2004, in the Turkey and Maquoketa River basins, northeast Iowa

    USGS Publications Warehouse

    Eash, David A.

    2006-01-01

    Severe flooding occurred on May 23, 2004, in the Turkey River Basin in Clayton County and in the Maquoketa River Basin in Delaware County following intense thunderstorms over northeast Iowa. Rain gages at Postville and Waucoma, Iowa, recorded 72-hour rainfall of 6.32 and 6.55 inches, respectively, on May 23. Unofficial rainfall totals of 8 to 10 inches were reported in the Turkey River Basin. The peak discharge on May 23 at the Turkey River at Garber streamflow-gaging station was 66,700 cubic feet per second (recurrence interval greater than 500 years) and is the largest flood on record in the Turkey River Basin. The timing of flood crests on the Turkey and Volga Rivers, and local tributaries, coincided to produce a record flood on the lower part of the Turkey River. Three large floods have occurred at the Turkey River at Garber gaging station in a 13-year period. Peak discharges of the floods of June 1991 and May 1999 were 49,900 cubic feet per second (recurrence interval about 150 years) and 53,900 cubic feet per second (recurrence interval about 220 years), respectively. The peak discharge on May 23 at the Maquoketa River at Manchester gaging station was 26,000 cubic feet per second (recurrence interval about 100 years) and is the largest known flood in the upper part of the Maquoketa River Basin.

  6. Backwater effects in the Amazon River basin of Brazil

    USGS Publications Warehouse

    Meade, R.H.; Rayol, J.M.; Da Conceicao, S.C.; Natividade, J.R.G.

    1991-01-01

    The Amazon River mainstem of Brazil is so regulated by differences in the timing of tributary inputs and by seasonal storage of water on floodplains that maximum discharges exceed minimum discharges by a factor of only 3. Large tributaries that drain the southern Amazon River basin reach their peak discharges two months earlier than does the mainstem. The resulting backwater in the lowermost 800 km of two large southern tributaries, the Madeira and Puru??s rivers, causes falling river stages to be as much as 2-3 m higher than rising stages at any given discharge. Large tributaries that drain the northernmost Amazon River basin reach their annual minimum discharges three to four months later than does the mainstem. In the lowermost 300-400 km of the Negro River, the largest northern tributary and the fifth largest river in the world, the lowest stages of the year correspond to those of the Amazon River mainstem rather than to those in the upstream reaches of the Negro River. ?? 1991 Springer-Verlag New York Inc.

  7. Estimated withdrawals and use of freshwater in Vermont, 1990

    USGS Publications Warehouse

    Horn, M.A.; Medalie, Laura

    1996-01-01

    Estimated freshwater withdrawals during 1990 in Vermont totaled about 632 million gallons per day. The largest withdrawals were for thermoelectric- power generation (82 percent), industrial use (7 percent), and public supply (6 percent). Most withdrawals, 587 million gallons per day, were made from surface-water sources as compared to 44.9 million gallons per day from ground-water sources. The largest withdrawals were in the Upper Connecticut-Mascomo River Basin (525 million gallons per day). About 17,700 million gallons per day were used instream for hydroelectric-poser generation, the largest of which were in the Upper Connecticut-Mascoma and Otter River Basins. Other information describing water-use patters is shown in tables, bar graphs, pie charts, maps, and accompanying text. The data are aggregated by river basin (hydrologic cataloging unit), and all amounts are reports in million gallons per day.

  8. A comparison of drainage basin nutrient inputs with instream nutrient loads for seven rivers in Georgia and Florida, 1986-90

    USGS Publications Warehouse

    Asbury, C.E.; Oaksford, E.T.

    1997-01-01

    Instream nutrient loads of the Altamaha, Suwannee, St. Johns, Satilla, Ogeechee, Withlacoochee, and Ochlockonee River Basins were computed and compared with nutrient inputs for each basin for the period 1986-90. Nutrient constituents that were considered included nitrate, ammonia, organic nitrogen, and total phosphorus. Sources of nutrients considered for this analysis included atmospheric deposition, fertilizer, animal waste, wastewater-treatment plant discharge, and septic discharge. The mean nitrogen input ranged from 2,400 kilograms per year per square kilometer (kg/yr)km2 in the Withlacoochee River Basin to 5,470 (kg/yr)km2 in the Altamaha River Basin. The Satilla and Ochlockonee River Basins also had large amounts of nitrogen input per unit area, totaling 5,430 and 4,920 (kg/yr)km2, respectively.Fertilizer or animal waste, as sources of nitrogen, predominated in all basins. Atmospheric deposition contributed less than one-fourth of the mean total nitrogen input to all basins and was consistently the third largest input in all but the Ogeechee River Basin, where it was the second largest.The mean total phosphorus input ranged from 331 (kg/yr)km2 in the Withlacoochee River Basin to 1,380 (kg/yr)km2 in both the Altamaha and Satilla River Basins. The Ochlockonee River Basin had a phosphorus input of 1,140 (kg/yr)km2.Per unit area, the Suwannee River discharged the highest instream mean total nitrogen and phosphorus loads and also discharged higher instream nitrate loads per unit area than the other six rivers. Phosphorus loads in stream discharge were highest in the Suwannee and Ochlockonee Rivers.The ratio of nutrient outputs to inputs for the seven studied rivers ranged from 4.2 to 14.9 percent, with the St. Johns (14.9 percent) and Suwannee (12.1 percent) Rivers having significantly higher percentages than those from the other basins. The output/input percentages for mean total phosphorus ranged from 1.0 to 7.0 percent, with the St. Johns (6.2 percent) and Suwannee (7.0 percent) Rivers exporting the highest percentage of phosphorus.Although instream nutrient loads constitute only one of the various pathways nutrients may take in leaving a river basin, only a relatively small part of nutrient input to the basin leaves the basin in stream discharge for the major coastal rivers examined in this study. The actual amount of nutrient transported in a river basin depends on the ways in which nutrients are physically handled, geographically distributed, and chemically assimilated within a river basin.

  9. Water-Quality Characteristics for Sites in the Tongue, Powder, Cheyenne, and Belle Fourche River Drainage Basins, Wyoming and Montana, Water Years 2001-05, with Temporal Patterns of Selected Long-Term Water-Quality Data

    USGS Publications Warehouse

    Clark, Melanie L.; Mason, Jon P.

    2007-01-01

    Water-quality sampling was conducted regularly at stream sites within or near the Powder River structural basin in northeastern Wyoming and southeastern Montana during water years 2001-05 (October 1, 2000, to September 30, 2005) to characterize water quality in an area of coalbed natural gas development. The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, characterized the water quality at 22 sampling sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins. Data for general hydrology, field measurements, major-ion chemistry, and selected trace elements were summarized, and specific conductance and sodium-adsorption ratios were evaluated for relations with streamflow and seasonal variability. Trend analysis for water years 1991-2005 was conducted for selected sites and constituents to assess change through time. Average annual runoff was highly variable among the stream sites. Generally, streams that have headwaters in the Bighorn Mountains had more runoff as a result of higher average annual precipitation than streams that have headwaters in the plains. The Powder River at Moorhead, Mont., had the largest average annual runoff (319,000 acre-feet) of all the sites; however, streams in the Tongue River drainage basin had the highest runoff per unit area of the four major drainage basins. Annual runoff in all major drainage basins was less than average during 2001-05 because of drought conditions. Consequently, water-quality samples collected during the study period may not represent long-term water-quality con-ditions for all sites. Water-quality characteristics were highly variable generally because of streamflow variability, geologic controls, and potential land-use effects. The range of median specific-conductance values among sites was smallest in the Tongue River drainage basin. Median values in that basin ranged from 643 microsiemens per centimeter at 25 degrees Celsius (?S/cm at 25?C) on the Tongue River to 1,460 ?S/cm at 25?C on Prairie Dog Creek. The Tongue River drainage basin has the largest percentage of area underlain by Mesozoic-age and older rocks and by more resistant rocks. In addition, the higher annual precipitation and a steeper gradient in this basin compared to basins in the plains produce relatively fast stream velocities, which result in a short contact time between stream waters and basin materials. The Powder River drainage basin, which has the largest drainage area and most diverse site conditions, had the largest range of median specific-conductance values among the four major drainage basins. Median values in that basin ranged from 680 ?S/cm at 25?C on Clear Creek to 5,950 ?S/cm at 25?C on Salt Creek. Median specific-conductance values among sites in the Cheyenne River drainage basin ranged from 1,850 ?S/cm at 25?C on Black Thunder Creek to 4,680 ?S/cm at 25?C on the Cheyenne River. The entire Cheyenne River drainage basin is in the plains, which have low precipitation, soluble geologic materials, and relatively low gradients that produce slow stream velocities and long contact times. Median specific-conductance values among sites in the Belle Fourche River drainage basin ranged from 1,740 ?S/cm at 25?C on Caballo Creek to 2,800 ?S/cm at 25?C on Donkey Creek. Water in the study area ranged from a magnesium-calcium-bicarbonate type for some sites in the Tongue River drainage basin to a sodium-sulfate type at many sites in the Powder, Cheyenne, and Belle Fourche River drainage basins. Little Goose Creek, Goose Creek, and the Tongue River in the Tongue River drainage basin, and Clear Creek in the Powder River drainage basin, which have headwaters in the Bighorn Mountains, consistently had the smallest median dissolved-sodium concentrations, sodium-adsorption ratios, dissolved-sulfate concentrations, and dissolved-solids concentrations. Salt Creek, Wild Horse Creek, Little Powder River, and the Cheyenne River, which have headwat

  10. Glacial history and runoff components of the Tlikakila River Basin, Lake Clark National Park and Preserve, Alaska

    USGS Publications Warehouse

    Brabets, Timothy P.; March, Rod S.; Trabant, Dennis C.

    2004-01-01

    The Tlikakila River is located in Lake Clark National Park and Preserve and drains an area of 1,610 square kilometers (622 square miles). Runoff from the Tlikakila River Basin accounts for about one half of the total inflow to Lake Clark. Glaciers occupy about one third of the basin and affect the runoff characteristics of the Tlikakila River. As part of a cooperative study with the National Park Service, glacier changes and runoff characteristics in the Tlikakila River Basin were studied in water years 2001 and 2002. Based on analyses of remote sensing data and on airborne laser profiling, most glaciers in the Tlikakila River Basin have retreated and thinned from 1957 to the present. Volume loss from 1957-2001 from the Tanaina Glacier, the largest glacier in the Tlikakila River Basin, was estimated to be 6.1 x 109 cubic meters or 1.4 x 108 cubic meters per year. For the 2001 water year, mass balance measurements made on the three largest glaciers in the Tlikakila River BasinTanaina, Glacier Fork, and North Forkall indicate a negative mass balance. Runoff measured near the mouth of the Tlikakila River for water year 2001 was 1.70 meters. Of this total, 0.18 meters (11 percent) was from glacier ice melt, 1.27 meters (75 percent) was from snowmelt, 0.24 meters (14 percent) was from rainfall runoff, and 0.01 meters (1 percent) was from ground water. Although ground water is a small component of runoff, it provides a critical source of warm water for fish survival in the lower reaches of the Tlikakila River.

  11. A snapshot on prokaryotic diversity of the Solimões River basin (Amazon, Brazil).

    PubMed

    Toyama, D; Santos-Júnior, C D; Kishi, L T; Oliveira, T C S; Garcia, J W; Sarmento, H; Miranda, F P; Henrique-Silva, F

    2017-05-18

    The Amazon region has the largest hydrographic basin on the planet and 
is well known for its huge biodiversity of plants and animals. However, 
there is a lack of studies on aquatic microbial biodiversity in the 
Solimões River, one of its main water courses. To investigate the 
microbial biodiversity of this region, we performed 16S rRNA gene clone 
libraries from Solimões River and adjacent rivers and lakes. Our question was which microorganisms inhabit the different types of aquatic 
environments in this part of the basin, and how diversity varies among 
these environments (rivers and lakes). The microbial 
diversity generating 13 clone libraries of the bacterial 16S rRNA gene 
and 5 libraries of the archaeal 16S rRNA gene was assessed. Diversity measured by several alpha diversity indices (ACE, Chao, Shannon and Simpson) revealed significant differences in diversity indices between lake and river samples. The site with higher microbial diversity was in the Solimões River (4S), downstream the confluence with Purus River. The most common bacterial taxon was the cosmopolitan Polynucleobacter genus, widely observed in all samples. The phylum Thaumarchaeota was the prevailing archaeal taxon. Our results provide the first insight into the microbial diversity of the world's largest river basin.

  12. Nutrient sources and transport in the Missouri River Basin, with emphasis on the effects of irrigation and reservoirs

    USGS Publications Warehouse

    Brown, J.B.; Sprague, L.A.; Dupree, J.A.

    2011-01-01

    SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were used to relate instream nutrient loads to sources and factors influencing the transport of nutrients in the Missouri River Basin. Agricultural inputs from fertilizer and manure were the largest nutrient sources throughout a large part of the basin, although atmospheric and urban inputs were important sources in some areas. Sediment mobilized from stream channels was a source of phosphorus in medium and larger streams. Irrigation on agricultural land was estimated to decrease the nitrogen load reaching the Mississippi River by as much as 17%, likely as a result of increased anoxia and denitrification in the soil zone. Approximately 16% of the nitrogen load and 33% of the phosphorus load that would have otherwise reached the Mississippi River was retained in reservoirs and lakes throughout the basin. Nearly half of the total attenuation occurred in the eight largest water bodies. Unlike the other major tributary basins, nearly the entire instream nutrient load leaving the outlet of the Platte and Kansas River subbasins reached the Mississippi River. Most of the larger reservoirs and lakes in the Platte River subbasin are upstream of the major sources, whereas in the Kansas River subbasin, most of the source inputs are in the southeast part of the subbasin where characteristics of the area and proximity to the Missouri River facilitate delivery of nutrients to the Mississippi River.

  13. Nutrient Sources and Transport in the Missouri River Basin, with Emphasis on the Effects of Irrigation and Reservoirs1

    PubMed Central

    Brown, Juliane B; Sprague, Lori A; Dupree, Jean A

    2011-01-01

    Abstract SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were used to relate instream nutrient loads to sources and factors influencing the transport of nutrients in the Missouri River Basin. Agricultural inputs from fertilizer and manure were the largest nutrient sources throughout a large part of the basin, although atmospheric and urban inputs were important sources in some areas. Sediment mobilized from stream channels was a source of phosphorus in medium and larger streams. Irrigation on agricultural land was estimated to decrease the nitrogen load reaching the Mississippi River by as much as 17%, likely as a result of increased anoxia and denitrification in the soil zone. Approximately 16% of the nitrogen load and 33% of the phosphorus load that would have otherwise reached the Mississippi River was retained in reservoirs and lakes throughout the basin. Nearly half of the total attenuation occurred in the eight largest water bodies. Unlike the other major tributary basins, nearly the entire instream nutrient load leaving the outlet of the Platte and Kansas River subbasins reached the Mississippi River. Most of the larger reservoirs and lakes in the Platte River subbasin are upstream of the major sources, whereas in the Kansas River subbasin, most of the source inputs are in the southeast part of the subbasin where characteristics of the area and proximity to the Missouri River facilitate delivery of nutrients to the Mississippi River. PMID:22457581

  14. Scaling up watershed model parameters - flow and load simulations of the Edisto River basin

    Treesearch

    Toby Feaster; Stephen Benedict; Jimmy Clark; Paul Bradley; Paul Conrads

    2016-01-01

    The Edisto River is the longest and largest river system completely contained in South Carolina and is one of the longest free flowing blackwater rivers in the United States. The Edisto River basin also has fish-tissue mercury concentrations that are among the highest recorded in the United States. As part of an ongoing effort by the U.S. Geological Survey to expand...

  15. Oil shale and nahcolite resources of the Piceance Basin, Colorado

    USGS Publications Warehouse

    ,

    2010-01-01

    This report presents an in-place assessment of the oil shale and nahcolite resources of the Green River Formation in the Piceance Basin of western Colorado. The Piceance Basin is one of three large structural and sedimentary basins that contain vast amounts of oil shale resources in the Green River Formation of Eocene age. The other two basins, the Uinta Basin of eastern Utah and westernmost Colorado, and the Greater Green River Basin of southwest Wyoming, northwestern Colorado, and northeastern Utah also contain large resources of oil shale in the Green River Formation, and these two basins will be assessed separately. Estimated in-place oil is about 1.5 trillion barrels, based on Fischer a ssay results from boreholes drilled to evaluate oil shale, making it the largest oil shale deposit in the world. The estimated in-place nahcolite resource is about 43.3 billion short tons.

  16. Floods of May 30 to June 15, 2008, in the Iowa and Cedar River basins, eastern Iowa

    USGS Publications Warehouse

    Linhart, Mike S.; Eash, David A.

    2010-01-01

    As a result of prolonged and intense periods of rainfall in late May and early June, 2008, along with heavier than normal snowpack the previous winter, record flooding occurred in Iowa in the Iowa River and Cedar River Basins. The storms were part of an exceptionally wet period from May 29 through June 12, when an Iowa statewide average of 9.03 inches of rain fell; the normal statewide average for the same period is 2.45 inches. From May 29 to June 13, the 16-day rainfall totals recorded at rain gages in Iowa Falls and Clutier were 14.00 and 13.83 inches, respectively. Within the Iowa River Basin, peak discharges of 51,000 cubic feet per second (flood-probability estimate of 0.2 to 1 percent) at the 05453100 Iowa River at Marengo, Iowa streamflow-gaging station (streamgage) on June 12, and of 39,900 cubic feet per second (flood-probability estimate of 0.2 to 1 percent) at the 05453520 Iowa River below Coralville Dam near Coralville, Iowa streamgage on June 15 are the largest floods on record for those sites. A peak discharge of 41,100 cubic feet per second (flood-probability estimate of 0.2 to 1 percent) on June 15 at the 05454500 Iowa River at Iowa City, Iowa streamgage is the fourth highest on record, but is the largest flood since regulation by the Coralville Dam began in 1958. Within the Cedar River Basin, the May 30 to June 15, 2008, flood is the largest on record at all six streamgages in Iowa located on the mainstem of the Cedar River and at five streamgages located on the major tributaries. Flood-probability estimates for 10 of these 11 streamgages are less than 1 percent. Peak discharges of 112,000 cubic feet per second (flood-probability estimate of 0.2 to 1 percent) at the 05464000 Cedar River at Waterloo, Iowa streamgage on June 11 and of 140,000 cubic feet per second (flood-probability estimate of less than 0.2 percent) at the 05464500 Cedar River at Cedar Rapids, Iowa streamgage on June 13 are the largest floods on record for those sites. Downstream from the confluence of the Iowa and Cedar Rivers, the peak discharge of 188,000 cubic feet per second (flood-probability estimate of less than 0.2 percent) at the 05465500 Iowa River at Wapello, Iowa streamgage on June 14, 2008, is the largest flood on record in the Iowa River and Cedar River Basins since 1903. High-water marks were measured at 88 locations along the Iowa River between State Highway 99 near Oakville and U.S. Highway 69 in Belmond, a distance of 319 river miles. High-water marks were measured at 127 locations along the Cedar River between Fredonia near the mouth (confluence with the Iowa River) and Riverview Drive north of Charles City, a distance of 236 river miles. The high-water marks were used to develop flood profiles for the Iowa and Cedar River.

  17. Sources and loads of nutrients in the South Platte River, Colorado and Nebraska, 1994-95

    USGS Publications Warehouse

    Litke, D.W.

    1996-01-01

    The South Platte River Basin was one of 20 river basins selected in 1991 for investigation as part of the U.S. Geological Survey's National Water- Quality Assessment (NAWQA) Program. Nationwide, nutrients have been identified as one of the primary nationwide water-quality concerns and are of particular interest in the South Platte River Basin where nutrient concentrations are large compared to concentrations in other NAWQA river basins. This report presents estimates of the magnitude of nutrient-source inputs to the South Platte River Basin, describes nutrient concen- trations and loads in the South Platte River during different seasons, and presents comparisons of nutrient inputs to instream nutrient loads. Annual nutrient inputs to the basin were estimated to be 306,000 tons of nitrogen and 41,000 tons of phosphorus. The principal nutrient sources were wastewater-treatment plants, fertilizer and manure applications, and atmospheric deposition. To characterize nutrient concentrations and loads in the South Platte River during different seasons, five nutrient synoptic samplings were conducted during 1994 and 1995. Upstream from Denver, Colorado, during April 1994 and January 1995, total nitrogen concentrations were less than 2 milligrams per liter (mg/L), and total phosphorus concentrations were less than 0.2 mg/L. The water in the river at this point was derived mostly from forested land in the mountains west of Denver. Total nutrient concentrations increased through the Denver metropolitan area, and concentration peaks occurred just downstream from each of Denver's largest wastewater-treatment plants with maximum concentrations of 13.6 mg/L total nitrogen and 2.4 mg/L total phosphorus. Nutrient concen- concentrations generally decreased downstream from Denver. Upstream from Denver during April 1994 and January 1995, total nitrogen loads were less than 1,000 pounds per day (lb/d), and total phosphorus loads were less than 125 lb/d. Total nutrient loads increased through the Denver metropolitan area, and load peaks occurred just downstream from each of Denver's largest wastewater-treatment plants, with a maximum load of 14,000 lb/d total nitrogen and 2,300 lb/d total phosphorus. In April 1994, nutrient loads generally decreased from Henderson, Colorado, to North Platte, Nebraska. In January 1995, however, nutrient loads increased from Henderson to Kersey, Colorado (maximum loads of 31,000 lb/d total nitrogen and 3,000 lb/d total phosphorus), and then decreased from Kersey to North Platte. Seasonal nutrient loads primarily were dependent on streamflow. Total nitrogen loads were largest in June 1994 and January 1995 when streamflows also were largest. During June, streamflow was large, but nitrogen concentrations were small, which indicated that snowmelt runoff diluted the available supply of nitrogen. Total phosphorus loads were largest in June, when streamflow and phosphorus concentrations were large, which indicated an additional source of phosphorus during snowmelt runoff. Streamflow along the South Platte River was smallest in April and August 1994, and nutrient loads also were smallest during these months. The downstream pattern for nutrient loads did not vary much by season. Loads were large at Henderson, decreased between Henderson and Kersey, and usually were largest at Kersey. The magnitude of the decrease in loads between Henderson and Kersey varied between synoptics and was dependent on the amount of water removed by irrigation ditches. Nutrient loads leaving the basin were very small compared to the estimated total nutrient inputs to the basin. Streamflow balances indicated that the South Platte River is a gaining river throughout much of its length; streamflow-balance residuals were as large as 15 cubic feet per second per mile. Nutrient-load balances indicated that increases in river nitrate loads were, in some places, due to nitrification and, elsewhere, were due to the influx of nitrate-enriched ground water to

  18. Global change impacts on river ecosystems: A high-resolution watershed study of Ebro river metabolism.

    PubMed

    Val, Jonatan; Chinarro, David; Pino, María Rosa; Navarro, Enrique

    2016-11-01

    Global change is transforming freshwater ecosystems, mainly through changes in basin flow dynamics. This study assessed how the combination of climate change and human management of river flow impacts metabolism of the Ebro River (the largest river basin in Spain, 86,100km(2)), assessed as gross primary production-GPP-and ecosystem respiration-ER. In order to investigate the influence of global change on freshwater ecosystems, an analysis of trends and frequencies from 25 sampling sites of the Ebro river basin was conducted. For this purpose, we examined the effect of anthropogenic flow control on river metabolism with a Granger causality study; simultaneously, took into account the effects of climate change, a period of extraordinary drought (largest in past 140years). We identified periods of sudden flow changes resulting from both human management and global climate effects. From 1998 to 2012, the Ebro River basin was trending toward a more autotrophic condition indicated by P/R ratio. Particularly, the results show that floods that occurred after long periods of low flows had a dramatic impact on the respiration (i.e., mineralization) capacity of the river. This approach allowed for a detailed characterization of the relationships between river metabolism and drought impacts at the watershed level. These findings may allow for a better understanding of the ecological impacts provoked by flow management, thus contributing to maintain the health of freshwater communities and ecosystem services that rely on their integrity. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Accumulated state of the Yukon River watershed: part I critical review of literature.

    PubMed

    Dubé, Monique G; Muldoon, Breda; Wilson, Julie; Maracle, Karonhiakta'tie Bryan

    2013-07-01

    A consistent methodology for assessing the accumulating effects of natural and manmade change on riverine systems has not been developed for a whole host of reasons including a lack of data, disagreement over core elements to consider, and complexity. Accumulated state assessments of aquatic systems is an integral component of watershed cumulative effects assessment. The Yukon River is the largest free flowing river in the world and is the fourth largest drainage basin in North America, draining 855,000 km(2) in Canada and the United States. Because of its remote location, it is considered pristine but little is known about its cumulative state. This review identified 7 "hot spot" areas in the Yukon River Basin including Lake Laberge, Yukon River at Dawson City, the Charley and Yukon River confluence, Porcupine and Yukon River confluence, Yukon River at the Dalton Highway Bridge, Tolovana River near Tolovana, and Tanana River at Fairbanks. Climate change, natural stressors, and anthropogenic stresses have resulted in accumulating changes including measurable levels of contaminants in surface waters and fish tissues, fish and human disease, changes in surface hydrology, as well as shifts in biogeochemical loads. This article is the first integrated accumulated state assessment for the Yukon River basin based on a literature review. It is the first part of a 2-part series. The second article (Dubé et al. 2013a, this issue) is a quantitative accumulated state assessment of the Yukon River Basin where hot spots and hot moments are assessed outside of a "normal" range of variability. Copyright © 2012 SETAC.

  20. Development of Predictive Relationships for Flood Hazard Assessments in Ungaged Basins

    DTIC Science & Technology

    2016-02-01

    Hydrological Analysis (GSSHA) model (Downer and Ogden 2004) was deployed in megascale for ungaged basins of the Philippine Islands . The GSSHA...et al. [1988]). STUDY AREA: Two megascale catchments in the Philippine Islands were considered in this study. No stream gage data exists for either...imagery. The Cagayan River Basin on Luzon Island (Figure 1[a]) is the largest river in the Philippines with a drainage area of 27,280 km2

  1. Contribution potential of glaciers to water availability in different climate regimes

    PubMed Central

    Kaser, Georg; Großhauser, Martin; Marzeion, Ben

    2010-01-01

    Although reliable figures are often missing, considerable detrimental changes due to shrinking glaciers are universally expected for water availability in river systems under the influence of ongoing global climate change. We estimate the contribution potential of seasonally delayed glacier melt water to total water availability in large river systems. We find that the seasonally delayed glacier contribution is largest where rivers enter seasonally arid regions and negligible in the lowlands of river basins governed by monsoon climates. By comparing monthly glacier melt contributions with population densities in different altitude bands within each river basin, we demonstrate that strong human dependence on glacier melt is not collocated with highest population densities in most basins. PMID:21059938

  2. Dissolved Oxygen Dynamics in Backwaters of North America's Largest River Swamp

    NASA Astrophysics Data System (ADS)

    Bueche, S. M.; Xu, Y. J.; Reiman, J. H.

    2017-12-01

    The Atchafalaya River (AR) is the largest distributary of the Mississippi River flowing through south-central Louisiana, creating North America's largest river swamp basin - the Atchafalaya River Basin (ARB). Prior to human settlement, the AR's main channel was highly connected to this large wetland ecosystem. However, due to constructed levee systems and other human modifications, much of the ARB is now hydrologically disconnected from the AR's main channel except during high flow events. This lack of regular inputs of fresh, oxygenated water to these wetlands, paired with high levels of organic matter decomposition in wetlands, has caused low oxygen-deprived hypoxic conditions in the ARB's back waters. In addition, due to the incredibly nutrient-rich and warm nature of the ARB, microbial decomposition in backwater areas with limited flow often results in potentially stressful, if not lethal, levels of DO for organisms during and after flood pulses. This study aims to investigate dynamics of dissolved oxygen in backwaters of the Atchafalaya River Basin, intending to answer a crucial question about hydrological and water quality connectivity between the river's mainstem and its floodplain. Specifically, the study will 1) conduct field water quality measurements, 2) collect composite water samples for chemical analysis of nutrients and carbon, 3) investigate DO dynamics over different seasons for one year, and 4) determine the major factors that affect DO dynamics in this unique swamp ecosystem. The study is currently underway; therefore, in this presentation we will share the major findings gained in the past several months and discuss backwater effects on river chemistry.

  3. Klamath River Basin water-quality data

    USGS Publications Warehouse

    Smith, Cassandra D.; Rounds, Stewart A.; Orzol, Leonard L.; Sobieszczyk, Steven

    2018-05-29

    The Klamath River Basin stretches from the mountains and inland basins of south-central Oregon and northern California to the Pacific Ocean, spanning multiple climatic regions and encompassing a variety of ecosystems. Water quantity and water quality are important topics in the basin, because water is a critical resource for farming and municipal use, power generation, and for the support of wildlife, aquatic ecosystems, and endangered species. Upper Klamath Lake is the largest freshwater lake in Oregon (112 square miles) and is known for its seasonal algal blooms. The Klamath River has dams for hydropower and the upper basin requires irrigation water to support agriculture and grazing. Multiple species of endangered fish inhabit the rivers and lakes, and the marshes are key stops on the Pacific flyway for migrating birds. For these and other reasons, the water resources in this basin have been studied and monitored to support their management distribution.

  4. Quantifying flooding regime in floodplain forests to guide river restoration

    Treesearch

    Christian O. Marks; Keith H. Nislow; Francis J. Magilligan

    2014-01-01

    Determining the flooding regime needed to support distinctive floodplain forests is essential for effective river conservation under the ubiquitous human alteration of river flows characteristic of the Anthropocene Era. At over 100 sites throughout the Connecticut River basin, the largest river system in New England, we characterized species composition, valley and...

  5. Simulation of dissolved nutrient export from the Dongjiang river basin with a grid-based NEWS model

    NASA Astrophysics Data System (ADS)

    Rong, Qiangqiang; Su, Meirong; Yang, Zhifeng; Cai, Yanpeng; Yue, Wencong; Dang, Zhi

    2018-06-01

    In this research, a grid-based NEWS model was proposed through coupling the geographic information system (GIS) with the Global NEWS model framework. The model was then applied to the Dongjiang River basin to simulate the dissolved nutrient export from this area. The model results showed that the total amounts of the dissolved nitrogen and phosphorus exported from the Dongjiang River basin were approximately 27154.87 and 1389.33 t, respectively. 90 % of the two loads were inorganic forms (i.e. dissolved inorganic nitrogen and phosphorus, DIN and DIP). Also, the nutrient export loads did not evenly distributed in the basin. The main stream watershed of the Dongjiang River basin has the largest DIN and DIP export loads, while the largest dissolved organic nitrogen and phosphorus (DON and DOP) loads were observed in the middle and upper stream watersheds of the basin, respectively. As for the nutrient exported from each subbasin, different sources had different influences on the output of each nutrient form. For the DIN load in each subbasin, fertilization application, atmospheric deposition and biological fixation were the three main contributors, while eluviation was the most important source for DON. In terms of DIP load, fertilizer application and breeding wastewater were the main contributors, while eluviation and fertilizer application were the two main sources for DOP.

  6. Studying groundwater and surface water interactions using airborne remote sensing in Heihe River basin, northwest China

    NASA Astrophysics Data System (ADS)

    Liu, C.; Liu, J.; Hu, Y.; Zheng, C.

    2015-05-01

    Managing surface water and groundwater as a unified system is important for water resource exploitation and aquatic ecosystem conservation. The unified approach to water management needs accurate characterization of surface water and groundwater interactions. Temperature is a natural tracer for identifying surface water and groundwater interactions, and the use of remote sensing techniques facilitates basin-scale temperature measurement. This study focuses on the Heihe River basin, the second largest inland river basin in the arid and semi-arid northwest of China where surface water and groundwater undergoes dynamic exchanges. The spatially continuous river-surface temperature of the midstream section of the Heihe River was obtained by using an airborne pushbroom hyperspectral thermal sensor system. By using the hot spot analysis toolkit in the ArcGIS software, abnormally cold water zones were identified as indicators of the spatial pattern of groundwater discharge to the river.

  7. Detailed cross sections of the Eocene Green River Formation along the north and east margins of the Piceance Basin, western Colorado, using measured sections and drill hole information

    USGS Publications Warehouse

    Johnson, Ronald C.

    2014-01-01

    This report presents two detailed cross sections of the Eocene Green River Formation in the Piceance Basin, northwestern Colorado, constructed from eight detailed measured sections, fourteen core holes, and two rotary holes. The Eocene Green River Formation in the Piceance Basin contains the world’s largest known oil shale deposit with more than 1.5 billion barrels of oil in place. It was deposited in Lake Uinta, a long-lived saline lake that once covered much of the Piceance Basin and the Uinta Basin to the west. The cross sections extend across the northern and eastern margins of the Piceance Basin and are intended to aid in correlating between surface sections and the subsurface in the basin.

  8. Environmental setting and water-quality issues of the Mobile River Basin, Alabama, Georgia, Mississippi, and Tennessee

    USGS Publications Warehouse

    Johnson, Gregory C.; Kidd, Robert E.; Journey, Celeste A.; Zappia, Humbert; Atkins, J. Brian

    2002-01-01

    The Mobile River Basin is one of over 50 river basins and aquifer systems being investigated as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. This basin is the sixth largest river basin in the United States, and fourth largest in terms of streamflow, encompassing parts of Alabama, Georgia, Mississippi, and Tennessee. Almost two-thirds of the 44,000-square-mile basin is located in Alabama. Extensive water resources of the Mobile River Basin are influenced by an array of natural and cultural factors. These factors impart unique and variable qualities to the streams, rivers, and aquifers providing abundant habitat to sustain the diverse aquatic life in the basin. Data from Federal, State, and local agencies provide a description of the environmental setting of the Mobile River Basin. Environmental data include natural factors such as physiography, geology, soils, climate, hydrology, ecoregions, and aquatic ecology, and human factors such as reservoirs, land use and population change, water use, and water-quality issues. Characterization of the environmental setting is useful for understanding the physical, chemical, and biological characteristics of surface and ground water in the Mobile River Basin and the possible implications of that environmental setting for water quality. The Mobile River Basin encompasses parts of five physiographic provinces. Fifty-six percent of the basin lies within the East Gulf section of the Coastal Plain Physiographic Province. The remaining northeastern part of the basin lies, from west to east, within the Cumberland Plateau section of the Appalachian Plateaus Physiographic Province, the Valley and Ridge Physiographic Province, the Piedmont Physiographic Province, and the Blue Ridge Physiographic Province. Based on the 1991 land-use data, about 70 percent of the basin is forested, while agriculture, including livestock (poultry, cattle, and swine), row crops (cotton, corn, soybeans, sorghum, and wheat), and pasture land accounts for about 26 percent of the study unit. Agricultural land use is concentrated along the Black Prairie Belt district of the Coastal Plain. Urban areas account for only 3 percent of the total land use; however, the areal extent of the metropolitan statistical areas (MSA) may indicate more urban influences. The MSAs include urban areas outside of the city boundaries and can include adjacent counties. Seven MSAs are delineated in the Mobile River Basin, including Montgomery, Mobile, Tuscaloosa, Birmingham, Gadsden, Anniston, and Atlanta. The total population for the Mobile River Basin was about 3,673,100 in 1990. State water-quality agencies have identified numerous causes and sources of water-body impairment in the Mobile River Basin. In 1996, organic enrichment, dissolved oxygen depletion, elevated nutrient concentrations, and siltation were the most frequently cited causes of impairment, affecting the greatest number of river miles. Bacteria, acidic pH, and elevated metal concentrations also were identified as causes of impairment. The sources for impairment varied among river basins, were largely a function of land use, and were attributed primarily to municipal and industrial sources, mining, and agricultural activities.

  9. Location and timing of river-aquifer exchanges in six tributaries to the Columbia River in the Pacific Northwest of the United States

    USGS Publications Warehouse

    Konrad, C.P.

    2006-01-01

    The flow of water between rivers and contiguous aquifers influences the quantity and quality of water resources, particularly in regions where precipitation and runoff are unevenly distributed through the year, such as the Columbia Basin (CB) in northwestern United States. Investigations of basin hydrogeology and gains and losses of streamflow for six rivers in the CB were reviewed to characterize general patterns in the timing and location of river-aquifer exchanges at a reach-scale (0.5-150 km) and to identify geologic and geomorphic features associated with the largest exchanges. Ground-water discharge to each river, or the gain in streamflow, was concentrated spatially: more than one-half of the total gains along each river segment were contributed from reaches that represented no more than 30% of the total segment length with the largest and most concentrated gains in rivers in volcanic terrains. Fluvial recharge of aquifers, or losses of streamflow, was largest in rivers in sedimentary basins where unconsolidated sediments form shallow aquifers. Three types of geologic or geomorphic features were associated with the largest exchanges: (1) changes in the thickness of unconsolidated aquifers; (2) contacts between lithologic units that represent contrasts in permeability; and (3) channel forms that increase the hydraulic gradient or cross-sectional area of flow paths between a river and shallow ground-water. The down-valley component of ground-water flow and its vertical convergence on or divergence from a riverbed account for large streamflow gains in some reaches and contrast with the common assumption of lateral ground-water discharge to a river that penetrates completely through the aquifer. Increased ground-water discharge was observed during high-flow periods in reaches of four rivers indicating that changes in ground-water levels can be more important than stage fluctuations in regulating the direction and magnitude of river-aquifer exchanges and that assumptions about ground-water discharge during high flow periods used for base-flow separation must be verified. Given the variety of geologic terrains in the CB, the spatial and temporal patterns of river-aquifer exchanges provide a framework for investigations in other regions that includes a focus on reaches where the largest exchanges are likely to occur, integration of ground-water and surface-water data, and verification of assumptions regarding ground-water flow direction and temporal variation of exchanges. ?? 2006 Elsevier B.V. All rights reserved.

  10. Spatial analysis from remotely sensed observations of Congo basin of East African high Land to drain water using gravity for sustainable management of low laying Chad basin of Central Africa

    NASA Astrophysics Data System (ADS)

    Modu, B.; Herbert, B.

    2014-11-01

    The Chad basin which covers an area of about 2.4 million kilometer square is one of the largest drainage basins in Africa in the centre of Lake Chad .This basin was formed as a result of rifting and drifting episode, as such it has no outlet to the oceans or seas. It contains large area of desert from the north to the west. The basin covers in part seven countries such as Chad, Nigeria, Central African Republic, Cameroun, Niger, Sudan and Algeria. It is named Chad basin because 43.9% falls in Chad republic. Since its formation, the basin continues to experienced water shortage due to the activities of Dams combination, increase in irrigations and general reduction in rainfall. Chad basin needs an external water source for it to be function at sustainable level, hence needs for exploitation of higher east African river basin called Congo basin; which covers an area of 3.7 million square km lies in an astride the equator in west-central Africa-world second largest river basin after Amazon. The Congo River almost pans around republic of Congo, the democratic republic of Congo, the Central African Republic, western Zambia, northern Angola, part of Cameroun, and Tanzania. The remotely sensed imagery analysis and observation revealed that Congo basin is on the elevation of 275 to 460 meters and the Chad basin is on elevation of 240 meters. This implies that water can be drained from Congo basin via headrace down to the Chad basin for the water sustainability.

  11. Summary statistics and trend analysis of water-quality data at sites in the Gila River basin, New Mexico and Arizona

    USGS Publications Warehouse

    Baldys, Stanley; Ham, L.K.; Fossum, K.D.

    1995-01-01

    Summary statistics and temporal trends for 19 water-chemistry constituents and for turbidity were computed for 13 study sites in the Gila River basin, Arizona and New Mexico. A nonparametric technique, the seasonal Kendall tau test for flow-adjusted data, was used to analyze temporal changes in water-chemistry data. For the 19 selected constituents and turbidity, decreasing trends in concentrations outnumbered increasing trends by more than two to one. Decreasing trends in concentrations of constituents were found for 49 data sets at the 13 study sites. Gila River at Calva and Gila River above diversions, at Gillespie Dam (eight each) had the most decreasing trends for individual sites. The largest number of decreasing trends measured for a constituent was six for dissolved lead. The next largest number of decreasing trends for a constituent was for dissolved solids and total manganese (five each). Hardness, dissolved sodium, and dissolved chloride had decreasing trends at four of the study sites. Increasing trends in concen- trations of constituents were found for 24 data sets at the 13 study sites. The largest number of increasing trends measured for a single constituent was for pH (four), dissolved sulfate (three), dissolved chromium (three) and total manganese (three). Increased concentrations of constituents generally were found in three areas in the basin-at Pinal Creek above Inspiration Dam, at sites above reservoirs, and at sites on the main stem of the Gila River from Gillespie Dam to the mouth.

  12. Can the global carbon budget be balanced?

    USGS Publications Warehouse

    Markewich, Helaine W.; Bliss, Norman B.; Stallard, Robert F.; Sundquist, Eric T.

    1997-01-01

    The Mississippi Basin Carbon Project of the U.S. Geological Survey (USGS) is an effort to examine interactions between the global carbon cycle and human-induced changes to the land surface, such as farming and urbanization. Investigations in the Mississippi River basin will provide the data needed for calculating the global significance of land-use changes on land-based carbon cycling. These data are essential for predicting and mitigating the effects of global environmental change.The Mississippi Basin Carbon Project is focused on the third largest river system in the world. The Mississippi River and its tributaries drain more than 40% of the conterminous United States. The basin includes areas that typify vast regions of the Earth's surface that have undergone human development.

  13. More frequent flooding? Changes in flood frequency in the Pearl River basin, China, since 1951 and over the past 1000 years

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Gu, Xihui; Singh, Vijay P.; Shi, Peijun; Sun, Peng

    2018-05-01

    Flood risks across the Pearl River basin, China, were evaluated using a peak flood flow dataset covering a period of 1951-2014 from 78 stations and historical flood records of the past 1000 years. The generalized extreme value (GEV) model and the kernel estimation method were used to evaluate frequencies and risks of hazardous flood events. Results indicated that (1) no abrupt changes or significant trends could be detected in peak flood flow series at most of the stations, and only 16 out of 78 stations exhibited significant peak flood flow changes with change points around 1990. Peak flood flow in the West River basin increased and significant increasing trends were identified during 1981-2010; decreasing peak flood flow was found in coastal regions and significant trends were observed during 1951-2014 and 1966-2014. (2) The largest three flood events were found to cluster in both space and time. Generally, basin-scale flood hazards can be expected in the West and North River basins. (3) The occurrence rate of floods increased in the middle Pearl River basin but decreased in the lower Pearl River basin. However, hazardous flood events were observed in the middle and lower Pearl River basin, and this is particularly true for the past 100 years. However, precipitation extremes were subject to moderate variations and human activities, such as building of levees, channelization of river systems, and rapid urbanization; these were the factors behind the amplification of floods in the middle and lower Pearl River basin, posing serious challenges for developing measures of mitigation of flood hazards in the lower Pearl River basin, particularly the Pearl River Delta (PRD) region.

  14. The effect of the 2011 flood on agricultural chemical and sediment movement in the lower Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Welch, H.; Coupe, R.; Aulenbach, B.

    2012-04-01

    Extreme hydrologic events, such as floods, can overwhelm a surface water system's ability to process chemicals and can move large amounts of material downstream to larger surface water bodies. The Mississippi River is the 3rd largest River in the world behind the Amazon in South America and the Congo in Africa. The Mississippi-Atchafalaya River basin grows much of the country's corn, soybean, rice, cotton, pigs, and chickens. This is large-scale modern day agriculture with large inputs of nutrients to increase yields and large applied amounts of crop protection chemicals, such as pesticides. The basin drains approximately 41% of the conterminous United States and is the largest contributor of nutrients to the Gulf of Mexico each spring. The amount of water and nutrients discharged from the Mississippi River has been related to the size of the low dissolved oxygen area that forms off of the coast of Louisiana and Texas each summer. From March through April 2011, the upper Mississippi River basin received more than five times more precipitation than normal, which combined with snow melt from the Missouri River basin, created a historic flood event that lasted from April through July. The U.S. Geological Survey, as part of the National Stream Quality Accounting Network (NASQAN), collected samples from six sites located in the lower Mississippi-Atchafalaya River basin, as well as, samples from the three flow-diversion structures or floodways: the Birds Point-New Madrid in Missouri and the Morganza and Bonnet Carré in Louisiana, from April through July. Samples were analyzed for nutrients, pesticides, suspended sediments, and particle size; results were used to determine the water quality of the river during the 2011 flood. Monthly loads for nitrate, phosphorus, pesticides (atrazine, glyphosate, fluometuron, and metolachlor), and sediment were calculated to quantify the movement of agricultural chemicals and sediment into the Gulf of Mexico. Nutrient loads were compared to historic loads to assess the effect of the flood on the zone of hypoxia that formed in the Gulf of Mexico during the spring of 2011.

  15. Status and trends in suspended-sediment discharges, soil erosion, and conservation tillage in the Maumee River basin--Ohio, Michigan, and Indiana

    USGS Publications Warehouse

    Myers, Donna N.; Metzker, Kevin D.; Davis, Steven

    2000-01-01

    The relation of suspended-sediment discharges to conservation-tillage practices and soil loss were analyzed for the Maumee River Basin in Ohio, Michigan, and Indiana as part of the U.S. Geological Survey?s National Water-Quality Assessment Program. Cropland in the basin is the largest contributor to soil erosion and suspended-sediment discharge to the Maumee River and the river is the largest source of suspended sediments to Lake Erie. Retrospective and recently-collected data from 1970-98 were used to demonstrate that increases in conservation tillage and decreases in soil loss can be related to decreases in suspended-sediment discharge from streams. Average annual water and suspended-sediment budgets computed for the Maumee River Basin and its principal tributaries indicate that soil drainage and runoff potential, stream slope, and agricultural land use are the major human and natural factors related to suspended-sediment discharge. The Tiffin and St. Joseph Rivers drain areas of moderately to somewhat poorly drained soils with moderate runoff potential. Expressed as a percentage of the total for the Maumee River Basin, the St. Joseph and Tiffin Rivers represent 29.0 percent of the basin area, 30.7 percent of the average-annual streamflow, and 9.31 percent of the average annual suspended-sediment discharge. The Auglaize and St. Marys Rivers drain areas of poorly to very poorly drained soils with high runoff potential. Expressed as a percentage of the total for the Maumee River Basin, the Auglaize and St. Marys Rivers represent 48.7 percent of the total basin area, 53.5 percent of the average annual streamflow, and 46.5 percent of the average annual suspended-sediment discharge. Areas of poorly drained soils with high runoff potential appear to be the major source areas of suspended sediment discharge in the Maumee River Basin. Although conservation tillage differed in the degree of use throughout the basin, on aver-age, it was used on 55.4 percent of all crop fields in the Maumee River Basin from 1993-98. Conservation tillage was used at relatively higher rates in areas draining to the lower main stem from Defiance to Waterville, Ohio and at relatively lower rates in the St. Marys and Auglaize River Basins, and in areas draining to the main stem between New Haven, Ind. and Defiance, Ohio. The areas that were identified as the most important sediment-source areas in the basin were characterized by some of the lowest rates of conservation tillage. The increased use of conservation tillage was found to correspond to decreases in suspended-sediment discharge over time at two locations in the Maumee River Basin. A 49.8 percent decrease in suspended-sediment discharge was detected when data from 1970-74 were compared to data from 1996-98 for the Auglaize River near Ft. Jennings, Ohio. A decrease in suspended-sediment discharge of 11.2 percent was detected from 1970?98 for the Maumee River at Waterville, Ohio. No trends in streamflow at either site were detected over the period 1970-98. The lower rate of decline in suspended-sediment discharge for the Maumee River at Waterville, Ohio compared to the Auglaize River near Ft. Jennings, may be due to resuspension and export of stored sediments from drainage ditches, stream channels, and flood plains in the large drainage basin upstream from Waterville. Similar findings by other investigators about the capacity of drainage networks to store sediment are supported by this investigation. These findings go undetected when soil loss estimates are used alone to evaluate the effectiveness of conservation tillage. Water-quality data in combination with soil-loss estimates were needed to draw these conclusions. These findings provide information to farmers and soil conservation agents about the ability of conservation tillage to reduce soil erosion and suspended-sediment discharge from the Maumee River Basin.

  16. Floods of July 23-26, 2010, in the Little Maquoketa River and Maquoketa River Basins, Northeast Iowa

    USGS Publications Warehouse

    Eash, David A.

    2012-01-01

    Minor flooding occurred July 23, 2010, in the Little Maquoketa River Basin and major flooding occurred July 23–26, 2010, in the Maquoketa River Basin in northeast Iowa following severe thunderstorm activity over the region during July 22–24. A breach of the Lake Delhi Dam on July 24 aggravated flooding on the Maquoketa River. Rain gages at Manchester and Strawberry Point, Iowa, recorded 72-hour-rainfall amounts of 7.33 and 12.23 inches, respectively, on July 24. The majority of the rainfall occurred during a 48-hour period. Within the Little Maquoketa River Basin, a peak-discharge estimate of 19,000 cubic feet per second (annual flood-probability estimate of 4 to 10 percent) at the discontinued 05414500 Little Maquoketa River near Durango, Iowa streamgage on July 23 is the sixth largest flood on record. Within the Maquoketa River Basin, peak discharges of 26,600 cubic feet per second (annual flood-probability estimate of 0.2 to 1 percent) at the 05416900 Maquoketa River at Manchester, Iowa streamgage on July 24, and of 25,000 cubic feet per second (annual flood-probability estimate of 1 to 2 percent) at the 05418400 North Fork Maquoketa River near Fulton, Iowa streamgage on July 24 are the largest floods on record for these sites. A peak discharge affected by the Lake Delhi Dam breach on July 24 at the 05418500 Maquoketa River near Maquoketa, Iowa streamgage, located downstream of Lake Delhi, of 46,000 cubic feet per second on July 26 is the third highest on record. High-water marks were measured at five locations along the Little Maquoketa and North Fork Little Maquoketa Rivers between U.S. Highway 52 near Dubuque and County Road Y21 near Rickardsville, a distance of 19 river miles. Highwater marks were measured at 28 locations along the Maquoketa River between U.S. Highway 52 near Green Island and State Highway 187 near Arlington, a distance of 142 river miles. High-water marks were measured at 13 locations along the North Fork Maquoketa River between Rockdale Road near Maquoketa and U.S. Highway 52 near Luxemburg, a distance of 90 river miles. The high-water marks were used to develop flood profiles for the Little Maquoketa, North Fork Little Maquoketa, Maquoketa, and North Fork Maquoketa Rivers.

  17. Surface-water salinity in the Gunnison River Basin, Colorado, water years 1989 through 2007

    USGS Publications Warehouse

    Schaffrath, Keelin R.

    2012-01-01

    Elevated levels of dissolved solids in water (salinity) can result in numerous and costly issues for agricultural, industrial, and municipal water users. The Colorado River Basin Salinity Control Act of 1974 (Public Law 93-320) authorized planning and construction of salinity-control projects in the Colorado River Basin. One of the first projects was the Lower Gunnison Unit, a project to mitigate salinity in the Lower Gunnison and Uncompahgre River Basins. In cooperation with the Bureau of Reclamation (USBR), the U.S. Geological Survey conducted a study to quantify changes in salinity in the Gunnison River Basin. Trends in salinity concentration and load during the period water years (WY) 1989 through 2004 (1989-2004) were determined for 15 selected streamflow-gaging stations in the Gunnison River Basin. Additionally, trends in salinity concentration and load during the period WY1989 through 2007 (1989-2007) were determined for 5 of the 15 sites for which sufficient data were available. Trend results also were used to identify regions in the Lower Gunnison River Basin (downstream from the Gunnison Tunnel) where the largest changes in salinity loads occur. Additional sources of salinity, including residential development (urbanization), changes in land cover, and natural sources, were estimated within the context of the trend results. The trend results and salinity loads estimated from trends testing also were compared to USBR and Natural Resources Conservation Service (NRCS) estimates of off-farm and on-farm salinity reduction from salinity-control projects in the basin. Finally, salinity from six additional sites in basins that are not affected by irrigated agriculture or urbanization was monitored from WY 2008 to 2010 to quantify what portion of salinity may be from nonagricultural or natural sources. In the Upper Gunnison area, which refers to Gunnison River Basin above the site located on the Gunnison River below the Gunnison Tunnel, estimated mean annual salinity load was 110,000 tons during WY 1989-2004. Analysis of both study periods (WY 1989-2004 and WY 1989-2007) showed an initial decrease in salinity load with a minimum in 1997. The net change over either study period was only significant during WY 1989-2007. Salinity load significantly decreased at the Gunnison River near Delta by 179,000 tons during WY 1989-2004. Just downstream, the Uncompahgre River enters the Gunnison River where there also was a highly significant decrease in salinity load of 55,500 tons. The site that is located at the mouth of the study area is the Gunnison River near Grand Junction where the decrease was the largest. Salinity loads decreased by 247,000 tons during WY 1989-2004 at this site though the decrease attenuated by 2007 and the net change was a decrease of 207,000 tons. The trend results presented in this study indicate that the effect of urbanization on salinity loads is difficult to discern from the effects of irrigated agriculture and that natural sources contribute a fraction of the total salinity load for the entire basin. Based on the calculated yields and geology, 23-63 percent of the estimated annual salinity load was from natural sources at the Gunnison River near Grand Junction during WY 1989-2007. The largest changes in salinity load occurred at the Gunnison River near Grand Junction as well as the two sites located in Delta: the Gunnison River at Delta and the Uncompahgre River at Delta. Those three sites, especially the two sites at Delta, were the most affected by irrigated agriculture, which was observed in the estimated mean annual loads. Irrigated acreage, especially acreage underlain by Mancos Shale, is the target of salinity-control projects intended to decrease salinity loads. The NRCS and the USBR have done the majority of salinity control work in the Lower Gunnison area of the Gunnison River Basin, and the focus has been in the Uncompahgre River Basin and in portions of the Lower Gunnison River Basin (downstream from the Gunnison Tunnel). According to the estimates from the USBR and NRCS, salinity-control projects may be responsible for a reduction of 117,300 tons of salinity as of 2004 and 142,000 tons as of 2007 at the Gunnison River near Grand Junction, Colo. (streamflow-gaging station 09152500). USBR and NRCS estimates account for all but 130,000 tons in 2004 and 65,000 tons in 2007 of salinity load reduction. The additional reduction could be a reduction in natural salt loading to the streams because of land-cover changes during the study period. It is possible also that the USBR and NRCS have underestimated changes in salinity loads as a result of the implementation of salinity-control projects.

  18. [Variation characteristics of runoff coefficient of Taizi River basin in 1967-2006].

    PubMed

    Deng, Jun-Li; Zhang, Yong-Fang; Wang, An-Zhi; Guan, De-Xin; Jin, Chang-Jie; Wu, Jia-Bing

    2011-06-01

    Based on the daily precipitation and runoff data of six main embranchments (Haicheng River, Nansha River, Beisha River, Lanhe River, Xihe River, and Taizi River south embranchment) of Taizi River basin in 1967-2006, this paper analyzed the variation trend of runoff coefficient of the embranchments as well as the relationship between this variation trend and precipitation. In 1967-2006, the Taizi River south embranchment located in alpine hilly area had the largest mean annual runoff coefficient, while the Haicheng River located in plain area had the relatively small one. The annual runoff coefficient of the embranchments except Nansha River showed a decreasing trend, being more apparent for Taizi River south embranchment and Lanhe River. All the embranchments except Xihe River had an obvious abrupt change in the annual runoff coefficient, and the beginning year of the abrupt change differed with embranchment. Annual precipitation had significant effects on the annual runoff coefficient.

  19. Changes in fish assemblage structure in the main-stem Willamette River, Oregon

    EPA Science Inventory

    The Willamette River if Oregon’s largest river, with a basin area of 29,800 km² and a mean annual discharge of 680 m³/3. Beginning in the 1890s, the channel was greatly simplified for navigation. By the 1940s, it was polluted by organic wastes, which resulted in low dissolved o...

  20. Water Demand Management Strategies and Challenges in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Kuhn, R. E.

    2016-12-01

    Under the 1922 Colorado River Compact, the Upper Basin (Colorado, New Mexico, Utah, and Wyoming) has flow obligations at Lee Ferry to downstream states and Mexico. The Colorado River Storage Project Act (CRSPA) of 1956 led to the construction of four large storage reservoirs. These provide river regulation to allow the Upper Basin to meet its obligations. Lake Powell, the largest and most important, and Lake Mead are now operated in a coordinated manner under the 2007 Interim Guidelines. Studies show that at current demand levels and if the hydrologic conditions the Basin has experienced since the mid-1980s continue or get drier, reservoir operations, alone, may not provide the necessary water to meet the Upper Basin's obligations. Therefore, the Upper Basin states are now studying demand management strategies that will reduce consumptive uses when total system reservoir storage reaches critically low levels. Demand management has its own economic, political and technical challenges and limitations and will provide new opportunities for applied research. This presentation will discuss some of those strategies, their challenges, and the kinds of information that research could provide to inform demand management.

  1. Ongoing River Capture in the Amazon via Secondary Channel Flow

    NASA Astrophysics Data System (ADS)

    Goldberg, S. L.; Stokes, M.; Perron, J. T.

    2017-12-01

    The Rio Casiquiare in South America is a secondary channel that originates as a distributary of the Rio Orinoco and flows into the Rio Negro as a tributary to form a perennial connection between the Amazon and Orinoco basins, the largest and fourth-largest rivers on Earth by discharge. This unusual configuration is the result of an incomplete and ongoing river capture in which the Rio Negro is actively capturing the upper Rio Orinoco. This rarely observed intermediate stage of capture illuminates important mechanisms that drive river capture in lowland settings, both in the Amazon basin and elsewhere. In particular, we show that the capture of the Rio Orinoco by the Rio Casiquiare is driven by a combination of headward incision of a rapidly eroding tributary of the Rio Negro, sedimentation in the Rio Orinoco downstream of the bifurcation, and seasonal inundation of a low-relief divide. The initiation of the bifurcation by headward erosion caused an increase in discharge to the Rio Casiquiare while the corresponding loss of discharge to the downstream Rio Orinoco has led to observable sedimentation within the main channel. Unlike most ephemeral secondary channels, the Rio Casiquiare appears to be growing, suggesting that the present bifurcation is an unstable feature that will eventually lead to the complete capture of the upper Rio Orinoco by the Rio Casiquiare. This capture is the latest major event in the late Cenozoic drainage evolution of South America in response to Andean tectonism, and is an example of the lateral expansion of the Amazon basin through river capture following integration and entrenchment of the transcontinental Amazon River. The Rio Casiquiare provides a snapshot of an intermediate, transient state of bifurcation and inter-basin flow via a secondary channel during lowland river capture.

  2. Source and fate of inorganic solutes in the Gibbon River, Yellowstone National Park, Wyoming, USA: I. Low-flow discharge and major solute chemistry

    USGS Publications Warehouse

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Susong, David D.; Ball, James W.; Holloway, JoAnn M.

    2010-01-01

    The Gibbon River in Yellowstone National Park (YNP) is an important natural resource and habitat for fisheries and wildlife. However, the Gibbon River differs from most other mountain rivers because its chemistry is affected by several geothermal sources including Norris Geyser Basin, Chocolate Pots, Gibbon Geyser Basin, Beryl Spring, and Terrace Spring. Norris Geyser Basin is one of the most dynamic geothermal areas in YNP, and the water discharging from Norris is much more acidic (pH 3) than other geothermal basins in the upper-Madison drainage (Gibbon and Firehole Rivers). Water samples and discharge data were obtained from the Gibbon River and its major tributaries near Norris Geyser Basin under the low-flow conditions of September 2006. Surface inflows from Norris Geyser Basin were sampled to identify point sources and to quantify solute loading to the Gibbon River. The source and fate of the major solutes (Ca, Mg, Na, K, SiO2, Cl, F, HCO3, SO4, NO3, and NH4) in the Gibbon River were determined in this study and these results may provide an important link in understanding the health of the ecosystem and the behavior of many trace solutes. Norris Geyser Basin is the primary source of Na, K, Cl, SO4, and N loads (35–58%) in the Gibbon River. The largest source of HCO3 and F is in the lower Gibbon River reach. Most of the Ca and Mg originate in the Gibbon River upstream from Norris Geyser Basin. All the major solutes behave conservatively except for NH4, which decreased substantially downstream from Gibbon Geyser Basin, and SiO2, small amounts of which precipitated on mixing of thermal drainage with the river. As much as 9–14% of the river discharge at the gage is from thermal flows during this period.

  3. Estimated withdrawals and use of freshwater in New Hampshire, 1990

    USGS Publications Warehouse

    Medalie, Laura; Horn, M.A.

    1994-01-01

    Estimated freshwater withdrawals during 1990 in New Hampshire totaled about 422 million gallons per day from ground-water and surface-water sources. The largest withdrawals were for thermoelectric-power generation (60 percent), public supply (23 percent), and industrial use (9 percent). Most withdrawals, 358 million gallons per day, were made from surface- water sources, as compared to 63.7 million gallons per day from ground-water sources. The largest with- drawals were in the Merrimack river basin (322 million gallons per day). An additional 46,000 million gallons per day was used instream for hydroelectric-power generation, primarily in the Upper Androscoggin and Upper Connecticut River subbasins. Other information describing water-use patterns is shown in tables, bar graphs, pie charts, maps, and accompanying text. The data are aggregated by river basin (hydrologic cataloging unit), and all values are reported in million gallons per day.

  4. Environmental and hydrologic overview of the Yukon River basin, Alaska and Canada

    USGS Publications Warehouse

    Brabets, Timothy P.; Wang, Bronwen; Meade, Robert H.

    2000-01-01

    The Yukon River, located in northwestern Canada and central Alaska, drains an area of more than 330,000 square miles, making it the fourth largest drainage basin in North America. Approximately 126,000 people live in this basin and 10 percent of these people maintain a subsistence lifestyle, depending on the basin's fish and game resources. Twenty ecoregions compose the Yukon River Basin, which indicates the large diversity of natural features of the watershed, such as climate, soils, permafrost, and geology. Although the annual mean discharge of the Yukon River near its mouth is more than 200,000 cubic feet per second, most of the flow occurs in the summer months from snowmelt, rainfall, and glacial melt. Eight major rivers flow into the Yukon River. Two of these rivers, the Tanana River and the White River, are glacier-fed rivers and together account for 29 percent of the total water flow of the Yukon. Two others, the Porcupine River and the Koyukuk River, are underlain by continuous permafrost and drain larger areas than the Tanana and the White, but together contribute only 22 percent of the total water flow in the Yukon. At its mouth, the Yukon River transports about 60 million tons of suspended sediment annually into the Bering Sea. However, an estimated 20 million tons annually is deposited on flood plains and in braided reaches of the river. The waters of the main stem of the Yukon River and its tributaries are predominantly calcium magnesium bicarbonate waters with specific conductances generally less than 400 microsiemens per centimeter. Water quality of the Yukon River Basin varies temporally between summer and winter. Water quality also varies spatially among ecoregions

  5. Spatial and temporal patterns of precipitation and stream flow variations in Tigris-Euphrates river basin.

    PubMed

    Daggupati, Prasad; Srinivasan, Raghavan; Ahmadi, Mehdi; Verma, Deepa

    2017-01-01

    Tigris and Euphrates river basin (TERB) is one of the largest river basins in the Middle East, and the precipitation (in the form of snowfall) is a major source of streamflow. This study investigates the spatial and temporal variability of precipitation and streamflow in TERB to better understand the hydroclimatic variables and how they varied over time. The precipitation shows a decreasing trend with 1980s being wetter and 2000s being drier. A total of 55 and 40% reduction in high flows in Tigris and Euphrates rivers at T20 and E3 was seen in post-reservoir period. A lag time of 3 to 4 and 5 to 6 months was estimated between peak snowfall and runoff time periods. Decreasing precipitation and streamflow along with several planned dams could hamper the sustainability of several Mesopotamian marshlands that completely depend on the water from the Tigris and Euphrates rivers.

  6. Simulations of hydrologic response in the Apalachicola-Chattahoochee-Flint River Basin, Southeastern United States

    USGS Publications Warehouse

    LaFontaine, Jacob H.; Jones, L. Elliott; Painter, Jaime A.

    2017-12-29

    A suite of hydrologic models has been developed for the Apalachicola-Chattahoochee-Flint River Basin (ACFB) as part of the National Water Census, a U.S. Geological Survey research program that focuses on developing new water accounting tools and assessing water availability and use at the regional and national scales. Seven hydrologic models were developed using the Precipitation-Runoff Modeling System (PRMS), a deterministic, distributed-parameter, process-based system that simulates the effects of precipitation, temperature, land cover, and water use on basin hydrology. A coarse-resolution PRMS model was developed for the entire ACFB, and six fine-resolution PRMS models were developed for six subbasins of the ACFB. The coarse-resolution model was loosely coupled with a groundwater model to better assess the effects of water use on streamflow in the lower ACFB, a complex geologic setting with karst features. The PRMS coarse-resolution model was used to provide inputs of recharge to the groundwater model, which in turn provide simulations of groundwater flow that were aggregated with PRMS-based simulations of surface runoff and shallow-subsurface flow. Simulations without the effects of water use were developed for each model for at least the calendar years 1982–2012 with longer periods for the Potato Creek subbasin (1942–2012) and the Spring Creek subbasin (1952–2012). Water-use-affected flows were simulated for 2008–12. Water budget simulations showed heterogeneous distributions of precipitation, actual evapotranspiration, recharge, runoff, and storage change across the ACFB. Streamflow volume differences between no-water-use and water-use simulations were largest along the main stem of the Apalachicola and Chattahoochee River Basins, with streamflow percentage differences largest in the upper Chattahoochee and Flint River Basins and Spring Creek in the lower Flint River Basin. Water-use information at a shorter time step and a fully coupled simulation in the lower ACFB may further improve water availability estimates and hydrologic simulations in the basin.

  7. Concentrations, loads, and yields of total phosphorus, total nitrogen, and suspended sediment and bacteria concentrations in the Wister Lake Basin, Oklahoma and Arkansas, 2011-13

    USGS Publications Warehouse

    Buck, Stephanie D.

    2014-01-01

    The Poteau Valley Improvement Authority uses Wister Lake in southeastern Oklahoma as a public water supply. Total phosphorus, total nitrogen, and suspended sediments from agricultural runoff and discharges from wastewater treatment plants and other sources have degraded water quality in the lake. As lake-water quality has degraded, water-treatment cost, chemical usage, and sludge production have increased for the Poteau Valley Improvement Authority. The U.S. Geological Survey (USGS), in cooperation with the Poteau Valley Improvement Authority, investigated and summarized concentrations of total phosphorus, total nitrogen, suspended sediment, and bacteria (Escherichia coli and Enterococcus sp.) in surface water flowing to Wister Lake. Estimates of total phosphorus, total nitrogen, and suspended sediment loads, yields, and flow-weighted mean concentrations of total phosphorus and total nitrogen concentrations were made for the Wister Lake Basin for a 3-year period from October 2010 through September 2013. Data from water samples collected at fixed time increments during base-flow conditions and during runoff conditions at the Poteau River at Loving, Okla. (USGS station 07247015), the Poteau River near Heavener, Okla. (USGS station 07247350), and the Fourche Maline near Leflore, Okla. (USGS station 07247650), water-quality stations were used to evaluate water quality over the range of streamflows in the basin. These data also were collected to estimate annual constituent loads and yields by using regression models. At the Poteau River stations, total phosphorus, total nitrogen, and suspended sediment concentrations in surface-water samples were significantly larger in samples collected during runoff conditions than in samples collected during base-flow conditions. At the Fourche Maline station, in contrast, concentrations of these constituents in water samples collected during runoff conditions were not significantly larger than concentrations during base-flow conditions. Flow-weighted mean total phosphorus concentrations at all three stations from 2011 to 2013 were several times larger than the Oklahoma State Standard for Scenic Rivers (0.037 milligrams per liter [mg/L]), with the largest flow-weighted phosphorus concentrations typically being measured at the Poteau River at Loving, Okla., station. Flow-weighted mean total nitrogen concentrations did not vary substantially between the Poteau River stations and the Fourche Maline near Leflore, Okla., station. At all of the sampled water-quality stations, bacteria (Escherichia coli and Enterococcus sp.) concentrations were substantially larger in water samples collected during runoff conditions than in water samples collected during base-flow conditions from 2011 to 2013. Estimated annual loads of total phosphorus, total nitrogen, and suspended sediment in the Poteau River stations during runoff conditions ranged from 82 to 98 percent of the total annual loads of those constituents. Estimated annual loads of total phosphorus, total nitrogen, and suspended sediment in the Fourche Maline during runoff conditions ranged from 86 to nearly 100 percent of the total annual loads. Estimated seasonal total phosphorus loads generally were smallest during base-flow and runoff conditions in autumn. Estimated seasonal total phosphorus loads during base-flow conditions tended to be largest in winter and during runoff conditions tended to be largest in the spring. Estimated seasonal total nitrogen loads tended to be smallest in autumn during base-flow and runoff conditions and largest in winter during runoff conditions. Estimated seasonal suspended sediment loads tended to be smallest during base-flow conditions in the summer and smallest during runoff conditions in the autumn. The largest estimated seasonal suspended sediment loads during runoff conditions typically were in the spring. The estimated mean annual total phosphorus yield was largest at the Poteau River at Loving, Okla., water-quality station. The estimated mean annual total phosphorus yield was largest during base flow at the Poteau River at Loving, Okla., water-quality station and at both of the Poteau River water-quality stations during runoff conditions. The estimated mean annual total nitrogen yields were largest at the Poteau River water-quality stations. Estimated mean annual total nitrogen yields were largest during base-flow and runoff conditions at the Poteau River at Loving, Okla., water-quality station. The estimated mean annual suspended sediment yield was largest at the Poteau River near Heavener, Okla., water-quality station during base-flow and runoff conditions. Flow-weighted mean concentrations indicated that total phosphorus inputs from the Poteau River Basin in the Wister Lake Basin were larger than from the Fourche Maline Basin. Flow-weighted mean concentrations of total nitrogen did not vary spatially in a consistent manner. The Poteau River and the Fourche Maline contributed estimated annual total phosphorus loads of 137 to 278 tons per year (tons/yr) to Wister Lake. Between 89 and 95 percent of the annual total phosphorus loads were transported to Wister Lake during runoff conditions. The Poteau River and the Fourche Maline contributed estimated annual total nitrogen loads of 657 to 1,294 tons/yr, with 86 to 94 percent of the annual total nitrogen loads being transported to Wister Lake during runoff conditions. The Poteau River and the Fourche Maline contributed estimated annual total suspended sediment loads of 110,919 to 234,637 tons/yr, with 94 to 99 percent of the annual suspended sediment loads being transported to Wister Lake during runoff conditions. Most of the total phosphorus and suspended sediment were delivered to Wister Lake during runoff conditions in the spring. The majority of the total nitrogen was delivered to Wister Lake during runoff conditions in winter.

  8. Concentrations, and estimated loads and yields of nutrients and suspended sediment in the Little River basin, Kentucky, 2003-04

    USGS Publications Warehouse

    Crain, Angela S.

    2006-01-01

    Nutrients, primarily nitrogen and phosphorus compounds, naturally occur but also are applied to land in the form of commercial fertilizers and livestock waste to enhance plant growth. Concentrations, estimated loads and yields, and sources of nitrite plus nitrate, total phosphorus, and orthophosphate were evaluated in streams of the Little River Basin to assist the Commonwealth of Kentucky in developing 'total maximum daily loads' (TMDLs) for streams in the basin. The Little River Basin encompasses about 600 square miles in Christian and Trigg Counties, and a portion of Caldwell County in western Kentucky. Water samples were collected in streams in the Little River Basin during 2003-04 as part of a study conducted in cooperation with the Kentucky Department of Agriculture. A total of 92 water samples were collected at four fixed-network sites from March through November 2003 and from February through November 2004. An additional 20 samples were collected at five synoptic-network sites during the same period. Median concentrations of nitrogen, phosphorus, and suspended sediment varied spatially and seasonally. Concentrations of nitrogen were higher in the spring (March-May) after fertilizer application and runoff. The highest concentration of nitrite plus nitrate-5.7 milligrams per liter (mg/L)-was detected at the South Fork Little River site. The Sinking Fork near Cadiz site had the highest median concentration of nitrite plus nitrate (4.6 mg/L). The North Fork Little River site and the Little River near Cadiz site had higher concentrations of orthophosphate in the fall and lower concentrations in the spring. Concentrations of orthophosphate remained high during the summer (June-August) at the North Fork Little River site possibly because of the contribution of wastewater effluent to streamflow. Fifty-eight percent of the concentrations of total phosphorus at the nine sites exceeded the U.S. Environmental Protection Agency recommended maximum concentration limit of 0.1 mg/L. Concentrations of suspended sediment were highest in the spring during runoff and lowest in the fall. The highest concentration of suspended sediment (1,020 mg/L) was observed at the Sinking Fork near Cadiz site. The median concentration of suspended sediment for all sites sampled was 12 mg/L. A nonparameteric statistical test (Wilcoxson rank-sum) showed that the median concentrations of suspended sediment were not different among any of the fixed-network sites. The Little River near Cadiz site contributed larger estimated mean annual loads of nitrite plus nitrate (2,500,000 pounds per year (lb/yr)) and total phosphorus (160,000 lb/yr) than the other three fixed-network sites. Of the two main upstream tributaries from the Little River near Cadiz site, the North Fork Little River was the greatest contributor of total phosphorus to the study area with an estimated mean annual load of 107,000 lb/yr or about 64 percent of the total estimated mean annual load at the Little River near Cadiz site. The other main upstream tributary, South Fork Little River, had an estimated mean annual load of total phosphorus that was about 20 percent of the mean annual load at the Little River near Cadiz site. Estimated loads of suspended sediment were largest at the Little River near Cadiz site, where the estimated mean annual load for 2003-04 was about 84,000,000 lb/yr. The North Fork Little River contributed an estimated 36 percent of the mean annual load of suspended sediment at the Little River near Cadiz site, while the South Fork Little River contributed an estimated 18 percent of the mean annual load at the Little River near Cadiz site. The North Fork Little River site had the largest estimated mean annual yield of total phosphorus (1,600 pounds per year per square mile (lb/yr/mi2)) and orthophosphate (1,100 lb/yr/mi2). A principal source of phosphorus for the North Fork Little River is discharge from wastewater-treatment facilities. The largest estimated mean annual yield of nitrite plus nitrate was observed at the South Fork Little River site. The North Fork Little River site had the largest estimated mean annual yield of suspended sediment (450,000 lb/yr/mi2). Inputs of nitrogen and phosphorus to streams from point and nonpoint sources were estimated for the Little River Basin. Commercial fertilizer and livestock-waste applications on row crops are a principal source of nutrients for most of the Little River Basin. Sources of nutrients in the urban areas of the basin mainly are from effluent discharge from wastewater-treatment facilities and fertilizer applications to lawns and golf courses.

  9. Water quality assessment of the Sinos River, Southern Brazil.

    PubMed

    Blume, K K; Macedo, J C; Meneguzzi, A; Silva, L B; Quevedo, D M; Rodrigues, M A S

    2010-12-01

    The Sinos River basin is located Northeast of the state of Rio Grande do Sul (29º 20' to 30º 10' S and 50º 15' to 51º20'W), Southern Brazil, covering two geomorphologic provinces: the Southern plateau and central depression. It is part of the Guaíba basin and has an area of approximately 800 km², encompassing 32 municipalities. The objective of this study was to monitor water quality in the Sinos River, the largest river in this basin. Water samples were collected at four selected sites in the Sinos River, and the following parameters were analysed: pH, dissolved oxygen, biochemical oxygen demand (BOD₅), turbidity, fecal coliforms, total dissolved solids, temperature, nitrate, nitrite, phosphorous, chromium, lead, aluminum, zinc, iron, and copper. The results were analysed based on Resolution No. 357/2005 of the Brazilian National Environmental Council (CONAMA) regarding regulatory limits for residues in water. A second analysis was performed based on a water quality index (WQI) used by the Sinos River Basin Management Committee (COMITESINOS). Poor water quality in the Sinos River presents a worrying scenario for the region, since this river is the main source of water supply for the urban core. Health conditions found in the Sinos River, mainly in its lower reaches, are worrying and a strong indicator of human activities on the basin.

  10. Suspended-sediment loads from major tributaries to the Missouri River between Garrison Dam and Lake Oahe, North Dakota, 1954-98

    USGS Publications Warehouse

    Macek-Rowland, Kathleen M.

    2000-01-01

    Annual suspended-sediment loads for water years 1954 through 1998 were estimated for the major tributaries in the Missouri River Basin between Garrison Dam and Lake Oahe in North Dakota and for the Missouri River at Garrison Dam and the Missouri River at Bismarck, N. Dak.  The major tributaries are the Knife River, Turtle Creek, Painted Woods Creek, Square Butte Creek, Burnt Creek, Heart River, and Apple Creek.  Sediment and streamflow data used to estimate the suspended-sediment loads were from selected U.S. Geological Survey streamflow-gaging stations located within each basin.  Some of the stations had no sediment data available and limited continuous streamflow data for water years 1954 through 1998.  Therefore, data from nearby streamflow-gaging stations were assumed for the calculations. The Heart River contributed the largest amount of suspended sediment to the Missouri River for 1954-98.  Annual suspended-sediment loads in the Heart River near Mandan ranged from less than 1 to 40 percent of the annual suspended-sediment load in the Missouri River. The Knife River contributed the second largest amount of suspended sediment to the Missouri River.  Annual suspended-sediment loads in the Knife River at Hazen ranged from less than 1 to 19 percent of the annual suspended-sediment load in the Missouri River.  Apple Creek, Turtle Creek, Painted Woods Creek, Square Butte Creek, and Burnt Creek all contributed 2 percent or less of the annual suspended-sediment load in the Missouri River.  The Knife River and the Heart River also had the largest average suspended-sediment yields for the seven tributaries.  The yield for the Knife River was 91.1 tons per square mile, and the yield for the Heart River was 133 tons per square mile.  The remaining five tributaries had yields of less than 24 tons per square mile based on total drainage area. 

  11. Evaluation of social vulnerability to floods in Huaihe River basin: a methodology based on catastrophe theory

    NASA Astrophysics Data System (ADS)

    You, W. J.; Zhang, Y. L.

    2015-08-01

    Huaihe River is one of the seven largest rivers in China, in which floods occurred frequently. Disasters cause huge casualties and property losses to the basin, and also make it famous for high social vulnerability to floods. Based on the latest social-economic data, the index system of social vulnerability to floods was constructed, and Catastrophe theory method was used in the assessment process. The conclusion shows that social vulnerability as a basic attribute attached to urban environment, with significant changes from city to city across the Huaihe River basin. Different distribution characteristics are present in population, economy, flood prevention vulnerability. It is important to make further development of social vulnerability, which will play a positive role in disaster prevention, improvement of comprehensive ability to respond to disasters.

  12. Valuing the non-market benefits of estuarine ecosystem services in a river basin context: Testing sensitivity to scope and scale

    NASA Astrophysics Data System (ADS)

    Pinto, R.; Brouwer, R.; Patrício, J.; Abreu, P.; Marta-Pedroso, C.; Baeta, A.; Franco, J. N.; Domingos, T.; Marques, J. C.

    2016-02-01

    A large scale contingent valuation survey is conducted among residents in one of the largest river basins in Portugal to estimate the non-market benefits of the ecosystem services associated with implementation of the European Water Framework Directive (WFD). Statistical tests of public willingness to pay's sensitivity to scope and scale are carried out. Decreasing marginal willingness to pay (WTP) is found when asking respondents to value two water quality improvement scenarios (within sample comparison), from current moderate water quality conditions to good and subsequently excellent ecological status. However, insensitivity to scale is found when asking half of the respondents to value water quality improvements in the estuary only and the other half in the whole basin (between sample comparison). Although respondents living outside the river basin value water quality improvements significantly less than respondents inside the basin, no spatial heterogeneity can be detected within the basin between upstream and downstream residents. This finding has important implications for spatial aggregation procedures across the population of beneficiaries living in the river basin to estimate its total economic value based on public WTP for the implementation of the WFD.

  13. Hydrogeologic Framework and Occurrence and Movement of Ground Water in the Upper Humboldt River Basin, Northeastern Nevada

    USGS Publications Warehouse

    Plume, Russell W.

    2009-01-01

    The upper Humboldt River basin encompasses 4,364 square miles in northeastern Nevada, and it comprises the headwaters area of the Humboldt River. Nearly all flow of the river originates in this area. The upper Humboldt River basin consists of several structural basins, in places greater than 5,000 feet deep, in which basin-fill deposits of Tertiary and Quaternary age and volcanic rocks of Tertiary age have accumulated. The bedrock of each structural basin and adjacent mountains is composed of carbonate and clastic sedimentary rocks of Paleozoic age and crystalline rocks of Paleozoic, Mesozoic and Cenozoic age. The permeability of bedrock generally is very low except for carbonate rocks, which can be very permeable where circulating ground water has widened fractures through geologic time. The principal aquifers in the upper Humboldt River basin occur within the water-bearing strata of the extensive older basin-fill deposits and the thinner, younger basin-fill deposits that underlie stream flood plains. Ground water in these aquifers moves from recharge areas along mountain fronts to discharge areas along stream flood plains, the largest of which is the Humboldt River flood plain. The river gains flow from ground-water seepage to its channel from a few miles west of Wells, Nevada, to the west boundary of the study area. Water levels in the upper Humboldt River basin fluctuate annually in response to the spring snowmelt and to the distribution of streamflow diverted for irrigation of crops and meadows. Water levels also have responded to extended periods (several years) of above or below average precipitation. As a result of infiltration from the South Fork Reservoir during the past 20 years, ground-water levels in basin-fill deposits have risen over an area as much as one mile beyond the reservoir and possibly even farther away in Paleozoic bedrock.

  14. Water-Quality Assessment of the Yellowstone River Basin, Montana and Wyoming-Water Quality of Fixed Sites, 1999-2001

    USGS Publications Warehouse

    Miller, Kirk A.; Clark, Melanie L.; Wright, Peter R.

    2005-01-01

    The National Water-Quality Assessment Program of the U.S. Geological Survey initiated an assessment in 1997 of the quality of water resources in the Yellowstone River Basin. Water-quality samples regularly were collected during 1999-2001 at 10 fixed sites on streams representing the major environmental settings of the basin. Integrator sites, which are heterogeneous in land use and geology, were established on the mainstem of the Yellowstone River (4 sites) and on three major tributaries?Clarks Fork Yellowstone River (1 site), the Bighorn River (1 site), and the Powder River (1 site). Indicator sites, which are more homogeneous in land use and geology than the integrator sites, were located on minor tributaries with important environmental settings?Soda Butte Creek in a mineral resource area (1 site), the Tongue River in a forested area (1 site), and the Little Powder River in a rangeland area (1 site). Water-quality sampling frequency generally was at least monthly and included field measurements and laboratory analyses of fecal-indicator bacteria, major ions, dissolved solids, nutrients, trace elements, pesticides, and suspended sediment. Median concentrations of fecal coliform and Escherichia coli were largest for basins that were predominantly rangeland and smallest for basins that were predominantly forested. Concentrations of fecal coliform and Escherichia coli significantly varied by season (p-value <0.001); the smallest median concentrations were during January?March and the largest median concentrations were during April?June. Fecal-coliform concentrations exceeded the U.S. Environmental Protection Agency recommended limit for a single sample of 400 colonies per 100 milliliters in 2.6 percent of all samples. Escherichia coli concentrations exceeded the U.S. Environmental Protection Agency recommended limit for a single sample of 298 colonies per 100 milliliters for moderate use, full-body contact recreation in 7.6 percent of all samples. Variations in water type in the basin are reflective of the diverse geologic terrain in the Yellowstone River Basin. The water type of Soda Butte Creek and the Tongue River was calcium bicarbonate. These two sites are in forested and mountainous areas where igneous rocks and Paleozoic-era and Mesozoic-era sedimentary rocks are the dominant geologic groups. The water type of the Little Powder River was sodium sulfate. The Little Powder River originates in the plains, and geology of the basin is nearly homogenous with Tertiary-period sedimentary rocks. Water type of the Yellowstone River changed from a mixed-cation bicarbonate type upstream to a mixed-cation sulfate type downstream. Dissolved-solids concentrations ranged from fairly dilute in Soda Butte Creek, which had a median concentration of 118 milligrams per liter, to concentrated in the Little Powder River, which had a median concentration of 2,840 milligrams per liter. Nutrient concentrations generally were small and reflect the relatively undeveloped conditions in the basin; however, some correlations were made with anthropogenic factors. Median dissolved-nitrate concentrations in all samples from the fixed sites ranged from 0.04 milligram per liter to 0.54 milligram per liter. Flow-weighted mean dissolved-nitrate concentrations were positively correlated with increasing agricultural land use and rangeland on alluvial deposits upstream from the sites and negatively correlated with increasing forested land. Ammonia concentrations generally were largest in samples collected from the Yellowstone River at Corwin Springs, Montana, which is downstream from Yellowstone National Park and receives discharge from geothermal waters that are high in ammonia. Median total-phosphorus concentrations ranged from 0.007 to 0.18 milligram per liter. Median total-phosphorus concentrations exceeded the U.S. Environmental Protection Agency's recommended goal of 0.10 milligram per liter for preventing nuisance plant growth for samples collec

  15. Impacts of reforestation upon sediment load and water outflow in the Lower Yazoo River Watershed, Mississippi

    Treesearch

    Ying Ouyang; Theodor D. Leininger; Matt Moran

    2013-01-01

    Among the world’s largest coastal and river basins, the Lower Mississippi River Alluvial Valley (LMRAV)is one of the most disturbed by human activities. This study ascertained the impacts of reforestation on water outflow attenuation (i.e., water flow out of the watershed outlet) and sediment load reduction in the Lower Yazoo River Watershed (LYRW) within the LMRAV...

  16. Fluvial geomorphic elements in modern sedimentary basins and their potential preservation in the rock record: A review

    NASA Astrophysics Data System (ADS)

    Weissmann, G. S.; Hartley, A. J.; Scuderi, L. A.; Nichols, G. J.; Owen, A.; Wright, S.; Felicia, A. L.; Holland, F.; Anaya, F. M. L.

    2015-12-01

    Since tectonic subsidence in sedimentary basins provides the potential for long-term facies preservation into the sedimentary record, analysis of geomorphic elements in modern continental sedimentary basins is required to understand facies relationships in sedimentary rocks. We use a database of over 700 modern sedimentary basins to characterize the fluvial geomorphology of sedimentary basins. Geomorphic elements were delineated in 10 representative sedimentary basins, focusing primarily on fluvial environments. Elements identified include distributive fluvial systems (DFS), tributive fluvial systems that occur between large DFS or in an axial position in the basin, lacustrine/playa, and eolian environments. The DFS elements include large DFS (> 30 km in length), small DFS (< 30 km in length), coalesced DFS in bajada or piedmont plains, and incised DFS. Our results indicate that over 88% of fluvial deposits in the evaluated sedimentary basins are present as DFS, with tributary systems covering a small portion (1-12%) of the basin. These geomorphic elements are commonly arranged hierarchically, with the largest transverse rivers forming large DFS and smaller transverse streams depositing smaller DFS in the areas between the larger DFS. These smaller streams commonly converge between the large DFS, forming a tributary system. Ultimately, most transverse rivers become tributary to the axial system in the sedimentary basin, with the axial system being confined between transverse DFS entering the basin from opposite sides of the basin, or a transverse DFS and the edge of the sedimentary basin. If axial systems are not confined by transverse DFS, they will form a DFS. Many of the world's largest rivers are located in the axial position of some sedimentary basins. Assuming uniformitarianism, sedimentary basins from the past most likely had a similar configuration of geomorphic elements. Facies distributions in tributary positions and those on DFS appear to display specific morphologic patterns. Tributary rivers tend to increase in size in the downstream direction. Because axial tributary rivers are present in confined settings in the sedimentary basin, they migrate back and forth within a relatively narrow belt (relative to the overall size of the sedimentary basin). Thus, axial tributary rivers tend to display amalgamated channel belt form with minimal preservation potential of floodplain deposits. Chute and neck cutoff avulsions are also common on meandering rivers in these settings. Where rivers on DFS exit their confining valley on the basin margin, sediment transport capacity is reduced and sediment deposition occurs resulting in development of a 'valley exit' nodal avulsion point that defines the DFS apex. Rivers may incise downstream of the basin margin valley because of changes in sediment supply and discharge through climatic variability or tectonic processes. We demonstrate that rivers on DFS commonly decrease in width down-DFS caused by infiltration, bifurcation, and evaporation. In proximal areas, channel sands are amalgamated through repeated avulsion, reoccupation of previous channel belts, and limited accumulation space. When rivers flood on the medial to distal portions of a DFS, the floodwaters spread across a large area on the DFS surface and typically do not re-enter the main channel. In these distal areas, rivers on DFS commonly avulse, leaving a discrete sand body and providing high preservation potential for floodplain deposits. Additional work is needed to evaluate the geomorphic character of modern sedimentary basins in order to construct improved facies models for the continental sedimentary rock record. Specifically, models for avulsion, bifurcation, infiltration, and geomorphic form on DFS are required to better define and subsequently predict facies geometries. Studies of fluvial systems in sedimentary basins are also important for evaluating flood patterns and groundwater distributions for populations in these regions.

  17. Declining groundwater level caused by irrigation to row crops in the Lower Mississippi River Basin, Current Situation and Trends

    NASA Astrophysics Data System (ADS)

    Feng, G.; Gao, F.; Ouyang, Y.

    2017-12-01

    The Mississippi River is North America's largest river and the second largest watershed in the world. It flows over 3,700 km through America's heartland to the Gulf of Mexico. Over 3 million hectares in the Lower Mississippi River Basin represent irrigated cropland and 90 percent of those lands currently rely on the groundwater supply. The primary crops grown in this region are soybean, corn, cotton, and rice. Increased water withdrawals for irrigating those crops and stagnant recharging jeopardize the long-term availability of the aquifer and place irrigation agriculture in the region on an unsustainable path. The objectives of this study were to: 1) analyze the current groundwater level in the Lower Mississippi River Basin based on the water table depth observed by Yazoo Mississippi Delta Joint Water Management District from 2000 and 2016; 2) determine trends of change in groundwater level under conventional and groundwater saving irrigation management practices (ET or soil moisture based full irrigation scheduling using all groundwater or different percentages of ground and surface water). The coupled SWAT and MODFLOW model was applied to investigate the trends. Observed results showed that the groundwater level has declined from 33 to 26 m at an annual decrease rate of 0.4 m in the past 17 years. Simulated results revealed that the groundwater storage was decreased by 26 cm/month due to irrigation in crop season. It is promising that the groundwater storage was increased by 23 cm/month, sometimes even 60 cm/month in crop off-growing season because of recharge from rainfall. Our results suggest that alternative ET or soil moisture based groundwater saving irrigation scheduling with conjunctive use of surface water is a sustainable practice for irrigated agriculture in in the Lower Mississippi River Basin.

  18. Predicting the aquatic risk of realistic pesticide mixtures to species assemblages in Portuguese river basins.

    PubMed

    Silva, Emília; Daam, Michiel A; Cerejeira, Maria José

    2015-05-01

    Although pesticide regulatory tools are mainly based on individual substances, aquatic ecosystems are usually exposed to multiple pesticides from their use on the variety of crops within the catchment of a river. This study estimated the impact of measured pesticide mixtures in surface waters from 2002 and 2008 within three important Portuguese river basins ('Mondego', 'Sado' and 'Tejo') on primary producers, arthropods and fish by toxic pressure calculation. Species sensitivity distributions (SSDs), in combination with mixture toxicity models, were applied. Considering the differences in the responses of the taxonomic groups as well as in the pesticide exposures that these organisms experience, variable acute multi-substance potentially affected fractions (msPAFs) were obtained. The median msPAF for primary producers and arthropods in surface waters of all river basins exceeded 5%, the cut-off value used in the prospective SSD approach for deriving individual environmental quality standards. A ranking procedure identified various photosystem II inhibiting herbicides, with oxadiazon having the relatively largest toxic effects on primary producers, while the organophosphorus insecticides, chlorfenvinphos and chlorpyrifos, and the organochloride endosulfan had the largest effects on arthropods and fish, respectively. These results ensure compliance with European legislation with regard to ecological risk assessment and management of pesticides in surface waters. Copyright © 2015. Published by Elsevier B.V.

  19. Description of two new Bathyaethiops species (Teleostei: Alestidae) from the Congo basin.

    PubMed

    Moritz, Timo; Schliewen, Ulrich K

    2016-06-02

    Two new species of Bathyaethiops (Teleostei: Characiformes: Alestidae) are described. Bathyaethiops baka n. sp. is a dwarf species with the largest known specimen being only 24.4 mm SL. The species is characterized by an incomplete squamation and a large humeral spot. Bathyaethiops baka n. sp. is known so far only from the Ngoko River of Southeastern Cameroon, a tributary of the Sangha River in the northern Congo basin. The second species, Bathyaethiops flammeus n. sp., shows a diagnostic spot in front of the dorsal-fin base, which is devoid of melanophores and bright red in life. The species is described from the Bakéré River at Yambula-Bakéré, a locality north-west of Kisangani in the Central Congo basin. Other records of Bathyaethiops flammeus n. sp. from the Tshuapa respectively Ruki River at Boende and Eala, Central Congo basin, suggests a wider geographic distribution. A key to all species of Bathyaethiops is provided.

  20. Flood of June 8-9, 2008, Upper Iowa River, Northeast Iowa

    USGS Publications Warehouse

    Fischer, Edward E.; Eash, David A.

    2010-01-01

    Major flooding occurred June 8-9, 2008, in the Upper Iowa River Basin in northeast Iowa following severe thunderstorm activity over the region. About 7 inches of rain were recorded for the 48-hour period ending 4 p.m., June 8, at Decorah, Iowa; more than 7 inches of rain were recorded for the 48-hour period ending 7 a.m., June 8, at Dorchester, Iowa, about 17 miles northeast of Decorah. The maximum peak discharge measured in the Upper Iowa River was 34,100 cubic feet per second at streamgage 05387500 Upper Iowa River at Decorah, Iowa. This discharge is the largest discharge recorded in the Upper Iowa River Basin since streamgaging operations began in the basin in 1914. The flood-probability range of the peak discharge is 0.2 to 1 percent. High-water marks were measured at 15 locations along the Upper Iowa River between State Highway 26 near the mouth at the Mississippi River and U.S. Highway 63 at Chester, Iowa, a distance of 124 river miles. The high-water marks were used to develop a flood profile.

  1. Water scarcity in Beijing and countermeasures to solve the problem at river basins scale

    NASA Astrophysics Data System (ADS)

    Wang, Lixia; Gao, Jixi; Zou, Changxin; Wang, Yan; Lin, Naifeng

    2017-11-01

    Beijing has been subject to water scarcity in recent decades. Over-exploitation of water resources reduced water availability, and water-saving measures were not enough to mitigate the water scarcity. To address this problem, water transfer projects across river basins are being built. This paper assessed water scarcity in Beijing and the feasibility of solving the problem at river basins scale. The results indicate that there was an average annual water deficit of 13×108 m3 y-1 in Beijing, which totaled 208.9 ×108 m3 for 1998-2014, despite the adoption of various measures to alleviate water scarcity. Three of the adjacent four sub-river basins suffered a serious water deficit from 1998-2014. It was therefore impossible to transfer enough water from the adjacent river basins to mitigate the water scarcity in Beijing. However, the annual water deficit will be eliminated after the comprehensive operation of the world’s largest water transfer project (the South-to-North Water Transfer Project, SNWTP) in 2020, but it will take approximately 200 years before Beijing’s water resources are restored to the 1998 levels.

  2. [Variation characteristics and influencing factors of actual evapotranspiration under various vegetation types: A case study in the Huaihe River Basin, China.

    PubMed

    Wu, Rong Jun; Xing, Xiao Yong

    2016-06-01

    The actual evapotranspiration was modelled utilizing the boreal ecosystem productivity simulator (BEPS) in Huaihe River Basin from 2001 to 2012. In the meantime, the quantitative analyses of the spatial-temporal variations of actual evapotranspiration characteristics and its influencing factors under different vegetation types were conducted. The results showed that annual evapotranspiration gradually decreased from southeast to northwest, tended to increase annually, and the monthly change for the average annual evapotranspiration was double-peak curve. The differences of evapotranspiration among vegetation types showed that the farmland was the largest contributor for the evapotranspiration of Huaihe Basin. The annual actual evapotranspiration of the mixed forest per unit area was the largest, and that of the bare ground per unit area was the smallest. The changed average annual evapotranspiration per unit area for various vegetation types indicated an increased tendency other than the bare ground, with a most significant increase trend for the evergreen broadleaf forest. The thermodynamic factors (such as average temperature) were the dominant factors affecting the actual evapotranspiration in the Huaihe Basin, followed by radiation and moisture factors.

  3. Evaluation of ecological instream flow considering hydrological alterations in the Yellow River basin, China

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Zhang, Zongjiao; Shi, Peijun; Singh, Vijay P.; Gu, Xihui

    2018-01-01

    The Yellow River is the second largest river in China and is the important source for water supply in the northwestern and northern China. It is often regarded as the mother river of China. Owing to climatic change and intensifying human activities, such as increasing withdrawal of water for meeting growing agricultural irrigation needs since 1986, the flow of Yellow River has decreased, with serious impacts on the ecological environment. Using multiple hydrological indicators and Flow Duration Curve (DFC)-based ecodeficit and ecosurplus, this study investigates the impact of hydrological alterations, such as the impact of water reservoirs or dams, on downstream ecological instream flow. Results indicate that: (1) due to the impoundment and hydrological regulations of water reservoirs, occurrence rates and magnitudes of high flow regimes have decreased and the decrease is also found in the magnitudes of low flow events. These changes tend to be more evident from the upper to the lower Yellow River basin; (2) human activities tend to enhance the instream flow variability, particularly after the 1980s;(3) the ecological environment in different parts of the Yellow River basin is under different degrees of ecological risk. In general, lower to higher ecological risk can be detected due to hydrological alterations from the upper to the lower Yellow River basin. This shows that conservation of ecological environment and river health is facing a serious challenge in the lower Yellow River basin; (4) ecological instream flow indices, such as ecodeficit and ecosurplus, and IHA32 hydrological indicators are in strong relationships, suggesting that ecodeficit and ecosurplus can be regarded as appropriate ecological indicators for developing measures for mitigating the adverse impact of human activities on the conservation of ecological environment in the Yellow River basin.

  4. Modeling Mercury Exposure at Different Scales in the McTier Creek Watershed and Edisto River Basin, SC USA

    EPA Science Inventory

    Mercury is the toxicant responsible for the largest number of fish advisories across the United States, with 1.25 million miles of rivers under advisory. The processes governing fate, transport, and transformation of mercury in lotic ecosystems are not well-understood, in large p...

  5. A Murray Cod Assemblage: Re/Considering Riverscape Pedagogy

    ERIC Educational Resources Information Center

    Stewart, Alistair James

    2018-01-01

    This article enacts Deleuze and Guattari's (1987) concept "assemblage" to craft a riverScape pedagogy that is informed by, and responsive to, the Murray Cod, the river, and its circumstances. The Murray Cod, the largest fish species in Australia's Murray-Darling Basin, has diverse cultural meanings. Cod are at once a creation being of…

  6. Modeling Mercury Exposure at Different Scales in the McTier Creek Watershed and Edisto River Basin SC USA

    EPA Science Inventory

    Mercury (Hg) is the toxicant responsible for the largest number of fish advisories across the United States, with 1.25 million river miles under advisory. The processes governing fate, transport, and transformation of Hg in lotic ecosystems are not well-understood, in large part...

  7. Analysis of temporal and spatial trends of hydro-climatic variables in the Wei River Basin.

    PubMed

    Zhao, Jing; Huang, Qiang; Chang, Jianxia; Liu, Dengfeng; Huang, Shengzhi; Shi, Xiaoyu

    2015-05-01

    The Wei River is the largest tributary of the Yellow River in China. The relationship between runoff and precipitation in the Wei River Basin has been changed due to the changing climate and increasingly intensified human activities. In this paper, we determine abrupt changes in hydro-climatic variables and identify the main driving factors for the changes in the Wei River Basin. The nature of the changes is analysed based on data collected at twenty-one weather stations and five hydrological stations in the period of 1960-2010. The sequential Mann-Kendall test analysis is used to capture temporal trends and abrupt changes in the five sub-catchments of the Wei River Basin. A non-parametric trend test at the basin scale for annual data shows a decreasing trend of precipitation and runoff over the past fifty-one years. The temperature exhibits an increase trend in the entire period. The potential evaporation was calculated based on the Penman-Monteith equation, presenting an increasing trend of evaporation since 1990. The stations with a significant decreasing trend in annual runoff mainly are located in the west of the Wei River primarily interfered by human activities. Regression analysis indicates that human activity was possibly the main cause of the decline of runoff after 1970. Copyright © 2015. Published by Elsevier Inc.

  8. Hydraulic characterization of the middle reach of the Congo River

    NASA Astrophysics Data System (ADS)

    O'Loughlin, F.; Trigg, M.; Schumann, G.; Bates, P. D.

    2012-12-01

    Little is known about the hydraulics of the Congo River compared to other large rivers, such as the Amazon, Nile and Mississippi, despite it draining an area greater than 3.7 million square kilometers and being the seconded largest river in terms of discharge. While there has been some study of the Congo Basin, most of these concentrate on ecology or the human aspects, but few look at the either the hydrology or hydraulic characteristics of the river. Of the published hydrology/hydraulic research, most concentrates on the hydrology of the Congo Basin aiming to alleviate some of the issues relating to a sparse river gauging network that currently exists. Even fewer studies have looked at hydraulics of the Congo, and usually over a relatively small area of the basin. To undertake a larger study area requires more details on the characteristics of the Congo River. The Congo River can be divided into three distinct reaches; the upper, middle and lower reaches. We concentrate on the middle reach which starts upstream at Boyoma falls, just south of Kisangani, and ends downstream at Livingstone Falls, at Kinshasa (DRC), Brazzaville (Congo) and the Pool Malebo. From Kisangani to Kinshasa, the middle Congo crosses the equator twice and is join by two large tributaries (Ubangi, Kasai) and is highly braided. The middle reach of the Congo is especially important as its still largely undisturbed wetlands are the seconded largest tropical wetlands globally. It is also the main transportation link between Kisangani and Kinshasa, the two largest cities in the DRC. By utilizing remotely sensed Landsat and Icesat datasets, we present the first detailed study on the hydraulic characterization of the middle reach of the Congo River. With these datasets we identify the main control points of flow in the middle reach, investigate how the water surface slope, channel width, islands and braids vary between high and low flows and spatially along the reach. We compare the middle reach of the Congo to other large braided rivers to highlight how the Congo is unique. This detailed analysis will yield key hydraulic characteristics for large reaches of the main channel and tributaries that will be essential for correct hydraulic modeling of the river in due course, and will also provide new insights into the behavior and hydrodynamics of this mysterious river.

