NASA Astrophysics Data System (ADS)
Masalaite, Agne; Garbaras, Andrius; Garbariene, Inga; Ceburnis, Darius; Martuzevicius, Dainius; Puida, Egidijus; Kvietkus, Kestutis; Remeikis, Vidmantas
2014-05-01
Biomass burning is the largest source of primary fine fraction carbonaceous particles and the second largest source of trace gases in the global atmosphere with a strong effect not only on the regional scale but also in areas distant from the source . Many studies have often assumed no significant carbon isotope fractionation occurring between black carbon and the original vegetation during combustion. However, other studies suggested that stable carbon isotope ratios of char or BC may not reliably reflect carbon isotopic signatures of the source vegetation. Overall, the apparently conflicting results throughout the literature regarding the observed fractionation suggest that combustion conditions may be responsible for the observed effects. The purpose of the present study was to gather more quantitative information on carbonaceous aerosols produced in controlled biomass burning, thereby having a potential impact on interpreting ambient atmospheric observations. Seven different biomass fuel types were burned under controlled conditions to determine the effect of the biomass type on the emitted particulate matter mass and stable carbon isotope composition of bulk and size segregated particles. Size segregated aerosol particles were collected using the total suspended particle (TSP) sampler and a micro-orifice uniform deposit impactor (MOUDI). The results demonstrated that particle emissions were dominated by the submicron particles in all biomass types. However, significant differences in emissions of submicron particles and their dominant sizes were found between different biomass fuels. The largest negative fractionation was obtained for the wood pellet fuel type while the largest positive isotopic fractionation was observed during the buckwheat shells combustion. The carbon isotope composition of MOUDI samples compared very well with isotope composition of TSP samples indicating consistency of the results. The measurements of the stable carbon isotope ratio in size segregated aerosol particles suggested that combustion processes could strongly affect isotopic fractionation in aerosol particles of different sizes thereby potentially affecting an interpretation of ambient atmospheric observations.
Structural origin of fractional Stokes-Einstein relation in glass-forming liquids
NASA Astrophysics Data System (ADS)
Pan, Shaopeng; Wu, Z. W.; Wang, W. H.; Li, M. Z.; Xu, Limei
2017-01-01
In many glass-forming liquids, fractional Stokes-Einstein relation (SER) is observed above the glass transition temperature. However, the origin of such phenomenon remains elusive. Using molecular dynamics simulations, we investigate the break- down of SER and the onset of fractional SER in a model of metallic glass-forming liquid. We find that SER breaks down when the size of the largest cluster consisting of trapped atoms starts to increase sharply at which the largest cluster spans half of the simulations box along one direction, and the fractional SER starts to follows when the largest cluster percolates the entire system and forms 3-dimentional network structures. Further analysis based on the percolation theory also confirms that percolation occurs at the onset of the fractional SER. Our results directly link the breakdown of the SER with structure inhomogeneity and onset of the fraction SER with percolation of largest clusters, thus provide a possible picture for the break- down of SER and onset of fractional SER in glass-forming liquids, which is is important for the understanding of the dynamic properties in glass-forming liquids.
Endotoxin in Size-Separated Metal Working Fluid Aerosol Particles.
Dahlman-Höglund, Anna; Lindgren, Åsa; Mattsby-Baltzer, Inger
2016-08-01
Patients with airway symptoms working in metal working industries are increasing, despite efforts to improve the environmental air surrounding the machines. Our aim was to analyse the amount of endotoxin in size-separated airborne particles of metal working fluid (MWF) aerosol, by using the personal sampler Sioutas cascade impactor, to compare filter types, and to compare the concentration of airborne endotoxin to that of the corresponding MWFs. In a pilot field study, aerosols were collected in two separate machine halls on totally 10 occasions, using glass fibre and polytetrafluoroethylene (PTFE) filters in parallel at each station. Airborne endotoxin was distributed over all size fractions. While a major part was found in the largest size fraction (72%, 2.5-10 µm), up to 8% of the airborne endotoxin was detected in the smallest size fraction (<0.25 µm). Comparing the efficiency of the filter types, a significantly higher median endotoxin level was found with glass fibres filters collecting the largest particle-size fraction (1.2-fold) and with PTFE filters collecting the smallest ones (5-fold). The levels of endotoxin in the size-separated airborne particle fractions correlated to those of the MWFs supporting the aerosol-generating machines. Our study indicates that a significant part of inhalable aerosols of MWFs consists of endotoxin-containing particles below the size of intact bacteria, and thus small enough to readily reach the deepest part of the lung. Combined with other chemical irritants of the MWF, exposure to MWF aerosols containing endotoxin pose a risk to respiratory health problems. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Tatzber, Michael; Stemmer, Michael; Spiegel, Heide; Katzlberger, Christian; Landstetter, Claudia; Haberhauer, Georg; Gerzabek, Martin H.