  9. Rewriting the Landform History of One of Africa's Three Largest Basins

    NASA Technical Reports Server (NTRS)

    Wilkinson, Justin

    2014-01-01

    The Kalahari Basin in southern Africa - one of the largest basins in Africa, along with the Congo and Chad basins - has attracted attention since David Livingstone traveled through the area in the 1840s. It is a semiarid desert with a large freshwater swampland known as the Okavango Swamp (150 km radius). This prominent megafan (a fan with radii >100 km), with its fingers of dark green forests projecting into the dun colors of the dunes of the Kalahari semi-desert, has been well photographed by astronauts over the years. The study area in the northern Kalahari basin is centered on the Okavango megafan of northwest Botswana, whose swampland has become well known as an African wildlife preserve of importance to biology and tourism alike. The Okavango River is unusual because it has deposited not one but two megafans along its course: the Okavango megafan and the Cubango megafan. The Okavango megafan is one of only three well-known megafans in Africa. Megafans on Earth were once thought to be rare, but recent research has documented 68 in Africa alone. Eleven megafans, plus three more candidates, have been documented in the area immediately surrounding the Okavango feature. These 11 megafans occupy the flattest and smoothest terrains adjacent to the neighboring upland and stand out as the darkest areas in the roughness map of the area. Megafan terrains occupy at least 200,000 sq km of the study area. The roughness map shown is based on an algorithm used first on Mars to quantify topographic roughness. Research of Earth's flattest terrains is just beginning with the aid of such maps, and it appears that these terrains are analogous to the flattest regions of Mars. Implications: 1. The variability in depositional style in each subbasin may apply Africa-wide: rift megafan length is dominated by rift width, whereas Owambo subbasin megafans are probably controlled by upland basin size; Zambezi subbasin megafans appear more like foreland basin types, with the position of the trunk river controlling size. 2. These perspectives were successfully applied to identify the largest megafan in the group (Cubango), a fan that was sufficiently overprinted by dunes and dry lakelets not to be detectable remotely. Such undertsanding can probably be applied on Mars, where Earth experience suggests megafans ought to exist. 3. Sweep angles of rivers on megafans drastically change the hydrology in some subbasins: when the Cubango and Kunene rivers were oriented to the Etosha Pan, it was probably a permanent water body. Now that the rivers are oriented away from the basin, 93 percent of the discharge area from the pan's northerly (main) source area is gone. 4. Biotic contact between major river systems was probably controlled by megafans situated on divides: various fish species that originated in the Congo basin are now found in the Upper Zambezi R., and vice versa, apparently because of river switching behavior on the Cassai megafan that has mediated migrations both to the south and the north.

  10. Legacy phosphorus accumulation and management in the global context: insights from long-term analysis of major river basins

    NASA Astrophysics Data System (ADS)

    Powers, S. M.; Burt, T. P.; Chan, N. I.; Elser, J. J.; Haygarth, P. M.; Howden, N. J. K.; Jarvie, H. P.; Peterson, H. M.; Shen, J.; Worrall, F.; Sharpley, A. N.

    2014-12-01

    Phosphorus (P) is closely linked to major societal concerns including food security and water quality, and human activities strongly control the modern global P cycle. Current knowledge of the P cycle includes many insights about relatively short-term processes, but a long-term and landscape-level view may be needed to understand P status and optimize P management towards P sustainability. We reconstructed long-term (>40 years) P mass balances and rates of P accumulation in three major river basins where excess P pollution is demanding improvements in P management at local, national, and international levels. We focus on: Maumee River Basin, a major source of agricultural P to Lake Erie, the southernmost and shallowest of the Laurentian Great Lakes; Thames River Basin, where fluxes of effluent P from the London, England metropolitan area have declined following improvements in wastewater treatment; Yangtze (Changjiang) River Basin, the largest in China, which is undergoing rapid economic development. The Maumee and Thames are intensively monitored, and show long-term declines in basin P inputs that represent a step towards P sustainability. However, river P outputs have been slower to decline, consistent with the hypothesis that legacy P is mobilizing from soils or from within the river network. Published data on the Yangtze indicate the P flux from land to water has clearly increased with industrialization and population growth. Historical trajectories of P accumulation and depletion in major river basins are providing new understanding about the long-term impacts of P management, including watershed P legacies and response times, that may inform future policy towards local, national, and global P sustainability.

  11. Temporal and spatial constraints on the evolution of a Rio Grande rift sub-basin, Guadalupe Mountain area, northern New Mexico

    NASA Astrophysics Data System (ADS)

    Thompson, R. A.; Turner, K. J.; Cosca, M. A.; Drenth, B.; Hudson, M. R.; Lee, J.

    2013-12-01

    The Taos Plateau volcanic field (TPVF) in the southern San Luis Valley of northern New Mexico is the most voluminous of the predominantly basaltic Neogene (6-1 Ma) volcanic fields of the Rio Grande rift. Volcanic deposits of the TPVF are intercalated with alluvial deposits of the Santa Fe Group and compose the N-S-trending San Luis Basin, the largest basin of the northern rift (13,500 km2 in area). Pliocene volcanic rocks of the Guadalupe Mountain area of northern New Mexico are underlain by the southern end of one of the larger sub-basins of the San Luis Valley, the Sunshine sub-basin (~ 450 km2 in area) juxtaposed against the down-to-west frontal fault of the Precambrian-cored Sangre de Cristo Range. The sub-basin plunges northward and extends to near the Colorado-New Mexico border. The western margin (~15 km west of the Sangre de Cristo fault) is constrained by outcrops of Oligocene to Miocene volcanic rocks of the Latir volcanic field, interpreted here as a broad pre-Pliocene intra-rift platform underlying much of the northern TPVF. The southern sub-basin border is derived, in part, from modeling of gravity and aeromagnetic data and is interpreted as a subsurface extension of this intra-rift platform that extends southeastward to nearly the Sangre de Cristo range front. Broadly coincident with this subsurface basement high is the northwest-trending, curvilinear terminus of the down-to-northeast Red River fault zone. South of the gravity high, basin-fill alluvium and ~3.84 Ma Servilleta basalt lava flows thicken along a poorly exposed, down-to-south, basin-bounding fault of the northern Taos graben, the largest of the San Luis Valley sub-basins. The uppermost, western sub-basin fill is exposed along steep canyon walls near the confluence of the Rio Grande and the Red River. Unconformity-bound, lava flow packages are intercalated with paleo Red River fan alluvium and define six eruptive sequences in the Guadalupe Mountain area: (1) Guadalupe Mtn. lavas (dacite ~5.27-4.8 Ma), (2) lower Servilleta basalt lavas (olivine tholeiite ~5.26-4.92 Ma), (3) Hatchery volcano lavas (basaltic andesite to andesite ~4.93 Ma), (4) Red River lavas (high silica andesite ~4.93 Ma), (5) UCEM lavas (dacite ~4.85 Ma), and (6) upper Servilleta basalt lavas (olivine tholeiite ~3.84-3.45 Ma). Mapped eruptive centers are interpreted to reflect discrete pulses of volcanic activity characterized by limited compositional range and short eruption cycles. Four major, northwest-trending, dip-slip faults cut the volcanic fill. From west to east these are: (1) down-to-east Red River fault zone (post 3.84 Ma displacement), (2) down-to-east Fish Hatchery fault zone including fault splays of opposite displacement (pre- upper Servilleta displacement < 3.84 Ma and contemporaneous with eruption of Hatchery volcano lavas, ~4.93 Ma), (3) Guadalupe Mtn. fault zone, both down-to-west and down-to-east components (post ~5 Ma displacement), and (4) Tailings Pond fault zone, down-to-east (post ~5 Ma displacement). The Red River and Tailings Pond fault zones appear to have the largest cumulative displacements and may reflect eastward migration of the western sub-basin margin. This may reflect coupled partitioning of extensional strain reflected as local expressions of sub-basin development and contemporaneous volcanism.

  12. Coal geology and assessment of coal resources and reserves in the Powder River Basin, Wyoming and Montana

    USGS Publications Warehouse

    Luppens, James A.; Scott, David C.

    2015-01-01

    This report presents the final results of the first assessment of both coal resources and reserves for all significant coal beds in the entire Powder River Basin, northeastern Wyoming and southeastern Montana. The basin covers about 19,500 square miles, exclusive of the part of the basin within the Crow and Northern Cheyenne Indian Reservations in Montana. The Powder River Basin, which contains the largest resources of low-sulfur, low-ash, subbituminous coal in the United States, is the single most important coal basin in the United States. The U.S. Geological Survey used a geology-based assessment methodology to estimate an original coal resource of about 1.16 trillion short tons for 47 coal beds in the Powder River Basin; in-place (remaining) resources are about 1.15 trillion short tons. This is the first time that all beds were mapped individually over the entire basin. A total of 162 billion short tons of recoverable coal resources (coal reserve base) are estimated at a 10:1 stripping ratio or less. An estimated 25 billion short tons of that coal reserve base met the definition of reserves, which are resources that can be economically produced at or below the current sales price at the time of the evaluation. The total underground coal resource in coal beds 10–20 feet thick is estimated at 304 billion short tons.

  13. WRF model for precipitation simulation and its application in real-time flood forecasting in the Jinshajiang River Basin, China

    NASA Astrophysics Data System (ADS)

    Zhou, Jianzhong; Zhang, Hairong; Zhang, Jianyun; Zeng, Xiaofan; Ye, Lei; Liu, Yi; Tayyab, Muhammad; Chen, Yufan

    2017-07-01

    An accurate flood forecasting with long lead time can be of great value for flood prevention and utilization. This paper develops a one-way coupled hydro-meteorological modeling system consisting of the mesoscale numerical weather model Weather Research and Forecasting (WRF) model and the Chinese Xinanjiang hydrological model to extend flood forecasting lead time in the Jinshajiang River Basin, which is the largest hydropower base in China. Focusing on four typical precipitation events includes: first, the combinations and mode structures of parameterization schemes of WRF suitable for simulating precipitation in the Jinshajiang River Basin were investigated. Then, the Xinanjiang model was established after calibration and validation to make up the hydro-meteorological system. It was found that the selection of the cloud microphysics scheme and boundary layer scheme has a great impact on precipitation simulation, and only a proper combination of the two schemes could yield accurate simulation effects in the Jinshajiang River Basin and the hydro-meteorological system can provide instructive flood forecasts with long lead time. On the whole, the one-way coupled hydro-meteorological model could be used for precipitation simulation and flood prediction in the Jinshajiang River Basin because of its relatively high precision and long lead time.

  14. A nonparametric multivariate standardized drought index for characterizing socioeconomic drought: A case study in the Heihe River Basin

    NASA Astrophysics Data System (ADS)

    Huang, Shengzhi; Huang, Qiang; Leng, Guoyong; Liu, Saiyan

    2016-11-01

    Among various drought types, socioeconomic drought is the least investigated type of droughts. Most existing drought indicators ignore the role of local reservoirs and water demand in coping with climatic extremes. In this study, a Multivariate Standardized Reliability and Resilience Index (MSRRI) combining inflow-demand reliability index (IDR) and water storage resilience index (WSR) was applied to examine the evolution characteristics of the socioeconomic droughts in the Heihe River Basin, the second largest inland river basin in northwestern China. Furthermore, the cross wavelet analysis was adopted to explore the associations between annual MSRRI series and El Niño Southern Oscillation (ENSO)/Atlantic Oscillation (AO). Results indicated that: (1) the developed MSRRI is more sensitive to the onset and termination of socioeconomic droughts than IDR and WSR, owing to its joint distribution function of IDR and WSR, responding to changes in either or both of the indices; (2) the MSRRI series in the Heihe River Basin shows non-significant trends at both monthly and annual scales; (3) both ENSO and AO contribute to the changes in the socioeconomic droughts in the Heihe River Basin, and the impacts of ENSO on the socioeconomic droughts are stronger than those of AO.

  15. Occurrence and distribution of nutrients, suspended sediment, and pesticides in the Mobile River Basin, Alabama, Georgia, Mississippi, and Tennessee, 1999-2001

    USGS Publications Warehouse

    McPherson, Ann K.; Moreland, Richard S.; Atkins, J. Brian

    2003-01-01

    The Mobile River Basin is one of more than 50 river basins and aquifer systems being investigated as part of the U.S. Geological Survey's National Water- Quality Assessment (NAWQA) Program. This basin is the sixth largest river basin in the United States and the fourth largest in terms of streamflow. The Mobile River Basin encompasses parts of Alabama, Georgia, Mississippi, and Tennessee, and almost two-thirds of the 44,0000-square-mile basin is located in Alabama. The extensive water resources of the Mobile River Basin are influenced by an array of natural and cultural factors, which impart unique and variable qualities to the streams, rivers, and aquifers and provide abundant habitat to sustain the diverse aquatic life in the basin. From January 1999 to December 2001, a study was conducted of the occurrence and distribution of nutrients, suspended sediment, and pesticides in surface water of the Mobile River Basin. Nine sampling sites were selected on the basis of land use. The nine sites included two streams draining agricultural areas, two urban streams, and five large rivers with mixed land use. Surface-water samples were collected from one to four times each month to characterize the spatial and temporal variation in nutrient and pesticide concentrations. Nutrient and suspended-sediment concentrations were highest in watersheds dominated by urban or agricultural land uses. Forty-two percent of the total phosphorus concentrations at all nine sites exceeded the U.S. Environmental Protection Agency's recommended maximum concentration of 0.1 milligram per liter. Flow-weighted mean concentrations at the Mobile River Basin sites generally were in the lower to middle percentile ranges compared with data from other NAWQA studies across the Nation. However, flow-weighted mean concentrations of ammonia, total nitrogen, orthophosphate, and total phosphorus at Bogue Chitto Creek, an agricultural watershed, ranked in the upper 20th percentile of agricultural sites sampled across the Nation as part of the NAWQA Program. Nutrient loads in the Tombigbee River were nearly twice as high compared with nutrient loads in the Alabama River. Nutrient yields were highest in Bogue Chitto Creek, Cahaba Valley Creek, and Threemile Branch because of agricultural and urban land uses in these watersheds. Of the 104 pesticides and degradation products analyzed in the stream samples, 69 were detected in one or more samples. Of the 69 detected pesticides, 51 were herbicides, 15 were insecticides, and 3 were fungicides. A relatively small number of heavily used herbicides accounted for most of the detections, including atrazine and its metabolites (deethylatrazine, 2-hydroxyatrazine, deisopropylatrazine, and deethyldeisopropylatrazine), simazine, metolachlor, tebuthiuron, prometon, diuron, and 2,4-D. Diazinon, chlorpyrifos, and carbaryl were the most frequently detected insecticides; metalaxyl was the most frequently detected fungicide in the Mobile River Basin. Concentrations of pesticides detected in surface water of the Mobile River Basin were among the highest concentrations recorded nationally by the NAWQA Program during 1991 to 2001. The three highest concentrations of atrazine detected at sites across the country were recorded at Bogue Chitto Creek; the highest concentrations of 2,4-D, imazaquin, and malathion recorded nationally were detected at Threemile Branch. Aquatic-life criteria were exceeded by concentrations of five herbicides (2,4-D, atrazine, cyanazine, diuron, and metolachlor), six insecticides (carbaryl, chlorpyrifos, diazinon, dieldrin, malathion, and p,p'-DDE), and one fungicide (chlorothalonil). Drinking-water standards were exceeded by concentrations of four herbicides (2,4-D, atrazine, cyanazine, and simazine), three insecticides (alpha- HCH, diazinon, and dieldrin), and one fungicide (chlorothalonil). The types and concentrations of pesticides found in surface water are linked to land use and to the types of pesti

  16. Floods of September 15-16, 1992, in the Thompson, Weldon, and Chariton River basins, south-central Iowa

    USGS Publications Warehouse

    Eash, D.A.; Koppensteiner, B.A.

    1997-01-01

    Water-surface-elevation profiles and peak discharges for the floods of September 15-16, 1992, in the Thompson, Weldon, and Chariton River Basins, south-central Iowa, are presented in this report. The profiles illustrate the 1992 floods along the Thompson, Weldon, Chariton, and South Fork Chariton Rivers and along Elk Creek in the south-central Iowa counties of Adair, Clarke, Decatur, Lucas, Madison, Ringgold, Union, and Wayne. Water-surface-elevation profiles for the floods of July 4, 1981, along the Chariton River in Lucas County and along the South Fork Chariton River in Wayne County also are included in the report for comparative purposes. The September 15-16, 1992, floods are the largest known peak discharges at gaging stations Thompson River at Davis City (station number 06898000) 57,000 cubic feet per second, Weldon River near Leon (station number 06898400) 76,200 cubic feet per second, Chariton River near Chariton (station number 06903400) 37,700 cubic feet per second, and South Fork Chariton River near Promise City (station number 06903700) 70,600 cubic feet per second. The peak discharges were, respectively, 1.7, 2.6, 1.4, and 2.1 times larger than calculated 100-year recurrence-interval discharges. The report provides information on flood stages and discharges and floodflow frequencies for streamflow-gaging stations in the Thompson, Weldon, and Chariton River Basins using flood information collected through 1995. Information on temporary bench marks and reference points established in the Thompson and Weldon River Basins during 1994-95, and in the Chariton River Basin during 1983-84 and 1994-95, also is included in the report. A flood history summarizes rainfall conditions and damages for floods that occurred during 1947, 1959, 1981, 1992, and 1993.

  17. Hydrologic conditions and hazards in the Kennicott River basin, Wrangell-St. Elias National Park Preserve, Alaska

    USGS Publications Warehouse

    Rickman, R.L.; Rosenkrans, D.S.

    1997-01-01

    McCarthy, Alaska, is on the Kennicott River, about 1 mile from the terminus of Kennicott Glacier in the Wrangell-St. Elias National Park and Preserve. Most visitors to McCarthy and the park cross the West Fork Kennicott River using a hand-pulled tram and cross the East Fork Kennicott River on a temporary footbridge. Outburst floods from glacier-dammed lakes result in channel erosion, aggradation, and migration of the Kennicott River, which disrupt transportation links, destroy property, and threaten life. Hidden Creek Lake, the largest of six glacier-dammed lakes in the Kennicott River Basin, has annual outbursts that cause the largest floods on the Kennicott River. Outbursts from Hidden Creek Lake occur from early fall to mid-summer, and lake levels at the onset of the outbursts have declined between 1909 and 1995. Criteria for impending outbursts for Hidden Creek Lake include lake stage near or above 3,000 to 3,020 feet, stationary or declining lake stage, evidence of recent calving of large ice blocks from the ice margin, slush ice and small icebergs stranded on the lakeshore, and fresh fractures in the ice-margin region. The lower Kennicott Glacier has thinned and retreated since about 1860. The East and West Fork Kennicott River channels migrated in response to changes in the lower Kennicott Glacier. The largest channel changes occur during outburst floods from Hidden Creek Lake, whereas channel changes from the other glacier-dammed lake outbursts are small. Each year, the West Fork Kennicott River conveys a larger percentage of the Kennicott Glacier drainage than it did the previous year. Outburst floods on the Kennicott River cause the river stage to rise over a period of several hours. Smaller spike peaks have a very rapid stage rise. Potential flood magnitude was estimated by combining known maximum discharges from Hidden Creek Lake and Lake Erie outburst floods with a theoretical large regional flood. Flood hazard areas at the transportation corridor were delineated, and possible future geomorphological changes were hypothesized. McCarthy, Alaska, is on the Kennicott River, about 1 mile from the terminus of Kennicott Glacier in the Wrangell-St. Elias National Park and Preserve. Most visitors to McCarthy and the park cross the West Fork Kennicott River using a hand-pulled tram and cross the East Fork Kennicott River on a temporary footbridge. Outburst floods from glacier-dammed lakes result in channel erosion, aggradation, and migration of the Kennicott River, which disrupt transportation links, destroy property, and threaten life. Hidden Creek Lake, the largest of six glacier-dammed lakes in the Kennicott River Basin, has annual outbursts that cause the largest floods on the Kennicott River. Outbursts from Hidden Creek Lake occur from early fall to mid-summer, and lake levels at the onset of the outbursts have declined between 1909 and 1995. Criteria for impending outbursts for Hidden Creek Lake include lake stage near or above 3,000 to 3,020 feet, stationary or declining lake stage, evidence of recent calving of large ice blocks from the ice margin, slush ice and small icebergs stranded on the lakeshore, and fresh fractures in the ice-margin region. The lower Kennicott Glacier has thinned and retreated since about 1860. The East and West Fork Kennicott River channels migrated in response to changes in the lower Kennicott Glacier. The largest channel changes occur during outburst floods from Hidden Creek Lake, whereas channel changes from the other glacier-dammed lake outbursts are small. Each year, the West Fork Kennicott River conveys a larger percentage of the Kennicott Glacier drainage than it did the previous year. Outburst floods on the Kennicott River cause the river stage to rise over a period of several hours. Smaller spike peaks have a very rapid stage rise. Potential flood magnitude was estimated by combining known maximum discharges from Hidden Creek Lake and Lake Erie outburst floods with

  18. DEM Simulated Results And Seismic Interpretation of the Red River Fault Displacements in Vietnam

    NASA Astrophysics Data System (ADS)

    Bui, H. T.; Yamada, Y.; Matsuoka, T.

    2005-12-01

    The Song Hong basin is the largest Tertiary sedimentary basin in Viet Nam. Its onset is approximately 32 Ma ago since the left-lateral displacement of the Red River Fault commenced. Many researches on structures, formation and tectonic evolution of the Song Hong basin have been carried out for a long time but there are still remained some problems that needed to put into continuous discussion such as: magnitude of the displacements, magnitude of movement along the faults, the time of tectonic inversion and right lateral displacement. Especially the mechanism of the Song Hong basin formation is still in controversy with many different hypotheses due to the activation of the Red River fault. In this paper PFC2D based on the Distinct Element Method (DEM) was used to simulate the development of the Red River fault system that controlled the development of the Song Hong basin from the onshore to the elongated portion offshore area. The numerical results show the different parts of the stress field such as compress field, non-stress field, pull-apart field of the dynamic mechanism along the Red River fault in the onshore area. This propagation to the offshore area is partitioned into two main branch faults that are corresponding to the Song Chay and Song Lo fault systems and said to restrain the east and west flanks of the Song Hong basin. The simulation of the Red River motion also showed well the left lateral displacement since its onset. Though it is the first time the DEM method was applied to study the deformation and geodynamic evolution of the Song Hong basin, the results showed reliably applied into the structural configuration evaluation of the Song Hong basin.

  19. Floodplain Impact on Riverine Dissolved Carbon Cycling in the Mississippi-Atchafalaya River System

    NASA Astrophysics Data System (ADS)

    DelDuco, E.; Xu, Y. J.

    2017-12-01

    Studies have shown substantial increases in the export of terrestrial carbon by rivers over the past several decades, and have linked these increases to human activity such as changes in land use, urbanization, and intensive agriculture. The Mississippi River (MR) is the largest river in North America, and is among the largest in the world, making its carbon export globally significant. The Atchafalaya River (AR) receives 25% of the Mississippi River's flow before traveling 189 kilometers through the largest bottomland swamp in North America, providing a unique opportunity to study floodplain impacts on dissolved carbon in a large river. The aim of this study was to determine how dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in the AR change spatially and seasonally, and to elucidate which processes control carbon cycling in this intricate swamp river system. From May 2015 -May 2016, we conducted monthly river sampling from the river's inflow to its outflow, analyzing samples for DOC and DIC concentrations and δ 13C stable isotope composition. During the study period, the river discharged a total of 5.35 Tg DIC and a total of 2.34 Tg DOC into the Gulf of Mexico. Based on the mass inflow-outflow balance, approximately 0.53 Tg ( 10%) of the total DIC exported was produced within the floodplain, while 0.24 Tg ( 10%) of DOC entering the basin was removed. The AR was consistently saturated with pCO2 above atmospheric pressure, indicating that this swamp-river system acts a large source of DIC to the atmosphere as well as to coastal margins. Largest changes in carbon constituents occurred during periods of greatest inundation of the basin, and corresponded with shifts in isotopic composition that indicated large inputs of DIC from floodplains. This effect was particularly pronounced during initial flood stages. This study demonstrates that a major river with extensive floodplains in its coastal margin can act as an important source of DIC as well as a sink for DOC. In light of increased riverine carbon export due to climate change and enhanced hydrological cycling, low-lying floodplain systems such as the AR may need to be looked to in future years for the filtration and removal of organic materials, which impact coastal margins and ocean ecosystems as a whole.

  20. Design rainfall depth estimation through two regional frequency analysis methods in Hanjiang River Basin, China

    NASA Astrophysics Data System (ADS)

    Xu, Yue-Ping; Yu, Chaofeng; Zhang, Xujie; Zhang, Qingqing; Xu, Xiao

    2012-02-01

    Hydrological predictions in ungauged basins are of significant importance for water resources management. In hydrological frequency analysis, regional methods are regarded as useful tools in estimating design rainfall/flood for areas with only little data available. The purpose of this paper is to investigate the performance of two regional methods, namely the Hosking's approach and the cokriging approach, in hydrological frequency analysis. These two methods are employed to estimate 24-h design rainfall depths in Hanjiang River Basin, one of the largest tributaries of Yangtze River, China. Validation is made through comparing the results to those calculated from the provincial handbook approach which uses hundreds of rainfall gauge stations. Also for validation purpose, five hypothetically ungauged sites from the middle basin are chosen. The final results show that compared to the provincial handbook approach, the Hosking's approach often overestimated the 24-h design rainfall depths while the cokriging approach most of the time underestimated. Overall, the Hosking' approach produced more accurate results than the cokriging approach.

  1. Flood of July 9-11, 1993, in the Raccoon River basin, west-central Iowa

    USGS Publications Warehouse

    Eash, D.A.; Koppensteiner, B.A.

    1997-01-01

    Water-surface-elevation profiles and peak discharges for the flood of July 9-11, 1993, in the Raccoon River Basin, west-central Iowa, are presented in this report. The profiles illustrate the 1993 flood along the Raccoon, North Raccoon, South Raccoon, and Middle Raccoon Rivers and along Brushy and Storm Creeks in the west-central Iowa counties of Carroll, Dallas, Greene, Guthrie, and Polk. Water-surface-elevation profiles for the floods of June 1947, March 1979, and June 29- July 1, 1986, in the Raccoon River Basin also are included in the report for comparative purposes. The July 9-11, 1993, flood is the largest known peak discharge at gaging stations Brushy Creek near Templeton (station number 05483318) 19,000 cubic feet per second, Middle Raccoon River near Bayard (station number 05483450) 27,500 cubic feet per second, Middle Raccoon River at Panora (station number 05483600) 22,400 cubic feet per second, South Raccoon River at Redfield (station number 05484000) 44,000 cubic feet per second, and Raccoon River at Van Meter (station number 05484500) 70,100 cubic feet per second. The peak discharges were, respectively, 1.5, 1.3, 1.1,1.2, and 1.3 times larger than calculated 100-year recurrence-interval discharges. The report provides information on flood stages and discharges and floodflow frequencies for streamflow-gaging stations in the Raccoon River Basin using flood information collected through 1996. A flood history summarizes rainfall conditions and damages for floods that occurred during 1947, 1958, 1979, 1986, 1990, and 1993. Information on temporary bench marks and reference points established in the Raccoon River Basin during 1976-79 and 1995-97 also is included in the report.

  2. Geology of tight oil and potential tight oil reservoirs in the lower part of the Green River Formation, Uinta, Piceance, and Greater Green River Basins, Utah, Colorado, and Wyoming

    USGS Publications Warehouse

    Johnson, Ronald C.; Birdwell, Justin E.; Mercier, Tracey J.; Brownfield, Michael E.

    2016-05-02

    The recent successful development of a tight oil play in the Eocene-age informal Uteland Butte member of the lacustrine Green River Formation in the Uinta Basin, Utah, using modern horizontal drilling and hydraulic fracturing techniques has spurred a renewed interest in the tight oil potential of lacustrine rocks. The Green River Formation was deposited by two large lakes, Lake Uinta in the Uinta and Piceance Basins and Lake Gosiute in the Greater Green River Basin. These three basins contain the world’s largest in-place oil shale resources with recent estimates of 1.53 trillion, 1.33 trillion, and 1.44 trillion barrels of oil in place in the Piceance, Uinta, and Greater Green River Basins, respectively. The Uteland Butte member was deposited during an early freshwater stage of the lake in the Uinta Basin prior to deposition of the assessed oil shale intervals. This report only presents information on the early freshwater interval and overlying brackish-water interval in all three basins because these intervals are most likely to have tight oil potential. Burial histories of the three basins were reconstructed to study (1) variations in subsidence and lake development, and (2) post deposition burial that led to the development of a petroleum system in only the Uinta Basin. The Uteland Butte member is a successful tight oil play because it is thermally mature for hydrocarbon generation and contains organic-rich shale, brittle carbonate, and porous dolomite. Abnormally high pressure in parts of the Uteland Butte is also important to production. Variations in organic richness of the Uteland Butte were studied using Fischer assay analysis from oil shale assessments, and pressures were studied using drill-stem tests. Freshwater lacustrine intervals in the Piceance and Greater Green River Basins are immature for hydrocarbon generation and contain much less carbonate than the Uteland Butte member. The brackish-water interval in the Uinta Basin is thermally mature for hydrocarbon generation but is clay-rich and contains little carbonate, and thus is a poor prospect for tight oil development.

  3. Simulation of blue and green water resources in the Wei River basin, China

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Zuo, D.

    2014-09-01

    The Wei River is the largest tributary of the Yellow River in China and it is suffering from water scarcity and water pollution. In order to quantify the amount of water resources in the study area, a hydrological modelling approach was applied by using SWAT (Soil and Water Assessment Tool), calibrated and validated with SUFI-2 (Sequential Uncertainty Fitting program) based on river discharge in the Wei River basin (WRB). Sensitivity and uncertainty analyses were also performed to improve the model performance. Water resources components of blue water flow, green water flow and green water storage were estimated at the HRU (Hydrological Response Unit) scales. Water resources in HRUs were also aggregated to sub-basins, river catchments, and then city/region scales for further analysis. The results showed that most parts of the WRB experienced a decrease in blue water resources between the 1960s and 2000s, with a minimum value in the 1990s. The decrease is particularly significant in the most southern part of the WRB (Guanzhong Plain), one of the most important grain production basements in China. Variations of green water flow and green water storage were relatively small on the spatial and temporal dimensions. This study provides strategic information for optimal utilization of water resources and planning of cultivating seasons in the Wei River basin.

  4. Groundwater quality in the Colorado River basins, California

    USGS Publications Warehouse

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Colorado River make up one of the study areas being evaluated. The Colorado River study area is approximately 884 square miles (2,290 square kilometers) and includes the Needles, Palo Verde Mesa, Palo Verde Valley, and Yuma groundwater basins (California Department of Water Resources, 2003). The Colorado River study area has an arid climate and is part of the Sonoran Desert. Average annual rainfall is about 3 inches (8 centimeters). Land use in the study area is approximately 47 percent (%) natural (mostly shrubland), 47% agricultural, and 6% urban. The primary crops are pasture and hay. The largest urban area is the city of Blythe (2010 population of 21,000). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay deposited by the Colorado River or derived from surrounding mountains. The primary aquifers in the Colorado River study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Colorado River basins are completed to depths between 230 and 460 feet (70 to 140 meters), consist of solid casing from the land surface to a depth of 130 of 390 feet (39 to 119 meters), and are screened or perforated below the solid casing. The main source of recharge to the groundwater systems in the Needles, Palo Verde Mesa, and Palo Verde Valley basins is the Colorado River; in the Yuma basin, the main source of recharge is from subsurface flow from the groundwater basins to the west. Groundwater discharge is primarily to pumping wells, evapotranspiration, and, locally, to the Colorado River.

  5. Suggestions on water sources protection for the Gan River of Jiangxi, People's Republic of China

    NASA Astrophysics Data System (ADS)

    Fu, C.; Jiang, Z.

    2007-05-01

    The Gan River is the largest river in Jiangxi Province, which is located in the southeast of China and is the second branch of the Yangtze River. The Gan River flows through Jiangxi Province from the South to the North and plays an important role in the economic development for 14 counties or cities with a population of 22 million. Currently, there are 5 drinking water sources, such as the capital city, Nanchang, with a daily capacity of 0.72 million cubic meters. With the rapid economic development and increasing population in the Gan River basin, water pollution has become more serious. The water quality of the river has serious pollution on both side reaches and slight pollution on the middle reach. In the upstream, the main pollution problems come from the industrial wastewater and soil erosion, with industrial and sewage wastewater affecitng the downstream region. Based on the Provincial Environmental Quality Report of 2005, of 39 monitoring sections, the ones which reach a favorable rating of a National Standard are 71.8 per cent. The water quality in the upstream region had a good situation with 80 percent of locations meeting standards, but the water quality downstream of the capital city deteriorates and only 45.4 percent of this region can meet the standard. Standards are frequently exceeded for BOD5, TP, TN, fecal coliform, and petrolueum oil in the downstream portion. The industrial wastewater drained into the river was 139 million tons in 2005, of which Nanchang city is the largest contributor with 214 million tons of wastewater composed of 75 million tons of industrial wastewater and 139 million tons of domestic sewage. The largest COD contributor was from Ganzhou in the upstream of the river with a total of 83,800 tons in 2005. Currently, there are only two wastewater treatment facilities with daily treatment capacity of 402,000 tons along the river, which are located in the capital city. Some parameters in the treated water stil exceed the drainage standard. Based on the characteristic of soil erosion in the mountain areas in the upstream portion of the Gan River, Jiangxi Province has carried out a strategy of comprehensive treatment of small river basins since 1983. A total of 374 small basins in Ganzhou city have been treated and 0.5 million hectare of soil erosion area have been treated which is 78.2 percent of the whole soil erosion in this region. Some suggestions on protection of water sources have been proposed as: to continue the comprehensive treatment of soil erosion, to enhance the treatment capacity of domestic sewage, to optimize the treatment technology and control sewage in the cities along the river, to formulate a plan for the basin water resources utilization, and to enhance the performance capacity of environmental protection laws and regulations.

  6. Linking diurnal cycles of river flow to interannual variations in climate

    USGS Publications Warehouse

    Lundquist, Jessica D.; Dettinger, Michael D.

    2003-01-01

    Many rivers in the Western United States have diurnal variations exceeding 10% of their mean flow in the spring and summer months. The shape and timing of the diurnal cycle is influenced by an interplay of the snow, topography, vegetation, and meteorology in a basin, and the measured result differs between wet and dry years. The largest interannual differences occur during the latter half of the melt season, as the snowline retreats to the highest elevations and most shaded slopes in a basin. In most basins, during this period, the hour of peak discharge shifts to later in the day, and the relative amplitude of the diurnal cycle decreases. The magnitude and rate of these changes in the diurnal cycle vary between years and may provide clues about how long- term hydroclimatic variations affect short-term basin dynamics.

  7. Water Quality in the Blue River Basin, Kansas City Metropolitan Area, Missouri and Kansas, July 1998 to October 2004

    USGS Publications Warehouse

    Wilkison, Donald H.; Armstrong, Daniel J.; Norman, Richard D.; Polton, Barry C.; Furlong, Edward T.; Zaugg, Steven D.

    2006-01-01

    Water-quality data were collected from sites in the Blue River Basin from July 1998 to October. Sites upstream from wastewater-treatment plants or the combined sewer system area had lower concentrations of total nitrogen, phosphorus, organic wastewater compounds, and pharmaceuticals, and more diverse aquatic communities. Sites downstream from wastewater-treatment plants had the largest concentrations and loads of nutrients, organic wastewater compounds, and pharmaceuticals. Approximately 60 percent of the total nitrogen and phosphorus in Blue River originated from the Indian Creek, smaller amounts from the upper Blue River (from 28 to 16 percent), and less than 5 percent from Brush Creek. Nutrient yields from the Indian Creek and the middle Blue River were significantly greater than yields from the upper Blue River, lower Brush Creek, the outside control site, and other U.S. urban sites. Large concentrations of nutrients led to eutrophication of impounded Brush Creek reaches. Bottom sediment samples collected from impoundments generally had concentrations of organic wastewater and pharmaceutical compounds equivalent to or greater than, concentrations observed in streambed sediments downstream from wastewater-treatment plants. Bacteria in streams largely was the result of nonpoint-source contributions during storms. Based on genetic source-tracking, average contributions of in-stream Esherichia coli bacteria in the basin from dogs ranged from 26-32 percent of the total concentration, and human sources ranged from 28-42 percent. Macro invertebrate diversity was highest at sites with the largest percentage of upstream land use devoted to forests and grasslands. Declines in macro invertebrate community metrics were correlated strongly with increases in several, inter-related urbanization factors.

  8. Water quality in the Blue River basin, Kansas City metropolitan area, Missouri and Kansas, July 1998 to October 2004

    USGS Publications Warehouse

    Wilkison, Donald H.; Armstrong, Daniel J.; Norman, Richard D.; Poulton, Barry C.; Furlong, Edward T.; Zaugg, Steven D.

    2006-01-01

    Water-quality data were collected from sites in the Blue River Basin from July 1998 to October. Sites upstream from wastewater-treatment plants or the combined sewer system area had lower concentrations of total nitrogen, phosphorus, organic wastewater compounds, and pharmaceuticals, and more diverse aquatic communities. Sites downstream from wastewater-treatment plants had the largest concentrations and loads of nutrients, organic wastewater compounds, and pharmaceuticals. Approximately 60 percent of the total nitrogen and phosphorus in Blue River originated from the Indian Creek, smaller amounts from the upper Blue River (from 28 to 16 percent), and less than 5 percent from Brush Creek. Nutrient yields from the Indian Creek and the middle Blue River were significantly greater than yields from the upper Blue River, lower Brush Creek, the outside control site, and other U.S. urban sites. Large concentrations of nutrients led to eutrophication of impounded Brush Creek reaches. Bottom sediment samples collected from impoundments generally had concentrations of organic wastewater and pharmaceutical compounds equivalent to or greater than, concentrations observed in streambed sediments downstream from wastewater-treatment plants. Bacteria in streams largely was the result of nonpoint-source contributions during storms. Based on genetic source-tracking, average contributions of in-stream Esherichia coli bacteria in the basin from dogs ranged from 26-32 percent of the total concentration, and human sources ranged from 28-42 percent. Macro invertebrate diversity was highest at sites with the largest percentage of upstream land use devoted to forests and grasslands. Declines in macro invertebrate community metrics were correlated strongly with increases in several, inter-related urbanization factors.

  9. Assessment of Anthropogenic Impacts in La Plata River Basin

    NASA Astrophysics Data System (ADS)

    Garcia, N. O.; Venencio, M.

    2006-12-01

    An assessment of the variability of the streamflows in La Plata Basin (LPB), particularly in its major tributaries Paraná and Uruguay, is presented in this work. The La Plata Basin, the fifth largest basin in the world and second only to the Amazon in South America, is 3.6 million km2 and covers portions of 5 countries: Argentina, Brazil, Bolivia, Paraguay, and Uruguay. Sub-basins include the Bermejo, Paraná, Paraguay, Pilcomayo, and Uruguay. Major rivers of the basin are the Paraguay, the Uruguay and the Paraná. Streamflows in the LPB have been above normal in the last decades, e.g. the mean flow in the Paraná river during the 1971-1994 period was 34% higher than the mean flow during the 1931-1970 period. A similar analysis carried out on the precipitation records for the La Plata basin showed only a 14% increase during the same periods for the Upper Paraná basin and a 20% increase for the Uruguay basin. In this paper it is postulated that the increase in the streamflows, not explained by precipitation increases, is due to the changes in cultivation patterns in the upper basins of the Paraná and Uruguay. Particularly, the substitution of coffee plantations for annual crops, mainly soybeans, has produced a change in the infiltration patterns that influenced the discharges.

  10. Characterization of hydrodynamic and sediment conditions in the lower Yampa River at Deerlodge Park, east entrance to Dinosaur National Monument, northwest Colorado, 2011

    USGS Publications Warehouse

    Williams, Cory A.

    2013-01-01

    The Yampa River in northwestern Colorado is the largest, relatively unregulated river system in the upper Colorado River Basin. Water from the Yampa River Basin continues to be sought for a number of municipal, industrial, and energy uses. It is anticipated that future water development within the Yampa River Basin above the amount of water development identified under the Upper Colorado River Endangered Fish Recovery Implementation Program and the Programmatic Biological Opinion may require additional analysis in order to understand the effects on habitat and river function. Water development in the Yampa River Basin could alter the streamflow regime and, consequently, could lead to changes in the transport and storage of sediment in the Yampa River at Deerlodge Park. These changes could affect the physical form of the reach and may impact aquatic and riparian habitat in and downstream from Deerlodge Park. The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, began a study in 2011 to characterize the current hydrodynamic and sediment-transport conditions for a 2-kilometer reach of the Yampa River in Deerlodge Park. Characterization of channel conditions in the Deerlodge Park reach was completed through topographic surveying, grain-size analysis of streambed sediment, and characterization of streamflow properties. This characterization provides (1) a basis for comparisons of current stream functions (channel geometry, sediment transport, and stream hydraulics) to future conditions and (2) a dataset that can be used to assess channel response to streamflow alteration scenarios indicated from computer modeling of streamflow and sediment-transport conditions.

  11. Establishment of a non-governmental regional approach to La Plata River Basin integrated watershed management promoted throughout three international workshops supported by UN and Japanese agencies, led by ILEC

    NASA Astrophysics Data System (ADS)

    Calcagno, Alberto; Yamashiki, Yosuke; Mugetti, Ana

    2002-08-01

    The La Plata River Basin is one of the largest international river basins in the world, with an area of about 3 million km2. It spreads across five countries (Argentina, Bolivia, Brazil, Paraguay and Uruguay), and its water resources are essential for their economic development. Together with reservoir development, extensive deforestation, intensive agriculture practices and large urban developments took place in the Paraná, Paraguay and Uruguay basins, affecting environmental conditions and raising important issues concerning water resources use and conservation. Therefore, the need to promote participatory and cooperative efforts among water resources stakeholders, as well as the systematic exchange of information and experiences on common regional problems among organizations and experts from throughout the basin who are devoted to water resources use and management, was reported by researchers and managers gathered at the First and Second International Workshops on Regional Approaches for Reservoir Development and Management in the La Plata River Basin (held in 1991 and 1994). As a concrete response to this need, the efforts of a number of organizations from various countries within the basin, with the support of international and national governmental organizations, resulted in the foundation of La Plata River Basin Environmental Research and Management Network (RIGA) in March 2001. This was within the framework of the Third International Workshop, which was precisely one of the short-term activities included in the RIGA Action Plan. During the preparatory processes for the RIGA Network, the presence of Japanese cooperation supporting the La Plata River Basin Workshops through a non-governmental international organization (ILEC) played an important role in stimulating such an organization-based joint approach in the basin. This outcome, although not originally planned, constituted a welcomed byproduct of its main specific interest in the region, which was the establishment of international sustainable management guidelines for lake and reservoir management.

  12. Scaling up watershed model parameters--Flow and load simulations of the Edisto River Basin

    USGS Publications Warehouse

    Feaster, Toby D.; Benedict, Stephen T.; Clark, Jimmy M.; Bradley, Paul M.; Conrads, Paul

    2014-01-01

    The Edisto River is the longest and largest river system completely contained in South Carolina and is one of the longest free flowing blackwater rivers in the United States. The Edisto River basin also has fish-tissue mercury concentrations that are some of the highest recorded in the United States. As part of an effort by the U.S. Geological Survey to expand the understanding of relations among hydrologic, geochemical, and ecological processes that affect fish-tissue mercury concentrations within the Edisto River basin, analyses and simulations of the hydrology of the Edisto River basin were made with the topography-based hydrological model (TOPMODEL). The potential for scaling up a previous application of TOPMODEL for the McTier Creek watershed, which is a small headwater catchment to the Edisto River basin, was assessed. Scaling up was done in a step-wise process beginning with applying the calibration parameters, meteorological data, and topographic wetness index data from the McTier Creek TOPMODEL to the Edisto River TOPMODEL. Additional changes were made with subsequent simulations culminating in the best simulation, which included meteorological and topographic wetness index data from the Edisto River basin and updated calibration parameters for some of the TOPMODEL calibration parameters. Comparison of goodness-of-fit statistics between measured and simulated daily mean streamflow for the two models showed that with calibration, the Edisto River TOPMODEL produced slightly better results than the McTier Creek model, despite the significant difference in the drainage-area size at the outlet locations for the two models (30.7 and 2,725 square miles, respectively). Along with the TOPMODEL hydrologic simulations, a visualization tool (the Edisto River Data Viewer) was developed to help assess trends and influencing variables in the stream ecosystem. Incorporated into the visualization tool were the water-quality load models TOPLOAD, TOPLOAD-H, and LOADEST. Because the focus of this investigation was on scaling up the models from McTier Creek, water-quality concentrations that were previously collected in the McTier Creek basin were used in the water-quality load models.

  13. Field Surveys, IOC Valleys. Volume II, Part II. Biological Resources Survey, Pine and Wah Wah Valleys, Utah.

    DTIC Science & Technology

    1981-08-01

    Colorado Plateau, and the Uinta Mountains. The Great Basin , which is the largest division, is divided into nine sections. Pine and Wah Wah * valleys lie...unconfirmed reports of sightings from Uinta Basin in 1972 and 1975, from New Green River in 1976, and from Rich and Emery counties in 1977 and 1978. The...Fish and Wildlife Service, Boise, Idaho, Personal communication, 3 April. Graham, E. H., 1937, Botanical studies in the Uinta Basin of Utah and Colorado

  14. Coal-bed methane discoveries in Powder River basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matson, R.E.

    1991-06-01

    The Powder River basin of northeastern Wyoming and southeastern Montana contains the nation's largest supply of subbituminous coal. The coal beds have been mapped with surprising continuity, with thickness of individual beds exceeding 200 ft. The Paleocene Tongue River Member of the Fort Union Formation contains the bulk of the reserves. The coal near surface along the eastern part of the basin is subbituminous C, while in the deeper part and in the northwestern part of the basin the rank is subbituminous B or A. Commercial exploitation of methane in the Powder River was initiated by Wyatt Petroleum in themore » Recluse area north of Gillette in 1986. Early production was from sands occurring between major coal beds. Production directly from coal beds along the shallow eastern part of the Powder River basin was achieved by Betop Inc. in the Rawhide field a short distance north of Gillette in early 1989 from five wells. Fifteen additional wells were drilled and completed in the field in late 1990. Other shallow coal-bed methane production has been achieved from the same thick Wyodak coalbed nearby by Martins and Peck Operating, Wasatch Energy, and DCD Inc. Numerous deeper tests have been drilled and tested by various companies including Coastal Oil and Gas, Materi Exploration, Cenex, Gilmore Oil and Gas, and Betop Inc., none of which has attained commercial success. Recent exploration in the northwestern part of the basin has resulted in two apparent discoveries.« less

  15. Surface-water-quality assessment of the lower Kansas River basin, Kansas and Nebraska; results of investigations, 1987-90

    USGS Publications Warehouse

    Helgesen, J.O.

    1995-01-01

    Surface-water-quality conditions and trends were assessed in the lower Kansas River Basin, which drains about 15,300 square miles of mainly agricultural land in southeast Nebraska and northeast Kansas. On the basis of established water-quality criteria, most streams in the basin were suitable for uses such as public-water supply, irrigation, and maintenance of aquatic life. However, most concerns identified from a previous analysis of available data through 1986 are substantiated by analysis of data for May 1987 through April 1990. Less-than-normal precipitation and runoff during 1987-90 affected surface-water quality and are important factors in the interpretation of results.Dissolved-solids concentrations in the main stem Kansas River during May 1987 through April 1990 commonly exceeded 500 milligrams per liter, which may be of concern for public-water supplies and for the irrigation of sensitive crops. Large concentrations of chloride in the Kansas River are derived from ground water discharging in the Smoky Hill River Basin west of the study unit. Trends of increasing concentrations of some dissolved major ions were statistically significant in the northwestern part of the study unit, which could reflect substantial increases in irrigated acreage.The largest concentrations of suspended sediment in streams during May 1987 through April 1990 were associated with high-density cropland in areas of little local relief and medium-density irrigated cropland in more dissected areas. The smallest concentrations were measured downstream from large reservoirs and in streams draining areas having little or no row-crop cultivation. Mean annual suspended-sediment transport rates in the main stem Kansas River increased substantially in the downstream direction. No conclusions could be reached concerning the relations of suspended-sediment transport, yields, or trends to natural and human factors.The largest sources of nitrogen and phosphorus in the study unit were fertilizer and livestock. Nitrate-nitrogen concentrations in stream-water samples did not exceed 10 milligams per liter; relatively large concentrations in the northwestern part of the study unit were associated with fertilizer application. Concentrations of total phosphorus generally were largest in the northwestern part of the study unit, which probably relates to the prevalence of cultivated land, fertilizer application, and livestock wastes.Deficiencies in dissolved-oxygen concentrations in streams occurred locally, as a result of discharges from wastewater-treatment plants, algal respiration, and inadequate reaeration associated with small streamflow. Large densities of a fecal-indicator bacterium, Escherichia coli, were associated with discharges from municipal wastewater-treatment plants and, especially in the northwestern part of the study unit, with transport of fecaThe largest concentrations of the herbicide atrazine generally were measured where the largest quantities of atrazine were applied to the land. Large atrazine concentrations, 10 to 20 micrograms per liter, were measured most frequently in unregulated principal streams during May and June. Downstream of reservoirs, the seasonal variability of atrazine concentrations was decreased compared to that of inflowing streams.

  16. Geologic map of the Bernalillo NW quadrangle, Sandoval County, New Mexico

    USGS Publications Warehouse

    Koning, Daniel J.; Personius, Stephen F.

    2002-01-01

    The Bernalillo NW quadrangle is located in the northern part of the Albuquerque basin, which is the largest basin or graben within the Rio Grande rift. The quadrangle is underlain by poorly consolidated sedimentary rocks of the Santa Fe Group. These rocks are best exposed in the southwestern part of the quadrangle in the Rincones de Zia, a badland topography cut by northward-flowing tributary arroyos of the Jemez River. The Jemez River flows through the northern half of the quadrangle; extensive fluvial and eolian deposits cover bedrock units along the river. The structural fabric of the quadrangle is dominated by dozens of generally north striking, east and west-dipping normal faults and minor folds associated with the Neogene Rio Grande rift.

  17. Relationship between urbanisation and pollutant emissions in transboundary river basins under the strategy of the Belt and Road Initiative.

    PubMed

    Yu, Sen; Lu, Hongwei

    2018-07-01

    Urbanisation has increased the discharge of pollutants, altered water flow regimes, and modified the morphology of transboundary river basins. All these actions have resulted in multiple pressures on aquatic ecosystems of transboundary river basins, undermining the healthy development of their aquatic ecosystems as well as impairing the sustainable economic and social development associated therewith. Quantifying the relationship between socio-economic factors, and water environment systems, and understanding the multiple pressures in their combined impact on environmental fairness of transboundary river basins is challenging, and it is crucial to the strategic planning of the Belt and Road strategy. Here, the Songhua River basin, which is the largest branch of the China-Russia boundary river is taken as the study area. The Environmental Kuznets Curve (EKC) model, which is coupled with the integrated model (pollutant emissions intensity, pollutant discharge efficiency, and pollutant emissions per capita), are used to reveal the spatio-temporal variations in regional pollutant emissions in the SRB. The results show that the features of the EKC are present in the pollutant emissions during economic development of the SRB. It also demonstrates that the turning point value of the EKC appeared when the GDP per capita is around ¥40,000 (CNY) in the SRB, which means that the pollutant emissions show an increasing trend, when the GDP per capita is less than ¥40,000. Our findings could contribute to a better understanding of the coupling relationship between pollutant emissions in transboundary river basins and urbanisation process in water stress to help address water allocation problems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Floods of July 12, 1972, March 19, 1979, and June 15, 1991, in the Turkey River Basin, northeast Iowa

    USGS Publications Warehouse

    Eash, D.A.; Koppensteiner, B.A.

    1996-01-01

    Water-surface-elevation profiles and peak discharges for the floods of July 12, 1972, March 19, 1979, and June 15, 1991, in the Turkey River Basin, northeast Iowa, are presented in this report. The profiles illustrate the 1979 and 1991 floods along the Turkey River in Fayette and Clayton Counties and along the Volga River in Clayton County; the 1991 flood along Roberts Creek in Clayton County and along Otter Creek in Fayette County; and the 1972 flood along the Turkey River in Winneshiek and Fayette Counties. Watersurface elevations for the flood of March 19,1979, were collected by the Iowa Natural Resources Council. The June 15, 1991, flood on the Turkey River at Garber (station number 05412500) is the largest known flood-peak discharge at the streamflow-gaging station for the period 1902-95. The peak discharge for June 15, 1991, of 49,900 cubic feet per second was 1.4 times larger than the 100-year recurrence-interval discharge. The report provides information on flood stages and discharges and floodflow frequencies for streamflow-gaging stations in the Turkey River Basin using flood information collected during 1902-95. Information on temporary bench marks and reference points established in the Turkey River Basin during 1981, 1992, and 1996 also is included in the report. A flood history describes rainfall conditions for floods that occurred during 1922, 1947, 1972, 1979, and 1991.

  19. Spatial and temporal stability of temperature in the first-level basins of China during 1951-2013

    NASA Astrophysics Data System (ADS)

    Cheng, Yuting; Li, Peng; Xu, Guoce; Li, Zhanbin; Cheng, Shengdong; Wang, Bin; Zhao, Binhua

    2018-05-01

    In recent years, global warming has attracted great attention around the world. Temperature change is not only involved in global climate change but also closely linked to economic development, the ecological environment, and agricultural production. In this study, based on temperature data recorded by 756 meteorological stations in China during 1951-2013, the spatial and temporal stability characteristics of annual temperature in China and its first-level basins were investigated using the rank correlation coefficient method, the relative difference method, rescaled range (R/S) analysis, and wavelet transforms. The results showed that during 1951-2013, the spatial variation of annual temperature belonged to moderate variability in the national level. Among the first-level basins, the largest variation coefficient was 114% in the Songhuajiang basin and the smallest variation coefficient was 10% in the Huaihe basin. During 1951-2013, the spatial distribution pattern of annual temperature presented extremely strong spatial and temporal stability characteristics in the national level. The variation range of Spearman's rank correlation coefficient was 0.97-0.99, and the spatial distribution pattern of annual temperature showed an increasing trend. In the national level, the Liaohe basin, the rivers in the southwestern region, the Haihe basin, the Yellow River basin, the Yangtze River basin, the Huaihe basin, the rivers in the southeastern region, and the Pearl River basin all had representative meteorological stations for annual temperature. In the Songhuajiang basin and the rivers in the northwestern region, there was no representative meteorological station. R/S analysis, the Mann-Kendall test, and the Morlet wavelet analysis of annual temperature showed that the best representative meteorological station could reflect the variation trend and the main periodic changes of annual temperature in the region. Therefore, strong temporal stability characteristics exist for annual temperature in China and its first-level basins. It was therefore feasible to estimate the annual average temperature by the annual temperature recorded by the representative meteorological station in the region. Moreover, it was of great significance to assess average temperature changes quickly and forecast future change tendencies in the region.

  20. Irrigation and streamflow depletion in Columbia River basin above The Dalles, Oregon

    USGS Publications Warehouse

    Simons, Wilbur Douglas

    1953-01-01

    The Columbia River is the largest stream in western United States. Above The Dalles, Oregon, it drains an area of 237,000 square miles, of which 39,000 square miles is in Canada. This area is largely mountainous and lies between the Rocky Mountains and the Cascade Range. The Kootenai, Pend Oreille, and Snake Rivers are the principal tributaries. Precipitation varies from 7 inches near Kennewick, Wash. to over 100 inches in some of the mountainous regions. Most of the runoff occurs in the spring and summer months as a result of melting snow. Precipitation is generally light during the summer months, and irrigation is necessary for sustained crop production. Historical data indicate that irrigation in the Columbia River basin began prior to 1840 at the site of missions established near Walla Walla, Wash. and Lewiston, Idaho. During the next half century the increase in irrigated area was slow and by 1890 included only 506,000 acres. The period 1890 to 1910 was marked by phenomenal increase to a total of 2,276,000 acres in 1910. Since that time there has been more gradual addition to a total of 4,004,S00 acres of irrigated land in 1946 in the Columbia River basin above The Dalles, Oreg. Of this total 918,000 acres were located in the Columbia Basin above the mouth of the Snake River; 2,830,000 acres in the Snake River basin, and the balance, 256,000 acres below the mouth of the Snake River. Values of net consumptive use were determined or estimated for various tributary basins of the Columbia River basin and compared to available experimental data. These values were then used to compute the average depletion which could be directly attributed to irrigation. The yield of a drainage basin was considered to be the rum of the ob- served runoff and the estimated depletion. For purposes of comparison, the depletion was expressed both in terms of acre-feet and as a percentage of the yield of the basin. This percentage depletion varied from less than 1 percent for many tributary basins to 53 percent for the portion of the Snake River basin between Heise and King Hill, Idaho. For the Columbia River near The Dalles, Oreg., the average depletion during the period 1921 through 1945, amounted to 4,7 percent of the yield and the depletion represented by the 1946 stage of irrigation development amounted to 5.3 percent of the long-term yield.

  1. Extent and Depth to Top of Basalt and Interbed Hydrogeologic Units, Yakima River Basin Aquifer System, Washington

    USGS Publications Warehouse

    Jones, M.A.; Vaccaro, J.J.

    2008-01-01

    The hydrogeologic framework was delineated for the ground-water flow system of the three basalt formations and two interbeds in the Yakima River Basin, Washington. The basalt units are nearly equivalent to the Saddle Mountains, Wanapum, and Grande Ronde. The two major interbed units between the basalt formations generally are referred to as the Mabton and Vantage. The basalt formations are a productive source of ground-water for the Yakima River Basin. The Grande Ronde unit comprises the largest area in the Yakima River Basin aquifer system. This unit encompasses an area of about 5,390 mi2 and ranges in altitude from 6,900 ft, where it is exposed at land surface, to a depth of 2,800 ft below land surface. The Wanapum unit encompasses an area of 3,450 mi2 and ranges in altitude from 5,680 ft, where exposed at land surface, to a depth of 2,050 ft below land surface. The Saddle Mountains unit, the least extensive, encompasses an area of 2,290 mi2 and ranges from 4,290 ft, where exposed at the surface, to a depth of 1,840 ft below land surface.

  2. Modelling nutrient fluxes from diffuse and point emissions to river loads: the Estonian part of the transboundary Lake Peipsi/Chudskoe drainage basin (Russia/Estonia/Latvia).

    PubMed

    Mourad, D; van der Perk, M

    2004-01-01

    First results are presented of a large-scale GIS-based nutrient transport modelling for the 1985-1999 period in the Estonian part of the transboundary drainage basin of Lake Peipsi (Estonian)/Chudskoe (Russian), one of the largest lakes in Europe, shared by Russia and Estonia. Although the lake is relatively undisturbed by human pollution, it is vulnerable for eutrophication by increased river loads, as shown in the past, when the north-eastern part of the former Soviet Union suffered from intensive agriculture. The collapse of the Soviet Union caused a dramatic decline in fertilizer application rates and widespread abandonment of agricultural land. Although concentration measurements and modelling results indicate a general decrease in nutrient loads, modelling is complicated by the transfer of nutrients from diffuse emissions, which is strongly governed by retention and assumed periodic release from storages within the river basin, like the root zone, tile drains, ditches, channels, bed sediments, floodplains and lakes. Modelling diffuse emission contribution to river loads can be improved by better knowledge about the spatial and temporal distribution of this retention and release within the drainage basin.

  3. Hydrogeologic framework and groundwater/surface-water interactions of the Chehalis River basin, Washington

    USGS Publications Warehouse

    Gendaszek, Andrew S.

    2011-01-01

    The Chehalis River has the largest drainage basin of any river entirely contained within the State of Washington with a watershed of approximately 2,700 mi2 and has correspondingly diverse geology and land use. Demands for water resources have prompted the local citizens and governments of the Chehalis River basin to coordinate with Federal, State and Tribal agencies through the Chehalis Basin Partnership to develop a long-term watershed management plan. The recognition of the interdependence of groundwater and surface-water resources of the Chehalis River basin became the impetus for this study, the purpose of which is to describe the hydrogeologic framework and groundwater/surface-water interactions of the Chehalis River basin. Surficial geologic maps and 372 drillers' lithostratigraphic logs were used to generalize the basin-wide hydrogeologic framework. Five hydrogeologic units that include aquifers within unconsolidated glacial and alluvial sediments separated by discontinuous confining units were identified. These five units are bounded by a low permeability unit comprised of Tertiary bedrock. A water table map, and generalized groundwater-flow directions in the surficial aquifers, were delineated from water levels measured in wells between July and September 2009. Groundwater generally follows landsurface-topography from the uplands to the alluvial valley of the Chehalis River. Groundwater gradients are highest in tributary valleys such as the Newaukum River valley (approximately 23 cubic feet per mile), relatively flat in the central Chehalis River valley (approximately 6 cubic feet per mile), and become tidally influenced near the outlet of the Chehalis River to Grays Harbor. The dynamic interaction between groundwater and surface-water was observed through the synoptic streamflow measurements, termed a seepage run, made during August 2010, and monitoring of water levels in wells during the 2010 Water Year. The seepage run revealed an overall gain of 56.8 ± 23.7 cubic feet per second over 32.8 river miles (1.7 cubic feet per second per mile), and alternating gains and losses of streamflow ranging from -48.3 to 30.9 cubic feet per second per mile, which became more pronounced on the Chehalis River downstream of Grand Mound. However, most gains and losses were within measurement error. Groundwater levels measured in wells in unconsolidated sediments fluctuated with changes in stream stage, often within several hours. These fluctuations were set by precipitation events in the upper Chehalis River basin and tides of the Pacific Ocean in the lower Chehalis River basin.±

  4. [Genetic Differentiation of Sockeye Salmon Oncorhynchus nerka from Kamchatka River Basin and the Lake-River Systems of the West Coast of the Bering Sea as Inferred from Data on Single Nucleotide Polymorphism].

    PubMed

    Khrustaleva, A M; Klovach, N V; Vedischeva, E V; Seeb, J E

    2015-10-01

    The variability of 45 single nucleotide polymorphism loci (SNP) was studied in sockeye salmon from the Kamchatka River basin and four lake-river systems of the west coast of the Bering Sea. Based on the genetic differentiation estimates for the largest sockeye salmon populations of Eastern Kamchatka and Chukotka, the examined samples were combined into two regional groups represented by the population of the Kamchatka River drainage, which included numerous local subpopulations and seasonal races, and the northern population grouping from the rivers of Olutorsko-Navarinsky raion, wherein the sockeye salmon from Maynypilginskaya Lake-River system was relatively isolated. Considerable divergence was observed between the island (Sarannoe Lake, Bering Island) and continental populations. Genetic heterogeneity was revealed and groups of early- and late-maturing individuals were isolated in the sample of late-run sockeye salmon from Kamchatka River. In Apuka River, subdivision of the spawning run into two genetically distinct spatial and temporal groupings was also observed. The results suggest that the differentiation of sockeye salmon samples by single nucleotide substitution frequencies was largely due to differences in the direction and strength of local selection at some loci in the population complexes and intrapopulation groupings from the examined river basins of Eastern Kamchatka, Chukotka, and Commander Islands.

  5. Export of microplastics from land to sea. A modelling approach.

    PubMed

    Siegfried, Max; Koelmans, Albert A; Besseling, Ellen; Kroeze, Carolien

    2017-12-15

    Quantifying the transport of plastic debris from river to sea is crucial for assessing the risks of plastic debris to human health and the environment. We present a global modelling approach to analyse the composition and quantity of point-source microplastic fluxes from European rivers to the sea. The model accounts for different types and sources of microplastics entering river systems via point sources. We combine information on these sources with information on sewage management and plastic retention during river transport for the largest European rivers. Sources of microplastics include personal care products, laundry, household dust and tyre and road wear particles (TRWP). Most of the modelled microplastics exported by rivers to seas are synthetic polymers from TRWP (42%) and plastic-based textiles abraded during laundry (29%). Smaller sources are synthetic polymers and plastic fibres in household dust (19%) and microbeads in personal care products (10%). Microplastic export differs largely among European rivers, as a result of differences in socio-economic development and technological status of sewage treatment facilities. About two-thirds of the microplastics modelled in this study flow into the Mediterranean and Black Sea. This can be explained by the relatively low microplastic removal efficiency of sewage treatment plants in the river basins draining into these two seas. Sewage treatment is generally more efficient in river basins draining into the North Sea, the Baltic Sea and the Atlantic Ocean. We use our model to explore future trends up to the year 2050. Our scenarios indicate that in the future river export of microplastics may increase in some river basins, but decrease in others. Remarkably, for many basins we calculate a reduction in river export of microplastics from point-sources, mainly due to an anticipated improvement in sewage treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The spatiotemporal distribution of dissolved carbon in the main stems and their tributaries along the lower reaches of Heilongjiang River Basin, Northeast China.

    PubMed

    Wang, Lili; Song, Changchun; Guo, Yuedong

    2016-01-01

    The Heilongjiang River Basin in the eastern Siberia, one of the largest river basins draining to the North Pacific Ocean, is a border river between China, Mongolia, and Russia. In this study, we examined the spatial and seasonal variability in dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and dissolved total carbon (DTC) concentrations along lower reaches of Heilongjiang River Basin, China. Water samples were collected monthly along the mouths of main rivers (Heilongjiang River, Wusuli River, and Songhua River) and their ten tributary waters for 2 years. The DOC concentrations of waters ranged from 1.74 to 16.64 mg/L, with a mean value of 8.90 ± 0.27 mg/L (n = 165). Notably, mean DIC concentrations were 9.08 ± 0.31 mg/L, accounting for 13.26∼83.27% of DTC. DIC concentrations increased significantly after the Heilongjiang River passed through Northeast China, while DOC concentrations decreased. Over 50% of DIC concentrations were decreased during exports from groundwater to rice fields and from rice fields to ditches. Water dissolved carbon showed large spatial and temporal variations during the 2-year measurement, suggesting that more frequently samplings were required. Carbon (DIC + DOC) loads from the Heilongjiang River to the Sea of Okhotsk were estimated to be 3.26 Tg C/year in this study, accounting for 0.64% of the global water dissolved carbon flux. DIC export contributed an average of 51.84% of the estimated carbon load in the Heilongjiang River, acting as an important carbon component during riverine transport. Our study could provide some guides on agricultural water management and contribute to more accurately estimate global carbon budgets.

  7. How have the river discharges and sediment loads changed in the Changjiang River basin downstream of the Three Gorges Dam?

    NASA Astrophysics Data System (ADS)

    Guo, Leicheng; Su, Ni; Zhu, Chunyan; He, Qing

    2018-05-01

    Streamflow and sediment loads undergo remarkable changes in worldwide rivers in response to climatic changes and human interferences. Understanding their variability and the causes is of vital importance regarding river management. With respect to the Changjiang River (CJR), one of the largest river systems on earth, we provide a comprehensive overview of its hydrological regime changes by analyzing long time series of river discharges and sediment loads data at multiple gauge stations in the basin downstream of Three Gorges Dam (TGD). We find profound river discharge reduction during flood peaks and in the wet-to-dry transition period, and slightly increased discharges in the dry season. Sediment loads have reduced progressively since 1980s owing to sediment yield reduction and dams in the upper basin, with notably accelerated reduction since the start of TGD operation in 2003. Channel degradation occurs in downstream river, leading to considerable river stage drop. Lowered river stages have caused a 'draining effect' on lakes by fostering lake outflows following TGD impoundments. The altered river-lake interplay hastens low water occurrence inside the lakes which can worsen the drought given shrinking lake sizes in long-term. Moreover, lake sedimentation has decreased since 2002 with less sediment trapped in and more sediment flushed out of the lakes. These hydrological changes have broad impacts on river flood and drought occurrences, water security, fluvial ecosystem, and delta safety.

  8. Quantifying the potential for reservoirs to secure future surface water yields in the world’s largest river basins

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Parkinson, Simon; Gidden, Matthew; Byers, Edward; Satoh, Yusuke; Riahi, Keywan; Forman, Barton

    2018-04-01

    Surface water reservoirs provide us with reliable water supply, hydropower generation, flood control and recreation services. Yet reservoirs also cause flow fragmentation in rivers and lead to flooding of upstream areas, thereby displacing existing land-use activities and ecosystems. Anticipated population growth and development coupled with climate change in many regions of the globe suggests a critical need to assess the potential for future reservoir capacity to help balance rising water demands with long-term water availability. Here, we assess the potential of large-scale reservoirs to provide reliable surface water yields while also considering environmental flows within 235 of the world’s largest river basins. Maps of existing cropland and habitat conservation zones are integrated with spatially-explicit population and urbanization projections from the Shared Socioeconomic Pathways to identify regions unsuitable for increasing water supply by exploiting new reservoir storage. Results show that even when maximizing the global reservoir storage to its potential limit (∼4.3–4.8 times the current capacity), firm yields would only increase by about 50% over current levels. However, there exist large disparities across different basins. The majority of river basins in North America are found to gain relatively little firm yield by increasing storage capacity, whereas basins in Southeast Asia display greater potential for expansion as well as proportional gains in firm yield under multiple uncertainties. Parts of Europe, the United States and South America show relatively low reliability of maintaining current firm yields under future climate change, whereas most of Asia and higher latitude regions display comparatively high reliability. Findings from this study highlight the importance of incorporating different factors, including human development, land-use activities, and climate change, over a time span of multiple decades and across a range of different scenarios when quantifying available surface water yields and the potential for reservoir expansion.

  9. Sustainable management of river oases along the Tarim River in North-Western China under conditions of climate change

    NASA Astrophysics Data System (ADS)

    Rumbaur, C.; Thevs, N.; Disse, M.; Ahlheim, M.; Brieden, A.; Cyffka, B.; Doluschitz, R.; Duethmann, D.; Feike, T.; Frör, O.; Gärtner, P.; Halik, Ü.; Hill, J.; Hinnenthal, M.; Keilholz, P.; Kleinschmit, B.; Krysanova, V.; Kuba, M.; Mader, S.; Menz, C.; Othmanli, H.; Pelz, S.; Schroeder, M.; Siew, T. F.; Stender, V.; Stahr, K.; Thomas, F. M.; Welp, M.; Wortmann, M.; Zhao, X.; Chen, X.; Jiang, T.; Zhao, C.; Zhang, X.; Luo, J.; Yimit, H.; Yu, R.

    2014-10-01

    The Tarim River Basin, located in Xinjiang, NW China, is the largest endorheic river basin of China and one of the largest in whole Central Asia. Due to the extremely arid climate with an annual precipitation of less than 100 mm, the water supply along the Aksu and Tarim River solely depends on river water. This applies for anthropogenic activities (e.g. agriculture) as well as for the natural ecosystems so that both compete for water. The on-going increase of water consumption by agriculture and other human activities in this region has been enhancing the competition for water between human needs and nature. Against this background, 11 German and 6 Chinese universities and research institutes formed the consortium SuMaRiO (www.sumario.de), which aims at gaining a holistic picture of the availability of water resources in the Tarim River Basin and the impacts on anthropogenic activities and natural ecosystems caused by the water distribution within the Tarim River Basin. The discharge of the Aksu River, which is the major tributary to the Tarim, has been increasing over the past 6 decades due to enhanced glacier melt. Alone from 1989 to 2011, the area under agriculture more than doubled. Thereby, cotton became the major crop and there was a shift from small-scale farming to large-scale intensive farming. The major natural ecosystems along the Aksu and Tarim River are riparian ecosystems: Riparian (Tugai) forests, shrub vegetation, reed beds, and other grassland. Within the SuMaRiO Cluster the focus was laid on the Tugai forests, with Populus euphratica as dominant tree, because the most productive and species-rich natural ecosystems can be found among those forests. On sites with groundwater distance of less than 7.5 m the annual increments correlated with river runoffs of the previous year. But, the further downstream along the Tarim River, the more the natural river dynamics ceased, which impacts on the recruitment of Populus euphratica. Household surveys revealed that there is a considerable willingness to pay for conservation of those riparian forests with the mitigation of dust and sandstorms considered as the most important ecosystem service. This interdisciplinary project will result in a decision support tool (DST), build on the participation of regional stakeholders and models based on results and field experiments. This DST finally shall assist stakeholders in balancing the water competition acknowledging the major external effects of any water allocation.

  10. Contamination characteristics of organochlorine pesticides in multimatrix sampling of the Hanjiang River Basin, southeast China.

    PubMed

    Liu, Jia; Qi, Shihua; Yao, Jun; Yang, Dan; Xing, Xinli; Liu, Hongxia; Qu, Chengkai

    2016-11-01

    Hanjiang River, the second largest river in Guangdong Province, Southern China, is the primary source of drinking water for the cities of Chaozhou and Shantou. Our previous studies indicated that soils from an upstream catchment area of the Hanjiang River are moderately contaminated with organochlorine pesticides (OCPs), which can easily enter the river system via soil runoff. Therefore, OCPs, especially downstream drinking water sources, may pose harmful health and environmental risks. On the basis of this hypothesis, we measured the OCP concentrations in dissolved phase (DP), suspended particle matter (SPM), and surface sediment (SS) samples collected along the Hanjiang River Basin in Fujian and Guangdong provinces. OCP residue levels were quantified through electron capture detector gas chromatography to identify the OCP sources and deposits. The concentration ranges of OCPs in DP, SPM, and SS, respectively, were 2.11-12.04 (ng/L), 6.60-64.77 (ng/g), and 0.60-4.71 (ng/g) for hexachlorocyclohexanes (HCHs), and 2.49-4.77 (ng/L), 6.75-80.19 (ng/g), and 0.89-252.27 (ng/g) for dichloro-diphenyl-trichloroethanes (DDTs). Results revealed that DDTs represent an ecotoxicological risk to the Hanjiang River Basin, as indicated by international sediment guidelines. This study serves as a basis for the future management of OCP concentrations in the Hanjiang River Basin, and exemplifies a pattern of OCP movement (like OCP partition among multimedia) from upstream to downstream. This pattern may be observed in similar rivers in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Potential impact of climate change to the future streamflow of Yellow River Basin based on CMIP5 data

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoli; Zheng, Weifei; Ren, Liliang; Zhang, Mengru; Wang, Yuqian; Liu, Yi; Yuan, Fei; Jiang, Shanhu

    2018-02-01

    The Yellow River Basin (YRB) is the largest river basin in northern China, which has suffering water scarcity and drought hazard for many years. Therefore, assessments the potential impacts of climate change on the future streamflow in this basin is very important for local policy and planning on food security. In this study, based on the observations of 101 meteorological stations in YRB, equidistant CDF matching (EDCDFm) statistical downscaling approach was applied to eight climate models under two emissions scenarios (RCP4.5 and RCP8.5) from phase five of the Coupled Model Intercomparison Project (CMIP5). Variable infiltration capacity (VIC) model with 0.25° × 0.25° spatial resolution was developed based on downscaled fields for simulating streamflow in the future period over YRB. The results show that with the global warming trend, the annual streamflow will reduced about 10 % during the period of 2021-2050, compared to the base period of 1961-1990 in YRB. There should be suitable water resources planning to meet the demands of growing populations and future climate changing in this region.

  12. Concentrations of metals associated with mining waste in sediments, biofilm, benthic macroinvertebrates, and fish from the Coeur d'Alene River Basin, Idaho

    USGS Publications Warehouse

    Farag, A.M.; Woodward, D.F.; Goldstein, J.N.; Brumbaugh, W.; Meyer, J.S.

    1998-01-01

    Arsenic, Cd, Cu, Pb, Hg, and Zn were measured in sediments, biofilm, benthic macroinvertebrates, and fish from the Coeur d'Alene (CDA) River to characterize the pathway of metals transfer between these components. Metals enter the CDA Basin via tributaries where mining activities have occurred. In general, the ranking of food-web components from the greatest to smallest concentrations of metals was as follows: biofilm (the layer of abiotic and biotic material on rock surfaces) and sediments > invertebrates > whole fish. Elevated Pb was documented in invertebrates, and elevated Cd and Zn were documented in sediment and biofilm approximately 80 km downstream to the Spokane River. The accumulation of metals in invertebrates was dependent on functional feeding group and shredders-scrapers that feed on biofilm accumulated the largest concentrations of metals. Although the absolute concentrations of metals were the largest in biofilm and sediments, the metals have accumulated in fish approximately 50 km downstream from Kellogg, near the town of Harrison. While metals do not biomagnify between trophic levels, the metals in the CDA Basin are bioavailable and do biotransfer. Trout less than 100 mm long feed exclusively on small invertebrates, and small invertebrates accumulate greater concentrations of metals than large invertebrates. Therefore, early-lifestage fish may be exposed to a larger dose of metals than adults.

  13. Human-induced stream channel abandonment/capture and filling of floodplain channels within the Atchafalaya River Basin, Louisiana

    USGS Publications Warehouse

    Kroes, Daniel E.; Kraemer, Thomas F.

    2013-01-01

    The Atchafalaya River Basin is a distributary system of the Mississippi River containing the largest riparian area in the lower Mississippi River Valley and the largest remaining forested bottomland in North America. Reductions in the area of open water in the Atchafalaya have been occurring over the last 100 years, and many historical waterways are increasingly filled by sediment. This study examines two cases of swamp channels (3/s) that are filling and becoming unnavigable as a result of high sediment loads and slow water velocities. The water velocities in natural bayous are further reduced because of flow capture by channels constructed for access. Bathymetry, flow, suspended sediment, deposited bottom-material, isotopes, and photointerpretation were used to characterize the channel fill. On average, water flowing through these two channels lost 23% of the suspended sediment load in the studied reaches. Along one of the studied reaches, two constructed access channels diverted significant flow out of the primary channel and into the adjacent swamp. Immediately downstream of each of the two access channels, the cross-sectional area of the studied channel was reduced. Isotopic analyses of bottom-material cores indicate that bed filling has been rapid and occurred after detectable levels of Cesium-137 were no longer being deposited. Interpretation of aerial photography indicates that water is bypassing the primary channels in favor of the more hydraulically efficient access channels, resulting in low or no-velocity flow conditions in the primary channel. These swamp channel conditions are typical in the Atchafalaya River Basin where relict large channel dimensions result in flow velocities that are normally too low to carry fine-grained sediment. Constructed channels increase the rate of natural channel avulsion and abandonment as a result of flow capture.

  14. The fish fauna in tropical rivers: the case of the Sorocaba River basin, São Paulo, Brazil.

    PubMed

    Smith, Welber Senteio; Petrere Júnior, Miguel; Barrella, Walter

    2003-01-01

    A survey was carried out on the fish species in the Sorocaba River basin, the main tributary of the left margin of the Tietê River, located in the State of São Paulo, Brazil. The species were collected with gill nets. After identification of the specimens, their relative abundance, weight and standard length were determined. Up to the present moment there are not any studies that focus this subject in this hydrographic basin. Fifty-three species, distributed in eighteen families and six orders were collected. Characiformes were represented by twenty-eight species, Siluriformes by seventeen species, the Gymnotiformes by three species, Perciformes and Cyprinodontiformes by two species, and the Synbranchiformes by one species. Among the collected species there were two exotic. The most abundant species were Astyanax fasciatus and Hypostomus ancistroides. In relation to total weight the most representative species were Hoplias malabaricus and Hypostomus ancistroides. Cyprinus carpio, Prochilodus lineatus, Schizodon nasutus and Hoplias malabaricus were the most representative species in relation to average weight. Largest standard length were recorded for Sternopygus macrurus, Steindachnerina insculpta, Eigenmannia aff. virescens and Cyprinus carpio.

  15. Timing and patterns of basin infilling as documented in Lake Powell during a drought

    USGS Publications Warehouse

    Pratson, Lincoln F.; Hughes-Clarke, John; Anderson, Mark; Gerber, Thomas; Twitchell, David C.; Ferrari, Ronald; Nittrouer, Charles A.; Beaudoin, Jonathan D.; Granet, Jesse; Crockett, John

    2008-01-01

    Between 1999 and 2005, drought in the western United States led to a >44 m fall in the level of Lake Powell (Arizona-Utah), the nation's second-largest reservoir. River discharges to the reservoir were halved, yet the rivers still incised the tops of deltas left exposed along the rim of the reservoir by the lake-level fall. Erosion of the deltas enriched the rivers in sediment such that upon entering the reservoir they discharged plunging subaqueous gravity flows, one of which was imaged acoustically. Repeat bathymetric surveys of the reservoir show that the gravity flows overtopped rockfalls and formed small subaqueous fans, locally raising sediment accumulation rates 10–100-fold. The timing of deep-basin deposition differed regionally across the reservoir with respect to lake-level change. Total mass of sediment transferred from the lake perimeter to its bottom equates to ~22 yr of river input.

  16. Spatio-temporal variation in the hydrochemistry of Tawa River, Central India: effect of natural and anthropogenic factors.

    PubMed

    Mehto, Ashwini; Chakrapani, G J

    2013-12-01

    Tawa River is the biggest left bank tributary of the Narmada, the largest west-flowing river of the Indian peninsula. Central India enjoys a tropical climate, is highly urbanized, and the river flow is mostly controlled by monsoon; a large part of the population depend on rivers for their livelihood. Spatial and temporal variations in the hydrochemistry of the Tawa River were studied based on seasonal sampling along the course of the river and its tributaries. The study is important because not much data exist on small size rivers and the river processes spell out correctly in smaller basins. The monsoon season accounts for more than 70% of river water flow. The basin is characterized by silicate lithology; however, water chemistry is controlled by carbonate-rich soils and other weathering products of the silicate rocks, as indicated by the high (Ca + Mg)/(Na + K) ratios (>3.8). The values of the Na-normalized ratios of Ca(2+), Mg(2+), and HCO₃(-) suggest that both the carbonate and silicate lithology contribute to the hydrochemistry. On average, 42% of HCO₃(-) in the Tawa River water is contributed by silicate weathering and 58% from carbonate lithology. The water remains undersaturated with respect to calcite during the monsoon and post-monsoon seasons and supersaturated during the pre-monsoon season. A significant influence of mining in the basin and other industrial units is observed in water chemical composition.

  17. Modeling suspended sediment sources and transport in the Ishikari River basin, Japan, using SPARROW

    NASA Astrophysics Data System (ADS)

    Duan, W. L.; He, B.; Takara, K.; Luo, P. P.; Nover, D.; Hu, M. C.

    2015-03-01

    It is important to understand the mechanisms that control the fate and transport of suspended sediment (SS) in rivers, because high suspended sediment loads have significant impacts on riverine hydroecology. In this study, the SPARROW (SPAtially Referenced Regression on Watershed Attributes) watershed model was applied to estimate the sources and transport of SS in surface waters of the Ishikari River basin (14 330 km2), the largest watershed in Hokkaido, Japan. The final developed SPARROW model has four source variables (developing lands, forest lands, agricultural lands, and stream channels), three landscape delivery variables (slope, soil permeability, and precipitation), two in-stream loss coefficients, including small streams (streams with drainage area < 200 km2) and large streams, and reservoir attenuation. The model was calibrated using measurements of SS from 31 monitoring sites of mixed spatial data on topography, soils and stream hydrography. Calibration results explain approximately 96% (R2) of the spatial variability in the natural logarithm mean annual SS flux (kg yr-1) and display relatively small prediction errors at the 31 monitoring stations. Results show that developing land is associated with the largest sediment yield at around 1006 kg km-2 yr-1, followed by agricultural land (234 kg km-2 yr-1). Estimation of incremental yields shows that 35% comes from agricultural lands, 23% from forested lands, 23% from developing lands, and 19% from stream channels. The results of this study improve our understanding of sediment production and transportation in the Ishikari River basin in general, which will benefit both the scientific and management communities in safeguarding water resources.

  18. Bathymetry and Geology of the Floor of Yellowstone Lake, Yellowstone National Park, Wyoming, Idaho, and Montana

    USGS Publications Warehouse

    Morgan, L.A.; Shanks, Wayne C.; Lee, G.K.; Webring, M.W.

    2007-01-01

    High-resolution, multi-beam sonar mapping of Yellowstone Lake was conducted by the U.S. Geological Survey in conjunction with the National Park Service from 1999 to 2002. Yellowstone Lake is the largest high-altitude lake in North America, at an altitude of 2,357 m with a surface area of 341 km2. More than 140 rivers and streams flow into Yellowstone Lake. The Yellowstone River, which enters at the southern end of the lake into the Southeast Arm, dominates the inflow of water and sediment (Shanks and others, 2005). The only outlet from the lake is at Fishing Bridge where the Yellowstone River flows northward discharging 375 to 4,600 cubic feet per second. The multi-beam sonar mapping occurred over a four-year period beginning in 1999 with mapping of the northern basin, continued in 2000 in West Thumb basin, in 2001 in the central basin, and in 2002 in the southern part of the lake including the Flat Mountain, South, and Southeast Arms.

  19. Algal Data from Selected Sites in the Upper Colorado River Basin, Colorado, Water Years 1996-97

    USGS Publications Warehouse

    Mize, Scott V.; Deacon, Jeffrey R.

    2001-01-01

    Algal community samples were collected at 15 sites in the Upper Colorado River Basin in Colorado as part of the National Water-Quality Assessment Program during water years 1996-97. Sites sampled were located in two physiographic provinces, the Southern Rocky Mountains and the Colorado Plateaus, and represented agricultural, mining, urban, and mixed land uses and background conditions. Algal samples were collected once per year during low-flow conditions. Quantitative algal samples were collected within two targeted instream habitat types including a taxonomically richest-targeted habitat and a depositional-targeted habitat. This report presents the algal community data collected at the fixed sites in the Upper Colorado River Basin study unit. Algal data include densities (abundance of cells per square centimeter of substrate) and biovolumes (cubic micrometers of cells per square centimeter of substrate) for the two habitat types. Quality-assurance and quality-control results for algal samples indicate that the largest sampling variability tends to occur in samples from small streams.

  20. Nitrogen and phosphorus in streams of the Great Miami River Basin, Ohio, 1998-2000

    USGS Publications Warehouse

    Reutter, David C.

    2003-01-01

    Sources and loads of nitrogen and phosphorus in streams of the Great Miami River Basin were evaluated as part of the National Water-Quality Assessment program. Water samples were collected by the U.S. Geological Survey from October 1998 through September 2000 (water years 1999 and 2000) at five locations in Ohio on a routine schedule and additionally during selected high streamflows. Stillwater River near Union, Great Miami River near Vandalia, and Mad River near Eagle City were selected to represent predominantly agricultural areas upstream from the Dayton metropolitan area. Holes Creek near Kettering is in the Dayton metropolitan area and was selected to represent an urban area in the Great Miami River Basin. Great Miami River at Hamilton is downstream from the Dayton and Hamilton-Middletown metropolitan areas and was selected to represent mixed agricultural and urban land uses of the Great Miami River Basin. Inputs of nitrogen and phosphorus to streams from point and nonpoint sources were estimated for the three agricultural basins and for the Great Miami River Basin as a whole. Nutrient inputs from point sources were computed from the facilities that discharge one-half million gallons or more per day into streams of the Great Miami River Basin. Nonpoint-source inputs estimated in this report are atmospheric deposition and commercial-fertilizer and manure applications. Loads of ammonia, nitrate, total nitrogen, orthophosphate, and total phosphorus from the five sites were computed with the ESTIMATOR program. The computations show nitrate to be the primary component of instream nitrogen loads, and particulate phosphorus to be the primary component of instream phosphorus loads. The Mad River contributed the smallest loads of total nitrogen and total phosphorus to the study area upstream from Dayton, whereas the Upper Great Miami River (upstream from Vandalia) contributed the largest loads of total nitrogen and total phosphorus to the Great Miami River Basin upstream from Dayton. An evaluation of monthly mean loads shows that nutrient loads were highest during winter 1999 and lowest during the drought of summer and autumn 1999. During the 1999 drought, point sources were the primary contributors of nitrogen and phosphorus loads to most of the study area. Nonpoint sources, however, were the primary contributors of nitrogen and phosphorus loads during months of high streamflow. Nonpoint sources were also the primary contributors of nitrogen loads to the Mad River during the 1999 drought, owing to unusually large amounts of ground-water discharge to the stream. The Stillwater River Basin had the highest nutrient yields in the study area during months of high streamflow; however, the Mad River Basin had the highest yields of all nutrients except ammonia during the months of the 1999 drought. The high wet-weather yields in the Stillwater River Basin were caused by agricultural runoff, whereas high yields in the Mad River Basin during drought resulted from the large, sustained contribution of ground water to streamflow throughout the year. In the basins upstream from Dayton, an estimated 19 to 25 percent of the nonpoint source of nitrogen and 4 to 5 percent of the nonpoint source of phosphorus that was deposited or applied to the land was transported into streams.

  1. A fate model for nitrogen dynamics in the Scheldt basin

    NASA Astrophysics Data System (ADS)

    Haest, Pieter Jan; van der Kwast, Johannes; Broekx, Steven; Seuntjens, Piet

    2010-05-01

    The European Union (EU) adopted the Water Framework Directive (WFD) in 2000 ensuring that all aquatic ecosystems meet ‘good ecological status' by 2015. However, the large population density in combination with agricultural and industrial activities in some European river basins pose challenges for river basin managers in meeting this status. The EU financed AQUAREHAB project (FP7) specifically examines the ecological and economic impact of innovative rehabilitation technologies for multi-pressured degraded waters. For this purpose, a numerical spatio-temporal model is developed to evaluate innovative technologies versus conventional measures at the river basin scale. The numerical model describes the nitrogen dynamics in the Scheldt river basin. Nitrogen is examined since nitrate is of specific concern in Belgium, the country comprising the largest area of the Scheldt basin. The Scheldt basin encompasses 20000 km2 and houses over 10 million people. The governing factors describing nitrogen fluxes at this large scale differ from the field scale with a larger uncertainty on input data. As such, the environmental modeling language PCRaster was selected since it was found to provide a balance between process descriptions and necessary input data. The resulting GIS-based model simulates the nitrogen dynamics in the Scheldt basin with a yearly time step and a spatial resolution of 1 square kilometer. A smaller time step is being evaluated depending on the description of the hydrology. The model discerns 4 compartments in the Scheldt basin: the soil, shallow groundwater, deep groundwater and the river network. Runoff and water flow occurs along the steepest slope in all model compartments. Diffuse emissions and direct inputs are calculated from administrative and statistical data. These emissions are geographically defined or are distributed over the domain according to land use and connectivity to the sewer system. The reactive mass transport is described using literature data. Process-knowledge on the innovative rehabilitation technologies, i.e. wetlands and riparian zones, will be derived from lab and field scale experiments. Datasets provided at the EU level are used to calibrate the model when available. The fate model will be used to create a database driven Decision Support System (DSS) in which costs of measures and ecotoxicological effects are considered. The DSS can then be used to compare alternative combinations of rehabilitation technologies versus conventional measures in the Scheldt river basin taking into account the ecological status of the river basin.

  2. Modeled effects of irrigation on surface climate in the Heihe River Basin, Northwest China

    NASA Astrophysics Data System (ADS)

    Zhang, Xuezhen; Xiong, Zhe; Tang, Qiuhong

    2017-08-01

    In Northwest China, water originates from the mountain area and is largely used for irrigation agriculture in the middle reaches. This study investigates the local and remote impact of irrigation on regional climate in the Heihe River Basin, the second largest inland river basin in Northwest China. An irrigation scheme was developed and incorporated into the Weather Research and Forecasting (WRF) model with the Noah-MP land surface scheme (WRF/Noah-MP). The effects of irrigation is assessed by comparing the model simulations with and without consideration of irrigation (hereafter, IRRG and NATU simulations, respectively) for five growth seasons (May to September) from 2009 to 2013. As consequences of irrigation, daily mean temperature decreased by 1.7°C and humidity increased by 2.3 g kg-1 (corresponding to 38.5%) over irrigated area. The temperature and humidity of IRRG simulation matched well with the observations, whereas NATU simulation overestimated temperature and underestimated humidity over irrigated area. The effects on temperature and humidity are generally small outside the irrigated area. The cooling and wetting effects have opposing impacts on convective precipitation, resulting in a negligible change in localized precipitation over irrigated area. However, irrigation may induce water vapor convergence and enhance precipitation remotely in the southeastern portion of the Heihe River Basin.

  3. Nashville Basin, Tennessee as seen from STS-58

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The largest cityscape in the view is Nashville (top left), part of which is obscured under a band of clouds (the Cumberland River, on which Nashville lies, can not be seen under the cloud band). Close to the main cloud mass on the opposite side of the view, lies a small lake (Normandy Lake) in sunglint (right center) 70 miles southeast of Nashville. Between these two features, in the center of the Nashville Basin, lies the city of Murfreesboro. The city appears here as a spider-like pattern one third the distance from Nashville towards Normandy Lake. The Tennessee River can be seen bottom right and top right through holes in the cloud.

  4. Web-Based Water Accounting Scenario Platform to Address Uncertainties in Water Resources Management in the Mekong : A Case Study in Ca River Basin, Vietnam

    NASA Astrophysics Data System (ADS)

    Apirumanekul, C.; Purkey, D. R.; Pudashine, J.; Seifollahi-Aghmiuni, S.; Wang, D.; Ate, P.; Meechaiya, C.

    2017-12-01

    Rapid economic development in the Mekong Region is placing pressure on environmental resources. Uncertain changes in land-use, increasing urbanization, infrastructure development, migration patterns and climate risks s combined with scarce water resources are increasing water demand in various sectors. More appropriate policies, strategies and planning for sustainable water resource management are urgently needed. Over the last five years, Vietnam has experienced more frequent and intense droughts affecting agricultural and domestic water use during the dry season. The Ca River Basin is the third largest river basin in Vietnam with 35% of its area located in Lao PDR. The delta landscape comprises natural vegetation, forest, paddy fields, farming and urban areas. The Ca River Basin is experiencing ongoing water scarcity that impacts on crop production, farming livelihoods and household water consumption. Water scarcity is exacerbated by uncertainties in policy changes (e.g. changes in land-use, crop types), basin development (e.g. reservoir construction, urban expansion), and climate change (e.g. changes in rainfall patterns and onset of monsoon). The Water Evaluation And Planning (WEAP) model, with inputs from satellite-based information and institutional data, is used to estimate water supply, water use and water allocation in various sectors (e.g. household, crops, irrigation and flood control) under a wide range of plausible future scenarios in the Ca River Basin. Web-Based Water Allocation Scenario Platform is an online implementation of WEAP model structured in terms of a gaming experience. The online game, as an educational tool, helps key agencies relevant to water resources management understand and explore the complexity of integrated system of river basin under a wide range of scenarios. Performance of the different water resources strategies in Ca River Basin (e.g. change of dam operation to address needs in various sectors, construction of dams, changes in cropping patterns and increasing irrigation diversion) under a wide range of uncertainties will be assessed. The game allows stakeholders to participate in a realistic game that requires them to make choices amongst various water management strategies with the goal of improving water management towards greater sustainability.

  5. [Integrated assessment of ecosystem quality of arid inland river basin based on RS and GIS: A case study on Shiyang River Basin, Northwest China].

    PubMed

    Liang, Bian Bian; Shi, Pei Ji; Wang, Wei; Tang, Xiao; Zhou, Wen Xia; Jing, Ye

    2017-01-01

    The Shiyang River Basin is an important ecological area of the Eastern Hexi Corridor, and is one of the most prominent areas of water conflict and ecological environment problems. An assessment of ecosystem quality in the Shiyang River Basin can provide a reference for ecological protection in arid inland basin. Based on the concept of ecosystem quality and the statistical yearbook, remotely sensed and land cover data, an evaluation index was established with consideration of three aspects of ecosystem (i.e., productivity, stability and bearing capacity). Kruskal-Wallis (Φ 2 ) test and entropy method were applied to determine the weights of evaluation index. With the assistance of RS, GIS and SPSS software, a comprehensive evaluation and change analysis of ecosystem quality and corresponding index were conducted for various ecosystem types in the Shiyang River Basin in 2000, 2005, 2010 and 2015. Results showed that the average ecosystem quality of the Shiyang River Basin was 57.76, and presented an obvious decrease with a magnitude of 0.72 per year du-ring 2000-2015. The spatial pattern of ecosystem quality was that the upstream was better than the midstream, and the midstream was superior to the downstream. The mean values of production capacity, stability and carrying capacity of ecosystem were 67.52, 45.37, and 58.53, respectively. Production capacity and stability had increased slightly, while carrying capacity gradually decreased. Considering various ecosystem types, the highest quality was detected for forest ecosystem with average annual value of 78.12, and this ecosystem presented the lowest decreasing magnitude of 0.28 per year; for grassland, farmland and urban ecosystems, the average annual value was 62.45, 58.76 and 50.29, respectively; the quality of wetland ecosystem was the lowest, and suffered the largest decline with an average rate of 0.98 per year.

  6. Model simulations of potential contribution of the proposed Huangpu Gate to flood control in the Lake Taihu basin of China

    NASA Astrophysics Data System (ADS)

    Zhang, Hanghui; Liu, Shuguang; Ye, Jianchun; Yeh, Pat J.-F.

    2017-10-01

    The Lake Taihu basin (36 895 km2), one of the most developed regions in China located in the hinterland of the Yangtze River Delta, has experienced increasing flood risk. The largest flood in history occurred in 1999 with a return period estimate of 200 years, considerably larger than the current capacity of the flood defense with a design return period of 50 years. Due to its flat saucer-like terrain, the capacity of the flood control system in this basin depends on flood control infrastructures and peripheral tidal conditions. The Huangpu River, an important river of the basin connecting Lake Taihu upstream and Yangtze River estuaries downstream, drains two-fifths of the entire basin. Since the water level in the Huangpu River is significantly affected by the high tide conditions in estuaries, constructing an estuary gate is considered an effective solution for flood mitigation. The main objective of this paper is to assess the potential contributions of the proposed Huangpu Gate to the flood control capacity of the basin. To achieve this goal, five different scenarios of flooding conditions and the associated gate operations are considered by using numerical model simulations. Results of quantitative analyses show that the Huangpu Gate is effective for evacuating floodwaters. It can help to reduce both peak values and duration of high water levels in Lake Taihu to benefit surrounding areas along the Taipu Canal and the Huangpu River. The contribution of the gate to the flood control capacity is closely associated with its operation modes and duration. For the maximum potential contribution of the gate, the net outflow at the proposed site is increased by 52 %. The daily peak level is decreased by a maximum of 0.12 m in Lake Taihu, by maxima of 0.26-0.37 and 0.46-0.60 m in the Taipu Canal and the Huangpu River, respectively, and by 0.05-0.39 m in the surrounding areas depending on the local topography. It is concluded that the proposed Huangpu Gate can reduce flood risk in the Lake Taihu basin, especially in those low-lying surrounding areas along the Taipu Canal and the Huangpu River significantly, which is of great benefit to the flood management in the basin and the Yangtze River Delta.

  7. Water and Sediment Quality in the Yukon River and its Tributaries Between Atlin, British Columbia, Canada, and Eagle, Alaska, USA, 2004

    USGS Publications Warehouse

    Halm, Douglas R.; Dornblaser, Mark M.

    2007-01-01

    The Yukon River basin is the fourth largest watershed in North America at 831,400 square kilometers (km2). Approximately 126,000 people live within the basin and depend on the Yukon River and its tributaries for drinking water, commerce, subsistence, and recreational fish and game resources. Climate warming in the Arctic and Subarctic regions encompassing the Yukon basin has recently become a concern because of possible far-reaching effects on the ecosystem. Large amounts of carbon and nutrients are stored in permafrost and have potential for release in response to this warming. These changes in carbon and nutrient cycling may result in changes in stream chemistry and productivity, including salmon populations, and ultimately changes in the chemistry and productivity of the Bearing Sea. To address these concerns, the U.S. Geological Survey (USGS) conducted a 5-year comprehensive water-quality study of the Yukon River and its major tributaries starting in 2000. The study included frequent water-quality sampling at a fixed site network as well as intensive sampling along the Yukon River and its major tributaries. This report contains observations of water and sediment quantity and quality of the Yukon River and its tributaries in Canada during 2004. Chemical, biological, physical, and discharge data are presented for the reach of river between Atlin, British Columbia, Canada, and Eagle, Alaska, USA.

  8. Hotspots within the Transboundary Selenga River Basin

    NASA Astrophysics Data System (ADS)

    Kasimov, Nikolay; Lychagin, Mikhail; Chalov, Sergey

    2013-04-01

    Gathering the efficient information on water pollution of transboundary river systems remains the crucial task in international water management, environmental pollution control and prevention health problems. Countries, located in the low parts of the river basins, depend on the water strategy and water use in the adjacent countries, located upstream. Surface water pollution is considered to be the most serious problem, facing the above-mentioned countries. Large efforts in terms of field measurement campaigns and (numerical) transport modeling are then typically needed for relevant pollution prediction and prevention. Russian rivers take inflow from 8 neighboring countries. Among them there are 2 developing economies - People Republic of China and Mongolia, which are located in water-scarce areas and thus solve their water-related problems through the consumption of international water. Negative change of water runoff and water quality in the foreign part of transboundary river is appeared inside Russian territory with more or less delay. The transboundary river system of Selenga is particularly challenging, being the biggest tributary of Lake Baikal which is the largest freshwater reservoir in the world. Selenga River contributes about 50 % of the total inflow into Baikal. It originates in the mountainous part of Mongolia and then drains into Russia. There are numerous industries and agricultural activities within the Selenga drainage basin that affect the water quality of the river system. Absence of the single monitoring system and predictive tools for pollutants transport in river system requires large efforts in understanding sources of water pollution and implemented data on the relevant numerical systems for the pollution prediction and prevention. Special investigations in the Selenga river basin (Mongolia and Russia) were done to assess hot spots and understand state-of-the art in sediment load, water chemistry and hydrobiology of transboundary systems. Hot spot assessment included 100 gauge stations in the river basin with discharge measurement by ADCP, turbidity (T) and suspended sediment concentration (SSC), bed load by bed load traps, composition of salt, biochemical oxidation, nitrogen and phosphorous content in water, pH, redox and conductivity values, and also content of heavy metals in water, suspended matter and sediments. The study revealed rather high levels of dissolved Fe, Al, Mn, Zn, Cu, and Mo in the Selenga River water which often are higher than MPC for water fishery. Most contrast distribution is characteristic for W and Mo, which is caused by mineral deposits in the Selenga basin. The most severe pollution of aquatic systems in the basin caused by mining activities is characteristic for a small river Modonkul, which flows into Dzhida River (left tributary of Selenga).

  9. Estimated loads and yields of suspended soils and water-quality constituents in Kentucky streams

    USGS Publications Warehouse

    Crain, Angela S.

    2001-01-01

    Loads and yields of suspended solids, nutrients, major ions, trace elements, organic carbon, fecal coliform, dissolved oxygen, and alkalinity were estimated for 22 streams in 11 major river basins in Kentucky. Mean daily discharge was estimated at ungaged stations or stations with incomplete discharge records using drainage-area ratio, regression analysis, or a combination of the two techniques. Streamflow was partitioned into total and base flow and used to estimate loads and yields for suspended solids and water-quality constituents by use of the ESTIMATOR and FLUX computer programs. The relative magnitude of constituent transport to streams from groundand surface-water sources was determined for the 22 stations. Nutrient and suspended solids yields for drainage basins with relatively homogenous land use were used to estimate the total-flow and base-flow yields of nutrient and suspended solids for forested, agricultural, and urban land. Yields of nutrients?nitrite plus nitrate, ammonia plus organic nitrogen, and total phosphorus?in forested drainage basins were generally less than 1 ton per square mile per year ((ton/mi2)/yr) and were generally less than 2 (ton/mi2)/yr in agricultural drainage basins. The smallest total-flow yields for nitrogen (nitrite plus nitrate) was estimated at Levisa Fork at Paintsville in which 95 percent of the land is forested. This site also had one of the smallest total-flow yields for ammonia plus organic nitrogen. In general, nutrient yields from forested lands were lower than those from urban and agricultural land. Some of the largest estimated total-flow yields of nutrients among agricultural basins were for streams in the Licking River Basin, the North Fork Licking River near Milford, and the South Fork Licking River at Cynthiana. Agricultural land constitutes greater than 75 percent of the drainage area in these two basins. Possible sources of nutrients discharging into the Licking River are farm and residential fertilizers. Estimated base-flow yields of suspended solids and nutrients at several basins in the larger Green River and Lower Cumberland River Basins were about half of their estimated total-flow yields. The karst terrain in these basins makes the ground water highly susceptible to contamination, especially if a confining unit is thin or absent.

  10. Carbon storage and late Holocene chronostratigraphy of a Mississippi River deltaic marsh, St. Bernard Parish, Louisiana

    USGS Publications Warehouse

    Markewich, H. W.

    1998-01-01

    Today, the causes, results, and time scale(s) of climate change, past and potential, are the focus of much research, news coverage, and pundit speculation. Many of the US government scientific agencies have some funds earmarked for research into past and (or) future climate change (National Science and Technology Council, 1997). The Mississippi Basin Carbon Project (MBCP) is part of the U.S. Geological Survey (USGS) effort in global change research . The project is motivated by the need to increase our understanding of the role of terrestrial carbon in the global carbon cycle, particularly in the temperate latitudes of North America. The global land area between 30 O and 60 O N is thought to be a large sink for atmospheric CO2 (IPCC, 1996). The identity of this sink is unknown, but is in part the soil and sediment that makes up the upper several meters of the Earth's surface. The MBCP focuses on the Mississippi River basin, the third largest river system in the world (fig. 1), that drains an area of 3.3 x 10 6 km 2 (1.27 x 10 6 mi 2 ). The Mississippi River basin includes more than 40 percent of the land surface, and is the home of more than one-third of the population, of the conterminous United States. Because climate, vegetation, and land use vary greatly within the Mississippi River basin, the primary terrestrial sinks for carbon need to be identified and quantified for representative parts of the basin. The primary goal of the MBCP is to quantify the interactive effects of land-use, erosion, sedimentation, and soil development on carbon storage and nutrient cycles within the Mississippi River basin. The project includes spatial analysis of a wide variety of geographic data, estimation of whole-basin and sub-basin carbon and sediment budgets, development and implementation of terrestrial carbon-cycle models, and site-specific field studies of relevant processes. Areas can be studied and compared, and estimates can be made for whole-basin carbon storage and flux.

  11. Characteristics and trends of streamflow and dissolved solids in the upper Colorado River Basin, Arizona, Colorado, New Mexico, Utah, and Wyoming

    USGS Publications Warehouse

    Liebermann, Timothy D.; Mueller, David K.; Kircher, James E.; Choquette, Anne F.

    1989-01-01

    Annual and monthly concentrations and loads of dissolved solids and major constituents were estimated for 70 streamflow-gaging stations in the Upper Colorado River Basin. Trends in streamflow, dissolved-solids concentrations, and dissolved-solids loads were identified. Nonparametric trend-analysis techniques were used to determine step trends resulting from human activities upstream and long-term monotonic trends. Results were compared with physical characteristics of the basin and historical water-resource development in the basin to determine source areas of dissolved solids and possible cause of trends. Mean annual dissolved-solids concentration increases from less than 100 milligrams per liter in the headwater streams to more than 500 milligrams per liter in the outflow from the Upper Colorado River Basin. All the major tributaries that have high concentrations of dissolved solids are downstream from extensive areas of irrigated agriculture. However, irrigation predated the period of record for most sites and was not a factor in many identified trends. Significant annual trends were identified for 30 sites. Most of these trends were related to transbasin exports, changes in land use, salinity-control practices, or reservoir development. The primary factor affecting streamflow and dissolved-solids concentration and load has been the construction of large reservoirs. Reservoirs have decreased the seasonal and annual variability of streamflow and dissolved solids in streams that drain the Gunnison and San Juan River basins. Fontenelle and Flaming Gorge Reservoirs have increased the dissolved-solids load in the Green River because of dissolution of mineral salts from the bank material. The largest trends occurred downstream from Lake Powell. However, the period of record since the completion of filling was too short to estimate the long-term effects of that reservoir.

  12. Estimation of total nitrogen and total phosphorus in streams of the Middle Columbia River Basin (Oregon, Washington, and Idaho) using SPARROW models, with emphasis on the Yakima River Basin, Washington

    USGS Publications Warehouse

    Johnson, Henry M.; Black, Robert W.; Wise, Daniel R.

    2013-01-01

    The watershed model SPARROW (Spatially Related Regressions on Watershed attributes) was used to predict total nitrogen (TN) and total phosphorus (TP) loads and yields for the Middle Columbia River Basin in Idaho, Oregon, and Washington. The new models build on recently published models for the entire Pacific Northwest, and provide revised load predictions for the arid interior of the region by restricting the modeling domain and recalibrating the models. Results from the new TN and TP models are provided for the entire region, and discussed with special emphasis on the Yakima River Basin, Washington. In most catchments of the Yakima River Basin, the TN and TP in streams is from natural sources, specifically nitrogen fixation in forests (TN) and weathering and erosion of geologic materials (TP). The natural nutrient sources are overshadowed by anthropogenic sources of TN and TP in highly agricultural and urbanized catchments; downstream of the city of Yakima, most of the load in the Yakima River is derived from anthropogenic sources. Yields of TN and TP from catchments with nearly uniform land use were compared with other yield values and export coefficients published in the scientific literature, and generally were in agreement. The median yield of TN was greatest in catchments dominated by agricultural land and smallest in catchments dominated by grass and scrub land. The median yield of TP was greatest in catchments dominated by forest land, but the largest yields (90th percentile) of TP were from agricultural catchments. As with TN, the smallest TP yields were from catchments dominated by grass and scrub land.

  13. Floods of 1952 in California. Flood of January 1952 in the south San Francisco Bay region; Snowmelt flood of 1952 in Kern River, Tulare Lake, and San Joaquin River basins

    USGS Publications Warehouse

    Rantz, S.E.; Stafford, H.M.

    1956-01-01

    Two major floods occurred in California in 1952. The first was the flood of January 11-13 in the south San Francisco Bay region that resulted from heavy rains which began on the morning of January 11 and ended about noon January 13. This flood was notable for the magnitude of the peak discharges, although these discharges were reduced by the controlling effect of reservoirs for conservation and flood-control purposes. The flood damage was thereby reduced, and no lives were lost; damage, nevertheless, amounted to about $1.400.000. The second flood was due, not to the immediate runoff of heavy rain, but to the melting of one of the largest snow packs ever recorded in the Sierra Nevada range. In the spring and summer of 1952, flood runoff occurred on all the major streams draining the Sierra Nevada. In the northern half of the Central Valley basin?the Sacramento River basin?flood volumes and maximum daily discharges were not exceptional. and flood damage was not appreciable. However, in the southern half, which is formed by the Kern River, Tulare Lake, and San Joaquin River basins, new records for snowmelt runoff were established for some streams; but for below-normal temperatures and shorter, less warm hot spells, record flood discharges would have occurred on many others. In the three basins an area of 200,000 acres. largely cropland. was inundated, and damage was estimated at $11,800,000.

  14. Effects of produced water on soil characteristics, plant biomass, and secondary metabolites

    USDA-ARS?s Scientific Manuscript database

    The Powder River Basin in Wyoming and Montana contains the United States’ largest coal reserve. The area produces large amounts of natural gas through extraction from water-saturated coalbeds. Determining the impacts of coalbed natural gas-produced efflux water on crops is important when considering...

  15. Spatial and seasonal dynamics of total suspended sediment and organic carbon species in the Congo River

    NASA Astrophysics Data System (ADS)

    Coynel, Alexandra; Seyler, Patrick; Etcheber, Henri; Meybeck, Michel; Orange, Didier

    2005-12-01

    The Congo (Zaire) River, the world's second largest river in terms both of water discharges and of drainage area after the Amazon River, has remained to date in a near-pristine state. For a period between 2 and 6 years, the mainstream near the river mouth (Brazzaville/Kinshasa station) and some of the major and minor tributaries (the Oubangui, Mpoko, and Ngoko-Sangha) were monitored every month for total suspended sediment (TSS), particulate organic carbon (POC), and dissolved organic carbon (DOC). In this large but relatively flat equatorial basin, TSS levels are very low and organic carbon is essentially exported as DOC: from 74% of TOC for the tributaries flowing in savannah regions and 86% for those flowing in the rain forest. The seasonal patterns of TSS, POC, and DOC show clockwise hysteresis in relation to river discharges, with maximum levels recorded 2 to 4 months before peak flows. At the Kinshasa/Brazzaville station, the DOC distribution is largely influenced by the input from the tributaries draining the large marshy forest area located in the center of the basin. There is a marked difference between specific fluxes, threefold higher in the forest basins than in the savannah basins. The computation of inputs to the Atlantic Ocean demonstrates that the Congo is responsible for 14.4 × 106 t/yr of TOC of which 12.4 × 106 t/yr is DOC and 2 × 106 t/yr is POC. The three biggest tropical rivers (the Amazon, the Congo, and the Orinoco), with only 10% of the exoreic world area drained to world oceans, contribute ˜4% of its TSS inputs but 15-18% of its organic carbon inputs. These proportions may double when considering only world rivers discharging into the open ocean.

  16. The susceptibility of large river basins to orogenic and climatic drivers

    NASA Astrophysics Data System (ADS)

    Haedke, Hanna; Wittmann, Hella; von Blanckenburg, Friedhelm

    2017-04-01

    Large rivers are known to buffer pulses in sediment production driven by changes in climate as sediment is transported through lowlands. Our new dataset of in situ cosmogenic nuclide concentration and chemical composition of 62 sandy bedload samples from the world largest rivers integrates over 25% of Earth's terrestrial surface, distributed over a variety of climatic zones across all continents, and represents the millennial-scale denudation rate of the sediment's source area. We can show that these denudation rates do not respond to climatic forcing, but faithfully record orogenic forcing, when analyzed with respective variables representing orogeny (strain rate, relief, bouguer anomaly, free-air anomaly), and climate (runoff, temperature, precipitation) and basin properties (floodplain response time, drainage area). In contrast to this orogenic forcing of denudation rates, elemental bedload chemistry from the fine-grained portion of the same samples correlates with climate-related variables (precipitation, runoff) and floodplain response times. It is also well-known from previous compilations of river-gauged sediment loads that the short-term basin-integrated sediment export is also climatically controlled. The chemical composition of detrital sediment shows a climate control that can originate in the rivers source area, but this signal is likely overprinted during transfer through the lowlands because we also find correlation with floodplain response times. At the same time, cosmogenic nuclides robustly preserve the orogenic forcing of the source area denudation signal through of the floodplain buffer. Conversely, previous global compilations of cosmogenic nuclides in small river basins show the preservation of climate drivers in their analysis, but these are buffered in large lowland rivers. Hence, we can confirm the assumption that cosmogenic nuclides in large rivers are poorly susceptible to climate changes, but are at the same time highly suited to detect changes in orogenic forcing in their paleo sedimentary records.

  17. Flood hydrology of Butte Basin, 1973-77 water years, Sacramento Valley, California

    USGS Publications Warehouse

    Simpson, R.G.

    1978-01-01

    Flooding in Butte Basin, CA., is caused primarily by overflow from the Sacramento River on the western boundary. Stage and discharge data were collected during 1973-77 at 6 recording and 45 crest-stage gages within the basin and combined with discharge records on the main channel of the Sacramento River to determine total flow and flow distribution at the latitudes of Ord Ferry, Butte City, and Gridley Road. Water-surface profiles throughout the basin, inflow/change-in-storage/outflow relations of the Butte Sink, and channel changes of the Sacramento River are shown. During 1973-77, total peak flows decreased an average of 7 percent between the latitudes of Ord Ferry and Butte City, with measured peaks from 100,000 to 200,000 cfs (cubic feet per second). The largest floodflow measured was 195,000 cfs on January 17, 1974, at the latitude of Ord Ferry. For a given flood, overland flow did not change significantly in peak magnitude between Afton Boulevard, Butte City, and Gridley road. Overland flows of about 45,000 and about 24,000 cfs were measured on January 18 and April 1, 1974, respectively. (Woodard-USGS)

  18. Transport of diazinon in the San Joaquin River Basin, California

    USGS Publications Warehouse

    Kratzer, C.R.

    1999-01-01

    Most of the application of the organophosphate insecticide diazinon in the San Joaquin River Basin occurs in winter to control wood-boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of San Joaquin River water in February 1993. Previous studies focused mainly on west-side inputs to the San Joaquin River. In this 1994 study, the three major east-side tributaries to the San Joaquin River - the Merced, Tuolumne, and Stanislaus rivers - and a downstream site on the San Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated travel times, ephemeral west-side creeks probably were the main diazinon source early in the storms, whereas the Tuolumne and Merced rivers and east-side drainages directly to the San Joaquin River were the main sources later. Although 74 percent of diazinon transport in the San Joaquin River during 1991-1993 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceding dry periods. Nevertheless, some of the diazinon concentrations in the San Joaquin River during the January storm exceeded 0.35 ??g/L, a concentration shown to be acutely toxic to water fleas. On the basis of this study and previous studies, diazinon concentrations and streamflow are highly variable during January and February storms, and frequent sampling is required to evaluate transport in the San Joaquin River Basin.

  19. Quality of water, Quillayute River basin, Washington

    USGS Publications Warehouse

    Fretwell, M.O.

    1984-01-01

    Groundwater in Quillayute River basin is generally of the calcium bicarbonate type, although water from some wells is affected by seawater intrusion and is predominantly of the sodium chloride type. The water is generally of excellent quality for most uses. River-water quality was generally excellent, as evaluated against Washington State water-use and water-quality criteria. Fecal coliform concentrations in all major tributaries met State water-quality criteria; water temperatures occasionally exceeded criteria maximum during periods of warm weather and low streamflow. Nutrient concentrations were generally low to very low. The four largest lakes in the basin were temperature-stratified in summer and one had an algal bloom. The Quillayute estuary had salt-wedge mixing characteristics; pollutants entering the salt wedge tended to spread to the toe of the wedge. Upwelling ocean water was the major cause of the low dissolved-oxygen concentrations observed in the estuary; ammonia concentrations in the estuary, however, were increased by the upwelling ocean waters. As in the rivers, total-coliform bacteria concentrations in the estuary were greater than fecal-coliform concentrations, indicating that many of the bacteria were of nonfecal origin and probably originated from soils. (USGS)

  20. Modeling suspended sediment sources and transport in the Ishikari River Basin, Japan using SPARROW

    NASA Astrophysics Data System (ADS)

    Duan, W.; He, B.; Takara, K.; Luo, P.; Nover, D.; Hu, M.

    2014-10-01

    It is important to understand the mechanisms that control suspended sediment (SS) fate and transport in rivers as high suspended sediment loads have significant impacts on riverine hydroecology. In this study, the watershed model SPARROW (SPAtially Referenced Regression on Watershed Attributes) was applied to estimate the sources and transport of SS in surface waters of the Ishikari River Basin (14 330 km2), the largest watershed on Hokkaido Island, Japan. The final developed SPARROW model has four source variables (developing lands, forest lands, agricultural lands, and stream channels), three landscape delivery variables (slope, soil permeability, and precipitation), two in-stream loss coefficients including small stream (streams with drainage area < 200 km2), large stream, and reservoir attenuation. The model was calibrated using measurements of SS from 31 monitoring sites of mixed spatial data on topography, soils and stream hydrography. Calibration results explain approximately 95.96% (R2) of the spatial variability in the natural logarithm mean annual SS flux (kg km-2 yr-1) and display relatively small prediction errors at the 31 monitoring stations. Results show that developing-land is associated with the largest sediment yield at around 1006.27 kg km-2 yr-1, followed by agricultural-land (234.21 kg km-2 yr-1). Estimation of incremental yields shows that 35.11% comes from agricultural lands, 23.42% from forested lands, 22.91% from developing lands, and 18.56% from stream channels. The results of this study improve our understanding of sediments production and transportation in the Ishikari River Basin in general, which will benefit both the scientific and the management community in safeguarding water resources.

  1. Water-quality characteristics, including sodium-adsorption ratios, for four sites in the Powder River drainage basin, Wyoming and Montana, water years 2001-2004

    USGS Publications Warehouse

    Clark, Melanie L.; Mason, Jon P.

    2006-01-01

    The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, monitors streams throughout the Powder River structural basin in Wyoming and parts of Montana for potential effects of coalbed natural gas development. Specific conductance and sodium-adsorption ratios may be larger in coalbed waters than in stream waters that may receive the discharge waters. Therefore, continuous water-quality instruments for specific conductance were installed and discrete water-quality samples were collected to characterize water quality during water years 2001-2004 at four sites in the Powder River drainage basin: Powder River at Sussex, Wyoming; Crazy Woman Creek near Arvada, Wyoming; Clear Creek near Arvada, Wyoming; and Powder River at Moorhead, Montana. During water years 2001-2004, the median specific conductance of 2,270 microsiemens per centimeter at 25 degrees Celsius (?S/cm) in discrete samples from the Powder River at Sussex, Wyoming, was larger than the median specific conductance of 1,930 ?S/cm in discrete samples collected downstream from the Powder River at Moorhead, Montana. The median specific conductance was smallest in discrete samples from Clear Creek (1,180 ?S/cm), which has a dilution effect on the specific conductance for the Powder River at Moorhead, Montana. The daily mean specific conductance from continuous water-quality instruments during the irrigation season showed the same spatial pattern as specific conductance values for the discrete samples. Dissolved sodium, sodium-adsorption ratios, and dissolved solids generally showed the same spatial pattern as specific conductance. The largest median sodium concentration (274 milligrams per liter) and the largest range of sodium-adsorption ratios (3.7 to 21) were measured in discrete samples from the Powder River at Sussex, Wyoming. Median concentrations of sodium and sodium-adsorption ratios were substantially smaller in Crazy Woman Creek and Clear Creek, which tend to decrease sodium concentrations and sodium-adsorption ratios at the Powder River at Moorhead, Montana. Dissolved-solids concentrations in discrete samples were closely correlated with specific conductance values; Pearson's correlation coefficients were 0.98 or greater for all four sites. Regression equations for discrete values of specific conductance and sodium-adsorption ratios were statistically significant (p-values <0.001) at all four sites. The strongest relation (R2=0.92) was at the Powder River at Sussex, Wyoming. Relations on Crazy Woman Creek (R2=0.91) and Clear Creek (R2=0.83) also were strong. The relation between specific conductance and sodium-adsorption ratios was weakest (R2=0.65) at the Powder River at Moorhead, Montana; however, the relation was still significant. These data indicate that values of specific conductance are useful for estimating sodium-adsorption ratios. A regression model called LOADEST was used to estimate dissolved-solids loads for the four sites. The average daily mean dissolved-solids loads varied among the sites during water year 2004. The largest average daily mean dissolved-solids load was calculated for the Powder River at Moorhead, Montana. Although the smallest concentrations of dissolved solids were in samples from Clear Creek, the smallest average daily mean dissolved-solids load was calculated for Crazy Woman Creek. The largest loads occurred during spring runoff, and the smallest loads occurred in late summer, when streamflows typically were smallest. Dissolved-solids loads may be smaller than average during water years 2001-2004 because of smaller than average streamflow as a result of drought conditions.

  2. Floods of 1950 in the Red River of the North and Winnipeg River basins

    USGS Publications Warehouse

    ,

    1952-01-01

    The floods of April-July 1950 in the Red River of the North and Winnipeg River Basins were the largest that have occurred in several decades and caused the greatest damage that the flooded area has ever sustained. Five lives were lost in the United States, owing to causes directly connected with the floods. The dual peaks--on upper river and tributaries, one in April and the other in May--of nearly the same size and" the large lake-like body of flood-water ponded between Grand Forks and Winnipeg were notable features of the flood in the Red River of the North Basin. The flood in the Winnipeg River Basin was characterized by the unusually large volume of runoff and the lateness of cresting on the Lake of the Woods.The floods were caused by a combination of causes: high antecedent soil moisture, high antecedent runoff, heavy snowfall, delayed breakup, and heavy precipitation during breakup. Mid-March snow-surveys, made in the area by hydrographers of the United States and Canadian services, showed that the snow pack north of Fargo, N. Dak., had an unusually high water content and a runoff potential increasing from west to east. A narrow band, extending from near Grand Forks, N. Dak., east-northeastward across the basin, had a water content of 5 inches or higher. April 15 marked the beginning of rapid melting throughout the basins; most of the snow was turned into water by the end of the first melt period on April 24. A return of winter-like conditions until May 10 brought more snow and set the stage for second flood crests.The records of stage and discharge collected on the Red River of the North at Grand Forks, N. Dak., since 1882 show that the important 1897 flood slightly exceeded the 1950 flood in both stage and discharge. Records collected by the Geological Survey and Corps of Engineers on the Red River of the North show that the 1950 flood stages exceeded any previously known from just below the mouth of Turtle River to the international boundary. Records for streams tributary to the Red River of the North between Fargo and the Roseau River show, in general, that the 1950 flood events exceeded those of any known past floods. In the storage basins of the Winnipeg River, Lake of the Woods and Rainy Lake reached a stage comparable to that of 1916; and the Winnipeg River discharge at Slave Falls exceeded the highest previously recorded, maximum, which occurred in 1927. Records of floods on the Red River at Winnipeg show that the 1950 flood did not reach as high a stage as those of 1826, 1852, and 1861. The total tabulated damage to Winnipeg, the largest urban center in the area reported on, was about $20,000,000 in the city, and $12,000,000 in surrounding suburbs. The fight against flooding in Greater Winnipeg began on April 21 in the area adjacent to the municipal hospitals and was considered ended with the reopening of Norwood Bridge on June 1. About 80, 000 people were evacuated from their homes in Greater Winnipeg during the flood, and plans were ready to evacuate a greater number had the water risen higher.This report contains records of stage and discharge for the flood period at 70 stream-gaging stations, 21 records of mean daily discharge at stream-gaging stations, 11 records of stage at river-height gages, and 7 records of storage or elevation of reservoirs or lakes. A summary table shows crest stages and discharges at 129 points for the 1950 event compared with the highest known past stages and discharges. Also included is a discussion of concurrent meteorology and of past floods on main streams and tributaries.

  3. Automated Mapping of Flood Events in the Mississippi River Basin Utilizing NASA Earth Observations

    NASA Technical Reports Server (NTRS)

    Bartkovich, Mercedes; Baldwin-Zook, Helen Blue; Cruz, Dashiell; McVey, Nicholas; Ploetz, Chris; Callaway, Olivia

    2017-01-01

    The Mississippi River Basin is the fourth largest drainage basin in the world, and is susceptible to multi-level flood events caused by heavy precipitation, snow melt, and changes in water table levels. Conducting flood analysis during periods of disaster is a challenging endeavor for NASA's Short-term Prediction Research and Transition Center (SPoRT), Federal Emergency Management Agency (FEMA), and the U.S. Geological Survey's Hazards Data Distribution Systems (USGS HDDS) due to heavily-involved research and lack of manpower. During this project, an automated script was generated that performs high-level flood analysis to relieve the workload for end-users. The script incorporated Landsat 8 Operational Land Imager (OLI) tiles and utilized computer-learning techniques to generate accurate water extent maps. The script referenced the Moderate Resolution Imaging Spectroradiometer (MODIS) land-water mask to isolate areas of flood induced waters. These areas were overlaid onto the National Land Cover Database's (NLCD) land cover data, the Oak Ridge National Laboratory's LandScan data, and Homeland Infrastructure Foundation-Level Data (HIFLD) to determine the classification of areas impacted and the population density affected by flooding. The automated algorithm was initially tested on the September 2016 flood event that occurred in Upper Mississippi River Basin, and was then further tested on multiple flood events within the Mississippi River Basin. This script allows end users to create their own flood probability and impact maps for disaster mitigation and recovery efforts.

  4. Valuing tradeoffs between agricultural production and ecosystem services in the Heihe River Basin

    NASA Astrophysics Data System (ADS)

    Li, Z.; Deng, X.; Wu, F.

    2017-12-01

    Ecosystem services are faced with multiple stress from complex driving factors, such as climate change and human interventions. The Heihe River Basin (HRB), as the second largest inland river basin in China, is a typical semi-arid and arid region with fragile and sensitive ecological environment. For the past decades, agricultural production activities in the basin has affected ecosystem services in different degrees, leading to complex relations among "water-land-climate-ecology-human", in which hydrological process and water resource management is the key. In this context, managing trade-offs among water uses in the river basin to sustain multiple ecosystem services is crucial for healthy ecosystem and sustainable socioeconomic development. In this study, we analyze the trade-offs between different water uses in agricultural production and key ecosystem services in the HRB by applying production frontier analysis, with the aim to explore the potential for managing them. This method traces out joint production frontiers showing the combinations of ecosystem services and agricultural production that can be generated in a given area, and it deals with the economic problem of the allocation of scarce water resources under presumed objective, which aims to highlight synergies and reduce trade-offs between alternative water uses. Thus, management schemes that targets to both sustain agricultural production and increase the provision of key ecosystem services have to consider not only the technological or biological nature of interrelationships, but also the economic interdependencies among them.

  5. Africa's Megafans and Their Tectonic Setting

    NASA Technical Reports Server (NTRS)

    Wilkinson, M. J.; Burke, K.

    2016-01-01

    Megafans are a really extensive continental sediment bodies, fluvially derived, and fan-shaped in planform. Only those >80 km long were included in this study. Africa's megafans were mapped for purposes of both comprehensive geomorphic description and as a method of mapping by remote sensing large probable fluvial sediment bodies (we exclude sediment bodies deposited in well defined, modern floodplains and coastal deltas). Our criteria included a length dimension of >80 km and maximum width >40 km, partial cone morphology, and a radial drainage pattern. Visible and especially IR imagery were used to identify the features, combined with topographic SRTM data. We identified 99 megafans most of which are unstudied thus far. Their feeder rivers responsible for depositing megafan sediments rise on, and are consequent drainages oriented down the slopes of the swells that have dominated African landscapes since approximately 34 Ma (the high points in Africa's so-called basin-and-swell topography [1]). Most megafans (66%) have developed along these consequent rivers relatively near the swell cores, oriented radially away from the swells. The vast basins between the swells provide accommodation for megafan sediment wedges. Although clearly visible remotely, most megafans are inactive as a result of incision by the feeder river (which then no longer operates on the fan surface). Two tectonic settings control the location of Africa's megafans, 66% on swell flanks, and 33% related to rifts. (i) Swell flanks Most megafans are apexed relatively near the core of the parent swell, and are often clustered in groups: e.g., six on the west and north flanks of the Hoggar Swell (Algeria), seven on the north and south flanks of the Tibesti Swell (Libya-Chad borderlands), twelve on the west flank of the Ethiopian Swell, four on the east flank of the East African Swell (Kenya), Africa's largest, and eight around Angola's Bié Swell (western Zambia, northern Namibia). A cluster of possible fans lies on the western margin of the Congo Basin (Mayombe Swell), and on the coastal slopes of the Namibia Swell. Sheer size may have militated aginst the recognition of many megafans: the largest in the Sahara are the Teghahart (378 km, Hoggar Swell, Algeria), and the Wadi Albalata (340 km, Uweinat Swell, Egypt). In southern Africa the largest are the Cubango (320 km, Bié Swell, Angola/ Namibia), and the Limpopo (230 km, Mozambique). (ii) Rift zones (a) Steer's horns basins-wide depressions centered on rifts. The largest contiguous group (n=14) developed in a steer's-horns basin occupies the wide Muglad depression (200-350 km, South Sudan). Four rift-related megafans lie SE of Lake Chad (Chad). Nine megafans occupy the complex Anza Rift in Kenya/South Somalia. The Salamat megafan (Chad), is unusual because it oriented parallel with the linked Salamat, Doseo and Doba rift axes, and is consequently one of the longest in Africa (465 km). (b) Rift depressions sensu stricto. Most rifts are too narrow to provide a transverse dimension large enough to accommodate megafans. Although well-known, the Okavango Rift (NW Botswana, NE Namibia) is unique in Africa in hosting three megafans within identifiable faulted margins. The Nile megafan is Africa's largest (476 km) and comprises the vast Sudd wetland (South Sudan). An explanation for its remarkable size may be its location in a depression at the junction of two conducive tectonic zones, the East African Swell margin and the Muglad steer's-horns depression. Discharge of the River Nile, the largest in the region, has allowed the Nile megafan to outcompete neighboring megafans for space.

  6. Hydrologic and geochemical data collected near Skewed Reservoir, an impoundment for coal-bed natural gas produced water, Powder River Basin, Wyoming

    USGS Publications Warehouse

    Healy, Richard W.; Rice, Cynthia A.; Bartos, Timothy T.

    2012-01-01

    The Powder River Structural Basin is one of the largest producers of coal-bed natural gas (CBNG) in the United States. An important environmental concern in the Basin is the fate of groundwater that is extracted during CBNG production. Most of this produced water is disposed of in unlined surface impoundments. A 6-year study of groundwater flow and subsurface water and soil chemistry was conducted at one such impoundment, Skewed Reservoir. Hydrologic and geochemical data collected as part of that study are contained herein. Data include chemistry of groundwater obtained from a network of 21 monitoring wells and three suction lysimeters and chemical and physical properties of soil cores including chemistry of water/soil extracts, particle-size analyses, mineralogy, cation-exchange capacity, soil-water content, and total carbon and nitrogen content of soils.

  7. Understanding the hydrodynamics of the Congo River

    NASA Astrophysics Data System (ADS)

    O'Loughlin, Fiachra; Bates, Paul

    2014-05-01

    We present the results of the first hydrodynamic model of the middle reach of the Congo Basin, which helps our understanding of the behaviour of the second largest river in the world. In data sparse area, hydrodynamic models, utilizing a mixture of limited in-situ measurements and remotely sensed datasets, can be used to understand and identify key features that control large river systems. Unlike previous hydrodynamic models for the Congo Basin, which concentrated on only a small area, we look at the entire length of the Congo's middle reach and its six main tributaries (Kasai, Ubangai, Sangha, Ruki, Lulonga and Lomami). This corresponds to: a drainage area of approximately two and a half million kilometres squared; over 5000 kilometres of river channels; and incorporates some of the largest and most important global wetlands. The hydrodynamic model is driven by a mixture of in-situ and modelled discharges. In situ measurements are available at five locations. Two were obtained from the Global River Discharge Centre (GRDC) at Kinshasa and Bangui, and data for Kisangani, Ouesso and Lediba were obtained from local agencies in the Democratic Republic of the Congo and the Republic of Congo. Using the gauging station at Kinshasa as the downstream boundary, the remaining in-situ measurements account for 61 percent of the discharge and represent 72 percent of the total drainage area. Modelled discharges are used to account for the missing discharge and corresponding area. Calibration and validation of the model was undertaken using a mixture of in-situ measurements, discharge and water level at Kinshasa, and water surface heights along the main reach obtained from both laser and radar altimeters. Through the hydrodynamic model we will investigate: how important constraints, identified by a previous study, are to the behaviour of the Congo; what impacts the wetlands have on the Congo Basin; how the wetlands and main channel interact with each other. Our results will provide new insight into the behaviour of the middle reach of the Congo Basin which otherwise would not be possible without extensive field work.

  8. How to allocate water resources under climate change in the arid endorheic river basin, Northwest China

    NASA Astrophysics Data System (ADS)

    Zhang, A.; Feng, D.; Tian, Y.; Zheng, Y.

    2017-12-01

    Water resource is of fundamental importance to the society and ecosystem in arid endorheic river basins, and water-use conflicts between upstream and downstream are usually significant. Heihe river basin (HRB) is the second largest endorheic river basin in china, which is featured with dry climate, intensively irrigated farmlands in oases and significant surface water-groundwater interaction. The irrigation districts in the middle HRB consume a large portion of the river flow, and the low HRB, mainly Gobi Desert, has an extremely vulnerable ecological environment. The water resources management has significantly altered the hydrological processes in HRB, and is now facing multiple challenges, including decline of groundwater table in the middle HRB, insufficient environmental flow for the lower HRB. Furthermore, future climate change adds substantial uncertainty to the water system. Thus, it is imperative to have a sustainable water resources management in HRB in order to tackle the existing challenges and future uncertainty. Climate projection form a dynamical downscaled climate change scenario shows precipitation will increase at a rate of approximately 3 millimeter per ten years and temperature will increase at a rate of approximately 0.2 centigrade degree per ten years in the following 50 years in the HRB. Based on an integrated ecohydrological model, we evaluated how the climate change and agricultural development would collaboratively impact the water resources and ecological health in the middle and lower HRB, and investigated how the water management should cope with the complex impact.

  9. Status of White Sturgeon (Acipenser transmontanus Richardson, 1863) throughout the species range, threats to survival, and prognosis for the future

    USGS Publications Warehouse

    Hildebrand, L. R.; Drauch Schreier, Andrea; Lepla, K.; McAdam, S. O.; McLellan, J; Parsley, Michael J.; Paragamian, V L; Young, S P

    2016-01-01

    White Sturgeon, Acipenser transmontanus (WS), are distributed throughout three major river basins on the West Coast of North America: the Sacramento-San Joaquin, Columbia, and Fraser River drainages. Considered the largest North American freshwater fish, some WS use estuarine habitat and make limited marine movements between river basins. Some populations are listed by the United States or Canada as threatened or endangered (upper Columbia River above Grand Coulee Dam; Kootenai River; lower, middle and, upper Fraser River and Nechako River), while others do not warrant federal listing at this time (Sacramento-San Joaquin Rivers; Columbia River below Grand Coulee Dam; Snake River). Threats that impact WS throughout the species’ range include fishing effects and habitat alteration and degradation. Several populations suffer from recruitment limitations or collapse due to high early life mortality associated with these threats. Efforts to preserve WS populations include annual monitoring, harvest restrictions, habitat restoration, and conservation aquaculture. This paper provides a review of current knowledge on WS life history, ecology, physiology, behavior, and genetics and presents the status of WS in each drainage. Ongoing management and conservation efforts and additional research needs are identified to address present and future risks to the species.

  10. Spinitectus aguapeiensis n. sp. (Nematoda: Cystidicolidae) from Pimelodella avanhandavae Eigenmann (Siluriformes: Heptapteridae) in the River Aguapeí, Upper Paraná River Basin, Brazil.

    PubMed

    Acosta, Aline Angelina; González-Solís, David; da Silva, Reinaldo José

    2017-07-01

    Nematodes belonging to Spinitectus Fourment, 1883 (Nematoda: Cystidicolidae) were found in the intestine of Pimelodella avanhandavae Eigenmann (Siluriformes: Heptapteridae) from the Aguapeí River, Brazil. They represent a new species, Spinitectus aguapeiensis n. sp., which differs morphologically from its congeners in the body length, the number of spinose rings, the location of the excretory pore, the number of precloacal papillae and the length of the spicules. The new species is the first South American species within the genus with a remarkably spirally coiled posterior extremity in males and the largest spicules. It is also the second species with the highest number of precloacal papillae and has unique shape of the small spicule. Spinitectus aguapeiensis n. sp. is the first helminth species found in P. avanhandavae, the fourth species of this genus recorded in the River Paraná Basin and the sixth species of Spinitectus in South America.

  11. Megafans of the Northern Kalahari Basin

    NASA Technical Reports Server (NTRS)

    Wilkinson, M. J.; Miller, R. McG.; Eckardt, F.; Kreslavsky, M. A.

    2016-01-01

    We identify eleven megafans (partial cones of fluvial sediment, >80 km radius) in the northern Kalahari Basin, using several criteria based on VIS and IR remotely sensed data and SRTM-based surface morphology reconstructions. Two other features meet fewer criteria of the form which we class as possible megafans. The northern Kalahari megafans are located in a 1700 km arc around the southern and eastern flanks of the Angola's Bié Plateau, from northern Namibia through northwest Botswana to western Zambia. Three lie in the Owambo subbasin centered on the Etosha Pan, three in the relatively small Okavango rift depression, and five in the Upper Zambezi basin. The population includes the well-known Okavango megafan (150 km), Namibia's Cubango megafan, the largest megafan in the region (350 km long), and the largest nested group (the five major contiguous megafans on the west slopes of the upper Zambezi Valley). We use new, SRTM-based topographic roughness data to discriminate various depositional surfaces within the flat N. Kalahari landscapes. We introduce the concepts of divide megafans, derived megafans, and fan-margin rivers. Conclusions. (i) Eleven megafan cones total an area of 190,000 sq km. (ii) Different controls on megafan size operate in the three component basins: in the Okavango rift structural controls become the prime constraint on megafan length by controlling basin dimensions. Megafans in the other les constricted basins appear to conform to classic relationships fan area, slope, and feeder-basin area. (iii) Active fans occupy the Okavango rift depression with one in the Owambo basin. The rest of the population are relict but recently active fans (surfaces are relict with respect to activity by the feeder river). (iv) Avulsive behavior of the formative river-axiomatic for the evolution of megafans-has resulted in repeated rearrangements of regional drainage, with likely effects in the study area well back into the Neogene. Divide megafans comprise the majority of the identified features, some of which have delivered water and sediment alternately to neighboring basins in the course of normal avulsion activity, likely resulting in significant changes in the hydrologies of two of the study-area subbasins. (v) Paleoclimatic inferences extracted from fluvial and lacustrine sediments therefore need to take account of avulsion-driven drainage configurations, especially where these are autogenically controlled.

  12. Nashville Basin, Tennessee as seen from STS-58

    NASA Image and Video Library

    1993-10-30

    STS058-91-074 (18 Oct-1 Nov 1993) --- The largest cityscape in the view is Nashville (top left), part of which is obscured under a band of clouds (the Cumberland River, on which Nashville lies, can not be seen under the cloud band). Close to the main cloud mass on the opposite side of the view, lies a small lake (Normandy Lake in sunglint (right center) 70 miles southeast of Nashville. Between these two features, in the center of the Nashville Basin, lies the city of Murfreesboro. The city appears here as a spider like pattern one third the distance from Nashville towards Normandy Lake. The Tennessee River can be seen bottom right and top right through holes in the cloud.

  13. DEMOLISHING A COLD WARE ERA FULE STORAGE BASIN SUPERSTRUCTURE LADEN WITH ASBESTOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LLOYD ER; STEVENS JM; DAGAN EB

    The K East (KE) Basin facilities are located near the north end of the Hanford Site's 100 K area. The facilities were built in 1950 as part of the KE Reactor complex and constructed within 400 meters of the Columbia River, which is the largest river in the Pacific Northwest and by volume the fourth largest river in the United States. The basin, located adjacent to the reactor, was used for the underwater storage of irradiated nuclear fuel discharged from the reactor. The basin was covered by a superstructure comprising steel columns and beams, concrete, and cement asbestos board (CAB)more » siding. The project's mission was to complete demolition of the structure over the KE Basin within six months of turnover from facility deactivation activities. The demolition project team applied open-air demolition techniques to bring the facility to slab-on-grade. Several innovative techniques were used to control contamination and maintain contamination control within the confines of the demolition exclusion zone. The techniques, which focused on a defense-in-depth approach, included spraying fixatives on interior and exterior surfaces before demolition began; applying fixatives during the demolition; misting using a fine spray of water during demolition; and demolishing the facility systematically. Another innovative approach that made demolition easier was to demolish the building with the non-friable CAB remaining in place. The CAB siding covered the exterior of the building and portions of the interior walls, and was an integral part of the multiple-layered roof. The project evaluated the risks involved in removing the CAB material in a radiologically contaminated environment and determined that radiological dose rates and exposure to radiological contamination and industrial hazards would be significantly reduced by using heavy equipment to remove the CAB during demolition. The ability to perform this demolition safely and without spreading contamination (radiological or asbestos) demonstrates that contaminated structures can be torn down successfully using similar open-air demolition techniques.« less

  14. DEMOLISHING A COLD-WAR-ERA FUEL STORAGE BASIN SUPERSTRUCTURE LADEN WITH ASBESTOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LLOYD ER; ORGILL TK; DAGAN EB

    The K East (KE) Basin facilities are located near the north end of the Hanford Site's 100 K area. The facilities were built in 1950 as part of the KE Reactor complex and constructed within 400 meters of the Columbia River, which is the largest river in the Pacific Northwest and by volume the fourth largest river in the United States. The basin, located adjacent to the reactor, was used for the underwater storage of irradiated nuclear fuel discharged from the reactor. The basin was covered by a superstructure comprising steel columns and beams, concrete, and cement asbestos board (CAB)more » siding. The project's mission was to complete demolition of the structure over the K East basin within six months of tumover from facility deactivation activities. The demolition project team implemented open-air demolition techniques to demolish the facility to slab-on-grade. Several innovative techniques were used to control contamination and maintain contamination control within the confines of the demolition exclusion zone. The techniques, which focused on a defense-in-depth approach, included spraying fixatives on interior and exterior surfaces before demolition began; applying fixatives; misting using a fine spray of water during demolition; and demolishing the facility systematically. Another innovation that aided demolition was to demolish the building with the non-friable CAB remaining in place. The CAB siding covered the exterior of the building, portions of the interior walls, and was an integral part of the multiple layered roof. The project evaluated the risks involved in removing the CAB material in a radiologically contaminated environment and determined that radiological dose rates and exposure to radiological contamination and industrial hazards would be significantly reduced by removing the CAB during demolition using heavy equipment. The ability to perform this demolition safely and without spreading contamination (radiological or asbestos) demonstrates that similar open-air demolition ofcontaminated structures can be performed successfully.« less

  15. Water and Streambed-Sediment Quality in the Upper Elk River Basin, Missouri and Arkansas, 2004-06

    USGS Publications Warehouse

    Smith, Brenda J.; Richards, Joseph M.; Schumacher, John G.

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, collected water and streambedsediment samples in the Upper Elk River Basin in southwestern Missouri and northwestern Arkansas from October 2004 through December 2006. The samples were collected to determine the stream-water quality and streambed-sediment quality. In 1998, the Missouri Department of Natural Resources included a 21.5-mile river reach of the Elk River on the 303(d) list of impaired waters in Missouri as required by Section 303(d) of the Federal Clean Water Act. The Elk River is on the 303(d) list for excess nutrient loading. The total phosphorus distribution by decade indicates that the concentrations since 2000 have increased significantly from those in the 1960s, 1980s, and 1990s. The nitrate as nitrogen (nitrate) concentrations also have increased significantly in post-1985 from pre-1985 samples collected at the Elk River near Tiff City. Concentrations have increased significantly since the 1960s. Concentrations in the 1970s and 1980s, though similar, have increased from those in the 1960s, and the concentrations from the 1990s and 2000s increased still more. Nitrate concentrations significantly increased in samples that were collected during large discharges (greater than 355 cubic feet per second) from the Elk River near Tiff City. Nitrate concentrations were largest in Indian Creek. Several sources of nitrate are present in the basin, including poultry facilities in the upper part of the basin, effluent inflow from communities of Anderson and Lanagan, land-applied animal waste, chemical fertilizer, and possible leaking septic systems. Total phosphorus concentrations were largest in Little Sugar Creek. The median concentration of total phosphorus from samples from Little Sugar Creek near Pineville was almost four times the median concentration in samples from the Elk River near Tiff City. Median concentrations of nutrient species were greater in the stormwater samples than the median concentrations in the ambient samples. Nitrate concentrations in stormwater samples ranged from 133 to 179 percent of the concentration in the ambient samples. The total phosphorus concentrations in the stormwater samples ranged from about 200 to more than 600 percent of the concentration in the ambient samples. Base-flow conditions as reflected by the seepage run of the summer of 2006 indicate that 52 percent of the discharge at the Elk River near Tiff City is contributed by Indian Creek. Little Sugar Creek contributes 32 percent and Big Sugar Creek 9 percent of the discharge in the Elk River near Tiff City. Only about 7 percent of the discharge at Tiff City comes from the mainstem of the Elk River. Concentrations of dissolved ammonia plus organic nitrogen as nitrogen, dissolved ammonia as nitrogen, dissolved phosphorus, and dissolved orthophosphorus were detected in all streambed-sediment leachate samples. Concentrations of leachable nutrients in streambed-sediment samples generally tended to be slightly larger along the major forks of the Elk River as compared to tributary sites, with sites in the upper reaches of the major forks having among the largest concentrations. Concentrations of leachable nutrients in the major forks generally decreased with increasing distance downstream.

  16. Water-quality assessment of the lower Illinois River Basin; environmental setting

    USGS Publications Warehouse

    Warner, Kelly L.

    1998-01-01

    The lower Illinois River Basin (LIRB) encompasses 18,000 square miles of central and western Illinois. Historical and recent information from Federal, State, and local agencies describing the physiography, population, land use, soils, climate, geology, streamflow, habitat, ground water, water use, and aquatic biology is summarized to describe the environmental setting of the LIRB. The LIRB is in the Till Plains Section of the Central Lowland physiographic province. The basin is characterized by flat topography, which is dissected by the Illinois River. The drainage pattern of the LIRB has been shaped by many bedrock and glacial geologic processes. Erosion prior to and during Pleistocene time created wide and deep bedrock valleys. The thickest deposits and most major aquifers are in buried bedrock valleys. The Wisconsinan glaciation, which bisects the northern half of the LIRB, affects the distribution and characteristics of glacial deposits in the basin. Agriculture is the largest land use and forested land is the second largest land use in the LIRB. The major urban areas are near Peoria, Springfield, Decatur, and Bloomington-Normal. Soil type and distribution affect the amount of soil erosion, which results in sedimentation of lakes and reservoirs in the basin. Rates of soil erosion of up to 2 percent per year of farmland soil have been measured. Many of the 300 reservoirs, lakes, and wetlands are disappearing because of sedimentation resulting from agriculture activities, levee building, and urbanization. Sedimentation and the destruction of habitat appreciably affect the ecosystem. The Illinois River is a large river-floodplain ecosystem where biological productivity is enhanced by annual flood pulses that advance and retreat over the flood plain and temporarily expand backwater and flood-plain lakes. Ground-water discharge to streams affects the flow and water quality of the streams. The water budget of several subbasins show variability in ground-water contribution from runoff and storage. More than half of the drinking water, including domestic and public-supply use, in the LIRB is from ground water. Fifty-two percent of the public-supply water is from surface water. Ground-water withdrawals mostly are from glacial sand and gravel aquifers. Structural features, such as monoclines, synclines, and anticlines, in the buried bedrock affect the water quality of the aquifers. There are five natural environmental divisions in the LIRB. The Grand Prairie covers most of the northeastern half of the basin, and the Western Forest-Prairie covers most of the southwestern half. Implications of environmental setting for water quality in the LIRB are related primarily to land use. The balanced fish community indicates that the lower Illinois River is affected less from urban and industrial waste than the upper Illinois River. A decrease in dissolved oxygen concentrations and turbidity in the lower reaches of the basin in 1993 have resulted from the recent influx of European zebra mussels to the LIRB. Many factors affect water quality in the LIRB. Bedrock and surface topography, type of glacial material, and land use most directly affect water quality in the basin.

  17. Interaction between Floods Occurrence and Gender and Age Structure of Population in Belarus

    NASA Astrophysics Data System (ADS)

    Partasenok, Irina; Kvach, Alena

    2017-04-01

    The high spring snow-melting or rainfall flooding is the most important and actual event in hydrological cycle for the territory of Belarus. It caused an inundation that means exceeding of water level in the river above safe line and water floods to the adjacent territories. Inundations led to significant destruction of adjoining territories, huge financial damage and threat for human being. The frequencies of spring flooding in Belarus is defined by intensity of river network, its morphometric characteristics and hydrometeorological conditions during the season before floods. The aim of the present study is to estimate the spatial distribution of flood inundation frequency and gender and age structure of national population which might be suffer under extreme phenomena on the rivers. We analysed dangerous thresholds in the river water levels and the frequency of floods of various severity within different river basins, quantity of men and women and their ratio, the quantity of people in the age upper 70 years old as a most sensitive to the flood risk group of population and ratio of rural houses to the entire housing resources as a most vulnerable infrastructure in the different regions of the country. During floods the dangerous levels which cause the inundation have been recorded in the 4 largest river basins passes the territory of Belarus. The most frequent inundations (every two years) occur in the south of the country in the Prypyat` river basin, and in the Dnepr river basin (every 4-5 years) on the majority of the rivers. The hypothesis of our study is that quantity of women population is higher in the flood risk regions (we defined 30 regions with highly frequent inundations) and their ratio high with the age. The majority of them live in potential flood dangerous regions. The strong connections between size of the river basin, its potential flood risk and quantity of population in the region was established. The ratio of men and women over country varied within 6-7 %. But in the flood risk regions (mentioned above) the quantity of women rapidly increase up to 7-18%. And the largest ratio (15-18%) have been obtained for the regions with highest floods inundation frequency (low stream of the Dnepr, Berezina, Sozh and Neman rivers). The most sensitive group of population to flood risk is rural population who live in private houses in the large river valleys. And their average number for entire territory of Belarus lies within 37-47%. Another point of potential risk group concerns people in the age of 70 years and elder. According to the last census of enumeration the ratio of elderly people equal 11-12%. These people are the most open to injury from extreme phenomena on the rivers. In general, 772 thousands (8% of national population) women lives in the flood risk regions, almost 80 thousand among them are women elder 70 years who need extra care in the period of flood occurrence. This must be considered by stakeholders in support of making design in social policy of the country.

  18. ASUD2- decision support system on Dnieper reservoirs operations taking into account environmental priorities

    NASA Astrophysics Data System (ADS)

    Iritz, L.; Zheleznyak, M.; Dvorzhak, A.; Nesterov, A.; Zaslavsky, A.

    2003-04-01

    On the European continent the Dnieper is the third largest river basin (509000 sq.km). The Ukrainian part of the drainage basin is 291 400 sq.km. The cascade of 6 reservoirs, that have capacity from 2.5 to 18 cub.km comprises the entire reach of Dnieper River in Ukraine, redistributes the water regime in time. As a result, 17-18 cub. km water can be used, 50% for hydropower production, 30% for agriculture and up to 18% for municipal water supply. The water stress, the pollution load, the insufficient technical conditions require a lot of effort in the water management development. In order to achieve optimal use of water recourses in the Dnieper River basin, it is essential to develop strategies both for the long-term perspective (planning) as well as for the short-term perspective (operation). The Dnieper River basin must be seen as complex of the natural water resources, as well as the human system (water use, social and economic intercourse). In the frame of the project, supported by the Swedish International Development Cooperation Agency (SIDA) the software tool ASUD2 is developed to support reservoir operations provided by the State Committee of Ukraine on Water Management and by the Joint River Commission. ASUD2 includes multicriteria optimization engine that drives the reservoir water balamce models and box models of water quality. A system of supplementary (off-line) tools support more detailed analyses of the water quality parameters of largest reservoirs (Kachovka and Kremechug). The models AQUATOX and WASP ( in the developed 3-D version) are used for these purposes. The Integrated Database IDB-ASUD2 supplies the information such as state of the all reservoirs, hydrological observations and predictions, water demands, measured water quality parameters. ASUD2 is able to give the following information on an operational basis. : - recommended dynamics of the water elevation during the water allocation planning period in all reservoirs calculated on the basis of the different optimisation criteria minimum of the distance to the trajectory of the water level given by decision of the Joint River Commission, minimum value of the water contamination parameters (DO, nutrients, phosphorus), maximum energy production, taking into account limitations from fishery, water intakes of irrigation and transport channels etc; -water releases from the reservoirs to maintain the recommended dynamics in the whole Dnieper Cascade; -integrated water quality parameters for all reservoirs and distributed water quality parameters for the two largest reservoirs (Kremenchug and Kachovka). The analyses based on economical criteria provides the cost-benefit evaluation for different reservoir management alternatives. The assessment takes into account energy production, industry, agriculture as well as the costs associated with ecological damages.

  19. The influence of reservoirs, climate, land use and hydrologic conditions on loads and chemical quality of dissolved organic carbon in the Colorado River

    USGS Publications Warehouse

    Miller, Matthew P.

    2012-01-01

    Longitudinal patterns in dissolved organic carbon (DOC) loads and chemical quality were identified in the Colorado River from the headwaters in the Rocky Mountains to the United States-Mexico border from 1994 to 2011. Watershed- and reach-scale climate, land use, river discharge and hydrologic modification conditions that contribute to patterns in DOC were also identified. Principal components analysis (PCA) identified site-specific precipitation and reach-scale discharge as being correlated with sites in the upper basin, where there were increases in DOC load from the upstream to downstream direction. In the lower basin, where DOC load decreased from upstream to downstream, sites were correlated with site-specific temperature and reach-scale population, urban land use and hydrologic modification. In the reaches containing Lakes Powell and Mead, the two largest reservoirs in the United States, DOC quantity decreased, terrestrially derived aromatic DOC was degraded and/or autochthonous less aromatic DOC was produced. Taken together, these results suggest that longitudinal patterns in the relatively unregulated upper basin are influenced by watershed inputs of water and DOC, whereas DOC patterns in the lower basin are reflective of a balance between watershed contribution of water and DOC to the river and loss of water and DOC due to hydrologic modification and/or biogeochemical processes. These findings suggest that alteration of constituent fluxes in rivers that are highly regulated may overshadow watershed processes that would control fluxes in comparable unregulated rivers. Further, these results provide a foundation for detailed assessments of factors controlling the transport and chemical quality of DOC in the Colorado River.

  20. Divergent biophysical controls of aquatic CO2 and CH4 in the World's two largest rivers.

    PubMed

    Borges, Alberto V; Abril, Gwenaël; Darchambeau, François; Teodoru, Cristian R; Deborde, Jonathan; Vidal, Luciana O; Lambert, Thibault; Bouillon, Steven

    2015-10-23

    Carbon emissions to the atmosphere from inland waters are globally significant and mainly occur at tropical latitudes. However, processes controlling the intensity of CO2 and CH4 emissions from tropical inland waters remain poorly understood. Here, we report a data-set of concurrent measurements of the partial pressure of CO2 (pCO2) and dissolved CH4 concentrations in the Amazon (n = 136) and the Congo (n = 280) Rivers. The pCO2 values in the Amazon mainstem were significantly higher than in the Congo, contrasting with CH4 concentrations that were higher in the Congo than in the Amazon. Large-scale patterns in pCO2 across different lowland tropical basins can be apprehended with a relatively simple statistical model related to the extent of wetlands within the basin, showing that, in addition to non-flooded vegetation, wetlands also contribute to CO2 in river channels. On the other hand, dynamics of dissolved CH4 in river channels are less straightforward to predict, and are related to the way hydrology modulates the connectivity between wetlands and river channels.

  1. Has irrigated water from Mahaweli River contributed to the kidney disease of uncertain etiology in the dry zone of Sri Lanka?

    PubMed

    Diyabalanage, Saranga; Abekoon, Sumith; Watanabe, Izumi; Watai, Chie; Ono, Yuko; Wijesekara, Saman; Guruge, Keerthi S; Chandrajith, Rohana

    2016-06-01

    The Mahaweli is the largest river basin in Sri Lanka that provides water to the dry zone region through multipurpose irrigation schemes . Selenium, arsenic, cadmium, and other bioimportant trace elements in surface waters of the upper Mahaweli River were measured using ICP-MS. Trace element levels were then compared with water from two other rivers (Maha Oya, Kalu Ganga) and from six dry zone irrigation reservoirs. Results showed that the trace metal concentrations in the Mahaweli upper catchment were detected in the order of Fe > Cu > Zn > Se > Cr > Mn > As > Ni > Co > Mo. Remarkably high levels of Ca, Cr, Co, Ni, Cu, As, and Se were observed in the Mahaweli Basin compared to other study rivers. Considerably high levels of Cr, Mn, Fe, Co, Ni, Cu, Zn, As, and Se were found in upstream tributaries of the Mahaweli River. Such metals possibly originated from phosphate and organic fertilizers that are heavily applied for tea and vegetable cultivations within the drainage basin. Cadmium that is often attributed to the etiology of unknown chronic kidney diseases in certain parts of the dry zone is much lower than previously reported levels. Decrease in these metals in the lower part of the Mahaweli River could be due to adsorption of trace metals onto sediment and consequent deposition in reservoirs.

  2. Water Withdrawals, Use, and Wastewater Return Flows in the Concord River Basin, Eastern Massachusetts, 1996-2000

    USGS Publications Warehouse

    Barlow, Lora K.; Hutchins, Linda M.; Desimone, Leslie A.

    2009-01-01

    Water withdrawals, use, and wastewater return flows for the Concord River Basin were estimated for the period 1996-2000. The study area in eastern Massachusetts is 400 square miles in area and includes the basins of two major tributaries, the Assabet and Sudbury Rivers, along with the Concord River, which starts at the confluence of the two tributaries. About 400,000 people lived in the basin during the study period, on the basis of an analysis of census data, land use, and population density. Public water systems served an estimated 87 percent of the people in the basin, and public wastewater systems served an estimated 65 percent of the basin population. The estimates of water withdrawals, use, wastewater return flows, and imports and exports for the Concord River Basin and 25 subbasins provide information that can be used in hydrologic analyses such as water budgets and can guide water-resources allocations for human and environmental needs. Withdrawals in the basin were estimated at 12,700 million gallons per year (Mgal/yr) during the study period, of which 10,100 Mgal/yr (about 80 percent) were withdrawn by public water-supply systems and 2,650 Mgal/yr were self-supplied by individual users. Water use in the basin and subbasins was estimated by using water withdrawals, average per capita use rates (about 72 gallons per day per person), land-use data, estimated population densities, and other information. Total water use in the basin, which included imports, was 19,200 Mgal/yr and was provided mostly (86.2 percent) by public supply. Domestic use (11,300 Mgal/yr) was the largest component, accounting for about 60 percent of total water use in the basin. Commercial use (3,770 Mgal/yr), industrial use (1,330 Mgal/yr), and agricultural use (including golf-course irrigation; 562 Mgal/yr) accounted for 19.6, 6.9, and 2.9 percent, respectively, of total use. Water that was unaccounted for in public-supply systems was estimated at 2,260 Mgal/yr, or 11.8 percent of total water use in the basin. Wastewater return flows discharged in the basin were estimated at 11,800 Mgal/yr, of which 6,620 Mgal/yr were discharged from municipal wastewater-treatment facilities to surface waters and 5,190 Mgal/yr were self-disposed through septic systems to ground water; wastewater disposed through septic systems was generated by both public- and self-supply use. Water use and management in the Concord River Basin resulted in an estimated import of 6,460 Mgal/yr of potable water for public supply and an estimated export of 6,590 Mgal/yr of wastewater. Water was imported into the Assabet, Sudbury, and Lower Concord (the area draining directly to the Concord River) River Basins for public supply. Wastewater was imported into the Assabet River Basin, but exported from the Sudbury and Lower Concord River Basins. Of the 25 subbasins in the Concord River Basin for which water use was analyzed, 20 subbasins imported potable water, 4 subbasins exported potable water (Fort Meadow Brook, Indian Brook, Lower Sudbury River, and Whitehall Brook), and potable water was neither imported nor exported in one subbasin (Elizabeth Brook). Wastewater was imported into the Assabet Headwaters, Assabet Main Stem, and Hop Brook subbasins; wastewater was neither imported to nor exported from the Elizabeth Brook, Nashoba Brook, and Pine Brook subbasins; and wastewater was exported from all other subbasins. Water use and management in the basin also resulted in a net transfer of water from ground water to surface water, discharged as wastewater, of about 4,000 Mgal/yr.

  3. Attribution of hydrological change in Heihe River Basin to climate and land use change in the past three decades

    PubMed Central

    Luo, Kaisheng; Tao, Fulu; Moiwo, Juana P.; Xiao, Dengpan

    2016-01-01

    The contributions of climate and land use change (LUCC) to hydrological change in Heihe River Basin (HRB), Northwest China were quantified using detailed climatic, land use and hydrological data, along with the process-based SWAT (Soil and Water Assessment Tool) hydrological model. The results showed that for the 1980s, the changes in the basin hydrological change were due more to LUCC (74.5%) than to climate change (21.3%). While LUCC accounted for 60.7% of the changes in the basin hydrological change in the 1990s, climate change explained 57.3% of that change. For the 2000s, climate change contributed 57.7% to hydrological change in the HRB and LUCC contributed to the remaining 42.0%. Spatially, climate had the largest effect on the hydrology in the upstream region of HRB, contributing 55.8%, 61.0% and 92.7% in the 1980s, 1990s and 2000s, respectively. LUCC had the largest effect on the hydrology in the middle-stream region of HRB, contributing 92.3%, 79.4% and 92.8% in the 1980s, 1990s and 2000s, respectively. Interestingly, the contribution of LUCC to hydrological change in the upstream, middle-stream and downstream regions and the entire HRB declined continually over the past 30 years. This was the complete reverse (a sharp increase) of the contribution of climate change to hydrological change in HRB. PMID:27647454

  4. A Water Resources Management Model to Evaluate Climate Change Impacts in North-Patagonia, Argentina

    NASA Astrophysics Data System (ADS)

    Bucciarelli, L. F.; Losano, F. T.; Marizza, M.; Cello, P.; Forni, L.; Young, C. A.; Girardin, L. O.; Nadal, G.; Lallana, F.; Godoy, S.; Vallejos, R.

    2014-12-01

    Most recently developed climate scenarios indicate a potential future increase in water stress in the region of Comahue, located in the North-Patagonia, Argentina. This region covers about 140,000 km2 where the Limay River and the Neuquén River converge into the Negro River, constituting the largest integrated basins in Argentina providing various uses of water resources: a) hydropower generation, contributing 15% of the national electricity market; b) fruit-horticultural products for local markets and export; c) human and industrial water supply; d) mining and oil exploitation, including Vaca Muerta, second world largest reserves of shale gas and fourth world largest reserves of shale-oil. The span of multiple jurisdictions and the convergence of various uses of water resources are a challenge for integrated understanding of economically and politically driven resource use activities on the natural system. The impacts of climate change on the system could lead to water resource conflicts between the different political actors and stakeholders. This paper presents the results of a hydrological simulation of the Limay river and Neuquén river basins using WEAP (Water Evaluation and Planning) considering the operation of artificial reservoirs located downstream at a monthly time step. This study aims to support policy makers via integrated tools for water-energy planning under climate uncertainties, and to facilitate the formulation of water policy-related actions for future water stress adaptation. The value of the integrated resource use model is that it can support local policy makers understand the implications of resource use trade-offs under a changing climate: 1) water availability to meet future growing demand for irrigated areas; 2) water supply for hydropower production; 3) increasing demand of water for mining and extraction of unconventional oil; 4) potential resource use conflicts and impacts on vulnerable populations.

  5. Water use and quality of fresh surface-water resources in the Barataria-Terrebonne Basins, Louisiana

    USGS Publications Warehouse

    Johnson-Thibaut, Penny M.; Demcheck, Dennis K.; Swarzenski, Christopher M.; Ensminger, Paul A.

    1998-01-01

    Approximately 170 Mgal/d (million gallons per day) of ground- and surface-water was withdrawn from the Barataria-Terrebonne Basins in 1995. Of this amount, surface water accounted for 64 percent ( 110 MgaVd) of the total withdrawal rates in the basins. The largest surface-water withdrawal rates were from Bayou Lafourche ( 40 Mgal/d), Bayou Boeuf ( 14 MgaVd), and the Gulf Intracoastal Waterway (4.2 Mgal/d). The largest ground-water withdrawal rates were from the Mississippi River alluvial aquifer (29 Mgal/d), the Gonzales-New Orleans aquifer (9.5 Mgal/d), and the Norco aquifer (3.6 MgaVd). The amounts of water withdrawn in the basins in 1995 differed by category of use. Public water suppliers within the basins withdrew 41 Mgal/d of water. The five largest public water suppliers in the basins withdrew 30 Mgal/d of surface water: Terrebonne Waterworks District 1 withdrew the largest amount, almost 15 MgaVd. Industrial facilities withdrew 88 Mgal/d, fossil-fuel plants withdrew 4.7 MgaVd, and commercial facilities withdrew 0.67 MgaVd. Aggregate water-withdrawal rates, compiled by parish for aquaculture (37 Mgal/d), livestock (0.56 Mgal/d), rural domestic (0.44 MgaVd), and irrigation uses (0.54 MgaVd), totaled about 38 MgaVd in the basins. Ninety-five percent of aquaculture withdrawal rates, primarily for crawfish and alligator farming, were from surface-water sources. >br> Total water-withdrawal rates increased 221 percent from 1960–95. Surface-water withdrawal rates have increased by 310 percent, and ground-water withdrawal rates have increased by 133 percent. The projection for the total water-withdrawal rates in 2020 is 220 MgaVd, an increase of 30 percent from 1995. Surface-water withdrawal rates would account for 59 percent of the total, or 130 Mgal/d. Surface-water withdrawal rates are projected to increase by 20 percent from 1995 to 2020. Analysis of water-quality data from the Mississippi River indicates that the main threats to surface water resources are from the herbicide atrazine and excessive nutrients. Atrazine concentrations in the Mississippi River at Baton Rouge briefly exceed the U.S. Environmental Protection Agency maximum contaminant level of 3.0 micrograms per liter during periods in the late spring and early summer. Trace metals in bottom material collected from Bayou Lafourche indicate that the reach of Bayou Lafourche from Donaldsonville to Golden Meadow is adversely affected by low-level contamination. Dissolved nitrate had a mean concentration of 1.4 milligrams per liter in the Mississippi River near Bayou Lafourche and can contribute to excessive plant growth. Long-term salinity records near Bayou Lafourche indicate no pronounced trends, with the exception of the Gulf Intracoastal Waterway at Houma. At this site, salinities remained low until 1961, when the Gulf Intracoastal Waterway was connected to the Gulf of Mexico by the Houma Navigation Canal. The sources of saltwater are variable. Some saltwater has entered Bayou Lafourche south of the Gulf Intracoastal Waterway; at other times saltwater has moved up the Houma Navigation Canal and has flowed east in the Gulf Intracoastal Waterway, north into Company Canal, and southeast in Bayou Lafourche towards Larose, Louisiana.

  6. Colorado River basin sensitivity to disturbance impacts

    NASA Astrophysics Data System (ADS)

    Bennett, K. E.; Urrego-Blanco, J. R.; Jonko, A. K.; Vano, J. A.; Newman, A. J.; Bohn, T. J.; Middleton, R. S.

    2017-12-01

    The Colorado River basin is an important river for the food-energy-water nexus in the United States and is projected to change under future scenarios of increased CO2emissions and warming. Streamflow estimates to consider climate impacts occurring as a result of this warming are often provided using modeling tools which rely on uncertain inputs—to fully understand impacts on streamflow sensitivity analysis can help determine how models respond under changing disturbances such as climate and vegetation. In this study, we conduct a global sensitivity analysis with a space-filling Latin Hypercube sampling of the model parameter space and statistical emulation of the Variable Infiltration Capacity (VIC) hydrologic model to relate changes in runoff, evapotranspiration, snow water equivalent and soil moisture to model parameters in VIC. Additionally, we examine sensitivities of basin-wide model simulations using an approach that incorporates changes in temperature, precipitation and vegetation to consider impact responses for snow-dominated headwater catchments, low elevation arid basins, and for the upper and lower river basins. We find that for the Colorado River basin, snow-dominated regions are more sensitive to uncertainties. New parameter sensitivities identified include runoff/evapotranspiration sensitivity to albedo, while changes in snow water equivalent are sensitive to canopy fraction and Leaf Area Index (LAI). Basin-wide streamflow sensitivities to precipitation, temperature and vegetation are variable seasonally and also between sub-basins; with the largest sensitivities for smaller, snow-driven headwater systems where forests are dense. For a major headwater basin, a 1ºC of warming equaled a 30% loss of forest cover, while a 10% precipitation loss equaled a 90% forest cover decline. Scenarios utilizing multiple disturbances led to unexpected results where changes could either magnify or diminish extremes, such as low and peak flows and streamflow timing, dependent on the strength and direction of the forcing. These results indicate the importance of understanding model sensitivities under disturbance impacts to manage these shifts; plan for future water resource changes and determine how the impacts will affect the sustainability and adaptability of food-energy-water systems.

  7. Water quality of the St. Clair River, Lake St. Clair, and their U.S. tributaries, 1946-2005

    USGS Publications Warehouse

    Healy, Denis F.; Chambers, Douglas B.; Rachol, Cynthia M.; Jodoin, Richard S.

    2007-01-01

    The St. Clair River/Lake St. Clair waterway forms an international boundary between the United States and Canada. The waters of the area are an important part of the cultural heritage of the area and serves as an important water-supply and power-generating resource; the waterway also supports an economy based largely on recreation, agriculture, and manufacturing. This report was undertaken as part of the Lake St. Clair Regional Monitoring Project for the purpose of providing a comprehensive assessment of the hydrological, chemical, and physical state of the surface water of Lake St. Clair and its tributaries. The data varied in focus and density over the period of compilation which in many cases this variation prevented the completion of statistical analyses because data did not meet minimum comparability or quality requirements for those tests. Comparison of water quality of the Belle, Black, Clinton, and Pine River Basins, as well as basins of minor rivers in the study area, showed that water quality in many of the tributaries, particularly the Clinton River and some of the minor rivers, was degraded compared to the water quality of the St. Clair River/Lake St. Clair waterway. Data analyses included comparison of nutrients, chloride, specific conductance, turbidity, biochemical oxygen demand (BOD), and pesticides among the basins and the St. Clair River. Median concentrations of total nitrate were well below the recommended USEPA total nitrogen ambient water-quality criterion of 0.54 mg/L as N for nutrient ecoregion VII for all study-area streams except the Clinton River. More than 93 percent of the phosphorus concentrations for the Belle, Black, Pine and minor river basins and 84 percent of the phosphorus concentrations for the Clinton River Basin are greater than the USEPA recommended ambient total phosphorus criterion of 0.033 mg/L for rivers and streams. Nine chloride concentrations exceeded the USEPA criterion maximum concentration (CMC) for chloride set at 860 mg/L for all study-area streams, with the six largest being in the Belle River Basin. Higher chloride concentrations were increasingly common from 2002 to 2005. The urban minor river basins had the highest median specific conductance, whereas the agricultural Pine River Basin had the lowest median specific conductance. The median values of BOD for the five basins in the study area ranged from 2.4 mg/L for the Pine River Basin to 3.2 mg/L for the Black and Clinton River Basins, whereas the median for the St. Clair River was 0.5 mg/L. In 1985, the highest concentrations of pesticides were found in samples from the mouth of the Clinton River; however, in 1996–98, the majority of high pesticide concentrations were found in samples from the Black River. Changing land-use patterns, specifically conversion of agricultural lands to urban/residential lands in the Clinton River Basin, may explain this difference. Trend analysis was done for four stream sites where adequate data were available. These analyses identified no significant water-quality changes at a stream site on the Black River, where land-use patterns have changed little in the past few decades. This stands in marked contrast to trend analysis for three stream sites in the Clinton River Basin, which has undergone significant land-use change. The changes at the Clinton River stream sites, ranging from 5 to 13 significant trends, were generally decreases in nutrients and increases in total dissolved solids (TDS) and chloride. The greater flow volume of the St. Clair River/Lake St. Clair waterway is able to assimilate incoming dissolved and suspended constituents from tributaries with little effect upon its overall water quality, although incomplete mixing may result in localized water-quality impairment downstream from tributary confluences. Mixing effects on Lake St. Clair water quality was also demonstrated in analysis of Escherichia coli (E. coli) data collected at paired nearshore/offshore sites, which reflected similarity in water quality among many paired sites.

  8. A reassessment of the suspended sediment load in the Madeira River basin from the Andes of Peru and Bolivia to the Amazon River in Brazil, based on 10 years of data from the HYBAM monitoring programme

    NASA Astrophysics Data System (ADS)

    Vauchel, Philippe; Santini, William; Guyot, Jean Loup; Moquet, Jean Sébastien; Martinez, Jean Michel; Espinoza, Jhan Carlo; Baby, Patrice; Fuertes, Oscar; Noriega, Luis; Puita, Oscar; Sondag, Francis; Fraizy, Pascal; Armijos, Elisa; Cochonneau, Gérard; Timouk, Franck; de Oliveira, Eurides; Filizola, Naziano; Molina, Jorge; Ronchail, Josyane

    2017-10-01

    The Madeira River is the second largest tributary of the Amazon River. It contributes approximately 13% of the Amazon River flow and it may contribute up to 50% of its sediment discharge to the Atlantic Ocean. Until now, the suspended sediment load of the Madeira River was not well known and was estimated in a broad range from 240 to 715 Mt yr-1. Since 2002, the HYBAM international network developed a new monitoring programme specially designed to provide more reliable data than in previous intents. It is based on the continuous monitoring of a set of 11 gauging stations in the Madeira River watershed from the Andes piedmont to the confluence with the Amazon River, and discrete sampling of the suspended sediment concentration every 7 or 10 days. This paper presents the results of the suspended sediment data obtained in the Madeira drainage basin during 2002-2011. The Madeira River suspended sediment load is estimated at 430 Mt yr-1 near its confluence with the Amazon River. The average production of the Madeira River Andean catchment is estimated at 640 Mt yr-1 (±30%), the corresponding sediment yield for the Andes is estimated at 3000 t km-2 yr-1 (±30%), and the average denudation rate is estimated at 1.20 mm yr-1 (±30%). Contrary to previous results that had mentioned high sedimentation rates in the Beni River floodplain, we detected no measurable sedimentation process in this part of the basin. On the Mamoré River basin, we observed heavy sediment deposition of approximately 210 Mt yr-1 that seem to confirm previous studies. But while these studies mentioned heavy sedimentation in the floodplain, we showed that sediment deposition occurred mainly in the Andean piedmont and immediate foreland in rivers (Parapeti, Grande, Pirai, Yapacani, Chimoré, Chaparé, Secure, Maniqui) with discharges that are not sufficiently large to transport their sediment load downstream in the lowlands.

  9. Mississippi River delta plain, Louisiana coast, and inner shelf Holocene geologic framework, processes, and resources

    USGS Publications Warehouse

    Williams, S. Jeffress; Kulp, Mark; Penland, Shea; Kindinger, Jack L.; Flocks, James G.; Buster, Noreen A.; Holmes, Charles W.

    2009-01-01

    Extending nearly 400 km from Sabine Pass on the Texas-Louisiana border east to the Chandeleur Islands, the Louisiana coastal zone (Fig. 11.1) along the north-central Gulf of Mexico is the southern terminus of the largest drainage basin in North America (>3.3 million km2), which includes the Mississippi River delta plain where approximately 6.2 million kilograms per year of sediment is delivered to the Gulf of Mexico (Coleman 1988). The Mississippi River, active since at least Late Jurassic time (Mann and Thomas 1968), is the main distributary channel of this drainage system and during the Holocene has constructed one of the largest delta plains in the world, larger than 30,000 km2 (Coleman and Prior 1980; Coleman 1981; Coleman et al. 1998). The subsurface geology and geomorphology of the Louisiana coastal zone reffects a complex history of regional tectonic events and fluvial, deltaic, and marine sedimentary processes affected by large sea-level fluctuations. Despite the complex geology of the north-central Gulf basin, a long history of engineering studies and Scientific research investigations (see table 11.1) has led to substantial knowledge of the geologic framework and evolution of the delta plain region (see also Bird et al., chapter 1 in this volume). Mississippi River delta plain, Louisiana coast, and inner shelf Holocene geologic framework, processes, and resources. Available from: https://www.researchgate.net/publication/262802561_Mississippi_River_delta_plain_Louisiana_coast_and_inner_shelf_Holocene_geologic_framework_processes_and_resources [accessed Sep 13, 2017].

  10. Estimates of streamflow characteristics for selected small streams, Baker River basin, Washington

    USGS Publications Warehouse

    Williams, John R.

    1987-01-01

    Regression equations were used to estimate streamflow characteristics at eight ungaged sites on small streams in the Baker River basin in the North Cascade Mountains, Washington, that could be suitable for run-of-the-river hydropower development. The regression equations were obtained by relating known streamflow characteristics at 25 gaging stations in nearby basins to several physical and climatic variables that could be easily measured in gaged or ungaged basins. The known streamflow characteristics were mean annual flows, 1-, 3-, and 7-day low flows and high flows, mean monthly flows, and flow duration. Drainage area and mean annual precipitation were not the most significant variables in all the regression equations. Variance in the low flows and the summer mean monthly flows was reduced by including an index of glacierized area within the basin as a third variable. Standard errors of estimate of the regression equations ranged from 25 to 88%, and the largest errors were associated with the low flow characteristics. Discharge measurements made at the eight sites near midmonth each month during 1981 were used to estimate monthly mean flows at the sites for that period. These measurements also were correlated with concurrent daily mean flows from eight operating gaging stations. The correlations provided estimates of mean monthly flows that compared reasonably well with those estimated by the regression analyses. (Author 's abstract)

  11. Water Quality, Physical Habitat, and Biology of the Kijik River Basin, Lake Clark National Park and Preserve, Alaska, 2004-2005

    USGS Publications Warehouse

    Brabets, Timothy P.; Ourso, Robert T.

    2006-01-01

    The U.S. Geological Survey and the National Park Service conducted a water-quality investigation of the Kijik River Basin in Lake Clark National Park and Preserve from June 2004 to March 2005. The Kijik River Basin was studied because it has a productive sockeye salmon run that is important to the larger Kvichak River watershed. Water-quality, physical habitat, and biological characteristics were assessed. Water type throughout the Kijik River Basin is calcium bicarbonate although Little Kijik River above Kijik Lake does have slightly higher concentrations of sulfate and chloride. Alkalinity concentrations are generally less than 28 milligrams per liter, indicating a low buffering capacity of these waters. Lachbuna Lake traps much of the suspended sediment from the glacier streams in the headwaters of the basin as evidenced by low secchi-disc transparency of 1 to 2 meters and low suspended sediment concentrations in the Kijik River downstream from the lake. Kijik Lake is a fed by clearwater streams and has secchi-disc readings ranging from 11 to 15 meters. Streambed sediments collected from four surface sites analyzed for trace elements indicated that arsenic concentrations at all sites were above proposed guidelines. However, arsenic concentrations are due to the local geology, not anthropogenic factors. Benthic macroinvertebrate qualitative multi-habitat samples collected from two sites on the Little Kijik River and two sites on the main stem of the Kijik River indicated a total of 69 taxa present among the four sites. The class Insecta, made up the largest percentage of macroinvertebrates, totaling 70 percent of the families found. The insects were comprised of four orders; Diptera (flies and midges), Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies). One-hundred twenty-two species of periphytic algae were identified in qualitative multi-habitat samples collected at the four stream sites. Eight species of non-motile, diatoms were collected from all four stream sites suggesting that the areas from which they were collected are relatively stable and unaffected by sedimentation.

  12. Variation of Probable Maximum Precipitation in Brazos River Basin, TX

    NASA Astrophysics Data System (ADS)

    Bhatia, N.; Singh, V. P.

    2017-12-01

    The Brazos River basin, the second-largest river basin by area in Texas, generates the highest amount of flow volume of any river in a given year in Texas. With its headwaters located at the confluence of Double Mountain and Salt forks in Stonewall County, the third-longest flowline of the Brazos River traverses within narrow valleys in the area of rolling topography of west Texas, and flows through rugged terrains in mainly featureless plains of central Texas, before its confluence with Gulf of Mexico. Along its major flow network, the river basin covers six different climate regions characterized on the basis of similar attributes of vegetation, temperature, humidity, rainfall, and seasonal weather changes, by National Oceanic and Atmospheric Administration (NOAA). Our previous research on Texas climatology illustrated intensified precipitation regimes, which tend to result in extreme flood events. Such events have caused huge losses of lives and infrastructure in the Brazos River basin. Therefore, a region-specific investigation is required for analyzing precipitation regimes along the geographically-diverse river network. Owing to the topographical and hydroclimatological variations along the flow network, 24-hour Probable Maximum Precipitation (PMP) was estimated for different hydrologic units along the river network, using the revised Hershfield's method devised by Lan et al. (2017). The method incorporates the use of a standardized variable describing the maximum deviation from the average of a sample scaled by the standard deviation of the sample. The hydrometeorological literature identifies this method as more reasonable and consistent with the frequency equation. With respect to the calculation of stable data size required for statistically reliable results, this study also quantified the respective uncertainty associated with PMP values in different hydrologic units. The corresponding range of return periods of PMPs in different hydrologic units was further evaluated using the inverse CDF functions of the most appropriate probability distributions. The analysis will aid regional water boards in designing hydraulic structures, such as dams, spillways, levees, and in identifying and implementing prevention and control mechanisms for extreme flood events resulting from the PMPs.

  13. Macroinvertebrate distribution and aquatic ecology in the Ruoergai (Zoige) Wetland, the Yellow River source region

    NASA Astrophysics Data System (ADS)

    Zhao, Na; Xu, Mengzhen; Li, Zhiwei; Wang, Zhaoyin; Zhou, Hanmi

    2017-09-01

    The Ruoergai (Zoige) Wetland, the largest plateau peatland in the world, is located in the Yellow River source region. The discharge of the Yellow River increases greatly after flowing through the Ruoergai Wetland. The aquatic ecosystem of the Ruoergai Wetland is crucial to the whole Yellow River basin. The Ruoergai wetland has three main kinds of water bodies: rivers, oxbow lakes, and marsh wetlands. In this study, macroinvertebrates were used as indicators to assess the aquatic ecological status because their assemblage structures indicate long-term changes in environments with high sensitivity. Field investigations were conducted in July, 2012 and in July, 2013. A total of 72 taxa of macroinvertebrates belonging to 35 families and 67 genera were sampled and identified. Insecta was the dominant group in the Ruoergai Basin. The alpha diversity of macroinvertebrates at any single sampling site was low, while the alpha diversity on a basin-wide scale was much higher. Macroinvertebrate assemblages in rivers, oxbow lakes, and marsh wetlands differ markedly. Hydrological connectivity was a primary factor causing the variance of the bio-community. The river channels had the highest alpha diversity of macroinvertebrates, followed by marsh wetlands and oxbow lakes. The density and biomass of Gastropoda, collector filterers, and scrapers increased from rivers to oxbow lakes and then to marsh wetlands. The river ecology was particular in the Ruoergai Wetland with the high beta diversity of macroinvertebrates, the low alpha diversity of macroinvertebrates, and the low taxa richness, density, and biomass of EPT (Ephemeroptera, Plecoptera, Trichoptera). To maintain high alpha diversity of macroinvertebrates macroinvertebrates in the Ruoergai Wetland, moderate connectivity of oxbow lakes and marsh wetlands with rivers and measures to control headwater erosion are both crucial.

  14. Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico

    USGS Publications Warehouse

    Alexander, R.B.; Smith, R.A.; Schwarz, G.E.

    2000-01-01

    An increase in the flux of nitrogen from the Mississippi river during the latter half of the twentieth century has caused eutrophication and chronic seasonal hypoxia in the shallow waters of the Louisiana shelf in the northern Gulf of Mexico. This has led to reductions in species diversity, mortality of benthic communities and stress in fishery resources. There is evidence for a predominantly anthropogenic origin of the increased nitrogen flux, but the location of the most significant sources in the Mississippi basin responsible for the delivery of nitrogen to the Gulf of Mexico have not been clearly identified, because the parameters influencing nitrogen-loss rates in rivers are not well known. Here we present an analysis of data from 374 US monitoring stations, including 123 along the six largest tributaries to the Mississippi, that shows a rapid decline in the average first-order rate of nitrogen loss with channel size-from 0.45 day-1 in small streams to 0.005 day-1 in the Mississippi river. Using stream depth as an explanatory variable, our estimates of nitrogen-loss rates agreed with values from earlier studies. We conclude that the proximity of sources to large streams and rivers is an important determinant of nitrogen delivery to the estuary in the Mississippi basin, and possibly also in other large river basins.

  15. Lake Eyre, Simpson Desert, South Australia, Australia

    NASA Image and Video Library

    1990-12-10

    STS035-501-007 (2-10 Dec. 1990) --- The STS-35 crewmembers aboard the Earth-orbiting Space Shuttle Columbia photographed this view of the Arid Simpson Desert of Australia with a handheld Rolleiflex camera. Lake Eyre is normally dry; however, the STS-35 crew was able to recognize water in the lowest parts of the lake (dark pink area) and possibly in Lake Blanche east of Lake Eyre. Lake Frome lies in the distance separated from Lake Torrens (top right) by dark hills of Flinders Range. The Finke River (bottom left to middle) flows into the Eyre basin from the northwest. Although it is the largest river entering the basin, Finke's floods seldom reach Lake Eyre. The dark brown patch in the foreground is an area of ancient, brown lateritic soils partly covered by dunes.

  16. Geotechnical Data Inventory, Southern California Coastal Zone, Cape San Martin (Monterey County) to Mexican Border.

    DTIC Science & Technology

    1985-12-01

    Adequate Several moderate to snail Santa Ynez Mts. sized creeks and streams The largest potential source for sediment is La Honda Canyon. Major drainage...Sized or Area Relative Size Sediment Rate Drainage Basin(s) Santa Ynez River (See note 5) Large 48,000 cu. yds./yr. Ref: 66 Honda Ck (See note 5) Small...Hematite- Ilmenite, Epidote. Ref: 4A Heavy Minerals* Ref: 56A Epidote Augite Hornblende Chlorite Opaques Los Angeles 9 6 23 12 33 Cliffs Laguna Beach "Coarse

  17. Floodplain Modeling in the Kansas River Basin Using Hydrologic Engineering Center (HEC) Models: Impacts of Urbanization and Wetlands for Mitigation

    EPA Science Inventory

    Flooding is a major natural hazard which every year impacts different regions across the world. Between 2000 and 2008, various types of natural hazards, mainly floods have affected the largest number of people worldwide, averaging 99 million people per year (WDR, 2010). In the U...

  18. HYPOXIA IN THE GULF OF MEXICO: ASSESSING AND MANAGING RISKS FROM NONPOINT SOURCE POLLUTANTS IN THE MISSISSIPPI RIVER BASIN

    EPA Science Inventory

    . Hypoxia is the condition in which dissolved oxygen levels are below that necessary to sustain most animal life. The largest zone of oxygen depletion in U.S. coastal waters is found in the northern Gulf of Mexico (NGOM) on the Louisiana/Texas continental shelf. In response to...

  19. Quantification of Shallow Groundwater Nutrient Dynamics in Septic Areas

    Treesearch

    Ying Ouyang; Jia-En Zhang

    2012-01-01

    Of all groundwater pollution sources, septic systems are the second largest source of groundwater nitrate contamination in USA. This study investigated shallow groundwater (SGW) nutrient dynamics in septic areas at the northern part of the Lower St. Johns River Basin, Florida, USA. Thirty-five SGW-monitoring wells, located at nine different urban areas served by septic...

  20. Development and application of a novel method for regional assessment of groundwater contamination risk in the Songhua River Basin.

    PubMed

    Nixdorf, Erik; Sun, Yuanyuan; Lin, Mao; Kolditz, Olaf

    2017-12-15

    The main objective of this study is to quantify the groundwater contamination risk of Songhua River Basin by applying a novel approach of integrating public datasets, web services and numerical modelling techniques. To our knowledge, this study is the first to establish groundwater risk maps for the entire Songhua River Basin, one of the largest and most contamination-endangered river basins in China. Index-based groundwater risk maps were created with GIS tools at a spatial resolution of 30arc sec by combining the results of groundwater vulnerability and hazard assessment. Groundwater vulnerability was evaluated using the DRASTIC index method based on public datasets at the highest available resolution in combination with numerical groundwater modelling. As a novel approach to overcome data scarcity at large scales, a web mapping service based data query was applied to obtain an inventory for potential hazardous sites within the basin. The groundwater risk assessment demonstrated that <1% of Songhua River Basin is at high or very high contamination risk. These areas were mainly located in the vast plain areas with hotspots particularly in the Changchun metropolitan area. Moreover, groundwater levels and pollution point sources were found to play a significantly larger impact in assessing these areas than originally assumed by the index scheme. Moderate contamination risk was assigned to 27% of the aquifers, predominantly associated with less densely populated agricultural areas. However, the majority of aquifer area in the sparsely populated mountain ranges displayed low groundwater contamination risk. Sensitivity analysis demonstrated that this novel method is valid for regional assessments of groundwater contamination risk. Despite limitations in resolution and input data consistency, the obtained groundwater contamination risk maps will be beneficial for regional and local decision-making processes with regard to groundwater protection measures, particularly if other data availability is limited. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. An integrated water system model considering hydrological and biogeochemical processes at basin scale: model construction and application

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Y.; Shao, Q. X.; Ye, A. Z.; Xing, H. T.

    2014-08-01

    Integrated water system modeling is a reasonable approach to provide scientific understanding and possible solutions to tackle the severe water crisis faced over the world and to promote the implementation of integrated river basin management. Such a modeling practice becomes more feasible nowadays due to better computing facilities and available data sources. In this study, the process-oriented water system model (HEXM) is developed by integrating multiple water related processes including hydrology, biogeochemistry, environment and ecology, as well as the interference of human activities. The model was tested in the Shaying River Catchment, the largest, highly regulated and heavily polluted tributary of Huai River Basin in China. The results show that: HEXM is well integrated with good performance on the key water related components in the complex catchments. The simulated daily runoff series at all the regulated and less-regulated stations matches observations, especially for the high and low flow events. The average values of correlation coefficient and coefficient of efficiency are 0.81 and 0.63, respectively. The dynamics of observed daily ammonia-nitrogen (NH4N) concentration, as an important index to assess water environmental quality in China, are well captured with average correlation coefficient of 0.66. Furthermore, the spatial patterns of nonpoint source pollutant load and grain yield are also simulated properly, and the outputs have good agreements with the statistics at city scale. Our model shows clear superior performance in both calibration and validation in comparison with the widely used SWAT model. This model is expected to give a strong reference for water system modeling in complex basins, and provide the scientific foundation for the implementation of integrated river basin management all over the world as well as the technical guide for the reasonable regulation of dams and sluices and environmental improvement in river basins.

  2. Evaluation of Managed Aquifer Recharge Scenarios using Treated Wastewater: a Case study of the Zarqa River Basin, Jordan

    NASA Astrophysics Data System (ADS)

    El-Rawy, Mustafa; Zlotnik, Vitaly; Al-Maktoumi, Ali; Al-Raggad, Marwan; Kacimov, Anvar; Abdalla, Osman

    2016-04-01

    Jordan is an arid country, facing great challenges due to limited water resources. The shortage of water resources constrains economy, especially agriculture that consumes the largest amount of available water (about 53 % of the total demand). According to the Jordan Water Strategy 2008 - 2022, groundwater is twice greater than the recharge rate. Therefore, the government charged the planners to consider treated wastewater (TWW) as a choice in the water resources management and development strategies. In Jordan, there are 31 TWW plants. Among them, As Samra plant serving the two major cities, Amman and Zarqa, is the largest, with projected maximum capacity of 135 Million m3/year. This plant is located upstream of the Zarqa River basin that accepts all TWW discharges. The Zarqa River is considered the most important source of surface water in Jordan and more than 78 % of its current is composed of TWW. The main objectives were to develop a conceptual model for a selected part of the Zarqa River basin, including the As Samrapant, and to provide insights to water resources management in the area using TWW. The groundwater flow model was developed using MODFLOW 2005 and used to assess changes in the aquifer and the Zarqa River under a set of different increments in discharge rates from the As Samra plant and different groundwater pumping rates. The results show that the water table in the study area underwent an average water table decline of 29 m prior to the As Samra plant construction, comparing with the current situation (with annual TWW discharge of 110 Million m3). The analysis of the TWW rate increase to 135 million m3/year (maximum capacity of the As Samra plant) shows that the average groundwater level will rise 0.55 m, compared to the current conditions. We found that the best practices require conjunctive use management of surface- and groundwater. The simulated scenarios highlight the significant role of TWW in augmenting the aquifer storage, improving water availability, and better farming activities in the Zarqa River valley. Keywords: Managed Aquifer Recharge, Treated Wastewater, Zarqa River Basin, Jordan, MODFLOW 2005 Acknowledgments This study was funded by USAID-FABRI, project contract: AID-OAA-TO-11-00049 (project codes: 1001626 - 104 and 1001624-12S-19745). First author acknowledges Sultan Qaboos University, Oman for the postdoctoral fellowship. The authors acknowledge support of the Ministry of Water and Irrigation, Jordan for providing access to the data and field assistance.

  3. The silicon isotopic composition of fine-grained river sediments and its relation to climate and lithology

    NASA Astrophysics Data System (ADS)

    Bayon, G.; Delvigne, C.; Ponzevera, E.; Borges, A. V.; Darchambeau, F.; De Deckker, P.; Lambert, T.; Monin, L.; Toucanne, S.; André, L.

    2018-05-01

    The δ30Si stable isotopic composition of silicon in soils and fine-grained sediments can provide insights into weathering processes on continents, with important implications on the Si budget of modern and past oceans. To further constrain the factors controlling the distribution of Si isotopes in sediments, we have analysed a large number (n = 50) of separate size-fractions of sediments and suspended particulate materials collected near the mouth of rivers worldwide. This includes some of the world's largest rivers (e.g. Amazon, Congo, Mackenzie, Mississippi, Murray-Darling, Nile, Yangtze) and rivers from the case study areas of the Congo River Basin and Northern Ireland. Silt-size fractions exhibit a mean Si isotopic composition (δ30Si = -0.21 ± 0.19‰; 2 s.d.) similar to that previously inferred for the upper continental crust. In contrast, clay-size fractions display a much larger range of δ30Si values from -0.11‰ to -2.16‰, which yield a global δ30Siclay of -0.57 ± 0.60‰ (2 s.d.) representative of the mean composition of the average weathered continental crust. Overall, these new data show that the Si isotopic signature transported by river clays is controlled by the degree of chemical weathering, as inferred from strong relationships with Al/Si ratios. At a global scale, the clay-bound Si isotopic composition of the world's largest river systems demonstrates a link with climate, defining a general correlation with mean annual temperature (MAT) in corresponding drainage basins. While the distribution of Si isotopes in river sediments also appears to be influenced by the tectonic setting, lithological effects and sediment recycling from former sedimentary cycles, our results pave the way for their use as paleo-weathering and paleo-climate proxies in the sedimentary record.

  4. Assessing the utility of passive microwave data for Snow Water Equivalent (SWE) estimation in the Sutlej River Basin of the northwestern Himalaya

    NASA Astrophysics Data System (ADS)

    Brandt, T.; Bookhagen, B.; Dozier, J.

    2014-12-01

    Since 1978, space based passive microwave (PM) radiometers have been used to comprehensively measure Snow Water Equivalent (SWE) on a global basis. The ability of PM radiometers to directly measure SWE at high temporal frequencies offers some distinct advantages over optical remote sensors. Nevertheless, in mountainous terrain PM radiometers often struggle to accurately measure SWE because of wet snow, saturation in deep snow, forests, depth hoar and stratigraphy, variable relief, and subpixel heterogeneity inherent in large pixel sizes. The Himalaya, because of their high elevation and high relief—much above tree line—offer an opportunity to examine PM products in the mountains without the added complication of trees. The upper Sutlej River basin— the third largest Himalayan catchment—lies in the western Himalaya. The river is a tributary of the Indus River and seasonal snow constitutes a substantial part of the basin's hydrologic budget. The basin has a few surface stations and river gauges, which is unique for the region. As such, the Sutlej River basin is a good location to analyze the accuracy and effectiveness of the current National Snow and Ice Data Center's (NSIDC) standard AMSR-E/Aqua Daily SWE product in mountainous terrain. So far, we have observed that individual pixels can "flicker", i.e. fluctuate from day to day, over large parts of the basin. We consider whether this is an artifact of the algorithm or whether this is embedded in the raw brightness temperatures themselves. In addition, we examine how well the standard product registers winter storms, and how it varies over heavily glaciated pixels. Finally, we use a few common measures of algorithm performance (precision, recall and accuracy) to test how well the standard product detects the presence of snow, using optical imagery for validation. An improved understanding of the effectiveness of PM imagery in the mountains will help to clarify the technology's limits.

  5. Impacts of Change in Irrigation Water Availability on Food Production in the Yellow River Basin under Climate Change

    NASA Astrophysics Data System (ADS)

    Yin, Y. Y.; Tang, Q.

    2014-12-01

    Approximately 9 percent of China's population and 17 percent of its agricultural area are settled in the Yellow River Basins. Irrigation, which plays an important role in agricultural production, occupies the largest share of human consumptive water use in the basin. Given increasing water demands, the basin faces acute water scarcity. Previous studies have suggested that decrease in irrigation water availability under climate change might have an overall adverse impact on the food production of the basin. The timing and area that would face severe water stress are yet to be identified. We used a land surface hydrological model forced with the bias-corrected climatic variables from 5 climate models under 4 Representative Concentration Pathways (RCPs) to estimate total water availability in the sub-basins of the Yellow River basin. The future socioeconomic conditions, the Shared Socioeconomic Pathways (SSPs), were used to estimate the water requirement in the nonagricultural water use sectors. The irrigation water availability was estimated from the total water availability and nonagricultural water use, and the irrigation water demands were estimated based on the current irrigation project efficiencies. The timing and area of irrigation water shortage were shown and the implication of change in irrigation water availability on food production was assessed. The results show that the sub-basins with high population density and gross domestic product (GDP) are likely to confront severe water stress and reduction in food production earlier because irrigation water was to be appropriated by the rapid increase in nonagricultural water use sectors. The study stresses the need for adaptive management of water to balance agriculture and nonagricultural demands in northern China.

  6. Hydrochemical responses among nested catchments of the Sleepers River Research Watershed.

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Boyer, E. W.; Shanley, J. B.; Kendall, C.

    2005-12-01

    We are probing chemical and isotopic tracers of dissolved organic carbon (DOC) and nitrate over both space and time to determine how stream nutrient dynamics change with increasing basin size and differ with flow conditions. At the Sleepers River Research Watershed in northeastern Vermont, USA, 20 to 30 nested sub-basins that ranged in size from 3 to 11,000 ha were sampled repeatedly under baseflow conditions. These synoptic surveys showed a pattern of heterogeneity in headwaters that converged to a consistent response at larger basin sizes and is consistent with findings of other studies. In addition to characterizing spatial patterns under baseflow, we sampled rainfall and snowmelt events over a gradient of basin sizes to investigate scaling responses under different flow conditions. During high flow events, DOC and nitrate flushing responses varied among different basins where high-frequency event samples were collected. While the DOC and nitrate concentration patterns were similar at four headwater basins, the concentration responses of larger basins were markedly different in that the concentration patterns, flushing duration, and maximum concentrations were attenuated from headwaters to the largest basin. We are using these data to explore how flow paths and solute mixing aggregate. Overall, these results highlight the complexities of understanding spatial scaling issues in catchments and underscore the need to consider event responses of hydrology and chemistry among catchments.

  7. Sediment Quality and Comparison to Historical Water Quality, Little Arkansas River Basin, South-Central Kansas, 2007

    USGS Publications Warehouse

    Juracek, Kyle E.; Rasmussen, Patrick P.

    2008-01-01

    The spatial and temporal variability in streambed-sediment quality and its relation to historical water quality was assessed to provide guidance for the development of total maximum daily loads and the implementation of best-management practices in the Little Arkansas River Basin, south-central Kansas. Streambed-sediment samples were collected at 26 sites in 2007, sieved to isolate the less than 63-micron fraction (that is, the silt and clay), and analyzed for selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 25 trace elements, and the radionuclides beryllium-7, cesium-137, lead-210, and radium-226. At eight sites, streambed-sediment samples also were collected and analyzed for bacteria. Particulate nitrogen, phosphorus, and organic carbon concentrations in the streambed sediment varied substantially spatially and temporally, and positive correlations among the three constituents were statistically significant. Along the main-stem Little Arkansas River, streambed-sediment concentrations of particulate nitrogen and phosphorus generally were larger at and downstream from Alta Mills, Kansas. The largest particulate nitrogen concentrations were measured in samples collected in the Emma Creek subbasin and may be related to livestock and poultry production. The largest particulate phosphorus concentrations in the basin were measured in samples collected along the main-stem Little Arkansas River downstream from Alta Mills, Kansas. Particulate nitrogen, phosphorus, and organic carbon content in the water and streambed-sediment samples typically decreased as streamflow increased. This inverse relation may be caused by an increased contribution of sediment from channel-bank sources during high flows and (or) increased particle sizes transported by the high flows. Trace element concentrations in the streambed sediment varied from site to site and typically were less than threshold-effects guidelines for possible adverse biological effects. The largest copper, lead, silver, and zinc concentrations, measured for a sample collected from Sand Creek downstream from Newton, Kansas, likely were related to urban sources of contamination. Radionuclide activities and bacterial densities in the streambed sediment varied throughout the basin. Variability in the former may be indicative of subbasin differences in the contribution of sediment from surface-soil and channel-bank sources. Streambed sediment may be useful for reconnaissance purposes to determine sources of particulate nitrogen, phosphorus, organic carbon, and other sediment-associated constituents in the basin. If flow conditions prior to streambed-sediment sampling and during water-quality sampling are considered, it may be possible to use streambed sediment as an indicator of water quality for nitrogen, phosphorus, and organic carbon. Flow conditions affect sediment-associated constituent concentrations in streambed-sediment and water samples, in part, because the sources of sediment (surface soils, channel banks) can vary with flow as can the size of the particles transported.