2012-01-01
Knowledge about the stabilization of organic matter input to soil is essential for understanding the influence of different agricultural practices on turnover characteristics in agricultural soil systems. In this study, soil samples from a long-term field experiment were separated into silt- and clay-sized particles. In 1967, 14C labeled farmyard manure was applied to three different cropping systems: crop rotation, monoculture and permanent bare fallow. Humic acids (HAs) were extracted from silt- and clay-sized fractions and characterized using photometry, mid-infrared and fluorescence spectroscopy. Remaining 14C was determined in size fractions as well as in their extracted HAs. Yields of carbon and remaining 14C in HAs from silt-sized particles and Corg in clay-sized particles decreased significantly in the order: crop rotation > monoculture ≫ bare fallow. Thus, crop rotation not only had the largest overall C-pool in the experiment, but it also best stabilized the added manure. Mid-infrared spectroscopy could distinguish between HAs from different particle size soil fractions. With spectroscopic methods significant differences between the cropping systems were detectable in fewer cases compared to quantitative results of HAs (yields, 14C, Corg and Nt). The trends, however, pointed towards increased humification of HAs from bare fallow systems compared to crop rotation and monoculture as well as of HAs from clay-sized particles compared to silt-sized particles. Our study clearly shows that the largest differences were observed between bare fallow on one hand and monoculture and crop rotation on the other. PMID:23482702
Tatzber, Michael; Stemmer, Michael; Spiegel, Heide; Katzlberger, Christian; Landstetter, Claudia; Haberhauer, Georg; Gerzabek, Martin H
2012-05-01
Knowledge about the stabilization of organic matter input to soil is essential for understanding the influence of different agricultural practices on turnover characteristics in agricultural soil systems. In this study, soil samples from a long-term field experiment were separated into silt- and clay-sized particles. In 1967, 14 C labeled farmyard manure was applied to three different cropping systems: crop rotation, monoculture and permanent bare fallow. Humic acids (HAs) were extracted from silt- and clay-sized fractions and characterized using photometry, mid-infrared and fluorescence spectroscopy. Remaining 14 C was determined in size fractions as well as in their extracted HAs. Yields of carbon and remaining 14 C in HAs from silt-sized particles and C org in clay-sized particles decreased significantly in the order: crop rotation > monoculture ≫ bare fallow. Thus, crop rotation not only had the largest overall C-pool in the experiment, but it also best stabilized the added manure. Mid-infrared spectroscopy could distinguish between HAs from different particle size soil fractions. With spectroscopic methods significant differences between the cropping systems were detectable in fewer cases compared to quantitative results of HAs (yields, 14 C, C org and N t ). The trends, however, pointed towards increased humification of HAs from bare fallow systems compared to crop rotation and monoculture as well as of HAs from clay-sized particles compared to silt-sized particles. Our study clearly shows that the largest differences were observed between bare fallow on one hand and monoculture and crop rotation on the other.
Effect of particle size distribution on 3D packings of spherical particles
NASA Astrophysics Data System (ADS)
Taiebat, Mahdi; Mutabaruka, Patrick; Pellenq, Roland; Radjai, Farhang
2017-06-01
We use molecular dynamics simulations of frictionless spherical particles to investigate a class of polydisperse granular materials in which the particle size distribution is uniform in particle volumes. The particles are assembled in a box by uniaxial compaction under the action of a constant stress. Due to the absence of friction and the nature of size distribution, the generated packings have the highest packing fraction at a given size span, defined as the ratio α of the largest size to the smallest size. We find that, up to α = 5, the packing fraction is a nearly linear function of α. While the coordination number is nearly constant due to the isostatic nature of the packings, we show that the connectivity of the particles evolves with α. In particular, the proportion of particles with 4 contacts represents the largest proportion of particles mostly of small size. We argue that this particular class of particles occurs as a result of the high stability of local configurations in which a small particle is stuck by four larger particles.