  8. Basic cytogenetics and physical mapping of 5S and 18S ribosomal genes in Hoplias malabaricus (Osteichthyes, Characiformes, Erythrinidae) from isolated natural lagoons: a conserved karyomorph along the Iguaçu river basin.

    PubMed

    Gemi, Gisele; Lui, Roberto Laridondo; Treco, Fernando Rodrigo; Paiz, Leonardo Marcel; Moresco, Rafaela Maria; Margarido, Vladimir Pavan

    2014-01-01

    Erythrinidae include Neotropical teleost fish that are widely distributed in South America. Hoplias Gill, 1903 include two large groups: H. malabaricus Bloch, 1794 and H. lacerdae Miranda Ribeiro, 1908. Hoplias malabaricus is characterized by remarkable karyotype diversity, with some karyomorphs widely distributed geographically while others are more restricted to certain river basins. Cytogenetic analyzes were performed in a population of Hoplias malabaricus from the Wildlife Refuge of Campos de Palmas, the Iguaçu River basin. The specimens showed diploid number of 42 chromosomes (24m+18sm) without differentiated sex chromosomes system. The impregnation by silver nitrate showed multiple AgNORs. Seven pairs (4, 7, 10, 13, 16, 20 and 21) carrying 18S rDNA were detected by FISH. Heterochromatin was verified in the centromeric and pericentromeric region of most chromosomes and the terminal region of some pairs. FISH with 5S rDNA probes showed two chromosome pairs carrying these sites in the interstitial region (8 and 14). The data obtained in this study are similar to those found for two other populations of H. malabaricus already studied in the basin of the Iguaçu River, confirming the hypothesis that this species is natural, not having been introduced, as well as having an intrinsic characteristic, such as the largest number of sites of 18S rDNA.

  9. Preface; Water quality of large U.S. rivers; results from the U.S. Geological Survey's National Stream Quality Accounting Network

    USGS Publications Warehouse

    Hirsch, Robert M.; Hooper, Richard P.; Kelly, Valerie J.

    2001-01-01

    The mission of the US Geological Survey (USGS) is to assess the quantity and quality of the earth resources of the USA and to provide information that will assist resource managers and policymakers at federal, state and local levels in making sound decisions. Characterizing the water quality of the largest rivers of the USA is a daunting prospect, especially given the resources available for the task. The most effective approach is uncertain and is legitimately a research topic. The National Stream Quality Accounting Network (NASQAN) was redesigned in 1995 to estimate the annual mass flux of constituents at a network of fixed stations in the Mississippi, Rio Grande, Colorado, and Columbia River basins. This special volume of Hydrological Processes contains a series of papers evaluating the data collected by NASQAN during its first 3 years of operation under this design. The NASQAN network complements other USGS national programs that are designed to address water quality at different scales. The National Water-Quality Assessment Program (Hirsch et al., 1988) is designed around river basins of 10 000 to 100 000 km2 (versus these NASQAN basins, which are 650 000 to 3 100 000 km2 at their most downstream stations). The USGS also operates the Hydrologic Benchmark Network that is focused on relatively pristine basins of only 10 to 100 km2 (Mast and Turk, 1999a,b; Clark et al., 2000; Mast et al., 2000).

  10. Lateral carbon export in the Mississippi River Basin, integrating fluxes from the headwaters to the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Stackpoole, S. M.; Crawford, J.; Santi, L. M.; Stets, E.; Sebestyen, S. D.; Wilson, S.; Striegl, R. G.

    2017-12-01

    Large-scale river studies have documented that lateral fluxes are an important component of the global carbon cycle. This study focuses on river lateral C fluxes for the Mississippi River Basin (MRB), the largest river in North America. Our lateral river C fluxes are based on data from 23 nested watersheds within the Upper MRB, for water years 2015 and 2016. The study area covers 170,000 km2 and is comprised of both catchment <10 km2 and intermediate-scale watersheds (20,000 to 40,000 km2) in Wisconsin and Minnesota, USA. Total alkalinity yields (flux derived by drainage area) ranged from 0 to 16 g C m2 yr-1 and dissolved organic C (DOC) yields ranged from 1 to 13 g C m2 yr-1. In comparison, published estimates for Mississippi River export to the Gulf of Mexico, estimated at St. Francisville, LA, were 16 g C m-2 yr-1 for alkalinity and 0.6 g m2 yr-1 for DOC. In the Upper MRB, alkalinity yields had a significant negative relationship with DOC yields (R2 = 0.53, p-value<0.0001), and alkalinity yields were significantly higher in basins where the lithology was dominated by carbonates and the land-use was >50% agriculture. There was significant inter-annual variability in the total C fluxes, and the increase in discharge in 2016 relative to 2015 increased the proportion of DOC:alkalinity for watersheds with higher forest and wetland coverage. The integration of these recent C flux estimates for the Upper MRB integrated with the fluxes estimated from the USGS long-term monitoring program dataset provide a comprehensive analysis of alkalinity and DOC fluxes for the entire basin. These results, which represent C fluxes across a gradient of lithology, soil type, and land use, will be used to address questions related to our understanding of carbon sources, transport, and loss that can be applied to other river systems.

  11. Impact of climate change on river discharge in the Teteriv River basin (Ukraine)

    NASA Astrophysics Data System (ADS)

    Didovets, Iulii; Lobanova, Anastasia; Krysanova, Valentina; Snizhko, Sergiy; Bronstert, Axel

    2016-04-01

    The problem of water resources availability in the climate change context arises now in many countries. Ukraine is characterized by a relatively low availability of water resources compared to other countries. It is the 111th among 152 countries by the amount of domestic water resources available per capita. To ensure socio-economic development of the region and to adapt to climate change, a comprehensive assessment of potential changes in qualitative and quantitative characteristics of water resources in the region is needed. The focus of our study is the Teteriv River basin located in northern Ukraine within three administrative districts covering the area of 15,300 km2. The Teteriv is the right largest tributary of the Dnipro River, which is the fourth longest river in Europe. The water resources in the region are intensively used in industry, communal infrastructure, and agriculture. This is evidenced by a large number of dams and industrial objects which have been constructed from the early 20th century. For success of the study, it was necessary to apply a comprehensive hydrological model, tested in similar natural conditions. Therefore, an eco-hydrological model SWIM with the daily time step was applied, as this model was used previously for climate impact assessment in many similar river basins on the European territory. The model was set up, calibrated and validated for the gauge Ivankiv located close to the outlet of the Teteriv River. The Nash-Sutcliffe efficiency coefficient for the calibration period is 0.79 (0.86), and percent bias is 4,9% (-3.6%) with the daily (monthly) time step. The future climate scenarios were selected from the IMPRESSIONS (Impacts and Risks from High-End Scenarios: Strategies for Innovative Solutions, www.impressions-project.eu) project, which developed 7 climate scenarios under RCP4.5 and RCP8.5 based on GCMs and downscaled using RCMs. The results of climate impact assessment for the Teteriv River basin will be presented.

  12. A legacy of change: The lower Colorado River, Arizona-California-Nevada, USA, and Sonora-Baja California Norte, Mexico

    USGS Publications Warehouse

    Mueller, G.A.; Marsh, P.C.; Minckley, W.L.

    2005-01-01

    The lower Colorado is among the most regulated rivers in the world. It ranks as the fifth largest river in volume in the coterminous United States, but its flow is fully allocated and no longer reaches the sea. Lower basin reservoirs flood nearly one third of the river channel and store 2 years of annual flow. Diverted water irrigates 1.5 million ha of cropland and provides water for industry and domestic use by 22 million people in the southwestern United States and northern Mexico. The native fish community of the lower Colorado River was among the most unique in the world, and the main stem was home to nine freshwater species, all of which were endemic to the basin. Today, five are extirpated, seven are federally endangered, and three are being reintroduced through stocking. Decline of the native fauna is attributed to predation by nonnative fishes and physical habitat degradation. Nearly 80 alien species have been introduced, and more than 20 now are common. These nonnative species thrived in modified habitats, where they largely eliminated the native kinds. As a result, the lower Colorado River has the dubious distinction of being among the few major rivers of the world with an entirely introduced fish fauna. ?? 2005 by the American Fisheries Society.

  13. Evaluation of the impact of climate change on the water resources, crop needs and water quality of the Jalón river (Spain)

    NASA Astrophysics Data System (ADS)

    Pisani, Bruno; Samper, Javier; García Vera, Miguel Angel

    2014-05-01

    Climate models predict an increase in temperature, T, and a decrease of precipitation, P, for the Mediterranean regions. These trends will decrease the available water resources, increase the water demand of crops and affect the water quality. The Ebre river basin is one of the largest basins in Spain. Preliminary evaluations of the potential impact of the climate change on its water resources pointed out that the sub-basins located in the Southeastern part of the basin are the most vulnerable. The Jalón river sub-basin is one of such sub-basins. It has a drainage area of 10187 km2 and shows a wide range of climatic, geologic, and land use conditions. The impact of climate change on the water resources of the Jalón River sub-basin has been evaluated for the period 2071-2100 for the A2 and B2 emission scenarios by using a semi-distributed water balance model. The results indicate that the mean annual temperature will rise from 2 to 4 ºC while the mean annual precipitation will decrease from 14% to 18%. Groundwater recharge will decrease dramatically (from 60% to 80%) while the total stream flow will decrease from 59% to 77%. The increase in crop water demand will range from 12% to 16% while the net crop water demand will increase from 25% to 33%. The concentration of a conservative chemical species such as Cl- in the runoff will increase by a factor ranging from 1.45 to 5. These predictions, which may contain uncertainties, have been taken into account in the program of measures of the Ebre river basin water plan. The main sources of uncertainty come from the historic hydrological data, the global and regional circulation models, the definition of the scenarios, the downscaling method and the hydrological model. Acknowledgements. The research leading to these results has received funding from the Ebre River Authority (Proyect 2010-PH-02.I) and a project from the Ministry of Economy and Competitiveness (Project CGL2012-36560). The work of Bruno Pisani was funded by the Galician Regional Government (Fund 2012/181 from "Consolidación e estruturación de unidades de investigación competitivas", Grupos de referencia competitiva).

  14. Freshwater macroinvertebrate samples from a water quality monitoring network in the Iberian Peninsula

    PubMed Central

    Escribano, Nora; Oscoz, Javier; Galicia, David; Cancellario, Tommaso; Durán, Concha; Navarro, Patricia; Ariño, Arturo H.

    2018-01-01

    This dataset gathers information about the macroinvertatebrate samples and environmental variables collected on rivers of the Ebro River Basin (NE Iberian Peninsula), the second largest catchment in the Iberian Peninsula. The collection is composed of 1,776 sampling events carried out between 2005 and 2015 at more than 400 sampling sites. This dataset is part of a monitoring network set up by the Ebro Hydrographic Confederation, the official body entrusted with the care of the basin, to fulfill the requirements of the European Water Framework Directive. Biological indices based on the freshwater macroinvertebrate communities were used to evaluate the ecological status of the water bodies within the basin. Samples were qualitatively screened for all occurring taxa. Then, all individuals from all taxa in a quantitative subsample of each sample were counted. Biological indices were calculated to estimate water quality at each sampling site. All samples are kept at the Museum of Zoology of the University of Navarra. PMID:29870034

  15. Status and distribution of the West Indian manatee, Trichechus manatus manatus, in Colombia

    USGS Publications Warehouse

    Montoya-Ospina, R. A.; Caicedo-Herrera, D.; Millan-Sanchez, S. L.; Mignucci-Giannoni, A. A.; Lefebvre, L.W.

    2001-01-01

    Historical and recent information on the status and distribution of West Indian manatee, Trichechus manatus manatus, in Colombia was reviewed. Opportunistic and systematic interviews were also conducted. Historical information suggested that the distribution of manatees had been reduced in the Caribbean basin. Manatees can be found in the Atrato, Sinu??, San Jorge, Cauca, Cesar and Magdalena rivers and the Cie??naga Grande de Santa Marta marsh in the Caribbean basin, and in the Meta River in the Orinoco basin. The Magdalena riparian system provides the largest area of suitable habitat, which also has the highest frequency of captures. Most animals (81.20%) were killed for sale or to share meat in a subsistence base. Hunting is apparently increasing but capture with nets still represents the species' major direct threat. Habitat destruction occurs in all areas. International and national laws protect the species, however, funding is inadequate for effective enforcement of present laws. ?? 2001 Published by Elsevier Science Ltd. All rights reserved.

  16. Freshwater macroinvertebrate samples from a water quality monitoring network in the Iberian Peninsula.

    PubMed

    Escribano, Nora; Oscoz, Javier; Galicia, David; Cancellario, Tommaso; Durán, Concha; Navarro, Patricia; Ariño, Arturo H

    2018-06-05

    This dataset gathers information about the macroinvertatebrate samples and environmental variables collected on rivers of the Ebro River Basin (NE Iberian Peninsula), the second largest catchment in the Iberian Peninsula. The collection is composed of 1,776 sampling events carried out between 2005 and 2015 at more than 400 sampling sites. This dataset is part of a monitoring network set up by the Ebro Hydrographic Confederation, the official body entrusted with the care of the basin, to fulfill the requirements of the European Water Framework Directive. Biological indices based on the freshwater macroinvertebrate communities were used to evaluate the ecological status of the water bodies within the basin. Samples were qualitatively screened for all occurring taxa. Then, all individuals from all taxa in a quantitative subsample of each sample were counted. Biological indices were calculated to estimate water quality at each sampling site. All samples are kept at the Museum of Zoology of the University of Navarra.

  17. Seasonal and spatial patterns in diurnal cycles in streamflow in the western United States

    USGS Publications Warehouse

    Lundquist, J.D.; Cayan, D.R.

    2002-01-01

    The diurnal cycle in streamflow constitutes a significant part of the variability in many rivers in the western United States and can be used to understand some of the dominant processes affecting the water balance of a given river basin. Rivers in which water is added diurnally, as in snowmelt, and rivers in which water is removed diurnally, as in evapotranspiration and infiltration, exhibit substantial differences in the timing, relative magnitude, and shape of their diurnal flow variations. Snowmelt-dominated rivers achieve their highest sustained flow and largest diurnal fluctuations during the spring melt season. These fluctuations are characterized by sharp rises and gradual declines in discharge each day. In large snowmelt-dominated basins, at the end of the melt season, the hour of maximum discharge shifts to later in the day as the snow line retreats to higher elevations. Many evapotranspiration/infiltration-dominated rivers in the western states achieve their highest sustained flows during the winter rainy season but exhibit their strongest diurnal cycles during summer months, when discharge is low, and the diurnal fluctuations compose a large percentage of the total flow. In contrast to snowmelt-dominated rivers, the maximum discharge in evapotranspiration/infiltration-dominated rivers occurs consistently in the morning throughout the summer. In these rivers, diurnal changes are characterized by a gradual rise and sharp decline each day.

  18. A 25-Year Retrospective Analysis of River Nitrogen Fluxes in the Atchafalaya

    NASA Astrophysics Data System (ADS)

    Xu, Y.

    2005-05-01

    Nitrogen enrichment from the upper Mississippi River Basin has been attributed to be the major cause for the hypoxia in the Northern Gulf of Mexico. The hypoxia threatens not only the aquatic ecosystem health but Louisiana's fishery industry directly among other problems. Although fresh water diversion from the lower Mississippi River into the region's wetlands has been considered an alternative means for reducing nitrogen loading, it is largely uncertain how much nitrogen can actually be retained from the overflowing waters in these natural wetlands. Generally, there is a knowledge gap in what tools are available for accurate assessment of nitrogen inflow, outflow and removal potential for the complex and diverse coastal floodplain systems. This study is to seek answers to three critical questions: (1) Does the Atchafalaya River Swamp remove a significant amount of nitrogen from the overflowing water or release more nitrogen into the Gulf than removing it? (2) How seasonally and annually do the nitrogen removal or release rates fluctuate? (3) What are the relationships between the nitrogen removal capacity and the basin's hydrologic conditions such as river stage and discharge? By utilizing river's long-term discharge and water quality data (1978-2002), monthly and annual nitrogen fluxes were quantified, and their relationships with the basin's hydrologic conditions were investigated. A total Kjeldahl nitrogen (TKN) mass input-output balance between the upstream (Simmesport) and downstream (Morgan City and Wax Lake Outlet) locations was established to examine the organic nitrogen removal potential for this largest freshwater swamp basin in North America. The results showed that on average, TKN input into the Atchafalaya was 200,323 Mg yr-1 and TKN output leaving the basin was 145,917 Mg yr-1, resulting in a 27% removal rate of nitrogen. Monthly nitrogen input and output in the basin were highest from March to June (input vs. output: 25,000 vs. 18,000 Mg mon-1) and lowest from August to November (8,000 vs. 6,000 Mg mon-1). There was a large variation in both annual and inter-annual nitrogen removals, and the variability was positively correlated with the amount of inflow water at Simmesport. However, no close relationship between the river inflow and percentage nitrogen removal rate was found. The results gained from this study suggest that regulating the river's inflow will help reduce nitrogen loading of the Mississippi River to the Gulf of Mexico. The in-stream loss of nitrogen indicates that previous studies may have overestimated nitrogen discharge from the Mississippi-Atchafalaya River system. Furthermore, the study found that knowledge on spatial hydrological conditions in the basin is needed to understand nitrogen dynamics in the Atchafalaya River Swamp.

  19. Expansion of agricultural oasis in the Heihe River Basin of China: Patterns, reasons and policy implications

    NASA Astrophysics Data System (ADS)

    Song, Wei; Zhang, Ying

    The Heihe River Basin (HRB) is the second largest inland river basin in the arid region of northwestern China. An agricultural oasis is a typical landscape in arid regions providing precious fertile soil, living space and ecological services. The agricultural oasis change has been one of the key issues in sustainable development in recent decades. In this paper, we examined the changes in the agricultural oasis in HRB and analyzed the socio-economic and climatic driving forces behind them. It was found that the agricultural oasis in HRB expanded by 25.11% and 14.82% during the periods of 1986-2000 and 2000-2011, respectively. Most of the newly added agricultural oases in HRB were converted from grassland (40.94%) and unused land (40.22%). The expansion in the agricultural oasis mainly occurred in the middle reaches of HRB, particularly in the counties of Shandan, Minle, Jinta and Jiuquan city. Changes in the rural labor force, annual temperature and precipitation have significant positive effects on agricultural oasis changes, while the ratio of irrigated agricultural oases has significant negative effects on agricultural oasis changes. The agricultural oasis expansion in HRB is the combined effect of human activity and climate change.

  20. Quantifying Changes in Accessible Water in the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Castle, S.; Thomas, B.; Reager, J. T.; Swenson, S. C.; Famiglietti, J. S.

    2013-12-01

    The Colorado River Basin (CRB) in the western United States is heavily managed yet remains one of the most over-allocated rivers in the world providing water across seven US states and Mexico. Future water management strategies in the CRB have employed land surface models to forecast discharges; such approaches have focused on discharge estimates to meet allocation requirements yet ignore groundwater abstractions to meet water demands. In this analysis, we illustrate the impact of changes in accessible water, which we define as the conjunctive use of both surface water reservoir storage and groundwater storage, using remote sensing observations to explore sustainable water management strategies in the CRB. We employ high resolution Landsat Thematic Mapper satellite data to detect changes in reservoir storage in the two largest reservoirs within the CRB, Lakes Mead and Powell, and the Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage anomalies to isolate changes in basin-wide groundwater storage in the Upper and Lower CRB from October 2003 to December 2012. Our approach quantifies reservoir and groundwater storage within the CRB using remote sensing to provide new information to water managers to sustainably and conjunctively manage accessible water.

  1. Evolution of canals system linking the Vistula, Dnieper and Neman basins

    NASA Astrophysics Data System (ADS)

    Brykala, Dariusz; Badziai, Vitali

    2014-05-01

    The aim of this study is to reconstruct landscape changes in the Polesie Region - one of the largest European swampy areas (Belarus), as a result of the creation and operation of a network of canals. From the 16th century efforts were undertaken to connect the Polish areas located in the drainage basins of the Black Sea and Baltic Sea with canals. Already in 1631 the Polish Sejm (parliament) approved the project to build a canal linking the River Berezina (Dnieper basin) with the River Neris (Neman basin). However, the complicated political and economic situation of the country did not allow doing this. Only in the second half of the 18th c. hetman Ogiński financed the construction of a canal linking the Dnieper and Neman basins. The canal connecting the River Szczara (Neman basin) with the River Jasiołda (Pripyat basin) was named after its creator - the Ogiński Canal. At the same time the construction of the Królewski (Royal) Canal linking the River Muchavets (Vistula basin) and the River Pina (Pripyat basin) was under way. The construction of the canal was completed in 1783. The winding channels of the Pina and Muchavets were straightened, and the numerous canals feeding the waterway system drained vast area of marshes and wetlands of the Polesia Region. The last element that connects the catchments of the Vistula and Neman is the Augustów Canal built in the years 1825-1839 (linking the catchments of the Biebrza and Neman). Numerous changes in political boundaries in the watershed area between the Black Sea and the Baltic Sea drainage basins caused the destruction of the hydraulic structures. All the analysed canals were completely destroyed during the two world wars. In the last 200 years the amount and type of locks and weirs has changed. For example, there were no weirs on the Royal Canal in the late 18th c., in the middle of the 19th c. there were 22 such structures, while now that number has gone down to 10. All canals were created for economic reasons, i.e. of the need for floating of timber and food. Currently, in most cases they are tourist attractions only. Only the Królewski Canal, known as the Dnieper-Bug Canal, plays a very important transportation role in the economy of Belarus. These studies are a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis (ICLEA) and intergovernmental agreement on scientific cooperation between Poland and Belarus in years 2011-2013: No. 13.

  2. The Influence of Climate Change on Irrigated Water Demands and Surface Water Availability of the Yellow River Basin

    NASA Astrophysics Data System (ADS)

    Troy, T. J.; Zhang, J.

    2017-12-01

    Balancing irrigated water demands and surface water availability is critical for sustainable water resources management. In China, irrigation is the largest water user, and there is concern that irrigated water demands will be affected by climate change. If the relationship between climate change, irrigated water demands and surface water availability is quantified, then effective measures can be developed to maintain food production while ensuring water sustainability. This research focuses on the Yellow River, the second longest in China, and analyzes the impact of historical and projected climate change on agricultural water demands and surface water availability. Corn and wheat are selected as representative crops to estimate the effect of temperature and precipitin changes on irrigated water demands. The VIC model is used to simulate daily streamflow throughout the Yellow River, providing estimates of surface water availability. Overall, results indicate the irrigated water need and surface water availability are impacted by climate change, with spatially varying impacts depending on spatial patterns of climate trends and river network position. This research provides insight into water security in the Yellow River basin, indicating where water efficiency measures are needed and where they are not.

  3. Divergent biophysical controls of aquatic CO2 and CH4 in the World’s two largest rivers

    PubMed Central

    Borges, Alberto V.; Abril, Gwenaël; Darchambeau, François; Teodoru, Cristian R.; Deborde, Jonathan; Vidal, Luciana O.; Lambert, Thibault; Bouillon, Steven

    2015-01-01

    Carbon emissions to the atmosphere from inland waters are globally significant and mainly occur at tropical latitudes. However, processes controlling the intensity of CO2 and CH4 emissions from tropical inland waters remain poorly understood. Here, we report a data-set of concurrent measurements of the partial pressure of CO2 (pCO2) and dissolved CH4 concentrations in the Amazon (n = 136) and the Congo (n = 280) Rivers. The pCO2 values in the Amazon mainstem were significantly higher than in the Congo, contrasting with CH4 concentrations that were higher in the Congo than in the Amazon. Large-scale patterns in pCO2 across different lowland tropical basins can be apprehended with a relatively simple statistical model related to the extent of wetlands within the basin, showing that, in addition to non-flooded vegetation, wetlands also contribute to CO2 in river channels. On the other hand, dynamics of dissolved CH4 in river channels are less straightforward to predict, and are related to the way hydrology modulates the connectivity between wetlands and river channels. PMID:26494107

  4. Water geochemistry of the Qiantangjiang River, East China: Chemical weathering and CO2 consumption in a basin affected by severe acid deposition

    NASA Astrophysics Data System (ADS)

    Liu, Wenjing; Shi, Chao; Xu, Zhifang; Zhao, Tong; Jiang, Hao; Liang, Chongshan; Zhang, Xuan; Zhou, Li; Yu, Chong

    2016-09-01

    The chemical composition of the Qiantangjiang River, the largest river in Zhejiang province in eastern China, was measured to understand the chemical weathering of rocks and the associated CO2 consumption and anthropogenic influences within a silicate-dominated river basin. The average total dissolved solids (TDS, 113 mg l-1) and total cation concentration (TZ+, 1357 μeq l-1) of the river waters are comparable with those of global major rivers. Ca2+ and HCO3- followed by Na2+ and SO42-, dominate the ionic composition of the river water. There are four major reservoirs (carbonates, silicates, atmospheric and anthropogenic inputs) contributing to the total dissolved load of the investigated rivers. The dissolved loads of the rivers are dominated by both carbonate and silicate weathering, which together account for about 76.3% of the total cationic load origin. The cationic chemical weathering rates of silicate and carbonate for the Qiantangjiang basin are estimated to be approximately 4.9 ton km-2 a-1 and 13.9 ton km-2 a-1, respectively. The calculated CO2 consumption rates with the assumption that all the protons involved in the weathering reaction are provided by carbonic acid are 369 × 103 mol km-2 a-1 and 273 × 103 mol km-2 a-1 by carbonate and silicate weathering, respectively. As one of the most severe impacted area by acid rain in China, H2SO4 from acid precipitation is also an important proton donor in weathering reactions. When H2SO4 is considered, the CO2 consumption rates for the river basin are estimated at 286 × 103 mol km-2 a-1 for carbonate weathering and 211 × 103 mol km-2 a-1 for silicate weathering, respectively. The results highlight that the drawdown effect of CO2 consumption by carbonate and silicate weathering can be largely overestimated if the role of sulfuric acid is ignored, especially in the area heavily impacted by acid deposition like Qiantangjiang basin. The actual CO2 consumption rates (after sulfuric acid weathering effect deduction) is only about 77% of the value calculated with the assumption that carbonic acid donates all the protons involved in the weathering reaction.

  5. Quantity and quality of phosphorus losses from an artificially drained lowland catchment

    NASA Astrophysics Data System (ADS)

    Nausch, Monika; Woelk, Jana; Kahle, Petra; Nausch, Günther; Leipe, Thomas; Lennartz, Bernd

    2017-04-01

    Currently, agricultural diffuse sources constitute the major portion of phosphorus (P) fluxes to the Baltic Sea and have to reach the good ecological status aimed by the Baltic Sea Action Plan and the Marine Strategy Framework Directive. The objective of this study was to uncover the change in phosphorus loading as well as in P fractions along the flow path of a mid-size river basin in order to derive risk assessment and management strategies for a sustainable P reduction. P-fractions and the mineral composition of particulate P were investigated in a sub-basin of the river Warnow, the second largest German catchment discharging to the Baltic Sea. Samples were collected from the sources (tile drain, ditch) and along the subsequent brook up to the river Warnow representing spatial scales of a few hectars up to 3300 km2. The investigations were performed during the discharge season from November 1th 2013 until April 30th 2014 covering a relative dry and mild winter period. We observed an increase of total phosphorus (TP) concentrations from 15.5 ± 3.9 µg L-1 in the drain outlet to 72.0 ± 7.2 µg L-1 in the river Warnow emphasizing the importance of sediment-bound P mobilization along the flow path. Particulate phosphorus (PP) of 36.6 - 61.2% accounted for the largest share of TP in the streams. Clay minerals and Fe(hydr)oxides were the main carrier of particle bound P followed by apatite. A transformation of dissolved inorganic phosphorus (DIP) into particulate organic P was observed in the river Warnow with the beginning of the growth season in February. Our investigations indicate that the overall P load could be reduced by half when PP is removed.

  6. Basin-scale characterization of river hydromorphology by map derived information: A case study on the Red River (Sông Hông), Vietnam

    NASA Astrophysics Data System (ADS)

    Schmitt, R. J.; Bizzi, S.; Castelletti, A.

    2012-12-01

    The understanding of river hydromorphological processes has been recognized in the last decades as a priority of modern catchment management, since fluvial geomorphic processes shape physical habitat, affect river infrastructures and influence freshwater ecological processes. Characterization of river hydromorphological features is commonly location specific and highly demanding in terms of field-works, resource and expertise required. Therefore, its routine application at regional or national scales, although an urgent need of catchment management, is infeasible at present. Recently available high-resolution data, such as DEM or LIDAR, opens up novel potential for basin-wide analysis of fluvial processes at limited effort and cost. Specifically, in this study we assess the feasibility of characterizing river hydromorphology from specific map derived geomorphic controls namely: channel gradient, bankfull flow, specific stream power, and degree of channel confinement. The river network, extracted from a digital elevation model and validated with available network shape-files and optical satellite imagery, available flow gauging stations and GIS processing allow producing continuous values of geomorphic drivers defined over given length segments at catchment or regional scales. This generic framework was applied to the Red River (Sông Hông) basin, the second largest basin (87,800 km2) in Vietnam. Besides its economic importance, the river since few years is experiencing severe river bed incisions due to the building of new dams in the upstream part of the catchment and sand mining in the surrounding of the capital city Hanoi. In this context, characterized by an high developing rate, current efforts to increase water productivity by infrastructure and management measures require a thorough understanding of fluvial system and, in particular, of the basin-wide river hydromorphology. The framework proposed has allowed producing high-dimensional samples of spatially distributed geomorphic drivers at catchment scale for the Red River basin. This novel dataset has been then analysed using self-organizing maps (SOM) an artificial neural network model that is capable of learning from complex, multidimensional data without specification of what the outputs should be, and of generating a nonlinear classification of visually decipherable clusters. The use of the above framework allowed to analyze the spatial distribution of geomorphic features at catchment scale, reviling patterns of similarities and dissimilarities within the catchment and allowing classification of river reaches characterized by similar geomorphic drivers and then likely (but still to be validated) fluvial processes. The paper proposes an innovative and promising technique to produce hydromorphological classifications at catchment scale opening the way towards regional or national scale hydromorphological assessments through automatic GIS and statistical procedures with moderate effort, an urgent requirement of modern catchment management.

  7. A new surface-process model for landscape evolution at a mountain belt scale

    NASA Astrophysics Data System (ADS)

    Willett, Sean D.; Braun, Jean; Herman, Frederic

    2010-05-01

    We present a new surface process model designed for modeling surface erosion and mass transport at an orogenic scale. Modeling surface processes at a large-scale is difficult because surface geomorphic processes are frequently described at the scale of a few meters, and such resolution cannot be represented in orogen-scale models operating over hundreds of square kilometers. We circumvent this problem by implementing a hybrid numerical -- analytical model. Like many previous models, the model is based on a numerical fluvial network represented by a series of nodes linked by model rivers in a descending network, with fluvial incision and sediment transport defined by laws operating on this network. However we only represent the largest rivers in the landscape by nodes in this model. Low-order rivers and water divides between large rivers are determined from analytical solutions assuming steady-state conditions with respect to the local river channel. The analytical solution includes the same fluvial incision law as the large rivers and a channel head with a specified size and mean slope. This permits a precise representation of the position of water divides between river basins. This is a key characteristic in landscape evolution as divide migration provides a positive feedback between river incision and a consequent increase in drainage area. The analytical solution also provides an explicit criterion for river capture, which occurs once a water divide migrates to its neighboring channel. This algorithm avoids the artificial network organization that often results from meshing and remeshing algorithms in numerical models. We demonstrate the use of this model with several simple examples including uniform uplift of a block, simultaneous uplift and shortening of a block, and a model involving strike slip faulting. We find a strong dependence on initial condition, but also a surprisingly strong dependence on channel head height parameters. Low channel heads, as expected, lead to more fluvial capture, but with low initial relief initial and a small channel-head height, runaway capture is common, with a few rivers capturing much of the available drainage area. With larger channel-head relief, lateral capture of rivers is less common, resulting in evenly spaced river basins. Basin spacing ratios matching those observed in nature are obtained for specific channel head parameters. These models thus demonstrate the mixed control on basin characteristics by antecedent river networks and channel-head parameters, which control the mobility of drainage basin water divides.

  8. A 10Be-based sediment budget of the Upper Rhône basin, Central Swiss Alps

    NASA Astrophysics Data System (ADS)

    Stutenbecker, Laura; Delunel, Romain; Schlunegger, Fritz; Akçar, Naki; Christl, Marcus

    2017-04-01

    The Upper Rhône catchment located in southwestern Switzerland is one of the largest Alpine intramontane basins and, due to high topographic gradients and intense glacial conditioning, an important sediment factory in the Alps. Sediment is being produced in around 50 tributary basins, transported along the 150 km long course of the Rhône River, and deposited in the river delta and associated subaquatic canyons within Lake Geneva, its primary sedimentary sink. In order to quantify the modern sediment fluxes in this Alpine basin we infer catchment-wide denudation rates from concentrations of the cosmogenic nuclide 10Be in quartz extracted from modern fluvial sediment of the major tributary basins. Additionally, 10Be-based denudation rates are calculated for 14 locations along the main Rhône River to track downstream changes. Results from the tributary basins show a large scatter of 10Be concentrations and their respective inferred denudation rates, ranging from 9.72 x 104 atoms/g and 0.17 mm/a to 0.13 x 104 atoms/g and 2.64 mm/a. The Rhône basin does show a rather large spatial variability of parameters that are known to possibly influence denudation rates, for example recent rock uplift rates, lithology, precipitation and temperature, as well as geomorphological parameters such as relief, mean elevation and slope values. However, there is no significant correlation between those parameters and the calculated denudation rates. Instead, the denudation rates are found to be positively correlated with the recent glacial cover in the catchments. This suggests that in glaciated basins glaciogenic material with very low 10Be concentrations is the dominating source of sediment, and inferred denudation rates must be interpreted with great care, as they may overestimate the actual rates. Downstream the main Rhône River the 10Be-concentrations are rather stable and do not record significant inputs of the glaciogenic material supplied by the glaciated basins. Possible explanations we would like to discuss here include differences in sediment connectivity and temporary sediment storage.

  9. Synthesis of monthly and annual streamflow records (water years 1950-2003) for Big Sandy, Clear, Peoples, and Beaver Creeks in the Milk River basin, Montana

    USGS Publications Warehouse

    Parrett, Charles

    2006-01-01

    To address concerns expressed by the State of Montana about the apportionment of water in the St. Mary and Milk River basins between Canada and the United States, the International Joint Commission requested information from the United States government about water that originates in the United States but does not cross the border into Canada. In response to this request, the U.S. Geological Survey synthesized monthly and annual streamflow records for Big Sandy, Clear, Peoples, and Beaver Creeks, all of which are in the Milk River basin in Montana, for water years 1950-2003. This report presents the synthesized values of monthly and annual streamflow for Big Sandy, Clear, Peoples, and Beaver Creeks in Montana. Synthesized values were derived from recorded and estimated streamflows. Statistics, including long-term medians and averages and flows for various exceedance probabilities, were computed from the synthesized data. Beaver Creek had the largest median annual discharge (19,490 acre-feet), and Clear Creek had the smallest median annual discharge (6,680 acre-feet). Big Sandy Creek, the stream with the largest drainage area, had the second smallest median annual discharge (9,640 acre-feet), whereas Peoples Creek, the stream with the second smallest drainage area, had the second largest median annual discharge (11,700 acre-feet). The combined median annual discharge for the four streams was 45,400 acre-feet. The largest combined median monthly discharge for the four creeks was 6,930 acre-feet in March, and the smallest combined median monthly discharge was 48 acre-feet in January. The combined median monthly values were substantially smaller than the average monthly values. Overall, synthesized flow records for the four creeks are considered to be reasonable given the prevailing climatic conditions in the region during the 1950-2003 base period. Individual estimates of monthly streamflow may have large errors, however. Linear regression was used to relate logarithms of combined annual streamflow to water years 1950-2003. The results of the regression analysis indicated a significant downward trend (regression line slope was -0.00977) for combined annual streamflow. A regression analysis using data from 1956-2003 indicated a slight, but not significant, downward trend for combined annual streamflow.

  10. Evaluation of blue and green water resources in the upper Yellow River basin of China

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoxi; Zuo, Depeng; Xu, Zongxue; Cai, Siyang; Xianming, Han

    2018-06-01

    The total amount of water resources severely affects socioeconomic development of a region or watershed, which means that accurate quantification of the total amount of water resources is vital for the area, especially for the arid and semi-arid regions. Traditional evaluation of water resources only focused on the qualification of blue water, while the importance of green water was not fully considered. As the second largest river in China, the Yellow River plays an important role in socioeconomic development of the Yellow River basin. Therefore, the blue and green water resources in the upper Yellow River basin (UYRB) were evaluated by the SWAT model in this study. The results show that the average annual total amount of water resources in the UYRB was 140.5 billion m3, in which the blue water resources is 37.8 billion m3, and green water resources is 107.7 billion m3. The intra-annual variability of the blue water and green water is relatively similar during the same period. The higher temperature, the greater difference between the blue and green water. The inter-annual variability of the blue and green water shows that the trends in precipitation, blue and green water have a relatively similar characteristic. The spatial distribution of the blue and green water is characteristic with gradually decreasing from the northwest to the southeast, and the blue water around the main stream is greater than that in the other areas.

  11. Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales.

    PubMed

    Stickler, Claudia M; Coe, Michael T; Costa, Marcos H; Nepstad, Daniel C; McGrath, David G; Dias, Livia C P; Rodrigues, Hermann O; Soares-Filho, Britaldo S

    2013-06-04

    Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations' energy growth strategies. Feasibility studies of hydropower plants typically ignore the effect of future deforestation or assume that deforestation will have a positive effect on river discharge and energy generation resulting from declines in evapotranspiration (ET) associated with forest conversion. Forest loss can also reduce river discharge, however, by inhibiting rainfall. We used land use, hydrological, and climate models to examine the local "direct" effects (through changes in ET within the watershed) and the potential regional "indirect" effects (through changes in rainfall) of deforestation on river discharge and energy generation potential for the Belo Monte energy complex, one of the world's largest hydropower plants that is currently under construction on the Xingu River in the eastern Amazon. In the absence of indirect effects of deforestation, simulated deforestation of 20% and 40% within the Xingu River basin increased discharge by 4-8% and 10-12%, with similar increases in energy generation. When indirect effects were considered, deforestation of the Amazon region inhibited rainfall within the Xingu Basin, counterbalancing declines in ET and decreasing discharge by 6-36%. Under business-as-usual projections of forest loss for 2050 (40%), simulated power generation declined to only 25% of maximum plant output and 60% of the industry's own projections. Like other energy sources, hydropower plants present large social and environmental costs. Their reliability as energy sources, however, must take into account their dependence on forests.

  12. River mixing in the Amazon as a driver of concentration-discharge relationships

    NASA Astrophysics Data System (ADS)

    Moquet, Jean-Sébastien; Bouchez, Julien; Carlo Espinoza, Jhan; Martinez, Jean-Michel; Guyot, Jean-Loup; Lagane, Christelle; Filizola, Naziano; Aniceto, Keila; Noriega, Luis; Hidalgo Sanchez, Liz; Pombosa, Rodrigo; Fraizy, Pascal; Santini, William; Timouk, Franck; Vauchel, Philippe

    2017-04-01

    Large hydrological systems such as continental-scale river basins aggregate water from compositionally different tributaries. Here we explore how such aggregation can affect solute concentration-discharge (C-Q) relationships and thus obscure the message carried by these relationships in terms of weathering properties of the Critical Zone. We compute 10 day-frequency time series of Q and major solute (Si, Ca2+, Mg2+, K+, Na+, Cl-, SO42-) C and fluxes (F) for 13 gauging stations of the SNO-HYBAM Monitoring Program (Geodynamical, hydrological and Biogeochemical control of erosion/weathering and material transport in the Amazon, Orinoco and Congo basins) located throughout the Amazon basin, the largest river basin in the world. Concentration-discharge relationships vary in a systematic manner, shifting for most solutes from a nearly "chemostatic" behavior (constant C) at the Andean mountain front to a more "dilutional" pattern (negative C-Q relationship) towards the system mouth. Associated to this shift in trend is a shift in shape: C-Q hysteresis becomes more prominent at the most downstream stations. A simple model of tributary mixing allows us to identify the important parameters controlling C-Q trends and shapes in the mixture, and we show that for the Amazon case, the model results are in qualitative agreement with the observations. Altogether, this study suggests that mixing of water and solutes between different flowpaths leads to altered C-Q relationships.

  13. Impact of Various Biofuel Feedstock Production Scenarios on Water Quality in the Upper Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Wu, M.; Demissie, Y.; Yan, E.

    2010-12-01

    The impact of increased biofuel feedstock production on regional water quality was examined. This study focused on the Upper Mississippi River Basin, from which a majority of U.S. biofuel is currently produced. The production of biofuel from both conventional feedstock and cellulosic feedstock will potentially increase in the near future. Historically, this water basin generates the largest nitrogen loading to the waterway in the United States and is often cited as a main contributor to the anoxic zone in the Gulf of Mexico. To obtain a quantitative and spatial estimate of nutrient burdens at the river basin, a SWAT (Soil and Water Assessment Tool) model application was developed. The model was equipped with an updated nutrient cycle feature and modified model parameters to represent current crop and perennial grass yield as a result of advancements in breeding and biotechnology. Various biofuel feedstock production scenarios were developed to assess the potential environmental implications of increased biofuel production through corn, agriculture residue, and perennial cellulosic feedstock (such as Switchgrass). Major factors were analyzed, including land use changes, feedstock types, fertilizer inputs, soil property, and yield. This tool can be used to identify specific regional factors affecting water quality and examine options to meet the requirement for environmental sustainability, thereby mitigating undesirable environmental consequences while strengthening energy security.

  14. Relevance of hydro-climatic change projection and monitoring for assessment of water cycle changes in the Arctic.

    PubMed

    Bring, Arvid; Destouni, Georgia

    2011-06-01

    Rapid changes to the Arctic hydrological cycle challenge both our process understanding and our ability to find appropriate adaptation strategies. We have investigated the relevance and accuracy development of climate change projections for assessment of water cycle changes in major Arctic drainage basins. Results show relatively good agreement of climate model projections with observed temperature changes, but high model inaccuracy relative to available observation data for precipitation changes. Direct observations further show systematically larger (smaller) runoff than precipitation increases (decreases). This result is partly attributable to uncertainties and systematic bias in precipitation observations, but still indicates that some of the observed increase in Arctic river runoff is due to water storage changes, for example melting permafrost and/or groundwater storage changes, within the drainage basins. Such causes of runoff change affect sea level, in addition to ocean salinity, and inland water resources, ecosystems, and infrastructure. Process-based hydrological modeling and observations, which can resolve changes in evapotranspiration, and groundwater and permafrost storage at and below river basin scales, are needed in order to accurately interpret and translate climate-driven precipitation changes to changes in freshwater cycling and runoff. In contrast to this need, our results show that the density of Arctic runoff monitoring has become increasingly biased and less relevant by decreasing most and being lowest in river basins with the largest expected climatic changes.

  15. Occurrence and transport of acetochlor in streams of the Mississippi River Basin

    USGS Publications Warehouse

    Clark, G.M.; Goolsby, D.A.

    1999-01-01

    The herbicide acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6- methylphenyl) acetamide] was first used on corn (Zea mays L.) in the USA during the growing season of 1994. By 1996, it was the third most heavily used corn herbicide in the midwestern USA. During the growing season of 1997, 78% of 375 samples collected at 32 stream sites in the Mississippi River Basin contained detectable concentrations of acetochlor. However, concentrations in only 2% of the samples exceeded 2 ??g/L, the maximum annual average concentration allowable in public water supplies derived primarily from surface water. The largest acetochlor concentrations were detected in streams draining basins in parts of Illinois, Indiana, and Iowa. The median concentration of acetochlor in streams was about 10% that of atrazine (6- chloro-N-ethyl-N-isopropyl-1,3,5-triazine-2,4-diamine), about 25% that of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide], about 50% that of cyanazine [2-[[4-chloro-6-(ethylamino)-1,3,5- triazin-2-yl]amino]-2-methylpropionitrile], and about threefold that of alachlor [2-chloro-2',6'-diethyl-N-(methoxymethyl) acetanilide]. Load estimates indicate that, during the growing season of 1997, agricultural subbasins draining areas of Illinois, Indiana, and Iowa contributed about 37000 kg, or 74%, of the 50 000 kg of acetochlor measured in streams of the Mississippi River Basin.

  16. Export of dissolved organic carbon from the Penobscot River basin in north-central Maine

    USGS Publications Warehouse

    Huntington, Thomas G.; Aiken, George R.

    2013-01-01

    Dissolved organic carbon (DOC) flux from the Penobscot River and its major tributaries in Maine was determined using continuous discharge measurements, discrete water sampling, and the LOADEST regression software. The average daily flux during 2004–2007 was 71 kg C ha−1 yr−1 (392 Mt C d−1), an amount larger than measured in most northern temperate and boreal rivers. Distinct seasonal variation was observed in the relation between concentration and discharge (C–Q). During June through December (summer/fall), there was a relatively steep positive C–Q relation where concentration increased by a factor of 2–3 over the approximately 20-fold range of observed stream discharge for the Penobscot River near Eddington, Maine. In contrast, during January through May (winter/spring), DOC concentration did not increase with increasing discharge. In addition, we observed a major shift in the C–Q between 2004–2005 and 2006–2007, apparently resulting from unprecedented rainfall, runoff, and soil flushing beginning in late fall 2005. The relative contribution to the total Penobscot River basin DOC flux from each tributary varied dramatically by season, reflecting the role of large regulated reservoirs in certain basins. DOC concentration and flux per unit watershed area were highest in tributaries containing the largest areas in palustrine wetlands. Tributary DOC concentration and flux was positively correlated to percentage wetland area. Climatic or environmental changes that influence the magnitude or timing of river discharge or the abundance of wetlands will likely affect the export of DOC to the near-coastal ocean.

  17. Luminescence of quartz and feldspar fingerprints provenance and correlates with the source area denudation in the Amazon River basin

    NASA Astrophysics Data System (ADS)

    Sawakuchi, A. O.; Jain, M.; Mineli, T. D.; Nogueira, L.; Bertassoli, D. J.; Häggi, C.; Sawakuchi, H. O.; Pupim, F. N.; Grohmann, C. H.; Chiessi, C. M.; Zabel, M.; Mulitza, S.; Mazoca, C. E. M.; Cunha, D. F.

    2018-06-01

    The Amazon region hosts the world's largest watershed spanning from high elevation Andean terrains to lowland cratonic shield areas in tropical South America. This study explores variations in optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL) signals in suspended silt and riverbed sands retrieved from major Amazon rivers. These rivers drain Pre-Cambrian to Cenozoic source rocks in areas with contrasting denudation rates. In contrast to the previous studies, we do not observe an increase in the OSL sensitivity of quartz with transport distance; for example, Tapajós and Xingu Rivers show more sensitive quartz than Solimões and Madeira Rivers, even though the latter have a significantly larger catchment area and longer sediment transport distance. Interestingly, high sensitivity quartz is observed in rivers draining relatively stable Central Brazil and Guiana shield areas (denudation rate ξ = 0.04 mmyr-1), while low sensitivity quartz occurs in less stable Andean terrains (ξ = 0.24 mmyr-1). An apparent linear correlation between quartz OSL sensitivity and denudation rate suggests that OSL sensitivity may be used as a proxy for erosion rates in the Amazon basin. Furthermore, luminescence sensitivity measured in sand or silt arises from the same mineral components (quartz and feldspar) and clearly discriminates between Andean and shield sediments, avoiding the grain size bias in provenance analysis. These results have implications for using luminescence sensitivity as a proxy for Andean and shield contributions in the stratigraphic record, providing a new tool to reconstruct past drainage configurations within the Amazon basin.

  18. Application of the satellite system of the earth's gravity field measurement (GRACE) for the evaluation of water balance in large Russian river catchments

    NASA Astrophysics Data System (ADS)

    Frolova, Natalia; Zotov, Leonid; Grigoriev, Vadim; Sazonov, Alexey; Kireeva, Maria; Krylenko, Inna

    2017-04-01

    Space-based Earth observing systems provided a substantially large amount of information to the scientific community in recent decades. Cumulative effects of redistribution of masses in the Earth system can be seen in the changes of the gravity field of the Earth. Gravity Recovery and Climate Experiment (GRACE) satellites, launched 17.03.2002 from Plesetsk, provide a set of monthly Earth's gravity field observations. GRACE data is very useful for hydrological and climatological studies, especially over large territory, not completely covered by the meteorological and hydrological networks, like Russia. Possible application of the satellite gravity survey data obtained under the GRACE for solving various hydrological problems is discussed. The GRACE-based monthly gravity field data are transformed into the maps of water level equivalent and averaged for the catchments of the largest rivers of Russia. The temporal variability of the parameter is analyzed. Possible application of the GRACE data for the evaluation of particular components of water balance within the largest river basins of the European part of Russia is discussed. After averaging over 15 large Russian rivers basins annual component shows amplitude increase since 2009. Trend component grows until 2009 and then reaches a plateau. It is mostly dominated by Siberian rivers. Map for the trend show gravity field increase in Siberia, at Back Sea and decrease over Caspian Sea since 2003. GRACE satellite gravimetry data can be used for estimating terrestrial water storage (TWS) in a river basin scale. Terrestrial water storage (TWS) is the integrated sum of all basin storages (surface water bodies, soil and ground aquifer, snowpack and glaciers) and the ability to estimate TWS dynamics is useful for understanding the basin's water cycle, its interconnection with the local climate, physics of predictability of extreme hydrological events. Despite the importance of the TWS estimates, reliable ground-based monitoring data of all TWS components are scarce or absent at all. Since observations are not sufficient to monitor TWS, hydrological models are considered as a comprehensive tool to simulate TWS components at a basin scale. However accuracy of the model-derived TWS is influenced by the uncertainty of the model structure and parameters, reliability of input data, etc. To improve the TWS-estimates, it is reasonable to combine the simulated TWS with independent observations provided by the GRACE gravity data. Ninety-seven monthly TWS retrieval from GRACE data (from April 2002 to December 2009) was examined and compared with TWS-estimates obtained by the ECOMAG hydrological model simulations. The case study was carried out for the Northern Dvina River basin. Quantitative analyze between the hydrological model and GRACE-based TWS showed that latter is in good consistency with the simulation results on both seasonal and inter-annual time scales. Overall, the results highlight the benefit of assimilating GRACE data for hydrological applications, particularly in data-sparse regions, while also providing insight on future refinements of the methodology of GRACE-data application in watershed hydrology. The study is financially supported by the Russian Foundation for Basic Research (Proj.№ 16-35-60080; 16-05-00753) and the Russian Science Foundation (Grant No. 14-17-00155).

  19. 2013 Gulf of Mexico Hypoxia Forecast

    USGS Publications Warehouse

    Scavia, Donald; Evans, Mary Anne; Obenour, Dan

    2013-01-01

    The Gulf of Mexico annual summer hypoxia forecasts are based on average May total nitrogen loads from the Mississippi River basin for that year. The load estimate, recently released by USGS, is 7,316 metric tons per day. Based on that estimate, we predict the area of this summer’s hypoxic zone to be 18,900 square kilometers (95% credible interval, 13,400 to 24,200), the 7th largest reported and about the size of New Jersey. Our forecast hypoxic volume is 74.5 km3 (95% credible interval, 51.5 to 97.0), also the 7th largest on record.

  20. Hydrologic data for the Obed River watershed, Tennessee

    USGS Publications Warehouse

    Knight, Rodney R.; Wolfe, William J.; Law, George S.

    2014-01-01

    The Obed River watershed drains a 520-square-mile area of the Cumberland Plateau physiographic region in the Tennessee River basin. The watershed is underlain by conglomerate, sandstone, and shale of Pennsylvanian age, which overlie Mississippian-age limestone. The larger creeks and rivers of the Obed River system have eroded gorges through the conglomerate and sandstone into the deeper shale. The largest gorges are up to 400 feet deep and are protected by the Wild and Scenic Rivers Act as part of the Obed Wild and Scenic River, which is managed by the National Park Service. The growing communities of Crossville and Crab Orchard, Tennessee, are located upstream of the gorge areas of the Obed River watershed. The cities used about 5.8 million gallons of water per day for drinking water in 2010 from Lake Holiday and Stone Lake in the Obed River watershed and Meadow Park Lake in the Caney Fork River watershed. The city of Crossville operates a wastewater treatment plant that releases an annual average of about 2.2 million gallons per day of treated effluent to the Obed River, representing as much as 10 to 40 percent of the monthly average streamflow of the Obed River near Lancing about 35 miles downstream, during summer and fall. During the past 50 years (1960–2010), several dozen tributary impoundments and more than 2,000 small farm ponds have been constructed in the Obed River watershed. Synoptic streamflow measurements indicate a tendency towards dampened high flows and slightly increased low flows as the percentage of basin area controlled by impoundments increases.

  1. Histograms showing variations in oil yield, water yield, and specific gravity of oil from Fischer assay analyses of oil-shale drill cores and cuttings from the Piceance Basin, northwestern Colorado

    USGS Publications Warehouse

    Dietrich, John D.; Brownfield, Michael E.; Johnson, Ronald C.; Mercier, Tracey J.

    2014-01-01

    Recent studies indicate that the Piceance Basin in northwestern Colorado contains over 1.5 trillion barrels of oil in place, making the basin the largest known oil-shale deposit in the world. Previously published histograms display oil-yield variations with depth and widely correlate rich and lean oil-shale beds and zones throughout the basin. Histograms in this report display oil-yield data plotted alongside either water-yield or oil specific-gravity data. Fischer assay analyses of core and cutting samples collected from exploration drill holes penetrating the Eocene Green River Formation in the Piceance Basin can aid in determining the origins of those deposits, as well as estimating the amount of organic matter, halite, nahcolite, and water-bearing minerals. This report focuses only on the oil yield plotted against water yield and oil specific gravity.

  2. Hydrological changes of DOM composition and biodegradability of rivers in temperate monsoon climates

    NASA Astrophysics Data System (ADS)

    Shin, Yera; Lee, Eun-Ju; Jeon, Young-Joon; Hur, Jin; Oh, Neung-Hwan

    2016-09-01

    The spatial and hydrological dynamics of dissolved organic matter (DOM) composition and biodegradability were investigated for the five largest rivers in the Republic of Korea (South Korea) during the years 2012-2013 using incubation experiments and spectroscopic measurements, which included parallel factor analysis (PARAFAC). The lower reaches of the five rivers were selected as windows showing the integrated effects of basin biogeochemistry of different land use under Asian monsoon climates, providing an insight on consistency of DOM dynamics across multiple sites which could be difficult to obtain from a study on an individual river. The mean dissolved organic carbon (DOC) concentrations of the five rivers were relatively low, ranging from 1.4 to 3.4 mg L-1, due to the high slope and low percentage of wetland cover in the basin. Terrestrial humic- and fulvic-like components were dominant in all the rivers except for one, where protein-like compounds were up to ∼80%. However, terrestrial components became dominant in all five of the rivers after high precipitation during the summer monsoon season, indicating the strong role of hydrology on riverine DOM compositions for the basins under Asian monsoon climates. Considering that 64% of South Korea is forested, our results suggest that the forests could be a large source of riverine DOM, elevating the DOM loads during monsoon rainfall. Although more DOM was degraded when DOM input increased, regardless of its sources, the percent biodegradability was reduced with increased proportions of terrestrially derived aromatic compounds. The shift in DOM quality towards higher percentages of aromatic terrestrial compounds may alter the balance of the carbon cycle of coastal ecosystems by changing microbial metabolic processes if climate extremes such as heavy storms and typhoons become more frequent due to climate change.

  3. Dynamics of the lakes in the middle and lower reaches of the Yangtze River basin, China, since late nineteenth century.

    PubMed

    Cui, Lijuan; Gao, Changjun; Zhao, Xinsheng; Ma, Qiongfang; Zhang, Manyin; Li, Wei; Song, Hongtao; Wang, Yifei; Li, Shengnan; Zhang, Yan

    2013-05-01

    The middle and lower reaches of the Yangtze River basin have the most representative and largest concentration of freshwater lakes in China. However, the size and number of these lakes have changed considerably over the past century due to the natural and anthropogenic impact. The lakes, larger than 10 km(2) in size, were chosen from relief maps and remotely sensed images in 1875, 1950, 1970, 1990, 2000, and 2008 to study the dynamics of lakes in the middle and lower reaches of the Yangtze River basin and to examine the causes and consequences of these changes. Results indicated that there was a dramatic reduction in lake areas, which decreased by 7,841.2 km(2) (42.64 %) during the study period (1875-2008), and the number of lakes in this region changed moderately. Meanwhile, a large number of lakes in the middle and lower reaches of the Yangtze River basin were directly converted into paddy fields, ponds, building lands, or other land-use types over the study period. Therefore, all kinds of lake reclamation should be identified as the major driving factors for the loss of lake in this region. Furthermore, flooding, soil erosion, and sedimentation were also the main factors which triggered lake changes in different periods. Some wetland conservation and restoration projects have been implemented since the 1970s, but they have not reversed the lake degradation. These findings were of great importance to managers involved in making policy for the conservation of lake ecosystems and the utilization of lake resources.

  4. Rainwater content estimated using polarimetric radar parameters in the Heihe River Basin

    NASA Astrophysics Data System (ADS)

    Zhao, Guo; Chu, Rongzhong; Zhang, Tong; Jia, Wei

    2013-02-01

    The rainwater content of cold and arid regions has strong spatial and temporal heterogeneity. Representing rainwater content at high resolution can help us understand the characteristics of inland river basin water cycles and improve the prediction accuracy of hydrological models. Data were used from the Watershed Allied Telemetry Experimental Research (WATER) project of the Heihe River Basin, which is the second largest inland river basin in the arid regions of northwest China. We used raindrop size distributions to improve the rain water content estimation of meteorological radar and to obtain accurate rain water content data in this area. Subsequently, four estimation methods applied in the polarimetric radar were tested. The results of a non-linear regression method show that M(KDP, ZH, ZDR) has the highest accuracy for measuring rain water content. Finally, the formula for measuring the spatial rain water content was applied to a polarimetric radar with an X-band (714XDP). The influence of raindrop size distribution (DSD) on the formula M(KDP, ZH, ZDR) is lowest sensitivity, and it can be explained as follows. On the one hand, the horizontal and vertical front reflection cross sections of the radar are different, so KDP is proportional to the 3rd power of the raindrop diameter. On the other hand, the rear cross section of the radar is proportional to the sixth power of the raindrop diameter. The rainfall's spatial water content M is proportional to the 3rd power of the raindrop diameter, so the influence of the drop size distribution (DSD) on KDP is much smaller than that of ZH.

  5. Comprehensive assessment of soil erosion risk for better land use planning in river basins: Case study of the Upper Blue Nile River.

    PubMed

    Haregeweyn, Nigussie; Tsunekawa, Atsushi; Poesen, Jean; Tsubo, Mitsuru; Meshesha, Derege Tsegaye; Fenta, Ayele Almaw; Nyssen, Jan; Adgo, Enyew

    2017-01-01

    In the drought-prone Upper Blue Nile River (UBNR) basin of Ethiopia, soil erosion by water results in significant consequences that also affect downstream countries. However, there have been limited comprehensive studies of this and other basins with diverse agroecologies. We analyzed the variability of gross soil loss and sediment yield rates under present and expected future conditions using a newly devised methodological framework. The results showed that the basin generates an average soil loss rate of 27.5tha -1 yr -1 and a gross soil loss of ca. 473Mtyr -1 , of which, at least 10% comes from gully erosion and 26.7% leaves Ethiopia. In a factor analysis, variation in agroecology (average factor score=1.32) and slope (1.28) were the two factors most responsible for this high spatial variability. About 39% of the basin area is experiencing severe to very severe (>30tha -1 yr -1 ) soil erosion risk, which is strongly linked to population density. Severe or very severe soil erosion affects the largest proportion of land in three subbasins of the UBNR basin: Blue Nile 4 (53.9%), Blue Nile 3 (45.1%), and Jema Shet (42.5%). If appropriate soil and water conservation practices targeted ca. 77.3% of the area with moderate to severe erosion (>15tha -1 yr -1 ), the total soil loss from the basin could be reduced by ca. 52%. Our methodological framework identified the potential risk for soil erosion in large-scale zones, and with a more sophisticated model and input data of higher spatial and temporal resolution, results could be specified locally within these risk zones. Accurate assessment of soil erosion in the UBNR basin would support sustainable use of the basin's land resources and possibly open up prospects for cooperation in the Eastern Nile region. Copyright © 2016 Office national des forêts. Published by Elsevier B.V. All rights reserved.

  6. Transport and fate of river waters under flood conditions and rim current influence: the Mississippi River test case

    NASA Astrophysics Data System (ADS)

    Kourafalou, Villy; Androulidakis, Yannis

    2013-04-01

    Large river plumes are a major supplier of freshwater, sediments and nutrients in coastal and shelf seas. Novel processes controlling the transport and fate of riverine waters (and associated materials) will be presented, under flood conditions and in the presence of complex topography, ambient shelf circulation and slope processes, controlled by the interaction with rim currents. The Mississippi River (MR) freshwater outflow is chosen as a test case, as a major circulation forcing mechanism for the Northern Gulf of Mexico and a unique river plume for the intense interactions with a large scale ocean current, namely the Loop Current branch of the Gulf Stream, and associated eddy field. The largest MR outflow in history (45,000 m3/sec in 2011) is compared with the second largest outflow in the last 8 years (41,000 m3/sec in 2008). Realistically forced simulations, based on the Hybrid Coordinate Ocean Model (HYCOM) with careful treatment of river plume dynamics and nested to a data assimilated, basin-wide model, reveal the synergistic effect of enhanced discharge, winds, stratification of ambient shelf waters and offshore circulation over the transport of plume waters. The investigation targets a broader understanding of the dynamics of large scale river plumes in general, and of the MR plume in particular. In addition, in situ observations from ship surveys and satellite chl-a data showed that the mathematical simulations with high temporal resolution river outflow input may reproduce adequately the buoyant waters spreading over the Northern Gulf of Mexico shelf and offshore areas. The fate of the river plume is strongly determined and affected by deep basin processes. The strong impacts of the Loop Current system (and its frontal eddies) on river plume evolution are of particular importance under conditions of increased offshore spreading, which is presumed under large discharge rates and can cause loss of riverine materials to the basin interior. Flood conditions can increase both downstream (westward) and upstream (eastward) spreading. The high outflow rates enhance the anticyclonic bulge, strengthen the downstream coastal current toward the western Louisiana-Texas shelf. The substantial eastward spreading over the eastern Mississippi-Alabama-Florida shelf was highly correlated with the Loop Current northward extension. On the contrary, cyclonic eddies east of the Delta effectively block the offshore eastward spreading of the plume and may keep the river waters away from the eastern shelf. We show that the proximity of eddies to the shelf break is a sufficient condition for shelf-to-offshore interaction, which is facilitated by the steep bottom topography near the Delta.

  7. Significant human impact on the flux and δ(34)S of sulfate from the largest river in North America.

    PubMed

    Killingsworth, Bryan A; Bao, Huiming

    2015-04-21

    Riverine dissolved sulfate (SO4(2-)) flux and sulfur stable isotope composition (δ(34)S) yield information on the sources and processes affecting sulfur cycling on different spatial and temporal scales. However, because pristine preindustrial natural baselines of riverine SO4(2-) flux and δ(34)S cannot be directly measured, anthropogenic impact remains largely unconstrained. Here we quantify natural and anthropogenic SO4(2-) flux and δ(34)S for North America's largest river, the Mississippi, by means of an exhaustive source compilation and multiyear monitoring. Our data and analysis show that, since before industrialization to the present, Mississippi River SO4(2-) has increased in flux from 7.0 to 27.8 Tg SO4(2-) yr(-1), and in mean δ(34)S from -5.0‰, within 95% confidence limits of -14.8‰ to 4.1‰ (assuming normal distribution for mixing model input parameters), to -2.7 ± 1.6‰, reflecting an impressive footprint of bedrocks particular to this river basin and human activities. Our first-order modern Mississippi River sulfate partition is 25 ± 6% natural and 75% ± 6% anthropogenic sources. Furthermore, anthropogenic coal usage is implicated as the dominant source of modern Mississippi River sulfate, with an estimated 47 ± 5% and 13% of total Mississippi River sulfate due to coal mining and burning, respectively.

  8. A high-resolution global-scale groundwater model

    NASA Astrophysics Data System (ADS)

    de Graaf, I. E. M.; Sutanudjaja, E. H.; van Beek, L. P. H.; Bierkens, M. F. P.

    2015-02-01

    Groundwater is the world's largest accessible source of fresh water. It plays a vital role in satisfying basic needs for drinking water, agriculture and industrial activities. During times of drought groundwater sustains baseflow to rivers and wetlands, thereby supporting ecosystems. Most global-scale hydrological models (GHMs) do not include a groundwater flow component, mainly due to lack of geohydrological data at the global scale. For the simulation of lateral flow and groundwater head dynamics, a realistic physical representation of the groundwater system is needed, especially for GHMs that run at finer resolutions. In this study we present a global-scale groundwater model (run at 6' resolution) using MODFLOW to construct an equilibrium water table at its natural state as the result of long-term climatic forcing. The used aquifer schematization and properties are based on available global data sets of lithology and transmissivities combined with the estimated thickness of an upper, unconfined aquifer. This model is forced with outputs from the land-surface PCRaster Global Water Balance (PCR-GLOBWB) model, specifically net recharge and surface water levels. A sensitivity analysis, in which the model was run with various parameter settings, showed that variation in saturated conductivity has the largest impact on the groundwater levels simulated. Validation with observed groundwater heads showed that groundwater heads are reasonably well simulated for many regions of the world, especially for sediment basins (R2 = 0.95). The simulated regional-scale groundwater patterns and flow paths demonstrate the relevance of lateral groundwater flow in GHMs. Inter-basin groundwater flows can be a significant part of a basin's water budget and help to sustain river baseflows, especially during droughts. Also, water availability of larger aquifer systems can be positively affected by additional recharge from inter-basin groundwater flows.

  9. Sustainable management of river oases along the Tarim River (SuMaRiO) in Northwest China under conditions of climate change

    NASA Astrophysics Data System (ADS)

    Rumbaur, C.; Thevs, N.; Disse, M.; Ahlheim, M.; Brieden, A.; Cyffka, B.; Duethmann, D.; Feike, T.; Frör, O.; Gärtner, P.; Halik, Ü.; Hill, J.; Hinnenthal, M.; Keilholz, P.; Kleinschmit, B.; Krysanova, V.; Kuba, M.; Mader, S.; Menz, C.; Othmanli, H.; Pelz, S.; Schroeder, M.; Siew, T. F.; Stender, V.; Stahr, K.; Thomas, F. M.; Welp, M.; Wortmann, M.; Zhao, X.; Chen, X.; Jiang, T.; Luo, J.; Yimit, H.; Yu, R.; Zhang, X.; Zhao, C.

    2015-03-01

    The Tarim River basin, located in Xinjiang, NW China, is the largest endorheic river basin in China and one of the largest in all of Central Asia. Due to the extremely arid climate, with an annual precipitation of less than 100 mm, the water supply along the Aksu and Tarim rivers solely depends on river water. This is linked to anthropogenic activities (e.g., agriculture) and natural and semi-natural ecosystems as both compete for water. The ongoing increase in water consumption by agriculture and other human activities in this region has been enhancing the competition for water between human needs and nature. Against this background, 11 German and 6 Chinese universities and research institutes have formed the consortium SuMaRiO (Sustainable Management of River Oases along the Tarim River; http://www.sumario.de), which aims to create a holistic picture of the availability of water resources in the Tarim River basin and the impacts on anthropogenic activities and natural ecosystems caused by the water distribution within the Tarim River basin. On the basis of the results from field studies and modeling approaches as well as from suggestions by the relevant regional stakeholders, a decision support tool (DST) will be implemented that will then assist stakeholders in balancing the competition for water, acknowledging the major external effects of water allocation to agriculture and to natural ecosystems. This consortium was formed in 2011 and is funded by the German Federal Ministry of Education and Research. As the data collection phase was finished this year, the paper presented here brings together the results from the fields from the disciplines of climate modeling, cryology, hydrology, agricultural sciences, ecology, geoinformatics, and social sciences in order to present a comprehensive picture of the effects of different water availability schemes on anthropogenic activities and natural ecosystems along the Tarim River. The second objective is to present the project structure of the whole consortium, the current status of work (i.e., major new results and findings), explain the foundation of the decision support tool as a key product of this project, and conclude with application recommendations for the region. The discharge of the Aksu River, which is the major tributary of the Tarim, has been increasing over the past 6 decades. From 1989 to 2011, agricultural area more than doubled: cotton became the major crop and there was a shift from small-scale to large-scale intensive farming. The ongoing increase in irrigated agricultural land leads to the increased threat of salinization and soil degradation caused by increased evapotranspiration. Aside from agricultural land, the major natural and semi-natural ecosystems are riparian (Tugai) forests, shrub vegetation, reed beds, and other grassland, as well as urban and peri-urban vegetation. Within the SuMaRiO cluster, focus has been set on the Tugai forests, with Populus euphratica as the dominant tree species, because these forests belong to the most productive and species-rich natural ecosystems of the Tarim River basin. At sites close to the groundwater, the annual stem diameter increments of Populus euphratica correlated with the river runoffs of the previous year. However, the natural river dynamics cease along the downstream course and thus hamper the recruitment of Populus euphratica. A study on the willingness to pay for the conservation of the natural ecosystems was conducted to estimate the concern of the people in the region and in China's capital. These household surveys revealed that there is a considerable willingness to pay for conservation of the natural ecosystems, with mitigation of dust and sandstorms considered the most important ecosystem service. Stakeholder dialogues contributed to creating a scientific basis for a sustainable management in the future.

  10. Aerial gamma ray and magnetic survey, Powder River II Project: the Newcastle and Gillette Quadrangles of Wyoming and South Dakota; the Ekalaka Quadrangle of Montana, South and North Dakota. Volume I. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-04-01

    During the months of August through September 1978, geoMetrics, Inc. flew approximately 9000 line miles of high sensitivity airborne radiometric and magnetic data in eastern Wyoming and southern Montana over three 1/sup 0/ x 2/sup 0/ NTMS quadrangle (Newcastle, Gillette, and Ekalaka) as part of the Department of Energy's National Uranium Resource Evaluation program. All radiometric and magnetic data were fully reduced and interpreted by geoMetrics, and are presented as four volumes (one Volume I and three Volume II's) in this report. The survey area lies entirely within the northern Great Plains Physiographic Province. The deep Powder River Basin andmore » the Black Hills Uplift are the two dominant structures in the area. Both structures strike NNW approximately parallel to each other with the Powder River Basin to the west of the Uplift. The Basin is one of the largest and deepest in the northern Great Plains and contains over 17,000 feet of Phanerozoic sediments at its deepest point. Economic deposits of oil, coal, bentonite and uranium are found in the Tertiary and/or Cretaceous rocks of the Basin. Gold, silver, lead, copper, manganese, rare-earth elements and uranium have been mined in the Uplift. Epigenetic uranium deposits lie primarily in the Monument Hills - Box Creek and Pumpkin Buttes - Turnercrest districts within arkosic sandstones of the Paleocene Fort Union Formation. A total of 368 groups of statistical values in the uranium window meet the criteria for valid anomalies and are discussed in the interpretation sections (83 in Newcastle, 109 in Gillette, and 126 in Ekalaka). Most anomalies lie in the Tertiary sediments of the Powder River Basin, but only a few are clearly related to known uranium mines or prospects. Magnetic data generally delineate the deep Powder River Basin relative to the Black Hills Uplift. Higher frequency anomalies appear related to producing oil fields and mapped sedimentary structures.« less

  11. Quantifying nitrogen inputs to the Choptank River estuary

    NASA Astrophysics Data System (ADS)

    Mccarty, G.; Hapeman, C. J.; Sadeghi, A. M.; Hively, W. D.; Denver, J. M.; Lang, M. W.; Downey, P. M.; Rice, C. P.

    2015-12-01

    The Chesapeake Bay is the largest estuary in the US, and over 50% of its streams have been rated as poor or very poor, based on the biological integrity yearly index. The Choptank River, a Bay tributary on the Delmarva Peninsula, is dominated by intensive corn and soybean farming associated with poultry and some dairy production. The Choptank River is under Environmental Protection Agency (USEPA) total maximum daily load restrictions. However, reducing nonpoint source pollution contributions from agriculture requires that source predictions be improved and that mitigation and conservation measures be properly targeted. Therefore, new measurement strategies have been implemented. In-situ sensors have been deployed adjacent to US Geological Survey gauging stations in the Tuckahoe and Greensboro sub-basins of the Choptank River watershed. These sensors measure stream water concentrations of nitrate along and water quality parameters every 30 min. Initial results indicate that ~40% less nitrate is exported from the Greensboro sub-basin, even though the total amount of agricultural land use is similar to that in the Tuckahoe sub-basin. This is most likely due to more efficient nitrate processing in the Greensboro sub-basin where the amount of cropland on poorly-drained soils is much larger. Another potential nitrogen source to the Choptank River estuary is atmospheric deposition of ammonia. Over 550 million broilers are produced yearly on the Delmarva Peninsula potentially leading to the release of 20,000 Mtons of ammonia. USEPA recently estimated that as much as 22% of nitrogen in the Bay is due to ammonia deposition. We have initiated a collaborative effort within the LTAR network to increase coverage of ammonia sampling and to explore the spatial and temporal variability of ammonia, particularly in the Choptank River watershed. All these measurements will be useful in improving the handling of nitrogen sources and its fate and transport in the Chesapeake Bay model.

  12. Water indicators based on SPOT 6 satellite images in irrigated area at the Paracatu River Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Leivas, Janice F.; de C. Teixeira, Antônio Heriberto; Bayma-Silva, Gustavo; Monteiro Garçon, Edlene A.; Ronquim, Carlos Cesar

    2017-10-01

    The Paracatu River is the largest affluent of the São Francisco River, Brazil. The main water use in the Paracatu river basin is irrigation, which occupies an area of 37,150 ha. The objective in this study was to obtain water indicators at irrigated areas using the SAFER (Simple Algorithm For Evapotranspiration Retrieving) and the Penman-Monteith models with images of SPOT 6 satellite (without the thermal band). The parameters obtained are evapotranspiration (ET), albedo (α), biomass (BIO), surface temperature (Tsup) and water productivity (PA) in irrigated areas of Paracatu River Basin. We used 2 satellite images by the sensor SPOT6 (by Astrium Company) with a spatial resolution of 6 m (August 8, 2014 and August 23, 2015) and data from meteorological stations. In irrigated areas, the NDVI reached values higher than 0.76, due the response of vegetation to irrigation. The daily average albedo was 0.18 ± 0.01 and 0.02 ± 0.17 respectively. In the analysis of the surface temperature (Tsup), it can be observed that in the image of 2015, mean values higher than those observed in the image of 2014 (303.03 +/- 1.97 K and 299.34 +/- 3.47 K, respectively). In 2015, due to increased atmospheric evaporative demand, ET reached values higher than those seen in the scene in 2014. The average daily evapotranspiration rate in Paracatu for 2014 scene was of 0.81+/-1.49 mm, with a maximum value of 8.96 mm at the irrigated areas. In image of 2015 the average evapotranspiration (ET) values was 1.87+/-1.27 mm. The results obtained in this study may assist in the monitoring of irrigated agriculture to face a trend of scarcity of water resources and of increasing conflicts over water use as occurs in the Paracatu River Basin.

  13. Connectivity and storage functions of channel fens and flat bogs in northern basins

    NASA Astrophysics Data System (ADS)

    Quinton, W. L.; Hayashi, M.; Pietroniro, A.

    2003-12-01

    The hydrological response of low relief, wetland-dominated zones of discontinuous permafrost is poorly understood. This poses a major obstacle to the development of a physically meaningful meso-scale hydrological model for the Mackenzie basin, one of the world's largest northern basins. The present study examines the runoff response of five representative study basins (Scotty Creek, and the Jean-Marie, Birch, Blackstone and Martin Rivers) in the lower Liard River valley as a function of their major biophysical characteristics. High-resolution (4 m × 4 m) IKONOS satellite imagery was used in combination with aerial and ground verification surveys to classify the land cover, and to delineate the wetland area connected to the drainage system. Analysis of the annual hydrographs of each basin for the 4 year period 1997 to 2000, demonstrated that runoff was positively correlated with the drainage density, basin slope, and the percentage of the basin covered by channel fens, and was negatively correlated with the percentage of the basin covered by flat bogs. The detailed analysis of the water-level response to summer rainstorms at several nodes along the main drainage network in the Scotty Creek basin showed that the storm water was slowly routed through channel fens with an average flood-wave velocity of 0·23 km h-1. The flood-wave velocity appears to be controlled by channel slope and hydraulic roughness in a manner consistent with the Manning formula, suggesting that a roughness-based routing algorithm might be useful in large-scale hydrological models. Copyright

  14. Annual exceedance probabilities and trends for peak streamflows and annual runoff volumes for the Central United States during the 2011 floods

    USGS Publications Warehouse

    Driscoll, Daniel G.; Southard, Rodney E.; Koenig, Todd A.; Bender, David A.; Holmes, Robert R.

    2014-01-01

    During 2011, excess precipitation resulted in widespread flooding in the Central United States with 33 fatalities and approximately $4.2 billion in damages reported in the Red River of the North, Souris, and Mississippi River Basins. At different times from late February 2011 through September 2011, various rivers in these basins had major flooding, with some locations having multiple rounds of flooding. This report provides broadscale characterizations of annual exceedance probabilities and trends for peak streamflows and annual runoff volumes for selected streamgages in the Central United States in areas affected by 2011 flooding. Annual exceedance probabilities (AEPs) were analyzed for 321 streamgages for annual peak streamflow and for 211 streamgages for annual runoff volume. Some of the most exceptional flooding was for the Souris River Basin, where of 11 streamgages considered for AEP analysis of peak streamflow, flood peaks in 2011 exceeded the next largest peak of record by at least double for 6 of the longest-term streamgages (75 to 108 years of peak-flow record). AEPs for these six streamgages were less than 1 percent. AEPs for 2011 runoff volumes were less than 1 percent for all seven Souris River streamgages considered for AEP analysis. Magnitudes of 2011 runoff volumes exceeded previous maxima by double or more for 5 of the 7 streamgages (record lengths 52 to 108 years). For the Red River of the North Basin, AEPs for 2011 runoff volumes were exceptional, with two streamgages having AEPs less than 0.2 percent, five streamgages in the range of 0.2 to 1 percent, and four streamgages in the range of 1 to 2 percent. Magnitudes of 2011 runoff volumes also were exceptional, with all 11 of the aforementioned streamgages eclipsing previous long-term (62 to 110 years) annual maxima by about one-third or more. AEPs for peak streamflows in the upper Mississippi River Basin were not exceptional, with no AEPs less than 1 percent. AEPs for annual runoff volumes indicated less frequent recurrence, with 11 streamgages having AEPs of less than 1 percent. The 2011 runoff volume for streamgage 05331000 (at Saint Paul, Minnesota) exceeded the previous record (112 years of record) by about 24 percent. An especially newsworthy feature was prolonged flooding along the main stem of the Missouri River downstream from Garrison Dam (located upstream from Bismarck, North Dakota) and extending downstream throughout the length of the Missouri River. The 2011 runoff volume for streamgage 06342500 (at Bismarck) exceeded the previous (1975) maximum by about 50 percent, with an associated AEP in the range of 0.2 to 1 percent. In the Ohio River Basin, peak-streamflow AEPs were less than 2 percent for only four streamgages. Runoff-volume AEPs were less than 2 percent for only three streamgages. Along the lower Mississippi River, the largest streamflow peak in 91 years was recorded for streamgage 07289000 (at Vicksburg, Mississippi), with an associated AEP of 0.8 percent. Trends in peak streamflow were analyzed for 98 streamgages, with 67 streamgages having upward trends, 31 with downward trends, and zero with no trend. Trends in annual runoff volume were analyzed for 182 streamgages, with 145 streamgages having upward trends, 36 with downward trends, and 1 with no trend. The trend analyses used descriptive methods that did not include measures of statistical significance. A dichotomous spatial distribution in trends was apparent for both peak streamflow and annual runoff volume, with a small number of streamgages in the northwestern part of the study area having downward trends and most streamgages in the eastern part of the study area having upward trends.

  15. Estimation of surface water storage in the Congo Basin

    NASA Astrophysics Data System (ADS)

    O'Loughlin, F.; Neal, J. C.; Schumann, G.; Beighley, E.; Bates, P. D.

    2015-12-01

    For many large river basins, especially in Africa, the lack of access to in-situ measurements, and the large areas involved, make modelling of water storage and runoff difficult. However, remote sensing datasets are useful alternative sources of information, which overcome these issues. In this study, we focus on the Congo Basin and, in particular, the cuvette central. Despite being the second largest river basin on earth and containing a large percentage of the world's tropical wetlands and forest, little is known about this basin's hydrology. Combining discharge estimates from in-situ measurements and outputs from a hydrological model, we build the first large-scale hydrodynamic model for this region to estimate the volume of water stored in the corresponding floodplains and to investigate how important these floodplains are to the behaviour of the overall system. This hydrodynamic model covers an area over 1.6 million square kilometres and 13 thousand kilometres of rivers and is calibrated to water surface heights at 33 virtual gauging stations obtained from ESA's Envisat satellite. Our results show that the use of different sources of discharge estimations and calibration via Envisat observations can produce accurate water levels and downstream discharges. Our model produced un-biased (bias =-0.08 m), sub-metre Root Mean Square Error (RMSE =0.862 m) with a Nash-Sutcliffe efficiency greater than 80% (NSE =0.81). The spatial-temporal variations in our simulated inundated areas are consistent with the pattern obtained from satellites. Overall, we find a high correlation coefficient (R =0.88) between our modelled inundated areas and those estimated from satellites.

  16. Rangewide phylogeography and landscape genetics of the Western U.S. endemic frog Rana boylii (Ranidae): Implications for the conservation of frogs and rivers

    USGS Publications Warehouse

    Lind, A.J.; Spinks, P.Q.; Fellers, G.M.; Shaffer, H.B.

    2011-01-01

    Genetic data are increasingly being used in conservation planning for declining species. We sampled both the ecological and distributional limits of the foothill yellow-legged frog, Rana boylii to characterize mitochondrial DNA (mtDNA) variation in this declining, riverine amphibian. We evaluated 1525 base pairs (bp) of cytochrome b and ND2 fragments for 77 individuals from 34 localities using phylogenetic and population genetic analyses. We constructed gene trees using maximum likelihood and Bayesian inference, and quantified genetic variance (using AMOVA and partial Mantel tests) within and among hydrologic regions and river basins. Several moderately supported, geographically-cohesive mtDNA clades were recovered for R. boylii. While genetic variation was low among populations in the largest, most inclusive clade, samples from localities at the edges of the geographic range demonstrated substantial genetic divergence from each other and from more central populations. Hydrologic regions and river basins, which represent likely dispersal corridors for R. boylii, accounted for significant levels of genetic variation. These results suggest that both rivers and larger hydrologic and geographic regions should be used in conservation planning for R. boylii. ?? 2010 US Government.

  17. The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office : Watershed Restoration Projects : Annual Report, 2001.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.

    The John Day River is the nation's second longest free-flowing river in the contiguous United States, which is entirely unsupplemented for it's runs of anadromous fish. Located in eastern Oregon, the John Day Basin drains over 8,000 square miles, is Oregon's fourth largest drainage basin, and the basin incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the mainstem John Day River flows 284 miles in a northwesterly direction entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon, summer steelhead, westslope cutthroat, and redband andmore » bull trout, the John Day system is truly a basin with national significance. The Majority of the John Day Basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in John Day to coordinate basin restoration projects, monitoring, planning, and other watershed restoration activities on private and public lands. Once established, the John Day Basin Office (JDBO) formed a partnership with the Grant Soil and Water Conservation District (GSWCD), also located in John Day, who subcontracts the majority of the construction implementation activities for these restoration projects from the JDBO. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2001, the JDBO and GSWCD continued their successful partnership between the two agencies and basin landowners to implement an additional ten (10) watershed conservation projects. The project types include permanent lay flat diversions, pump stations, and return-flow cooling systems. Project costs in 2001 totaled $572,766.00 with $361,966.00 (67%) provided by the Bonneville Power Administration (BPA) and the remainder coming from other sources, such as the Bureau of Reclamation (BOR), Oregon Watershed Enhancement Board (OWEB), and individual landowners.« less

  18. Observations relating extreme multi-basin river flows to very severe gales

    NASA Astrophysics Data System (ADS)

    Hillier, John; De Luca, Paolo; Wilby, Rob; Quinn, Nevil; Harrigan, Shaun

    2017-04-01

    Fluvial foods are typically investigated as 'events' at the single basin scale. However, applying a recently developed methodology to identify the largest multi-basin peak flow events allows a statistically significant relationship between them and episodes of very severe gales (VSG) to be identified; such a systematic link has previously only very tentatively been proposed for extra-tropical cyclone seasons, where damaging wind and rain are commonly non-synchronous. Annual maximum river peak flow (AMAX) data during 1975-2014 for 261 non-nested catchments (i.e. with no other sites upstream) in Great Britain are used, and a 13-day window is selected. A simple correlation between metrics that are proxies for damaging wind and flooding is statistically significant (r = 0.41, p = 0.0088). Also, taking the most severe 50% and 30% of years for wind and flow respectively, co-occurrence is expected 6.6 times in 40 years whilst 10 are observed (p = 0.021; simulation with n = 10,000), making co-occurrence of the extremes 52% more likely than expected by chance. This has implications for emergency response and financial planning (e.g. insurance).

  19. Use of Iqqm For Management of A Regulated River System

    NASA Astrophysics Data System (ADS)

    Hameed, T.; Podger, G.; Harrold, T. I.

    The Integrated Quantity-Quality Model (IQQM) is a modelling tool for the planning and management of water-sharing issues within regulated and unregulated river sys- tems. IQQM represents the major river system processes, including inflows, rainfall and evaporation, infiltration, and flow routing down river channels and floodplains. It is a water balance model that operates on a daily timestep and can represent reser- voirs, wetlands, surface water/groundwater interaction, and soil moisture deficit for irrigation areas, along with many other features of both natural and regulated systems. IQQM can be customised for any river valley, and has proven to be a useful tool for the development, evaluation, and selection of operational rules for complex river systems. The Lachlan catchment lies within Australia's largest river system, the Murray- Darling Basin. Extensive development in the Murray-Darling Basin within the last 100 years has resulted in land degradation, increased salinity, poor water quality, damage to wetlands, and decline in native fish species. In response to these issues, in 1995 the Murray-Darling Basin Commission (MDBC) imposed restrictions on growth in diver- sions (the "MDBC Cap"), and the New South Wales government has more recently applied its own restrictions (the "River Flow Objectives"). To implement the MDBC Cap and the River Flow Objectives, new operational rules were required. This presen- tation describes how IQQM was used to develop and evaluate these rules for the Lach- lan system. In particular, rules for release of environmental flows were developed and evaluated. The model helped identify the flow window that would be most beneficial to the riverine environment, the critical time of year when environmental releases should be made, and resource constraint conditions when environmental releases should not be made. This process also involved intensive consultations with stakeholders. The role of IQQM within this process was to help the stakeholders understand the inter- action of various users within the valley, and the impacts of the operational rules on them.

  20. 40Ar/39Ar mica dating of late Cenozoic sediments in the upper Yangtze: Implications for sediment provenance and drainage evolution

    NASA Astrophysics Data System (ADS)

    Sun, Xilin; Li, Chang'an; Kuiper, Kuiper; Zhang, Zengjie; Wijbrans, Jan

    2017-04-01

    The development of the river systems in East Asia is closely linked to the uplift of the Tibetan plateau caused by collision of the India-Eurasia. The Yangtze River is the largest river in Asia and the timing and exact causes of its formation are still a matter of debate. Controversy exists for example on the start of the connection of the eastern Tibetan rivers to the eastward flowing Yangtze instead of the southward flowing Red River. Here we use the 40Ar/39Ar dating of detrital micas (muscovite and biotite) and muscovite geochemistry to constrain the sediment provenance in the eastern Tibetan Plateau. The remarkable spatial and temporal variation in sediment provenance allow us to extract information about the evolution of the upper Yangtze River. The combined data suggest that the upper Jinsha River upstream from Shigu town lost its connection with the southward flowing Red River at least earlier than the Pliocene. To the east of Shigu, the Yalong and Jinsha rivers flowed across the Yuanmou Basin into the Red River before 3.1 Ma, but abandoned this connection and turned east somewhere between 3.1 and 2.1 Ma. Our results rule out the possibility of a west-flowing Jinsha River since 1.58 Ma. The current stream directions between Shigu and Panzhihua go north, south and east and must have been formed at that time. Our data also shed new light on the evolution of the Dadu River. The Dadu River did not flow southward into Yuanmou Basin at least since 4.8 Ma but flowed into the Jinsha River along the Anninghe Fault. These capture events are closely linked to the tectonism of the eastern Tibetan Plateau and intensification of the East Asia monsoon.

  1. A River Model Intercomparison Project in Preparation for SWOT

    NASA Astrophysics Data System (ADS)

    David, C. H.; Andreadis, K.; Famiglietti, J. S.; Beighley, E.; Boone, A. A.; Yamazaki, D.; Paiva, R. C. D.; Fleischmann, A. S.; Collischonn, W.; Fisher, C. K.; Kim, H.; Biancamaria, S.

    2017-12-01

    The Surface Water and Ocean Topography (SWOT) mission is currently scheduled to launch at the beginning of next decade. SWOT is expected to retrieve unprecedented measurements of water extent, elevation, and slope in the largest terrestrial water bodies. Such potential transformative information motivates the investigation of our ability to ingest the associated data into continental-scale models of terrestrial hydrology. In preparation for the expected SWOT observations, an inter-comparison of continental-scale river models is being performed. This comparison experiment focuses on four of the world's largest river basins: the Amazon, the Mississippi, the Niger, and the Saint-Lawrence. This ongoing project focuses on two main research questions: 1) How can we best prepare for the expected SWOT continental to global measurements before SWOT even flies?, and 2) What is the added value of including SWOT terrestrial measurements into global hydro models for enhancing our understanding of the terrestrial water cycle and the climate system? We present here the results of the second year of this project which now includes simulations from six numerical models of rivers over the Mississippi and sheds light on the implications of various modeling choices on simulation quality as well as on the potential impact of SWOT observations.

  2. Source and fate of inorganic solutes in the Gibbon River, Yellowstone National Park, Wyoming, USA. II. Trace element chemistry

    USGS Publications Warehouse

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Susong, David D.; Ball, James W.; Taylor, Howard E.

    2010-01-01

    The Gibbon River in Yellowstone National Park receives inflows from several geothermal areas, and consequently the concentrations of many trace elements are elevated compared to rivers in non-geothermal watersheds. Water samples and discharge measurements were obtained from the Gibbon River and its major tributaries near Norris Geyser Basin under the low-flow conditions of September 2006 allowing for the identification of solute sources and their downstream fate. Norris Geyser Basin, and in particular Tantalus Creek, is the largest source of many trace elements (Al, As, B, Ba, Br, Cs, Hg, Li, Sb, Tl, W, and REEs) to the Gibbon River. The Chocolate Pots area is a major source of Fe and Mn, and the lower Gibbon River near Terrace Spring is the major source of Be and Mo. Some of the elevated trace elements are aquatic health concerns (As, Sb, and Hg) and knowing their fate is important. Most solutes in the Gibbon River, including As and Sb, behave conservatively or are minimally attenuated over 29 km of fluvial transport. Some small attenuation of Al, Fe, Hg, and REEs occurs but primarily there is a transformation from the dissolved state to suspended particles, with most of these elements still being transported to the Madison River. Dissolved Hg and REEs loads decrease where the particulate Fe increases, suggesting sorption onto suspended particulate material. Attenuation from the water column is substantial for Mn, with little formation of Mn as suspended particulates.

  3. Methods for evaluating temporal groundwater quality data and results of decadal-scale changes in chloride, dissolved solids, and nitrate concentrations in groundwater in the United States, 1988-2010

    USGS Publications Warehouse

    Lindsey, Bruce D.; Rupert, Michael G.

    2012-01-01

    Decadal-scale changes in groundwater quality were evaluated by the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. Samples of groundwater collected from wells during 1988-2000 - a first sampling event representing the decade ending the 20th century - were compared on a pair-wise basis to samples from the same wells collected during 2001-2010 - a second sampling event representing the decade beginning the 21st century. The data set consists of samples from 1,236 wells in 56 well networks, representing major aquifers and urban and agricultural land-use areas, with analytical results for chloride, dissolved solids, and nitrate. Statistical analysis was done on a network basis rather than by individual wells. Although spanning slightly more or less than a 10-year period, the two-sample comparison between the first and second sampling events is referred to as an analysis of decadal-scale change based on a step-trend analysis. The 22 principal aquifers represented by these 56 networks account for nearly 80 percent of the estimated withdrawals of groundwater used for drinking-water supply in the Nation. Well networks where decadal-scale changes in concentrations were statistically significant were identified using the Wilcoxon-Pratt signed-rank test. For the statistical analysis of chloride, dissolved solids, and nitrate concentrations at the network level, more than half revealed no statistically significant change over the decadal period. However, for networks that had statistically significant changes, increased concentrations outnumbered decreased concentrations by a large margin. Statistically significant increases of chloride concentrations were identified for 43 percent of 56 networks. Dissolved solids concentrations increased significantly in 41 percent of the 54 networks with dissolved solids data, and nitrate concentrations increased significantly in 23 percent of 56 networks. At least one of the three - chloride, dissolved solids, or nitrate - had a statistically significant increase in concentration in 66 percent of the networks. Statistically significant decreases in concentrations were identified in 4 percent of the networks for chloride, 2 percent of the networks for dissolved solids, and 9 percent of the networks for nitrate. A larger percentage of urban land-use networks had statistically significant increases in chloride, dissolved solids, and nitrate concentrations than agricultural land-use networks. In order to assess the magnitude of statistically significant changes, the median of the differences between constituent concentrations from the first full-network sampling event and those from the second full-network sampling event was calculated using the Turnbull method. The largest median decadal increases in chloride concentrations were in networks in the Upper Illinois River Basin (67 mg/L) and in the New England Coastal Basins (34 mg/L), whereas the largest median decadal decrease in chloride concentrations was in the Upper Snake River Basin (1 mg/L). The largest median decadal increases in dissolved solids concentrations were in networks in the Rio Grande Valley (260 mg/L) and the Upper Illinois River Basin (160 mg/L). The largest median decadal decrease in dissolved solids concentrations was in the Apalachicola-Chattahoochee-Flint River Basin (6.0 mg/L). The largest median decadal increases in nitrate as nitrogen (N) concentrations were in networks in the South Platte River Basin (2.0 mg/L as N) and the San Joaquin-Tulare Basins (1.0 mg/L as N). The largest median decadal decrease in nitrate concentrations was in the Santee River Basin and Coastal Drainages (0.63 mg/L). The magnitude of change in networks with statistically significant increases typically was much larger than the magnitude of change in networks with statistically significant decreases. The magnitude of change was greatest for chloride in the urban land-use networks and greatest for dissolved solids and nitrate in the agricultural land-use networks. Analysis of data from all networks combined indicated statistically significant increases for chloride, dissolved solids, and nitrate. Although chloride, dissolved solids, and nitrate concentrations were typically less than the drinking-water standards and guidelines, a statistical test was used to determine whether or not the proportion of samples exceeding the drinking-water standard or guideline changed significantly between the first and second full-network sampling events. The proportion of samples exceeding the U.S. Environmental Protection Agency (USEPA) Secondary Maximum Contaminant Level for dissolved solids (500 milligrams per liter) increased significantly between the first and second full-network sampling events when evaluating all networks combined at the national level. Also, for all networks combined, the proportion of samples exceeding the USEPA Maximum Contaminant Level (MCL) of 10 mg/L as N for nitrate increased significantly. One network in the Delmarva Peninsula had a significant increase in the proportion of samples exceeding the MCL for nitrate. A subset of 261 wells was sampled every other year (biennially) to evaluate decadal-scale changes using a time-series analysis. The analysis of the biennial data set showed that changes were generally similar to the findings from the analysis of decadal-scale change that was based on a step-trend analysis. Because of the small number of wells in a network with biennial data (typically 4-5 wells), the time-series analysis is more useful for understanding water-quality responses to changes in site-specific conditions rather than as an indicator of the change for the entire network.

  4. Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales

    PubMed Central

    Stickler, Claudia M.; Coe, Michael T.; Costa, Marcos H.; Nepstad, Daniel C.; McGrath, David G.; Dias, Livia C. P.; Rodrigues, Hermann O.; Soares-Filho, Britaldo S.

    2013-01-01

    Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations’ energy growth strategies. Feasibility studies of hydropower plants typically ignore the effect of future deforestation or assume that deforestation will have a positive effect on river discharge and energy generation resulting from declines in evapotranspiration (ET) associated with forest conversion. Forest loss can also reduce river discharge, however, by inhibiting rainfall. We used land use, hydrological, and climate models to examine the local “direct” effects (through changes in ET within the watershed) and the potential regional “indirect” effects (through changes in rainfall) of deforestation on river discharge and energy generation potential for the Belo Monte energy complex, one of the world’s largest hydropower plants that is currently under construction on the Xingu River in the eastern Amazon. In the absence of indirect effects of deforestation, simulated deforestation of 20% and 40% within the Xingu River basin increased discharge by 4–8% and 10–12%, with similar increases in energy generation. When indirect effects were considered, deforestation of the Amazon region inhibited rainfall within the Xingu Basin, counterbalancing declines in ET and decreasing discharge by 6–36%. Under business-as-usual projections of forest loss for 2050 (40%), simulated power generation declined to only 25% of maximum plant output and 60% of the industry’s own projections. Like other energy sources, hydropower plants present large social and environmental costs. Their reliability as energy sources, however, must take into account their dependence on forests. PMID:23671098

  5. Flood Frequency Analysis For Partial Duration Series In Ganjiang River Basin

    NASA Astrophysics Data System (ADS)

    zhangli, Sun; xiufang, Zhu; yaozhong, Pan

    2016-04-01

    Accurate estimation of flood frequency is key to effective, nationwide flood damage abatement programs. The partial duration series (PDS) method is widely used in hydrologic studies because it considers all events above a certain threshold level as compared to the annual maximum series (AMS) method, which considers only the annual maximum value. However, the PDS has a drawback in that it is difficult to define the thresholds and maintain an independent and identical distribution of the partial duration time series; this drawback is discussed in this paper. The Ganjiang River is the seventh largest tributary of the Yangtze River, the longest river in China. The Ganjiang River covers a drainage area of 81,258 km2 at the Wanzhou hydrologic station as the basin outlet. In this work, 56 years of daily flow data (1954-2009) from the Wanzhou station were used to analyze flood frequency, and the Pearson-III model was employed as the hydrologic probability distribution. Generally, three tasks were accomplished: (1) the threshold of PDS by percentile rank of daily runoff was obtained; (2) trend analysis of the flow series was conducted using PDS; and (3) flood frequency analysis was conducted for partial duration flow series. The results showed a slight upward trend of the annual runoff in the Ganjiang River basin. The maximum flow with a 0.01 exceedance probability (corresponding to a 100-year flood peak under stationary conditions) was 20,000 m3/s, while that with a 0.1 exceedance probability was 15,000 m3/s. These results will serve as a guide to hydrological engineering planning, design, and management for policymakers and decision makers associated with hydrology.

  6. Satellite Observations of Drought and Falling Water Storage in the Colorado River Basin and Lake Mead

    NASA Astrophysics Data System (ADS)

    Castle, S.; Famiglietti, J. S.; Reager, J. T.; Thomas, B.

    2012-12-01

    Over the past decade the Western US has experienced extreme drought conditions, which have affected both agricultural and urban areas. An example of water infrastructure being impacted by these droughts is Lake Mead, the largest reservoir in the United States at its full capacity that provides water and energy for several states in the Western US. Once Lake Mead falls below the critical elevation of 1050 feet above sea level, the Hoover Dam, the structure that created Lake Mead by damming flow within the Colorado River, will stop producing energy for Las Vegas. The Gravity Recovery and Climate Experiment (GRACE) satellites, launched in 2002, have proven successful for monitoring changes in water storage over large areas, and give hydrologists a first-ever picture of how total water storage is changing spatially and temporally within large regions. Given the importance of the Colorado River to meet water demands to several neighboring regions, including Southern California, it is vital to understand how water is transported and managed throughout the basin. In this research, we use hydrologic remote sensing to characterize the human and natural water balance of the Colorado River basin and Lake Mead. The research will include quantifying the amount of Colorado River water delivered to Southern California, coupling the GRACE Total Water Storage signal of the Upper and Lower Colorado River with Landsat-TM satellite imagery and areal extent of Lake Mead water storage, and combining these data together to determine the current status of water availability in the Western US. We consider water management and policy changes necessary for sustainable water practices including human water use, hydropower, and ecosystem services in arid regions throughout the Western US.

  7. Impacts of precipitation seasonality and ecosystem types on evapotranspiration in the Yukon River Basin, Alaska

    USGS Publications Warehouse

    Yuan, W.; Liu, S.; Liu, H.; Randerson, J.T.; Yu, G.; Tieszen, L.L.

    2010-01-01

    Evapotranspiration (ET) is the largest component of water loss from terrestrial ecosystems; however, large uncertainties exist when estimating the temporal and spatial variations of ET because of concurrent shifts in the magnitude and seasonal distribution of precipitation as well as differences in the response of ecosystem ET to environmental variabilities. In this study, we examined the impacts of precipitation seasonality and ecosystem types on ET quantified by eddy covariance towers from 2002 to 2004 in three ecosystems (grassland, deciduous broadleaf forest, and evergreen needleleaf forest) in the Yukon River Basin, Alaska. The annual precipitation changed greatly in both magnitude and seasonal distribution through the three investigated years. Observations and model results showed that ET was more sensitive to precipitation scarcity in the early growing season than in the late growing season, which was the direct result of different responses of ET components to precipitation in different seasons. The results demonstrated the importance of seasonal variations of precipitation in regulating annual ET and overshadowing the function of annual precipitation. Comparison of ET among ecosystems over the growing season indicated that ET was largest in deciduous broadleaf, intermediate in evergreen needleleaf, and lowest in the grassland ecosystem. These ecosystem differences in ET were related to differences in successional stages and physiological responses.

  8. Water-quality assessment of the upper Illinois River Basin in Illinois, Indiana, and Wisconsin; major and trace elements in water, sediment, and biota, 1978-90

    USGS Publications Warehouse

    Fitzpatrick, F.A.; Scudder, B.C.; Crawford, J.K.; Schmidt, A.R.; Sieverling, J.B.

    1995-01-01

    The distribution of 22 major and trace elements was examined in water, sediment, and biota in the upper Illinois River Basin in Illinois, Indiana, and Wisconsin as part of a pilot National Water-Quality Assessment project done by the U.S. Geological Survey from 1987 through 1990. The 22 elements are aluminum, antimony, arsenic, barium, beryllium, boron, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, molybdenum, nickel, phosphorus, selenium, silver, strontium, vanadium, and zinc. Concentrations of U.S. Environmental Protection Agency (USEPA) priority pollutants among the 22 elements were elevated in the Chicago area in all three aquatic components (water, sediment, and biota). Further, some of the priority pollutants also were found at elevated concentrations in biota in agricultural areas in the basin. Cadmium, chromium, copper, iron, lead, mercury, silver, and zinc concentrations in water exceeded USEPA acute or chronic water-quality criteria at several sites in the Chicago area. Correlations among concentra- tions of elements in water, sediment, and biota were found, but the correlation analysis was hindered by the large proportion of observations less than the minimum reporting level in water. Those sites where water-quality criteria were sometimes exceeded were not always the same sites where concentrations in biota were the largest. This relation indicates that accumulation of these pollutants in biota is confounded by complex geochemical and biological processes that differ throughout the upper Illinois River Basin.

  9. Estimated dissolved-solids loads and trends at selected streams in and near the Uinta Basin, Utah, Water Years 1989–2013

    USGS Publications Warehouse

    Thiros, Susan A.

    2017-03-23

    The U.S. Geological Survey (USGS), in cooperation with the Colorado River Basin Salinity Control Forum, studied trends in dissolved-solids loads at selected sites in and near the Uinta Basin, Utah. The Uinta Basin study area includes the Duchesne River Basin and the Middle Green River Basin in Utah from below Flaming Gorge Reservoir to the town of Green River.Annual dissolved-solids loads for water years (WY) 1989 through 2013 were estimated for 16 gaging stations in the study area using streamflow and water-quality data from the USGS National Water Information System database. Eight gaging stations that monitored catchments with limited or no agricultural land use (natural subbasins) were used to assess loads from natural sources. Four gaging stations that monitored catchments with agricultural land in the Duchesne River Basin were used to assess loads from agricultural sources. Four other gaging stations were included in the dissolved-solids load and trend analysis to help assess the effects of agricultural areas that drain to the Green River in the Uinta Basin, but outside of the Duchesne River Basin.Estimated mean annual dissolved-solids loads for WY 1989–2013 ranged from 1,520 tons at Lake Fork River above Moon Lake, near Mountain Home, Utah (UT), to 1,760,000 tons at Green River near Green River, UT. The flow-normalized loads at gaging stations upstream of agricultural activities showed no trend or a relatively small change. The largest net change in modeled flow-normalized load was -352,000 tons (a 17.8-percent decrease) at Green River near Green River, UT.Annual streamflow and modeled dissolved-solids loads at the gaging stations were balanced between upstream and downstream sites to determine how much water and dissolved solids were transported to the Duchesne River and a section of the Green River, and how much was picked up in each drainage area. Mass-balance calculations of WY 1989–2013 mean annual dissolved-solids loads at the studied sites show that Green River near Jensen, UT, accounts for 64 percent of the load in the river at Green River, UT, while the Duchesne River and White River contribute 10 and 13 percent, respectively.Annual streamflow and modeled dissolved-solids loads at the gaging stations were balanced between upstream and downstream sites to determine how much water and dissolved solids were transported to the Duchesne River and a section of the Green River, and how much was picked up in each drainage area. Mass-balance calculations of WY 1989–2013 mean annual dissolved-solids loads at the studied sites show that Green River near Jensen, UT, accounts for 64 percent of the load in the river at Green River, UT, while the Duchesne River and White River contribute 10 and 13 percent, respectively.The flow-normalized dissolved-solids loads estimated at Duchesne River near Randlett, UT, and White River near Watson, UT, decreased by 68,000 and 55,300 tons, or 27.8 and 20.8 percent respectively, when comparing 1989 to 2013. The drainage basins for both rivers have undergone salinity-control projects since the early 1980s to reduce the dissolved-solids load entering the Colorado River. Approximately 19 percent of the net change in flow-normalized load at Green River at Green River, UT, is from changes in load modeled at Duchesne River near Randlett, UT, and 16 percent from changes in load modeled at White River near Watson, UT. The net change in flow-normalized load estimated at Green River near Greendale, UT, for WY 1989–2013 accounts for about 45 percent of the net change estimated at Green River at Green River, UT.Mass-balance calculations of WY 1989–2013 mean annual dissolved-solids loads at the studied sites in the Duchesne River Basin show that 75,400 tons or 44 percent of the load at the Duchesne River near Randlett, UT, gaging station was not accounted for at any of the upstream gages. Most of this unmonitored load is derived from tributary inflow, groundwater discharge, unconsumed irrigation water, and irrigation tail water.A mass balance of WY 1989–2013 flow-normalized loads estimated at sites in the Duchesne River Basin indicates that the flow-normalized load of unmonitored inflow to the Duchesne River between the Myton and Randlett gaging stations decreased by 38 percent. The total net decrease in flow-normalized load calculated for unmonitored inflow in the drainage basin accounts for 94 percent of the decrease in WY 1989–2013 flow-normalized load modeled at the Duchesne River near Randlett, UT, gaging station. Irrigation improvements in the drainage basin have likely contributed to the decrease in flow-normalized load.Reductions in dissolved-solids load estimated by the Natural Resources Conservation Service (NRCS) and the Bureau of Reclamation (Reclamation) from on- and off-farm improvements in the Uinta Basin totaled about 135,000 tons in 2013 (81,900 tons from on-farm improvements and 53,300 tons from off-farm improvements). The reduction in dissolved-solids load resulting from on- and off-farm improvements facilitated by the NRCS and Reclamation in the Price River Basin from 1989 to 2013 was estimated to be 64,800 tons.The amount of sprinkler-irrigated land mapped in the drainage area or subbasin area for a gaging station was used to estimate the reduction in load resulting from the conversion from flood to sprinkler irrigation. Sprinkler-irrigated land mapped in the Uinta Basin totaled 109,630 acres in 2012. Assuming conversion to wheel-line sprinklers, a reduction in dissolved-solids load in the Uinta Basin of 95,800 tons in 2012 was calculated using the sprinkler-irrigation acreage and a pre-salinity-control project dissolved-solids yield of 1.04 tons per acre.A reduction of 72,800 tons in dissolved-solids load from irrigation improvements was determined from sprinkler-irrigated lands in the Ashley Valley and Jensen, Pelican Lake, and Pleasant Valley areas (mapped in 2012); and in the Price River Basin (mapped in 2011). This decrease in dissolved-solids load is 8,800 tons more than the decrease in unmonitored flow-normalized dissolved-solids load (-64,000 tons) determined for the Green River between the Jensen and Green River gaging stations.The net WY 1989–2013 change in flow-normalized dissolved-solids load at the Duchesne River near Randlett, UT, and the Green River between the Jensen and Green River, UT, gaging stations determined from mass-balance calculations was compared to reported reductions in dissolved-solids load from on- and off-farm improvements and estimated reductions in load determined from mapped sprinkler-irrigated areas in the Duchesne River Basin and the area draining to the Green River between the Jensen and Green River gaging stations. The combined NRCS and Reclamation estimates of reduction in dissolved-solids load from on- and off-farm improvements in the study area (200,000 tons) is more than the reduction in load estimated using the acreage with sprinkler improvements (136,000 tons) or the mass-balance of flow-normalized load (132,000 tons).

  10. Questa Baseline and Pre-mining Ground-Water Quality Investigation, 7. A Pictorial Record of Chemical Weathering, Erosional Processes, and Potential Debris-flow Hazards in Scar Areas Developed on Hydrothermally Altered Rocks

    USGS Publications Warehouse

    Plumlee, Geoffrey S.; Ludington, Steve; Vincent, Kirk R.; Verplanck, Philip L.; Caine, Jonathan S.; Livo, K. Eric

    2009-01-01

    Erosional scar areas developed along the lower Red River basin, New Mexico, reveal a complex natural history of mineralizing processes, rapid chemical weathering, and intense physical erosion during periodic outbursts of destructive, storm-induced runoff events. The scar areas are prominent erosional features with craggy headwalls and steep, denuded slopes. The largest scar areas, including, from east to west, Hottentot Creek, Straight Creek, Hansen Creek, Lower Hansen Creek, Sulfur Gulch, and Goat Hill Gulch, head along high east-west trending ridges that form the northern and southern boundaries of the lower Red River basin. Smaller, topographically lower scar areas are developed on ridge noses in the inner Red River valley. Several of the natural scar areas have been modified substantially as a result of large-scale open-pit and underground mining at the Questa Mine; for example, much of the Sulfur Gulch scar was removed by open pit mining, and several scars are now partially or completely covered by mine waste dumps.

  11. Transport of diazinon in the San Joaquin River basin, California

    USGS Publications Warehouse

    Kratzer, Charles R.

    1997-01-01

    Most of the application of the organophosphate insecticide diazinon in the San Joaquin River Basin occurs in winter to control wood boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of San Joaquin River water to water fleas in February 1993. Previous studies focussed mainly on west-side inputs to the San Joaquin River. In this 1994 study, the three major east-side tributaries to the San Joaquin River, the Merced, Tuolumne, and Stanislaus Rivers, and a downstream site on the San Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated traveltimes, ephemeral west-side creeks were probably the main diazinon source early in the storms, while the Tuolumne and Merced Rivers and east-side drainage directly to the San Joaquin River were the main sources later. Although 74 percent of diazinon transport in the San Joaquin River during 199193 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceeding dry periods. Nevertheless, some of the diazinon concentrations in the San Joaquin River during the January storm exceeded 0.35 micrograms per liter, a concentration shown to be acutely toxic to water fleas. Diazinon concentrations were highly variable during the storms and frequent sampling was required to adequately describe the concentration curves and to estimate loads.

  12. Suspended-sediment concentrations, loads, total suspended solids, turbidity, and particle-size fractions for selected rivers in Minnesota, 2007 through 2011

    USGS Publications Warehouse

    Ellison, Christopher A.; Savage, Brett E.; Johnson, Gregory D.

    2014-01-01

    Sediment-laden rivers and streams pose substantial environmental and economic challenges. Excessive sediment transport in rivers causes problems for flood control, soil conservation, irrigation, aquatic health, and navigation, and transports harmful contaminants like organic chemicals and eutrophication-causing nutrients. In Minnesota, more than 5,800 miles of streams are identified as impaired by the Minnesota Pollution Control Agency (MPCA) due to elevated levels of suspended sediment. The U.S. Geological Survey, in cooperation with the MPCA, established a sediment monitoring network in 2007 and began systematic sampling of suspended-sediment concentrations (SSC), total suspended solids (TSS), and turbidity in rivers across Minnesota to improve the understanding of fluvial sediment transport relations. Suspended-sediment samples collected from 14 sites from 2007 through 2011 indicated that the Zumbro River at Kellogg in the driftless region of southeast Minnesota had the highest mean SSC of 226 milligrams per liter (mg/L) followed by the Minnesota River at Mankato with a mean SSC of 193 mg/L. During the 2011 spring runoff, the single highest SSC of 1,250 mg/L was measured at the Zumbro River. The lowest mean SSC of 21 mg/L was measured at Rice Creek in the northern Minneapolis- St. Paul metropolitan area. Total suspended solids (TSS) have been used as a measure of fluvial sediment by the MPCA since the early 1970s; however, TSS concentrations have been determined to underrepresent the amount of suspended sediment. Because of this, the MPCA was interested in quantifying the differences between SSC and TSS in different parts of the State. Comparisons between concurrently sampled SSC and TSS indicated significant differences at every site, with SSC on average two times larger than TSS concentrations. The largest percent difference between SSC and TSS was measured at the South Branch Buffalo River at Sabin, and the smallest difference was observed at the Des Moines River at Jackson. Regression analysis indicated that 7 out of 14 sites had poor or no relation between SSC and streamflow. Only two sites, the Knife River and the Wild Rice River at Twin Valley, had strong correlations between SSC and streamflow, with coefficient of determination (R2) values of 0.82 and 0.80, respectively. In contrast, turbidity had moderate to strong relations with SSC at 10 of 14 sites and was superior to streamflow for estimating SSC at all sites. These results indicate that turbidity may be beneficial as a surrogate for SSC in many of Minnesota’s rivers. Suspended-sediment loads and annual basin yields indicated that the Minnesota River had the largest average annual sediment load of 1.8 million tons per year and the largest mean annual sediment basin yield of 120 tons of sediment per year per square mile. Annual TSS loads were considerably lower than suspended-sediment loads. Overall, the largest suspended-sediment and TSS loads were transported during spring snowmelt runoff, although loads during the fall and summer seasons occasionally exceeded spring runoff at some sites. This study provided data from which to characterize suspended sediment across Minnesota’s diverse geographical settings. The data analysis improves understanding of sediment transport relations, provides information for improving sediment budgets, and documents baseline data to aid in understanding the effects of future land use/land cover on water quality. Additionally, the data provides insight from which to evaluate the effectiveness and efficiency of best management practices at the watershed scale.

  13. Effects of hydraulic and geologic factors on streamflow of the Yakima River Basin, Washington

    USGS Publications Warehouse

    Kinnison, Hallard B.; Sceva, Jack E.

    1963-01-01

    The Yakima River basin, in south-central Washington, is the largest single river system entirely within the confines of the State. Its waters are the most extensively utilized of all the rivers in Washington. The river heads high on the eastern slope of the Cascade Mountains, flows for 180 miles in a generally southeast direction, and discharges into the Columbia River. The western part of the basin is a mountainous area formed by sedimentary, volcanic, and metamorphic rocks, which generally have a low capacity for storing and transmitting water. The eastern part of the basin is. formed by a thick sequence of lava flows that have folded into long ridges and troughs. Downwarped structural basins between many of the ridges are partly filled with younger sedimentary deposits, which at some places are many hundreds of feet thick. The Yakima River flows from structural basin to structural basin through narrow water gaps that have been eroded through the anticlinal ridges. Each basin is also a topographic basin and a ground-water subbasin. A gaging station will measure the total outflow of a drainage area only if it is located at the surface outlet of a ground-water subbasin and then only if the stream basin is nearly coextensive with the ground-water subbasin. Many gaging stations in the Yakima basin are so located. The geology, hydrology, size. and location of 25 ground-water subbasins are described. Since the settlement of the valley began, the development of the land and water resources have caused progressive changes in the natural regimen of the basin's runoff. These changes have resulted from diversion of water from the streams, the application of water on the land for irrigation, the storage and release of flood waters, the pumping of ground water, and other factors Irrigation in the Yakima basin is reported 'to have begun about 1864. In 1955 about 425,000 acres were under irrigation. During the past 60-odd years many gaging stations have been operated at different sites within the basin. Only stations in the upper reaches, such as those below Keechelus, Kachess, or Cle Elum Lakes, give discharge records which are an accurate measure of the natural outflow of the drainage area. Farther down, stream, as the utilization of water becomes more extensive, the records at a gaging station show the discharge passing a particular point, but they do not reflect the natural outflow of the basin. Large canals divert water for use on lands above a station or carry it around a station for irrigation downstream. The deep sedimentary deposits within subbasins and the overlying alluvial gravels permit downvalley movement of large subsurface flows which bypass the gaging stations, except in the near vicinity of the water gaps. At the water gaps ground water rises to the surface, becoming streamflow, and can be accurately measured. The location of gaging stations within each subbasin is important, therefore, in determining whether the flow measured represents the total downvalley outflow or whether it is merely the surface-water component. Surface and subsurface factors that may affect the discharge records at each gaging station in the Yakima River basin include a description of upstream diversions, surface return flows, bypass canals, storage reservoirs, subsurface bypass flows, ground-water withdrawals, and other items. The available data are not sufficiently complete to permit a quantitative determination of the total basin yield at most gaging stations. However, data on the existing bypass channels, such as canals and drainage ditches, and on related subsurface movement of water provide valuable information necessary to proper use and interpretation of the streamflow records.

  14. Attribution of the response of the stream flows of the Brahmaputra river basin of a 1.5°C warmer world

    NASA Astrophysics Data System (ADS)

    Saiful Islam, Akm; Mamun Rashid, Md; Allen, Myles; Mitchell, Daniel; Mohammed, Khaled; Uddin Khan, Md Jamal

    2017-04-01

    An increase in global average temperature due to climate change is likely to intensify the global hydrological cycle, which in turn will impact regional water resources. Changes of the frequency and magnitude of the precipitation patterns over a river basin will change the intensity of floods and droughts. It's still an active field of research to determine the impact of climate change on extreme events though the attribution community has been using large climate model ensembles to characterize the low signal to noise problems. After the Paris agreement of 2015, limiting the increase of the global temperature below 1.5°C was emphasized. However, it is not clear the benefits of additional half a degree reduction of temperature below 2°C which needs comprehensive scientific analysis. In this context, a collaborative effort of 39 academic and research institutions around the global is on-going to generate large ensemble simulations of climate projections under a project entitled, 'the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI)'. This study has made an attempt to conduct ensemble simulations of a hydrological model over a transboundary river basin (Brahmaputra) for estimating the changes in future extremes and mean discharges of the river forced by the climate projections generated under the HAPPI project. The Brahmaputra is a transboundary river originating in China and ending in Bangladesh and it is the fourth largest river in the world in terms of average discharge of approximately 20,000 cms. It drains water from approximately 520,000 sq.km. area of China, India, Bhutan and Bangladesh. An estimated 66 million people depend on water from this river for their livelihood through subsistence agriculture and thus any change in the river's discharge due to climate change may have a negative impact on this large population. A decrease in discharge during the dry season when the basin requires water for irrigation systems translates into a threat to food security while an increase in discharge during monsoon season translates into increasing of major flooding events particularly in the lowermost riparian country, Bangladesh. About 67% of the total annual discharge of Bangladesh comes from the Brahmaputra River. In addition to a warming climate impacting the snow and glacier melt processes of the Brahmaputra River basin, the precipitation falling over the basin will also be affected because precipitation in this region is connected to the Indian summer monsoon and the Indian summer monsoon is projected to be impacted by climate change. Hence, increasing the likelihood that the discharges of the Brahmaputra River will change under the changing climate. Given the importance of the Brahmaputra River to its riparian countries, this study estimates the changes in future extreme discharges. Results are compared for both the 1°C and 2°C worlds as prescribed by the Paris Agreement of 2015.

  15. Hydrological applications of Landsat imagery used in the study of the 1973 Indus River flood, Pakistan

    USGS Publications Warehouse

    Deutsch, Morris; Ruggles, F.H.

    1978-01-01

    During August and September 1973, the Indus River Valley of Pakistan experienced one of the largest floods on record, resulting in damages to homes, businesses, public works, and crops amounting to millions of rupees. Tremendous areas of lowlands were inundated along the Indus River and major tributaries. Landsat data made it possible to easily measure the extent of flooding, totaling about 20,000 km2 within an area of about 400,000 km2 south from the Punjab to the Arabian Sea.The Indus River data were used to continue experimentation in the development of rapid, accurate, and inexpensive optical techniques of flood mapping by satellite begun in 1973 for the Mississipi River floods. The research work on the Indus River not resulted in the development of more effective procedures for optical processing of flood data and synoptically depicting flooding, but also provided potentially valuable ancillary information concerning the hydrology of much of the Indus River Basin.

  16. Effects of the catastrophic flood of December 1966, north rim area, eastern Grand Canyon, Arizona

    USGS Publications Warehouse

    Cooley, Maurice E.; Aldridge, B.N.; Euler, Robert C.

    1977-01-01

    Precipitation from the unusual storm of December 1966 was concentrated on highlands in northern Arizona, southwestern Utah , southern Nevada, and south-central California and caused widely scattered major floods in the four States. In Arizona the largest amount of precipitation was in the north rim area of eastern Grand Canyon, where about 14 inches was measured. The largest flows occurred along Bright Angel Creek and the MilK Creek-Dragon Creek part of the Crystal Creek drainage basin. The maximum effects of the flood were along Milk Creek-Dragon Creek, where a mudflow caused extensive channel modification. Floods that occurred in the Bright Angel and Crystal Creek basins have a recurrence interval of only once in several centuries. The streamflow that resulted from the storm on the Kaibab Plateau caused considerable local scouring and deepening of channels, including some renewed arroyo cutting. The most catastrophic effects of the 1966 floods were caused by two mudflows that extended from the edge of the Kaibab Plateau along Dragon Creek in the Crystal Creek basin and Lava Creek in the Chuar Creek basin to the Colorado River. More than 10 other large mudflows occurred in Nankoweap, Kwagunt, Crystal, and Shinumo Creek basins. About 80 large debris slides left conspicuous scars in the amphitheaters at the heads of the side gorges, and at least 10 small slides occurred on the Kaibab Plateau. (Woodard-USGS)

  17. Interannual hydroclimatic variability and the 2009-2011 extreme ENSO phases in Colombia: from Andean glaciers to Caribbean lowlands

    NASA Astrophysics Data System (ADS)

    Bedoya-Soto, Juan Mauricio; Poveda, Germán; Trenberth, Kevin E.; Vélez-Upegui, Jorge Julián

    2018-03-01

    During 2009-2011, Colombia experienced extreme hydroclimatic events associated with the extreme phases of El Niño-Southern Oscillation (ENSO). Here, we study the dynamics of diverse land-atmosphere phenomena involved in such anomalous events at continental, regional, and local scales. Standardized anomalies of precipitation, 2-m temperature, total column water (TCW), volumetric soil water (VSW), temperature at 925 hPa, surface sensible heat (SSH), latent heat (SLH), evaporation (EVP), and liquid water equivalent thickness (LWET) are analyzed to assess atmosphere-land controls and relationships over tropical South America (TropSA) during 1986-2013 (long term) and 2009-2011 (ENSO extreme phases). An assessment of the interannual covariability between precipitation and 2-m temperature is performed using singular value decomposition (SVD) to identify the dominant spatiotemporal modes of hydroclimatic variability over the region's largest river basins (Amazon, Orinoco, Tocantins, Magdalena-Cauca, and Essequibo). ENSO, its evolution in time, and strong and consistent spatial structures emerge as the dominant mode of variability. In situ anomalies during both extreme phases of ENSO 2009-2011 over the Magdalena-Cauca River basins are linked at the continental scale. The ENSO-driven hydroclimatic effects extend from the diurnal cycle to interannual timescales, as reflected in temperature data from tropical glaciers and the rain-snow boundary in the highest peaks of the Central Andes of Colombia to river levels along the Caribbean lowlands of the Magdalena-Cauca River basin.

  18. The cost of noncooperation in international river basins

    NASA Astrophysics Data System (ADS)

    Tilmant, A.; Kinzelbach, W.

    2012-01-01

    In recent years there has been a renewed interest for water supply enhancement strategies in order to deal with the exploding demand for water in some regions, particularly in Asia and Africa. Within such strategies, reservoirs, especially multipurpose ones, are expected to play a key role in enhancing water security. This renewed impetus for the traditional supply-side approach to water management may indeed contribute to socioeconomic development and poverty reduction if the planning process considers the lessons learned from the past, which led to the recommendations by the World Commission on Dams and other relevant policy initiatives. More specifically, the issues dealing with benefit sharing within an efficient and equitable utilization of water resources are key elements toward the successful development of those river basins. Hence, there is a need for improved coordination and cooperation among water users, sectors, and riparian countries. However, few studies have explicitly tried to quantify, in monetary terms, the economic costs of noncooperation, which we believe to be important information for water managers and policy makers, especially at a time when major developments are planned. In this paper we propose a methodology to assess the economic costs of noncooperation when managing large-scale water resources systems involving multiple reservoirs, and where the dominant uses are hydropower generation and irrigated agriculture. An analysis of the Zambezi River basin, one of the largest river basins in Africa that is likely to see major developments in the coming decades, is carried out. This valuation exercise reveals that the yearly average cost of noncooperation would reach 350 million US$/a, which is 10% of the annual benefits derived from the system.

  19. Scale-dependent effects of land cover on water physico-chemistry and diatom-based metrics in a major river system, the Adour-Garonne basin (South Western France).

    PubMed

    Tudesque, Loïc; Tisseuil, Clément; Lek, Sovan

    2014-01-01

    The scale dependence of ecological phenomena remains a central issue in ecology. Particularly in aquatic ecology, the consideration of the accurate spatial scale in assessing the effects of landscape factors on stream condition is critical. In this context, our study aimed at assessing the relationships between multi-spatial scale land cover patterns and a variety of water quality and diatom metrics measured at the stream reach level. This investigation was conducted in a major European river system, the Adour-Garonne river basin, characterized by a wide range of ecological conditions. Redundancy analysis (RDA) and variance partitioning techniques were used to disentangle the different relationships between land cover, water-chemistry and diatom metrics. Our results revealed a top-down "cascade effect" indirectly linking diatom metrics to land cover patterns through water physico-chemistry, which occurred at the largest spatial scales. In general, the strength of the relationships between land cover, physico-chemistry, and diatoms was shown to increase with the spatial scale, from the local to the basin scale, emphasizing the importance of continuous processes of accumulation throughout the river gradient. Unexpectedly, we established that the influence of land cover on the diatom metric was of primary importance both at the basin and local scale, as a result of discontinuous but not necessarily antagonist processes. The most detailed spatial grain of the Corine land cover classification appeared as the most relevant spatial grain to relate land cover to water chemistry and diatoms. Our findings provide suitable information to improve the implementation of effective diatom-based monitoring programs, especially within the scope of the European Water Framework Directive. © 2013 Elsevier B.V. All rights reserved.

  20. Numerical representation of rainfall field in the Yarmouk River Basin

    NASA Astrophysics Data System (ADS)

    Shentsis, Isabella; Inbar, Nimrod; Magri, Fabien; Rosenthal, Eliyahu

    2017-04-01

    Rainfall is the decisive factors in evaluating the water balance of river basins and aquifers. Accepted methods rely on interpolation and extrapolation of gauged rain to regular grid with high dependence on the density and regularity of network, considering the relief complexity. We propose an alternative method that makes up to those restrictions by taking into account additional physical features of the rain field. The method applies to areas with (i) complex plain- and mountainous topography, which means inhomogeneity of the rainfall field and (ii) non-uniform distribution of a rain gauge network with partial lack of observations. The rain model is implemented in two steps: 1. Study of the rainfall field, based on the climatic data (mean annual precipitation), its description by the function of elevation and other factors, and estimation of model parameters (normalized coefficients of the Taylor series); 2. Estimation of rainfall in each historical year using the available data (less complete and irregular versus climatic data) as well as the a-priori known parameters (by the basic hypothesis on inter-annual stability of the model parameters). The proposed method was developed by Shentsis (1990) for hydrological forecasting in Central Asia and was later adapted to the Lake Kinneret Basin. Here this model (the first step) is applied to the Yarmouk River Basin. The Yarmouk River is the largest tributary of the Jordan River. Its transboundary basin (6,833 sq. km) extends over Syria (5,257 sq.km), Jordan (1,379 sq. km) and Israel (197 sq. km). Altitude varies from 1800 m (and more) to -235 m asl. The total number of rain stations in use is 36 (17 in Syria, 19 in Jordan). There is evidently lack and non-uniform distribution of a rain gauge network in Syria. The Yarmouk Basin was divided into five regions considering typical relationship between mean annual rain and elevation for each region. Generally, the borders of regions correspond to the common topographic, geomorphologic and climatic division of the basin. Difference between regional curves is comparable with amplitude of rainfall variance within the regions. In general, rainfall increases with altitude and decreases from west to east (south-east). It should be emphasized that (i) Lake Kinneret Basin (2,490 sq. km) was earlier divided into seven "orographic regions" and (ii) the Lake Kinneret Basin and the Yarmouk River Basin are presented by the system of regional curves X = f (Z) as one whole rainfall field in the Upper Jordan River Basin, where the mean annual rain (X) increases with altitude (Z) and decreases from west to east and from north to south. In the Yarmouk Basin there is much less rainfall (344 mm) than in the Lake Kinneret Basin (749 mm), wherein mean annual rain (2,352 MCM versus 1,865 MCM) is shared between Syria, Jordan and Israel as 80%, 15% and 5%, respectively. The provided rainfall data allow more precise estimations of surface water balances and of recharge to the regional aquifers in the Upper Jordan River Basin. The derived rates serve as fundamental input data for numerical modeling of groundwater flow. This method can be applied to other areas at different temporal and spatial scales. The general applicability makes it a very useful tool in several hydrological problems connected with assessment, management and policy-making of water resources, as well as their changes due to climate and anthropogenic factors. Reference: I. Shentsis (1990). Mathematical models for long-term prediction of mountainous river runoff: methods, information and results, Hydrological Sciences Journal, 35:5, 487-500, DOI: 10.1080/02626669009492453

  1. Characterizing water resources of the Nile Basin using remotely sensed data

    NASA Astrophysics Data System (ADS)

    Mekonnen, Z. T.; Gebremichael, M.; Demissie, S. S.

    2015-12-01

    The Nile is one of the largest river basin in the world with a rich biodiversity as well supporting the lives of 450 million people residing within the 11 riparian countries. This vital resource is under a growing stress due to population growth, rapid development and climate change. In this work, we explore the use of the latest various remote sensing products to capture the water resource of the basin: rainfall from GPM and TRMM, soil moisture from SMAP and SMOS, evapotranspiration from MODIS and EUMETSAT LSA-SAF, and total water storage variations from GRACE. The satellite estimates were supplemented and checked by ground measurements whenever possible. Our results show that spatiotemporal variations of the basin's water resources characteristics are well captured by remote sensing products rather than the scarce point measurements that currently exist. Several aspects of our results will be presented and discussed.

  2. Regression Equations for Monthly and Annual Mean and Selected Percentile Streamflows for Ungaged Rivers in Maine

    USGS Publications Warehouse

    Dudley, Robert W.

    2015-12-03

    The largest average errors of prediction are associated with regression equations for the lowest streamflows derived for months during which the lowest streamflows of the year occur (such as the 5 and 1 monthly percentiles for August and September). The regression equations have been derived on the basis of streamflow and basin characteristics data for unregulated, rural drainage basins without substantial streamflow or drainage modifications (for example, diversions and (or) regulation by dams or reservoirs, tile drainage, irrigation, channelization, and impervious paved surfaces), therefore using the equations for regulated or urbanized basins with substantial streamflow or drainage modifications will yield results of unknown error. Input basin characteristics derived using techniques or datasets other than those documented in this report or using values outside the ranges used to develop these regression equations also will yield results of unknown error.

  3. A century of hydrological variability and trends in the Fraser River Basin

    NASA Astrophysics Data System (ADS)

    Déry, Stephen J.; Hernández-Henríquez, Marco A.; Owens, Philip N.; Parkes, Margot W.; Petticrew, Ellen L.

    2012-06-01

    This study examines the 1911-2010 variability and trends in annual streamflow at 139 sites across the Fraser River Basin (FRB) of British Columbia (BC), Canada. The Fraser River is the largest Canadian waterway flowing to the Pacific Ocean and is one of the world’s greatest salmon rivers. Our analyses reveal high runoff rates and low interannual variability in alpine and coastal rivers, and low runoff rates and high interannual variability in most streams in BC’s interior. The interannual variability in streamflow is also low in rivers such as the Adams, Chilko, Quesnel and Stuart where the principal salmon runs of the Fraser River occur. A trend analysis shows a spatially coherent signal with increasing interannual variability in streamflow across the FRB in recent decades, most notably in spring and summer. The upward trend in the coefficient of variation in annual runoff coincides with a period of near-normal annual runoff for the Fraser River at Hope. The interannual variability in streamflow is greater in regulated rather than natural systems; however, it is unclear whether it is predominantly flow regulation that leads to these observed differences. Environmental changes such as rising air temperatures, more frequent polarity changes in large-scale climate teleconnections such as El Niño-Southern Oscillation and Pacific Decadal Oscillation, and retreating glaciers may be contributing to the greater range in annual runoff fluctuations across the FRB. This has implications for ecological processes throughout the basin, for example affecting migrating and spawning salmon, a keystone species vital to First Nations communities as well as to commercial and recreational fisheries. To exemplify this linkage between variable flows and biological responses, the unusual FRB runoff anomalies observed in 2010 are discussed in the context of that year’s sockeye salmon run. As the climate continues to warm, greater variability in annual streamflow, and hence in hydrological extremes, may influence ecological processes and human usage throughout the FRB in the 21st century.

  4. Simulation and prediction the impact of climate change into water resources in Bengawan Solo watershed based on CCAM (Conformal Cubic Atmospheric Model) data

    NASA Astrophysics Data System (ADS)

    Sipayung, Sinta B.; Nurlatifah, Amalia; Siswanto, Bambang

    2018-05-01

    Bengawan Solo Watershed is one of the largest watersheds in Indonesia. This watershed flows in many areas both in Central Java and East Java. Therefore, the water resources condition greatly affects many people. This research will be conducted on prediction of climate change effect on water resources condition in terms of rainfall conditions in Bengawan Solo River Basin. The goal of this research is to know and predict the climate change impact on water resources based on CCAM (Conformal Cubic Atmosphere Model) with downscaling baseline (historical) model data from 1949 to 2005 and RCP 4.5 from 2006 to 2069. The modeling data was validated with in-situ data (measurement data). To analyse the water availability condition in Bengawan Solo Watershed, the simulation of river flow and water balance condition were done in Bengawan Solo River. Simulation of river flow and water balance conditions were done with ArcSWAT model using climate data from CCAM, DEM SRTM 90 meter, soil type, and land use data. The results of this simulation indicate there is (i) The CCAM data itself after validation has a pretty good result when compared to the insitu data. Based on CCAM simulation results, it is predicted that in 2040-2069 rainfall in Bengawan Solo River Basin will decrease, to a maximum of only about 1 mm when compared to 1971-2000. (ii) The CCAM rainfall prediction itself shows that rainfall in Bengawan Solo River basin will decline until 2069 although the decline itself is not significant and tends to be negligible (rainfall is considered unchanged) (iii) Both in the DJF and JJA seasons, precipitation is predicted to decline as well despite the significant decline. (iv) The river flow simulation show that the water resources in Bengawan Solo River did not change significantly. This event occurred because the rainfall also did not change greatly and close to 0 mm/month.

  5. Organochlorine compounds and trace elements in fish tissue and bed sediments in the lower Snake River basin, Idaho and Oregon

    USGS Publications Warehouse

    Clark, Gregory M.; Maret, Terry R.

    1998-01-01

    Fish-tissue and bed-sediment samples were collected to determine the occurrence and distribution of organochlorine compounds and trace elements in the lower Snake River Basin. Whole-body composite samples of suckers and carp from seven sites were analyzed for organochlorine compounds; liver samples were analyzed for trace elements. Fillets from selected sportfish were analyzed for organochlorine compounds and trace elements. Bed-sediment samples from three sites were analyzed for organochlorine compounds and trace elements. Twelve different organochlorine compounds were detected in 14 fish-tissue samples. All fish-tissue samples contained DDT or its metabolites. Concentrations of total DDT ranged from 11 micrograms per kilogram wet weight in fillets of yellow perch from C.J. Strike Reservoir to 3,633 micrograms per kilogram wet weight in a whole-body sample of carp from Brownlee Reservoir at Burnt River. Total DDT concentrations in whole-body samples of sucker and carp from the Snake River at C.J. Strike Reservoir, Snake River at Swan Falls, Snake River at Nyssa, and Brownlee Reservoir at Burnt River exceeded criteria established for the protection of fish-eating wildlife. Total PCB concentrations in a whole-body sample of carp from Brownlee Reservoir at Burnt River also exceeded fish-eating wildlife criteria. Concentrations of organochlorine compounds in whole-body samples, in general, were larger than concentrations in sportfish fillets. However, concentrations of dieldrin and total DDT in fillets of channel catfish from the Snake River at Nyssa and Brownlee Reservoir at Burnt River, and concentrations of total DDT in fillets of smallmouth bass and white crappie from Brownlee Reservoir at Burnt River exceeded a cancer risk screening value of 10-6 established by the U.S. Environmental Protection Agency. Concentrations of organochlorine compounds in bed sediment were smaller than concentrations in fish tissue. Concentrations of p,p'DDE, the only compound detected in all three bed-sediment samples, ranged from 1.1 micrograms per kilogram dry weight in C.J. Strike Reservoir to 11 micrograms per kilogram dry weight in Brownlee Reservoir at Burnt River. Data from this study, compared with data collected in the upper Snake River Basin from 1992 to 1994, indicates that, in general, organochlorine concentrations in fish tissue and bed sediment increased from the headwaters of the Snake River in Wyoming downstream to Brownlee Reservoir. The largest trace-element concentrations in fish tissue were in liver samples from carp from Brownlee Reservoir at Burnt River and suckers from the Boise River near Twin Springs. Concentrations of most trace elements were larger in livers than in the sport- fish fillets. However, mercury concentrations were generally larger in the sportfish fillets; they ranged from 0.08 microgram per gram wet weight in yellow perch from C.J. Strike Reservoir to 0.32 microgram per gram wet weight in channel catfish from Brownlee Reservoir at Burnt River. None of the trace-element concentrations in fillets exceeded median international standards or U.S. Food and Drug Administration action levels. Large trace-element concentrations in the upper Snake River Basin were reported in liver samples from suckers from headwater streams, probably a result of historical mining and weathering of metal-rich rocks. Concentrations of most trace elements in the bed-sediment samples were largest in Brownlee Reservoir at Mountain Man Lodge. Concentrations of arsenic, cadmium, chromium, copper, nickel, and zinc in bed sediment from the Mountain Man Lodge site exceeded either the threshold effect level or probable effect level established by the Canadian Government for the protection of benthic life. Arsenic, chromium, copper, and nickel concentrations in bed sediment from Brownlee Reservoir at Burnt River and chromium, copper, and nickel in bed sediment from C.J. Strike Reservoir also exceeded the threshold effect level.

  6. Modified Streamflows 1990 Level of Irrigation : Missouri, Colorado, Peace and Slave River Basin, 1928-1989.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A.G. Crook Company; United States. Bonneville Power Administration

    1993-07-01

    This report presents data for monthly mean streamflows adjusted for storage change, evaporation, and irrigation, for the years 1928-1990, for the Colorado River Basin, the Missouri River Basin, the Peace River Basin, and the Slave River Basin.

  7. Impact of forecasted changes in Polish economy (2015 and 2020) on nutrient emission into the river basins.

    PubMed

    Pastuszak, Marianna; Kowalkowski, Tomasz; Kopiński, Jerzy; Stalenga, Jarosław; Panasiuk, Damian

    2014-09-15

    Poland, with its large drainage area, with 50% contribution of agricultural land and 45% contribution of population to overall agricultural land area and population number in the Baltic catchment, is the largest exporter of riverine nitrogen (N) and phosphorus (P) to the sea. The economic transition has resulted in substantial, statistically significant decline in N, P export from Polish territory to the Baltic Sea. Following the obligations arising from the Helsinki Commission (HELCOM) declarations, in the coming years, Poland is expected to reduce riverine N loads by ca. 25% and P loads by ca. 60% as referred to the average flow normalized loads recorded in 1997-2003. The aim of this paper is to estimate annual source apportioned N and P emissions into these river basins in 2015 and 2020 with application of modeling studies (MONERIS). Twelve scenarios, encompassing changes in anthropogenic (diffuse, point source) and natural pressure (precipitation, water outflow due to climate change), have been applied. Modeling outcome for the period 2003-2008 served as our reference material. In applied scenarios, N emission into the Oder basin in 2015 and 2020 shows an increase from 4.2% up to 9.1% as compared with the reference period. N emission into the Vistula basin is more variable and shows an increase by max. 17.8% or a decrease by max. 4.7%, depending on the scenario. The difference between N emission into the Oder and Vistula basins is related to the catchment peculiarities and handling of point sources emission. P emission into both basins shows identical scenario patters and a maximum decrease reaches 17.8% in the Oder and 16.7% in the Vistula basin. Despite a declining tendency in P loads in both rivers in all the scenarios, HELCOM targeted P load reduction is not feasible. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Pollution of the River Niger and its main tributaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nwokedi, G.I.C.; Obodo, G.A.

    1993-08-01

    The River Niger system, with a length of about 4200 kilometers, and a discharge volume of 190 cubic kilometers, per year is the third largest river in Africa, and the largest in West Africa. It serves as an important waterway for the transportation of goods and provides rich agricultural flood basins for the cultivation of food and vegetables. Also it is a major source of animal proteins in form of fishes, snails and other aquatics. Above all the River and its tributaries represent the main source of domestic water supply for the rural communities, and water for irrigation. Therefore theremore » is a need to establish the nature and present levels of pollutants in the river, and the contribution made by the tributaries to the gross pollution level. A number of studies have been reported. Martins reported on the geochemistry of the River Niger while Nriagu; Livingstone; and Imevbore provided some chemical data on the upper reaches around and above its confluence with River Benue at Lokoja. Ajayi and Osibanjo reported on the chemical properties of some tributaries above the confluence of the Niger and the Benue. So far no work has been reported on the lower reaches of the Niger where contributions of the Benue and other major tributaries are significant, and where there are large settlements on its banks and the banks of the tributaries. This work aims at establishing base-line levels of the various pollutants and their sources. 12 refs., 1 fig., 2 tabs.« less

  9. Constraining the dynamics of the water budget at high spatial resolution in the world's water towers using models and remote sensing data; Snake River Basin, USA

    NASA Astrophysics Data System (ADS)

    Watson, K. A.; Masarik, M. T.; Flores, A. N.

    2016-12-01

    Mountainous, snow-dominated basins are often referred to as the water towers of the world because they store precipitation in seasonal snowpacks, which gradually melt and provide water supplies to downstream communities. Yet significant uncertainties remain in terms of quantifying the stores and fluxes of water in these regions as well as the associated energy exchanges. Constraining these stores and fluxes is crucial for advancing process understanding and managing these water resources in a changing climate. Remote sensing data are particularly important to these efforts due to the remoteness of these landscapes and high spatial variability in water budget components. We have developed a high resolution regional climate dataset extending from 1986 to the present for the Snake River Basin in the northwestern USA. The Snake River Basin is the largest tributary of the Columbia River by volume and a critically important basin for regional economies and communities. The core of the dataset was developed using a regional climate model, forced by reanalysis data. Specifically the Weather Research and Forecasting (WRF) model was used to dynamically downscale the North American Regional Reanalysis (NARR) over the region at 3 km horizontal resolution for the period of interest. A suite of satellite remote sensing products provide independent, albeit uncertain, constraint on a number of components of the water and energy budgets for the region across a range of spatial and temporal scales. For example, GRACE data are used to constrain basinwide terrestrial water storage and MODIS products are used to constrain the spatial and temporal evolution of evapotranspiration and snow cover. The joint use of both models and remote sensing products allows for both better understanding of water cycle dynamics and associated hydrometeorologic processes, and identification of limitations in both the remote sensing products and regional climate simulations.

  10. Streamflow characteristics of streams in the Helmand Basin, Afghanistan

    USGS Publications Warehouse

    Williams-Sether, Tara

    2008-01-01

    A majority of the Afghan population lacks adequate and safe supplies of water because of contamination, lack of water-resources management regulation, and lack of basic infrastructure, compounded by periods of drought and seasonal flooding. Characteristics of historical streamflows are needed to assist with efforts to quantify the water resources of the Helmand Basin. The Helmand Basin is the largest river basin in Afghanistan. It comprises the southern half of the country, draining waters from the Sia Koh Mountains in Herat Province to the eastern mountains in Gardez Province (currently known as the Paktia Province) and the Parwan Mountains northwest of Kabul, and finally draining into the unique Sistan depression between Iran and Afghanistan (Favre and Kamal, 2004). The Helmand Basin is a desert environment with rivers fed by melting snow from the high mountains and infrequent storms. Great fluctuations in streamflow, from flood to drought, can occur annually. Knowledge of the magnitude and time distribution of streamflow is needed to quantify water resources and for water management and environmental planning. Agencies responsible for the development and management of Afghanistan's surface-water resources can use this knowledge for making safe, economical, and environmentally sound water-resource planning decisions. To provide the Afghan managers with necessary streamflow information, the U.S. Geological Survey (USGS), in cooperation with the U.S. Agency for International Development (USAID), computed streamflow statistics for data collected at historical gaging stations within the Helmand Basin. The historical gaging stations used are shown in figure 1 and listed in table 1.

  11. Dilution of 10Be in detrital quartz by earthquake-induced landslides: Implications for determining denudation rates and potential to provide insights into landslide sediment dynamics

    NASA Astrophysics Data System (ADS)

    West, A. Joshua; Hetzel, Ralf; Li, Gen; Jin, Zhangdong; Zhang, Fei; Hilton, Robert G.; Densmore, Alexander L.

    2014-06-01

    The concentration of 10Be in detrital quartz (10Beqtz) from river sediments is now widely used to quantify catchment-wide denudation rates but may also be sensitive to inputs from bedrock landslides that deliver sediment with low 10Beqtz. Major landslide-triggering events can provide large amounts of low-concentration material to rivers in mountain catchments, but changes in river sediment 10Beqtz due to such events have not yet been measured directly. Here we examine the impact of widespread landslides triggered by the 2008 Wenchuan earthquake on 10Beqtz in sediment samples from the Min Jiang river basin, in Sichuan, China. Landslide deposit material associated with the Wenchuan earthquake has consistently lower 10Beqtz than in river sediment prior to the earthquake. River sediment 10Beqtz decreased significantly following the earthquake downstream of areas of high coseismic landslide occurrence (i.e., with greater than ∼0.3% of the upstream catchment area affected by landslides), because of input of the 10Be-depleted landslide material, but showed no systematic changes where landslide occurrence was low. Changes in river sediment 10Beqtz concentration were largest in small first-order catchments but were still significant in large river basins with areas of 104-105 km. Spatial and temporal variability in river sediment 10Beqtz has important implications for inferring representative denudation rates in tectonically active, landslide-dominated environments, even in large basins. Although the dilution of 10Beqtz in river sediment by landslide inputs may complicate interpretation of denudation rates, it also may provide a possible opportunity to track the transport of landslide sediment. The associated uncertainties are large, but in the Wenchuan case, calculations based on 10Be mixing proportions suggest that river sediment fluxes in the 2-3 years following the earthquake increased by a similar order of magnitude in the 0.25-1 mm and the <0.25 mm size fractions, as determined from 10Beqtz mixing calculations and hydrological gauging, respectively. Such information could provide new insight into sediment transfer, with implications for secondary sediment-related hazards and for understanding the removal of mass from mountains.

  12. Identification guide to some Diaptomid species (Crustacea, Copepoda, Calanoida, Diaptomidae) of “de la Plata” River Basin (South America)

    PubMed Central

    Perbiche-Neves, Gilmar; Boxshall, Geoffrey Allan; Previattelli, Daniel; Nogueira, Marcos Gomes; da Rocha, Carlos Eduardo Falavigna

    2015-01-01

    Abstract An identification guide is presented for species of calanoid copepod family Diaptomidae from “de la Plata” River Basin (Argentina, Brazil, Bolivia, Paraguay and Uruguay). It was based on material collected during the summer and winter of 2010 from 43 sites across the eastern part and the lower stretches of this basin, the second largest in South America and the fourth in the world. The guide contains identification keys and species diagnoses for males and females, richly supported by scanning electronic micrographs and/or line drawings of 19 species. It also includes some general remarks on the taxonomy and phylogenetic relationships of these species. The key was adjusted to be useful for these species only, with separate keys for each sex, and is the first for females of South America. One species classified herein as incertae sedis was not included in the analysis. At least ten other species have previously been recorded in the basin but were not present in our samples. This is the first attempt to compile comprehensive taxonomic information on this group of copepods in this region, and it is expected to become a useful tool for biologists and young taxonomists interested in the crustacean biota of the Neotropical region. PMID:25931959

  13. The Paracel Islands and U.S. Interests and Approaches in the South China Sea

    DTIC Science & Technology

    2014-06-01

    Billiton, and Hong Kong-owned and Canada-based Husky Energy. Initial Chinese offshore exploitation occurred in the nearby Pearl River Mouth Basin and...possibility for marine-based tourism in the region, and in April 2013, China authorized tourists to visit the Paracels.40 China, which currently controls...the entire Paracel archipelago, is expanding tourism , fishing, and the military garrison on Woody Island, the archipelago’s largest feature, as the

  14. National Program for Inspection of Non-Federal Dams. Parks Pond Dam (CT 00071), Housatonic River Basin, Danbury, Connecticut. Phase I Inspection Report.

    DTIC Science & Technology

    1980-07-01

    vacinity and my guess is that the dam is founded on the material of the original stream bed which is probably gravel. The original spillway surface might... vacinity , vary from 360 c.f.s to over 1100 c.f.s.,’These figures are for the floods in the fall of 1955 which are the largest ever recorded in the New

  15. The Added Value of Water Footprint Assessment for National Water Policy: A Case Study for Morocco

    PubMed Central

    Schyns, Joep F.; Hoekstra, Arjen Y.

    2014-01-01

    A Water Footprint Assessment is carried out for Morocco, mapping the water footprint of different activities at river basin and monthly scale, distinguishing between surface- and groundwater. The paper aims to demonstrate the added value of detailed analysis of the human water footprint within a country and thorough assessment of the virtual water flows leaving and entering a country for formulating national water policy. Green, blue and grey water footprint estimates and virtual water flows are mainly derived from a previous grid-based (5×5 arc minute) global study for the period 1996–2005. These estimates are placed in the context of monthly natural runoff and waste assimilation capacity per river basin derived from Moroccan data sources. The study finds that: (i) evaporation from storage reservoirs is the second largest form of blue water consumption in Morocco, after irrigated crop production; (ii) Morocco’s water and land resources are mainly used to produce relatively low-value (in US$/m3 and US$/ha) crops such as cereals, olives and almonds; (iii) most of the virtual water export from Morocco relates to the export of products with a relatively low economic water productivity (in US$/m3); (iv) blue water scarcity on a monthly scale is severe in all river basins and pressure on groundwater resources by abstractions and nitrate pollution is considerable in most basins; (v) the estimated potential water savings by partial relocation of crops to basins where they consume less water and by reducing water footprints of crops down to benchmark levels are significant compared to demand reducing and supply increasing measures considered in Morocco’s national water strategy. PMID:24919194

  16. The added value of water footprint assessment for national water policy: a case study for Morocco.

    PubMed

    Schyns, Joep F; Hoekstra, Arjen Y

    2014-01-01

    A Water Footprint Assessment is carried out for Morocco, mapping the water footprint of different activities at river basin and monthly scale, distinguishing between surface- and groundwater. The paper aims to demonstrate the added value of detailed analysis of the human water footprint within a country and thorough assessment of the virtual water flows leaving and entering a country for formulating national water policy. Green, blue and grey water footprint estimates and virtual water flows are mainly derived from a previous grid-based (5 × 5 arc minute) global study for the period 1996-2005. These estimates are placed in the context of monthly natural runoff and waste assimilation capacity per river basin derived from Moroccan data sources. The study finds that: (i) evaporation from storage reservoirs is the second largest form of blue water consumption in Morocco, after irrigated crop production; (ii) Morocco's water and land resources are mainly used to produce relatively low-value (in US$/m3 and US$/ha) crops such as cereals, olives and almonds; (iii) most of the virtual water export from Morocco relates to the export of products with a relatively low economic water productivity (in US$/m3); (iv) blue water scarcity on a monthly scale is severe in all river basins and pressure on groundwater resources by abstractions and nitrate pollution is considerable in most basins; (v) the estimated potential water savings by partial relocation of crops to basins where they consume less water and by reducing water footprints of crops down to benchmark levels are significant compared to demand reducing and supply increasing measures considered in Morocco's national water strategy.

  17. Variable-source flood pulsing in a semi-arid transboundary watershed: the Chobe River, Botswana and Namibia.

    PubMed

    Pricope, Narcisa G

    2013-02-01

    The Chobe River, characterized by an unusual flood pulsing regime and shared between Botswana and Namibia, lies at the heart of the world's largest transfrontier conservation area (the Kavango-Zambezi Transfrontier Conservation Area). Significant ecological changes and vegetation conversions are occurring along its floodplains. Various scenarios for agricultural and urban water use are currently being proposed by the government of Botswana. However, the understanding of the river's annual flow regime and timing of the relative contributions of water from three different sources is relatively poor. In light of past and future climate change and variability, this means that allocating water between ecological flows and economic and domestic uses will become increasingly challenging. We reconstruct the inundation history in this basin to help ease this challenge. This paper presents a spatiotemporal approach to estimate the contribution of water from various sources and the magnitude of changes in the flooding extent in the basin between 1985 and 2010. We used time series analysis of bimonthly NOAA AVHRR and NASA MODIS data and climatologic and hydrologic records to determine the flooding timing and extent. The results indicate that between 12 and 62 % of the basin is flooded on an annual basis and that the spatial extent of the flooding varies throughout the year as a function of the timing of peak discharge in two larger basins. A 30-year trend analysis indicates a consistent decline in the average monthly flooded area in the basin. The results may prove useful in future water utilization feasibility studies, in determining measures for protecting ecological flows and levels, and in ecosystem dynamics studies in the context of current and future climate change and variability.

  18. Summary of surface-water-quality data collected for the Northern Rockies Intermontane Basins National Water-Quality Assessment Program in the Clark Fork-Pend Oreille and Spokane River basins, Montana, Idaho, and Washington, water years 1999-2001

    USGS Publications Warehouse

    Beckwith, Michael A.

    2003-01-01

    Water-quality samples were collected at 10 sites in the Clark Fork-Pend Oreille and Spokane River Basins in water years 1999 – 2001 as part of the Northern Rockies Intermontane Basins (NROK) National Water-Quality Assessment (NAWQA) Program. Sampling sites were located in varied environments ranging from small streams and rivers in forested, mountainous headwater areas to large rivers draining diverse landscapes. Two sampling sites were located immediately downstream from the large lakes; five sites were located downstream from large-scale historical mining and oreprocessing areas, which are now the two largest “Superfund” (environmental remediation) sites in the Nation. Samples were collected during a wide range of streamflow conditions, more frequently during increasing and high streamflow and less frequently during receding and base-flow conditions. Sample analyses emphasized major ions, nutrients, and selected trace elements. Streamflow during the study ranged from more than 130 percent of the long-term average in 1999 at some sites to 40 percent of the long-term average in 2001. River and stream water in the study area exhibited small values for specific conductance, hardness, alkalinity, and dissolved solids. Dissolved oxygen concentrations in almost all samples were near saturation. Median total nitrogen and total phosphorus concentrations in samples from most sites were smaller than median concentrations reported for many national programs and other NAWQA Program study areas. The only exceptions were two sites downstream from large wastewater-treatment facilities, where median concentrations of total nitrogen exceeded the national median. Maximum concentrations of total phosphorus in samples from six sites exceeded the 0.1 milligram per liter threshold recommended for limiting nuisance aquatic growth. Concentrations of arsenic, cadmium, copper, lead, mercury, and zinc were largest in samples from sites downstream from historical mining and ore-processing areas in the upper Clark Fork in Montana and the South Fork Coeur d’Alene River in Idaho. Concentrations of dissolved lead in all 32 samples from the South Fork Coeur d’Alene River exceeded the Idaho chronic criterion for the protection of aquatic life at the median hardness level measured during the study. Concentrations of dissolved zinc in all samples collected at this site exceeded both the chronic and acute criteria at all hardness levels measured. When all data from all NROK sites were combined, median concentrations of dissolved arsenic, dissolved and total recoverable copper, total recoverable lead, and total recoverable zinc in the NROK study area appeared to be similar to or slightly smaller than median concentrations at sites in other NAWQA Program study areas in the Western United States affected by historical mining activities. Although the NROK median total recoverable lead concentration was the smallest among the three Western study areas compared, concentrations in several NROK samples were an order of magnitude larger than the maximum concentrations measured in the Upper Colorado River and Great Salt Lake Basins. Dissolved cadmium, dissolved lead, and total recoverable zinc concentrations at NROK sites were more variable than in the other study areas; concentrations ranged over almost three orders of magnitude between minimum and maximum values; the range of dissolved zinc concentrations in the NROK study area exceeded three orders of magnitude.

  19. Temporal Variations in 234U/238U Activity Ratios in the Lower Mississippi River due to Changes in Source Tributary Discharges

    NASA Astrophysics Data System (ADS)

    Grzymko, T. J.; Marcantonio, F.; McKee, B. A.; Stewart, C. M.

    2004-12-01

    The world's 25 largest river systems contribute nearly 50% of all freshwater to the global ocean and carry large quantities of dissolved trace metals annually. Trace metal concentrations in these systems show large variances on seasonal time scales. In order to constrain the causes of these variations, consistent sampling on sub-seasonal time intervals is essential. Here, we focus on the Mississippi River, the seventh largest river in the world in terms of freshwater discharge and the third largest in terms of drainage basin area. Biweekly sampling of the lower Mississippi River at New Orleans was performed from January 2003 to August 2004. Uranium concentrations and 234U/238U activity ratios were measured for the dissolved component (<0.2 μ m-fraction) of river water. Over the course of this study, dissolved U activity ratios spanned a range of about 25%, from 1.23 to 1.60. Dissolved U concentrations ranged from 0.28 to 1.06 ppb. The relationship between concentrations, activity ratios, and lower river discharge is complicated, and no clear pattern is observed on both biweekly and seasonal timescales. However, there does seem to be a relationship between the larger seasonal trends in the lower Mississippi River and variations in the discharge of its upstream tributaries. To constrain this relationship, we have sampled water from the Missouri River, the upper Mississippi River above the confluence with the Missouri, the Ohio River, and the Arkansas River in February, April, and August of 2004. For the upstream samples measured thus far, the highest dissolved uranium concentrations are observed for the Missouri River at 2.02 ppb, while the lowest are found in the Ohio River at 0.38 ppb. Dissolved 234U/238U activity ratios are as unique for each tributary and vary from 1.36 in the Ohio River to 1.51 in the Missouri River. A preliminary mass balance analysis reveals that the lower river uranium activity ratios are controlled simply by the quantity and isotope signature of the waters discharged from the upstream tributaries. A discussion of the implications of this work for global ocean budgets of uranium will be presented.

  20. Evaluating the performance of real-time streamflow forecasting using multi-satellite precipitation products in the Upper Zambezi, Africa

    NASA Astrophysics Data System (ADS)

    Demaria, E. M.; Valdes, J. B.; Wi, S.; Serrat-Capdevila, A.; Valdés-Pineda, R.; Durcik, M.

    2016-12-01

    In under-instrumented basins around the world, accurate and timely forecasts of river streamflows have the potential of assisting water and natural resource managers in their management decisions. The Upper Zambezi river basin is the largest basin in southern Africa and its water resources are critical to sustainable economic growth and poverty reduction in eight riparian countries. We present a real-time streamflow forecast for the basin using a multi-model-multi-satellite approach that allows accounting for model and input uncertainties. Three distributed hydrologic models with different levels of complexity: VIC, HYMOD_DS, and HBV_DS are setup at a daily time step and a 0.25 degree spatial resolution for the basin. The hydrologic models are calibrated against daily observed streamflows at the Katima-Mulilo station using a Genetic Algorithm. Three real-time satellite products: Climate Prediction Center's morphing technique (CMORPH), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), and Tropical Rainfall Measuring Mission (TRMM-3B42RT) are bias-corrected with daily CHIRPS estimates. Uncertainty bounds for predicted flows are estimated with the Inverse Variance Weighting method. Because concentration times in the basin range from a few days to more than a week, we include the use of precipitation forecasts from the Global Forecasting System (GFS) to predict daily streamflows in the basin with a 10-days lead time. The skill of GFS-predicted streamflows is evaluated and the usefulness of the forecasts for short term water allocations is presented.

  1. Assessment of potentially harmful elements pollution in the Calore River basin (Southern Italy).

    PubMed

    Zuzolo, Daniela; Cicchella, Domenico; Catani, Vittorio; Giaccio, Lucia; Guagliardi, Ilaria; Esposito, Libera; De Vivo, Benedetto

    2017-06-01

    The geographical distribution of concentration values for harmful elements was determined in the Campania region, Italy. The study area consists of the drainage basin of the River Calore, a tributary of the river Volturno, the largest Southern Italian river. The results provide reliable analytical data allowing a quantitative assessment of the trace element pollution threat to the ecosystem and human health. Altogether 562 stream sediment samples were collected at a sampling density of 1 site per 5 km 2 . All samples were air-dried, sieved to <100 mesh fraction and analyzed for 37 elements after an aqua regia extraction by a combination of ICP-AES and ICP-MS. In addition to elemental analysis, gamma-ray spectrometry data were collected (a total of 562 measurements) using a hand-held Scintrex GRS-500 spectrometer. Statistical analyses were performed to show the single-element distribution and the distribution of elemental association factor scores resulting from R-mode factor analyses. Maps showing element distributions were made using GeoDAS and ArcGIS software. Our study showed that, despite evidence from concentrations of many elements for enrichment over natural background values, the spatial distribution of major and trace elements in Calore River basin is determined mostly by geogenic factors. The southwestern area of the basin highlighted an enrichment of many elements potentially harmful for human health and other living organisms (Al, Fe, K, Na, As, Cd, La, Pb, Th, Tl, U); however, these anomalies are due to the presence of pyroclastic and alkaline volcanic lithologies. Even where sedimentary lithologies occur, many harmful elements (Co, Cr, Mn, Ni) showed high concentration levels due to natural origins. Conversely, a strong heavy metal contamination (Pb, Zn, Cu, Sb, Ag, Au, Hg), due to an anthropogenic contribution, is highlighted in many areas characterized by the presence of road junctions, urban settlements and industrial areas. The enrichment factor of these elements is 3-4 times higher than the background values. The southwestern area of the basin is characterized by a moderate/high degree of contamination, just where the two busiest roads of the area run and the highest concentration of industries occurs.

  2. Influence of recent climatic events on the surface water storage of the Tonle Sap Lake.

    PubMed

    Frappart, F; Biancamaria, S; Normandin, C; Blarel, F; Bourrel, L; Aumont, M; Azemar, P; Vu, P-L; Le Toan, T; Lubac, B; Darrozes, J

    2018-09-15

    Lakes and reservoirs have been identified as sentinels of climate change. Tonle Sap is the largest lake in both the Mekong Basin and Southeast Asia and because of the importance of its ecosystem, it is has been described as the "heart of the lower Mekong". Its seasonal cycle depends on the annual flood pulse governed by the flow of the Mekong River. This study provides an impact analysis of recent climatic events from El Niño 1997/1998 to El Niño 2015/2016 on surface storage variations in the Tonle Sap watershed determined by combining remotely sensed observations, multispectral images and radar altimetry from 1993 to 2017. The Lake's surface water volume variations are highly correlated with rainy season rainfall in the whole Mekong River Basin (R = 0.84) at interannual time-scale. Extreme droughts and floods can be observed when precipitation deficit and excess is recorded in both the Tonle Sap watershed and the Mekong River Basin during moderate to very strong El Niño/La Niña events (R = -0.70) enhanced by the Pacific Decadal Oscillation (R = -0.68). Indian and Western North Pacific Monsoons were identified as having almost equal influence. Below normal vegetation activity was observed during the first semester of 2016 due to the extreme drought in 2015. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Land use changes and socio-economic development strongly deteriorate river ecosystem health in one of the largest basins in China.

    PubMed

    Cheng, Xian; Chen, Liding; Sun, Ranhao; Kong, Peiru

    2018-03-01

    It is important to assess river ecosystem health in large-scale basins when considering the complex influence of anthropogenic activities on these ecosystems. This study investigated the river ecosystem health in the Haihe River Basin (HRB) by sampling 148 river sites during the pre- and post-rainy seasons in 2013. A model was established to assess the river ecosystem health based on water physicochemical, nutrient, and macroinvertebrate indices, and the health level was divided into "very poor," "poor," "fair," "good," and "excellent" according to the health score calculated from the assessment model. The assessment results demonstrated that the river ecosystem health of the HRB was "poor" overall, and no catchments were labeled "excellent." The percentages of catchments deemed to have "very poor," "poor," "fair," or "good" river ecosystem health were 12.88%, 40.91%, 40.15%, and 6.06%, respectively. From the pre- to the post-rainy season, the macroinvertebrate health levels improved from "poor" to "fair." The results of a redundancy analysis (RDA), path analysis of the structural equation model (SEM), and X-Y plots indicated that the land use types of forest land and grassland had positive relationships with river ecosystem health, whereas arable land, urban land, gross domestic product (GDP) per capita, and population density had negative relationships with river ecosystem health. The variance partitioning (VP) results showed that anthropogenic activities (including land use and socio-economy) together explained 30.9% of the variations in river ecosystem health in the pre-rainy season, and this value increased to 35.9% in the post-rainy season. Land use intensity was the first driver of river ecosystem health, and socio-economic activities was the second driver. Land use variables explained 20.5% and 25.7% of the variations in river ecosystem health in the pre- and post-rainy season samples, respectively, and socio-economic variables explained 12.3% and 17.2% of the variations, respectively. The SEM results revealed that urban land had the strongest impact on water quality health and that forest land had the strongest impact on macroinvertebrate health. This study has implications for the selection of appropriate indicators to assess river ecosystem health and generated data to examine the effects of anthropogenic activities on river ecosystem health in a fast-growing region. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office: FY 1999 Watershed Restoration Projects : Annual Report 1999.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Shawn W.

    2001-03-01

    The John Day River is the second longest free-flowing river in the contiguous United States and one of the few major subbasins in the Columbia River basin containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles, the fourth largest drainage area in Oregon. With its beginning in the Strawberry Mountains near the town of Prairie City, the John Day flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring chinook salmon and summer steelhead, red band,more » westslope cutthroat, and redband trout, the John Day system is truly one of national significance. The entire John Day basin was granted to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Once established, the John Day Basin Office (JDBO) initiated contracting the majority of its construction implementation actions with the Grant Soil and Water Conservation District (GSWCD), also located in the town of John Day. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of the projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 1999, the JDBO and GSWCD proposed continuation of a successful partnership between the two agencies and basin landowners to implement an additional eleven (11) watershed conservation projects. The types of projects implemented included installation of infiltration galleries, permanent diversions, pumping stations, and irrigation efficiency upgrades. Project costs in 1999 totaled $284,514.00 with a total amount of $141,628.00 (50%) provided by the Bonneville Power Administration (BPA) and the remainder coming from other sources such as the Bureau of Reclamation (BOR), Confederated Tribes of Warm Springs, Oregon Watershed Enhancement Board, and individual landowners.« less

  5. Studying strategic interaction under environmental and economic uncertainties among water users in the Zambezi River Basin - From descriptive analysis to institutional design for better transboundary management

    NASA Astrophysics Data System (ADS)

    Beck, L.; Siegfried, T. U.; Bernauer, T.

    2009-12-01

    The Zambezi River Basin (ZRB) is one of the largest freshwater catchments in Africa and worldwide. Consumptive water use in the ZRB is currently estimated at 15 - 20 percent of total runoff. This suggests many development possibilities, particularly for irrigated agriculture and hydropower production. The key drivers in the basin are population development on the demand side as well as uncertain impacts from climate change for supply. Development plans of the riparian countries suggest that consumptive water use might increase up to 40 percent of total runoff by 2025. This suggests that expanding water use in the Zambezi basin could become a source of disputes among the eight riparian countries. We study the surface water allocation in the basin by means of a couple hydrological-economic modeling approach. A conceptual lumped-parameter rainfall-runoff model for the ZRB was constructed and calibrated on the best available runoff data for the basin. Water users are modeled based on an agent-based framework and implemented as distributed sequential decision makers that act in an uncertain environment. Given the current non-cooperative status quo, we use the stochastic optimization technique of reinforcement learning to model the individual agents’ behavior. Their goals include the maximization of a) their long-term reward as conditioned on the state of the multi-agent system and b) the immediate reward obtained from operational decisions of reservoirs and water diversions under their control. We feed a wide range of water demand drivers as well as climate change predictions into the model and assess agents’ responses and the resulting implications for runoff at key points in the water catchment, including Victoria Falls, Kariba reservoir, Kafue Gorge, and Cahora Bassa reservoir in the downstream. It will be shown that considerable benefits exist if the current non-cooperative regime is replaced by a basin-wide, coordinated allocation strategy that regulates water storage and allocation in this complex multi-reservoir river basin. Benefits increase along the river towards the downstream, which suggests the establishment of an upstream-downstream compensation approach. The latter considers tradeoffs from water and hydropower exchanges during respective seasons and locations of peak demand.

  6. Response of Polish rivers (Vistula, Oder) to reduced pressure from point sources and agriculture during the transition period (1988-2008)

    NASA Astrophysics Data System (ADS)

    Pastuszak, Marianna; Stålnacke, Per; Pawlikowski, Krzysztof; Witek, Zbigniew

    2012-06-01

    The Vistula and Oder Rivers, two out of the seven largest rivers in the Baltic drainage basin, were responsible for 25% of total riverine nitrogen (TN) and 37% of total riverine phosphorus (TP) input to the Baltic Sea in 2000. The aim of this paper is to evaluate the response of these two rivers to changes that took place in Polish economy during the transition period (1988-2008). The economic changes encompassed: construction of nearly 900 waste water treatment plants in 1999-2008, modernization or closure of obsolete factories, economizing in water consumption, closure or change of ownership of State-owned farms, a drop in fertilizer application, and a decline in livestock stocking. More intensive agriculture and higher point source emissions in the Oder than in the Vistula basin resulted in higher concentrations of TN, nitrate (NO3-N), and TP in the Oder waters in the entire period of our studies. In both rivers, nutrient concentrations and loads showed significant declining trends in the period 1988-2008. TN loads decreased by ca. 20% and 25% in the Vistula and Oder; TP loads dropped by ca. 15% and 65% in the Vistula and Oder. The reduction in phosphorus loads was particularly pronounced in the Oder basin, which was characterized by efficient management systems aiming at mitigation of nutrient emission from the point sources and greater extent of structural changes in agricultural sector during the transition period. The trends in riverine loads are discussed in the paper in relation to socio-economical changes during the transition period, and with respect to physiographic features.

  7. Occurrence and load of selected herbicides and metabolites in the lower Mississippi River

    USGS Publications Warehouse

    Clark, G.M.; Goolsby, D.A.

    2000-01-01

    Analyses of water samples collected from the Mississippi River at Baton Rouge, Louisiana, during 1991-1997 indicate that hundreds of metric tons of herbicides and herbicide metabolites are being discharged annually to the Gulf of Mexico. Atrazine, metolachlor, and the ethane-sulfonic acid metabolite of alachlor (alachlor ESA) were the most frequently detected herbicides and, in general, were present in the largest concentrations. Almost 80% of the annual herbicide load to the Gulf of Mexico occurred during the growing season from May to August. The concentrations and loads of alachlor in the Mississippi River decreased dramatically after 1993 in response to decreased use in the basin. In contrast, the concentrations and loads of acetochlor increased after 1994, reflecting its role as a replacement for alachlor. The peak annual herbicide load occurred in 1993, when approximately 640 metric tons (t) of atrazine, 320 t of cyanazine, 215 t of metolachlor, 53 t of simazine, and 50 t of alachlor were discharged to the Gulf of Mexico. The annual loads of atrazine and cyanazine were generally 1-2% of the amount annually applied in the Mississippi River drainage basin; the annual loads of acetochlor, alachlor, and metolachlor were generally less than 1%. Despite a reduction in atrazine use, historical data do not indicate a long-term downward trend in the atrazine load to the Gulf of Mexico. Although a relation (r2=0.62) exists between the atrazine load and stream discharge during May to August, variations in herbicide use and rainfall patterns within subbasins can have a large effect on herbicide loads in the Mississippi River Basin and probably explain a large part of the annual variation in atrazine load to the Gulf of Mexico. Copyright (C) 2000 Elsevier Science B.V.

  8. Occurrence and load of selected herbicides and metabolites in the lower Mississippi River

    USGS Publications Warehouse

    Clark, Gregory M.; Goolsby, Donald A.

    2000-01-01

    Analyses of water samples collected from the Mississippi River at Baton Rouge, Louisiana, during 1991–1997 indicate that hundreds of metric tons of herbicides and herbicide metabolites are being discharged annually to the Gulf of Mexico. Atrazine, metolachlor, and the ethane-sulfonic acid metabolite of alachlor (alachlor ESA) were the most frequently detected herbicides and, in general, were present in the largest concentrations. Almost 80% of the annual herbicide load to the Gulf of Mexico occurred during the growing season from May to August. The concentrations and loads of alachlor in the Mississippi River decreased dramatically after 1993 in response to decreased use in the basin. In contrast, the concentrations and loads of acetochlor increased after 1994, reflecting its role as a replacement for alachlor. The peak annual herbicide load occurred in 1993, when approximately 640 metric tons (t) of atrazine, 320 t of cyanazine, 215 t of metolachlor, 53 t of simazine, and 50 t of alachlor were discharged to the Gulf of Mexico. The annual loads of atrazine and cyanazine were generally 1–2% of the amount annually applied in the Mississippi River drainage basin; the annual loads of acetochlor, alachlor, and metolachlor were generally less than 1%. Despite a reduction in atrazine use, historical data do not indicate a long-term downward trend in the atrazine load to the Gulf of Mexico. Although a relation (r2=0.62) exists between the atrazine load and stream discharge during May to August, variations in herbicide use and rainfall patterns within subbasins can have a large effect on herbicide loads in the Mississippi River Basin and probably explain a large part of the annual variation in atrazine load to the Gulf of Mexico.

  9. Assessment of climate change impacts on streamflow dynamics in the headwaters of the Amazon River basin

    NASA Astrophysics Data System (ADS)

    Yoon, Y.; Beighley, E.

    2015-12-01

    The Amazon River basin is the largest watershed in the world containing thousands of tributaries. Although the mainstream and its larger tributaries have been the focus on much research, there has been few studies focused on the hydrodynamics of smaller rivers in the foothills of the Andes Mountains. These smaller rivers are of particular importance for the fishery industry because fish migrate up these headwater rivers to spawn. During the rainy season, fish wait for storm event to increase water depths to a sufficient level for their passage. Understanding how streamflow dynamics will change in response to future conditions is vital for the sustainable management of the fishery industry. In this paper, we focus on improving the accuracy of river discharge estimates on relatively small-scale sub-catchments (100 ~ 40,000 km2) in the headwaters of the Amazon River basin. The Hillslope River Routing (HRR) hydrologic model and remotely sensed datasets are used. We provide annual runoff, seasonal patterns, and daily discharge characteristics for 81 known migration reaches. The model is calibrated for the period 2000-2014 and climate forecasts for the period 2070-2100 are used to assess future changes in streamflow dynamics. The forecasts for the 2070 to 2100 period were obtained by selecting 5 climate models from IPCC's Fifth Assessment Report (AR5) Coupled Model Intercomparison Project Phase 5 (CMIP5) based on their ability to represent the main aspects of recent (1970 to 2000) Amazon climate. The river network for the HRR model is developing using surface topography based on the SRTM digital elevation model. Key model forcings include precipitation (TRMM 3B42) and evapotranspiration (MODIS ET, MOD16). Model parameters for soil depth, hydraulic conductivity, runoff coefficients and lateral routing were initially approximated based on literature values and adjusted during calibration. Measurements from stream gauges located near the reaches of interest were used for calibration. Model calibration results and simulated changes in future streamflow dynamics for the 81 river reaches are presented.

  10. Canada's Fraser River Basin transitioning from a nival to a hybrid system in the late 20th century

    NASA Astrophysics Data System (ADS)

    Kang, D. H.; Gao, H.; Shi, X.; Dery, S. J.

    2014-12-01

    The Fraser River Basin (FRB) is the largest river draining to the Pacific Ocean in British Columbia (BC), Canada, and it provides the world's most abundant salmon populations. With recent climate change, the shifting hydrologic regime of the FRB is evaluated using hydrological modeling results over the period 1949 to 2006. To quantify the contribution of snowmelt to runoff generation, the ratio RSR, defined as the division of the sum of the snowmelt across the watershed by the integrated runoff over the water year, is employed. Modeled results for RSR at Hope, BC — the furthest downstream hydrometric station of the FRB — show a significant decrease (from 0.80 to 0.65) in the latter part of the 20th century. RSR is found to be mainly suppressed by a decrease of the snowmelt across the FRB with a decline with 107 mm by 26 % along the simulation period. There is also a prominent shift in the timing of streamflow, with the spring freshet at Hope, BC advancing 30 days followed by reduced summer flows for over two months. The timing of the peak spring freshet becomes even earlier when moving upstream of the FRB owing to short periods of time after melting from the snow source to the rivers.

  11. Water-quality characteristics, trends, and nutrient and sediment loads of streams in the Treyburn development area, North Carolina, 1988–2009

    USGS Publications Warehouse

    Fine, Jason M.; Harned, Douglas A.; Oblinger, Carolyn J.

    2013-01-01

    Streamflow and water-quality data, including concentrations of nutrients, metals, and pesticides, were collected from October 1988 through September 2009 at six sites in the Treyburn development study area. A review of water-quality data for streams in and near a 5,400-acre planned, mixed-use development in the Falls Lake watershed in the upper Neuse River Basin of North Carolina indicated only small-scale changes in water quality since the previous assessment of data collected from 1988 to 1998. Loads and yields were estimated for sediment and nutrients, and temporal trends were assessed for specific conductance, pH, and concentrations of dissolved oxygen, suspended sediment, and nutrients. Water-quality conditions for the Little River tributary and Mountain Creek may reflect development within these basins. The nitrogen and phosphorus concentrations at the Treyburn sites are low compared to sites nationally. The herbicides atrazine, metolachlor, prometon, and simazine were detected frequently at Mountain Creek and Little River tributary but concentrations are low compared to sites nationally. Little River tributary had the lowest median suspended-sediment yield over the 1988–2009 study period, whereas Flat River tributary had the largest median yield. The yields estimated for suspended sediment and nutrients were low compared to yields estimated for other basins in the Southeastern United States. Recent increasing trends were detected in total nitrogen concentration and suspended-sediment concentrations for Mountain Creek, and an increasing trend was detected in specific conductance for Little River tributary. Decreasing trends were detected in dissolved nitrite plus nitrate nitrogen, total ammonia plus organic nitrogen, sediment, and specific conductance for Flat River tributary. Water chemical concentrations, loads, yields, and trends for the Treyburn study sites reflect some effects of upstream development. These measures of water quality are generally low, however, compared to regional and national averages.

  12. Thermal and hydrologic suitability of Lake Erie and its major tributaries for spawning of Asian carps

    USGS Publications Warehouse

    Kocovsky, Patrick M.; Chapman, Duane C.; McKenna, James E.

    2012-01-01

    Bighead carp Hypophthalmichthys nobilis, silver carp H. molitrix, and grass carp Ctenopharyngodon idella (hereafter Asian carps) have expanded throughout the Mississippi River basin and threaten to invade Lakes Michigan and Erie. Adult bighead carp and grass carp have been captured in Lake Erie, but self-sustaining populations probably do not exist. We examined thermal conditions within Lake Erie to determine if Asian carps would mature, and to estimate time of year when fish would reach spawning condition. We also examined whether thermal and hydrologic conditions in the largest tributaries to western and central Lake Erie were suitable for spawning of Asian carps. We used length of undammed river, predicted summer temperatures, and predicted water velocity during flood events to determine whether sufficient lengths of river are available for spawning of Asian carps. Most rivers we examined have at least 100 km of passable river and summer temperatures suitable (> 21 C) for rapid incubation of eggs of Asian carps. Predicted water velocity and temperature were sufficient to ensure that incubating eggs, which drift in the water column, would hatch before reaching Lake Erie for most flood events in most rivers if spawned far enough upstream. The Maumee, Sandusky, and Grand Rivers were predicted to be the most likely to support spawning of Asian carps. The Black, Huron, Portage, and Vermilion Rivers were predicted to be less suitable. The weight of the evidence suggests that the largest western and central Lake Erie tributaries are thermally and hydrologically suitable to support spawning of Asian carps.

  13. Three decadal inputs of total organic carbon from four major coastal river basins to the summer hypoxic zone of the Northern Gulf of Mexico.

    PubMed

    He, Songjie; Xu, Y Jun

    2015-01-15

    This study investigated long-term (1980-2009) yields and variability of total organic carbon (TOC) from four major coastal rivers in Louisiana entering the Northern Gulf of Mexico where a large-area summer hypoxic zone has been occurring since the middle 1980s. Two of these rivers drain agriculture-intensive (>40%) watersheds, while the other two rivers drain forest-pasture dominated (>50%) watersheds. The study found that these rivers discharged a total of 13.0×10(4)t TOC annually, fluctuating from 5.9×10(4) to 22.8×10(4)t. Seasonally, the rivers showed high TOC yield during the winter and early spring months, corresponding to the seasonal trend of river discharge. While river hydrology controlled TOC yields, land use has played an important role in fluxes, seasonal variations, and characteristics of TOC. The findings fill in a critical information gap of quantity and quality of organic carbon transport from coastal watersheds to one of the world's largest summer hypoxic zones. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. A field study of the confluence between Negro and Solimões Rivers. Part 2: Bed morphology and stratigraphy

    NASA Astrophysics Data System (ADS)

    Ianniruberto, Marco; Trevethan, Mark; Pinheiro, Arthur; Andrade, Joao Fernando; Dantas, Elton; Filizola, Naziano; Santos, André; Gualtieri, Carlo

    2018-01-01

    The confluence of the Negro and Solimões Rivers is an interesting study area under several points of view: it represents the second largest river confluence of the Amazon Basin; the rivers are characterized by very distinct hydrologic behaviour; and it is situated in a peculiar tectonic setting. A field investigation was undertaken to study the characteristics of this confluence, aiming to better understand the bed morphology and stratigraphy resulting from the complex interaction of geological setting, hydrodynamics, and sediment load. Two field campaigns were carried out, during low- and high-flow conditions, using high-resolution seismic, echosounding, and acoustic Doppler current profiling. A third campaign was carried out just in a limited area of the confluence, with a multi-beam echosounder. The results of these surveys provided a more detailed view of the geology, morphology and sediment distribution about the confluence.

  15. Baseline studies in the Elwha River ecosystem prior to dam removal: Introduction to the special issue

    USGS Publications Warehouse

    Duda, Jeffrey J.; Freilich, Jerry; Schreiner, Edward G.

    2008-01-01

    The planned removal of two dams that have been in place for over 95 years on the Elwha River provides a unique opportunity to study dam removal effects. Among the largest dams ever considered for removal, this project is compelling because 83% of the watershed lies undisturbed in Olympic National Park. Eighteen million cubic meters of sediment have accumulated in and will be released from the reservoirs, and there is potential for rehabilitating depressed Pacific salmon runs. Researchers from academia, non-profit organizations, federal and state governments, and the Lower Elwha Klallam Tribe are currently assessing baseline ecological conditions of the Elwha River as part of dam removal studies. We introduce dam removal topics, provide a brief history of the dams, and summarize the ecology of the Elwha River basin as an introduction to a special issue devoted to research in the watershed.

  16. Implications of river morphology response to Dien Bien Phu fault in NW Vietnam

    NASA Astrophysics Data System (ADS)

    Lai, K.; Chen, Y.; Lam, D.

    2007-12-01

    In northern Vietnam, most rivers are flowing southeastward sub- or parallel to the valley of Red River and characterized by long but narrow catchments. The Dien Bien Phu fault is associated with the most seismically active zone in Vietnam and situated in the potential eastern boundary of the rotating southeastern Tibetan block. It cuts the Da River, the largest tributary of Red River in northwest Vietnam and has distorted the drainage basin resulting in complex river patterns. To assess the river morphology response to active Dien Bien Phu fault, we use 1/50,000 topographic data and ASTER images to map the precise river courses and digital elevation model data of SRTM to retrieve and analyze the river profiles. From the mapping results, the N-S striking fault results in three conspicuous north-trending river valleys coincided with the different fault segments to facilitate the measurement and reconstruction of the offsets along the fault. Further combining the longitudinal profile analysis we obtain ca. 10 km offsets by deflected river as the largest left-lateral displacement recorded along the active fault. The restored results show the downstream paleochannel of the Da River had been abandoned and becomes two small tributaries in opposite flow directions at present due to differential crustal uplift. Also the present crisscross valley at the junction of the Da River and the fault is resulted from the capture by another river which has been also deflected by the neotectonics. Based on our observations on river response, the Dien Bien Phu fault is a sinistral dominant fault with an uplift occurring in its eastern block. Furthermore the active Dien Bien Phu fault does not cut through the Red River northward indicating the western block of the fault can not be regarded as a single rigid block. There should be possible to find NW-SE trending faults paralleling to Red River to accommodate the deformation of the western block of the fault.

  17. Implications of river morphology response to Dien Bien Phu fault in NW Vietnam

    NASA Astrophysics Data System (ADS)

    Lai, K.; Chen, Y.; Lam, D.

    2004-12-01

    In northern Vietnam, most rivers are flowing southeastward sub- or parallel to the valley of Red River and characterized by long but narrow catchments. The Dien Bien Phu fault is associated with the most seismically active zone in Vietnam and situated in the potential eastern boundary of the rotating southeastern Tibetan block. It cuts the Da River, the largest tributary of Red River in northwest Vietnam and has distorted the drainage basin resulting in complex river patterns. To assess the river morphology response to active Dien Bien Phu fault, we use 1/50,000 topographic data and ASTER images to map the precise river courses and digital elevation model data of SRTM to retrieve and analyze the river profiles. From the mapping results, the N-S striking fault results in three conspicuous north-trending river valleys coincided with the different fault segments to facilitate the measurement and reconstruction of the offsets along the fault. Further combining the longitudinal profile analysis we obtain ca. 10 km offsets by deflected river as the largest left-lateral displacement recorded along the active fault. The restored results show the downstream paleochannel of the Da River had been abandoned and becomes two small tributaries in opposite flow directions at present due to differential crustal uplift. Also the present crisscross valley at the junction of the Da River and the fault is resulted from the capture by another river which has been also deflected by the neotectonics. Based on our observations on river response, the Dien Bien Phu fault is a sinistral dominant fault with an uplift occurring in its eastern block. Furthermore the active Dien Bien Phu fault does not cut through the Red River northward indicating the western block of the fault can not be regarded as a single rigid block. There should be possible to find NW-SE trending faults paralleling to Red River to accommodate the deformation of the western block of the fault.

  18. Spatial patterns of DOC concentration and DOM optical properties in a Brazilian tropical river-wetland system

    NASA Astrophysics Data System (ADS)

    Dalmagro, Higo J.; Johnson, Mark S.; de Musis, Carlo R.; Lathuillière, Michael J.; Graesser, Jordan; Pinto-Júnior, Osvaldo B.; Couto, Eduardo G.

    2017-08-01

    The Cerrado (savanna) and Pantanal (wetland) biomes of Central Western Brazil have experienced significant development activity in recent decades, including extensive land cover conversion from natural ecosystems to agriculture and urban expansion. The Cuiabá River transects the Cerrado biome prior to inundating large areas of the Pantanal, creating one of the largest biodiversity hot spots in the world. We measured dissolved organic carbon (DOC) and the optical absorbance and fluorescence properties of dissolved organic matter (DOM) from 40 sampling locations spanning Cerrado and Pantanal biomes during wet and dry seasons. In the upper, more agricultural region of the basin, DOC concentrations were highest in the rainy season with more aromatic and humified DOM. In contrast, DOC concentrations and DOM optical properties were more uniform for the more urbanized middle region of the basin between wet and dry seasons, as well as across sample locations. In the lower region of the basin, wet season connectivity between the river and the Pantanal floodplain led to high DOC concentrations, a fourfold increase in humification index (HIX) (an indicator of DOM humification), and a 50% reduction in the spectral slope (SR). Basin-wide, wet season values for SR, HIX, and FI (fluorescence index) indicated an increasing representation of terrestrially derived DOM that was more humified. Parallel factor analysis identified two terrestrially derived components (C1 and C2) representing 77% of total fluorescing DOM (fDOM). A third, protein-like fDOM component increased markedly during the wet season within the more urban-impacted region.

  19. The Columbia River--on the Leading Edge

    NASA Astrophysics Data System (ADS)

    O'Connor, J. E.

    2005-05-01

    On the leading edge of the North American plate, the Columbia River is the largest of the world's 40 or so rivers with drainage areas greater than 500,000 square kilometers to drain toward a convergent plate boundary. This unique setting results in a unique continental river basin; marked by episodic and cataclysmic geologic disturbance, but also famously fecund with perhaps 10 to 16 million salmon historically spawning in its waters each year. Now transformed by dams, transportation infrastructure, dikes and diversions, the Columbia River presents an expensive conundrum for management of its many values. Inclusion of river ecology and geomorphology in discussions of river management is generally limited to observations of the last 200 years-a time period of little natural disturbance and low sediment transport. However, consideration of longer timescales provides additional perspective of historical ecologic and geomorphic conditions. Only 230 km from its mouth, the Columbia River bisects the volcanic arc of the Cascade Range, forming the Columbia River Gorge. Cenozoic lava flows have blocked the river, forcing diversions and new canyon cutting. Holocene eruptions of Mount Mazama (Crater Lake), Mount Hood, Mount St. Helens, and Mount Rainier have shed immense quantities of sediment into the lower Columbia River, forming a large percentage of the Holocene sediment transported through the lower river. Quaternary landslides, perhaps triggered by great earthquakes, have descended from the 1000-m-high gorge walls, also blocking and diverting the river, one as recently as 550 years ago. These geologic disturbances, mostly outside the realm of historical observation and operating at timescales of 100s to 1000s of years in the gorge and elsewhere, have clearly affected basin geomorphology, riverine ecology, and past and present cultural utilization of river resources. The historic productivity of the river, however, hints at extraordinary resilience (and perhaps dependence) of the Columbia River system to such disturbances, many of which are similar to engineered disturbances of the last 200 years.

  20. Sedimentological and geochronological evidences of anthropogenic impacts on river basins in the Northern Latium coastal area (Italy)

    NASA Astrophysics Data System (ADS)

    Piazzolla, Daniele; Paladini de Mendoza, Francesco; Scanu, Sergio; Marcelli, Marco

    2015-04-01

    In this work we aimed to compare sedimentological and geochronological data from three sediment core samples (MIG50, MRT50, and GRT50) taken in the Northern Latium (Italy) coastal area, at -50 m depth, to data regarding rainfall, river flows and the land use in the three most important hydrographic basins (Mignone, Marta and Fiora) and in the coastal area. Different trends of sediment mass accumulation rate (MAR) are detected in the three cores: a strongly increasing trend was identified in MIG50 and MRT50 cores while GRT50 doesn't show significant variation. Data from the sedimentological analysis of GRT50 core identify a progressive decrease in the sandy component, which declined from about 30% to the current level of 7% over the last 36 years, while MRT50 and MIG50 cores (mainly composed by pelitic fraction > 95%) showed slight variations of textural ratio between silt and clay. According to the general decrease of pluviometric trend observed in Italy, related to teleconnection pattern tendency (NAO), the statistical analysis of rain identified significative decrease only in the Fiora river basin, whereas in the other two locations the decrease was not as significant. Regarding the Fiora river flow, a significative decreasing trend of average flow is detected, while the flood regime remained unaffected over the past 30 years. The analysis of the land use shows that the human activities are increased of 6-10% over the available time steps (1990 - 2006) in Fiora and Mignone river basins, while the Marta river basin has a strong human impact since 1990 highligting more than 80% of artificial soil covering. The largest variation is observed on the Fiora basin (10%) where the antrhopic activities have expanded to an area of about 85 Km2. Moreover, in the last ten years a large beach nourishment in 2004 (570000 m3) and dredging activities in the early second half of 2000s (1000000 m3 moved) were performed in Marina di Tarquinia beach and in front of the Torrevaldaliga coal-fired power plant respectively. The land use change and human intervention on the riverbeds, detected on the Fiora river basin over the last 30 years, could have produced the textural variation observed in the GRT50 core sample, while the absence of the flood regime variation justify the observed MAR values. The results of this work revealed that variations caused by the working of fluvial processes have affected the water runoff of the Fiora river, and that the consequent decrease in sand production was testified by the recession of beaches in the coastal area between Tarquinia and Montalto di Castro which led to the nourishment that affected the MAR evolution in the coastal area. The changes observed in the MAR of MRT50 and MIG50 show temporal agreement with the beach nourishment and the dredging activities respectively.

  1. Climate impacts on connectivity of snowmelt to flow in the ...

    EPA Pesticide Factsheets

    Much of the water that people in Western Oregon rely on comes from snowpack in the Cascade Range, and this snowpack is expected to decrease in coming years with climate change. In fact, the past 6 years have shown dramatic variation in snowpack, from a high of 174% of normal in 2010-11 to a low of 11% for 2014-15, one of the lowest on record. During this timeframe, we have monitored the stable isotopes of water within the Willamette River twice monthly, and mapped the spatial variation of water isotopes across the basin. Within the Willamette Basin, stable isotopes of water in precipitation vary strongly with elevation and provide a marker for determining the mean elevation from which water in the Willamette River is derived. In winter, when snow accumulates in the mountains, low elevation precipitation (primarily rain) contributes the largest proportion of water to the Willamette River. During summer, when rainfall is scarce and demand for water is the greatest, water in the Willamette River is mainly derived from high elevation snowmelt. Our data indicate that the proportion of water from high elevation decreased with decreasing snowpack. We combine this information with river flow data to estimate the volume reduction related to snowpack reduction during the dry summer. Observed reductions in the contribution of high elevation water to the Willamette River after just 2 years of diminished snowpack indicate that the hydrologic system responds relatively

  2. Shift in the chemical composition of dissolved organic matter in the Congo River network

    NASA Astrophysics Data System (ADS)

    Lambert, Thibault; Bouillon, Steven; Darchambeau, François; Massicotte, Philippe; Borges, Alberto V.

    2016-09-01

    The processing of terrestrially derived dissolved organic matter (DOM) during downstream transport in fluvial networks is poorly understood. Here, we report a dataset of dissolved organic carbon (DOC) concentrations and DOM composition (stable carbon isotope ratios, absorption and fluorescence properties) acquired along a 1700 km transect in the middle reach of the Congo River basin. Samples were collected in the mainstem and its tributaries during high-water (HW) and falling-water (FW) periods. DOC concentrations and DOM composition along the mainstem were found to differ between the two periods because of a reduced lateral mixing between the central water masses of the Congo River and DOM-rich waters from tributaries and also likely because of a greater photodegradation during FW as water residence time (WRT) increased. Although the Cuvette Centrale wetland (one of the world's largest flooded forests) continuously releases highly aromatic DOM in streams and rivers of the Congo Basin, the downstream transport of DOM was found to result in an along-stream gradient from aromatic to aliphatic compounds. The characterization of DOM through parallel factor analysis (PARAFAC) suggests that this transition results from (1) the losses of aromatic compounds by photodegradation and (2) the production of aliphatic compounds by biological reworking of terrestrial DOM. Finally, this study highlights the critical importance of the river-floodplain connectivity in tropical rivers in controlling DOM biogeochemistry at a large spatial scale and suggests that the degree of DOM processing during downstream transport is a function of landscape characteristics and WRT.

  3. 75 FR 25877 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-10

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Colorado River Basin Salinity Control Advisory... River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control [[Page 25878

  4. Reconnaissance of contaminants in larval Pacific lamprey (Entosphenus tridentatus) tissues and habitats in the Columbia River Basin, Oregon and Washington, USA

    USGS Publications Warehouse

    Nilsen, Elena B.; Hapke, Whitney B.; McIlraith, Brian; Markovchick, Dennis J.

    2015-01-01

    Pacific lampreys (Entosphenus tridentatus) have resided in the Columbia River Basin for millennia and have great ecological and cultural importance. The role of habitat contamination in the recent decline of the species has rarely been studied and was the main objective of this effort. A wide range of contaminants (115 analytes) was measured in sediments and tissues at 27 sites across a large geographic area of diverse land use. This is the largest dataset of contaminants in habitats and tissues of Pacific lamprey in North America and the first study to compare contaminant bioburden during the larval life stage and the anadromous, adult portion of the life cycle. Bioaccumulation of pesticides, flame retardants, and mercury was observed at many sites. Based on available data, contaminants are accumulating in larval Pacific lamprey at levels that are likely detrimental to organism health and may be contributing to the decline of the species.

  5. Viruses Surveillance Under Different Season Scenarios of the Negro River Basin, Amazonia, Brazil.

    PubMed

    Vieira, Carmen Baur; de Abreu Corrêa, Adriana; de Jesus, Michele Silva; Luz, Sérgio Luiz Bessa; Wyn-Jones, Peter; Kay, David; Vargha, Marta; Miagostovich, Marize Pereira

    2016-03-01

    The Negro River is located in the Amazon basin, the largest hydrological catchment in the world. Its water is used for drinking, domestic activities, recreation and transportation and water quality is significantly affected by anthropogenic impacts. The goals of this study were to determine the presence and concentrations of the main viral etiological agents of acute gastroenteritis, such as group A rotavirus (RVA) and genogroup II norovirus (NoV GII), and to assess the use of human adenovirus (HAdV) and JC polyomavirus (JCPyV) as viral indicators of human faecal contamination in the aquatic environment of Manaus under different hydrological scenarios. Water samples were collected along Negro River and in small streams known as igarapés. Viruses were concentrated by an organic flocculation method and detected by quantitative PCR. From 272 samples analysed, HAdV was detected in 91.9%, followed by JCPyV (69.5%), RVA (23.9%) and NoV GII (7.4%). Viral concentrations ranged from 10(2) to 10(6) GC L(-1) and viruses were more likely to be detected during the flood season, with the exception of NoV GII, which was detected only during the dry season. Statistically significant differences on virus concentrations between dry and flood seasons were observed only for RVA. The HAdV data provides a useful complement to faecal indicator bacteria in the monitoring of aquatic environments. Overall results demonstrated that the hydrological cycle of the Negro River in the Amazon Basin affects the dynamics of viruses in aquatic environments and, consequently, the exposure of citizens to these waterborne pathogens.

  6. Examining the Effects of Anthropogenic Landscape Transformation on Wetland Habitats within the Grand Kankakee Watershed

    NASA Astrophysics Data System (ADS)

    Hanson, Z.; Patterson, T. A.; Grundel, R.; Bolster, D.; Hamlet, A. F.

    2017-12-01

    The Kankakee River watershed spans areas of southern Michigan, northern Indiana (IN), and eastern Illinois (IL), and was once home to one of the largest and most ecologically productive freshwater wetland complexes in North America, the 2400 km2 Grand Kankakee Marsh. The organically-rich marsh bottom land in the Kankakee basin also yielded productive farmland, but required extensive drainage. By 1919, more than 145 km of the 240-km-long river in IN were channelized and most of the wetlands in IN were drained. On the IL side, the river's channel system remained more intact, but the river was negatively affected by loss of wetland habitat upstream and increasing high flows, erosion and sediment transport arising from the hydrologic changes in the upstream areas. This study integrates surface water and groundwater modeling to explore the potential to recover a portion of the Kankakee's historic wetland ecosystem by removing agricultural drainage infrastructure within the basin. Results of wetland area and habitat metrics across the entire basin at coarse (500 m) resolution for several wetland restoration configurations and climate scenarios are presented, exhibiting the ability to successfully capture much of the watershed's historic features and traits as well as to respond to changes in model forcing to predict future wetland dynamics. Additionally, preliminary methods and results relating to a study site at finer (30 m) resolution over a moderate sized wetland restoration area ( 30 km2) are presented, helping to incorporate and address the fundamental interactions and limitations between agricultural practices and wetland restoration efforts within the entire Grand Kankakee Watershed.

  7. High Resolution Modelling of the Congo River's Multi-Threaded Main Stem Hydraulics

    NASA Astrophysics Data System (ADS)

    Carr, A. B.; Trigg, M.; Tshimanga, R.; Neal, J. C.; Borman, D.; Smith, M. W.; Bola, G.; Kabuya, P.; Mushie, C. A.; Tschumbu, C. L.

    2017-12-01

    We present the results of a summer 2017 field campaign by members of the Congo River users Hydraulics and Morphology (CRuHM) project, and a subsequent reach-scale hydraulic modelling study on the Congo's main stem. Sonar bathymetry, ADCP transects, and water surface elevation data have been collected along the Congo's heavily multi-threaded middle reach, which exhibits complex in-channel hydraulic processes that are not well understood. To model the entire basin's hydrodynamics, these in-channel hydraulic processes must be parameterised since it is not computationally feasible to represent them explicitly. Furthermore, recent research suggests that relative to other large global rivers, in-channel flows on the Congo represent a relatively large proportion of total flow through the river-floodplain system. We therefore regard sufficient representation of in-channel hydraulic processes as a Congo River hydrodynamic research priority. To enable explicit representation of in-channel hydraulics, we develop a reach-scale (70 km), high resolution hydraulic model. Simulation of flow through individual channel threads provides new information on flow depths and velocities, and will be used to inform the parameterisation of a broader basin-scale hydrodynamic model. The basin-scale model will ultimately be used to investigate floodplain fluxes, flood wave attenuation, and the impact of future hydrological change scenarios on basin hydrodynamics. This presentation will focus on the methodology we use to develop a reach-scale bathymetric DEM. The bathymetry of only a small proportion of channel threads can realistically be captured, necessitating some estimation of the bathymetry of channels not surveyed. We explore different approaches to this bathymetry estimation, and the extent to which it influences hydraulic model predictions. The CRuHM project is a consortium comprising the Universities of Kinshasa, Rhodes, Dar es Salaam, Bristol, and Leeds, and is funded by Royal Society-DFID Africa Capacity Building Initiative. The project aims to strengthen institutional research capacity and advance our understanding of the hydrology, hydrodynamics and sediment dynamics of the world's second largest river system through fieldwork and development of numerical models.

  8. Last 900 ka river longprofile changes controlled by Yoro fault activity and glacial sea-level changes, Nobi plain, central Japan

    NASA Astrophysics Data System (ADS)

    Sugai, T.; Sato, T.

    2015-12-01

    This paper compared grain size, thickness, and lithological character of ten fluvial gravel layers formed during the glacial sea-level lowstands intervening inner bay mud layers deposited during the interglacial marine transgressional periods since the last 900 ka by integrated analyses of sediment cores including 600 m deep onein the Nobi plain, central Japan. Linkages between river long profile changes and sea-level and climate changes will be discussed. The Nobi basin is one of the representative delta type alluvial lowlands in Japan dominated by longitudinal drainage system named Kiso river system flowing southward from central Japan Alps with abundant water and sediment discharges. The basin bounded by the Yoro fault on the west has been tilted westward by the repetitive faulting activity. The basin stratigraphy and its stacking patterns suggest uniform and rapid subsidence and tilting rates of the basin with the maximum value of 1 mm yr-1 and 10-4 kyr-1 respectively produced by the Yoro fault activity under the W-E compressional regional stress field during the middle and late Quaternary periods. Tephrochronological, paleomagnetic, geochemical, and diatom analyses enabled to identify ten times repeated marine transgression-regression sequences correlated with full glacial-interglacial sea-level changes during the last 900 ka. All of the ten sequence boundaries were characterized by fluvial gravel layers were formed by the Kiso river system. The mean maximum gravel size is proportional to the magnitude of sea level lowering inferred from MIS curve, i.e. gravels deposited in MIS 12 and 16 are the largest, and those in MIS 14 and 8 are the smallest since MIS 16. This suggests that the longitudinal profile of the Kiso river system has been adjusting to the sea level changes and that the steeper longitudinal profile formed in the lower sea level periods can transport larger gravels to the drilling sites. In fact the present river bed gravel size is in proportion with the tractive force and mainly controlled by slope of the rive long-profile.

  9. Hydrometric Data Rescue in the Paraná River Basin

    NASA Astrophysics Data System (ADS)

    Antico, Andrés.; Aguiar, Ricardo O.; Amsler, Mario L.

    2018-02-01

    The Paraná River streamflow is the third largest in South America and the sixth largest in the world. Thus, preserving historical Paraná hydrometric data is relevant for understanding South American and global hydroclimate changes. In this work, we rescued paper format data of daily Paraná water level observations taken uninterruptedly at Rosario City, Argentina, from January 1875 to present. The rescue consisted of the following activities: (i) imaging and digitization of paper format data, (ii) application of quality checks and homogeneity tests to the digitized water levels, and (iii) consideration of errors caused by gauge sinkings that may have occurred from 1875 to 1908. In addition, a rating curve was obtained for Rosario and it was used to convert water levels into discharges. The rescued water level observations and their associated discharge data provide the longest (last 143 years) continuous hydrometric records of the Paraná basin. The usefulness of these records was demonstrated by showing that the Paraná-Pacific Ocean links observed after 1900 in previous studies are also evidenced in our nineteenth-century discharge data. That is, high Paraná discharges coincided with El Niño events and with El Niño-like states of the Interdecadal Pacific Oscillation (IPO), whereas low discharges coincided with La Niña events and with La Niña-like IPO states.

  10. Geohydrologic Investigations and Landscape Characteristics of Areas Contributing Water to Springs, the Current River, and Jacks Fork, Ozark National Scenic Riverways, Missouri

    USGS Publications Warehouse

    Mugel, Douglas N.; Richards, Joseph M.; Schumacher, John G.

    2009-01-01

    The Ozark National Scenic Riverways (ONSR) is a narrow corridor that stretches for approximately 134 miles along the Current River and Jacks Fork in southern Missouri. Most of the water flowing in the Current River and Jacks Fork is discharged to the rivers from springs within the ONSR, and most of the recharge area of these springs is outside the ONSR. This report describes geohydrologic investigations and landscape characteristics of areas contributing water to springs and the Current River and Jacks Fork in the ONSR. The potentiometric-surface map of the study area for 2000-07 shows that the groundwater divide extends beyond the surface-water divide in some places, notably along Logan Creek and the northeastern part of the study area, indicating interbasin transfer of groundwater between surface-water basins. A low hydraulic gradient occurs in much of the upland area west of the Current River associated with areas of high sinkhole density, which indicates the presence of a network of subsurface karst conduits. The results of a low base-flow seepage run indicate that most of the discharge in the Current River and Jacks Fork was from identified springs, and a smaller amount was from tributaries whose discharge probably originated as spring discharge, or from springs or diffuse groundwater discharge in the streambed. Results of a temperature profile conducted on an 85-mile reach of the Current River indicate that the lowest average temperatures were within or downstream from inflows of springs. A mass-balance on heat calculation of the discharge of Bass Rock Spring, a previously undescribed spring, resulted in an estimated discharge of 34.1 cubic feet per second (ft3/s), making it the sixth largest spring in the Current River Basin. The 13 springs in the study area for which recharge areas have been estimated accounted for 82 percent (867 ft3/s of 1,060 ft3/s) of the discharge of the Current River at Big Spring during the 2006 seepage run. Including discharge from other springs, the cumulative discharge from springs was over 90 percent of the river discharge at most of the spring locations, and was 92 percent at Big Spring and at the lower end of the ONSR. The discharge from the 1.9-mile long Pulltite Springs Complex measured in the 2006 seepage run was 88 ft3/s. Most of this (77 ft3/s) was from the first approximately 0.25 mi of the Pulltite Springs Complex. It has been estimated that the annual mean discharge from the Current River Springs Complex is 125 ft3/s, based on an apparent discharge of 50 ft3/s during a 1966 U.S. Geological Survey seepage run. However, a reinterpretation of the 1966 seepage run data shows that the discharge from the Current River Springs Complex instead was about 12.6 ft3/s, and the annual mean discharge was estimated to be 32 ft3/s, substantially less than 125 ft3/s. The 2006 seepage run showed a gain of only 12 ft3/s from the combined Round Spring and Current River Springs Complex from the mouth of Sinking Creek to 0.7 mi upstream from Root Hollow. The 2006 temperature profile measurements did not indicate any influx of spring discharge throughout the length of the Current River Springs Complex. The spring recharge areas with the largest number of identified sinkholes are Big Spring, Alley Spring, and Welch Spring. The spring recharge areas with the largest number of sinkholes per square mile of recharge area are Alley Spring, Blue Spring (Jacks Fork), Welch Spring, and Round Spring and the Current River Springs Complex. Using the currently known locations of losing streams, the Big Spring recharge area has the largest number of miles of losing stream, and the Bass Rock Spring recharge area has the largest number of miles of losing stream per unit recharge area. The spring recharge areas with the most open land and the least forested land per unit recharge area are Blue Spring (Jacks Fork), Welch Spring, Montauk Springs, and Alley Spring. The spring recharge areas with the least amount

  11. Assessment of croplands dynamics in the river basins of the different landscape zones of the Russian plain for the last 30 years as factor of soil erosion rate trend

    NASA Astrophysics Data System (ADS)

    Ivanov, Maxim; Zalyaliev, Rinal; Efimov, Kirill; Kondrat'eva, Alina; Kinyashova, Anastasiya; Ionova, Yuliya

    2017-04-01

    After the collapse of the USSR in the period of transition from a state-controlled economy to a market-driven economy, there have been significant changes in land use. Information about changes in the structure of agricultural land is very important to assess the ecological condition of the territories. In this study was evaluated the changes of croplands in areas of the European territory of Russia located in different climate, landscape and geomorphological conditions. Mapping of the croplands in the territory of 9 river basins for the two time slices (the middle of the 1980s, and the present-day period 2013-2015) was carried out by visual interpretation of multi-seasonal images Landsat 5 and Landsat 8. We are using mapping technique realized in the CORINE Land Cover 2000 project (CLC2000), adjusted for the regional features and purposes of our study. Using vector layers, obtained as a result of digitization, the areas of croplands in the analyzed periods have been calculated and changes occurred in 30 years was evaluated. Croplands is the dominant category of land use in almost all regions, and it is in the range of 40-65% in 2015. The decrease of croplands area was established for the all studied river basins. The largest decrease of croplands (37.7%) is observed in the Izh river basin located in the forest landscape zone. Significantly smaller reduction of croplands (10%) observed in the basins belonging to the forest-steppe landscape zone. In the basins, located in the steppe zone of the reduction of croplands is in the range 10-20%. Land use changes are a powerful factor determining the rate of erosion and sedimentation and some other exogenic processes. However, for the evaluation of these rates is important to determine whether the decrease of cropland due to the abandonment the more steep slope, which are less suitable for traditional cultivation. For this aim, steepness of slopes was analyzed for the each river basin. Slope rasters for the studied river basins were calculated using 30m SRTM DEM. Pixels belonging to areas of abandoned croplands have been extracted, and a statistical analysis of the corresponding values of slopes was carried out. The average values of slope on abandoned croplands in all basins do not exceed 2.1 degrees, and 80 to 90% of the pixels have a slope value less than 3 degrees. Thus, we can conclude that the croplands abandonment was not due to prevention of soil losses from erosion prone areas. It is more likely that cropland abandonment is explained by socio-economic reasons. So it is possible to conclude that land abandonment within the different landscape zones of the Russian Plain led to reduction of total soil losses on cultivated lands, but it isn't influenced on mean annual soil erosion rates.

  12. Simulation of hydrologic conditions and suspended-sediment loads in the San Antonio River Basin downstream from San Antonio, Texas, 2000-12

    USGS Publications Warehouse

    Banta, J. Ryan; Ockerman, Darwin J.

    2014-01-01

    Suspended sediment in rivers and streams can play an important role in ecological health of rivers and estuaries and consequently is an important issue for water-resource managers. To better understand suspended-sediment loads and transport in a watershed, the U.S. Geological Survey (USGS), in cooperation with the San Antonio River Authority, developed a Hydrological Simulation Program—FORTRAN model to simulate hydrologic conditions and suspended-sediment loads during 2000–12 for four watersheds, which comprise the overall study area in the San Antonio River Basin (hereinafter referred to as the “USGS–2014 model”). The study area consists of approximately 2,150 square miles encompassing parts of Bexar, Guadalupe, Wilson, Karnes, DeWitt, Goliad, Victoria, and Refugio Counties. The USGS–2014 model was calibrated for hydrology and suspended sediment for 2006–12. Overall, model-fit statistics and graphic evaluations from the calibration and testing periods provided multiple lines of evidence indicating that the USGS–2014 model simulations of hydrologic and suspended-sediment conditions were mostly “good” to “very good.” Model simulation results indicated that approximately 1,230 tons per day of suspended sediment exited the study area and were delivered to the Guadalupe River during 2006–12, of which approximately 62 percent originated upstream from the study area. Sample data and simulated model results indicate that most of the suspended-sediment load in the study area consisted of silt- and clay-sized particles (less than 0.0625 millimeters). The Cibolo Creek watershed was the largest contributor of suspended sediment from the study area. For the entire study area, open/developed land and cropland exhibited the highest simulated soil erosion rates; however, the largest contributions of sediment (by land-cover type) were pasture and forest/rangeland/shrubland, which together composed approximately 80 percent of the land cover of the study area and generated about 70 percent of the suspended-sediment load from the study area.

  13. Regional-scale controls on dissolved nitrous oxide in the Upper Mississippi River

    USGS Publications Warehouse

    Turner, P.A.; Griffis, T.J.; Baker, J.M.; Lee, X.; Crawford, John T.; Loken, Luke C.; Venterea, R.T.

    2016-01-01

    The U.S. Corn Belt is one of the most intensive agricultural regions of the world and is drained by the Upper Mississippi River (UMR), which forms one of the largest drainage basins in the U.S. While the effects of agricultural nitrate (NO3-) on water quality in the UMR have been well documented, its impact on the production of nitrous oxide (N2O) has not been reported. Using a novel equilibration technique, we present the largest data set of freshwater dissolved N2O concentrations (0.7 to 6 times saturation) and examine the controls on its variability over a 350 km reach of the UMR. Driven by a supersaturated water column, the UMR was an important atmospheric N2O source (+68 mg N2ONm-2 yr-1) that varies nonlinearly with the NO3-concentration. Our analyses indicated that a projected doubling of the NO3-concentration by 2050 would cause dissolved N2O concentrations and emissions to increase by about 40%.

  14. Development of a relative risk model for evaluating ecological risk of water environment in the Haihe River Basin estuary area.

    PubMed

    Chen, Qiuying; Liu, Jingling; Ho, Kin Chung; Yang, Zhifeng

    2012-03-15

    Ecological risk assessment for water environment is significant to water resource management of basin. Effective environmental management and systems restoration such as the Haihe River Basin require holistic understanding of the relative importance of various stressor-related impacts throughout the basin. As an effective technical tool for evaluating the ecological risk, relative risk model (RRM) was applied in regional scale successfully. In this study, the risk transfer from upstream of basin was considered and the RRM was developed through introducing the source-stressor-habitat exposure filter (SSH), the endpoint-habitat exposure filter (EH) and the stressor-endpoint effect filter (SE) to reflect the meaning of exposure and effect more explicit. Water environment which includes water quality, water quantity and aquatic ecosystems was selected as the assessment endpoints. We created a conceptual model which depicting potential and effect pathways from source to stressor to habitat to endpoint. The Haihe River Basin estuary (HRBE) was selected as the model case. The results showed that there were two low risk regions, one medium risk region and two high risk regions in the HRBE. The results also indicated that urbanization was the biggest source, the second was shipping and the third was industry, their risk scores are 5.65, 4.71 and 3.68 respectively. Furthermore, habitat destruction was the largest stressor with the risk scores (2.66), the second was oxygen consuming organic pollutants (1.75) and the third was pathogens (1.75). So these three stressors were the main influencing factors of the ecological pressure in the study area. For habitats, open waters (9.59) and intertidal mudflat were enduring the bigger pressure and should be taken considerable attention. Ecological service values damaged (30.54) and biodiversity decreased were facing the biggest risk pressure. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Inter- and intra-annual variation of water footprint of crops and blue water scarcity in the Yellow River basin (1961-2009)

    NASA Astrophysics Data System (ADS)

    Zhuo, La; Mekonnen, Mesfin M.; Hoekstra, Arjen Y.; Wada, Yoshihide

    2016-01-01

    The Yellow River Basin (YRB), the second largest river basin of China, has experienced a booming agriculture over the past decades. But data on variability of and trends in water consumption, pollution and scarcity in the YRB are lacking. We estimate, for the first time, the inter- and intra-annual water footprint (WF) of crop production in the YRB for the period 1961-2009 and the variation of monthly scarcity of blue water (ground and surface water) for 1978-2009, by comparing the blue WF of agriculture, industry and households in the basin to the maximum sustainable level. Results show that the average overall green (from rainfall) and blue (from irrigation) WFs of crops in the period 2001-2009 were 14% and 37% larger, respectively, than in the period 1961-1970. The annual nitrogen- and phosphorus-related grey WFs (water required to assimilate pollutants) of crop production grew by factors of 24 and 36, respectively. The green-blue WF per ton of crop reduced significantly due to improved crop yields, while the grey WF increased because of the growing application of fertilizers. The ratio of blue to green WF increased during the study period resulting from the expansion of irrigated agriculture. In the period 1978-2009, the annual total blue WFs related to agriculture, industry and households varied between 19% and 52% of the basin's natural runoff. The blue WF in the YRB generally peaks around May-July, two months earlier than natural peak runoff. On average, the YRB faced moderate to severe blue water scarcity during seven months (January-July) per year. Even in the wettest month in a wet year, about half of the area of the YRB still suffered severe blue water scarcity, especially in the basin's northern part.

  16. John Day River Sub-Basin Fish Habitat Enhancement Project; 2008 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Russ M.; Alley, Pamela D.; Goin Jr, Lonnie

    Work undertaken in 2008 included: (1) Seven new fence projects were completed thereby protecting approximately 10.97 miles of streams with 16.34 miles of riparian fence; (2) Renewal of one expired lease was completed thereby continuing to protect 0.75 miles of stream with 1.0 mile of riparian fence. (3) Maintenance of all active project fences (106.54 miles), watergaps (78), spring developments (33) were checked and repairs performed; (3) Planted 1000 willow/red osier on Fox Creek/Henslee property; (4) Planted 2000 willows/red osier on Middle Fork John Day River/Coleman property; (5) Planted 1000 willow/red osier cuttings on Fox Creek/Johns property; (6) Since themore » initiation of the Fish Habitat Project in 1984 we have 126.86 miles of stream protected using 211.72 miles of fence protecting 5658 acres. The purpose of the John Day Fish Habitat Enhancement Program is to enhance production of indigenous wild stocks of spring Chinook and summer steelhead within the sub basin through habitat protection, enhancement and fish passage improvement. The John Day River system supports the largest remaining wild runs of spring chinook salmon and summer steelhead in Northeast Oregon.« less

  17. Contaminant removal by wastewater treatment plants in the Stillaguamish River Basin, Washington

    USGS Publications Warehouse

    Barbash, Jack E.; Moran, Patrick W.; Wagner, Richard J.; Wolanek, Michael

    2015-01-01

    Human activities in most areas of the developed world typically release nutrients, pharmaceuticals, personal care products, pesticides, and other contaminants into the environment, many of which reach freshwater ecosystems. In urbanized areas, wastewater treatment plants (WWTPs) are critical facilities for collecting and reducing the amounts of wastewater contaminants (WWCs) that ultimately discharge to rivers, coastal areas, and groundwater. Most WWTPs use multiple methods to remove contaminants from wastewater. These include physical methods to remove solid materials (primary treatment), biological and chemical methods to remove most organic matter (secondary treatment), advanced methods to reduce the concentrations of various contaminants such as nitrogen, phosphorus and (or) synthetic organic compounds (tertiary treatment), and disinfection prior to discharge (Metcalf and Eddy, Inc., 1979). This study examined the extent to which 114 organic WWCs were removed by each of three WWTPs, prior to discharge to freshwater and marine ecosystems, in a rapidly developing area in northwestern Washington State. Removal percentages for each WWC were estimated by comparing the concentrations measured in the WWTP influents with those measured in the effluents. The investigation was carried out in the 700-mi2Stillaguamish River Basin, the fifth largest watershed that discharges to Puget Sound (fig. 1).

  18. Changes of precipitation extremes indices in São Francisco River Basin, Brazil from 1947 to 2012

    NASA Astrophysics Data System (ADS)

    Bezerra, Bergson G.; Silva, Lindenberg L.; Santos e Silva, Claudio M.; de Carvalho, Gilvani Gomes

    2018-02-01

    The São Francisco River is strategically important due to its hydroelectric potential and for bringing the largest water body of Brazilian Semiarid region, supplying water for irrigation, urban, and industrial activities. Thereby, for the purpose of characterizing changes on the precipitation patterns over São Francisco River basin, 11 extremes precipitation indices as defined by the joint WMO/CCI/ETCCDMI/CLIVAR project were calculated using daily observation from the 59 rain gauges during 1947-2012 period. The extreme climatic indices were calculated with the RClimDex software, which performs an exhaustive data quality control, intending to identify spurious errors and dataset inconsistencies. Weak and significant regional changes were observed in both CDD and SDII indices. Most precipitation extremes indices decreased but without statistical significance. The spatial analysis of indices did not show clearly regional changes due to the complexity of hydrometeorology of the region. In some cases, two rainfall stations exhibited opposite trends with the same significance level although they are separated by a few kilometers. This has occurred more frequently in Lower-Middle São Francisco, probably associated with intense land cover change over the last decades in this region.

  19. Earth Observations taken by the Expedition 25 crew

    NASA Image and Video Library

    2010-09-30

    ISS025-E-005504 (30 Sept. 2010) --- Syr Dar’ya River floodplain in Kazakhstan, central Asia is featured in this image photographed by an Expedition 25 crew member on the International Space Station. Central Asia’s most important cotton-growing region is concentrated in the floodplain of the Syr Dar’ya, and is irrigated by water from the river. The floodplain is shown here as a tangle of twisting meanders and loops (center). The darkest areas are brushy vegetation along the present course (filled with blue-green water); wisps of vegetation are also visible along flanking swampy depressions, or sloughs. An older floodplain appears as an area of more diffuse dark vegetation (upper left), where a pattern of relict meander bends is overlain by a rectangular pattern of cotton fields. The straight channel of a new diversion canal—one of sixteen from this point downstream—can be seen along the east bank of the river. The older floodplain area is fed from the Chardara Reservoir immediately upstream (not shown). Half the river flow is controlled from reservoirs, and half from direct water take-off from canals. By contrast with the intensive agricultural use of water shown here, upstream water control in the mountain valleys is oriented more toward power generation. The river flows for a total distance of 2,200 kilometers from the Tien Shan Mountains westward and northwestward to the Aral Sea—the dying waterbody at the low point of the basin far to the northwest. Withdrawals of water from the river for agriculture have continued for many decades. Although the Syr Dar’ya is the second largest river flowing into the sea, its discharge is not very large. As such, it has been easily depleted, with none of its water today reaching the Aral Sea. Control of the river is vested in the Syr Dar’ya Basin Water Organization run by nations with territory in the Syr Dar’ya basin. Some of the organization’s main efforts are accurate gauging of water use along the river course, and repair of canals to reduce widespread water loss by leakage.

  20. Inorganic and organic carbon spatial variability in the Congo River during high waters (December 2013)

    NASA Astrophysics Data System (ADS)

    Borges, Alberto V.; Bouillon, Steven; Teodoru, Cristian; Leporcq, Bruno; Descy, Jean-Pïerre; Darchambeau, François

    2014-05-01

    Rivers are important components of the global carbon cycle, as they transport terrestrial organic matter from the land to the sea, and emit CO2 to the atmosphere. In particular, tropical systems that account for 60% of global freshwater discharge to the oceans. In contrast with south American rivers, very little information is available for African rivers on their carbon flows and stocks, in particular the Congo river, the second largest river in the World in terms of freshwater discharge (1457 km3 yr-1) and in terms of drainage basin (3.75 106 km2) located the second largest tropical forest in the World. Here, we report a data-set of continuous (every minute) records of the partial pressure of CO2 (pCO2) (total of 10,000 records), and discrete samples of particulate (POC) and dissolved (DOC) organic carbon (total of 75 samples) in the mainstem and major tributaries of the Congo river, along the 1700 km stretch from Kisangani to Kinshasa (total river length = 4374 km), during the high water period (December 2013). The pCO2 dynamic range was high ranging from minimum values of 2000 ppm in white waters tributaries (higher turbidity, conductivity and O2, lower DOC), up to maximal values of 18,000 ppm in blackwaters tributaries (lower turbidity, conductivity and O2, higher DOC). In the mainstem, very strong horizontal (cross-section) gradients were imposed by the presence of blackwaters close to the riverbanks and the presence of whitewaters in the middle of the river. In the mainstem, a distinct horizontal (longitudinal) pattern was observed with pCO2 increasing, and conductivity and turbidity decreasing downstream.

  1. Occurrence of polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls pollution in sediments from the Haihe River and Dagu Drainage River in Tianjin City, China.

    PubMed

    Liu, Hanxia; Zhang, Qinghua; Wang, Yawei; Cai, Zongwei; Jiang, Guibin

    2007-08-01

    The pollution status of polychlorinated dibenzo-p-dioxins, dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) in the sediments of Haihe River, which is the most polluted among the seven largest basins in China, Dagu Drainage River flowing through a chemical industry zone, and two other rivers flowing into Bohai Sea in Tianjin City, China were investigated. The concentrations of PCDD/Fs and PCBs in the sediments from the mainstream of Haihe River were 1.3-26pgI-TEQg(-1) dry weight (dw) and 0.07-0.54pgTEQg(-1)dw, respectively. Heavy PCDD/Fs and PCBs pollution, with 1264pgI-TEQg(-1)dw and 21pgTEQg(-1)dw, was found in sediment from Dagu Drainage River. The congener profiles of PCDD/Fs indicated that the principal contamination source was the production of pentachlorophenol (PCP) or PCP-Na in this area. The correlation between PCDD/Fs or PCBs and total organic matter (TOM) showed that PCDD/Fs or PCBs were independent on TOM.

  2. Using the analytical hierarchy process to assess the environmental vulnerabilities of basins in Taiwan.

    PubMed

    Chang, Chia-Ling; Chao, Yu-Chi

    2012-05-01

    Every year, Taiwan endures typhoons and earthquakes; these natural hazards often induce landslides and debris flows. Therefore, watershed management strategies must consider the environmental vulnerabilities of local basins. Because many factors affect basin ecosystems, this study applied multiple criteria analysis and the analytical hierarchy process (AHP) to evaluate seven criteria in three phases (geographic phase, hydrologic phase, and societal phase). This study focused on five major basins in Taiwan: the Tan-Shui River Basin, the Ta-Chia River Basin, the Cho-Shui River Basin, the Tseng-Wen River Basin, and the Kao-Ping River Basin. The objectives were a comprehensive examination of the environmental characteristics of these basins and a comprehensive assessment of their environmental vulnerabilities. The results of a survey and AHP analysis showed that landslide area is the most important factor for basin environmental vulnerability. Of all these basins, the Cho-Shui River Basin in central Taiwan has the greatest environmental vulnerability.

  3. Assessment of nutrients, suspended sediment, and pesticides in surface water of the upper Snake River basin, Idaho and western Wyoming, water years 1991-95

    USGS Publications Warehouse

    Clark, Gregory M.

    1997-01-01

    Quality Assessment Program. As part of the investigation, intensive monitoring was conducted during water years 1993 through 1995 to assess surface-water quality in the basin. Sampling and analysis focused on nutrients, suspended sediments, and pesticides because of nationwide interest in these constituents. Concentrations of nutrients and suspended sediment in water samples from 19 sites in the upper Snake River Basin, including nine on the main stem, were assessed. In general, concentrations of nutrients and suspended sediment were smaller in water from the 11 sites upstream from American Falls Reservoir than in water from the 8 sites downstream from the reservoir where effects from land-use activities are most pronounced. Median concentrations of dissolved nitrite plus nitrate as nitrogen at the 19 sites ranged from less than 0.05 to 1.60 milligrams per liter; total phosphorus as phosphorus, less than 0.01 to 0.11 milligrams per liter; and suspended sediment, 4 to 72 milligrams per liter. Concentrations of nutrients and suspended sediment in the main stem of the Snake River, in general, increased downstream. The largest concentrations in the main stem were in the middle reach of the Snake River between Milner Dam and the outlet of the upper Snake River Basin at King Hill. Significant differences (p Nutrient and suspended sediment inputs to the middle Snake reach were from a variety of sources. During water year 1995, springs were the primary source of water and total nitrogen to the river and accounted for 66 and 60 percent of the total input, respectively. Isotope and water-table information indicated that the springs derived most of their nitrogen from agricultural activities along the margins of the Snake River. Aquacultural effluent was a major source of ammonia (82 percent), organic nitrogen (30 percent), and total phosphorus (35 percent). Tributary streams were a major source of organic nitrogen (28 percent) and suspended sediment (58 percent). In proportion to its discharge (less than 1 percent), the Twin Falls sewage-treatment plant was a major source of total phosphorus (13 percent). A comparison of discharge and loading in water year 1995 with estimates of instream transport showed a good correlation (relative difference of less than 15 percent) for discharge, total organic nitrogen, dissolved nitrite plus nitrate, total nitrogen, and total phosphorus. Estimates of dissolved ammonia and suspended sediment loads correlated poorly with instream transport; relative differences were about 79 and 61 percent, respectively. The pesticides EPTC, atrazine, desethylatrazine, metolachlor, and alachlor were the most commonly detected in the upper Snake River Basin and accounted for about 75 percent of all pesticide detections. All pesticides detected were at concentrations less than 1 microgram per liter and below water-quality criteria established by the U.S. Environmental Protection Agency. In samples collected from two small agriculturally dominated tributary basins, the largest number and concentrations of pesticides were detected in May and June following early growing season applications. At one of the sites, the pesticide atrazine and its metabolite desethylatrazine were detected throughout the year. On the basis of 37 samples collected basinwide in May and June 1994, total annual subbasin applications and instantaneous instream fluxes of EPTC and atrazine showed logarithmic relations with coefficients of determination (R2 values) of 0.55 and 0.62, respectively. At the time of sampling, the median daily flux of EPTC was about 0.0001 percent of the annual quantity applied, whereas the median daily flux of atrazine was between 0.001 and 0.01 percent.

  4. Water resources of the Waccasassa River Basin and adjacent areas, Florida

    USGS Publications Warehouse

    Taylor, G.F.; Snell, L.J.

    1978-01-01

    This map report was prepared in cooperation with the Southwest Florida Water Management District which, with the Waccasassa River Basin Board, had jurisdiction over waters within the Waccasassa River basin, the coastal areas adjacent to the basin, and other adjacent areas outside the basin. New water management district boundaries, effective January 1977, place most of the Waccasassa River basin in the Suwannee River Water Management District. The purpose of the report is to provide water information for consideration in land-use and water development which is accelerating, especially in the northeastern part of the study area. It is based largely on existing data in the relatively undeveloped area. Of the total area included in the topographic drainage basin for the Waccasassa River about 72 percent is in Levy County, 18 percent in Alachua County, 9 percent in Gilchrist County, and 1 percent in Marion County. The elongated north-south drainage basin is approximately 50 mi in length, averages 13 mi in width, and lies between the Suwannee River, the St. Johns River, and the Withlacoochee River basins. (Woodard-USGS)

  5. Occurrence and distribution of dissolved solids, selenium, and uranium in groundwater and surface water in the Arkansas River Basin from the headwaters to Coolidge, Kansas, 1970-2009

    USGS Publications Warehouse

    Miller, Lisa D.; Watts, Kenneth R.; Ortiz, Roderick F.; ,

    2010-01-01

    In 2007, the U.S. Geological Survey (USGS), in cooperation with City of Aurora, Colorado Springs Utilities, Colorado Water Conservation Board, Lower Arkansas Valley Water Conservancy District, Pueblo Board of Water Works, Southeastern Colorado Water Activity Enterprise, Southeastern Colorado Water Conservancy District, and Upper Arkansas Water Conservancy District began a retrospective evaluation to characterize the occurrence and distribution of dissolved-solids (DS), selenium, and uranium concentrations in groundwater and surface water in the Arkansas River Basin based on available water-quality data collected by several agencies. This report summarizes and characterizes available DS, dissolved-selenium, and dissolved-uranium concentrations in groundwater and surface water for 1970-2009 and describes DS, dissolved-selenium, and dissolved-uranium loads in surface water along the main-stem Arkansas River and selected tributary and diversion sites from the headwaters near Leadville, Colorado, to the USGS 07137500 Arkansas River near Coolidge, Kansas (Ark Coolidge), streamgage, a drainage area of 25,410 square miles. Dissolved-solids concentrations varied spatially in groundwater and surface water in the Arkansas River Basin. Dissolved-solids concentrations in groundwater from Quaternary alluvial, glacial drift, and wind-laid deposits (HSU 1) increased downgradient with median values of about 220 mg/L in the Upper Arkansas subbasin (Arkansas River Basin from the headwaters to Pueblo Reservoir) to about 3,400 mg/L in the Lower Arkansas subbasin (Arkansas River Basin from John Martin Reservoir to Ark Coolidge). Dissolved-solids concentrations in the Arkansas River also increased substantially in the downstream direction between the USGS 07086000 Arkansas River at Granite, Colorado (Ark Granite), and Ark Coolidge streamgages. Based on periodic data collected from 1976-2007, median DS concentrations in the Arkansas River ranged from about 64 mg/L at Ark Granite to about 4,060 mg/L at Ark Coolidge representing over a 6,000 percent increase in median DS concentrations. Temporal variations in specific conductance values (which are directly related to DS concentrations) and seasonal variations in DS concentrations and loads were investigated at selected sites in the Arkansas River from Ark Granite to Ark Coolidge. Analyses indicated that, for the most part, specific conductance values (surrogate for DS concentrations) have remained relatively constant or have decreased in the Arkansas River since about 1970. Dissolved-solids concentrations in the Arkansas River were higher during the nonirrigation season (November-February) than during the irrigation season (March-October). Average annual DS loads, however, were higher during the irrigation season than during the nonirrigation season. Average annual DS loads during the irrigation season were at least two times and as much as 23 times higher than average annual DS loads during the nonirrigation season with the largest differences occurring at sites located downstream from the two main-stem reservoirs at USGS 07099400 Arkansas River above Pueblo, Colorado (Ark Pueblo), (which is below Pueblo Reservoir) and USGS 07130500 Arkansas River below John Martin Reservoir, Colorado (Ark below JMR). View report for unabridged abstract.

  6. Nitrogen balance dynamics during 2000-2010 in the Yangtze River Basin croplands, with special reference to the relative contributions of cropland area and synthetic fertilizer N application rate changes

    PubMed Central

    Wang, Lijuan; Zhao, He; Robinson, Brian E.

    2017-01-01

    With the increases of cropland area and fertilizer nitrogen (N) application rate, general N balance characteristics in regional agroecosystems have been widely documented. However, few studies have quantitatively analyzed the drivers of spatial changes in the N budget. We constructed a mass balance model of the N budget at the soil surface using a database of county-level agricultural statistics to analyze N input, output, and proportional contribution of various factors to the overall N input changes in croplands during 2000–2010 in the Yangtze River Basin, the largest basin and the main agricultural production region in China. Over the period investigated, N input increased by 9%. Of this 87% was from fertilizer N input. In the upper and middle reaches of the basin, the increased synthetic fertilizer N application rate accounted for 84% and 76% of the N input increase, respectively, mainly due to increased N input in the cropland that previously had low synthetic fertilizer N application rate. In lower reaches of the basin, mainly due to urbanization, the decrease in cropland area and synthetic fertilizer N application rate nearly equally contributed to decreases in N input. Quantifying spatial N inputs can provide critical managerial information needed to optimize synthetic fertilizer N application rate and monitor the impacts of urbanization on agricultural production, helping to decrease agricultural environment risk and maintain sustainable agricultural production in different areas. PMID:28678841

  7. Nitrogen balance dynamics during 2000-2010 in the Yangtze River Basin croplands, with special reference to the relative contributions of cropland area and synthetic fertilizer N application rate changes.

    PubMed

    Wang, Lijuan; Zheng, Hua; Zhao, He; Robinson, Brian E

    2017-01-01

    With the increases of cropland area and fertilizer nitrogen (N) application rate, general N balance characteristics in regional agroecosystems have been widely documented. However, few studies have quantitatively analyzed the drivers of spatial changes in the N budget. We constructed a mass balance model of the N budget at the soil surface using a database of county-level agricultural statistics to analyze N input, output, and proportional contribution of various factors to the overall N input changes in croplands during 2000-2010 in the Yangtze River Basin, the largest basin and the main agricultural production region in China. Over the period investigated, N input increased by 9%. Of this 87% was from fertilizer N input. In the upper and middle reaches of the basin, the increased synthetic fertilizer N application rate accounted for 84% and 76% of the N input increase, respectively, mainly due to increased N input in the cropland that previously had low synthetic fertilizer N application rate. In lower reaches of the basin, mainly due to urbanization, the decrease in cropland area and synthetic fertilizer N application rate nearly equally contributed to decreases in N input. Quantifying spatial N inputs can provide critical managerial information needed to optimize synthetic fertilizer N application rate and monitor the impacts of urbanization on agricultural production, helping to decrease agricultural environment risk and maintain sustainable agricultural production in different areas.

  8. The San Pedro Basin: A Case Study of US and Mexican Strategies to Connect Science to Societal Needs

    NASA Astrophysics Data System (ADS)

    Scott, R. L.; Goodrich, D. C.; Browning-Aiken, A.; Richter, H.; Varady, R.; Shuttleworth, W. J.

    2007-05-01

    The San Pedro River originates in northern Sonora near the town of Cananea and spans the U.S. - Mexico border into southeastern Arizona. The San Pedro Basin and perennial portions of its river support one of the most ecological diverse regions in the world. The regional groundwater aquifer which largely supports perennial flow and the associated riparian ecosystem is the primary water source for a number of communities, and for the Cananea copper mine in Sonora, which produces roughly two to three percent of the world's copper, and Ft. Huachuca, a major military installation in Arizona and the largest employer of southern Arizona. This presentation will discuss strategies and efforts over the past decade on both sides of the border to link hydrological, ecological and social sciences to aid elected officials and decision-makers in managing the basin, its growing population, and the water it so vitally depends upon. The disparate legal, cultural, economic and scientific environments, as well as the unequal degrees of decentralization and regional autonomy on the two sides of the border have resulted in distinct concerns and approaches to water resource management and varying rates of success. In the Sonoran portion of the basin water quality is the primary concern and in Arizona, water quantity is the major concern. The paper will report on sustained binational efforts and constraints encountered by researchers at the University of Arizona's NSF-funded SAHRA project and several NOAA-supported efforts in the basin region.

  9. Landsat Evapotranspiration for Historical Field-scale Water Use (1984-2015) in the Upper Rio Grande River Basin

    NASA Astrophysics Data System (ADS)

    Senay, G. B.; Schauer, M.; Singh, R. K.; Friedrichs, M.

    2017-12-01

    Field-scale water use maps derived from evapotranspiration (ET) can characterize water use patterns and the impacts of water management decisions. This project generated historical (1984-2015) Landsat-based ET maps for the entire Upper Rio Grande basin which makes this one of the largest regions in the United States with remotely sensed historical ET at Landsat resolution. More than 10,000 Landsat images spanning 32 years were processed using the Operational Simplified Surface Energy Balance (SSEBop) model which integrates weather data and remotely sensed images to estimate monthly and annual ET. Time-series analysis focused on three water-intensive study areas within the basin: the San Luis Valley in Colorado, irrigated fields along the Rio Grande River near Albuquerque, NM, and irrigated fields near Las Cruces, NM. Preliminary analysis suggests land use changes result in declining water use in irrigated areas of the basin which corresponds with increases in land surface temperatures. Time-series analysis of water use patterns at multiple temporal and spatial scales demonstrates the impact of water management decisions on the availability of water in the basin. Comparisons with cropland data from the USDA (NASS CDL) demonstrate how water use for particular crop types changes over time in response to land use changes and shifts in water management. This study illustrates a useful application of "Big Data" earth observation science for quantifying impacts of climate and land use changes on water availability within the United States as well as applications in planning water resource allocation, managing water rights, and sustaining agricultural production in the Upper Rio Grande basin.

  10. 18 CFR 725.7 - Regional or river basin planning.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Regional or river basin... Responsibilities § 725.7 Regional or river basin planning. (a) In agreements between river basin commissions or other regional planning sponsors and the Council for the preparation and revision of regional and river...

  11. 18 CFR 725.7 - Regional or river basin planning.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Regional or river basin... Responsibilities § 725.7 Regional or river basin planning. (a) In agreements between river basin commissions or other regional planning sponsors and the Council for the preparation and revision of regional and river...

  12. Surface-water-quality assessment of the lower Kansas River basin, Kansas and Nebraska; selected metals, arsenic, and phosphorus in streambed sediments of first- and second-order streams, 1987

    USGS Publications Warehouse

    Tanner, D.Q.; Ryder, J.L.

    1996-01-01

    Concentrations of metals and nonmetallic elements were measured in the less than 63-micrometer-sized fraction of streambed-sediment samples from 422 sites on first- and second-order streams in the lower Kansas River Basin of Kansas and Nebraska. Median concentrations were of the same order of magnitude as the geometric mean concentrations in soils of the western United States. Either threshold concentrations (based on normal-probability plots) or upper percentile classes (greater than 50 percent) of concentrations were determined for 14 metals, arsenic, and phosphorus. Samples with a concentration greater than the threshold concentration indicated possible enrichment with respect to that particular element. Concentrations of the transition metals, which included chromium, cobalt, copper, manganese, nickel, and vanadium, generally were larger in the southeastern part of the study unit where Permian and Pennsylvanian shale and limestone predominate. The largest concen- trations of alakali metals, potassium and sodium, mainly were in the northwestern part of the study unit, which is an area of Quaternary loess deposits irrigated with ground water. Larger concentrations of the alkaline-earth metal, barium, also were in the northwestern part of the study unit. Concentrations of the other alkaline-earth metals, calcium, magnesium, and strontium, were larger in the southern part of the basin, which is underlain by Permian and Pennsylvanian shale and limestone. The largest concentrations of arsenic and lead and were mainly in the southeastern part of the study unit. Large concentrations of phosphorus occurred in the northwestern part of the study unit and were associated with irrigated agriculture.

  13. Estimation of constituent concentrations, densities, loads, and yields in lower Kansas River, northeast Kansas, using regression models and continuous water-quality monitoring, January 2000 through December 2003

    USGS Publications Warehouse

    Rasmussen, Teresa J.; Ziegler, Andrew C.; Rasmussen, Patrick P.

    2005-01-01

    The lower Kansas River is an important source of drinking water for hundreds of thousands of people in northeast Kansas. Constituents of concern identified by the Kansas Department of Health and Environment (KDHE) for streams in the lower Kansas River Basin include sulfate, chloride, nutrients, atrazine, bacteria, and sediment. Real-time continuous water-quality monitors were operated at three locations along the lower Kansas River from July 1999 through September 2004 to provide in-stream measurements of specific conductance, pH, water temperature, turbidity, and dissolved oxygen and to estimate concentrations for constituents of concern. Estimates of concentration and densities were combined with streamflow to calculate constituent loads and yields from January 2000 through December 2003. The Wamego monitoring site is located 44 river miles upstream from the Topeka monitoring site, which is 65 river miles upstream from the DeSoto monitoring site, which is 18 river miles upstream from where the Kansas River flows into the Missouri River. Land use in the Kansas River Basin is dominated by grassland and cropland, and streamflow is affected substantially by reservoirs. Water quality at the three monitoring sites varied with hydrologic conditions, season, and proximity to constituent sources. Nutrient and sediment concentrations and bacteria densities were substantially larger during periods of increased streamflow, indicating important contributions from nonpoint sources in the drainage basin. During the study period, pH remained well above the KDHE lower criterion of 6.5 standard units at all sites in all years, but exceeded the upper criterion of 8.5 standard units annually between 2 percent of the time (Wamego in 2001) and 65 percent of the time (DeSoto in 2003). The dissolved oxygen concentration was less than the minimum aquatic-life-support criterion of 5.0 milligrams per liter less than 1 percent of the time at all sites. Dissolved solids, a measure of the dissolved material in water, exceeded 500 milligrams per liter about one-half of the time at the three Kansas River sites. Larger dissolved-solids concentrations upstream likely were a result of water inflow from the highly mineralized Smoky Hill River that is diluted by tributary flow as it moves downstream. Concentrations of total nitrogen and total phosphorus at the three monitoring sites exceeded the ecoregion water-quality criteria suggested by the U.S. Environmental Protection Agency during the entire study period. Median nitrogen and phosphorus concentrations were similar at all three sites, and nutrient load increased moving from the upstream to downstream sites. Total nitrogen and total phosphorus yields were nearly the same from site to site indicating that nutrient sources were evenly distributed throughout the lower Kansas River Basin. About 11 percent of the total nitrogen load and 12 percent of the total phosphorus load at DeSoto during 2000-03 originated from wastewater-treatment facilities. Escherichia coli bacteria densities were largest at the middle site, Topeka. On average, 83 percent of the annual bacteria load at DeSoto during 2000-03 occurred during 10 percent of the time, primarily in conjunction with runoff. The average annual sediment loads at the middle and downstream monitoring sites (Topeka and DeSoto) were nearly double those at the upstream site (Wamego). The average annual sediment yield was largest at Topeka. On average, 64 percent of the annual suspended-sediment load at DeSoto during 2000-03 occurred during 10 percent of the time. Trapping of sediment by reservoirs located on contributing tributaries decreases transport of sediment and sediment-related constituents. The average annual suspended-sediment load in the Kansas River at DeSoto during 2000-03 was estimated at 1.66 million tons. An estimated 13 percent of this load consisted of sand-size particles, so approximately 216,000 tons of sand were transported

  14. Pawcatuck and Woonasquatucket River Basins and Narragansett Bay Local Drainage Area. Main Report.

    DTIC Science & Technology

    1981-10-01

    building and housing codes are recommended. Flood warning systems, urban renewal, tax incentives, and public open space acquisition will also help...RIVER GROUP WATERSHEDLD LOCAL DRAINAGE PD, WOONASQUATUCKET - MOSI4ASSUCK - PROVIDENCE RIVERS SUB-BASIN PD2 BLACKSTONE RIVER SUB-BASIN orPD 3 TENMiLE...of the Taunton River Basin in Massachusetts, 1979 PNB Water Supply Study, January 1979 Big River Reservoir Project, July 1981 Blackstone River

  15. Bedrock geologic map of the Spring Valley, West Plains, and parts of the Piedmont and Poplar Bluff 30'x60' quadrangles, Missouri, including the upper Current River and Eleven Point River drainage basins

    USGS Publications Warehouse

    Weary, David J.; Harrison, Richard W.; Orndorff, Randall C.; Weems, Robert E.; Schindler, J. Stephen; Repetski, John E.; Pierce, Herbert A.

    2015-01-01

    Potentially economic mineral resources are present in the subsurface in the map area. Exploration drill-hole data indicate that anomalously high concentrations of base-metal sulfides locally occur within the Cambrian Bonneterre Formation. The geologic setting of these anomalous concentrations is similar to that found in the Viburnum Trend, part of the largest lead-mining district in the world. The southernmost part of the Viburnum Trend extends into the northern part of the map area and is exploited by the Sweetwater Mine. Undeveloped and potentially economic occurrences of base metals are known also beneath Blair Creek, a tributary to the Current River in the north-central part of the map area.

  16. Modelling nitrogen transformation and removal in mara river basin wetlands upstream of lake Victoria

    NASA Astrophysics Data System (ADS)

    Mayo, Aloyce W.; Muraza, Marwa; Norbert, Joel

    2018-06-01

    Lake Victoria, the largest lake in Africa, is a resource of social-economic potential in East Africa. This lake receives water from numerous tributaries including Mara River, which contributes about 4.8% of the total Lake water inflow. Unfortunately, Mara River basin faces environmental problems because of intensive settlement, agriculture, overgrazing in the basin and mining activities, which has lead to water pollution in the river, soil erosion and degradation, decreased soil fertility, loss of vegetation cover, decreased water infiltration capacity and increased sedimentation. One of the pollutants carried by the river includes nitrogen, which has contributed to ecological degradation of the Lake Victoria. Therefore this research work was intended to determine the effectiveness of Mara River wetland for removal of nitrogen and to establish nitrogen removal mechanisms in the wetland. To predict nitrogen removal in the wetland, the dynamics of nitrogen transformation was studied using a conceptual numerical model that takes into account of various processes in the system using STELLA II version 9.0®2006 software. Samples of model input from water, plants and sediments were taken for 45 days and were analyzed for pH, temperature, and DO in situ and chemical parameters such as NH3-N, Org-N, NO2-N, and NO3-N were analyzed in the laboratory in accordance with Standard methods. For plants, the density, dominance, biomass productivity and TN were determined and for sediments TN was analyzed. Inflow into the wetland was determined using stage-discharge relationship and was found to be 734,400 m3/day and the average wetland volume was 1,113,500 m3. Data collected by this study were used for model calibration of nitrogen transformation in this wetland while data from another wetland were used for model validation. It was found that about 37.8% of total nitrogen was removed by the wetland system largely through sedimentation (26.6%), plant uptake (6.6%) and denitrification (4.6%).

  17. Analysis of the spatial-temporal change of the vegetation index in the upper reach of Han River Basin in 2000-2016

    NASA Astrophysics Data System (ADS)

    Luan, Jinkai; Liu, Dengfeng; Zhang, Lianpeng; Huang, Qiang; Feng, Jiuliang; Lin, Mu; Li, Guobao

    2018-06-01

    Han River is the water source region of the middle route of South-to-North Water Diversion in China and the ecological projects were implemented since many years ago. In order to monitor the change of vegetation in Han River and evaluate the effect of ecological projects, it is needed to reveal the spatial-temporal change of the vegetation in the upper reach of Han River quantitatively. The study is based on MODIS/Terra NDVI remote sensing data, and analyzes the spatial-temporal changes of the NDVI in August from 2000 to 2016 at pixel scale in the upper reach of Han River Basin. The results show that, the area with increasing NDVI between 0 and 0.005 per year accounts for 62.07 % of the area of upper reach of Han River Basin, and the area with changing rate between -0.005 and 0 per year accounts for 26.65 % of the research area. The area with significant decreasing trend only accounts for 2.76 %, while area significant increasing trend accounts for 13.47 %, and the area with increasing NDVI is much larger than the area with reducing NDVI. The vegetation index of each county is evaluated and found that, the areal proportion with significant decreasing trend in Hantai is the biggest, reaching 35.57 %. The areal proportion with significant increasing trend in Zhenba County, Ziyang County, Xunyang County, Zhashui County, Shangzhou District, Shanyang County and Yun County is larger than the others, and the areal proportions are more than 20 %. The largest areal proportion with significant increasing trend is in Shangzhou District and it reaches 31.11 %. On the whole, the area ratio in all districts and counties with increasing NDVI is much larger than the area ratio with decreasing NDVI.

  18. The systematic geologic mapping program and a quadrangle-by-quadrangle analysis of time-stratigraphic relations within oil shale-bearing rocks of the Piceance Basin, western Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.

    2012-01-01

    During the 1960s, 1970s, and 1980s, the U.S. Geological Survey mapped the entire area underlain by oil shale of the Eocene Green River Formation in the Piceance Basin of western Colorado. The Piceance Basin contains the largest known oil shale deposit in the world, with an estimated 1.53 trillion barrels of oil in place and as much as 400,000 barrels of oil per acre. This report places the sixty-nine 7½-minute geologic quadrangle maps and one 15-minute quadrangle map published during this period into a comprehensive time-stratigraphic framework based on the alternating rich and lean oil shale zones. The quadrangles are placed in their respective regional positions on one large stratigraphic chart so that tracking the various stratigraphic unit names that have been applied can be followed between adjacent quadrangles. Members of the Green River Formation were defined prior to the detailed mapping, and many inconsistencies and correlation problems had to be addressed as mapping progressed. As a result, some of the geologic units that were defined prior to mapping were modified or discarded. The extensive body of geologic data provided by the detailed quadrangle maps contributes to a better understanding of the distribution and characteristics of the oil shale-bearing rocks across the Piceance Basin.

  19. Distribution and transportation of mercury from glacier to lake in the Qiangyong Glacier Basin, southern Tibetan Plateau, China.

    PubMed

    Sun, Shiwei; Kang, Shichang; Huang, Jie; Li, Chengding; Guo, Junming; Zhang, Qianggong; Sun, Xuejun; Tripathee, Lekhendra

    2016-06-01

    The Tibetan Plateau is home to the largest aggregate of glaciers outside the Polar Regions and is a source of fresh water to 1.4 billion people. Yet little is known about the transportation and cycling of Hg in high-elevation glacier basins on Tibetan Plateau. In this study, surface snow, glacier melting stream water and lake water samples were collected from the Qiangyong Glacier Basin. The spatiotemporal distribution and transportation of Hg from glacier to lake were investigated. Significant diurnal variations of dissolved Hg (DHg) concentrations were observed in the river water, with low concentrations in the morning (8:00am-14:00pm) and high concentrations in the afternoon (16:00pm-20:00pm). The DHg concentrations were exponentially correlated with runoff, which indicated that runoff was the dominant factor affecting DHg concentrations in the river water. Moreover, significant decreases of Hg were observed during transportation from glacier to lake. DHg adsorption onto particulates followed by the sedimentation of particulate-bound Hg (PHg) could be possible as an important Hg removal mechanism during the transportation process. Significant decreases in Hg concentrations were observed downstream of Xiao Qiangyong Lake, which indicated that the high-elevation lake system could significantly affect the distribution and transportation of Hg in the Qiangyong Glacier Basin. Copyright © 2016. Published by Elsevier B.V.

  20. Field and Laboratory Studies of Radiocesium Transfers in Soil-Water Environment at Fukushima Prefecture

    NASA Astrophysics Data System (ADS)

    Nanba, K.; Zheleznyak, M.; Konoplev, A.; Wakiyama, Y.; Golosov, V.; Wada, T.; Tsukada, H.

    2015-12-01

    The systematic monitoring studies of radiocesium concentrations in suspended sediments and water of the Abukuma River, the largest river of Fukushima prefecture, and its tributaries at the vicinity of Fukushima city have started in Fukushima University at the end of 2011. The scale of these field studies was extended after establishment in 2013 new Institute of Environmental Radioactivity at Fukushima University which posses the comprehensive laboratory base. The field measurements of hydrochemical water parameters and concentrations of radiocesium in water and sediments are provided in the rivers of northern coastal zone of Fukushima province with the most comprehensive program for Niida River basin. The radiocesium dynamics is studied in Sakashita Reservoir and heavily contaminated irrigation ponds of Okuma town in the vicinity of FDNPP, Takanokura Reservoir, Inawashiro Lake, Hibara Lake. Comparative analysis is provided for radiocaesium wash-off parameters and distribution coefficient in rivers and surface runoff on Fukushima and Chernobyl contaminated areas for the first years after the accidents. It is found that radiocaesium distribution coefficient in rivers of Fukushima is essentially higher (1-2 orders of magnitude) than correspondent values for rivers and surface runoff of the Chernobyl zone. Normalized dissolved wash-off coefficients for watersheds of Fukushima are at least 1 order of magnitude lower correspondent values for Chernobyl zone. Normalized particulate wash-off coefficients are comparable for Fukushima and Chernobyl. Presented are results of the investigation of radiocesium vertical distribution in soils of the close-in area of the FDNPP: Okuma town and Niida River basin. It is shown that radiocesium dispersion in undisturbed forest and grassland soils at Fukushima contaminated area is significantly faster as compared to the Chernobyl 30-km zone during the first three years after the accidents.

  1. Recent Niger Delta shoreline response to Niger River hydrology: Conflict between forces of Nature and Humans

    NASA Astrophysics Data System (ADS)

    Dada, Olusegun A.; Li, Guangxue; Qiao, Lulu; Asiwaju-Bello, Yinusa Ayodele; Anifowose, Adeleye Yekini Biodun

    2018-03-01

    The Niger River Delta is a prolific hydrocarbon province and a mega-delta of economic and environmental relevance. To understand patterns of its recent shoreline evolution (1923-2013) in response to the Niger River hydrology, and establish the role played by forces of Nature and Human, available topographic and satellite remote sensing data, combined with hydro-climatic (rainfall and runoff) data were analyzed. Results indicate that the entire delta coastline dramatically receded: 82% of the >400 km-long coast retreated, during the period 1950-1987; and 69% between 2007 and 2012. Prior to 1950, there was a continuation of seaward advancement along 53-74% of the delta coast. The 1950-1987 shoreline recession coincided with occurrences of two major events in the Niger River basin; these are downward trends in hydro-climatic conditions (the great droughts of the 1970s-1980s), and dam construction on the Lower Niger River at Kainji (1964-1968). The 2007-2012 event corresponded with the extensive channel dredging during 2009-2012 in the Lower Niger River from the coastal town of Warri in the south to Baro in the north. Remarkably, the largest net shoreline advancement recorded in 74% of the entire delta area occurred within a year (2012-2013), which we link to increased sediment supply to the coast caused by the '2012' floods, adjudged the worst floods in the entire Niger River Basin in the last few decades. With both anthropogenic and environmental factors inducing delta evolution, only innovative river and coastal management can determine the fortune of the future coastal development of the Niger Delta.

  2. Ca isotopes in the Ebro River Basin: mixing and lithological tracer

    NASA Astrophysics Data System (ADS)

    Guerrot, C.; Negrel, P. J.; Millot, R.; Petelet-Giraud, E.; Brenot, A.

    2012-12-01

    A large investigation of the Ebro River catchment was done in the past years regarding hydrogen, oxygen, lithium, boron, sulphur and oxygen from SO4 and strontium isotope measurements together with major and trace elements in the dissolved load of 25 river samples collected within the Ebro River Basin in Spain (Millot et al., Geophysical Research Abstracts, Vol. 14, EGU2012-2062, 2012). The Ebro River (928 km long, 85,530 km2 drainage basin) located in North-Eastern Spain rises near the Atlantic coast in the Cantabrian Mountains and flows into the western Mediterranean Sea through several large cities and agricultural, mining and industrial areas. The river is one of the largest contributors of freshwater in the Mediterranean Sea and ends in the Ebro delta, one of the most important wetlands in Europe. Bedrocks of the Ebro River Basin are mainly dominated by carbonates and evaporites from the Paleozoic and Mesozoic terrains. The Ebro river mainstream was sampled at Amposta one time per month between June 2005 and May 2006 and secondly, the Ebro River along its main course and its main tributaries were sampled during one field campaign in April 2006. The behaviour of Ca and its isotopes during water/rock interactions at the scale of a large river basin having various lithologies will be investigated in addition with Sr, S (SO4) and O (SO4) isotopes. One objective is to characterize the processes controlling the isotope signatures of a large river draining predominantly sedimentary bedrocks. The δ44Ca ratio (δ44/40 normalised to Seawater) ranged between -0.87 and -1.09‰ along the Ebro main stream, increasing towards the delta as the Ca content increase. In Amposta, the δ44Ca ratio ranged between -0.66 and -1.04‰ and tends to decrease with the increasing discharge. These variations are very similar to those given by the 87Sr/86Sr ratios and Sr contents. For the tributaries, the δ44Ca ratio ranged between -0.43 and -1.04‰ whereas the anhydrite-gypsum bedrock display a range from -0.94 to -1.22 and the carbonate bedrock ranged from -1.04 to -1.39‰. Comparing Sr isotope ratios and Ca/Na ratios evidenced the role of anhydrites/halides weathering for some tributaries (Guadalope, Matarrana, Aragon, Ega), the role of carbonates/halides weathering for the others (Gallego, Cinca, Segre); the Ebro being a mix of both. Weathering of rock masks the seasalt signal, if any. As there is no Ca in halides, the comparison of the δ44Ca and 87Sr/86Sr ratios further evidenced the role of anhydrites and carbonates for the Ebro and tributaries, highlight geochemical processes like carbonate oversaturation (Guadalope and Matarrana tributaries) and imprints the seasalt signal.

  3. The Rivers of the Mississippi Watershed

    NASA Image and Video Library

    2017-12-08

    The Mississippi Watershed is the largest drainage basin in North America at 3.2 million square kilometers in area. The USGS has created a database of this area which indicates the direction of waterflow at each point. By assembling these directions into streamflows, it is possible to trace the path of water from every point of the area to the mouth of the Mississippi in the Gulf of Mexico. This animation starts with the points furthest from the Gulf and reveals the streams and rivers as a steady progression towards the mouth of the Mississippi until all the major rivers are revealed. The speed of the reveal of the rivers is not dependent on the actual speed of the water flow. The reveal proceeds at a constant velocity along each river path, timed so that all reveals reach the mouth of the Mississippi at the same time. This animation does not show actual flow rates of the rivers. All rivers are shown with identical rates. The river colors and widths correspond to the relative lengths of river segments. Credit: NASA's Scientific Visualization Studio/Horace Mitchell Go here to download this video: svs.gsfc.nasa.gov/4493

  4. 76 FR 24515 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Colorado River Basin Salinity Control Advisory... Basin Salinity Control Advisory Council (Council) will meet as detailed below. The meeting of the... INFORMATION: The Colorado River Basin Salinity Control Advisory Council was established by the Colorado River...

  5. Assessment of Air Temperature Trends in the Source Region of Yellow River and Its Sub-Basins, China

    NASA Astrophysics Data System (ADS)

    Iqbal, Mudassar; Wen, Jun; Wang, Xin; Lan, Yongchao; Tian, Hui; Anjum, Muhammad Naveed; Adnan, Muhammad

    2018-02-01

    Changes in climatic variables at the sub-basins scale (having different features of land cover) are crucial for planning, development and designing of water resources infrastructure in the context of climate change. Accordingly, to explore the features of climate changes in sub-basins of the Source Region of Yellow River (SRYR), absolute changes and trends of temperature variables, maximum temperature (Tmax), minimum temperature (Tmin), mean temperature (Tavg) and diurnal temperature range (DTR), were analyzed annually and seasonally by using daily observed air temperature dataset from 1965 to 2014. Results showed that annual Tmax, Tmin and Tavg for the SRYR were experiencing warming trends respectively at the rate of 0.28, 0.36 and 0.31°C (10 yr)-1. In comparison with the 1st period (1965-1989), more absolute changes and trends towards increasing were observed during the 2nd period (1990-2014). Apart from Tangnaihai (a low altitude sub-basin), these increasing trends and changes seemed more significant in other basins with highest magnitude during winter. Among sub-basins the increasing trends were more dominant in Huangheyan compared to other sub-basins. The largest increase magnitude of Tmin, 1.24 and 1.18°C (10 yr)-1, occurred in high altitude sub-basins Jimai and Huangheyan, respectively, while the smallest increase magnitude of 0.23°C (10 yr)-1 occurred in a low altitude sub-basin Tangnaihai. The high elevation difference in Tangnaihai probably was the main reason for the less increase in the magnitude of Tmin. In the last decade, smaller magnitude of trend for all temperature variables signified the signal of cooling in the region. Overall, changes of temperature variables had significant spatial and seasonal variations. It implies that seasonal variations of runoff might be greater or different for each sub-basin.

  6. Hydrogeologic framework and groundwater conditions of the Ararat Basin in Armenia

    USGS Publications Warehouse

    Valder, Joshua F.; Carter, Janet M.; Medler, Colton J.; Thompson, Ryan F.; Anderson, Mark T.

    2018-01-17

    Armenia is a landlocked country located in the mountainous Caucasus region between Asia and Europe. It shares borders with the countries of Georgia on the north, Azerbaijan on the east, Iran on the south, and Turkey and Azerbaijan on the west. The Ararat Basin is a transboundary basin in Armenia and Turkey. The Ararat Basin (or Ararat Valley) is an intermountain depression that contains the Aras River and its tributaries, which also form the border between Armenia and Turkey and divide the basin into northern and southern regions. The Ararat Basin also contains Armenia’s largest agricultural and fish farming zone that is supplied by high-quality water from wells completed in the artesian aquifers that underlie the basin. Groundwater constitutes about 40 percent of all water use, and groundwater provides 96 percent of the water used for drinking purposes in Armenia. Since 2000, groundwater withdrawals and consumption in the Ararat Basin of Armenia have increased because of the growth of aquaculture and other uses. Increased groundwater withdrawals caused decreased springflow, reduced well discharges, falling water levels, and a reduction of the number of flowing artesian wells in the southern part of Ararat Basin in Armenia.In 2016, the U.S. Geological Survey and the U.S. Agency for International Development (USAID) began a cooperative study in Armenia to share science and field techniques to increase the country’s capabilities for groundwater study and modeling. The purpose of this report is to describe the hydrogeologic framework and groundwater conditions of the Ararat Basin in Armenia based on data collected in 2016 and previous hydrogeologic studies. The study area includes the Ararat Basin in Armenia. This report was completed through a partnership with USAID/Armenia in the implementation of its Science, Technology, Innovation, and Partnerships effort through the Advanced Science and Partnerships for Integrated Resource Development program and associated partners, including the Government of Armenia, Armenia’s Hydrogeological Monitoring Center, and the USAID Global Development Lab and its GeoCenter.The hydrogeologic framework of the Ararat Basin includes several basin-fill stratigraphic units consisting of interbedded dense clays, gravels, sands, volcanic basalts, and andesite deposits. Previously published cross sections and well lithologic logs were used to map nine general hydrogeologic units. Hydrogeologic units were mapped based on lithology and water-bearing potential. Water-level data measured in the water-bearing hydrogeologic units 2, 4, 6, and 8 in 2016 were used to create potentiometric surface maps. In hydrogeologic unit 2, the estimated direction of groundwater flow is from the west to north in the western part of the basin (away from the Aras River) and from north to south (toward the Aras River) in the eastern part of the basin. In hydrogeologic unit 4, the direction of groundwater flow is generally from west to east and north to south (toward the Aras River) except in the western part of the basin where groundwater flow is toward the north or northwest. Hydrogeologic unit 6 has the same general pattern of groundwater flow as unit 4. Hydrogeologic unit 8 is the deepest of the water-bearing units and is confined in the basin. Groundwater flow generally is from the south to north (away from the Aras River) in the western part of the basin and from west to east and north to south (toward the Aras River) elsewhere in the basin.In addition to water levels, personnel from Armenia’s Hydrogeological Monitoring Center also measured specific conductance at 540 wells and temperature at 2,470 wells in the Ararat Basin using U.S. Geological Survey protocols in 2016. The minimum specific conductance was 377 microsiemens per centimeter (μS/cm), the maximum value was 4,000 μS/cm, and the mean was 998 μS/cm. The maximum water temperature was 24.2 degrees Celsius. An analysis between water temperature and well depth indicated no relation; however, spatially, most wells with cooler water temperatures were within the 2016 pressure boundary or in the western part of the basin. Wells with generally warmer water temperatures were in the eastern part of the basin.Samples were collected from four groundwater sites and one surface-water site by the U.S. Geological Survey in 2016. The stable-isotope values were similar for all five sites, indicating similar recharge sources for the sampled wells. The Hrazdan River sample was consistent with the groundwater samples, indicating the river could serve as a source of recharge to the Ararat artesian aquifer.

  7. The Role of Forests in Regulating the River Flow Regime of Large Basins of the World

    NASA Astrophysics Data System (ADS)

    Salazar, J. F.; Villegas, J. C.; Mercado-Bettin, D. A.; Rodríguez, E.

    2016-12-01

    Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we explore potential linkages between the presence of forests and the capacity of river basins for regulating river flows. Regulation is defined here as the capacity of river basins to attenuate the amplitude of the river flow regime, that is to reduce the difference between high and low flows. We first use scaling theory to show how scaling properties of observed river flows can be used to classify river basins as regulated or unregulated. This parsimonious classification is based on a physical interpretation of the scaling properties (particularly the scaling exponents) that is novel (most previous studies have focused on the interpretation of the scaling exponents for floods only), and widely-applicable to different basins (the only assumption is that river flows in a given river basin exhibit scaling properties through well-known power laws). Then we show how this scaling framework can be used to explore global-change-induced temporal variations in the regulation capacity of river basins. Finally, we propose a conceptual hypothesis (the "Forest reservoir concept") to explain how large-scale forests can exert important effects on the long-term water balance partitioning and regulation capacity of large basins of the world. Our quantitative results are based on data analysis (river flows and land cover features) from 22 large basins of the world, with emphasis in the Amazon river and its main tributaries. Collectively, our findings support the hypothesis that forest cover enhances the capacity of large river basins to maintain relatively high mean river flows, as well as to regulate (ameliorate) extreme river flows. Advancing towards this quantitative understanding of the relation between forest cover and river flow regimes is crucial for water management- and land cover-related decisions.

  8. The Role of Forests in Regulating the River Flow Regime of Large Basins of the World

    NASA Astrophysics Data System (ADS)

    Salazar, J. F.; Villegas, J. C.; Mercado-Bettin, D. A.; Rodríguez, E.

    2017-12-01

    Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we explore potential linkages between the presence of forests and the capacity of river basins for regulating river flows. Regulation is defined here as the capacity of river basins to attenuate the amplitude of the river flow regime, that is to reduce the difference between high and low flows. We first use scaling theory to show how scaling properties of observed river flows can be used to classify river basins as regulated or unregulated. This parsimonious classification is based on a physical interpretation of the scaling properties (particularly the scaling exponents) that is novel (most previous studies have focused on the interpretation of the scaling exponents for floods only), and widely-applicable to different basins (the only assumption is that river flows in a given river basin exhibit scaling properties through well-known power laws). Then we show how this scaling framework can be used to explore global-change-induced temporal variations in the regulation capacity of river basins. Finally, we propose a conceptual hypothesis (the "Forest reservoir concept") to explain how large-scale forests can exert important effects on the long-term water balance partitioning and regulation capacity of large basins of the world. Our quantitative results are based on data analysis (river flows and land cover features) from 22 large basins of the world, with emphasis in the Amazon river and its main tributaries. Collectively, our findings support the hypothesis that forest cover enhances the capacity of large river basins to maintain relatively high mean river flows, as well as to regulate (ameliorate) extreme river flows. Advancing towards this quantitative understanding of the relation between forest cover and river flow regimes is crucial for water management- and land cover-related decisions.

  9. A comparison of integrated river basin management strategies: A global perspective

    NASA Astrophysics Data System (ADS)

    Zhao, Chunhong; Wang, Pei; Zhang, Guanghong

    In order to achieve the integrated river basin management in the arid and rapid developing region, the Heihe River Basin (HRB) in Northwestern China, one of critical river basins were selected as a representative example, while the Murray-Darling Basin (MDB) in Australia and the Colorado River Basin (CRB) in the USA were selected for comparative analysis in this paper. Firstly, the comparable characters and hydrological contexts of these three watersheds were introduced in this paper. Then, based on comparative studies on the river basin challenges in terms of the drought, intensive irrigation, and rapid industrialization, the hydrological background of the MDB, the CRB and the HRB was presented. Subsequently, the river management strategies were compared in three aspects: water allocation, water organizations, and water act and scientific projects. Finally, we proposed recommendations for integrated river basin management for the HRB: (1) Water allocation strategies should be based on laws and markets on the whole basin; (2) Public participation should be stressed by the channels between governance organizations and local communities; (3) Scientific research should be integrated into river management to understand the interactions between the human and nature.

  10. Diet composition and fish consumption of double-crested cormorants from three St. Lawrence River Colonies in 2013

    USGS Publications Warehouse

    Johnson, James H.; Farquhar, James F.; Mazzocchi, Irene M.; Bendig, Anne

    2014-01-01

    Double-crested Cormorants (Phalacrocorax auritus) were first observed nesting in the upper St. Lawrence River at Strachan Island in 1992. Cormorants now nest at a number of islands in the Thousand Islands section of the river. Griswold, McNair, and Strachan islands are among the largest colonies in the upper river. Until 2011, nest counts had remained relatively stable, ranging from 200 to 603 nests per colony. However, since 2011 the number of nests at McNair Island have exceeded 700 each year. Although the size of cormorant colonies in the upper St. Lawrence River is smaller than those in the eastern basin of Lake Ontario, the close proximity of islands in the upper river that have colonies may cause a cumulative fish consumption effect similar to a larger colony. Because of increasing numbers of Double-crested Cormorants in the upper St. Lawrence River and the possible effects on fish populations, studies were initiated in 1999 to quantify cormorant diet and fish consumption at the three largest colonies. From 1999 to 2012, these studies have shown that cormorants consumed about 128.6 million fish including 37.5 million yellow perch (Perca flavescens), 17.4 million rock bass (Ambloplites rupestris) and 1.0 million smallmouth bass (Micropterus dolemieu) (Johnson et al. 2012). During this same time period fish assessment studies near some of these islands have shown a major decrease in yellow perch populations (Klindt 2007). This occurrence is known as the halo effect and happens when piscivorous birds deplete local fish populations in areas immediately surrounding the colony (Ashmole 1963). This paper describes the diet and fish consumption of cormorants in the upper St. Lawrence River in 2013.

  11. 78 FR 70574 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ...] Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub. L.93-320) (Act) to...

  12. 77 FR 61784 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-11

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Colorado River Basin Salinity Control Advisory... River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub. L. 93-320) (Act) to receive reports and advise Federal agencies on...

  13. 77 FR 23508 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Colorado River Basin Salinity Control Advisory... River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub. L. 93-320) (Act) to receive reports and advise Federal agencies on...

  14. 78 FR 23784 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-22

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Colorado River Basin Salinity Control Advisory... River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Public Law 93-320) (Act) to receive reports and advise Federal agencies on...

  15. 75 FR 66389 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Colorado River Basin Salinity Control Advisory... River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub. L. 93-320) (Act) to receive reports and advise Federal agencies on...

  16. 75 FR 27360 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Colorado River Basin Salinity Control Advisory... River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub. L. 93-320) (Act) to receive reports and advise Federal agencies on...

  17. 76 FR 61382 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Colorado River Basin Salinity Control Advisory...: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub. L. 93-320) (Act) to receive reports and advise Federal...

  18. Residence times in river basins as determined by analysis of long-term tritium records

    USGS Publications Warehouse

    Michel, R.L.

    1992-01-01

    The US Geological Survey has maintained a network of stations to collect samples for the measurement of tritium concentrations in precipitation and streamflow since the early 1960s. Tritium data from outflow waters of river basins draining 4500-75000 km2 are used to determine average residence times of water within the basins. The basins studied are the Colorado River above Cisco, Utah; the Kissimmee River above Lake Okeechobee, Florida; the Mississippi River above Anoka, Minnesota; the Neuse River above Streets Ferry Bridge near Vanceboro, North Carolina; the Potomac River above Point of Rocks, Maryland; the Sacramento River above Sacramento, California; the Susquehanna River above Harrisburg, Pennsylvania. The basins are modeled with the assumption that the outflow in the river comes from two sources-prompt (within-year) runoff from precipitation, and flow from the long-term reservoirs of the basin. Tritium concentration in the outflow water of the basin is dependent on three factors: (1) tritium concentration in runoff from the long-term reservoir, which depends on the residence time for the reservoir and historical tritium concentrations in precipitation; (2) tritium concentrations in precipitation (the within-year runoff component); (3) relative contributions of flow from the long-term and within-year components. Predicted tritium concentrations for the outflow water in the river basins were calculated for different residence times and for different relative contributions from the two reservoirs. A box model was used to calculate tritium concentrations in the long-term reservoir. Calculated values of outflow tritium concentrations for the basin were regressed against the measured data to obtain a slope as close as possible to 1. These regressions assumed an intercept of zero and were carried out for different values of residence time and reservoir contribution to maximize the fit of modeled versus actual data for all the above rivers. The final slopes of the fitted regression lines ranged from 0.95 to 1.01 (correlation coefficient > 0.96) for the basins studied. Values for the residence time of waters within the basins and average relative contributions of the within-year and long-term reservoirs to outflow were obtained. Values for river basin residence times ranged from 2 years for the Kissimmee River basin to 20 years for the Potomac River basin. The residence times indicate the time scale in which the basin responds to anthropogenic inputs. The modeled tritium concentrations for the basins also furnish input data for urban and agricultural settings where these river waters are used. ?? 1992.

  19. The agricultural water footprint of EU river basins

    NASA Astrophysics Data System (ADS)

    Vanham, Davy

    2014-05-01

    This work analyses the agricultural water footprint (WF) of production (WFprod,agr) and consumption (WFcons,agr) as well as the resulting net virtual water import (netVWi,agr) for 365 EU river basins with an area larger than 1000 km2. Apart from total amounts, also a differentiation between the green, blue and grey components is made. River basins where the WFcons,agr,tot exceeds WFprod,agr,tot values substantially (resulting in positive netVWi,agr,tot values), are found along the London-Milan axis. River basins where the WFprod,agr,totexceeds WFcons,agr,totare found in Western France, the Iberian Peninsula and the Baltic region. The effect of a healthy (HEALTHY) and vegetarian (VEG) diet on the WFcons,agr is assessed, as well as resulting changes in netVWi,agr. For HEALTHY, the WFcons,agr,tot of most river basins decreases (max 32%), although in the east some basins show an increase. For VEG, in all but one river basins a reduction (max 46%) in WFcons,agr,tot is observed. The effect of diets on the WFcons,agrof a river basin has not been carried out so far. River basins and not administrative borders are the key geographical entity for water management. Such a comprehensive analysis on the river basin scale is the first in its kind. Reduced river basin WFcons,agrcan contribute to sustainable water management both within the EU and outside its borders. They could help to reduce the dependency of EU consumption on domestic and foreign water resources.

  20. Estimating the sources and transport of nutrients in the Waikato River Basin, New Zealand

    USGS Publications Warehouse

    Alexander, Richard B.; Elliott, Alexander H.; Shankar, Ude; McBride, Graham B.

    2002-01-01

    We calibrated SPARROW (Spatially Referenced Regression on Watershed Attributes) surface water‐quality models using measurements of total nitrogen and total phosphorus from 37 sites in the 13,900‐km2 Waikato River Basin, the largest watershed on the North Island of New Zealand. This first application of SPARROW outside of the United States included watersheds representative of a wide range of natural and cultural conditions and water‐resources data that were well suited for calibrating and validating the models. We applied the spatially distributed model to a drainage network of nearly 5000 stream reaches and 75 lakes and reservoirs to empirically estimate the rates of nutrient delivery (and their levels of uncertainty) from point and diffuse sources to streams, lakes, and watershed outlets. The resulting models displayed relatively small errors; predictions of stream yield (kg ha−1 yr−1) were typically within 30% or less of the observed values at the monitoring sites. There was strong evidence of the accuracy of the model estimates of nutrient sources and the natural rates of nutrient attenuation in surface waters. Estimated loss rates for streams, lakes, and reservoirs agreed closely with experimental measurements and empirical models from New Zealand, North America, and Europe as well as with previous U.S. SPARROW models. The results indicate that the SPARROW modeling technique provides a reliable method for relating experimental data and observations from small catchments to the transport of nutrients in the surface waters of large river basins.

  1. Geochemical processes controlling selenium in ground water after mining, Powder River Basin, Wyoming, U.S.A.

    USGS Publications Warehouse

    Naftz, D.L.; Rice, J.A.

    1989-01-01

    Geochemical data for samples of overburden from three mines in the Powder River Basin indicate a statistically significant (0.01 confidence level) positive correlation (r = 0.74) between Se and organic C. Results of factor analysis with varimax rotation on the major and trace element data from the rock samples indicate large (>50) varimax loadings for Se in two of the three factors. In Factor 1, the association of Se with constituents common to detrital grains indicates that water transporting the detrital particles into the Powder River Basin also carried dissolved Se. The large (>50) varimax loadings of Se and organic C in Factor 2 probably are due to the organic affinities characteristic of Se. Dissolved Se concentrations in water samples collected at one coal mine are directly related to the dissolved organic C concentrations. Hydrophilic acid concentrations in the water samples from the mine ranged from 35 to 43% of the total dissolved organic C, and hydrophobic acid concentrations ranged from 40 to 49% of the total dissolved organic C. The largest dissolved organic C concentrations in water from the same mine (34-302 mg/l), coupled with the large proportion of acidic components, may saturate adsorption sites on geothite and similar minerals that comprise the aquifer material, thus decreasing the extent of selenite (SeO32-) adsorption as a sink for Se as the redox state of ground water decreases. ?? 1989.

  2. Evaluation of trends in pH in the Yampa River, northwestern Colorado, 1950-2000

    USGS Publications Warehouse

    Chafin, Daniel T.

    2002-01-01

    In 1999, the U.S. Geological Survey began a study of pH trends in the Yampa River from near its headwaters to its mouth. The study was prompted by an apparent historical increase in measured pH at the Yampa River near Maybell, from an average of about 7.6 in the 1950's and 1960's to about 8.3 in the 1980's and 1990's. If real, further increase could cause more frequent exceedances of the Colorado water-quality standard of 9.0 and adversely affect aquatic life in the Yampa River Basin, including Dinosaur National Monument. The principal conclusion of this study is that this apparent historical increase in measured pH was caused mostly by changes in measurement protocol. Synoptic sampling during August 16-19, 1999, a period of relatively warm weather and base flow, showed that late afternoon pH of the Yampa River ranged from 8.46 to 9.20. The largest pH (9.20) exceeded the Colorado water-quality standard and was measured at Yampa River above Elk River, about 1.8 miles downstream from the Steamboat Springs Regional Waste Water Treatment Plant outfall, where nutrient enrichment caused photosynthesis by algae to dominate. Here, the dissolved oxygen concentration was 161 percent of saturation and carbon dioxide (CO2 was at 26 percent of saturation. At Yampa River downstream from a diversion near Hayden, 16.3 miles downstream, the effects of photosynthesis were still dominant, though attenuated by reaeration and dilution with freshwater from the Elk River. About 37.2 miles farther downstream, at Yampa River below Craig, which is about 6.2 miles downstream from the Craig Waste Water Treatment Plant, the effects of photosynthesis increased slightly, and pH rose to 8.80. Respiration plus oxidation of organic matter became dominant at Yampa River at Deerlodge Park in Dinosaur National Monument, where pH was 8.51, dissolved oxygen concentration was at 109 percent of saturation, and CO2 was at 189 percent of saturation. Respiration plus oxidation of organic matter, though diminished, apparently extended to the mouth of the Yampa River. Diurnal measurements on the Yampa River during August 23-26, 1999, show that the effects of photosynthesis and respiration plus oxidation of organic matter decreased downstream with distance from the developed urban area in the eastern part of the basin. Larger night-time values of pH in Dinosaur National Monument at Deerlodge Park and at the mouth of the Yampa River indicate that source waters varied with respect to capacity for respiration plus oxidation and photo-synthesis, that photosynthesis was minor, and that pH was largely controlled by respiration plus oxidation of organic matter. Synoptic sampling was repeated during March 13-16, 2000, when discharge was larger in response to late-winter melting of snow and ice at lower altitudes in the basin. Concentrations of nitrite plus nitrate were about 9 times greater in the Yampa River during March 2000 than during August 1999, and the largest increase (greater than 1,200 percent) was at Yampa River below Craig. At and downstream from Steamboat Springs, Colorado, pH at Yampa River sites averaged 8.85 during synoptic sampling in March 2000 compared to 8.70 in August 1999, with the partial pressure of carbon dioxide gas (PCO2) averaging 67 percent of saturation (compared to 99 percent during August 1999). The apparently larger effects of photosynthesis on pH and dissolved oxygen concentrations during March 2000 compared to August 1999 probably were caused by (1) slower rates of exchange of CO2 into and dissolved oxygen out of the river because of colder and deeper water and (2) slower rates of CO2 production and oxygen consumption resulting from slower rates of respiration by organisms and from slower rates of aerobic decomposition of organic matter in the colder river water and streambed sediment. Hypothetical thermodynamic simulations were done for samples collected in the lower Yampa River Basin to simulate the same amount of photosynthesis th

  3. Integrated Optical and SAR Imagery with DEM to Quantify Glacier Water Storage Change in Upper Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Liu, G. T.; Chen, J. B.; Le, T. S.; Chang, C. P.; Shum, C. K.; Tseng, K. H.

    2015-12-01

    In the past few decades, regional increase in air temperature has accelerated the ice melting in polar, sub-polar, and major land glacial areas. The glaciers in Tibetan Plateau, the largest glaciers outside Polar Regions and the sources of several trans-boundary major rivers, are now showing aggravated terminus retreat and thinning. The variation of freshwater availability is crucial for the economic development in Mainland Southeast Asia, especially in hydroelectric generation and agriculture irrigation. These rives, including the Mekong River, is also subject to upstream-downstream conflict and transboundary issues. In this study, we propose to estimate the remaining glacier water storage in Mekong River basin, and further analyze the impact of glacier retreat on these dams/reservoirs for the next decade. By calculating the Modified Normalized Difference Water Index (MNDWI), the water surface area (WSA) can thus be extracted from optical satellite images. On the other hand, the ice surface area (ISA) can be derived from the Polarimetric Synthetic Aperture Radar (POLSAR) images. With different polarization states of electromagnetic wave reflected by earth surface, POLSAR image can effectively identify glacier/ice from snow. Combined WSA and ISA information with digital elevation model (DEM), the change of freshwater storage in glaciers can be estimated. In the end, the influence on dams/reservoirs in the Mekong River caused by glacier retreat can be forecasted. The result can also be applied to hydrology, water allocation, and economy/agriculture policy determination.

  4. Comparison between satellite precipitation product and observation rain gauges in the Red-Thai Binh River Basin

    NASA Astrophysics Data System (ADS)

    Lakshmi, V.; Le, M. H.; Sutton, J. R. P.; Bui, D. D.; Bolten, J. D.

    2017-12-01

    The Red-ThaiBinh River is the second largest river in Vietnam in terms of economic impact and is home to around 29 million people. The river has been facing challenges for water resources allocation, which require reliable and routine hydrological assessments. However, hydrological analysis is difficult due to insufficient spatial coverage by rain gauges. Satellite-based precipitation estimates are a promising alternative with high-resolution in both time and space. This study aims at investigating the uncertainties in satellite-based precipitation product TRMM 3B42 v7.0 by comparing them against in-situ measurements over the Red-ThaiBinh River basin. The TRMM 3B42 v7.0 are assessed in terms of seasonal, monthly and daily variations over a 17-year period (1998 - 2014). Preliminary results indicate that at a daily scale, except for low Mean Bias Error (MBE), satellite based rainfall product has weak relationship with ground observation data, indicating by average performance of 0.326 and -0.485 for correlation coefficient and Nash Sutcliffe Efficiency (NSE), respectively. At monthly scale, we observe that the TRMM 3B42 v7.0 has higher correlation with the correlation increased significantly to 0.863 and NSE of 0.522. By analyzing wet season (May - October) and dry season (November - April) separately we find that the correlation between the TRMM 3B42 v7.0 with ground observations were higher for wet season than the dry season.

  5. Recent floods in the Middle Ebro River, Spain: hydrometeorological aspects and floodplain management

    NASA Astrophysics Data System (ADS)

    Domenech, S.; Espejo, F.; Ollero, A.; Sánchez-Fabre, M.

    2009-09-01

    The Ebro River has the largest Mediterranean basin in the Iberian Peninsula and the third one by surface among those of the Mediterranean Sea. The middle stretch of this river is especially interesting because it constitutes a very economically important axis of population in a semi-arid environment context. Flooding processes are common in the Middle Ebro River, but the combination among decrease of discharges, dam construction and expansion and reinforcement of defences created an unusually quiet period as regards flooding events during the last quarter of the previous century. Nevertheless, with the turn of the century it seems that the Middle Ebro River has entered into new dynamics, with bigger and more frequent floods, the appearance of which has changed its seasonal nature. The most relevant examples are those of February 2003 and March-April 2007. The present paper examines these recent trends and discusses their possible causes from the points of view of hydro-meteorology, flood management through the use of reservoirs, and floodplain management. The consequences of recent floods in the Middle Ebro River have reopened the debate about possible risk management measures.

  6. Two distinct phylogenetic clades of infectious hematopoietic necrosis virus overlap within the Columbia River basin

    USGS Publications Warehouse

    Garver, K.A.; Troyer, R.M.; Kurath, G.

    2003-01-01

    Infectious hematopoietic necrosis virus (IHNV), an aquatic rhabdovirus, causes a highly lethal disease of salmonid fish in North America. To evaluate the genetic diversity of IHNV from throughout the Columbia River basin, excluding the Hagerman Valley, Idaho, the sequences of a 303 nt region of the glycoprotein gene (mid-G) of 120 virus isolates were determined. Sequence comparisons revealed 30 different sequence types, with a maximum nucleotide diversity of 7.3% (22 mismatches) and an intrapopulational nucleotide diversity of 0.018. This indicates that the genetic diversity of IHNV within the Columbia River basin is 3-fold higher than in Alaska, but 2-fold lower than in the Hagerman Valley, Idaho. Phylogenetic analyses separated the Columbia River basin IHNV isolates into 2 major clades, designated U and M. The 2 clades geographically overlapped within the lower Columbia River basin and in the lower Snake River and tributaries, while the upper Columbia River basin had only U clade and the upper Snake River basin had only M clade virus types. These results suggest that there are co-circulating lineages of IHNV present within specific areas of the Columbia River basin. The epidemiological significance of these findings provided insight into viral traffic patterns exhibited by IHNV in the Columbia River basin, with specific relevance to how the Columbia River basin IHNV types were related to those in the Hagerman Valley. These analyses indicate that there have likely been 2 historical events in which Hagerman Valley IHNV types were introduced and became established in the lower Columbia River basin. However, the data also clearly indicates that the Hagerman Valley is not a continuous source of waterborne virus infecting salmonid stocks downstream.

  7. Aerial gamma ray and magnetic survey: Powder River R and D Project. Portions of the: Forsyth and Hardin, Montana, and the Sheridan, Arminto, Newcastle, and Gillette, Wyoming Quadrangles. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-05-01

    During the months of August through September, 1978, geoMetrics, Inc. flew approximately 1520 line miles of high sensitivity airborne radiometric and magnetic data in Wyoming and southern Montana within four 1/sup 0/ x 2/sup 0/ NTMS quadrangles (Arminto, Sheridan, Hardin and Forsyth), and 1390 lines miles in the detail area in eastern Wyoming, as part of the Department of Energy's National Uranium Resource Evaluation program. All radiometric and magnetic data were fully reduced and interpreted by geoMetrics, and are presented as three volumes (one Volume I and two Volume II's) in this report. The survey area lies largely within themore » northern Great Plains Physiographic Province. The deep Powder River Basin is the dominant structure in the area. Portions of the Casper Arch, Big Horn Uplift, and Porcupine Dome fall within the western limits of the area. The Basin is one of the largest and deepest in the northern Great Plains and contains over 17,000 feet of Phanerozoic sediments at its deepest point. Economic deposits of oil, coal, bentonite and uranium are found in the Tertiary and/or Cretaceous rocks of the Basin. Epigenetic uranium deposits lie primarily in the Pumpkin Buttes - Turnercrest districts within arkosic sandstones of the Paleocene Fort Union Formation. A total of 62 groups of statistical values for the R and D area and 127 for the Arminto Detail in the uranium window meet the criteria for valid anomalies and are discussed in their respective interpretation sections. Most anomalies lie in the Tertiary sediments of the Powder River Basin. Some of the anomalies in the Arminto Detail are clearly related to mines or prospects.« less

  8. The Effects of Urbanization and Flood Control on Sediment Discharge of a Southern California River, Evidence of a Dilution Effect

    NASA Astrophysics Data System (ADS)

    Warrick, J. A.; Orzech, K. M.; Rubin, D. M.

    2004-12-01

    The southern California landscape has undergone dramatic urbanization and population growth during the past 60 years and currently supports almost 20 million inhabitants. During this time, rivers of the region have been altered with damming, channel straightening and hardening, and water transfer engineering. These changes have drastically altered water and sediment discharge from most of the region's drainage basins. Here we focus on changes in sediment discharge from the largest watershed of southern California, the Santa Ana River. Order-of-magnitude drops in the suspended sediment rating curves (the relationship between suspended sediment concentration and instantaneous river discharge) are observed between 1967 and 2001, long after the construction of a major flood control dam in 1941. These sediment concentration decreases do not, however, represent alteration of the total sediment flux from the basin (a common interpretation of sediment rating curves), but rather a dilution of suspended sediment by increases (approx. 4x) in stormwater discharge associated with urbanization. Increases in peak and total stormwater discharge are consistent with runoff patterns from urbanizing landscapes, supporting our hypothesis that the diluting water originated from stormwater runoff generated in urban areas both up- and downstream of dams. Our dilution hypothesis is further supported with water and sediment budgets, dilution calculations, and suspended and bed grain size information.

  9. Seasonal variability of faecal indicator bacteria numbers and die-off rates in the Red River basin, North Viet Nam

    NASA Astrophysics Data System (ADS)

    Nguyen, Huong Thi Mai; Le, Quynh Thi Phuong; Garnier, J.; Janeau, J.-L.; Rochelle-Newall, E.

    2016-02-01

    The Red River is the second largest river in Viet Nam and constitutes the main water source for a large percentage of the population of North Viet Nam. Here we present the results of an annual survey of Escherichia coli (EC) and Total Coliforms (TC) in the Red River basin, North Viet Nam. The objective of this work was to obtain information on faecal indicator bacteria (FIB) numbers over an annual cycle and, secondly, to determine the die-off rates of these bacterial indicators. Monthly observations at 10 stations from July 2013-June 2014 showed that TC and EC reached as high as 39100 cfu (colony forming units) 100 ml-1 and 15300 colonies 100 ml-1, respectively. We observed a significant seasonal difference for TC (p < 0.05) with numbers being higher during the wet season. In contrast, no significant seasonal difference was found for EC. The FIB die-off rates ranged from 0.01 d-1 to a maximum of 1.13 d-1 for EC and from 0.17 d-1 to 1.33 d-1 for TC. Die-off rates were significantly higher for free bacteria than for total (free + particle attached) bacteria, suggesting that particle attachment provided a certain level of protection to FIB in this system.

  10. HYDROGRAV - Hydrological model calibration and terrestrial water storage monitoring from GRACE gravimetry and satellite altimetry - First results

    NASA Astrophysics Data System (ADS)

    Andersen, O. B.; Krogh, P. E.; Michailovsky, C.; Bauer-Gottwein, P.; Christiansen, L.; Berry, P.; Garlick, J.

    2008-12-01

    Space-borne and ground-based time-lapse gravity observations provide new data for water balance monitoring and hydrological model calibration in the future. The HYDROGRAV project (www.hydrograv.dk) will explore the utility of time-lapse gravity surveys for hydrological model calibration and terrestrial water storage monitoring. Merging remote sensing data from GRACE with other remote sensing data like satellite altimetry and also ground based observations are important to hydrological model calibration and water balance monitoring of large regions and can serve as either supplement or as vital information in un-gauged regions. A system of GRACE custom designed Mass Concentration blocks (Mascons) have been designed to model time-variable gravity changes for the largest basins in Southern Africa (Zambezi, Okavango, Limpopo and Orange) covering an area of 9 mill km2 with a resolution of 1 by 1.25 degree. Satellite altimetry have been used to derive high resolution point-wise river height in some of the un-gauged rivers in the region by using dedicated retracking to recovers nearly un-interrupted time series over these rivers. First result from the HYDROGRAV project analyzing GRACE derived mass change from 2002 to 2008 along with in-situ gravity time-lapse observations and radar altimetry monitoring of surface water for the southern Africa river basins will be presented.

  11. Investigating the sources and sinks of water of Congo's wetlands

    NASA Astrophysics Data System (ADS)

    Paiva, R. C. D.; O'Loughlin, F.; Alsdorf, D. E.; Durand, M. T.; Beighley, E., II; Calmant, S.; Lee, H.; Santos Da Silva, J.

    2014-12-01

    The Congo is the second largest river basin in the world and indeed there is still a lot to be investigated about the hydrology of this system. This region presents extensive wetlands that may play an important role on the hydrology, carbon and ecological dynamics of the Congo. However, previous studies indicate that these wetlands behave differently from the Amazon, other major rainforest basin, and how water enters and leaves the Cuvette Centrale wetland is still to be quantified. We investigate the sources and sinks of water to the Congo's wetlands. Our analyses range from simple examinations of precipitation and evaporation historical data to remote sensing datasets and 2 D hydrodynamic modelling of Congo wetlands. Early results show that water levels at wetlands are usually higher than adjacent Congo River water levels and amplitude of variation is considerably smaller. Also, floodplain channels are not observed in this region indicating that surface flows are diffusive. Mean annual precipitation range from 1600 to 2000 mm/year, evapotranspiration estimates are approximately 1100 mm/year while some estimates of groundwater recharge indicate values larger than 300 mm/year. These assessments suggest that volumes coming from local water balance could flood the wetlands to depths of only a few centimeters. Preliminary 2D hydrodynamic simulations show that water coming from main rivers produces at upstream areas can flood only a small part of wetland, mainly alongside these rivers.

  12. Assessing the ecological vulnerability of the upper reaches of the Minjiang River.

    PubMed

    Zhang, Jifei; Sun, Jian; Ma, Baibing; Du, Wenpeng

    2017-01-01

    The upper reaches of the Minjiang River (URMR), located on the eastern edge of the Tibetan Plateau in southwestern China, are an important component of the ecological barrier of the Upper Yangtze River Basin. Climate change and human activities have increased the ecological sensitivity and vulnerability of the region, which may pose a threat to the ecological security of the Yangtze River Basin and have negative impacts on local social and economic development. In this study, we analyzed land use and cover change (LUCC) of the URMR between 2000 and 2010, and found that the total rate of LUCC was less than 0.50% during this period. In addition, net primary production (NPP) was employed to describe the changes in ecosystem sensitivity and vulnerability, and the results demonstrated that slightly and moderately sensitive and vulnerable zones occupied the largest area, distributed mainly in forest, shrub, and grassland ecosystems. However, compared with the period from 2000 to 2005, the ecological sensitivity and vulnerability showed a worsening trend in the period 2005-2010. Exploring the relationship between vulnerability/sensitivity and environmental factors, we found that sensitivity and vulnerability were positively correlated with precipitation (>700 mm) and aridity index (>36 mm/°C). The results highlight that the future ecological sensitivity and vulnerability of URMR should be further investigated, and that the LUCC induced by human activities and climate change have caused alteration of in ecosystem vulnerability.

  13. Simulated Water-Management Alternatives Using the Modular Modeling System for the Methow River Basin, Washington

    USGS Publications Warehouse

    Konrad, Christopher P.

    2004-01-01

    A precipitation-runoff model for the Methow River Basin was used to simulate six alternatives: (1) baseline of current flow, (2) line irrigation canals to limit seepage losses, (3) increase surface-water diversions through unlined canals for aquifer recharge, (4) convert from surface-water to ground-water resources to supply water for irrigation, and (5) reduce tree density in forested headwater catchments, and (6) natural flow. Daily streamflow from October 1, 1959, to September 30, 2001 (water years 1960?2001) was simulated. Lining irrigation canals (alternative 2) increased flows in the Chewuch, Twisp, and the Methow (upstream and at Twisp) Rivers during September because of lower diversion rates, but not in the Methow River near Pateros. Increasing diversions for aquifer recharge (alternative 3) increased streamflow from September into January, but reduced streamflow earlier in the summer. Conversion of surface-water diversions to ground-water wells (alternative 4) resulted in the largest increase in September streamflow of any alternative, but also marginally lower January flows (at most -8 percent in the 90-percent exceedence value). Forest-cover reduction (alternative 5) produced large increases in streamflow during high-flow periods in May and June and earlier onset of high flows and small increases in January streamflows. September streamflows were largely unaffected by alternative 5. Natural streamflow (alternative 6) was higher in September and lower in January than the baseline alternative.

  14. Seasonal variability of faecal indicator bacteria numbers and die-off rates in the Red River basin, North Viet Nam.

    PubMed

    Nguyen, Huong Thi Mai; Le, Quynh Thi Phuong; Garnier, J; Janeau, J-L; Rochelle-Newall, E

    2016-02-12

    The Red River is the second largest river in Viet Nam and constitutes the main water source for a large percentage of the population of North Viet Nam. Here we present the results of an annual survey of Escherichia coli (EC) and Total Coliforms (TC) in the Red River basin, North Viet Nam. The objective of this work was to obtain information on faecal indicator bacteria (FIB) numbers over an annual cycle and, secondly, to determine the die-off rates of these bacterial indicators. Monthly observations at 10 stations from July 2013-June 2014 showed that TC and EC reached as high as 39100 cfu (colony forming units) 100 ml(-1) and 15300 colonies 100 ml(-1), respectively. We observed a significant seasonal difference for TC (p < 0.05) with numbers being higher during the wet season. In contrast, no significant seasonal difference was found for EC. The FIB die-off rates ranged from 0.01 d(-1) to a maximum of 1.13 d(-1) for EC and from 0.17 d(-1) to 1.33 d(-1) for TC. Die-off rates were significantly higher for free bacteria than for total (free + particle attached) bacteria, suggesting that particle attachment provided a certain level of protection to FIB in this system.

  15. Hydraulic characterization of the middle reach of the Congo River

    NASA Astrophysics Data System (ADS)

    O'Loughlin, F.; Trigg, M. A.; Schumann, G. J.-P.; Bates, P. D.

    2013-08-01

    The middle reach of the Congo remains one of the most difficult places to access, with ongoing conflicts and a lack of infrastructure. This has resulted in the Congo being perhaps the least understood large river hydraulically, particularly compared to the Amazon, Nile, or Mississippi. Globally the Congo River is important; it is the largest river in Africa and the basin contains some of the largest areas of tropical forests and wetlands in the world, which are important to both the global carbon and methane cycles. This study produced the first detailed hydraulic characterization of the middle reach, utilizing mostly remotely sensed data sets. Using Landsat imagery, a 30 m resolution water-mask was created for the middle reach, from which effective river widths and the number of channels and islands were determined. Water surface slopes were determined using ICESat observations for three different periods during the annual flood pulse, and while the overall slope calculated was similar to previous estimates, greater spatial variability was identified. We find that the water surface slope varies markedly in space but relatively little in time and that this appears to contrast with the Amazon where previous studies indicate that time and spatial variations are of equal magnitude. Five key hydraulic constraints were also identified, which play an important role in the overall dynamics of the Congo. Finally, backwater lengths were approximated for four of these constraints, with the results showing that at high water, over a third of the middle reach is affected by backwater effects.

  16. Assessment of coal geology, resources, and reserves in the Montana Powder River Basin

    USGS Publications Warehouse

    Haacke, Jon E.; Scott, David C.; Osmonson, Lee M.; Luppens, James A.; Pierce, Paul E.; Gunderson, Jay A.

    2013-01-01

    The purpose of this report is to summarize geology, coal resources, and coal reserves in the Montana Powder River Basin assessment area in southeastern Montana. This report represents the fourth assessment area within the Powder River Basin to be evaluated in the continuing U.S. Geological Survey regional coal assessment program. There are four active coal mines in the Montana Powder River Basin assessment area: the Spring Creek and Decker Mines, both near Decker; the Rosebud Mine, near Colstrip; and the Absaloka Mine, west of Colstrip. During 2011, coal production from these four mines totaled approximately 36 million short tons. A fifth mine, the Big Sky, had significant production from 1969-2003; however, it is no longer in production and has since been reclaimed. Total coal production from all five mines in the Montana Powder River Basin assessment area from 1968 to 2011 was approximately 1.4 billion short tons. The Rosebud/Knobloch coal bed near Colstrip and the Anderson, Dietz 2, and Dietz 3 coal beds near Decker contain the largest deposits of surface minable, low-sulfur, subbituminous coal currently being mined in the assessment area. A total of 26 coal beds were identified during this assessment, 18 of which were modeled and evaluated to determine in-place coal resources. The total original coal resource in the Montana Powder River Basin assessment area for the 18 coal beds assessed was calculated to be 215 billion short tons. Available coal resources, which are part of the original coal resource remaining after subtracting restrictions and areas of burned coal, are about 162 billion short tons. Restrictions included railroads, Federal interstate highways, urban areas, alluvial valley floors, state parks, national forests, and mined-out areas. It was determined that 10 of the 18 coal beds had sufficient areal extent and thickness to be evaluated for recoverable surface resources ([Roland (Baker), Smith, Anderson, Dietz 2, Dietz 3, Canyon, Werner/Cook, Pawnee, Rosebud/Knobloch, and Flowers-Goodale]). These 10 coal beds total about 151 billion short tons of the 162 billion short tons of available resource; however, after applying a strip ratio of 10:1 or less, only 39 billion short tons remains of the 151 billion short tons. After mining and processing losses are subtracted from the 39 billion short tons, 35 billion short tons of coal were considered as a recoverable resource. Coal reserves (economically recoverable coal) are the portion of the recoverable coal resource that can be mined, processed, and marketed at a profit at the time of the economic evaluation. The surface coal reserve estimate for the 10 coal beds evaluated for the Montana Powder River assessment area is 13 billion short tons. It was also determined that about 42 billion short tons of underground coal resource exists in the Montana Powder River Basin assessment area; about 34 billion short tons (80 percent) are within 500-1,000 feet of the land surface and another 8 billion short tons are 1,000-2,000 feet beneath the land surface.

  17. Multiple-source tracking: Investigating sources of pathogens, nutrients, and sediment in the Upper Little River Basin, Kentucky, water years 2013–14

    USGS Publications Warehouse

    Crain, Angela S.; Cherry, Mac A.; Williamson, Tanja N.; Bunch, Aubrey R.

    2017-09-20

    The South Fork Little River (SFLR) and the North Fork Little River (NFLR) are two major headwater tributaries that flow into the Little River just south of Hopkinsville, Kentucky. Both tributaries are included in those water bodies in Kentucky and across the Nation that have been reported with declining water quality. Each tributary has been listed by the Kentucky Energy and Environment Cabinet—Kentucky Division of Water in the 303(d) List of Waters for Kentucky Report to Congress as impaired by nutrients, pathogens, and sediment for contact recreation from point and nonpoint sources since 2002. In 2009, the Kentucky Energy and Environment Cabinet—Kentucky Division of Water developed a pathogen total maximum daily load (TMDL) for the Little River Basin including the SFLR and NFLR Basins. Future nutrient and suspended-sediment TMDLs are planned once nutrient criteria and suspended-sediment protocols have been developed for Kentucky. In this study, different approaches were used to identify potential sources of fecal-indicator bacteria (FIB), nitrate, and suspended sediment; to inform the TMDL process; and to aid in the implementation of effective watershed-management activities. The main focus of source identification was in the SFLR Basin.To begin understanding the potential sources of fecal contamination, samples were collected at 19 sites for densities of FIB (E. coli) in water and fluvial sediment and at 11 sites for Bacteroidales genetic markers (General AllBac, human HF183, ruminant BoBac, canid BacCan, and waterfowl GFD) during the recreational season (May through October) in 2013 and 2014. Results indicated 34 percent of all E. coli water samples (n=227 samples) did not meet the U.S. Environmental Protection Agency 2012 recommended national criteria for primary recreational waters. No criterion currently exists for E. coli in fluvial sediment. By use of the Spearman’s rank correlation test, densities of FIB in fluvial sediments were observed to have a statistically significant positive correlation with drainage area. As drainage area increased, so did the densities of FIB in the fluvial sediments. There was no statistically significant correlation between drainage area and FIB in water. The human-associated marker (HF183) was found above the detection limit in 26 percent of the samples (n=120 samples); a higher proportion of positive samples was in the NFLR Basin. The ruminant-associated marker (BoBac) was above the detection limit in 65 percent of samples; a higher proportion of positive samples was in the headwaters of the SFLR Basin.Nutrient yields differed between the SFLR and NFLR Basins. Comparatively, the SFLR Basin produced the largest estimated mean yields of total nitrogen (16,000 pounds per year per square mile (lb/yr/mi2) and nitrite plus nitrate nitrogen (12,500 lb/yr/mi2), and the NFLR Basin produced the largest estimated mean yields of ammonia plus organic nitrogen (4,700 lb/yr/mi2), total phosphorus (1,100 lb/yr/mi2), and orthophosphorus (590 lb/yr/mi2).Nitrate sources in surface water were assessed in both basins using dual-nitrate isotope (nitrogen and oxygen) ratios. Data from the different land uses in the SFLR Basin showed differences in nitrate concentrations and overlapping, but moderately distinct, isotopic signatures. Predominantly forested sites consistently had low nitrate concentrations (median = 0.233 milligrams per liter) with minimal variability, and agricultural sites had the highest nitrate concentrations (median = 7.55 milligrams per liter) with the greatest variability. The median nitrate concentration for sites with mixed land use was 2.66 milligrams per liter. Dual-isotope data for forested sites plotted within ranges characteristic of soil-derived nitrate with possible but minimal influence from recycled atmospheric nitrate. Ranges of dual-isotope data for sites with agricultural and mixed land uses were characteristic of possible mixtures of chemical fertilizer, soil-derived nitrate, and manure and septic wastes. In the NFLR Basin, a positive linear relation was observed between nitrate concentrations and nitrogen isotope ratios (δ15NNO3) (R2=0.56; p-value <0.001) that potentially suggests the NFLR Basin has a higher proportion of δ15NNO3-enriched sources, such as manure and sewage. However, mixing of other nitrate-derived sources cannot be excluded, because many values of δ15NNO3 and concentrations of nitrate showed minimal variation and plotted within dual-nitrate isotope ranges characteristic of fertilizer and soil-derived nitrate sources.A sediment-fingerprinting approach was used to quantify the relative contribution of four upland sources in the SFLR Basin (agricultural, pasture, riparian/forest, and streambank) to understand how land management affects suspended-sediment concentration. Carbon isotope ratios (δ13C), together with calcium and carbon concentrations, were the best indicators of sediment source; the uncertainty was less than 11 percent. Fine-sediment samples collected at the SFLR Basin outlet indicated streambanks as the largest source of the fine sediment to the stream followed by cropland and riparian/forest-source areas, respectively; pasture was a minor contributing source. Streambanks and cropland were essentially equal contributors of fine sediment at the NFLR Basin outlet.

  18. Probability modeling of high flow extremes in Yingluoxia watershed, the upper reaches of Heihe River basin

    NASA Astrophysics Data System (ADS)

    Li, Zhanling; Li, Zhanjie; Li, Chengcheng

    2014-05-01

    Probability modeling of hydrological extremes is one of the major research areas in hydrological science. Most basins in humid and semi-humid south and east of China are concerned for probability modeling analysis of high flow extremes. While, for the inland river basin which occupies about 35% of the country area, there is a limited presence of such studies partly due to the limited data availability and a relatively low mean annual flow. The objective of this study is to carry out probability modeling of high flow extremes in the upper reach of Heihe River basin, the second largest inland river basin in China, by using the peak over threshold (POT) method and Generalized Pareto Distribution (GPD), in which the selection of threshold and inherent assumptions for POT series are elaborated in details. For comparison, other widely used probability distributions including generalized extreme value (GEV), Lognormal, Log-logistic and Gamma are employed as well. Maximum likelihood estimate is used for parameter estimations. Daily flow data at Yingluoxia station from 1978 to 2008 are used. Results show that, synthesizing the approaches of mean excess plot, stability features of model parameters, return level plot and the inherent independence assumption of POT series, an optimum threshold of 340m3/s is finally determined for high flow extremes in Yingluoxia watershed. The resulting POT series is proved to be stationary and independent based on Mann-Kendall test, Pettitt test and autocorrelation test. In terms of Kolmogorov-Smirnov test, Anderson-Darling test and several graphical diagnostics such as quantile and cumulative density function plots, GPD provides the best fit to high flow extremes in the study area. The estimated high flows for long return periods demonstrate that, as the return period increasing, the return level estimates are probably more uncertain. The frequency of high flow extremes exhibits a very slight but not significant decreasing trend from 1978 to 2008, while the intensity of such flow extremes is comparatively increasing especially for the higher return levels.

  19. Putting people into water quality modelling.

    NASA Astrophysics Data System (ADS)

    Strickert, G. E.; Hassanzadeh, E.; Noble, B.; Baulch, H. M.; Morales-Marin, L. A.; Lindenschmidt, K. E.

    2017-12-01

    Water quality in the Qu'Appelle River Basin, Saskatchewan is under pressure due to nutrient pollution entering the river system from major cities, industrial zones and agricultural areas. Among these stressors, agricultural activities are basin-wide; therefore, they are the largest non-point source of water pollution in this region. The dynamics of agricultural impacts on water quality are complex and stem from decisions and activities of two distinct stakeholder groups, namely grain farmers and cattle producers, which have different business plans, values, and attitudes towards water quality. As a result, improving water quality in this basin requires engaging with stakeholders to: (1) understand their perspectives regarding a range of agricultural Beneficial Management Practices (BMPs) that can improve water quality in the region, (2) show them the potential consequences of their selected BMPs, and (3) work with stakeholders to better understand the barriers and incentives to implement the effective BMPs. In this line, we held a series of workshops in the Qu'Appelle River Basin with both groups of stakeholders to understand stakeholders' viewpoints about alternative agricultural BMPs and their impact on water quality. Workshop participants were involved in the statement sorting activity (Q-sorts), group discussions, as well as mapping activity. The workshop outcomes show that stakeholder had four distinct viewpoints about the BMPs that can improve water quality, i.e., flow and erosion control, fertilizer management, cattle site management, as well as mixed cattle and wetland management. Accordingly, to simulate the consequences of stakeholder selected BMPs, a conceptual water quality model was developed using System Dynamics (SD). The model estimates potential changes in water quality at the farm, tributary and regional scale in the Qu'Appelle River Basin under each and/or combination of stakeholder selected BMPs. The SD model was then used for real-time engagement of stakeholders in simulations to demostrate the potential effects of BMPs on water quality. This exercise helped us to better understand the stakeholders' viewpoints to propose effective BMPs and policies that are in-line with stakeholders' values and preferences.

  20. Geology, Water, and Wind in the Lower Helmand Basin, Southern Afghanistan

    USGS Publications Warehouse

    Whitney, John W.

    2006-01-01

    This report presents an overview of the geology, hydrology, and climate of the lower Helmand Basin, a large, closed, arid basin in southern Afghanistan. The basin is drained by the Helmand River, the only perennial desert stream between the Indus and Tigris-Euphrates Rivers. The Helmand River is the lifeblood of southern Afghanistan and has supported desert civilizations in the Sistan depression for over 6,000 years. The Helmand Basin is a structurally closed basin that began to form during the middle Tertiary as a consequence of the collision of several Gondwanaland fragments. Aeromagnetic studies indicate the basin is 3-5 kilometers deep over basement rocks. Continued subsidence along basin-bounding faults in Iran and Pakistan throughout the Neogene has formed the Sistan depression in the southwest corner of the basin. Lacustrine, eolian, and fluvial deposits are commonly exposed in the basin and were intruded by latest Miocene-middle Quaternary volcanoes, which indicates that depositional environments in the lower Helmand Basin have not substantially changed for nearly 10 million years. Lakes expanded in the Sistan depression during the Quaternary; however, the size and extent of these pluvial lakes are unknown. Climate conditions in the lower Helmand Basin likely mirrored climate changes in the Rajasthan Desert to the east and in Middle Eastern deserts to the west: greater aridity during global episodes of colder temperatures and increased available moisture during episodes of warmer temperatures. Eolian processes are unusually dominant in shaping the landscape in the basin. A strong wind blows for 120 days each summer, scouring dry lakebeds and creating dune fields from annual flood deposits. Nearly one-third of the basin is mantled with active or stabilized dunes. Blowing winds combined with summer temperatures over 50? Celsius and voluminous insect populations hatched from the deltaic wetlands create an environment referred to as the 'most odious place on earth' by 19th century visitors. During dry years, large plumes of dust originating from Sistan are recorded by weather satellites. The Helmand River drains about 40 percent of Afghanistan and receives most of its moisture from melting snow and spring storms. Similar to many desert streams, the Helmand and its main tributary, the Arghandab River, are characterized by large fluctuations in monthly and annual discharges. Water from the Helmand accumulates in several hamuns (shallow lakes) in the Sistan depression. The wetlands surrounding these hamuns are the largest in western Asia and are directly affected by droughts and floods on the Helmand. Average annual discharge on the Helmand is about 6.12 million megaliters (million cubic meters), and the annual discharge varies by a factor of five. In 2005, the region was just beginning to recover from the longest drought (1998-2005) of record back to 1830. Annual peak discharges range from less than 80 cubic meters per second in 1971 to nearly 19,000 cubic meters per second in 1885. Large floods fill each hamun to overflowing to create one large lake that overflows into the normally dry Gaud-i Zirreh basin. The interaction of flooding, active subsidence, and wind erosion causes frequent channel changes on the Helmand delta. A major development effort on the Helmand River was initiated after World War II with substantial aid from the United States. Two dams and several major canals were completed in the 1950s; however, poor drainage conditions on the newly prepared agricultural fields caused extensive waterlogging and salinization. New drains were installed and improved agricultural methods were implemented in the 1970s, and some lands became more productive. Since 1980, Afghanistan has endured almost constant war and civil and political strife. In 2005, the country was on a path to rebuild much of its technical infrastructure. Revitalization of agricultural lands in the lower Helmand Basin and improved managem

  1. Streamflow and water-quality data for selected watersheds in the Lake Tahoe basin, California and Nevada, through September 1998

    USGS Publications Warehouse

    Rowe, T.G.; Saleh, D.K.; Watkins, S.A.; Kratzer, C.R.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the Tahoe Regional Planning Agency, and the University of California, Davis-Tahoe Research Group, has monitored tributaries in the Lake Tahoe Basin since 1988. This monitoring has characterized streamflow and has determined concentrations of nutrients and suspended sediment, which may have contributed to loss of clarity in Lake Tahoe. The Lake Tahoe Interagency Monitoring Program was developed to collect water-quality data in the basin. In 1998, the tributary-monitoring program included 41 water-quality stations in 14 of the 63 watersheds totaling half the area tributary to Lake Tahoe. The monitored watershed areas range from 1.08 square miles for First Creek to 56.5 square miles for the Upper Truckee River.Annual and unit runoff for 20 primary and secondary streamflow gaging stations in 10 selected watersheds are described. Water years 1988-98 were used to compare runoff data. The Upper Truckee River at South Lake Tahoe, Calif., had the highest annual runoff and Logan House Creek near Glenbrook, Nev., had the lowest. Blackwood Creek near Tahoe City, Calif., had the highest unit runoff and Logan House Creek had the lowest. The highest instantaneous peak flow was recorded at Upper Truckee River at South Lake Tahoe during the January 2, 1997, flood event.Certain water-quality measurements were made in the field. Ranges and median values of those measurements are described for 41 stations. Water temperature ranged from 0 to 23?C. Specific conductance ranged from 13 to 900 microsiemens per centimeter at 25?C. pH ranged from 6.7 to 10.6. Dissolved-oxygen concentrations ranged from 5.2 to 12.6 mg/L and from 70 to 157 percent of saturation.Loads, yields, and trends of nutrients and suspended sediment during water years 1988-98 at the streamflow gaging stations also are described. The Upper Truckee River at South Lake Tahoe had the largest median monthly load for five of the six measured nutrients and of suspended sediment, while Trout Creek at South Lake Tahoe had the largest median monthly load for the remaining nutrient. Logan House Creek near Glenbrook had the smallest median monthly loads for all nutrients and suspended sediment. Seasonal load summaries at selected stations showed nutrient and suspended-sediment loads were greatest in the spring months of April, May and June and least in the summer months of July, August, and September. Monthly load comparisons also were described for five watersheds with multiple stations.Incline Creek had the highest combined rank for all nutrients and sediment. Incline Creek had the largest monthly yields for dissolved nitrite plus nitrate nitrogen and soluble reactive phosphorus. Third Creek had the second highest combined rank and had the largest monthly yields for total nitrogen, total phosphorus, biologically reactive iron, and suspended sediment. Edgewood Creek had the largest monthly yield for dissolved ammonia nitrogen. Logan House Creek had the lowest combined rank and the smallest monthly yields for all nutrients and sediment.Trends in concentrations are either decreasing or not significant for all nutrients in all sampled watersheds, with the exception of biologically reactive iron. Biologically reactive iron and suspended sediment show an increasing trend in three watersheds and decreasing or no significant trend in the other seven watersheds.

  2. Integrated water system simulation by considering hydrological and biogeochemical processes: model development, with parameter sensitivity and autocalibration

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Y.; Shao, Q. X.; Ye, A. Z.; Xing, H. T.; Xia, J.

    2016-02-01

    Integrated water system modeling is a feasible approach to understanding severe water crises in the world and promoting the implementation of integrated river basin management. In this study, a classic hydrological model (the time variant gain model: TVGM) was extended to an integrated water system model by coupling multiple water-related processes in hydrology, biogeochemistry, water quality, and ecology, and considering the interference of human activities. A parameter analysis tool, which included sensitivity analysis, autocalibration and model performance evaluation, was developed to improve modeling efficiency. To demonstrate the model performances, the Shaying River catchment, which is the largest highly regulated and heavily polluted tributary of the Huai River basin in China, was selected as the case study area. The model performances were evaluated on the key water-related components including runoff, water quality, diffuse pollution load (or nonpoint sources) and crop yield. Results showed that our proposed model simulated most components reasonably well. The simulated daily runoff at most regulated and less-regulated stations matched well with the observations. The average correlation coefficient and Nash-Sutcliffe efficiency were 0.85 and 0.70, respectively. Both the simulated low and high flows at most stations were improved when the dam regulation was considered. The daily ammonium-nitrogen (NH4-N) concentration was also well captured with the average correlation coefficient of 0.67. Furthermore, the diffuse source load of NH4-N and the corn yield were reasonably simulated at the administrative region scale. This integrated water system model is expected to improve the simulation performances with extension to more model functionalities, and to provide a scientific basis for the implementation in integrated river basin managements.

  3. Fluvial landscapes evolution in the Gangkou River basin of southern Taiwan: Evidence from the sediment cores

    NASA Astrophysics Data System (ADS)

    Chen, Jia-Hong; Chyi, Shyh-Jeng; Yen, Jiun-Yee; Lin, Li-Hung; Yen, I.-Chin; Yu, Neng-Ti; Ho, Lih-Der; Jen, Chia-Hung

    2017-04-01

    The Gangkou River basin is the largest basin in the eastern Hengchun Peninsula of Taiwan. Its main river length is 31km and the basin area is 102sq. km. The width of the active channel is relatively narrow, but the valley from the middle to downstream is remarkably wide, indicating a feature of underfit stream. We drilled two sediment cores in the downstream area, including a 30m core (core-A) from a higher terrace, which is 14m above mean sea level, and a 20m core (core-B) from a lower terrace, which is 4m above mean sea level. Most of the sediments in the core-A are mud, which represents the flood plain facies, and 14C dates in the core-A range from 11ka to 7ka BP. Furthermore, the sediment layers reveal signals of marine events at the core depths of 5m to 11m by X-ray fluorescence. In the core-B, there is an erosional surface at the core depth of 5m. The age of the fluvial gravel layer above the erosional surface is about 0.4ka BP, and the mud layer top the surface is about 8.5ka BP. The preliminary results show that (1) as the tectonic uplift rate induced by the marine terraces around the basin is 1.0 to 2.5 mm/yr, and the accumulation rate of the mud layer in the basin is 6.7 to 8.7 mm/yr, the sediments infilling (more than 30-meters-thick) in the downstream area of the basin should be the results of the lower tectonic uplifting and the higher post-glacial sea level rise and; (2) the marine sediment layer with 14C dates of 7.5ka to 8.5ka BP is very likely the remain of the maximum flooding surface (MFS) in the early Holocene. These results indicate that the fluvial landscapes evolution of the basin was controlled by the sea-level; (3) the erosional surface in the core-B indicates the Gangkou River continuously erode the infilling sediments from 7ka to 0.4ka BP. Previous studies show that the sea-level around Taiwan gradually declined from its high stand since 6ka, we proposed that the continuous erosion was probably the results of tectonic uplifting and eustatic sea-level fall.

  4. Stream-temperature patterns of the Muddy Creek basin, Anne Arundel County, Maryland

    USGS Publications Warehouse

    Pluhowski, E.J.

    1981-01-01

    Using a water-balance equation based on a 4.25-year gaging-station record on North Fork Muddy Creek, the following mean annual values were obtained for the Muddy Creek basin: precipitation, 49.0 inches; evapotranspiration, 28.0 inches; runoff, 18.5 inches; and underflow, 2.5 inches. Average freshwater outflow from the Muddy Creek basin to the Rhode River estuary was 12.2 cfs during the period October 1, 1971, to December 31, 1975. Harmonic equations were used to describe seasonal maximum and minimum stream-temperature patterns at 12 sites in the basin. These equations were fitted to continuous water-temperature data obtained periodically at each site between November 1970 and June 1978. The harmonic equations explain at least 78 percent of the variance in maximum stream temperatures and 81 percent of the variance in minimum temperatures. Standard errors of estimate averaged 2.3C (Celsius) for daily maximum water temperatures and 2.1C for daily minimum temperatures. Mean annual water temperatures developed for a 5.4-year base period ranged from 11.9C at Muddy Creek to 13.1C at Many Fork Branch. The largest variations in stream temperatures were detected at thermograph sites below ponded reaches and where forest coverage was sparse or missing. At most sites the largest variations in daily water temperatures were recorded in April whereas the smallest were in September and October. The low thermal inertia of streams in the Muddy Creek basin tends to amplify the impact of surface energy-exchange processes on short-period stream-temperature patterns. Thus, in response to meteorologic events, wide ranging stream-temperature perturbations of as much as 6C have been documented in the basin. (USGS)

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dupre, B.; Rousseau, D.; Gaillardet, J.

    The Congo river Basin is the second largest drainage basin in the world, after the Amazon. The materials carried by its main rivers provide the opportunity to study the products of denudation of a large fraction of the upper continental crust of the African continent. This paper presents the chemical composition of the different phases carried in the Congo rivers and is followed by a companion paper, devoted to the modelling of major and trace elements. The Congo river between Bangui and Brazzaville as well as its main tributaries, including a few organic-rich rivers, also called Black Rivers, were sampledmore » during the 1989 high water stage. The three main phases (suspended load, dissolved load, and bedload) were analysed for twenty-five major and trace elements. Concentrations normalized to the upper continental crust show that in each river, suspended sediments and dissolved load are chemical complements for the most soluble elements (Ca, Na, Sr, K, Ba, Rb, and U). While these elements are enriched in the dissolved loads, they are considerably depleted in the corresponding suspended sediments. This is consistent with their high mobility during weathering. Another type of complementarity is observed for Zr and Hf between suspended sediments and bedload, related to the differential velocity of suspended sediments and zircons which are concentrated in bedloads. Compared to other rivers, absolute dissolved concentrations of Ca, Na, Sr, K, Ba, Rb, and U are remarkably low. Surprisingly, high dissolved concentrations are found in the Congo waters for other trace elements (e.g., REEs), especially in the Black rivers. On a world scale, these concentrations are among the highest measured in rivers and are shown to be pH dependent for a number of dissolved trace elements. The dissolved loads are systematically normalized to the suspended loads for each river, in order to remove the variations of the element abundances owing to source rock variations.« less

  6. Water-ecosystem-economy nexus under human intervention and climate change: a study in the Heihe River Basin (China)

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Tian, Y.; Wu, X.; Feng, D.

    2017-12-01

    Recently, "One Belt and One Road" initiative, namely, building the "Silk Road Economic Belt" and "21st Century Maritime Silk Road", has become a global strategy of China and has been discussed as China's "Marshall Plan". The overland route of "One Belt" comes across vast arid lands, where the local population and ecosystem compete keenly for limited water resources. Water and environmental securities represent an important constraint of the "One Belt" development, and therefore understanding the complex water-ecosystem-economy nexus in the arid inland areas is very important. One typical case is Heihe River Basin (HRB), the second largest inland river basin of China, where the croplands in its middle part sucked up the river flow and groundwater, causing serious ecological problems in its lower part (Gobi Desert). We have developed an integrated hydrological-ecological model for the middle and lower HRB (the modeling domain has an area of 90,589 km2), which served as a platform to fuse multi-source data and provided a coherent understanding on the regional water cycle. With this physically based model, we quantitatively investigated how the nexus would be impacted by human intervention, mainly the existing and potential water regulations, and what would be the uncertainty of the nexus under the climate change. In studying the impact of human intervention, simulation-optimization analyses based on surrogate modeling were performed. In studying the uncertainty resulted from the climate change, outputs of multiple GCMs were downscaled for this river basin to drive ecohydrological simulations. Our studies have demonstrated the significant tradeoffs among the crop production in the middle HRB, the water and environmental securities of the middle HRB, and the ecological health of the lower HRB. The underlying mechanisms of the tradeoffs were also systematically addressed. The climate change would cause notable uncertainty of the nexus, which makes the water resources management more challenging. Overall, our studies suggest that the existing water allocation regulation in HRB could be improved if the complex nexus can be appropriately accounted for, and adaptive management is highly desired to cope with the uncertainty of future climate.

  7. Diazinon and chlorpyrifos loads in the San Joaquin River basin, California, January and February 2000

    USGS Publications Warehouse

    Kratzer, Charles R.; Zamora, Celia; Knifong, Donna L.

    2002-01-01

    The application of diazinon and chlorpyrifos on dormant orchards in 2000 in the San Joaquin River Basin was less than 21 percent of application in 1993 and 1994. A total of 13 sites were sampled weekly during nonstorm periods and more frequently during two storm periods. The sites included five major river and eight minor tributary sites. The highest concentrations of diazinon and chlorpyrifos occurred during the storm periods. Four samples from major river sites (Tuolumne River and two San Joaquin River sites) had diazinon concentrations greater than 0.08 microgram per liter, the concentration being considered by the state of California as its criterion maximum concentration for the protection of aquatic habitat. One sample from a major river site (San Joaquin River) exceeded the equivalent State guideline of 0.02 microgram per liter for chlorpyrifos. At the eight minor tributary sites, 24 samples exceeded the diazinon guideline and four samples exceeded the chlorpyrifos guideline. The total diazinon load in the San Joaquin River near Vernalis during January and February 2000 was 19.6 pounds active ingredient; of this, 8.17 pounds active ingredient was transported during two storms. In 1994, 27.4 pounds active ingredient was transported during two storms. The total chlorpyrifos load in the San Joaquin River near Vernalis during January and February 2000 was 5.68 pounds active ingredient; of this, 2.17 pounds active ingredient was transported during the two storms. During the frequently sampled February 2000 storm, the main sources of diazinon in the San Joaquin River Basin were the San Joaquin River near Stevinson Basin (25 percent), Tuolumne River Basin (14 percent), and the Stanislaus River Basin (10 percent). The main sources of chlorpyrifos in the San Joaquin River Basin were the San Joaquin River near Stevinson Basin (17 percent), Tuolumne River Basin (13 percent), and the Merced River Basin (11 percent). The total January and February diazinon load in the San Joaquin River near Vernalis was 0.17 percent of dormant application; total January and February chlorpyrifos load was 0.16 percent of dormant application.

  8. The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office : Watershed Restoration Projects : Annual Report, 2000.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.

    2001-03-01

    The John Day is the second longest free-flowing river in the contiguous United States and the longest containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles--Oregon's third largest drainage basin--and incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the John Day River flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon and summer steelhead, red band, westslope cutthroat, and redband trout, the John Day system is truly amore » basin with national significance. Most all of the entire John Day basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the Basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Using funding from the Bonneville Power Administration, Bureau of Reclamation, and others, the John Day Basin Office (JDBO) subcontracts the majority of its construction implementation activities with the Grant Soil and Water Conservation District (GSWCD), also located in the town of John Day. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/review, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2000, the JDBO and GSWCD proposed continuation of a successful partnership between the two agencies and basin landowners to implement an additional six watershed conservation projects funded by the BPA. The types of projects include permanent diversions, pump stations, and return-flow cooling systems. Project costs in 2000 totaled $533,196.00 with a total amount of $354,932.00 (67%) provided by the Bonneville Power Administration and the remainder coming from other sources such as the BOR, Oregon Watershed Enhancement Board, and individual landowners.« less

  9. The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office : Watershed Restoration Projects : 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.

    The John Day is the nation's second longest free-flowing river in the contiguous United States and the longest containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles, Oregon's fourth largest drainage basin, and incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the John Day River flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon and summer steelhead, westslope cutthroat, and redband and bull trout, the John Day systemmore » is truly a basin with national significance. The majority of the John Day basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Once established, the John Day Basin Office (JDBO) formed a partnership with the Grant Soil and Water Conservation District (GSWCD), also located in the town of John Day, who contracts the majority of the construction implementation activities for these projects from the JDBO. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2002, the JDBO and GSWCD proposed continuation of their successful partnership between the two agencies and basin landowners to implement an additional twelve (12) watershed conservation projects. The types of projects include off channel water developments, riparian fencing, juniper control, permanent diversions, pump stations, infiltration galleries and return-flow cooling systems. Project costs in 2002 totaled $423,198.00 with a total amount of $345,752.00 (81%) provided by the Bonneville Power Administration (BPA) and the remainder coming from other sources such as the Bureau of Reclamation (BOR), Oregon Watershed Enhancement Board, the U.S. Fish & Wildlife Service Partners in Wildlife Program and individual landowners.« less

  10. The impact of snowpack decline on high elevation surface-water flow in the Willamette River: a stable isotope perspective

    NASA Astrophysics Data System (ADS)

    Brooks, J. R.; Johnson, H.; Cline, S. P.; Rugh, W.

    2015-12-01

    Much of the water that people in Western Oregon rely on comes from the snowpack in the Cascade Range, and this snowpack is expected to decrease in coming years with climate change. In fact, the past five years have shown dramatic variation in snowpack from a high of 174% of normal in 2010-11 to a low of 11% for 2014-15, one of the lowest on record. During this timeframe, we have monitored the stable isotopes of water within the Willamette River twice monthly, and mapped the spatial variation of water isotopes across the basin. Within the Willamette Basin, stable isotopes of water in precipitation vary strongly with elevation and provide a marker for determining the mean elevation from which water in the Willamette River is derived. In the winter when snow accumulates in the mountains, low elevation precipitation (primarily rain) contributes the largest proportion of water to the Willamette River. During summer when rainfall is scarce and demand for water is the greatest, water in the Willamette River is mainly derived from high elevation snowmelt. Our data indicate that the proportion of water from high elevation decreased with decreasing snowpack. We combine this information with the river flow data to estimate the volume reduction related to snow pack reduction during the dry summer. Observed reductions in the contribution of high elevation water to the Willamette River after just two years of diminished snowpack indicate that the hydrologic system responds relatively rapidly to changing snowpack volume. Reconciling the demands between human use and biological instream requirements during summer will be challenging under climatic conditions in which winter snowpack is reduced compared to historical amounts.

  11. Channel migration of the White River in the eastern Uinta Basin, Utah and Colorado

    USGS Publications Warehouse

    Jurado, Antonio; Fields, Fred K.

    1978-01-01

    The White River is the largest stream in the southeastern part of the Uinta Basin in Utah and Colorado. This map shows the changes that have occurred in the location of the main channel of the river from 1936 to 1974. The map indicated that certain reaches of the river are subject to different rates of channel migration. Also shown is the boundary of the flood plain, which is mapped at the point of abrupt break in slope. This map documents the position of the river channel prior to any withdrawals of water or alteration of the flow characteristics of the white river that may occur in order to meet water requirements principally associated with the proposed oil-shale industry or other development in the area.The channel locations were determined from aerial photographs taken at four different time periods for the following Federal agencies: In 1936, U.S. Soil Conservation Services; 1953, U.S. Corps of Engineers; 1965, U.S. Geological Survey; and in 1974, U.S. Bureau of Land Management. The 1936 delineation, which is actually based upon photographs that were taken in 1936 and 1937, was made by projection of the original photographs on a base map that was prepared from 1:24,000 scale topographic maps. The 1953, 1965, and 1974 delineations were produced from stereographic models. The 1965 delineation was compiled from photographs that were taken during 1962-65. The delineation is labeled as 1965 for simplicity, however, because the photographs for 1965 cover about 60 percent of the study read of the river, and because no changed were discernable in those areas of repetitive photographic coverage.

  12. Global Anthropogenic Phosphorus Loads to Freshwater and Associated Grey Water Footprints and Water Pollution Levels: A High-Resolution Global Study

    NASA Astrophysics Data System (ADS)

    Mekonnen, Mesfin M.; Hoekstra, Arjen Y.

    2018-01-01

    We estimate the global anthropogenic phosphorus (P) loads to freshwater and the associated grey water footprints (GWFs) for the period 2002-2010, at a spatial resolution of 5 × 5 arc min, and compare the GWF per river basin to runoff to assess the P-related water pollution level (WPL). The global anthropogenic P load to freshwater systems from both diffuse and point sources is estimated at 1.5 Tg/yr. More than half of this total load was in Asia, followed by Europe (19%) and Latin America and the Caribbean (13%). The domestic sector contributed 54% to the total, agriculture 38%, and industry 8%. In agriculture, cereals production had the largest contribution to the P load (31%), followed by fruits, vegetables, and oil crops, each contributing 15%. The global total GWF related to anthropogenic P loads is estimated to be 147 × 1012 m3/yr, with China contributing 30%, India 8%, USA 7%, and Spain and Brazil 6% each. The basins with WPL > 1 (where GWF exceeds the basin's assimilation capacity) together cover about 38% of the global land area, 37% of the global river discharge, and provide residence to about 90% of the global population.

  13. Tracking Nitrogen Sources, Transformation, and Transport at a Basin Scale with Complex Plain River Networks.

    PubMed

    Yi, Qitao; Chen, Qiuwen; Hu, Liuming; Shi, Wenqing

    2017-05-16

    This research developed an innovative approach to reveal nitrogen sources, transformation, and transport in large and complex river networks in the Taihu Lake basin using measurement of dual stable isotopes of nitrate. The spatial patterns of δ 15 N corresponded to the urbanization level, and the nitrogen cycle was associated with the hydrological regime at the basin level. During the high flow season of summer, nonpoint sources from fertilizer/soils and atmospheric deposition constituted the highest proportion of the total nitrogen load. The point sources from sewage/manure, with high ammonium concentrations and high δ 15 N and δ 18 O contents in the form of nitrate, accounted for the largest inputs among all sources during the low flow season of winter. Hot spot areas with heavy point source pollution were identified, and the pollutant transport routes were revealed. Nitrification occurred widely during the warm seasons, with decreased δ 18 O values; whereas great potential for denitrification existed during the low flow seasons of autumn and spring. The study showed that point source reduction could have effects over the short-term; however, long-term efforts to substantially control agriculture nonpoint sources are essential to eutrophication alleviation for the receiving lake, which clarifies the relationship between point and nonpoint source control.

  14. Groundwater chemistry near an impoundment for produced water, Powder River Basin, Wyoming, USA

    USGS Publications Warehouse

    Healy, R.W.; Bartos, T.T.; Rice, C.A.; McKinley, M.P.; Smith, B.D.

    2011-01-01

    The Powder River Basin is one of the largest producers of coal-bed natural gas (CBNG) in the United States. An important environmental concern in the Basin is the fate of the large amounts of groundwater extracted during CBNG production. Most of this produced water is disposed of in unlined surface impoundments. A 6-year study of groundwater flow and water chemistry at one impoundment, Skewed Reservoir, has produced the most detailed data set for any impoundment in the Basin. Data were collected from a network of 21 observation wells and three suction lysimeters. A groundwater mound formed atop bedrock within initially unsaturated, unconsolidated deposits underlying the reservoir. Heterogeneity in physical and chemical properties of sediments resulted in complex groundwater flow paths and highly variable groundwater chemistry. Sulfate, bicarbonate, sodium, and magnesium were the dominant ions in all areas, but substantial variability existed in relative concentrations; pH varied from less than 3 to more than 9, and total dissolved solids concentrations ranged from less than 5000 to greater than 100,000 mg/L. Selenium was a useful tracer of reservoir water; selenium concentrations exceeded 300 μg/L in samples obtained from 18 of the 24 sampling points. Groundwater travel time from the reservoir to a nearby alluvial aquifer (a linear distance of 177 m) was calculated at 474 days on the basis of selenium concentrations. The produced water is not the primary source of solutes in the groundwater. Naturally occurring salts and minerals within the unsaturated zone, dissolved and mobilized by infiltrating impoundment water, account for most of the solute mass in groundwater. Gypsum dissolution, cation-exchange, and pyrite oxidation appear to be important reactions. The complex geochemistry and groundwater flow paths at the study site underscore the difficulty in assessing effects of surface impoundments on water resources within the Powder River Basin.

  15. Sustainability of mega water diversion projects: Experience and lessons from China.

    PubMed

    Yu, Min; Wang, Chaoran; Liu, Yi; Olsson, Gustaf; Wang, Chunyan

    2018-04-01

    Water availability and water demand are not evenly distributed in time and space. Many mega water diversion projects have been launched to alleviate water shortages in China. This paper analyzes the temporal and spatial features of 59 mega water diversion projects in China using statistical analysis. The relationship between nine major basins is measured using a network analysis method, and the associated economic, environmental and social impacts are explored using an impact analysis method. The study finds the development of water diversion has experienced four stages in China, from a starting period through to a period of high-speed development. Both the length of water diversion channels and the amount of transferred water have increased significantly in the past 50years. As of 2015, over 100billionm 3 of water was transferred in China through 16,000km in channels. These projects reached over half of China's provinces. The Yangtze River Basin is now the largest source of transferred water. Through inter-basin water diversion, China gains the opportunity to increase Gross Domestic Product by 4%. However, the construction costs exceed 150 billion US dollars, larger than in any other country. The average cost per unit of transferred water has increased with time and scale but decreased from western to eastern China. Furthermore, annual total energy consumption for pumping exceeded 50billionkilowatt-hours and the related greenhouse gas emissions are estimated to be 48milliontons. It is worth noting that ecological problems caused by water diversion affect the Han River and Yellow River Basins. Over 500 thousand people have been relocated away from their homes due to water diversion. To improve the sustainability of water diversion, four kinds of innovative measures have been provided for decision makers: national diversion guidelines, integrated water basin management, economic incentives and ex-post evaluation. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Groundwater quality in the Mojave area, California

    USGS Publications Warehouse

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Mojave River make up one of the study areas being evaluated. The Mojave study area is approximately 1,500 square miles (3,885 square kilometers) and includes four contiguous groundwater basins: Upper, Middle, and Lower Mojave River Groundwater Basins, and the El Mirage Valley (California Department of Water Resources, 2003). The Mojave study area has an arid climate, and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). Land use in the study area is approximately 82 percent (%) natural (mostly shrubland), 4% agricultural, and 14% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Victorville, Hesperia, and Apple Valley (2010 populations of 116,000, 90,000 and 69,000, respectively). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in the Mojave study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Mojave study area are completed to depths between 200 and 600 feet (18 to 61 meters), consist of solid casing from the land surface to a depth of 130 to 420 feet (40 to 128 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the mountains to the south, mostly through the Mojave River channel. The primary sources of discharge are pumping wells and evapotranspiration.

  17. Appraisal of water resources in the Hackensack River basin, New Jersey

    USGS Publications Warehouse

    Carswell, L.D.

    1976-01-01

    The Hackensack River basin, in the northern part of the New Jersey-New York metropolitan area, includes some of the most highly urbanized areas in the United States as well as a largely undeveloped 23.4 square mile area of tidal marsh referred to as the Hackensack Meadows. Bedrock in the Hackensack River basin, consisting of the Newark Group of Triassic age, is composed of diabase dikes and sills and gently westward dipping sandstone, conglomerate, and shale. The Brunswick Formation of the Newark Group is the only important bedrock aquifer in the basin. Water occurs in this aquifer in joints and fractures. The zone of most abundant and largest water-bearing joints and fractures occurs generally within 200 feet of land surface in lowland areas of major streams and within 400 to 500 feet of land surface in upland areas. Reported yields of industrial and public-supply wells tapping the Brunswick are as much as 600 gpm (gallons per minute): the median yield is 100 gpm. The formation is anisotropic; the greatest permeability and thus the movement of water in response to pumping are parallel to the strike of bedding. Therefore, wells in well fields alined perpendicular to strike have minimum interference. The Newark Group is overlain by unconsolidated deposits of till, varved silt and clay, alluvium, and sand and gravel of Quaternary age. Sand and gravel aquifers consist of (1) deltaic deposits formed at the mouths of streams that entered ancient Lake Hackensack in the western part of the basin and (2) valley-fill deposits along the eastern side of the basin. These aquifers locally yield large quantities of water (greater than 300 gpm) to wells. The chemical quality of water in the Brunswick Formation is generally good, and the water is relatively low in dissolved mineral matter in the upper area of the Hackensack River basin. In the lower area of the basin, water in the Brunswick is highly mineralized: specific conductance ranges from 579 to 3,480 micromhos per centimeter at 25 °C; chloride content ranges from 19 to 755 mg/L (milligrams per liter); and sufate content ranges from 87 to 966 mg/L. Chemical quality in both the Brunswick Formation and the unconsolidated deposits in the lower area is affected by induced recharge of poor quality surface water from the Hackensack River and Newark Bay. Water quality in these surface water bodies is influenced by tidal flooding and by the disposal of an average of 57 mgd (million gallons per day) of sewage and industrial wastes in the Hackensack Meadows. Future development of ground-water supplies in the upper area of the basin is restricted, because such development would decrease surface-water supplies which are almost entirely utilized for water supply. Additional development of ground water in the lower area of the basin is limited by the small amount of ground water in the basin and by the intrusion of highly mineralized surface water into the aquifers.

  18. Scaling properties reveal regulation of river flows in the Amazon through a forest reservoir

    NASA Astrophysics Data System (ADS)

    Salazar, Juan Fernando; Villegas, Juan Camilo; María Rendón, Angela; Rodríguez, Estiven; Hoyos, Isabel; Mercado-Bettín, Daniel; Poveda, Germán

    2018-03-01

    Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we introduce a novel physical interpretation of the scaling properties of river flows and show that it leads to a parsimonious characterization of the flow regime of any river basin. This allows river basins to be classified as regulated or unregulated, and to identify a critical threshold between these states. We applied this framework to the Amazon river basin and found both states among its main tributaries. Then we introduce the forest reservoir hypothesis to describe the natural capacity of river basins to regulate river flows through land-atmosphere interactions (mainly precipitation recycling) that depend strongly on the presence of forests. A critical implication is that forest loss can force the Amazonian river basins from regulated to unregulated states. Our results provide theoretical and applied foundations for predicting hydrological impacts of global change, including the detection of early-warning signals for critical transitions in river basins.

  19. The water footprint of agricultural products in European river basins

    NASA Astrophysics Data System (ADS)

    Vanham, D.; Bidoglio, G.

    2014-05-01

    This work quantifies the agricultural water footprint (WF) of production (WFprod, agr) and consumption (WFcons, agr) and the resulting net virtual water import (netVWi, agr) of 365 European river basins for a reference period (REF, 1996-2005) and two diet scenarios (a healthy diet based upon food-based dietary guidelines (HEALTHY) and a vegetarian (VEG) diet). In addition to total (tot) amounts, a differentiation is also made between the green (gn), blue (bl) and grey (gy) components. River basins where the REF WFcons, agr, tot exceeds the WFprod, agr, tot (resulting in positive netVWi, agr, tot values), are found along the London-Milan axis. These include the Thames, Scheldt, Meuse, Seine, Rhine and Po basins. River basins where the WFprod, agr, tot exceeds the WFcons, agr, tot are found in Western France, the Iberian Peninsula and the Baltic region. These include the Loire, Ebro and Nemunas basins. Under the HEALTHY diet scenario, the WFcons, agr, tot of most river basins decreases (max -32%), although it was found to increase in some basins in northern and eastern Europe. This results in 22 river basins, including the Danube, shifting from being net VW importers to being net VW exporters. A reduction (max -46%) in WFcons, agr, tot is observed for all but one river basin under the VEG diet scenario. In total, 50 river basins shift from being net VW importers to being net exporters, including the Danube, Seine, Rhone and Elbe basins. Similar observations are made when only the gn + bl and gn components are assessed. When analysing only the bl component, a different river basin pattern is observed.

  20. Water-quality characteristics and trend analyses for the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins, Wyoming and Montana, for selected periods, water years 1991 through 2010

    USGS Publications Warehouse

    Clark, Melanie L.

    2012-01-01

    The Powder River structural basin in northeastern Wyoming and southeastern Montana is an area of ongoing coalbed natural gas (CBNG) development. Waters produced during CBNG development are managed with a variety of techniques, including surface impoundments and discharges into stream drainages. The interaction of CBNG-produced waters with the atmosphere and the semiarid soils of the Powder River structural basin can affect water chemistry in several ways. Specific conductance and sodium adsorption ratios (SAR) of CBNG-produced waters that are discharged to streams have been of particular concern because they have the potential to affect the use of the water for irrigation. Water-quality monitoring has been conducted since 2001 at main-stem and tributary sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins in response to concerns about CBNG effects. A study was conducted to summarize characteristics of stream-water quality for water years 2001–10 (October 1, 2000, to September 30, 2010) and examine trends in specific conductance, SAR, and primary constituents that contribute to specific conductance and SAR for changes through time (water years 1991–2010) that may have occurred as a result of CBNG development. Specific conductance and SAR are the focus characteristics of this report. Dissolved calcium, magnesium, and sodium, which are primary contributors to specific conductance and SAR, as well as dissolved alkalinity, chloride, and sulfate, which are other primary contributors to specific conductance, also are described. Stream-water quality in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins was variable during water years 2001–10, in part because of variations in streamflow. In general, annual runoff was less than average during water years 2001–06 and near or above average during water years 2007–10. Stream water of the Tongue River had the smallest specific conductance values, sodium adsorption ratios, and major ion concentrations of the main-stem streams. Sites in the Tongue River drainage basin typically had the smallest range of specific conductance and SAR values. The water chemistry of sites in the Powder River drainage basin generally was the most variable as a result of diverse characteristics of that basin. Plains tributaries in the Powder River drainage basin had the largest range of specific conductance and SAR values, in part due to the many tributaries that receive CBNG-produced waters. Trends were analyzed using the seasonal Kendall test with flow-adjusted concentrations to determine changes to water quality through time at sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins. Trends were evaluated for water years 2001–10 for 17 sites, which generally were on the main-stem streams and primary tributaries. Trends were evaluated for water years 2005–10 for 26 sites to increase the spatial coverage of sites. Trends were evaluated for water years 1991–2010 for eight sites to include water-quality data collected prior to widespread CBNG development and expand the temporal context of trends. Consistent patterns were not observed in trend results for water years 2001–10 for flow-adjusted specific conductance and SAR values in the Tongue, Powder, and Belle Fourche River drainage basins. Significant (p-values less than 0.05) upward trends in flow-adjusted specific conductance values were determined for 3 sites, a downward trend was determined for 1 site, and no significant (p-value greater than 0.05) trends were determined for 13 sites. One of the sites with a significant upward trend was the Tongue River at the Wyoming-Montana State line. No trend in flow-adjusted specific conductance values was determined for the Powder River at Moorhead, Mont. Significant upward trends in flow-adjusted SAR values were determined for 2 sites and no significant trends were determined for 15 sites. No trends in flow-adjusted SAR values were determined for the Tongue River at the Wyoming-Montana State line or for the Powder River at Moorhead, Mont. One of the sites with a significant upward trend in flow-adjusted SAR values was the Powder River at Arvada, Wyo. For water years 2005–10, significant upward trends in flow-adjusted specific conductance values were determined no significant trends were determined for 13 sites. A significant upward trend was determined for flow-adjusted specific conductance values for the Tongue River at the Wyoming-Montana State line. No trend in flow-adjusted specific conductance values was determined for the Powder River at Moorhead, Mont. Significant upward trends in flow-adjusted SAR values were determined for 4 sites, downward trends were determined for 5 sites, and no significant trend was determined for 17 sites. No trends in flow-adjusted SAR values were determined for the Tongue River at the Wyoming-Montana State line or for the Powder River at Moorhead, Mont. Results of the seasonal Kendall test applied to flow-adjusted specific conductance values for water years 1991–2010 indicated no significant trend for eight sites in the Tongue, Powder, and Belle Fourche River drainage basins. No significant trend in flow-adjusted specific conductance was determined for the Tongue River at the Wyoming-Montana State line or the Powder River at Moorhead, Mont. Results of the seasonal Kendall test applied to flow-adjusted SAR values for water years 1991–2010 indicated an upward trend for one site and no significant trend for four sites in the Powder and Belle Fourche River drainage basins. The significant upward trend in flow-adjusted SAR values was determined for the Powder River at Arvada, Wyo., for water years 1991–2010. Results indicate that CBNG development in the Powder River structural basin may have contributed to some trends, such as the upward trend in flow-adjusted SAR for the Powder River at Arvada, Wyo., for water years 1991–2010. An upward trend in flow-adjusted alkalinity concentrations for water years 2001–10 also was determined for the Powder River at Arvada, Wyo. Trend results are consistent with changes that can occur from the addition of sodium and bicarbonate associated with CBNG-produced waters to the Powder River. Upward trends in constituents at other sites, including the Belle Fourche River, may be the result of declining CBNG development, indicating that CBNG-produced waters may have had a dilution effect on some streams. The factors affecting other trends could not be determined because multiple factors could have been affecting the stream-water quality or because trends were observed at sites upstream from CBNG development that may have affected water-quality trends at sites downstream.

  1. Trends in precipitation, runoff, and evapotranspiration for rivers draining to the Gulf of Maine in the United States

    USGS Publications Warehouse

    Huntington, Thomas G.; Billmire, M.

    2014-01-01

    Climate warming is projected to result in increases in total annual precipitation in northeastern North America. The response of runoff to increases in precipitation is likely to be more complex because increasing evapotranspiration (ET) could counteract increasing precipitation. This study was conducted to examine these competing trends in the historical record for 22 rivers having >70 yr of runoff data. Annual (water year) average precipitation increased in all basins, with increases ranging from 0.9 to 3.12 mm yr−1. Runoff increased in all basins with increases ranging from 0.67 to 2.58 mm yr−1. The ET was calculated by using a water balance approach in which changes in terrestrial water storage were considered negligible. ET increased in 16 basins and decreased in 6 basins. Temporal trends in temperature, precipitation, runoff, and ET were also calculated for each basin over their respective periods of record for runoff and for the consistent period (1927–2011) for the area-weighted average of the nine largest non-nested basins. From 1927 through 2011, precipitation and runoff increased at average rates of 1.6 and 1.7 mm yr−1, respectively, and ET increased slightly at a rate of 0.18 mm yr−1. For the more recent period (1970–2011), there was a positive trend in ET of 1.9 mm yr−1. The lack of a more consistent increase in ET, compared with the increases in precipitation and runoff, for the full periods of record, was unexpected, but may be explained by various factors including decreasing wind speed, increasing cloudiness, decreasing vapor pressure deficit, and patterns of forest growth.

  2. Spatial and temporal variations of river nitrogen exports from major basins in China.

    PubMed

    Ti, Chaopu; Yan, Xiaoyuan

    2013-09-01

    Provincial-level data for population, livestock, land use, economic growth, development of sewage systems, and wastewater treatment rates were used to construct a river nitrogen (N) export model in this paper. Despite uncertainties, our results indicated that river N export to coastal waters increased from 531 to 1,244 kg N km(-2) year(-1) in the Changjiang River basin, 107 to 223 kg N km(-2) year(-1) in the Huanghe River basin, and 412 to 1,219 kg N km(-2) year(-1) in the Zhujiang River basin from 1980 to 2010 as a result of rapid population and economic growth. Significant temporal changes in water N sources showed that as the percentage of runoff from croplands increased, contributions of natural system runoff and rural human and livestock excreta decreased in the three basins from 1980 to 2010. Moreover, the nonpoint source N decreased from 72 to 58 % in the Changjiang River basin, 80 to 67 % in the Huanghe River basin, and 69 to 51 % in the Zhujiang River basin, while the contributions of point sources increased greatly during the same period. Estimated results indicated that the N concentrations in the Changjiang, Huanghe, and Zhujiang rivers during 1980-2004 were higher than those in the St. Lawrence River in Canada and lower than those in the Thames, Donau, Rhine, Seine, and Han rivers during the same period. River N export will reduce by 58, 54, and 57 % for the Changjiang River, Huanghe River, and Zhujiang River in the control scenario in 2050 compared with the basic scenario.

  3. Riverine export of dissolved organic carbon to the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Huntington, T. G.; Aiken, G.

    2013-12-01

    Land-to-sea carbon transport of dissolved organic carbon (DOC) is an important part of the carbon cycle that can affect long-term carbon sequestration, satellite-derived ocean color metrics, and ocean primary productivity and biogeochemistry. Using continuous discharge data and discrete sampling we estimated DOC fluxes from rivers covering about 68% of the watershed that drains to the Gulf of Maine (GoM) for water years (October through September) 2011 and 2012. Estimates for rivers entering the GoM in the USA were made using LOADEST regression software that fits a seasonally-adjusted concentration discharge relation to the data. The basin area-weighted 95% confidence limits about the LOADEST mean fluxes averaged 8.1% for the lower limit and 8.9% for the upper limit. Estimates for rivers entering the GoM in Canada were obtained from previously published estimates. Carbon yield tends to increase from southwest (35 to 36 kg C/ha/yr) to a maximum of 76 kg C/ha/yr for the Penobscot River and then decline further to the northeast (61 kg C/ha/yr in the St. John River and 41 kg C/ha/yr in the rest of New Brunswick and Nova Scotia). The area-weighted average carbon yield for all measured basins was 54.5 kg C/ha/yr. The variation in carbon yield is most closely associated with the amount of runoff and wetland area within a river basin. Simple area-weighted extrapolation to the entire GoM basin resulted in an estimate of 9.8 x 105 metric tons C per year for the WY2011 and WY2012 period. Runoff is the dominant control on intra and inter-annual variation in DOC flux because runoff varies much more than DOC concentration at these temporal scales. Runoff is usually low during the winter, peaks in the spring during snowmelt, decreases to a minimum in late summer and increases again in the fall when transpiration decreases. DOC concentration is low during the winter and snowmelt-dominated spring period, generally increases through the summer, and peaks during the fall. DOC flux to the GoM is characterized by low fluxes in winter, high fluxes during the spring snowmelt and before major increase in transpiration, lower fluxes during summer months and, increasing fluxes in the fall. The increase in spring DOC flux occurs earliest in the major river basins in the southwest and progressively later towards the northeast. Assuming that the seasonally adjusted DOC concentration discharge relationships we obtained have been stable over time we estimated fluxes using historical runoff data to assess potential changes in DOC export from five large river basins with long-term discharge data to the GoM since 1930 (St Croix, Penobscot, Androscoggin, Saco and Merrimack Rivers). DOC export has apparently been increasing over time in association with increasing runoff. The largest increases in DOC in absolute and percentage terms have occurred during October, November, and December. Increases were observed in all months except May when there was a small decrease. The decrease in May and increases in March and April are consistent with earlier snowmelt and earlier onset of transpiration.

  4. Effects of alternative instream-flow criteria and water-supply demands on ground-water development options in the Big River Area, Rhode Island

    USGS Publications Warehouse

    Granato, Gregory E.; Barlow, Paul M.

    2005-01-01

    Transient numerical ground-water-flow simulation and optimization techniques were used to evaluate potential effects of instream-flow criteria and water-supply demands on ground-water development options and resultant streamflow depletions in the Big River Area, Rhode Island. The 35.7 square-mile (mi2) study area includes three river basins, the Big River Basin (30.9 mi2), the Carr River Basin (which drains to the Big River Basin and is 7.33 mi2 in area), the Mishnock River Basin (3.32 mi2), and a small area that drains directly to the Flat River Reservoir. The overall objective of the simulations was to determine the amount of ground water that could be withdrawn from the three basins when constrained by streamflow requirements at four locations in the study area and by maximum rates of withdrawal at 13 existing and hypothetical well sites. The instream-flow requirement for the outlet of each basin and the outfall of Lake Mishnock were the primary variables that limited the amount of ground water that could be withdrawn. A requirement to meet seasonal ground-water-demand patterns also limits the amount of ground water that could be withdrawn by up to about 50 percent of the total withdrawals without the demand-pattern constraint. Minimum water-supply demands from a public water supplier in the Mishnock River Basin, however, did not have a substantial effect on withdrawals in the Big River Basin. Hypothetical dry-period instream-flow requirements and the effects of artificial recharge also affected the amount of ground water that could be withdrawn. Results of simulations indicate that annual average ground-water withdrawal rates that range up to 16 million gallons per day (Mgal/d) can be withdrawn from the study area under simulated average hydrologic conditions depending on instream-flow criteria and water-supply demand patterns. Annual average withdrawals of 10 to 12 Mgal/d are possible for proposed demands of 3.4 Mgal/d in the Mishnock Basin, and for a constant annual instream-flow criterion of 0.5 cubic foot per second per square mile (ft3/s/mi2) at the four streamflow-constraint locations. An average withdrawal rate of 10 Mgal/d can meet estimates of future (2020) water-supply needs of surrounding communities in Rhode Island. This withdrawal rate represents about 13 percent of the average 2002 daily withdrawal from the Scituate Reservoir (76 Mgal/d), the State?s largest water supply. Average annual withdrawal rates of 6 to 7 Mgal/d are possible for more stringent instream-flow criteria that might be used during dry-period hydrologic conditions. Two example scenarios of dry-period instream-flow constraints were evaluated: first, a minimum instream flow of 0.1 cubic foot per second at any of the four constraint locations; and second, a minimum instream flow of 10 percent of the minimum monthly streamflow estimate for each streamflow-constraint location during the period 1961?2000. The State of Rhode Island is currently (2004) considering methods for establishing instream-flow criteria for streams within the State. Twelve alternative annual, seasonal, or monthly instream-flow criteria that have been or are being considered for application in southeastern New England were used as hypothetical constraints on maximum ground-water-withdrawal rates in management-model calculations. Maximum ground-water-withdrawal rates ranged from 5 to 16 Mgal/d under five alternative annual instream-flow criteria. Maximum ground-water-withdrawal rates ranged from 0 to 13.6 Mgal/d under seven alternative seasonal or monthly instream-flow criteria. The effect of ground-water withdrawals on seasonal variations in monthly average streamflows under each criterion also were compared. Evaluation of management-model results indicates that a single annual instream-flowcriterion may be sufficient to preserve seasonal variations in monthly average streamflows and meet water-supply demands in the Big River Area, because withdrawals from wells in the Big

  5. Water resources inventory of Connecticut Part 7: upper Connecticut River basin

    USGS Publications Warehouse

    Ryder, Robert B.; Thomas, Mendall P.; Weiss, Lawrence A.

    1981-01-01

    The 508 square miles of the upper Connecticut River basin in north-central Connecticut include the basins of four major tributaries: the Scantic, Park, and Hockanum Rivers, and the Farmington River downstream from Tariffville. Precipitation over this area averaged 44 inches per year during 1931-60. In this period, an additional 3,800 billion gallons of water per year entered the basin in the main stem of the Connecticut River at the Massachusetts state line, about 230 billion gallons per year in the Farmington River at Tariffville, and about 10 billion gallons per year in the Seantic River at the Massachusetts state line. Some water was also imported from outside the basin by water-supply systems. About half the precipitation, 22.2 inches, was lost from the basin by evapotranspiration; the remainder flowed out of the study area in the Connecticut River at Portland. Variations in streamflow at 41 long-term continuous-record gaging stations are summarized in standardized graphs and tables that can be used to estimate streamflow characteristics at other sites. For example, mean-flow and two low-flow characteristics: (1) the 7-day annual minimum flow for 2-year and (2) 10-year recurrence intervals, have been determined for many partial-record stations throughout the basin. Of the 30 principal lakes, ponds, and reservoirs, two have usable storage capacities of more than 1 billion gallons. The maximum safe draft rate (regulated flow) of the largest of these, Shenipsit Lake at Rockville, is 6.5 million gallons per day for the 2-year and 30-year recurrence intervals (median and lowest annual flow). Floods have occurred within each month of the year but in different years. The greatest known flood on the Connecticut River was in March 1936; it had a peak flow of 130,000 cubic feet per second at Hartford. Since then, major floods have been reduced by flood-control measures. The major aquifers underlying the basin are composed of unconsolidated materials (stratified drift and till) and bedrock. Stratified drift overlies till and bedrock in valleys and lowlands in the eastern and western parts and in most of the broad central valley. The stratified drift generally ranges in thickness from 10 feet in small valleys to more than 200 feet in the Connecticut River Valley. Bedrock underlies the entire basin and is composed of (1) interbedded sedimentary and igneous rocks and (2) crystalline rocks. Ground-water sources yield from several million gallons per day from large well fields to 1 gallon per minute from single wells. Yields of 100 gal/min or more are most commonly obtained from screened wells tapping stratified-drift aquifers; amounts can be calculated by use of a series of graphs in conjunction with estimates of aquifer transmissivity and thickness. Eighteen areas underlain by good aquifers are selected as the most favorable locations for large-scale development of ground water. Selection of these areas is based on estimates of aquifer characteristics and the amount of water potentially available from induced infiltration of streamflow at low-flow conditions. Small to moderate water supplies can generally be obtained from any of the aquifers. Wells in bedrock yield at least a few gallons per minute at most sites. The probability of obtaining an adequate yield for domestic supply is greater in sedimentary than in crystalline bedrock and is also greater in stratified-drift overburden than in till. Where unaffected by man's activities, the water is of the calcium magnesium bicarbonate type, is generally low to moderate in dissolved-solids concentration, and ranges from soft to hard. In general, streamflow is less mineralized than ground water, particularly when it consists largely of direct runoff. However, streams become more highly mineralized during low-flow conditions, when most flow consists of more highly mineralized water discharged from aquifers. The median dissolved-solids concentration in water from 25 stream sites was 113 mg/L (milligrams per liter) during high flow, and 148 mg/L during low flow within the study period. Iron and manganese occur naturally in objectionable concentrations in some streams draining swamps and in some waters draining from sedimentary bedrock which contains iron- and manganese-bearing minerals. Man's activities have affected the water quality of streams in much of the area, particularly in the Hockanum and Park River basins. The degradation in quality in these streams is shown by wide and erratic changes in dissolved-solids concentration, excessive amounts of trace elements, a low dissolved-oxygen content, and abnormally high temperatures. Ground water within this area is degraded principally by induced infiltration of surface water that contains chemical wastes, by leachate from wastes stored or disposed of on the ground, and by effluents discharged from septic tanks. The quantity and quality of water are satisfactory for a wide variety of uses, and, with suitable treatment, the water may be used for most purposes. The total amount of water used in 1968 was more than 100 billion gallons. About 80 percent of this was used for industrial purposes, and 90 percent of the industrial water was obtained from surface-water sources. About 85 percent of the population was supplied with water for domestic use by 15 major public and municipal systems and 25 private associations. Analyses of water from the 13 largest systems show generally good quality.

  6. Impact of LUCC on streamflow based on the SWAT model over the Wei River basin on the Loess Plateau in China

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Sun, Fubao; Xia, Jun; Liu, Wenbin

    2017-04-01

    Under the Grain for Green Project in China, vegetation recovery construction has been widely implemented on the Loess Plateau for the purpose of soil and water conservation. Now it is becoming controversial whether the recovery construction involving vegetation, particularly forest, is reducing the streamflow in the rivers of the Yellow River basin. In this study, we chose the Wei River, the largest branch of the Yellow River, with revegetated construction area as the study area. To do that, we apply the widely used Soil and Water Assessment Tool (SWAT) model for the upper and middle reaches of the Wei River basin. The SWAT model was forced with daily observed meteorological forcings (1960-2009) calibrated against daily streamflow for 1960-1969, validated for the period of 1970-1979, and used for analysis for 1980-2009. To investigate the impact of LUCC (land use and land cover change) on the streamflow, we firstly use two observed land use maps from 1980 and 2005 that are based on national land survey statistics merged with satellite observations. We found that the mean streamflow generated by using the 2005 land use map decreased in comparison with that using the 1980 one, with the same meteorological forcings. Of particular interest here is that the streamflow decreased on agricultural land but increased in forest areas. More specifically, the surface runoff, soil flow, and baseflow all decreased on agricultural land, while the soil flow and baseflow of forest areas increased. To investigate that, we then designed five scenarios: (S1) the present land use (1980) and (S2) 10 %, (S3) 20 %, (S4) 40 %, and (S5) 100 % of agricultural land that was converted into mixed forest. We found that the streamflow consistently increased with agricultural land converted into forest by about 7.4 mm per 10 %. Our modeling results suggest that forest recovery construction has a positive impact on both soil flow and baseflow by compensating for reduced surface runoff, which leads to a slight increase in the streamflow in the Wei River with the mixed landscapes on the Loess Plateau that include earth-rock mountain area.

  7. Po river plume patterns variability and dynamics: a numerical modeling and statistical approach.

    NASA Astrophysics Data System (ADS)

    Falcieri, Francesco M.; Benetazzo, Alvise; Bergamasco, Andrea; Bonaldo, Davide; Carniel, Sandro; Sclavo, Mauro; Russo, Aniello

    2013-04-01

    Processes and dynamics of estuarine-shelf environments are defined by many drivers, some of the most important being riverine inputs, winds (and wind driven currents) and tides. Two of them are directly involved in the formation and spatial evolution of a coastal river plume: on the one hand the amount of fresh water entering into the sea through river' discharge, on the other hand the direction and intensity of winds blowing over the domain. The Adriatic Sea is generally considered a dilution basin due to the large amount of freshwater inputs received. These inputs have a significant influence on the basin, both from a physical point of view (by affecting buoyancy) and on the biogeochemical characteristics (by introducing large quantities of nutrients, which sustain primary production in the areas interested by the rivers' plumes). The Po River (mean daily discharge between 275 and 11600 m3/s, yearly mean of 1500 m3/s) is the single largest freshwater source of the Adriatic; its discharges result in a plume that directly influences the characteristics of the coastal areas of the whole Northern sub-basin and as far South as Ancona. The development of strong lateral gradients in salinity is an all year around driver (particularly in Spring and Autumn) of the general and coastal circulation, and influences the water column vertical structure and an important process such as the formation of the Northern Adriatic Dense Water. The Po plume generally follows two major patterns of evolution: southward along the Italian coasts in a ribbon that can fill the whole water column, or across the northern part of the basin toward the Istrian coasts in a generally more stratified condition. A model-based assessment, albeit semi-quantitative, of the dynamics and variability of the Po plume has not been yet reported in literature. In this work we investigated its dynamics by means of an 8 years (2003-2010) numerical simulation with the Regional Ocean Modelling System (ROMS). The model has been implemented on a 2 km regular grid for with surface fluxes come from an high-resolution meteorological model (COSMO I7), open boundary conditions at Otranto Straits come from an existing operational Mediterranean model (MFSTEP), main diurnal and semidiurnal tidal components are imposed at the open boundary, and main rivers discharge (including Po) are introduced as freshwater mass fluxes as measured by river gauges closest to the rivers' mouths.

  8. Channel Width Change as a Potential Sediment Source, Minnesota River Basin

    NASA Astrophysics Data System (ADS)

    Lauer, J. W.; Echterling, C.; Lenhart, C. F.; Rausch, R.; Belmont, P.

    2017-12-01

    Turbidity and suspended sediment are important management considerations along the Minnesota River. The system has experience large and relatively consistent increases in both discharge and channel width over the past century. Here we consider the potential role of channel cross section enlargement as a sediment source. Reach-average channel width was digitized from aerial images dated between 1937 and 2015 along multiple sub-reaches of the Minnesota River and its major tributaries. Many of the sub-reaches include several actively migrating bends. The analysis shows relatively consistent increases in width over time, with average increase rates of 0.4 percent per year. Extrapolation to the river network using a regional relationship for cross-sectional area vs. drainage area indicates that large tributaries and main-stem reaches account for most of the bankfull cross-sectional volume in the basin. Larger tributaries and the main stem thus appear more important for widening related sediment production than small tributaries. On a basin-wide basis, widening could be responsible for a gross supply of more sediment than has been gaged at several main-stem sites, indicating that there may be important sinks for both sand and silt/clay size material distributed throughout the system. Sediment storage is probably largest along the lowest-slope reaches of the main stem. While channel width appears to have adjusted relatively quickly in response to discharge and other hydraulic modifications, net storage of sediment in floodplains probably occurs sufficiently slowly that depth adjustment will lag width adjustment significantly. Detailed analysis of the lower Minnesota River using a river segmenting approach allows for a more detailed assessment of reach-scale processes. Away from channel cutoffs, elongation of the channel at eroding bends is consistent with rates observed on other actively migrating rivers. However, the sinuosity increase has been more than compensated by several natural and engineered cutoffs. The sinuosity change away from cutoffs probably plays a relatively modest role in the reach's sediment budget. However, point bars and abandoned oxbow lakes are important zones of sediment storage that may be large enough to account for much of the widening-related production of sand in the reach.

  9. Long-term hydro-climatic changes in the Selenga river basin, Central Asia

    NASA Astrophysics Data System (ADS)

    Törnqvist, Rebecka; Asokan, Shilpa M.; Pietroń, Jan; Jarsjö, Jerker; Destouni, Georgia

    2014-05-01

    Climatic changes can lead to altered hydrological conditions, which in turn can impact pollutant loading patterns to the terminal recipient of a considered basin. Lake Baikal is the deepest and largest freshwater reservoir on Earth. The lake and its surroundings have been declared an UNESCO World Heritage Site due to its unique ecosystem with numerous endemic animal and plant species. The Selenga river basin, which is located in northern Mongolia and southern Siberia in Russia, is the largest sub-basin of the Lake Baikal. Mining is well developed in the region and has been identified to be the main pollution source for the water system in the sparsely populated region. We investigate long-term historic and projected future hydro-climatic conditions in the Selenga river basin with the aim to improve the understanding of such underlying conditions in the basin. This understanding is fundamental for preventing degradation of Lake Baikal's unique ecosystem from for instance mining activities. Specifically, our objective is to identify observed historical hydro-climatic changes during the 72-year period of 1938-2009. In addition, we assess multi-model ensemble means of the Coupled Model Intercomparison Project, Phase 5 (CMIP5) in order to also consider future projections of hydro-climatic changes for a near future period (2010-2039) and a more distant future period (2070-2099). The results show that there has been an observed increase in mean annual temperature in the basin by about 1.5°C during the period 1938-2009. Moreover, a longer seasonal period of temperatures above zero (especially due to increasing spring temperatures) is detected. For the annual water balance components of precipitation, evapotranspiration and runoff, relatively small temporal changes are observed. However, in recent years there has been a detected decrease in runoff, with 10-year running averages reaching their lowest levels within the whole investigation period. In particular, there has been a decrease in peak discharges during summer and an increase in winter base flow. Such decreased intra-annual variability may be an indication of permafrost thawing, associated with increased active layer depth and thereby decreased subsurface storage of (liquid and frozen) water. Future projections indicate a continued large increase in temperature for the long distance future (2070-2099), from a mean annual temperature of -2.5°C for the period 1961-1990 to a mean annual temperature of 3°C for the period 2070-2099. Such a shift from mean annual temperatures below zero to well above zero may lead to further permafrost thawing. The magnitude of precipitation, evapotranspiration and runoff are expected to increase in the future. However, especially the projection for runoff is highly uncertain due to large variation in projections from individual models and an overall poor performance of the models to capture the observed trend.

  10. Hydrogeology and Simulated Effects of Ground-Water Withdrawals in the Big River Area, Rhode Island

    USGS Publications Warehouse

    Granato, Gregory E.; Barlow, Paul M.; Dickerman, David C.

    2003-01-01

    The Rhode Island Water Resources Board is considering expanded use of ground-water resources from the Big River area because increasing water demands in Rhode Island may exceed the capacity of current sources. This report describes the hydrology of the area and numerical simulation models that were used to examine effects of ground-water withdrawals during 1964?98 and to describe potential effects of different withdrawal scenarios in the area. The Big River study area covers 35.7 square miles (mi2) and includes three primary surface-water drainage basins?the Mishnock River Basin above Route 3, the Big River Basin, and the Carr River Basin, which is a tributary to the Big River. The principal aquifer (referred to as the surficial aquifer) in the study area, which is defined as the area of stratified deposits with a saturated thickness estimated to be 10 feet or greater, covers an area of 10.9 mi2. On average, an estimated 75 cubic feet per second (ft3/s) of water flows through the study area and about 70 ft3/s flows out of the area as streamflow in either the Big River (about 63 ft3/s) or the Mishnock River (about 7 ft3/s). Numerical simulation models are used to describe the hydrology of the area under simulated predevelopment conditions, conditions during 1964?98, and conditions that might occur in 14 hypothetical ground-water withdrawal scenarios with total ground-water withdrawal rates in the area that range from 2 to 11 million gallons per day. Streamflow depletion caused by these hypothetical ground-water withdrawals is calculated by comparison with simulated flows for the predevelopment conditions, which are identical to simulated conditions during the 1964?98 period but without withdrawals at public-supply wells and wastewater recharge. Interpretation of numerical simulation results indicates that the three basins in the study area are in fact a single ground-water resource. For example, the Carr River Basin above Capwell Mill Pond is naturally losing water to the Mishnock River Basin. Withdrawals in the Carr River Basin can deplete streamflows in the Mishnock River Basin. Withdrawals in the Mishnock River Basin deplete streamflows in the Big River Basin and can intercept water flowing to the Flat River Reservoir North of Hill Farm Road in Coventry, Rhode Island. Withdrawals in the Big River Basin can deplete streamflows in the western unnamed tributary to the Carr River, but do not deplete streamflows in the Mishnock River Basin or in the Carr River upstream of Capwell Mill Pond. Because withdrawals deplete streamflows in the study area, the total amount of ground water that may be withdrawn for public supply depends on the minimum allowable streamflow criterion that is applied for each basin.

  11. Drainage areas in the Vermillion River basin in eastern South Dakota

    USGS Publications Warehouse

    Benson, Rick D.; Freese, M.D.; Amundson, Frank D.

    1988-01-01

    Above-normal precipitation in the northern portion of the Vermillion River basin from 1982 through 1987 caused substantial rises in lake levels in the Lake Thompson chain of lakes, resulting in discharge from Lake Thompson to the East Fork Vermillion River. Prior to 1986, the Lake Thompson chain of lakes was thought to be a noncontributing portion of the Vermillion River basin. To better understand surface drainage, the map delineates all named stream basins, and all unnamed basins larger than approximately 10 sq mi within the Vermillion River basin in South Dakota and lists by stream name the area of each basin. Stream drainage basins were delineated by visual interpretation of contour information of U.S. Geological Survey 7 1/2 minute topographic maps. Two tables list areas of drainage basins and reaches, as well as drainage areas above gaging stations. (USGS)

  12. Remote sensing research on fragile ecological environment in continental river basin

    NASA Astrophysics Data System (ADS)

    Wang, Ranghui; Peng, Ruyan; Zhang, Huizhi

    2003-07-01

    Based on some remote sensing data and software platform of image processing and analysis, the standard image for ecological thematic mapping is decided. Moreover, the vegetation type maps and land sandy desertification type maps are made. Relaying on differences of natural resources and ecological environment in Tarim River Basin, the assessment indicator system and ecological fragility index (EFI) of ecological environment are built up. The assessment results are very severely. That is, EFI is only 0.08 in Akesu River Basin, it belongs to slight fragility area. EFI of Yarkant River Basin and upper reaches of Tarim River Basin are 0.23 and 0.25 respectively, both of them belong to general fragility areas. Meanwhile, EFI of Hotan River Basin and middle reaches of Tarim River Basin are 0.32 and 0.49 respectively; they all belong to middle fragility areas. However, the fragility of the lower reaches of Tarim River Basin belongs to severe fragility area that the EFI is 0.87.The maladjustment among water with hot and land as well as salt are hindrance of energy transfer and material circulation and information transmission. It is also the main reason that caused ecological environment fragility.

  13. 43 CFR 431.7 - Administration and management of the Colorado River Dam Fund.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the administration of the Colorado River Dam Fund and the Lower Colorado River Basin Development Fund... deposited by Western and shall be available without further appropriation for: (1) Defraying the costs of... River Basin Project Act; (5) Transfers to the Lower Colorado River Basin Development Fund and subsequent...

  14. A 500-year history of floods in the semi arid basins of south-eastern Spain

    NASA Astrophysics Data System (ADS)

    Sánchez García, Carlos; Schulte, Lothar; Peña, Juan Carlos; Carvalho, Filpe; Brembilla, Carla

    2016-04-01

    Floods are one of the natural hazards with higher incidence in the south-eastern Spain, the driest region in Europe, causing fatalities, damage of infrastructure and economic losses. Flash-floods in semi arid environments are related to intensive rainfall which can last from few hours to days. These floods are violent and destructive because of their high discharges, sediment transport and aggradation processes in the flood plain. Also during historical times floods affected the population in the south-eastern Spain causing sever damage or in some cases the complete destruction of towns. Our studies focus on the flood reconstruction from historical sources of the Almanzora, Aguas and Antas river basins, which have a surface between 260-2600 km2. We have also compiled information from the Andarax river and compared the flood series with the Guadalentín and Segura basins from previous studies (Benito et. al., 2010 y Machado et al., 2011). Flood intensities have been classified in four levels according to the type of damage: 1) ordinary floods that only affect agriculture plots; 2) extraordinary floods which produce some damage to buildings and hydraulic infrastructure; 3) catastrophic floods which caused sever damage, fatalities and partial or complete destruction of towns. A higher damage intensity of +1 magnitude was assigned when the event is recorded from more than one major sub-basin (stretches and tributaries such as Huércal-Overa basin) or catchment (e.g. Antas River). In total 102 incidences of damages and 89 floods were reconstructed in the Almanzora (2.611 km2), Aguas (539 km2), Antas (261 km2) and Andarax (2.100 km2) catchments. The Almanzora River was affected by 36 floods (1550-2012). The highest events for the Almanzora River were in 1580, 1879, 1973 and 2012 producing many fatalities and destruction of several towns. In addition, we identified four flood-clusters 1750-1780, 1870-1900, 1960-1977 and 1989-2012 which coincides with the periods of increased flood frequencies in the Andarax catchment. However, only the 1870-1900 flood-cluster is synchronic with the Guadalentín and Segura flood-periods, whereas the rest of flood-episodes are non-synchronic. The 2012 event, the largest flood in the Almanzora river since the 1973 event, produced in the lower stretch less damage than in the middle stretch because of structural mitigation measures such as reservoir and artificial river channelling. However, in the lower Antas and Aguas rivers the situation is different. The damages increased in 2012 as a result from the increased exposure of tourism infrastructure in the floodplain near the coastline during the last two decades. Traditional settlements of rural societies were located also in the lower river stretches at a higher elevation (e.g. fluvial terraces, glacis, slopes) like today in the higher and middle catchments.

  15. Data mining of external and internal forcing of fluvial systems for catchment management: A case study on the Red River (Song Hong), Vietnam

    NASA Astrophysics Data System (ADS)

    Schmitt, Rafael; Bizzi, Simone; Castelletti, Andrea

    2013-04-01

    The understanding of river hydromorphological processes has been recognized in the last decades as a priority of modern catchment management, since interactions of natural and anthropogenic forces within the catchment drives fluvial geomorphic processes, which shape physical habitat, affect river infrastructures and influence freshwater ecological processes. The characterization of river hydromorphological features is commonly location and time specific and highly resource demanding. Therefore, its routine application at regional or national scales and the assessment of spatio-temporal changes as reaction to internal and external disturbances is rarely feasible at present. Information ranging from recently available high-resolution remote-sensing data (such as DEM), historic data such as land use maps or aerial photographs and monitoring networks of flow and rainfall, open up novel and promising capacity for basin-wide understanding of dominant hydromorphological drivers. Analysing the resulting multiparametric data sets in their temporal and spatial dimensions requires sophisticated data mining tools to exploit the potential of this information. We propose a novel framework that allows for the quantitative assessment of multiparametric data sets to identify classes of channel reaches characterized by similar geomorphic drivers using remote-sensing data and monitoring networks available in the catchment. This generic framework was applied to the Red River (Song Hong) basin, the second largest basin (87,800 sq.km) in Vietnam. Besides its economic importance, the river is experiencing severe river bed incisions due to recent construction of new dams in the upstream part of the catchment and sand mining in the surrounding of the capital city Hanoi. In this context, characterized by an high development rate, current efforts to increase water productivity and minimize impacts on the fluvial systems by means of focused infrastructure and management measures require a thorough understanding of the fluvial system and, in particular, basin-wide assessment of resilience to human-induced change. . The framework proposed has allowed producing high-dimensional samples of spatially distributed geomorphic drivers at catchment scale while integrating recent and historic point records for the Red River basin. This novel dataset has been then analysed using self-organizing maps (SOM) an artificial neural network model in combination with fuzzy clustering. The above framework is able to identify non-trivial correlations in driving forces and to derive a fuzzy classification at reach scale which represents continuities and discontinuities in the river systems. The use of the above framework allowed analyzing the spatial distribution of geomorphic features at catchment scale, revealing patterns of similarities and dissimilarities within the catchment and allowing a classification of river reaches characterized by similar geomorphic drivers, fluvial processes and response to external forcing. The paper proposes an innovative and promising technique to produce hydromorphological classifications at catchment scale integrating historical and recent available high resolution data. The framework aims at opening the way to a more structured organization and analyses of recently available information on river geomorphic features, so far often missing or rarely exploited. This approach poses the basis to produce efficient databases of river geomorphic features and processes related to natural and anthropogenic drivers. That is a necessity in order to enhance our understanding of the internal and external forces which drive fluvial systems, to assess the resilience and dynamic of river landscapes and to develop the more efficient river management strategies of the future.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkin, Joshuah S.; Troia, Matthew J.; Shaw, Dustin C. R.

    Stream fish distributions are commonly linked to environmental disturbances affecting terrestrial landscapes. In Great Plains prairie streams, the independent and interactive effects of watershed impoundments and land cover changes remain poorly understood despite their prevalence and assumed contribution to declining stream fish diversity. We used structural equation models and fish community samples from third-order streams in the Kansas River and Arkansas River basins of Kansas, USA to test the simultaneous effects of geographic location, terrestrial landscape alteration, watershed impoundments and local habitat on species richness for stream-associated and impoundment-associated habitat guilds. Watershed impoundment density increased from west to east inmore » both basins, while per cent altered terrestrial landscape (urbanisation + row-crop agriculture) averaged ~50% in the west, declined throughout the Flint Hills ecoregion and increased (Kansas River basin ~80%) or decreased (Arkansas River basin ~30%) to the east. Geographic location had the strongest effect on richness for both guilds across basins, supporting known zoogeography patterns. In addition to location, impoundment species richness was positively correlated with local habitat in both basins; whereas stream-species richness was negatively correlated with landscape alterations (Kansas River basin) or landscape alterations and watershed impoundments (Arkansas River basin). These findings suggest that convergences in the relative proportions of impoundment and stream species (i.e., community structure) in the eastern extent of both basins are related to positive effects of increased habitat opportunities for impoundment species and negative effects caused by landscape alterations (Kansas River basin) or landscape alterations plus watershed impoundments (Arkansas River basin) for stream species.« less

  17. Groundwater quality in the Chemung River, Eastern Lake Ontario, and Lower Hudson River Basins, New York, 2013

    USGS Publications Warehouse

    Scott, Tia-Marie; Nystrom, Elizabeth A.; Reddy, James E.

    2015-11-10

    The Lower Hudson River Basin study area covers 5,607 square miles and encompasses the part of the Lower Hudson River Basin that lies within New York plus the parts of the Housatonic, Hackensack, Bronx, and Saugatuck River Basins that are in New York. Twelve of the wells sampled in the Lower Hudson River Basin are completed in sand-and-gravel deposits, and 13 are completed in bedrock. Groundwater in the Lower Hudson River Basin was generally of good quality, although properties and concentrations of some constituents—pH, sodium, chloride, dissolved solids, arsenic, aluminum, iron, manganese, radon-222, total coliform bacteria, fecal coliform bacteria, Escherichia coli bacteria, and heterotrophic plate count—equaled or exceeded primary, secondary, or proposed drinking-water standards. The constituent most frequently detected in concentrations exceeding drinking-water standards (20 of 25 samples) was radon-222.

  18. The protection of RIVERLIFE by mitigation of flood damages RIVERLIFE

    NASA Astrophysics Data System (ADS)

    Adler, M. J.

    2003-04-01

    The long-term development objective of the RIVERLIFE project is to contribute to sustainable human end economic development in the Timis-Bega river basin area as part of the Danube River Basin (DRB), through reinforcing the capacities of Romanian central and local authorities to develop effective mechanisms and tools for integrated river basin management in the Timis-Bega basin. The overall objective of the project is to assist the country in the EU enlargement and accession process to meet the EU requirements of water related Directives with emphasis on the EU Water Framework Directive (WFD). The specific objective of the project is to support the WFD implementation process at the level of a sub-unit within the limits of the DRB, through the development of a River Basin Management Plan (RBMP). The project will also facilitate the implementation of the Danube River Protection Convention (DRPC) as an essential element in the implementation of the Directive in the transboundary river basins. Expected outcomes in the recipient country consist of (i) responding to a real hazard problem, which affects the quality of life of many citizens, and (ii) improvement in the environmental conditions in the targeted areas. Flooding is one of the major natural hazards to human society and an important influence on social and economic development for Romania causing financially greater losses per annum on average than any other natural hazard. One key concept of the WFD is the coordination, organization and regulation of water management at the level of river basins. Therefore, river basin districts are shaped in such a way as to include not only the surface run-off through streams and rivers to the sea, but the total area of land and sea together with the associated groundwater and coastal waters. The concept allows even for the small river basins directly discharging into the sea to be combined into one river basin district. As a principle, the complex decisions on the use or interventions in the aquatic systems within the river basin district limits should take place in an integrated and co-coordinated approach as part of the RBMP. The process includes all RBMP plan development phases for Timis-Bega basin from planning and analysis phases to the assessment and the identification of respective programs of measures intended to achieve the defined environmental objectives for the respective river basin. The central administrative tool of the WFD is the River Basin Management Plan, around which all other elements are set. The river basin becomes the basic unit for all water planning and management interventions according with the physical and hydrological boundaries, but not necessary with its political and administrative limits.

  19. Characteristic mega-basin water storage behavior using GRACE.

    PubMed

    Reager, J T; Famiglietti, James S

    2013-06-01

    [1] A long-standing challenge for hydrologists has been a lack of observational data on global-scale basin hydrological behavior. With observations from NASA's Gravity Recovery and Climate Experiment (GRACE) mission, hydrologists are now able to study terrestrial water storage for large river basins (>200,000 km 2 ), with monthly time resolution. Here we provide results of a time series model of basin-averaged GRACE terrestrial water storage anomaly and Global Precipitation Climatology Project precipitation for the world's largest basins. We address the short (10 year) length of the GRACE record by adopting a parametric spectral method to calculate frequency-domain transfer functions of storage response to precipitation forcing and then generalize these transfer functions based on large-scale basin characteristics, such as percent forest cover and basin temperature. Among the parameters tested, results show that temperature, soil water-holding capacity, and percent forest cover are important controls on relative storage variability, while basin area and mean terrain slope are less important. The derived empirical relationships were accurate (0.54 ≤  E f  ≤ 0.84) in modeling global-scale water storage anomaly time series for the study basins using only precipitation, average basin temperature, and two land-surface variables, offering the potential for synthesis of basin storage time series beyond the GRACE observational period. Such an approach could be applied toward gap filling between current and future GRACE missions and for predicting basin storage given predictions of future precipitation.

  20. Characteristic mega-basin water storage behavior using GRACE

    PubMed Central

    Reager, J T; Famiglietti, James S

    2013-01-01

    [1] A long-standing challenge for hydrologists has been a lack of observational data on global-scale basin hydrological behavior. With observations from NASA’s Gravity Recovery and Climate Experiment (GRACE) mission, hydrologists are now able to study terrestrial water storage for large river basins (>200,000 km2), with monthly time resolution. Here we provide results of a time series model of basin-averaged GRACE terrestrial water storage anomaly and Global Precipitation Climatology Project precipitation for the world’s largest basins. We address the short (10 year) length of the GRACE record by adopting a parametric spectral method to calculate frequency-domain transfer functions of storage response to precipitation forcing and then generalize these transfer functions based on large-scale basin characteristics, such as percent forest cover and basin temperature. Among the parameters tested, results show that temperature, soil water-holding capacity, and percent forest cover are important controls on relative storage variability, while basin area and mean terrain slope are less important. The derived empirical relationships were accurate (0.54 ≤ Ef ≤ 0.84) in modeling global-scale water storage anomaly time series for the study basins using only precipitation, average basin temperature, and two land-surface variables, offering the potential for synthesis of basin storage time series beyond the GRACE observational period. Such an approach could be applied toward gap filling between current and future GRACE missions and for predicting basin storage given predictions of future precipitation. PMID:24563556

  1. Origin of Meter-Size Granite Basins in the Southern Sierra Nevada, California

    USGS Publications Warehouse

    Moore, James G.; Gorden, Mary A.; Robinson, Joel E.; Moring, Barry C.

    2008-01-01

    Meter-size granite basins are found in a 180-km belt extending south from the South Fork of the Kings River to Lake Isabella on the west slope of the southern Sierra Nevada, California. Their origin has long been debated. A total of 1,033 basins have been inventoried at 221 sites. The basins occur on bedrock granitic outcrops at a median elevation of 1,950 m. Median basin diameter among 30 of the basin sites varies from 89 to 170 cm, median depth is 12 to 63 cm. Eighty percent of the basin sites also contain smaller bedrock mortars (~1-2 liters in capacity) of the type used by Native Americans (American Indians) to grind acorns. Features that suggest a manmade origin for the basins are: restricted size, shape, and elevation range; common association with Indian middens and grinding mortars; a south- and west-facing aspect; presence of differing shapes in distinct localities; and location in a food-rich belt with pleasant summer weather. Volcanic ash (erupted A.D. 1240+-60) in the bottom of several of the basins indicates that they were used shortly before ~760 years ago but not thereafter. Experiments suggest that campfires built on the granite will weaken the bedrock and expedite excavation of the basins. The primary use of the basins was apparently in preparing food, including acorns and pine nuts. The basins are among the largest and most permanent artifacts remaining from the California Indian civilization.

  2. Evaluating temporal changes in stream condition in three New Jersey rive basins by using an index of biotic integrity

    USGS Publications Warehouse

    Chang, Ming; Kennen, Jonathan G.; Del Corso, Ellyn

    2000-01-01

    An index of biotic integrity (!B!) modified for New Jersey streams was used to compare changes in stream condition from the 1970s to the 1990s in Delaware, Passaic, and Raritan River Basins. Stream condition was assessed at 88 sampling locations. Mean IBI scores for all basins increased from the 1970s to the 1990s, but the stream-condition category improved (from fair to good) only for the Delaware River Basin. The number of benthic insectivores and the proportion of insectivorous cyprinds increased in all three basins; however, the number of white suckers decreased significantly only in the Delaware River Basin. Results of linear-regression analysis indicate a significant correlation between the percentage of altered land in the basin and change in IBI score (1970s to 1990s) for Delaware River sites. Results of analysis of variance of the rank-transformed IBI scores for the 1970s and 1990s indicate that the three basins was equal in the 1970s. Results of a multiple-comparison test demonstrated that the 1990s IBI values for the Delaware River Basin differed significantly from those for the Passaic and Raritan River Basins. Many factors, such as the imposition of the more stringent standards on water-water and industrial discharges during the 1980s and changes in land-use practices, likely contributed to the change in the Delaware River Basin. A general increase in IBI values for the Passaic, Raritan, and Delaware River Basins over the past 25 years appears to reflect overall improvements in water quality.

  3. Review and analysis of available streamflow and water-quality data for Park County, Colorado, 1962-98

    USGS Publications Warehouse

    Kimbrough, Robert A.

    2001-01-01

    Information on streamflow and surface-water and ground-water quality in Park County, Colorado, was compiled from several Federal, State, and local agencies. The data were reviewed and analyzed to provide a perspective of recent (1962-98) water-resource conditions and to help identify current and future water-quantity and water-quality concerns. Streamflow has been monitored at more than 40 sites in the county, and data for some sites date back to the early 1900's. Existing data indicate a need for increased archival of streamflow data for future use and analysis. In 1998, streamflow was continuously monitored at about 30 sites, but data were stored in a data base for only 10 sites. Water-quality data were compiled for 125 surface-water sites, 398 wells, and 30 springs. The amount of data varied considerably among sites; however, the available information provided a general indication of where water-quality constituent concentrations met or exceeded water-quality standards. Park County is primarily drained by streams in the South Platte River Basin and to a lesser extent by streams in the Arkansas River Basin. In the South Platte River Basin in Park County, more than one-half the annual streamflow occurs in May, June, and July in response to snowmelt in the mountainous headwaters. The annual snowpack is comparatively less in the Arkansas River Basin in Park County, and mean monthly streamflow is more consistent throughout the year. In some streams, the timing and magnitude of streamflow have been altered by main-stem reservoirs or by interbasin water transfers. Most values of surface-water temperature, dissolved oxygen, and pH were within recommended limits set by the Colorado Department of Public Health and Environment. Specific conductance (an indirect measure of the dissolved-solids concentration) generally was lowest in streams of the upper South Platte River Basin and higher in the southern one-half of the county in the Arkansas River Basin and in the South Platte River downstream from Antero Reservoir. Historical nitrogen concentrations in surface water were small. Nitrite was not detected, most un-ionized ammonia concentrations were less than 0.02 milligram per liter, and all nitrate concentrations were less than 1.2 milligrams per liter. Nitrate concentrations were higher in urban and built-up areas than in rangeland and forest areas. Most median concentrations of total phosphorus at individual sites were less than 0.05 milligram per liter, and concentrations were not significantly different among urban and built-up, rangeland, and forest areas. An upward trend in total phosphorus concentration was determined for flow from the East Portal of the Harold D. Roberts Tunnel, but the slope of the trend line was small and the concentrations were equal or nearly equal to the detection limit of 0.01 milligram per liter. Using median phosphorus loads for two South Platte River sites, the annual phosphorus load transported out of Park County in the South Platte River was calculated to be about 10,000 pounds. Median iron and manganese concentrations for most areas of Park County were less than in-stream water-quality standards, even though several individual concentrations were one to two orders of magnitude larger than the standards. The largest concentrations of aluminum, cadmium, chromium, copper, iron, manganese, nickel, and zinc were from the upper North Fork South Platte River Basin or the Mosquito Creek Basin. All ground-water concentrations of chloride and most ground-water concentrations of sulfate were less than the U.S. Environmental Protection Agency (USEPA) drinking-water standard of 250 milligrams per liter. Median dissolved-solids concentrations in ground water ranged from 160 milligrams per liter in the crystalline-rock aquifers to 257 milligrams per liter in the sedimentary-rock aquifers. Dissolved-solids concentrations greater than the USEPA drinking-water standard of 500 milligrams per liter were detected in abo

  4. Radiocarbon content of lignin-enriched fraction in core sediment from Lake Biwa, central Japan

    NASA Astrophysics Data System (ADS)

    Kitagawa, Hiroyuki; Lim, Jaesoo; Takemura, Keiji; Hayashida, Akira; Haraguchi, Tsuyoshi

    2010-04-01

    The transport and deposition of terrestrially derived organic matter (TOM) into lake and ocean is a key but poorly constrained aspect of the modern global carbon cycle. An attempt has been done for estimating a transport time of TOM from the drainage basin of Lake Biwa, the largest lake in Japan. We have determined the 14C contents of the lignin-enriched fraction of the core sediment from the central part of Lake Biwa. The age of lignin-enriched fraction at the deposition time was estimated to be 7.5 × 10 3 years for the last glacial interval. Even in Lake Biwa with more than 100 rivers from the relatively small drainage basin (3850 km 2), TOM was transported at very long time (>10 3 years).

  5. Susquehanna River Basin Flood Control Review Study

    DTIC Science & Technology

    1980-08-01

    22 Archeological and Historial Resources 25 Biological Resources 25 Social -Economic History 28 Contemporary Social -Economic Setting 29 Development and... social needs of the people. The study was initiated in 1963 with the formation of the Susquehanna River Basin Coordinating Committee consisting of...the basin. Social -Economic History The early history of the Susquehanna River Basin was influenced by the Susquehanna River as a source of

  6. Dynamic reorganization of river basins.

    PubMed

    Willett, Sean D; McCoy, Scott W; Perron, J Taylor; Goren, Liran; Chen, Chia-Yu

    2014-03-07

    River networks evolve as migrating drainage divides reshape river basins and change network topology by capture of river channels. We demonstrate that a characteristic metric of river network geometry gauges the horizontal motion of drainage divides. Assessing this metric throughout a landscape maps the dynamic states of entire river networks, revealing diverse conditions: Drainage divides in the Loess Plateau of China appear stationary; the young topography of Taiwan has migrating divides driving adjustment of major basins; and rivers draining the ancient landscape of the southeastern United States are reorganizing in response to escarpment retreat and coastal advance. The ability to measure the dynamic reorganization of river basins presents opportunities to examine landscape-scale interactions among tectonics, erosion, and ecology.

  7. Wigwam River Juvenile Bull Trout and Fish Habitat Monitoring Program : 2000 Data Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cope, R.S.; Morris, K.J.

    2001-03-01

    The Wigwam River bull trout (Salvelinus confluentus) and fish habitat monitoring program is a trans-boundary initiative implemented by the British Columbia Ministry of Environment, Lands and Parks (MOE), in cooperation with Bonneville Power Administration (BPA). The Wigwam River is an important fisheries stream located in southeastern British Columbia that supports healthy populations of both bull trout and Westslope cutthroat trout (Figure 1.1). This river has been characterized as the single most important bull trout spawning stream in the Kootenay Region (Baxter and Westover 2000, Cope 1998). In addition, the Wigwam River supports some of the largest Westslope cutthroat trout (Oncorhynchusmore » clarki lewisi) in the Kootenay Region. These fish are highly sought after by anglers (Westover 1999a, 1999b). Bull trout populations have declined in many areas of their range within Montana and throughout the northwest including British Columbia. Bull trout were blue listed as vulnerable in British Columbia by the B.C. Conservation Data Center (Cannings 1993) and although there are many healthy populations of bull trout in the East Kootenays they remain a species of special concern. Bull trout in the United States portion of the Columbia River were listed as threatened in 1998 under the Endangered Species Act by the U.S. Fish and Wildlife Service. The upper Kootenay River is within the Kootenai sub-basin of the Mountain Columbia Province, one of the eleven Eco-provinces that make up the Columbia River Basin. MOE applied for and received funding from BPA to assess and monitor the status of wild, native stocks of bull trout in tributaries to Lake Koocanusa (Libby Reservoir) and the upper Kootenay River. This task is one of many that was undertaken to ''Monitor and Protect Bull Trout for Koocanusa Reservoir'' (BPA Project Number 2000-04-00).« less

  8. Wigwam River Juvenile Bull Trout and Fish Habitat Monitoring Program : 2002 Data Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cope, R.S.

    2003-03-01

    The Wigwam River bull trout (Salvelinus confluentus) and fish habitat monitoring program is a trans-boundary initiative implemented by the British Columbia Ministry of Water, Land, and Air Protection (MWLAP), in cooperation with Bonneville Power Administration (BPA). The Wigwam River is an important fisheries stream located in southeastern British Columbia that supports healthy populations of both bull trout and Westslope cutthroat trout (Figure 1). This river has been characterized as the single most important bull trout spawning stream in the Kootenay Region (Baxter and Westover 2000, Cope 1998). In addition, the Wigwam River supports some of the largest Westslope cutthroat troutmore » (Oncorhynchus clarki lewisi) in the Kootenay Region. These fish are highly sought after by anglers (Westover 1999a, 1999b). Bull trout populations have declined in many areas of their range within Montana and throughout the northwest including British Columbia. Bull trout were blue listed as vulnerable in British Columbia by the B.C. Conservation Data Center (Cannings 1993) and although there are many healthy populations of bull trout in the East Kootenay they remain a species of special concern. Bull trout in the United States portion of the Columbia River were listed as threatened in 1998 under the Endangered Species Act by the U.S. Fish and Wildlife Service. The upper Kootenay River is within the Kootenai sub-basin of the Mountain Columbia Province, one of the eleven Eco-provinces that make up the Columbia River Basin. MWLAP applied for and received funding from BPA to assess and monitor the status of wild, native stocks of bull trout in tributaries to Lake Koocanusa (Libby Reservoir) and the upper Kootenay River. This task is one of many that were undertaken to ''Monitor and Protect Bull Trout for Koocanusa Reservoir'' (BPA Project Number 2000-04-00).« less

  9. Contrasting terrace systems of the lower Moulouya river as indicator of crustal deformation in NE Morocco

    NASA Astrophysics Data System (ADS)

    Rixhon, Gilles; Bartz, Melanie; El Ouahabi, Meriam; Szemkus, Nina; Brückner, Helmut

    2017-02-01

    The Moulouya river has the largest catchment in Morocco and drains an area characterized by active crustal deformation during the Late Cenozoic due to the N-S convergence between the African and Eurasian plates. As yet, its Pleistocene terrace sequence remains poorly documented. Our study focuses on the lowermost reach of the river in north-eastern Morocco, which drains the Zebra-Triffa sedimentary basin directly upstream of the estuary. New field observations, measurements and sedimentological data reveal contrasting fluvial environments on each side of a newly identified, W-E striking thrust zone disrupting the sedimentary basin. On the one hand, long-lasting fluvial aggradation, materialized by 37 m-thick stacked terraces, has occurred in the footwall of the thrust. On the other hand, the hanging wall is characterized by a well-preserved terrace staircase, with three Pleistocene terrace levels. Whilst the identification of this thrust zone question some previous interpretations about the local (hydro-)geology, it is consistent with the statement that most of the Plio-Quaternary deformation in the eastern Rif mountains has concentrated in this region of Morocco. Our new data and interpretations also agree with morphometric indicators showing that the whole Moulouya catchment is at desequilibrium state (i.e. several knickzones in its longitudinal profile), showing several knickzones in its longitudinal profile, is at disequilibrium state. We also suggest that the knickzone in the Beni Snassen gorge, located directly upstream of the Zebra-Triffa sedimentary basin, could (partly) result from a transient fluvial reaction to Late Cenozoic thrusting activity and correlated uplift in the hanging wall.

  10. Human health risk assessment via drinking water pathway due to metal contamination in the groundwater of Subarnarekha River Basin, India.

    PubMed

    Giri, Soma; Singh, Abhay Kumar

    2015-03-01

    Groundwater samples were collected from 30 sampling sites throughout the Subarnarekha River Basin for source apportionment and risk assessment studies. The concentrations of As, Ba, Cd, Cr, Co, Cu, Fe, Mn, Mo, Ni, Se, Sr, V and Zn were determined using inductively coupled plasma-mass spectrometry (ICP-MS). The results demonstrated that concentrations of the metals showed significant spatial variation with some of the metals like As, Mn, Fe, Cu and Se exceeding the drinking water standards at some locations. Principal component analysis (PCA) outcome of four factors that together explained 84.99 % of the variance with >1 initial eigenvalue indicated that both innate and anthropogenic activities are contributing factors as source of metal in groundwater of Subarnarekha River Basin. Risk of metals on human health was then evaluated using hazard quotients (HQ) and cancer risk by ingestion for adult and child, and it was indicated that Mn was the most important pollutant leading to non-carcinogenic concerns. The carcinogenic risk of As for adult and child was within the acceptable cancer risk value of 1 × 10(-4). The largest contributors to chronic risks were Mn, Co and As. Considering the geometric mean concentration of metals, the hazard index (HI) for adult was above unity. Considering all the locations, the HI varied from 0.18 to 11.34 and 0.15 to 9.71 for adult and child, respectively, suggesting that the metals posed hazard by oral intake considering the drinking water pathway.

  11. 77 FR 16558 - Yakima River Basin Conservation Advisory Group Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ... on the structure and implementation of the Yakima River Basin Water Conservation Program. The basin... water conservation measures in the Yakima River basin. Improvements in the efficiency of water delivery and use will result in improved streamflows for fish and wildlife and improve the reliability of water...

  12. Documentation of input datasets for the soil-water balance groundwater recharge model of the Upper Colorado River Basin

    USGS Publications Warehouse

    Tillman, Fred D.

    2015-01-01

    The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating more than 4.5 million acres of farmland, and generating about 12 billion kilowatt hours of hydroelectric power annually. The Upper Colorado River Basin, encompassing more than 110,000 square miles (mi2), contains the headwaters of the Colorado River (also known as the River) and is an important source of snowmelt runoff to the River. Groundwater discharge also is an important source of water in the River and its tributaries, with estimates ranging from 21 to 58 percent of streamflow in the upper basin. Planning for the sustainable management of the Colorado River in future climates requires an understanding of the Upper Colorado River Basin groundwater system. This report documents input datasets for a Soil-Water Balance groundwater recharge model that was developed for the Upper Colorado River Basin.

  13. Suspended sediment load below open-cast mines for ungauged river basin

    NASA Astrophysics Data System (ADS)

    Kuksina, L.

    2011-12-01

    Placer mines are located in river valleys along river benches or river ancient channels. Frequently the existing mining sites are characterized by low contribution of the environmental technologies. Therefore open-pit mining alters stream hydrology and sediment processes and enhances sediment transport. The most serious environmental consequences of the sediment yield increase occur in the rivers populated by salmon fish community because salmon species prefer clean water with low turbidity. For instance, placer mining located in Kamchatka peninsula (Far East of Russia) which is regarded to be the last global gene pool of wild salmon Oncorhynchus threatens rivers ecosystems significantly. Impact assessment is limited by the hydrological observations scarcity. Gauging network is rare and in many cases whole basins up to 200 km length miss any hydrological data. The main purpose of the work is elaboration of methods for sediment yield estimation in rivers under mining impact and implementation of corresponding calculations. Subjects of the study are rivers of the Vivenka river basin where open-cast platinum mine is situated. It's one of the largest platinum mines in Russian Federation and in the world. This mine is the most well-studied in Kamchatka (research covers a period from 2003 to 2011). Empirical - analytical model of suspended sediment yield estimation was elaborated for rivers draining mine's territories. Sediment delivery at the open-cast mine happens due to the following sediment processes: - erosion in the channel diversions; - soil erosion on the exposed hillsides; - effluent from settling ponds; - mine waste water inflow; - accident mine waste water escape into rivers. Sediment washout caused by erosion was estimated by repeated measurements of the channel profiles in 2003, 2006 and 2008. Estimation of horizontal deformation rates was carried out on the basis of erosion dependence on water discharge rates, slopes and composition of sediments. Soil erosion on the exposed hillsides was estimated taking into account precipitation of various intensity and solid material washout during this period. Effluent from settling ponds was calculated on the basis of minimum anthropogenic turbidity. Its value is difference in background turbidity and minimal turbidity caused by effluent and waste water overflow. Mine waste water inflow was estimated due to actual data on water balance of purification system. Accident mine waste water escape into rivers was estimated by duration and material washout during accidents data measured during observation period. Total suspended sediment yield of rivers draining mine's territory is the sum of its components. Total sediment supply from mining site is 24.7 % from the Vivenka sediment yield. Polluted placer-mined rivers contribute about 35.4 % of the whole sediment yield of the Vivenka river. At the same time the catchment area of these rivers is less than 0.2 % from the whole Vivenka catchment area.

  14. Chloride control and monitoring program in the Wichita River Basin, Texas, 1996-2009

    USGS Publications Warehouse

    Haynie, M.M.; Burke, G.F.; Baldys, Stanley

    2011-01-01

    Water resources of the Wichita River Basin in north-central Texas are vital to the water users in Wichita Falls, Tex., and surrounding areas. The Wichita River Basin includes three major forks of the Wichita River upstream from Lake Kemp, approximately 50 miles southwest of Wichita Falls, Tex. The main stem of the Wichita River is formed by the confluence of the North Wichita River and Middle Fork Wichita River upstream from Truscott Brine Lake. The confluence of the South Wichita River with the Wichita River is northwest of Seymour, Tex. (fig. 1). Waters from the Wichita River Basin, which is part of the Red River Basin, are characterized by high concentrations of chloride and other salinity-related constituents from salt springs and seeps (hereinafter salt springs) in the upper reaches of the basin. These salt springs have their origins in the Permian Period when the Texas Panhandle and western Oklahoma areas were covered by a broad shallow sea. Over geologic time, evaporation of the shallow seas resulted in the formation of salt deposits, which today are part of the geologic formations underlying the area. Groundwater in these formations is characterized by high chloride concentrations from these salt deposits, and some of this groundwater is discharged by the salt springs into the Wichita River.

  15. Status and distribution of chinook salmon and steelhead in the interior Columbia River basin and portions of the Klamath River basin [Chapter 12

    Treesearch

    Russell F. Thurow; Danny C. Lee; Bruce E. Rieman

    2000-01-01

    This chapter summarizes information on presence, absence, current status, and probable historical distribution of steelhead Oncorhynchus mykiss and stream-type (age-1 migrant) and ocean type (age-0 migrant) chinook salmon O. tshawytscha in the interior Columbia River basin and portions of the Klamath River basin. Data were compiled from existing sources and via surveys...

  16. Distribution and status of redband trout in the interior Columbia river basin and portions of the Klamath river and great basins

    Treesearch

    Russell F. Thurow; Bruce E. Rieman; Danny C. Lee; Philip J. Howell; Raymon D. Perkinson

    2007-01-01

    We summarized existing knowledge (circa 1996) of the potential historical range and the current distribution and status of non-anadromous interior redband trout Oncorhynchus mykiss ssp. in the U.S. portion of the interior Columbia River Basin and portions of the Klamath River and Great Basins (ICRB). We estimated that the potential historical range included 5,458...

  17. Quantifying the extent of river fragmentation by hydropower dams in the Sarapiquí River Basin, Costa Rica

    USGS Publications Warehouse

    Anderson, Elizabeth P.; Pringle, Catherine M.; Freeman, Mary C.

    2008-01-01

    Costa Rica has recently experienced a rapid proliferation of dams for hydropower on rivers draining its northern Caribbean slope. In the Sarapiquí River Basin, eight hydropower plants were built between 1990 and 1999 and more projects are either under construction or proposed. The majority of these dams are small (<15 m tall) and operate as water diversion projects.While the potential environmental effects of individual projects are evaluated prior to dam construction, there is a need for consideration of the basin-scale ecological consequences of hydropower development. This study was a first attempt to quantify the extent of river fragmentation by dams in the Sarapiquí River Basin.Using simple spatial analyses, the length of river upstream from dams and the length of de-watered reaches downstream from dams was measured. Results indicated that there are currently 306.8 km of river (9.4% of the network) upstream from eight existing dams in the Sarapiquí River Basin and 30.6 km of rivers (0.9% of the network) with significantly reduced flow downstream from dams. Rivers upstream from dams primarily drain two life zones: Premontane Rain Forest (107.9 km) and Lower Montane Rain Forest (168.2 km).Simple spatial analyses can be used as a predictive or planning tool for considering the effects of future dams in a basin-scale context. In the Sarapiquí River Basin, we recommend that future dam projects be constructed on already dammed rivers to minimize additional river fragmentation and to protect remaining riverine connectivity.

  18. 75 FR 11554 - Yakima River Basin Conservation Advisory Group Charter Renewal; Notice of Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-11

    ... the reliability of water supplies for irrigation. FOR FURTHER INFORMATION CONTACT: Ms. Dawn Wiedmeier... River Basin Water Conservation Program. In consultation with the State, the Yakama Nation, Yakima River... nonstructural cost-effective water conservation measures in the Yakima River basin. Improvements in the...

  19. Selected elements and organic chemicals in bed sediment and fish tissue of the Tualatin River basin, Oregon, 1992-96

    USGS Publications Warehouse

    Bonn, Bernadine A.

    1999-01-01

    This report describes the results of a reconnaissance survey of elements and organic compounds found in bed sediment and fish tissue in streams of the Tualatin River Basin. The basin is in northwestern Oregon to the west of the Portland metropolitan area (fig. 1). The Tualatin River flows for about 80 miles, draining an area of about 712 square miles, before it enters the Willamette River. Land use in the basin changes from mostly forested in the headwaters, to mixed forest and agriculture, to predominately urban. The basin supports a growing population of more than 350,000 people, most of whom live in lower parts of the basin. Water quality in the Tualatin River and its tributaries is expected to be affected by the increasing urbanization of the basin.

  20. Tectonics and petroleum prospects in Bangladesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, A.N.

    1995-07-10

    Bangladesh is a part of the Bengal basin, bordered to the west and northwest by Jurassic-early Cretaceous volcanic trap rocks of the Rajmahal Hills, underlain by Precambrian shield and Gondwana sediments. The Bengal basin is the largest delta basin (approximately 23,000 sq miles) in the world, at the confluence of the Ganges and Brahmaputra rivers. The deep sea fan complex that is being built outward into the Bay of Bengal has in excess of 12 km of sediments. Rate of sediment transportation within the basin, from the Himalayas and the mountains and hills to the north, east, and west, exceedsmore » 1 billion tons/year. The tectonic and sedimentary history of Bangladesh is favorable for hydrocarbon accumulation. The basin is an underexplored region of 207,000 sq km where only 52 exploratory wells have been drilled with a success rate of more than 30%. In addition to the folded belt in the east, where gas and some oil have been found, the Garo-Rajmahal gap to the north and the deep sea fan to the south merit detailed exploration using state of the art technology. The paper describes the tectonics, sedimentation, petroleum prospects, and seismic surveys.« less

  1. Assessing the ecological vulnerability of the upper reaches of the Minjiang River

    PubMed Central

    Sun, Jian; Ma, Baibing; Du, Wenpeng

    2017-01-01

    The upper reaches of the Minjiang River (URMR), located on the eastern edge of the Tibetan Plateau in southwestern China, are an important component of the ecological barrier of the Upper Yangtze River Basin. Climate change and human activities have increased the ecological sensitivity and vulnerability of the region, which may pose a threat to the ecological security of the Yangtze River Basin and have negative impacts on local social and economic development. In this study, we analyzed land use and cover change (LUCC) of the URMR between 2000 and 2010, and found that the total rate of LUCC was less than 0.50% during this period. In addition, net primary production (NPP) was employed to describe the changes in ecosystem sensitivity and vulnerability, and the results demonstrated that slightly and moderately sensitive and vulnerable zones occupied the largest area, distributed mainly in forest, shrub, and grassland ecosystems. However, compared with the period from 2000 to 2005, the ecological sensitivity and vulnerability showed a worsening trend in the period 2005–2010. Exploring the relationship between vulnerability/sensitivity and environmental factors, we found that sensitivity and vulnerability were positively correlated with precipitation (>700 mm) and aridity index (>36 mm/°C). The results highlight that the future ecological sensitivity and vulnerability of URMR should be further investigated, and that the LUCC induced by human activities and climate change have caused alteration of in ecosystem vulnerability. PMID:28753635

  2. Perspective: Towards environmentally acceptable criteria for downstream fish passage through mini hydro and irrigation infrastructure in the Lower Mekong River Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumgartner, Lee J.; Daniel Deng, Z.; Thorncraft, Garry

    2014-01-01

    Tropical rivers have high annual discharges optimal for hydropower and irrigation development. The Mekong River is one of the largest tropical river systems, supporting a unique mega-diverse fish community. Fish are an important commodity in the Mekong, contributing a large proportion of calcium, protein, and essential nutrients to the diet of the local people and providing a critical source of income for rural households. Many of these fish migrate not only upstream and downstream within main-channel habitats but also laterally into highly productive floodplain habitat to both feed and spawn. Most work to date has focused on providing for upstreammore » fish passage, but downstream movement is an equally important process to protect. Expansion of hydropower and irrigation weirs can disrupt downstream migrations and it is important to ensure that passage through regulators or mini hydro systems is not harmful or fatal. Many new infrastructure projects (<6 m head) are proposed for the thousands of tributary streams throughout the Lower Mekong Basin and it is important that designs incorporate the best available science to protect downstream migrants. Recent advances in technology have provided new techniques which could be applied to Mekong fish species to obtain design criteria that can facilitate safe downstream passage. Obtaining and applying this knowledge to new infrastructure projects is essential in order to produce outcomes that are more favorable to local ecosystems and fisheries.« less

  3. The Impact Of Snow Melt On Surface Runoff Of Sava River In Slovenia

    NASA Astrophysics Data System (ADS)

    Horvat, A.; Brilly, M.; Vidmar, A.; Kobold, M.

    2009-04-01

    Snow is a type of precipitation in the form of crystalline water ice, consisting of a multitude of snowflakes that fall from clouds. Snow remains on the ground until it melts or sublimates. Spring snow melt is a major source of water supply to areas in temperate zones near mountains that catch and hold winter snow, especially those with a prolonged dry summer. In such places, water equivalent is of great interest to water managers wishing to predict spring runoff and the water supply of cities downstream. In temperate zone like in Slovenia the snow melts in the spring and contributes certain amount of water to surface flow. This amount of water can be great and can cause serious floods in case of fast snow melt. For this reason we tried to determine the influence of snow melt on the largest river basin in Slovenia - Sava River basin, on surface runoff. We would like to find out if snow melt in Slovenian Alps can cause spring floods and how serious it can be. First of all we studied the caracteristics of Sava River basin - geology, hydrology, clima, relief and snow conditions in details for each subbasin. Furtermore we focused on snow and described the snow phenomenom in Slovenia, detailed on Sava River basin. We collected all available data on snow - snow water equivalent and snow depth. Snow water equivalent is a much more useful measurement to hydrologists than snow depth, as the density of cool freshly fallen snow widely varies. New snow commonly has a density of between 5% and 15% of water. But unfortunately there is not a lot of available data of SWE available for Slovenia. Later on we compared the data of snow depth and river runoff for some of the 40 winter seasons. Finally we analyzed the use of satellite images for Slovenia to determine the snow cover for hydrology reason. We concluded that snow melt in Slovenia does not have a greater influence on Sava River flow. The snow cover in Alps can melt fast due to higher temperatures but the water distributes and runs off slowly and does not cause floods. About use of satellite images we concluded that first of all, weather is unfavorable - lots of cloudiness in winter, and furthermore a grater part of land is covered by forest which prevents to see the snow cover on image clearly.

  4. Vanishing river ice cover in the lower part of the Danube basin - signs of a changing climate.

    PubMed

    Ionita, M; Badaluta, C -A; Scholz, P; Chelcea, S

    2018-05-21

    Many of the world's largest rivers in the extra tropics are covered with ice during the cold season, and in the Northern Hemisphere approximately 60% of the rivers experience significant seasonal effects of river ice. Here we present an observational data set of the ice cover regime for the lower part of the Danube River which spans over the period 1837-2016, and its the longest one on record over this area. The results in this study emphasize the strong impact of climate change on the occurrence of ice regime especially in the second part of the 20 th century. The number of ice cover days has decreased considerably (~28days/century) mainly due to an increase in the winter mean temperature. In a long-term context, based on documentary evidences, we show that the ice cover occurrence rate was relatively small throughout the Medieval Warm Period (MWP), while the highest occurrence rates were found during the Maunder Minimum and Dalton Minimum periods. We conclude that the river ice regime can be used as a proxy for the winter temperature over the analyzed region and as an indicator of climate-change related impacts.

  5. Source, transport and fluxes of Amazon River particulate organic carbon: Insights from river sediment depth-profiles

    NASA Astrophysics Data System (ADS)

    Bouchez, Julien; Galy, Valier; Hilton, Robert G.; Gaillardet, Jérôme; Moreira-Turcq, Patricia; Pérez, Marcela Andrea; France-Lanord, Christian; Maurice, Laurence

    2014-05-01

    In order to reveal particulate organic carbon (POC) source and mode of transport in the largest river basin on Earth, we sampled the main sediment-laden tributaries of the Amazon system (Solimões, Madeira and Amazon) during two sampling campaigns, following vertical depth-profiles. This sampling technique takes advantage of hydrodynamic sorting to access the full range of solid erosion products transported by the river. Using the Al/Si ratio of the river sediments as a proxy for grain size, we find a general increase in POC content with Al/Si, as sediments become finer. However, the sample set shows marked variability in the POC content for a given Al/Si ratio, with the Madeira River having lower POC content across the measured range in Al/Si. The POC content is not strongly related to the specific surface area (SSA) of the suspended load, and bed sediments have a much lower POC/SSA ratio. These data suggest that SSA exerts a significant, yet partial, control on POC transport in Amazon River suspended sediment. We suggest that the role of clay mineralogy, discrete POC particles and rock-derived POC warrant further attention in order to fully understand POC transport in large rivers.

  6. Modeling and analysis of Soil Erosion processes by the River Basins model: The Case Study of the Krivacki Potok Watershed, Montenegro

    NASA Astrophysics Data System (ADS)

    Vujacic, Dusko; Barovic, Goran; Mijanovic, Dragica; Spalevic, Velibor; Curovic, Milic; Tanaskovic, Vjekoslav; Djurovic, Nevenka

    2016-04-01

    The objective of this research was to study soil erosion processes in one of Northern Montenegrin watersheds, the Krivacki Potok Watershed of the Polimlje River Basin, using modeling techniques: the River Basins computer-graphic model, based on the analytical Erosion Potential Method (EPM) of Gavrilovic for calculation of runoff and soil loss. Our findings indicate a low potential of soil erosion risk, with 554 m³ yr-1 of annual sediment yield; an area-specific sediment yield of 180 m³km-2 yr-1. The calculation outcomes were validated for the entire 57 River Basins of Polimlje, through measurements of lake sediment deposition at the Potpec hydropower plant dam. According to our analysis, the Krivacki Potok drainage basin is with the relatively low sediment discharge; according to the erosion type, it is mixed erosion. The value of the Z coefficient was calculated on 0.297, what indicates that the river basin belongs to 4th destruction category (of five). The calculated peak discharge from the river basin was 73 m3s-1 for the incidence of 100 years and there is a possibility for large flood waves to appear in the studied river basin. Using the adequate computer-graphic and analytical modeling tools, we improved the knowledge on the soil erosion processes of the river basins of this part of Montenegro. The computer-graphic River Basins model of Spalevic, which is based on the EPM analytical method of Gavrilovic, is highly recommended for soil erosion modelling in other river basins of the Southeastern Europe. This is because of its reliable detection and appropriate classification of the areas affected by the soil loss caused by soil erosion, at the same time taking into consideration interactions between the various environmental elements such as Physical-Geographical Features, Climate, Geological, Pedological characteristics, including the analysis of Land Use, all calculated at the catchment scale.

  7. Mass-movement deposits in the lacustrine Eocene Green River Formation, Piceance Basin, western Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.; Birdwell, Justin E.; Brownfield, Michael E.; Mercier, Tracey J.

    2015-01-01

    The Eocene Green River Formation was deposited in two large Eocene saline lakes, Lake Uinta in the Uinta and Piceance Basins and Lake Gosiute in the Greater Green River Basin. Here we will discuss mass-movement deposits in just the Piceance Basin part of Lake Uinta.

  8. Beyond water, beyond boundaries: spaces of water management in the Krishna river basin, South India.

    PubMed

    Venot, Jean-Philippe; Bharati, Luna; Giordano, Mark; Molle, François

    2011-01-01

    As demand and competition for water resources increase, the river basin has become the primary unit for water management and planning. While appealing in principle, practical implementation of river basin management and allocation has often been problematic. This paper examines the case of the Krishna basin in South India. It highlights that conflicts over basin water are embedded in a broad reality of planning and development where multiple scales of decisionmaking and non-water issues are at play. While this defines the river basin as a disputed "space of dependence", the river basin has yet to acquire a social reality. It is not yet a "space of engagement" in and for which multiple actors take actions. This explains the endurance of an interstate dispute over the sharing of the Krishna waters and sets limits to what can be achieved through further basin water allocation and adjudication mechanisms – tribunals – that are too narrowly defined. There is a need to extend the domain of negotiation from that of a single river basin to multiple scales and to non-water sectors. Institutional arrangements for basin management need to internalise the political spaces of the Indian polity: the states and the panchayats. This re-scaling process is more likely to shape the river basin as a space of engagement in which partial agreements can be iteratively renegotiated, and constitute a promising alternative to the current interstate stalemate.

  9. From Shoestring Rills to Dendritic River Networks: Documenting the Evolution of River Basins Towards Geometric Similarity Through Divide Migration, Stream Capture and Lateral Branching

    NASA Astrophysics Data System (ADS)

    Beeson, H. W.; McCoy, S. W.; Willett, S.

    2016-12-01

    Erosional river networks dissect much of Earth's surface into drainage basins. Global scaling laws such as Hack's Law suggest that river basins trend toward a particular scale-invariant shape. While erosional instabilities arising from competition between advective and diffusive processes can explain why headwaters branch, the erosional mechanics linking larger scale network branching with evolution towards a characteristic river basin shape remain poorly constrained. We map river steepness and a proxy for the steady-state elevation of river networks, χ, in simulated and real landscapes with a large range in spatial scale (102 -106 m) but with similar inclined, planar surfaces at the time of incipient network formation. We document that the evolution from narrow rill-like networks to dendritic, leaf-shaped river basins follows from drainage area differences between catchments. These serve as instabilities that grow, leading to divide migration, stream capture, lateral branching and network reorganization. As Horton hypothesized, incipient networks formed down gradient on an inclined, planar surface have an unequal distribution of drainage area and nonuniformity in response times such that larger basins erode more rapidly and branch laterally via capture of adjacent streams with lower erosion rates. Positive feedback owing to increase in drainage area furthers the process of branching at the expense of neighboring rivers. We show that drainage area exchange and the degree of network reorganization has a significant effect on river steepness in the Dragon's Back Pressure Ridge, CA, the Sierra Nevada, CA, and the Rocky Mountain High Plains, USA. Similarly, metrics of basin shape reveal that basins are evolving from narrow basins towards more common leaf shapes. Our results suggest that divide migration and stream capture driven by erosional disequilibrium could be fundamental processes by which river basins reach their characteristic geometry and dendritic form.

  10. Climate and anthropogenic contributions to the desiccation of the second largest saline lake in the twentieth century

    NASA Astrophysics Data System (ADS)

    Chaudhari, Suyog; Felfelani, Farshid; Shin, Sanghoon; Pokhrel, Yadu

    2018-05-01

    Urmia Lake, once the second largest saline lake in the world, is on the verge of complete desiccation. It has been suggested that the desiccation is caused by intensified human activities, especially irrigation, and prolonged droughts in the lake basin, but there is a lack of quantitative analysis to attribute the observed water level decline to natural and anthropogenic causes. In this study, we use remote sensing data, ground observations, and a hydrological model with human impact assessment capabilities (HiGW-MAT) to investigate the natural and human-induced changes in the hydrology of Urmia Lake basin from 1980 to 2010. Based on the analysis of remote sensing data, we find a ∼98% and ∼180% increase in agricultural lands and urban areas, respectively, from 1987 through 2016, with a corresponding shrinkage in lake area by ∼86%. Further, we use model results to examine the changes in terrestrial water storage (TWS) over the basin including the lake. Results indicate that TWS declined over the lake region and the lake lost water at a faster rate than the watershed did. Comparison of river inflow to the lake from two simulations-one with and the other without human activities-suggests that human water management activities caused a reduction in streamflow of ∼1.74 km3/year from 1995 to 2010, which accounts for ∼86% of the total depletion in lake volume during the same period. It is also found that irrigation water requirement almost tripled, causing high withdrawals from rivers. These results demonstrate that the on-going depletion of Urmia Lake is not solely due to prolonged droughts but also due to direct anthropogenic alterations which caused significant changes in land use, streamflow, and water storage within the basin. This study provides important insights on the natural and human-induced changes in the hydrology of Urmia Lake and highlights the need for a high resolution regional scale modeling approach for better understanding potential future changes toward restoring the lake and putting forth a course of action to stop further desiccation and avoid a major environmental catastrophe.

  11. The Hei River Basin in northwestern China - tectonics, sedimentary processes and pathways

    NASA Astrophysics Data System (ADS)

    Rudersdorf, Andreas; Nottebaum, Veit; Schimpf, Stefan; Yu, Kaifeng; Hartmann, Kai; Stauch, Georg; Wünnemann, Bernd; Reicherter, Klaus; Diekmann, Bernhard; Lehmkuhl, Frank

    2014-05-01

    The Hei River Basin (catchment area of c. 130,000 km²) is situated at the transition between the northern margin of the Tibetan Plateau and the southern slopes of Gobi-Tien-Shan. As part of the northwestern Chinese deserts, the Ejina Basin (Gaxun Nur Basin) constitutes the endorheic erosion base of the drainage system. The basin - hosting the second largest continental alluvial fans in the world, is tectonically strongly shaped by the Gobi belt of left-lateral transpression. The tectonic setting in combination with competing climatic driving forces (Westerlies and summer/winter monsoon currents) has supported the formation of a valuable long-time sediment archive comprises at least the last 250,000 yrs. of deposition. It is composed by the interplay of eolian, fluvial and lacustrine sedimentation cycles and today is dominated by widespread (gravel) gobi surfaces, insular dune fields and shallow evaporitic playa areas. Thus, it provides excellent conditions to investigate tectonic evolution and Quaternary environmental changes. Recently, geomorphological, geophysical, neotectonic and mineralogical studies have enhanced the understanding of the environmental history and the modern depositional environment. Moreover, the role of the Hei River Basin as an important source area of silt particles which were later deposited on the Chinese Loess Plateau is evaluated. Therefore, a 230 m long drill core, sediment sections and ca. 700 surface samples throughout the whole catchment and basin were analyzed. Instrumental and historical seismicity are very low, but the proximity to active fault zones and dating irregularities in earlier publications indicate evidence for deformation in the study area. Despite flat topography, indications of active tectonics such as fault-related large-scale lineations can be observed. Seismically deformed unconsolidated lacustrine deposits (seismites), presumably of Holocene age, are evident and must be related to the nearby faults. The upper catchment is represented by the Qilian Shan mountain range and its immediate foreland. Here, a tripartite altitudinal distribution of terrestrial sediment archives is evident, which is representative of catchment-wide sedimentological processes. Insights into their formation mechanisms, therefore, add valuable perspective regarding the reconstruction of sedimentological and paleoenvironmental conditions in the depositional area of the Hei River Basin. For the characterization of provenance and dispersal of Quaternary sediments in relation to the modern depositional environment, over 200 surface samples from the whole catchment were analyzed using XRD and XRF measurements on the clay fractions, heavy minerals and bulk sediments. The clay mineral results in-particular show that it is possible to discriminate between the chlorite rich metamorphic sediments originating from greenschist bearing rocks in the Qilian Shan Mountain Range in the south, and the more intrusive rocks from the Bei Shan Mountain Range west of the Hei River Basin. Additionally, these two main sources reflect different transportation processes; the Qilian Shan sediments are mainly transported by the rivers Heihe and Beida He, and the deposition of the Bei Shan sediments is mainly driven by wind or local runoff. Grain size results of primary loess deposits indicate different eolian transport pathways, i.e., far-travelled dust input (medium silty) vs. local deflation from active fluvial channels (fine sandy). Along the altitudinal transect, the varying geomorphological settings exert a significant influence on the grain size composition showing an increased contribution of far-travelled dust at higher altitudes.

  12. Total Phosphorus Loads for Selected Tributaries to Sebago Lake, Maine

    USGS Publications Warehouse

    Hodgkins, Glenn A.

    2001-01-01

    The streamflow and water-quality datacollection networks of the Portland Water District (PWD) and the U.S. Geological Survey (USGS) as of February 2000 were analyzed in terms of their applicability for estimating total phosphorus loads for selected tributaries to Sebago Lake in southern Maine. The long-term unit-area mean annual flows for the Songo River and for small, ungaged tributaries are similar to the long-term unit-area mean annual flows for the Crooked River and other gaged tributaries to Sebago Lake, based on a regression equation that estimates mean annual streamflows in Maine. Unit-area peak streamflows of Sebago Lake tributaries can be quite different, based on a regression equation that estimates peak streamflows for Maine. Crooked River had a statistically significant positive relation (Kendall's Tau test, p=0.0004) between streamflow and total phosphorus concentration. Panther Run had a statistically significant negative relation (p=0.0015). Significant positive relations may indicate contributions from nonpoint sources or sediment resuspension, whereas significant negative relations may indicate dilution of point sources. Total phosphorus concentrations were significantly larger in the Crooked River than in the Songo River (Wilcoxon rank-sum test, p<0.0001). Evidence was insufficient, however, to indicate that phosphorus concentrations from medium-sized drainage basins, at a significance level of 0.05, were different from each other or that concentrations in small-sized drainage basins were different from each other (Kruskal-Wallis test, p= 0.0980, 0.1265). All large- and medium-sized drainage basins were sampled for total phosphorus approximately monthly. Although not all small drainage basins were sampled, they may be well represented by the small drainage basins that were sampled. If the tributaries gaged by PWD had adequate streamflow data, the current PWD tributary monitoring program would probably produce total phosphorus loading data that would represent all gaged and ungaged tributaries to Sebago Lake. Outside the PWD tributary-monitoring program, the largest ungaged tributary to Sebago Lake contains 1.5 percent of the area draining to the lake. In the absence of unique point or nonpoint sources of phosphorus, ungaged tributaries are unlikely to have total phosphorus concentrations that differ significantly from those in the small tributaries that have concentration data. The regression method, also known as the rating-curve method, was used to estimate the annual total phosphorus load for Crooked River, Northwest River, and Rich Mill Pond Outlet for water years 1996-98. The MOVE.1 method was used to estimate daily streamflows for the regression method at Northwest River and Rich Mill Pond Outlet, where streamflows were not continuously monitored. An averaging method also was used to compute annual loads at the three sites. The difference between the regression estimate and the averaging estimate for each of the three tributaries was consistent with what was expected from previous studies.

  13. Land cover in the Guayas Basin using SAR images from low resolution ASAR Global mode to high resolution Sentinel-1 images

    NASA Astrophysics Data System (ADS)

    Bourrel, Luc; Brodu, Nicolas; Frappart, Frédéric

    2016-04-01

    Remotely sensed images allow a frequent monitoring of land cover variations at regional and global scale. Recently launched Sentinel-1 satellite offers a global cover of land areas at an unprecedented spatial (20 m) and temporal (6 days at the Equator). We propose here to compare the performances of commonly used supervised classification techniques (i.e., k-nearest neighbors, linear and Gaussian support vector machines, naive Bayes, linear and quadratic discriminant analyzes, adaptative boosting, loggit regression, ridge regression with one-vs-one voting, random forest, extremely randomized trees) for land cover applications in the Guayas Basin, the largest river basin of the Pacific coast of Ecuator (area ~32,000 km²). The reason of this choice is the importance of this region in Ecuatorian economy as its watershed represents 13% of the total area of Ecuador where 40% of the Ecuadorian population lives. It also corresponds to the most productive region of Ecuador for agriculture and aquaculture. Fifty percents of the country shrimp farming production comes from this watershed, and represents with agriculture the largest source of revenue of the country. Similar comparisons are also performed using ENVISAT ASAR images acquired in global mode (1 km of spatial resolution). Accuracy of the results will be achieved using land cover map derived from multi-spectral images.

  14. Monitoring and Simulating Water, Carbon and Nitrogen Dynamics over Catchments in Eastern Asia

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Xiao, Q.; Liu, C.; Watanabe, M.

    2006-05-01

    There is an emergency need to support decision-making in water environment management in Eastern Asia. For sound management and decision making of sustainable water use, the catchment ecosystem assessment, emphasizing biophysical and biogeochemical processes and human interactions, is a key task. For this task, an integrated ecosystem model has been developed to estimate the spatial and temporal distributions of the water, carbon and nutrient cycles over catchment scales. The model integrated both a distributed hydrologic model (Nakayama and Watanabe, 2004) and an ecosystem model, BIOME-BGC (Running and Coughlan, 1988), which has been modified and validated for various ecosystems by using the APEIS-FLUX datasets in China (Wang and Watanabe, 2005). The model has been applied to catchments in China, such as the Changjiang River and the Yellow River. The MODIS satellite data products, such as leaf area index (LAI), vegetation index (VI) and land surface temperature (LST) were used as the input parameters. By using the integrated model, the future changes in water, carbon and nitrogen cycle can be predicted based on scenarios, such as the decrease in crop production due to water shortage, and the increase in temperature and CO2 concentration, as well as the land use/cover changes. The model was validated by the measured values of soil moisture, and river flow discharge throughout the year, showing that this model achieves a fairly high accuracy. As an example, we applied the integrated model to simulate the daily water vapor, carbon and nitrogen fluxes over the Changjiang River Basin. The Changjiang River is ranked third in length and is the largest river in terms of water discharge over the Euro-Asian continent. The drainage basin of the Changjiang supplies 5-10% of the total world population with water resources and nutrition and irrigates 40% of China's national crop production. Moreover, the materials carried by the Changjiang River have a significant influence on the coastal environment. Simulation results showed that enhanced atmospheric CO2 concentrations and especially increased nitrogen application had a marked effect on the simulated water and carbon sequestration capacity and played a prominent role in increasing this capacity. Finally, the model has been applied to evaluate the impact of land cover change from 1980 to 2000 on water, carbon and nitrogen fluxes over larger river basins in China.

  15. 77 FR 45653 - Yakima River Basin Conservation Advisory Group; Yakima River Basin Water Enhancement Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... 4 p.m. ADDRESSES: The meeting will be held at the Bureau of Reclamation, Yakima Field Office, 1917... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Yakima River Basin Conservation Advisory Group...: Notice of public meeting. SUMMARY: As required by the Federal Advisory Committee Act, the Yakima River...

  16. Evaluation of genetic population structure of smallmouth bass in the Susquehanna River basin, Pennsylvania

    USGS Publications Warehouse

    Schall, Megan K.; Bartron, Meredith L.; Wertz, Timothy; Niles, Jonathan M.; Shaw, Cassidy H.; Wagner, Tyler

    2017-01-01

    The Smallmouth Bass Micropterus dolomieu was introduced into the Susquehanna River basin, Pennsylvania, nearly 150 years ago. Since introduction, it has become an economically and ecologically important species that supports popular recreational fisheries. It is also one of the most abundant top predators in the system. Currently, there is no information on the level of genetic diversity or genetic structuring that may have occurred since introduction. An understanding of genetic diversity is important for the delineation of management units and investigation of gene flow at various management scales. The goals of this research were to investigate population genetic structure of Smallmouth Bass at sites within the Susquehanna River basin and to assess genetic differentiation relative to Smallmouth Bass at an out-of-basin site (Allegheny River, Pennsylvania) located within the species’ native range. During spring 2015, fin clips (n = 1,034) were collected from adults at 11 river sites and 13 tributary sites in the Susquehanna River basin and at one site on the Allegheny River. Fin clips were genotyped at 12 polymorphic microsatellite loci. Based on our results, adults sampled throughout the Susquehanna River basin did not represent separate genetic populations. There were only subtle differences in genetic diversity among sites (mean pairwise genetic differentiation index FST = 0.012), and there was an overall lack of population differentiation (K = 3 admixed populations). The greatest genetic differentiation was observed between fish collected from the out-of-basin site and those from the Susquehanna River basin sites. Knowledge that separate genetic populations of Smallmouth Bass do not exist in the Susquehanna River basin is valuable information for fisheries management in addition to providing baseline genetic data on an introduced sport fish population.

  17. Applications of VIC for Climate Land Cover Change Imapacts

    NASA Technical Reports Server (NTRS)

    Markert, Kel

    2017-01-01

    Study focuses on the Lower Mekong Basin (LMB), the LMB is an economically and ecologically important region: (1) One of the largest exporters of rice and fish products, (2) Within top three most biodiverse river basins in the world. Natural climate variability plays an important role in water supply within the region: (1) Short-term climate variability (ENSO, MJO), (2) Long-term climate variability (climate change). Projections of climate change show there will be a decrease in water availability world wide which has implications for food security and ecology. Additional studies show there may be socioeconomic turmoil due to water wars and food security in developing regions such as the Mekong Basin. Southeast Asia has experienced major changes in land use and land cover from 1980 – 2000. Major economic reforms resulting in shift from subsistence farming to market-based agricultural production. Changes in land cover continue to occur which have an important role within the land surface aspect of hydrology.

  18. Streamflow and water-quality properties in the West Fork San Jacinto River Basin and regression models to estimate real-time suspended-sediment and total suspended-solids concentrations and loads in the West Fork San Jacinto River in the vicinity of Conroe, Texas, July 2008-August 2009

    USGS Publications Warehouse

    Bodkin, Lee J.; Oden, Jeannette H.

    2010-01-01

    To better understand the hydrology (streamflow and water quality) of the West Fork San Jacinto River Basin downstream from Lake Conroe near Conroe, Texas, including spatial and temporal variation in suspended-sediment (SS) and total suspended-solids (TSS) concentrations and loads, the U.S. Geological Survey, in cooperation with the Houston-Galveston Area Council and the Texas Commission on Environmental Quality, measured streamflow and collected continuous and discrete water-quality data during July 2008-August 2009 in the West Fork San Jacinto River Basin downstream from Lake Conroe. During July 2008-August 2009, discrete samples were collected and streamflow measurements were made over the range of flow conditions at two streamflow-gaging stations on the West Fork San Jacinto River: West Fork San Jacinto River below Lake Conroe near Conroe, Texas (station 08067650) and West Fork San Jacinto River near Conroe, Texas (station 08068000). In addition to samples collected at these two main monitoring sites, discrete sediment samples were also collected at five additional monitoring sites to help characterize water quality in the West Fork San Jacinto River Basin. Discrete samples were collected semimonthly, regardless of flow conditions, and during periods of high flow resulting from storms or releases from Lake Conroe. Because the period of data collection was relatively short (14 months) and low flow was prevalent during much of the study, relatively few samples collected were representative of the middle and upper ranges of historical daily mean streamflows. The largest streamflows tended to occur in response to large rainfall events and generally were associated with the largest SS and TSS concentrations. The maximum SS and TSS concentrations at station 08067650 (180 and 133 milligrams per liter [mg/L], respectively) were on April 19, 2009, when the instantaneous streamflow was the third largest associated with a discrete sample at the station. SS concentrations were 25 mg/L or less in 26 of 29 environmental samples and TSS concentrations were 25 mg/L or less in 25 of 28 environmental samples. Median SS and TSS concentrations were 7.0 and 7.6 mg/L, respectively. At station 08068000, the maximum SS concentration (1,270 mg/L) was on April 19, 2009, and the maximum TSS concentration (268 mg/L) was on September 18, 2008. SS concentrations were 25 mg/L or less in 16 of 27 of environmental samples and TSS concentrations were 25 mg/L or less in 18 of 26 environmental samples at the station. Median SS and TSS concentrations were 18.0 and 14.0 mg/L, respectively. The maximum SS and TSS concentrations for all five additional monitoring sites were 3,110 and 390 mg/L, respectively, and the minimum SS and TSS concentrations were 5.0 and 1.0 mg/L, respectively. Median concentrations ranged from 14.0 to 54.0 mg/L for SS and from 11.0 to 14.0 mg/L for TSS. Continuous measurements of streamflow and selected water-quality properties at stations 08067650 and 08068000 were evaluated as possible variables in regression equations developed to estimate SS and TSS concentrations and loads. Surrogate regression equations were developed to estimate SS and TSS loads by using real-time turbidity and streamflow data; turbidity and streamflow resulted in the best regression models for estimating near real-time SS and TSS concentrations for stations 08097650 and 08068000. Relatively large errors are associated with the regression-computed SS and TSS concentrations; the 90-percent prediction intervals for SS and TSS concentrations were (+/-)48.9 and (+/-)43.2 percent, respectively, for station 08067650 and (+/-)47.7 and (+/-)43.2 percent, respectively, for station 08068000. Regression-computed SS and TSS concentrations were corrected for bias before being used to compute SS and TSS loads. The total estimated SS and TSS loads during July 2008-August 2009 were about 3,540 and 1,900 tons, respectively, at station 08067650 and about 156,000 an

  19. Crustal controls on magmatic-hydrothermal systems: A geophysical comparison of White River, Washington, with Goldfield, Nevada

    USGS Publications Warehouse

    Blakely, R.J.; John, D.A.; Box, S.E.; Berger, B.R.; Fleck, R.J.; Ashley, R.P.; Newport, G.R.; Heinemeyer, G.R.

    2007-01-01

    The White River altered area, Washington, and the Goldfield mining district, Nevada, are nearly contemporaneous Tertiary (ca.20 Ma) calc-alkaline igneous centers with large exposures of shallow (<1 km depth) magmatic-hydrothermal, acid-sulfate alteration. Goldfield is the largest known high-sulfidation gold deposit in North America. At White River, silica is the only commodity exploited to date, but, based on its similarities with Goldfield, White River may have potential for concealed precious and/or base metal deposits at shallow depth. Both areas are products of the ancestral Cascade arc Goldfield lies within the Great Basin physiographic province in an area of middle Miocene and younger Basin and Range and Walker Lane faulting, whereas White River is largely unaffected by young faults. However, west-northwest-striking magnetic anomalies at White River do correspond with mapped faults synchronous with magmatism, and other linear anomalies may reflect contemporaneous concealed faults. The White River altered area lies immediately south of the west-northwest-striking White River fault zone and north of a postulated fault with similar orientation. Structural data from the White River altered area indicate that alteration developed synchronously with an anomalous stress field conducive to left-lateral, strike-slip displacement on west-north-west-striking faults. Thus, the White River alteration may have developed in a transient transtensional region between the two strike-slip faults, analogous to models proposed for Goldfield and other mineral deposits in transverse deformational zones. Gravity and magnetic anomalies provide evidence for a pluton beneath the White River altered area that may have provided heat and fluids to overlying volcanic rocks. East- to east- northeast-striking extensional faults and/or fracture zones in the step-over region, also expressed in magnetic anomalies, may have tapped this intrusion and provided vertical and lateral transport of fluids to now silicified areas. By analogy to Goldfield, geophysical anomalies at the White River altered area may serve as proxies for geologic mapping in identifying faults, fractures, and intrusions relevant to hydrothermal alteration and ore formation in areas of poor exposure. ?? 2006 Geological Society of America.

  20. Streamflow and estimated loads of phosphorus and dissolved and suspended solids from selected tributaries to Lake Ontario, New York, water years 2012–14

    USGS Publications Warehouse

    Hayhurst, Brett A.; Fisher, Benjamin N.; Reddy, James E.

    2016-07-20

    This report presents results of the evaluation and interpretation of hydrologic and water-quality data collected as part of a cooperative program between the U.S. Geological Survey and the U.S. Environmental Protection Agency. Streamflow, phosphorus, and solids dissolved and suspended in stream water were the focus of monitoring by the U.S. Geological Survey at 10 sites on 9 selected tributaries to Lake Ontario during the period from October 2011 through September 2014. Streamflow yields (flow per unit area) were the highest from the Salmon River Basin due to sustained yields from the Tug Hill aquifer. The Eighteenmile Creek streamflow yields also were high as a result of sustained base flow contributions from a dam just upstream of the U.S. Geological Survey monitoring station at Burt. The lowest streamflow yields were measured in the Honeoye Creek Basin, which reflects a decrease in flow because of withdrawals from Canadice and Hemlock Lakes for the water supply of the City of Rochester. The Eighteenmile Creek and Oak Orchard Creek Basins had relatively high yields due in part to groundwater contributions from the Niagara Escarpment and seasonal releases from the New York State Barge Canal.Annual constituent yields (load per unit area) of suspended solids, phosphorus, orthophosphate, and dissolved solids were computed to assess the relative contributions and allow direct comparison of loads among the monitored basins. High yields of total suspended solids were attributed to agricultural land use in highly erodible soils at all sites. The Genesee River, Irondequoit Creek, and Honeoye Creek had the highest concentrations and largest mean yields of total suspended solids (165 short tons per square mile [t/mi2], 184 t/mi2, and 89.7 t/mi2, respectively) of the study sites.Samples from Eighteenmile Creek, Oak Orchard Creek at Kenyonville, and Irondequoit Creek had the highest concentrations and largest mean yields of phosphorus (0.27 t/mi2, 0.26 t/mi2, and 0.20 t/mi2, respectively) and orthophosphate (0.17 t/mi2, 0.13 t/mi2, and 0.04 t/mi2, respectively) of the study sites. These results were attributed to a combination of sources, including discharges from wastewater treatment plants, diversions from the New York State Barge Canal, and manure and fertilizers applied to agricultural land. Yields of phosphorus also were high in the Genesee River Basin (0.17 t/mi2) and were presumably associated with nutrient and sediment transport from agricultural land and from streambank erosion. The Salmon and Black Rivers, which drain a substantial amount of forested land and are influenced by large groundwater discharges, had the lowest concentrations and yields of phosphorus and orthophosphate of the study sites.Mean annual yields of dissolved solids were the highest in Irondequoit Creek due to a high percentage of urbanized area in the basin and in Oak Orchard Creek at Kenyonville and in Eighteenmile Creek due to groundwater contributions from the Niagara Escarpment. High yields of dissolved solids of 840 t/mi2, 829 t/mi2, and 715 t/mi2, respectively, from these basins can be attributed to seasonal chloride yields associated with use of road deicing salts. The Niagara Escarpment can produce large amounts of dissolved solids from the dissolution of minerals (a continual process reflected in base flow samples). Groundwater inflows in the Salmon River have very low concentrations of dissolved solids due to minimal bedrock interaction along the Tug Hill Plateau and discharge from the Tug Hill sand and gravel aquifer, which has minimal mineralization.

  1. Questa baseline and pre-mining ground-water quality investigation. 21. Hydrology and water balance of the Red River basin, New Mexico 1930-2004

    USGS Publications Warehouse

    Naus, Cheryl A.; McAda, Douglas P.; Myers, Nathan C.

    2006-01-01

    A study of the hydrology of the Red River Basin of northern New Mexico, including development of a pre- mining water balance, contributes to a greater understanding of processes affecting the flow and chemistry of water in the Red River and its alluvial aquifer. Estimates of mean annual precipitation for the Red River Basin ranged from 22.32 to 25.19 inches. Estimates of evapotranspiration for the Red River Basin ranged from 15.02 to 22.45 inches or 63.23 to 94.49 percent of mean annual precipitation. Mean annual yield from the Red River Basin estimated using regression equations ranged from 45.26 to 51.57 cubic feet per second. Mean annual yield from the Red River Basin estimated by subtracting evapotranspiration from mean annual precipitation ranged from 55.58 to 93.15 cubic feet per second. In comparison, naturalized 1930-2004 mean annual streamflow at the Red River near Questa gage was 48.9 cubic feet per second. Although estimates developed using regression equations appear to be a good representation of yield from the Red River Basin as a whole, the methods that consider evapotranspiration may more accurately represent yield from smaller basins that have a substantial amount of sparsely vegetated scar area. Hydrograph separation using the HYSEP computer program indicated that subsurface flow for 1930-2004 ranged from 76 to 94 percent of streamflow for individual years with a mean of 87 percent of streamflow. By using a chloride mass-balance method, ground-water recharge was estimated to range from 7 to 17 percent of mean annual precipitation for water samples from wells in Capulin Canyon and the Hansen, Hottentot, La Bobita, and Straight Creek Basins and was 21 percent of mean annual precipitation for water samples from the Red River. Comparisons of mean annual basin yield and measured streamflow indicate that streamflow does not consistently increase as cumulative estimated mean annual basin yield increases. Comparisons of estimated mean annual yield and measured streamflow profiles indicates that, in general, the river is gaining ground water from the alluvium in the reach from the town of Red River to between Hottentot and Straight Creeks, and from Columbine Creek to near Thunder Bridge. The river is losing water to the alluvium from upstream of the mill area to Columbine Creek. Interpretations of ground- and surface-water interactions based on comparisons of mean annual basin yield and measured streamflow are supported further with water-level data from piezometers, wells, and the Red River.

  2. 78 FR 32295 - Commission Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... SUSQUEHANNA RIVER BASIN COMMISSION Commission Meeting AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: The Susquehanna River Basin Commission will hold its regular business meeting on... business meeting are contained in the Supplementary Information section of this notice. DATES: June 20...

  3. 78 FR 69517 - Commission Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ... SUSQUEHANNA RIVER BASIN COMMISSION Commission Meeting AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: The Susquehanna River Basin Commission will hold its regular business meeting on... meeting are contained in the Supplementary Information section of this notice. DATES: December 12, 2013...

  4. 78 FR 12412 - Commission Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... SUSQUEHANNA RIVER BASIN COMMISSION Commission Meeting AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: The Susquehanna River Basin Commission will hold its regular business meeting on... business meeting are contained in the Supplementary Information section of this notice. DATES: March 21...

  5. 77 FR 52106 - Commission Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... SUSQUEHANNA RIVER BASIN COMMISSION Commission Meeting AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: The Susquehanna River Basin Commission will hold its regular business meeting on... business meeting are contained in the Supplementary Information section of this notice. DATES: September 20...

  6. 77 FR 70204 - Commission Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-23

    ... SUSQUEHANNA RIVER BASIN COMMISSION Commission Meeting AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: The Susquehanna River Basin Commission will hold its regular business meeting on... meeting are contained in the SUPPLEMENTARY INFORMATION section of this notice. DATES: December 14, 2012...

  7. 78 FR 52601 - Commission Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-23

    ... SUSQUEHANNA RIVER BASIN COMMISSION Commission Meeting AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: The Susquehanna River Basin Commission will hold its regular business meeting on... meeting are contained in the Supplementary Information section of this notice. DATES: September 19, 2013...

  8. Zinc and Its Isotopes in the Loire River Basin, France

    NASA Astrophysics Data System (ADS)

    Millot, R.; Desaulty, A. M.; Bourrain, X.

    2014-12-01

    The contribution of human activities such as industries, agriculture and domestic inputs, becomes more and more significant in the chemical composition of the dissolved load of rivers. Human factors act as a supplementary key process. Therefore the mass-balance for the budget of catchments and river basins include anthropogenic disturbances. The Loire River in central France is approximately 1010 km long and drains an area of 117,800 km2. In the upper basin, the bedrock is old plutonic rock overlain by much younger volcanic rocks. The intermediate basin includes three major tributaries flowing into the Loire River from the left bank: the Cher, the Indre and the Vienne rivers; the main stream flows westward and its valley stretches toward the Atlantic Ocean. Here, the Loire River drains the sedimentary series of the Paris Basin, mainly carbonate deposits. The lower Loire basin drains pre-Mesozoic basement of the Armorican Massif and its overlying Mesozoic to Cenozoic sedimentary deposits. The Loire River is one of the main European riverine inputs to the Atlantic ocean. Here we are reporting concentration and isotope data for Zn in river waters and suspended sediments from the Loire River Basin. In addition, we also report concentration and isotope data for the different industrial sources within the Loire Basin, as well as data for biota samples such as mussels and oysters from the Bay of Biscay and North Brittany. These organisms are known to be natural accumulators of metal pollutants. Zinc isotopic compositions are rather homogeneous in river waters with δ66Zn values ranging from 0.21 to 0.39‰. This range of variation is very different from anthropogenic signature (industrial and/or agriculture release) that displays δ66Zn values between 0.02 to 0.14‰. This result is in agreement with a geogenic origin and the low Zn concentrations in the Loire River Basin (from 0.8 to 6 µg/L).

  9. Plateau growth around the Changma Basin in NE Tibet

    NASA Astrophysics Data System (ADS)

    Vernon, Rowan; Cunningham, Dickson; Zhang, Jin; England, Richard

    2014-05-01

    The Qilian Mountains form one of the most actively uplifting regions of the northeastern Tibetan Plateau and provide an opportunity to study the ongoing, intermediate stages of plateau growth. The crust of the Qilian Mountains consists of an orogenic collage of mid-Proterozoic to mid-Palaeozoic island arc terranes accreted to the North China Craton during the Palaeozoic. NE-directed compression related to the Indo-Asian collision began in the Early Neogene, uplifting fold-thrust mountain ranges which splay south-eastwards from the sinistral northeast-trending Altyn Tagh Fault (ATF). In this study, we investigate the post-Oligocene tectonic evolution of the northern margin of the Tibetan Plateau around the Changma Basin, at the very northeast corner of the Plateau, where the ATF forms a triple junction with the frontal Qilian Shan thrust. Our research involves synthesis of previous geological and geophysical data, remote sensing analysis and field mapping of structures along key transects. The Changma Basin is a relatively low intra-montane basin in the northeast Tibetan Plateau that is receiving alluvial infill from surrounding ranges, but is also being drained by the Su Le River, one of the largest river systems in the northeast Tibetan Plateau. The basin is also internally deforming and inverting along fault and fold zones, as well as being overthrust along some of its margins. Where older basement trends are parallel to neotectonic faults, some reactivation is inferred and locally documented through field observations. Otherwise, the post-Oligocene thrust and oblique-slip faults which are responsible for uplifting various basement blocks and inverting the Changma Basin appear discordant to nearby basement trends. Range-bounding thrust faults with the greatest along-strike continuity and relief generation are assumed to have the largest displacements, whereas other intra-range thrusts that bound uplifted limestone blocks are assumed to have lower amounts of displacement. Structural transects reveal a lack of intra-range reactivation of inherited structures or fabrics, concentrating uplift on the lithologically-controlled intra-range thrust faults and the major range-bounding thrust and oblique-slip faults. Northeast of the Changma Basin, in the Qilian Shan foreland, an east-trending belt of low folds and faulted ridges along the ATF marks the structural continuation of the Yumen Shan range. We find that uplift and growth of northeastern Tibet is complex with local variations in structural vergence, degree of strain partitioning, fault reactivation and basin inversion. This complexity reflects both the buttressing effect of the rigid Archaean basement directly to the north and the variation in the structural trends and lithologies of the Qilian basement, as well as the competition between uplift and erosion in the region.

  10. [Ecological risk assessment of typical karst basin based on land use change: A case study of Lijiang River basin, Southern China].

    PubMed

    Hu, Jin Long; Zhou, Zhi Xiang; Teng, Ming Jun; Luo, Nan

    2017-06-18

    Taking Lijiang River basin as study area, and based on the remote sensing images of 1973, 1986, 2000 and 2013, the land-use data were extracted, the ecological risk index was constructed, and the characteristics of spatiotemporal variation of ecological risk were analyzed by "3S" technique. The results showed that land use structure of Lijiang River basin was under relatively reasonable state and it was constantly optimizing during 1973-2013. Overall, the ecological risk of Lijiang River basin was maintained at a low level. Lowest and lower ecological risk region was dominant in Lijiang River basin, but the area of highest ecological risk expanded quickly. The spatial distribution of ecological risk was basically stable and showed an obvious ring structure, which gra-dually decreased from the axis of Xingan County Town-Lingchuan County Town-Guilin City-Yangshuo County Town to other regions. Region with lowest ecological risk mainly distributed in natural mountain forest area of the north and mid-eastern parts of Lijiang River basin, and region with highe-st ecological risk concentrated in Guilin City. The ecological risk distribution of Lijiang River basin presented significant slope and altitude differences, and it decreased with increasing slope and altitude. During the study period, the area of low ecological risk converted to high ecological risk gra-dually decreased and vice versa. On the whole, the ecological risk tended to decline rapidly in the Lijiang River basin.

  11. What Controls the Hydrodynamics of the Central Congo River?

    NASA Astrophysics Data System (ADS)

    O'Loughlin, F.; Bates, P. D.

    2014-12-01

    Despite being the second largest river basin in the world, with a drainage area greater than 3.7 million square kilometres, little is known about the hydraulics of the Congo River. This lack of knowledge is mainly due to a mixture of conflicts and the difficulty of accessing existing data. We present results of studies which have focused primarily on the middle reach of the Congo River, located between Kisangani and Kinshasa, and its six main tributaries (Kasai, Ubangai, Sangha, Ruki, Lulonga and Lomami rivers). Through a combination of remotely sensed datasets and a hydrodynamic model we investigated what factors control the hydrodynamics of the middle reach. From the analysis of the remotely sensed datasets, we discover that variability in river width of the middle reach of the Congo is large and cannot be represented by empirical equations which relate channel geometry to basin area and discharge. Water surface slopes vary from 3.5 cm/km to 9 cm/km, which is far more than previous studies suggest. The remote datasets indicate that there exist 5 large constrictions in the river width which may result in backwater affecting between 11 and 33 percent of middle reach at low and high water respectively. These results were corroborated by the hydrodynamic model. In fact, when all constrictions caused by a narrowing in width of 1 km or more are considered, water levels along 43 percent of the middle reach change by at least 0.5 m. Using the hydrodynamic model we also investigated the importance of the wetlands to the attenuation of the flood wave through the system. Initial results suggest that for the Congo River, floodplains have far more impact on the peak magnitude than the timing of the flood wave. When the model was run with no floodplain interactions an increase in the magnitude of flood peak was observed, with the timing of the waves being consistent with observed measurements.

  12. The Paradox of Restoring Native River Landscapes and Restoring Native Ecosystems in the Colorado River System

    NASA Astrophysics Data System (ADS)

    Schmidt, J. C.

    2014-12-01

    Throughout the Colorado River basin (CRb), scientists and river managers collaborate to improve native ecosystems. Native ecosystems have deteriorated due to construction of dams and diversions that alter natural flow, sediment supply, and temperature regimes, trans-basin diversions that extract large amounts of water from some segments of the channel network, and invasion of non-native animals and plants. These scientist/manager collaborations occur in large, multi-stakeholder, adaptive management programs that include the Lower Colorado River Multi-Species Conservation Program, the Glen Canyon Dam Adaptive Management Program, and the Upper Colorado River Endangered Species Recovery Program. Although a fundamental premise of native species recovery is that restoration of predam flow regimes inevitably leads to native species recovery, such is not the case in many parts of the CRb. For example, populations of the endangered humpback chub (Gila cypha) are largest in the sediment deficit, thermally altered conditions of the Colorado River downstream from Glen Canyon Dam, but these species occur in much smaller numbers in the upper CRb even though the flow regime, sediment supply, and sediment mass balance are less perturbed. Similar contrasts in the physical and biological response of restoration of predam flow regimes occurs in floodplains dominated by nonnative tamarisk (Tamarix spp.) where reestablishment of floods has the potential to exacerbate vertical accretion processes that disconnect the floodplain from the modern flow regime. A significant challenge in restoring segments of the CRb is to describe this paradox of physical and biological response to reestablishment of pre-dam flow regimes, and to clearly identify objectives of environmentally oriented river management. In many cases, understanding the nature of the perturbation to sediment mass balance caused by dams and diversions and understanding the constraints imposed by societal commitments to provide assured water supplies and hydroelectricity constrains the opportunities for rehabilitation and limits the management objectives to focus either on restoring predam physical processes or recovering native fish fauna and/or recovering native plant communities.

  13. Nonnative Fishes in the Upper Mississippi River System

    USGS Publications Warehouse

    Irons, Kevin S.; DeLain, Steven A.; Gittinger, Eric; Ickes, Brian S.; Kolar, Cindy S.; Ostendort, David; Ratcliff, Eric N.; Benson, Amy J.; Irons, Kevin S.

    2009-01-01

    The introduction, spread, and establishment of nonnative species is widely regarded as a leading threat to aquatic biodiversity and consequently is ranked among the most serious environmental problems facing the United States today. This report presents information on nonnative fish species observed by the Long Term Resource Monitoring Program on the Upper Mississippi River System a nexus of North American freshwater fish diversity for the Nation. The Long Term Resource Monitoring Program, as part of the U.S. Army Corps of Engineers' Environmental Management Plan, is the Nation's largest river monitoring program and stands as the primary source of standardized ecological information on the Upper Mississippi River System. The Long Term Resource Monitoring Program has been monitoring fish communities in six study areas on the Upper Mississippi River System since 1989. During this period, more than 3.5 million individual fish, consisting of 139 species, have been collected. Although fish monitoring activities of the Long Term Resource Monitoring Program focus principally on entire fish communities, data collected by the Program are useful for detecting and monitoring the establishment and spread of nonnative fish species within the Upper Mississippi River System Basin. Sixteen taxa of nonnative fishes, or hybrids thereof, have been observed by the Long Term Resource Monitoring Program since 1989, and several species are presently expanding their distribution and increasing in abundance. For example, in one of the six study areas monitored by the Long Term Resource Monitoring Program, the number of established nonnative species has increased from two to eight species in less than 10 years. Furthermore, contributions of those eight species can account for up to 60 percent of the total annual catch and greater than 80 percent of the observed biomass. These observations are critical because the Upper Mississippi River System stands as a nationally significant pathway for nonnative species expansion between the Mississippi River and the Great Lakes Basin. This report presents a synthesis of data on nonnative fish species observed during Long Term Resource Monitoring Program monitoring activities.

  14. Wetlands systems in southern Thailand: The essential resources for sustainable regional development

    Treesearch

    Rotchanatch Darnsawasdi; Prassert Chitpong

    2000-01-01

    Parts of Southern Thailand are inundated by water for months annually resulting in various wetlands including, among others, Tapi River Basin, Pak Panang River Basin, Songkhla Lake Basin, Pangnga Bay, Pattani River Basin, and Narathiwas Peat Swamp. Most wetlands perform functions such as flood retention, water filtration, bird and wildlife habitat,and tree growth....

  15. PAHs and PCBs deposited in surficial sediments along a rural to urban transect in a mid-Atlantic coastal river basin (USA).

    PubMed

    Foster, Gregory D; Cui, Vickie

    2008-10-01

    PAHs and PCBs were measured in river sediments along a 226 km longitudinal transect that spanned rural to urban land use settings through Valley and Ridge, Piedmont Plateau and Coastal Plain physiographic provinces in the Potomac River basin (mid-Atlantic USA). A gradient in PAH concentrations was found in river bed sediments along the upstream transect in the Potomac and Shenandoah Rivers that correlated with population densities in the nearby sub-basins. Sediment PAH concentrations halved per each approximately 40 km of transect distance upstream (i.e., the half-concentration distance) from the urban center (Washington, DC) of the Potomac River basin in direct proportion to population density. The PAH molecular composition was consistent across all geologic provinces, revealing a dominant pyrogenic source. Fluoranthene to perylene ratios served as useful markers for urban inputs, with a ratio > 2.4 observed in sediments near urban structures such as roadways, bridges and sewer outfalls. PCBs in sediments were not well correlated with population densities along the river basin transect, but the highest concentrations were found in the urban Coastal Plain region near Washington, DC and in the Shenandoah River near a known industrial Superfund site. PAHs were moderately correlated with sediment total organic carbon (TOC) in the Shenandoah River and Coastal Plain Potomac River regions, but TOC was poorly correlated with PCB concentrations throughout the entire basin. Although both PAHs and PCBs are widely recognized as urban-derived contaminants, their concentration profiles and geochemistry in river sediments were uniquely different throughout the upper Potomac River basin.

  16. Analog model study of the ground-water basin of the Upper Coachella Valley, California

    USGS Publications Warehouse

    Tyley, Stephen J.

    1974-01-01

    An analog model of the ground-water basin of the upper Coachella Valley was constructed to determine the effects of imported water on ground-water levels. The model was considered verified when the ground-water levels generated by the model approximated the historical change in water levels of the ground-water basin caused by man's activities for the period 1986-67. The ground-water basin was almost unaffected by man's activities until about 1945 when ground-water development caused the water levels to begin to decline. The Palm Springs area has had the largest water-level decline, 75 feet since 1986, because of large pumpage, reduced natural inflow from the San Gorgonio Pass area, and diversions of natural inflows at Snow and Falls Creeks and Chino Canyon starting in 1945. The San Gorgonio Pass inflow had been reduced from about 18,000 acre-feet in 1986 to about 9,000 acre-feet by 1967 because of increased ground-water pumpage in the San Gorgonio Pass area, dewatering of the San Gorgonio Pass area that took place when the tunnel for the Metropolitan Water District of Southern California was drilled, and diversions of surface inflow at Snow and Falls Creeks. In addition, 1944-64 was a period of below-normal precipitation which, in part, contributed to the declines in water levels in the Coachella Valley. The Desert Hot Springs, Garnet Hill, and Mission Creek subbasins have had relatively little development; consequently, the water-level declines have been small, ranging from 5 to 15 feet since 1986. In the Point Happy area a decline of about 2 feet per year continued until 1949 when delivery of Colorado River water to the lower valley through the Coachella Canal was initiated. Since 1949 the water levels in the Point Happy area have been rising and by 1967 were above their 1986 levels. The Whitewater River subbasin includes the largest aquifer in the basin, having sustained ground-water pumpage of about 740,000 acre-feet from 1986 to 1967, and will probably continue to provide the most significant supply of ground water for the upper valley. The total ground-water storage depletion for the entire upper valley for 1986-67 was about 600,000 acre-feet, an average storage decrease of about 25,000 acre-feet per year since 1945. Transmissivity for the Whitewater River subbasin ranges from 860,000 gallons per day per foot (near Point Happy) to 50,000 gallons per day per foot, with most of the subbasin about 800,000 gallons per day per foot. In contrast, the transmissivities of the Desert Hot Springs, Mission Creek, and Garnet Hill subbasins generally range from 2,000 to 100,000, but the highest value, beneath the Mission Creek streambed deposits, is 200,000 gallons per day per foot; the transmissivity for most of the area of th6 three subbasins is 80,000 gallons per day per foot. The storage coefficients are representative of water-table conditions, ranging from 0.18 beneath the Mission Creek stream deposits to 0.06 in the Palm Springs area. The model indicated that the outflow at Point Happy decreased from 50,000 acre-feet in 1936 to 30,000 acre-feet by 1967 as a result of the rising water levels in the lower valley. The most logical area to recharge the Colorado River water is the Windy Point-Whitewater area, where adequate percolation rates of 2-4 acre-feet per acre per day are probable. The Whitewater River bed may be the best location to spread the water if the largest part of the imported water can be recharged during low-flow periods. The area in sec. 21, T. 2 S., R. 4 E., would be adequate for the smaller quantities of recharge proposed for the Mission Creek area. Projected pumpage for the period 1968-2000 was programmed on the model with the proposed recharge of Colorado River water for the same period. The model indicated a maximum water-level increase of 200 feet above the 1967 water level at Windy Point, the proposed recharge site, by the year 2000, a 130-foot increase by 1990, and a 20-foot increas

  17. SPARROW models used to understand nutrient sources in the Mississippi/Atchafalaya River Basin

    USGS Publications Warehouse

    Robertson, Dale M.; Saad, David A.

    2013-01-01

    Nitrogen (N) and phosphorus (P) loading from the Mississippi/Atchafalaya River Basin (MARB) has been linked to hypoxia in the Gulf of Mexico. To describe where and from what sources those loads originate, SPAtially Referenced Regression On Watershed attributes (SPARROW) models were constructed for the MARB using geospatial datasets for 2002, including inputs from wastewater treatment plants (WWTPs), and calibration sites throughout the MARB. Previous studies found that highest N and P yields were from the north-central part of the MARB (Corn Belt). Based on the MARB SPARROW models, highest N yields were still from the Corn Belt but centered over Iowa and Indiana, and highest P yields were widely distributed throughout the center of the MARB. Similar to that found in other studies, agricultural inputs were found to be the largest N and P sources throughout most of the MARB: farm fertilizers were the largest N source, whereas farm fertilizers, manure, and urban inputs were dominant P sources. The MARB models enable individual N and P sources to be defined at scales ranging from SPARROW catchments (∼50 km2) to the entire area of the MARB. Inputs of P from WWTPs and urban areas were more important than found in most other studies. Information from this study will help to reduce nutrient loading from the MARB by providing managers with a description of where each of the sources of N and P are most important, thus providing a basis for prioritizing management actions and ultimately reducing the extent of Gulf hypoxia.

  18. Updated estimates of long-term average dissolved-solids loading in streams and rivers of the Upper Colorado River Basin

    USGS Publications Warehouse

    Tillman, Fred D.; Anning, David W.

    2014-01-01

    The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating over 4.5 million acres of farmland, and annually generating about 12 billion kilowatt hours of hydroelectric power. The Upper Colorado River Basin, part of the Colorado River Basin, encompasses more than 110,000 mi2 and is the source of much of more than 9 million tons of dissolved solids that annually flows past the Hoover Dam. High dissolved-solids concentrations in the river are the cause of substantial economic damages to users, primarily in reduced agricultural crop yields and corrosion, with damages estimated to be greater than 300 million dollars annually. In 1974, the Colorado River Basin Salinity Control Act created the Colorado River Basin Salinity Control Program to investigate and implement a broad range of salinity control measures. A 2009 study by the U.S. Geological Survey, supported by the Salinity Control Program, used the Spatially Referenced Regressions on Watershed Attributes surface-water quality model to examine dissolved-solids supply and transport within the Upper Colorado River Basin. Dissolved-solids loads developed for 218 monitoring sites were used to calibrate the 2009 Upper Colorado River Basin Spatially Referenced Regressions on Watershed Attributes dissolved-solids model. This study updates and develops new dissolved-solids loading estimates for 323 Upper Colorado River Basin monitoring sites using streamflow and dissolved-solids concentration data through 2012, to support a planned Spatially Referenced Regressions on Watershed Attributes modeling effort that will investigate the contributions to dissolved-solids loads from irrigation and rangeland practices.

  19. Comparison of Precipitation from Gauge and Tropical Rainfall Measurement Mission (TRMM) for River Basins of India

    NASA Astrophysics Data System (ADS)

    Mondal, A.; Chandniha, S. K.; Lakshmi, V.; Kundu, S.; Hashemi, H.

    2017-12-01

    This study compares the monthly precipitation from the gridded rain gauge data collected by India Meteorological Department (IMD) and the retrievals from the Tropical Rainfall Measurement Mission (TRMM) for the river basins of India using the TRMM Multisatellite Precipitation Analysis (TMPA) version 7 (V7). The IMD and TMPA datasets have the same spatial resolution (0.25°×0.25°) and extend from 1998 to 2013. The TRMM data accuracy for the river basins is assessed by comparison with IMD using root mean square error (RMSE), normalized mean square error (NMSE), Nash-Sutcliffe coefficient (NASH) and correlation coefficient (CC) methods. The Mann-Kendall (MK) and modified Mann-Kendall (MMK) tests have been applied for analyzing the data trend, and the change has been detected by Sen's Slope using both data sets for annual and seasonal time periods. The change in intensity of precipitation is estimated by percentage for comparing actual differences in various river basins. Variation in precipitation is high (>100 mm represents >15% of average annual precipitation) in Brahmaputra, rivers draining into Myanmar (RDM), rivers draining into Bangladesh (RDB), east flowing rivers between Mahanadi and Godavari (EMG), east flowing rivers between Pennar and Cauvery (EPC), Cauvery and Tapi. The NASH and CC values vary between 0.80 to 0.98 and 0.87 to 0.99 in all river basins except area of north Ladakh not draining into Indus (NLI) and east flowing rivers south of Cauvery (ESC), while RMSE and NMSE vary from 15.95 to 101.68 mm and 2.66 to 58.38 mm, respectively. The trends for TMPA and IMD datasets from 1998 to 2013 are quite similar in MK (except 4 river basins) and MMK (except 3 river basins). The estimated results imply that the TMPA precipitation show good agreement and can be used in climate studies and hydrological simulations in locations/river basins where the number of rain gauge stations is not adequate to quantify the spatial variability of precipitation. Keywords: Precipitation data comparison, IMD, TRMM, river basins, Mann-Kendall test

  20. Surface-water hydrology of the Little Black River basin, Missouri and Arkansas, before water-land improvement practices

    USGS Publications Warehouse

    Berkas, W.R.; Femmer, Suzanne R.; Mesko, T.O.; Thompson, B.W.

    1987-01-01

    The U. S. Department of Agriculture, Soil Conservation Service, in accordance with Public Law 566, is implementing various types of water-land improvement practices in the Little Black River basin in southeastern Missouri. These practices are designed, in part, to decrease the suspended sediment (SS) transport in the basin, decrease flood damage in the basin, and improve drainage in the agricultural area. The general features of the basin, such as geology, groundwater hydrology, soils, land use, water use, and precipitation are described; surface water quantity, quality, and suspended sediment discharge are also described. The aquifers are the Mississippi River valley alluvial aquifer, which can yield about 3,500 gal/min to properly constructed wells, and the Ozark and St. Francois aquifers, which can yield from about 30 to 500 gal/min to properly constructed wells. Soils in the area have formed in loess and cherty residuum in the uplands or have formed in alluvial sediment in the lowlands. About 93% of the estimated 3 billion gal/year of water used in the basin is for crop irrigation. The average monthly precipitation varies slightly throughout the year, with an average annual precipitation of about 47 inches. Water quality data were collected at seven stations. Specific conductance values ranged from 50 to 400 microsiemens/cm at 25 C. Water temperatures ranged from 0.0 C in the winter to 33.5 C in summer. pH values ranged from 6.4 to 8.5 units. Dissolved oxygen concentrations ranged from 2.2 to 12.8 ml/l. Total nitrogen concentrations ranged from 0.13 to 2.20 ml/l as nitrogen, with organic nitrogen as the most abundant form. Phosphorus concentrations ranged from zero to 0.29 ml/l as phosphorus. Bacterial counts were largest during storm runoff in the basin with livestock waste as the significant contributor. For the period from October 1, 1980, to September 30, 1984, the average annual SS discharge ranged from 2,230 tons/yr in the headwater areas to 27,800 tons/yr at the most downstream station. The average annual SS yield ranged from 59.6 to 85.9 tons/sq mi. (Author 's abstract)

  1. 77 FR 10034 - Public Hearing; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ... SUSQUEHANNA RIVER BASIN COMMISSION Public Hearing; Correction AGENCY: Susquehanna River Basin Commission. ACTION: Notice; correction. SUMMARY: The Susquehanna River Basin Commission published a document in the Federal Register of January 23, 2012, concerning a public hearing to be held on February 16...

  2. 77 FR 28420 - Commission Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... SUSQUEHANNA RIVER BASIN COMMISSION Commission Meeting AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: The Susquehanna River Basin Commission will hold its regular business meeting on... meeting are contained in the Supplementary Information section of this notice. DATES: June 7, 2012, at 9...

  3. The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office : Watershed Restoration Projects : 2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.

    The John Day is the nation's second longest free-flowing river in the contiguous United States and the longest containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles, Oregon's fourth largest drainage basin, and incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the John Day River flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon and summer steelhead, westslope cutthroat, and redband and bull trout, the John Day systemmore » is truly a basin with national significance. The majority of the John Day basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Once established, the John Day Basin Office (JDBO) formed a partnership with the Grant Soil and Water Conservation District (GSWCD), which contracts the majority of the construction implementation activities for these projects from the JDBO. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2003, the JDBO and GSWCD proposed continuation of their successful partnership between the two agencies and basin landowners to implement an additional twelve (12) watershed conservation projects. The types of projects include off channel water developments, juniper control, permanent diversions, pump stations, and return-flow cooling systems. Due to funding issues and delays, permitting delays, fire closures and landowner contracting problems, 2 projects were canceled and 7 projects were rescheduled to the 2004 construction season. Project costs in 2003 totaled $115,554.00 with a total amount of $64,981.00 (56%) provided by the Bonneville Power Administration (BPA) and the remainder coming from other sources such as the Bureau of Reclamation (BOR), Oregon Watershed Enhancement Board, the U.S. Fish & Wildlife Service Partners in Wildlife Program and individual landowners.« less

  4. Earth observation taken by the Expedition 33 crew.

    NASA Image and Video Library

    2012-09-20

    ISS033-E-006202 (20 Sept. 2012) --- Salar de Coipasa, Bolivia is featured in this image photographed by an Expedition 33 crew member on the International Space Station. The Salar de Coipasa, located in the Altiplano region of western Bolivia, covers an area of approximately 2,500 square kilometers. The word ?salar? describes arid closed basins in which evaporation of mineral-rich waters leads to the formation of thick, flat-laying salt deposits. Salar de Coipasa is located to the southwest of the saline Lake Poopo and northwest of the largest salt flat in the world, Salar de Uyuni. At Coipasa, a crust composed of halite?common table salt?provides the brilliant white coloration characteristic of the Altiplano salars (right). While the environment of Salar de Coipasa is arid, it does receive constant water from the Lauca River flowing from the north; this feeds Lake (Lago) Coipasa that fills the northern end of the basin with shallow water (center). However, the water flow can drop off sharply during periods of drought. The waters of Lake Coipasa, and the white salt crust of the salar, also serve to highlight dark river sediments flowing into the basin along the northeastern shore. Dark volcanic rocks contrast sharply with the surrounding salt crust at right. While the western Andes Mountains contain many active volcanoes, the nearby Tata Sabaya volcano has not been historically active.

  5. Thermal-history reconstruction of the Baiyun Sag in the deep-water area of the Pearl River Mouth Basin, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Tang, Xiaoyin; Yang, Shuchun; Hu, Shengbiao

    2017-11-01

    The Baiyun Sag, located in the deep-water area of the northern South China Sea, is the largest and deepest subbasin in the Pearl River Mouth Basin and one of the most important hydrocarbon-accumulation depression areas in China. Thermal history is widely thought to be of great importance in oil and gas potential assessment of a basin as it controls the timing of hydrocarbon generation and expulsion from the source rock. In order to unravel the paleo-heat flow of the Baiyun Sag, we first analyzed tectonic subsidence of 55 pseudo-wells constructed based on newly interpreted seismic profiles, along with three drilled wells. We then carried out thermal modeling using the multi-stage finite stretching method and calibrated the results using collected present-day vitrinite reflectance data and temperature data. Results indicate that the first and second heating of the Baiyun Sag after 49 Ma ceased at 33.9 Ma and 23 Ma. Reconstructed average basal paleoheat flow values at the end of the rifting periods are 57.7-86.2 mW/m2 and 66.7-97.3 mW/m2, respectively. Following the last heating period at 23 Ma, the study area has undergone a persistent thermal attenuation phase, and basal heat flow has cooled down to 64.0-79.2 mW/m2 at present.

  6. Global Anthropogenic Phosphorus Loads to Fresh Water, Grey Water Footprint and Water Pollution Levels: A High-Resolution Global Study

    NASA Astrophysics Data System (ADS)

    Mekonnen, M. M.; Hoekstra, A. Y. Y.

    2014-12-01

    We estimated anthropogenic phosphorus (P) loads to freshwater, globally at a spatial resolution level of 5 by 5 arc minute. The global anthropogenic P load to freshwater systems from both diffuse and point sources in the period 2002-2010 was 1.5 million tonnes per year. China contributed about 30% to this global anthropogenic P load. India was the second largest contributor (8%), followed by the USA (7%), Spain and Brazil each contributing 6% to the total. The domestic sector contributed the largest share (54%) to this total followed by agriculture (38%) and industry (8%). Among the crops, production of cereals had the largest contribution to the P loads (32%), followed by fruits, vegetables, and oil crops, each contributing about 15% to the total. We also calculated the resultant grey water footprints, and relate the grey water footprints per river basin to runoff to calculate the P-related water pollution level (WPL) per catchment.

  7. Prediction of phosphorus loads in an artificially drained lowland catchment using a modified SWAT model

    NASA Astrophysics Data System (ADS)

    Bauwe, Andreas; Eckhardt, Kai-Uwe; Lennartz, Bernd

    2017-04-01

    Eutrophication is still one of the main environmental problems in the Baltic Sea. Currently, agricultural diffuse sources constitute the major portion of phosphorus (P) fluxes to the Baltic Sea and have to be reduced to achieve the HELCOM targets and improve the ecological status. Eco-hydrological models are suitable tools to identify sources of nutrients and possible measures aiming at reducing nutrient loads into surface waters. In this study, the Soil and Water Assessment Tool (SWAT) was applied to the Warnow river basin (3300 km2), the second largest watershed in Germany discharging into the Baltic Sea. The Warnow river basin is located in northeastern Germany and characterized by lowlands with a high proportion of artificially drained areas. The aim of this study were (i) to estimate P loadings for individual flow fractions (point sources, surface runoff, tile flow, groundwater flow), spatially distributed on sub-basin scale. Since the official version of SWAT does not allow for the modeling of P in tile drains, we tested (ii) two different approaches of simulating P in tile drains by changing the SWAT source code. The SWAT source code was modified so that (i) the soluble P concentration of the groundwater was transferred to the tile water and (ii) the soluble P in the soil was transferred to the tiles. The SWAT model was first calibrated (2002-2011) and validated (1992-2001) for stream flow at 7 headwater catchments at a daily time scale. Based on this, the stream flow at the outlet of the Warnow river basin was simulated. Performance statistics indicated at least satisfactory model results for each sub-basin. Breaking down the discharge into flow constituents, it becomes visible that stream flow is mainly governed by groundwater and tile flow. Due to the topographic situation with gentle slopes, surface runoff played only a minor role. Results further indicate that the prediction of soluble P loads was improved by the modified SWAT versions. Major sources of P in rivers are groundwater and tile flow. P was also released by surface runoff during large storm events when sediment was eroded into the rivers. The contributions of point sources in terms of waste water treatment plants to the overall P loading were low. The modifications made in the SWAT source code should be considered as a starting point to simulate P loads in artificially drained landscapes more precisely. Further testing and development of the code is required.

  8. Occurrence and transport of nutrients in the Missouri River Basin, April through September 2011: Chapter G in 2011 floods of the central United States

    USGS Publications Warehouse

    Kalkhoff, Stephen J.

    2013-01-01

    Heavy snow and early spring rainfall generated substantial amounts of runoff and flooding in the upper part of the Missouri River Basin in 2011. Spring runoff in the upper and middle parts of the basin exceeded the storage capacity of the Missouri River reservoirs and unprecedented amounts of water were released into the lower parts of the basin resulting in record floods from June through September on the Missouri River in Iowa and Nebraska and extending into Kansas and Missouri. Runoff from the Missouri River Basin in April through September 2011 was 8,440,000 hectare meters (68,400,000 acre feet) and was only exceeded during flooding in 1993 when runoff was 11,200,000 hectare meters (90,700,000 acre feet). Nitrate and total phosphorus concentrations in the Missouri River and selected tributaries in April through September, 2011 generally were within the expected range of concentrations measured during the last 30 years. Substantial discharge from the upper and middle parts of the Missouri River Basin resulted in nitrate concentrations decreasing in the lower Missouri River beginning in June. Concentrations of nitrate in water entering the Mississippi River from the Missouri River were less in 2011 than in 1993, but total phosphorus concentrations entering the Mississippi River were substantially greater in 2011 than in 1993. The Missouri River transported an estimated 79,600 megagrams of nitrate and 38,000 megagrams of total phosphorus to the Mississippi River from April through September 2011. The nitrate flux in 2011 was less than 20 percent of the combined total from the Upper Mississippi and Missouri River Basins. In contrast, the total phosphorus flux of 38,000 megagrams from the Missouri River constituted about 39 percent of the combined total from the Upper Mississippi and Missouri River Basins during April through September 2011. Substantially more nitrate but less total phosphorus was transported from the Missouri River Basin during the historic 1993 than during the 2011 flood. Greater runoff from the lower part of the basin contributed to the greater nitrate transport in 1993. In addition to the differing amounts of runoff and the source of flood waters, changes in land use, and management practices are additional factors that may have contributed to the difference in nitrate and total phosphorus flux between the 1993 and 2011 floods.

  9. New vitrinite reflectance data for the Wind River Basin, Wyoming

    USGS Publications Warehouse

    Pawlewicz, Mark J.; Finn, Thomas M.

    2013-01-01

    The Wind River Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 7,400 square miles in central Wyoming. The basin is bounded by the Washakie Range and Owl Creek and southern Bighorn Mountains on the north, the Casper arch on the east and northeast, and the Granite Mountains on the south, and Wind River Range on the west. The purpose of this report is to present new vitrinite reflectance data collected mainly from Cretaceous marine shales in the Wind River Basin to better characterize their thermal maturity and hydrocarbon potential.

  10. The Role of Cooperation and Information Exchange in Transnational River Basins: the Zambezi River case

    NASA Astrophysics Data System (ADS)

    Castelletti, A.; Giuliani, M.; Soncini-Sessa, R.

    2012-12-01

    The presence of multiple, institutionally independent but physically interconnected decision-makers is a distinctive features of many water resources systems, especially of transnational river basins. The adoption of a centralized approach to study the optimal operation of these systems, as mostly done in the water resources literature, is conceptually interesting to quantify the best achievable performance, but of little practical impact given the real political and institutional setting. Centralized management indeed assumes a cooperative attitude and full information exchange by the involved parties. However, when decision-makers belong to different countries or institutions, it is very likely that they act considering only their local objectives, producing global externalities that negatively impact on other objectives. In this work we adopt a Multi-Agent Systems framework, which naturally allows to represent a set of self-interested agents (decision-makers and/or stakeholders) acting in a distributed decision-making process. According to this agent-based approach, each agent represents a decision-maker, whose decisions are defined by an explicit optimization problem considering only the agent's local interests. In particular, this work assesses the role of information exchange and increasing level of cooperation among originally non-cooperative agents. The Zambezi River basin is used to illustrate the methodology: the four largest reservoirs in the basin (Ithezhithezhi, Kafue-Gorge, Kariba and Cahora Bassa) are mainly operated for maximizing the economic revenue from hydropower energy production with considerably negative effects on the aquatic ecosystem in the Zambezi delta due to the alteration of the natural flow regime. We comparatively analyse the ideal centralized solution and the current situation where all the decision-makers act independently and non-cooperatively. Indeed, although a new basin-level institution called Zambezi Watercourse Commission (ZAMCON) should be established in the next future, Zambia recently refused to sign and ratify the ZAMCON Protocol and the road toward a fully cooperative framework is still long. Results show that increasing levels of information exchange can help in mitigating the conflict generated by a non-cooperative setting as it allows the downstream agents, i.e. Mozambique country, to better adapt to the upstream management strategies. Furthermore, the role of information exchange depends on the considered objectives and it is particularly relevant for environmental interests.

  11. Climate and Streamflow Reconstruction on the São Francisco Basin, Brazil, Using Tree-Ring Data

    NASA Astrophysics Data System (ADS)

    Pereira, G. D. A.; Barbosa, A. C. M. C.; Granato-Souza, D.; Stahle, D. W.; Torbenson, M.; dos Santos, R. M.; Rodrigues Alves Delfino Barbosa, J. P.

    2017-12-01

    The São Francisco River crosses the most drought-prone region of Brazil and regional economic dynamics are dependent on the water availability in the basin. The seasonally dry forests are widely distributed in the basin, where Cedrela fissilis Vell (cedro) are frequently found. This semi-arid region provides a favorable setting where the deciduous cedro trees form well-defined semi-ring porous annual rings that can be exactly crossdated and used to build climate sensitive chronologies. Therefore, we have developed chronologies of cedro from seasonally dry forest fragments of three sites located in the middle-sector of the São Francisco River basin and south limit of the Brazilian Drought Polygon. The samples were analyzed according to standard procedures: sample preparation, ring count, crossdating and measurement of the tree rings. Dating quality was tested using the computer program COFECHA and ring-width time series where detrended and standardized to produce the final index chronology using the ARSTAN program. The results show that crossdating within and among trees from different sites demonstrate the potential to expand the spatial sampling. The tree-ring chronologies are sensitive with wet season precipitation totals (October - March), and can explain approximately 40% of the variance (1961-2015). Significant correlation was also observed with total annual discharge of the Rio São Francisco River measured at Barra (r=0.48; 1961-2015). However, the correlation disapears after 1993 (r=0.64 for 1961-1993, but r=-0.004 for 1994-2015) and we suspect that the stream gage at Barra has been impacted by human activity. Tree-ring chronologies can provide important information on climate and streamflow variability of São Francisco River, where hydrological records are often short and discontinuous. This chronology is now being extended with 150-yr old trees from the region and may be used to reconstruct climate and streamflow records back to the pre-instrumental period, in order to help understanding the impact and magnitude of hidroclimatic changes over the third largest Brazilian basin. (This research was funded by the Fundação de Amparo à Pesquisa de Minas Gerais - FAPEMIG project number APQ-02541-14 and NSF P2C2 award number AGS-1501321).

  12. The Transboundary Waters Assessment Programme (TWAP) River Basin Component Methods and Results

    NASA Astrophysics Data System (ADS)

    de Sherbinin, A. M.; Glennie, P.

    2014-12-01

    The Transboundary Waters Assessment Programme (TWAP) was initiated by the Global Environment Facility (GEF) to create the first baseline assessment of all of the planet's transboundary water resources. The TWAP River Basin component consists of a baseline comparative assessment of 270 transboundary river basins, including all but the smallest basins, to enable the identification of priority issues and hotspots at risk from a variety of stressors. The assessment is indicator based and it is intended to provide a relative analysis of basins based on risks to societies and ecosystems. Models and observational data have been used to create 14 indicators covering environmental, human and agricultural water stress; nutrient and wastewater pollution; extinction risk; governance and institutions; economic dependence on water resources; societal wellbeing at sub-basin scales; and societal risks from climate extremes. The methodology is not limited to transboundary basins, but can be applied to all river basins. This presentation will provide a summary of the methods and results of the TWAP River Basin component. It will also briefly discuss preliminary results of the TWAP lakes and aquifer components.

  13. Sedimentary processes and depositional environments of the Horn River Shale in British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Yoon, Seok-Hoon; Koh, Chang-Seong; Joe, Young-Jin; Woo, Ju-Hwan; Lee, Hyun-Suk

    2017-04-01

    The Horn River Basin in the northeastern British Columbia, Canada, is one of the largest unconventional gas accumulations in North America. It consists mainly of Devonian shales (Horn River Formation) and is stratigraphically divided into three members, the Muskwa, Otterpark and Evie in descending order. This study focuses on sedimentary processes and depositional environments of the Horn River shale based on sedimentary facies analysis aided by well-log mineralogy (ECS) and total organic carbon (TOC) data. The shale formation consists dominantly of siliceous minerals (quartz, feldspar and mica) and subordinate clay mineral and carbonate materials, and TOC ranging from 1.0 to 7.6%. Based on sedimentary structures and micro texture, three sedimentary facies were classified: homogeneous mudstone (HM), indistinctly laminated mudstone (ILM), and planar laminated mudstone (PLM). Integrated interpretation of the sedimentary facies, lithology and TOC suggests that depositional environment of the Horn River shale was an anoxic quiescent basin plain and base-of-slope off carbonate platform or reef. In this deeper marine setting, organic-rich facies HM and ILM, dominant in the Muskwa (the upper part of the Horn River Formation) and Evie (the lower part of the Horn River Formation) members, may have been emplaced by pelagic to hemipelagic sedimentation on the anoxic sea floor with infrequent effects of low-density gravity flows (turbidity currents or nepheloid flows). In the other hand, facies PLM typifying the Otterpark Member (the middle part of the Horn River Formation) suggests more frequent inflow of bottom-hugging turbidity currents punctuating the hemipelagic settling of the background sedimentation process. The stratigraphic change of sedimentary facies and TOC content in the Horn River Formation is most appropriately interpreted to have been caused by the relative sea-level change, that is, lower TOC and frequent signal of turbidity current during the sea-level lowstand and vice versa. Therefore, the Horn River Formation represents an earlier upward shallowing environmental change from a deep basin (Evie) to shallower marginal slope (middle Otterpark), then turning back to the deeper marine environment (Muskwa) in association with overall regression-lowstand-transgression of the sea level. (This study is supported by "Research on Exploration Technologies and an Onsite Verification to Enhance the Fracturing Efficiency of a Shale Gas Formation" of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea.)

  14. Human impacts on river water quality- comparative research in the catchment areas of the Tone River and the Mur River-

    NASA Astrophysics Data System (ADS)

    Kogure, K.

    2013-12-01

    Human activities in river basin affect river water quality as water discharges into river with pollutant after we use it. By detecting pollutants source, pathway, and influential factor of human activities, it will be possible to consider proper river basin management. In this study, material flow analysis was done first and then nutrient emission modeling by MONERIS was conducted. So as to clarify land use contribution and climate condition, comparison of Japanese and European river basin area has been made. The model MONERIS (MOdelling Nutrient Emissions in RIver Systems; Behrendt et al., 2000) was applied to estimate the nutrient emissions in the Danube river basin by point sources and various diffuse pathways. Work for the Mur River Basin in Austria was already carried out by the Institute of Water Quality, Resources and Waste Management at the Vienna University of Technology. This study treats data collection, modelling for the Tone River in Japan, and comparative analysis for these two river basins. The estimation of the nutrient emissions was carried out for 11 different sub catchment areas covering the Tone River Basin for the time period 2000 to 2006. TN emissions into the Tone river basin were 51 kt/y. 67% was via ground water and dominant for all sub catchments. Urban area was also important emission pathway. Human effect is observed in urban structure and agricultural activity. Water supply and sewer system make urban water cycle with pipeline structure. Excess evapotranspiration in arable land is also influential in water cycle. As share of arable land is 37% and there provides agricultural products, it is thought that N emission from agricultural activity is main pollution source. Assumption case of 10% N surplus was simulated and the result was 99% identical to the actual. Even though N surplus reduction does not show drastic impact on N emission, it is of importance to reduce excess of fertilization and to encourage effective agricultural activity. Population rate of waste water treatment is 67 % in the total catchment area. Assumption case of 100% WWT was simulated and the result suggests that connection to public sewer system with WWTP is effective potential measure. TN emission in the Tone is higher than it in the Mur. Emission per capita is almost same level for both basin areas. Though the personal pollution stresses same as European basin area, the basin has huge population and activities to support their daily life. Agricultural activity and urban structure have great impacts on N emission and on the river water quality. Possible remedy for river pollution is construction of sewer system with waste water treatment. Agricultural activity is potential betterment factor. Comparison of Mur, Tone and assumption cases

  15. Water Quality Outlet Works Prototype Tests, Warm Springs Dam Dry Creek, Russian River Basin Sonoma County, California

    DTIC Science & Technology

    1989-03-01

    34.4* TECHNICAL REPORT HL-89-4 WATER QUALITY OUTLET WORKS PROTOTYPE TESTS, WARM SPRINGS DAM DRY CREEK, RUSSIAN RIVER BASIN AD-A207 058 SONOMA COUNTY , CALIFORNIA...Clawflcation) [7 Water Quality Outlet Works Prototype Tests, Warm Springs Dam, Dry Creek, Russian River Basin, Sonoma County , California 12. PERSONAL...Cointogobvil Be,,pesso Figur 1. iciniyama Pealm WATER QUALITY OUTLET WORKS PROTOTYPE TESTS WARM SPRINGS DAM, DRY CREEK, RUSSIAN RIVER BASIN SONOMA COUNTY , CALIFORNIA

  16. National Program for Inspection of Non-Federal Dams. Chase Pond Dam (NH 00255), NHWRB Number 253.02, Merrimack River Basin, Wilmot, New Hampshire. Phase I Inspection Report.

    DTIC Science & Technology

    1980-03-01

    STANDAROS-1963-A L ~.°.. o...... 1....MERRIMACK RIVER BASIN -!. WILMOT , NEW HAMPSHIRE ’,- CHASE POND DAM NH 00255 NHWRB NO. 253.02 r PHASE I...Continue on fewsorsp side #0 .o..oemay and Ientify by black Muthot) - DAMS, NSPECTION, PAM S’AFETY, Merrimack River Basin. * Wilmot , New Hampshire...MERRIMACK RIVER BASIN R WILMOT , NEW HAMPSHIRE - - PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM :: : I

  17. The Thames Science Plan: Suggested Hydrologic Investigations to Support Nutrient-Related Water-Quality Improvements in the Thames River Basin, Connecticut

    DTIC Science & Technology

    2005-01-01

    Nutrient- Related Water-Quality Improvements in the Thames River Basin, Connecticut Open-File Report 2005-1208 U.S. Department of the Interior U.S...Investigations to Support Nutrient- Related Water-Quality Improvements in the Thames River Basin, Connecticut 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...Suggested Hydrologic Investigations to Support Nutrient- Related Water-Quality Improvements in the Thames River Basin, Connecticut By Elaine C. Todd

  18. U.S. Geological Survey and Bureau of Land Management Cooperative Coalbed Methane Project in the Powder River Basin, Wyoming

    USGS Publications Warehouse

    ,

    2006-01-01

    Introduction: Evidence that earthquakes threaten the Mississippi, Ohio, and Wabash River valleys of the Central United States abounds. In fact, several of the largest historical earthquakes to strike the continental United States occurred in the winter of 1811-1812 along the New Madrid seismic zone, which stretches from just west of Memphis, Tenn., into southern Illinois (fig. 1). Several times in the past century, moderate earthquakes have been widely felt in the Wabash Valley seismic zone along the southern border of Illinois and Indiana (fig. 1). Throughout the region, between 150 and 200 earthquakes are recorded annually by a network of monitoring instruments, although most are too small to be felt by people. Geologic evidence for prehistoric earthquakes throughout the region has been mounting since the late 1970s. But how significant is the threat? How likely are large earthquakes and, more importantly, what is the chance that the shaking they cause will be damaging?The Bureau of Land Management (BLM) Wyoming Reservoir Management Group and the U.S. Geological Survey (USGS) began a cooperative project in 1999 to collect technical and analytical data on coalbed methane (CBM) resources and quality of the water produced from coalbeds in the Wyoming part of the Powder River Basin. The agencies have complementary but divergent goals and these kinds of data are essential to accomplish their respective resource evaluation and management tasks. The project also addresses the general public need for information pertaining to Powder River Basin CBM resources and development. BLM needs, which relate primarily to the management of CBM resources, include improved gas content and gas in-place estimates for reservoir characterization and resource/reserve assessment, evaluation, and utilization. USGS goals include a basinwide assessment of CBM resources, an improved understanding of the nature and origin of coalbed gases and formation waters, and the development of predictive models for the assessment of CBM resources that can be used for such purposes in other basins in the United States (for example, the Bighorn, Greater Green River, and Williston Basins) and in other countries throughout the world (for example, Indonesia, New Zealand, and the Philippines). Samples of coal, produced water, and gas from coalbed methane drill holes throughout the Powder River Basin, many of which are adjacent to several active mine areas (figs. 1, 2), have been collected by personnel in the USGS, BLM Reservoir Management Group, and Casper and Buffalo BLM Field Offices. Sampling was done under confidentiality agreements with 29 participating CBM companies and operators. Analyses run on the samples include coal permeability, coal quality and chemistry, coal petrography and petrology, methane desorption and adsorption, produced-water chemistry, and gas composition and isotopes. The USGS has supplied results to the BLM Reservoir Management Group for their resource management needs, and data are released when the terms of the confidentiality agreements are completed and consent is obtained.

  19. Water quality and discharge of streams in the Lehigh River Basin, Pennsylvania

    USGS Publications Warehouse

    McCarren, Edward F.; Keighton, Walter B.

    1969-01-01

    The Lehigh River, 100 miles long, is the second largest tributary to the Delaware River. It drains 1,364 square miles in four physiographic provinces. The Lehigh River basin includes mountainous and forested areas, broad agricultural valleys and areas of urban and industrial development. In the headwaters the water is of good quality and has a low concentration of solutes. Downstream, some tributaries receive coal-mine drainage and become acidic; others drain areas underlain by limestone and acquire alkaline characteristics. The alkaline streams neutralize and dilute the acid mine water where they mix. The dissolved-oxygen content of river water, which is high in the upper reaches of the stream, is reduced in the lower reaches because of lower turbulence, higher temperature, and the respiration of organisms. The Lehigh is used for public supply, recreation, waterpower, irrigation, and mining and other industrial purposes. Because the river is shallow in its upper reaches, most of the water comes in contact with the atmosphere as it churns over rocks and around islets and large boulders. Aeration of the water is rapid. When water that was low in dissolved-oxygen concentration was released from the lower strata of the Francis E. Walter Reservoir in June 1966, it quickly became aerated in the Lehigh River, and for 40 miles downstream from the dam the water was nearly saturated with oxygen. Most of the river water requires only moderate treatment for industrial use and public distribution throughout the Lehigh River valley. At times, however, some segments of the main river and its tributaries transport industrial wastes and acid coal-mine drainage. Usually the relatively high concentrations of solutes in water and the ensuing damage caused to quality by such waste discharges are more extensive and prolonged during droughts and other periods of low streamflow. For many years the Lehigh River flow has been continuously measured and its water chemically analyzed. Since May 1966 an instrument installed by the U.S. Geological Survey at Easton, Pa., has continuously recorded such water-quality parameters as specific conductance, temperature, and dissolved oxygen content.

  20. Statistical sampling of the distribution of uranium deposits using geologic/geographic clusters

    USGS Publications Warehouse

    Finch, W.I.; Grundy, W.D.; Pierson, C.T.

    1992-01-01

    The concept of geologic/geographic clusters was developed particularly to study grade and tonnage models for sandstone-type uranium deposits. A cluster is a grouping of mined as well as unmined uranium occurrences within an arbitrary area about 8 km across. A cluster is a statistical sample that will reflect accurately the distribution of uranium in large regions relative to various geologic and geographic features. The example of the Colorado Plateau Uranium Province reveals that only 3 percent of the total number of clusters is in the largest tonnage-size category, greater than 10,000 short tons U3O8, and that 80 percent of the clusters are hosted by Triassic and Jurassic rocks. The distributions of grade and tonnage for clusters in the Powder River Basin show a wide variation; the grade distribution is highly variable, reflecting a difference between roll-front deposits and concretionary deposits, and the Basin contains about half the number in the greater-than-10,000 tonnage-size class as does the Colorado Plateau, even though it is much smaller. The grade and tonnage models should prove useful in finding the richest and largest uranium deposits. ?? 1992 Oxford University Press.

Top