NASA Astrophysics Data System (ADS)
Yu, M.; Eglinton, T. I.; Haghipour, N.; Montluçon, D. B.; Wacker, L.; Hou, P.; Zhao, M.
2016-12-01
The transport of organic carbon (OC) by rivers to coastal oceans is an important component of the global carbon cycle. The Yellow River (YR), the second largest river in China, transports large amounts of particulate organic carbon (POC) to the Chinese marginal seas, with fossil and pre-aged (ca, 1600 yr) OC comprising the dominant components. However, the influence of hydrodynamic processes on the origin, composition and age of POC exported by the YR remains poorly understood, yet these processes likely ultimately play an important role in determining OC fate in the Chinese marginal seas. We address this question through bulk, biomarker and carbon isotopic (δ13C and Δ14C) characterization of organic matter associated with different grain size fractions of total suspended particles (TSP) in the YR. Surface TSP samples were collected in the spring, summer, fall and during the Water-Sediment Regulation period (WSR, July) of 2015. TSP samples were separated into five grain-size fractions (<8μm, 8-16μm, 16-32μm, 32-63μm and >63μm) for organic geochemical and isotope analysis. Generally, the 16-32 and 32-63μm fractions contributed most of the TSP mass and the majority of OC resided in 16-32μm fraction. TOC% decreased with increasing grain size and 14C ages exhibited significant variability, ranging from 3,335 yr (<8μm fraction in summer) to 11,120 yr (>63μm fraction in autumn), but did not show any systematic trend among grain size fractions or across sampling times. In contrast, compound-specific 14C analysis of long-chain n-fatty acids (C26-30 FAs) revealed two clear patterns: first, C26-30 FAs age decreased with increasing grain size for all sampling times; second, the C26-30 FAs age difference was the largest among the different size fractions during the WSR period, and smallest after the WSR. These findings have important implications for our understanding of riverine POC transport mechanisms and their influence on the dispersal and burial efficiency of terrestrial OC in coastal oceans.
Gaeuman, David; Andrews, E.D.; Krause, Andreas; Smith, Wes
2009-01-01
Bed load samples from four locations in the Trinity River of northern California are analyzed to evaluate the performance of the Wilcock‐Crowe bed load transport equations for predicting fractional bed load transport rates. Bed surface particles become smaller and the fraction of sand on the bed increases with distance downstream from Lewiston Dam. The dimensionless reference shear stress for the mean bed particle size (τ*rm) is largest near the dam, but varies relatively little between the more downstream locations. The relation between τ*rm and the reference shear stresses for other size fractions is constant across all locations. Total bed load transport rates predicted with the Wilcock‐Crowe equations are within a factor of 2 of sampled transport rates for 68% of all samples. The Wilcock‐Crowe equations nonetheless consistently under‐predict the transport of particles larger than 128 mm, frequently by more than an order of magnitude. Accurate prediction of the transport rates of the largest particles is important for models in which the evolution of the surface grain size distribution determines subsequent bed load transport rates. Values of τ*rm estimated from bed load samples are up to 50% larger than those predicted with the Wilcock‐Crowe equations, and sampled bed load transport approximates equal mobility across a wider range of grain sizes than is implied by the equations. Modifications to the Wilcock‐Crowe equation for determining τ*rm and the hiding function used to scale τ*rm to other grain size fractions are proposed to achieve the best fit to observed bed load transport in the Trinity River.
Simon, Nancy S.; Ingle, Sarah N.
2011-01-01
μThis study of phosphorus (P) cycling in eutrophic Upper Klamath Lake (UKL), Oregon, was conducted by the U.S. Geological Survey in cooperation with the U.S. Bureau of Reclamation. Lakebed sediments from the upper 30 centimeters (cm) of cores collected from 26 sites were characterized. Cores were sampled at 0.5, 1.5, 2.5, 3.5, 4.5, 10, 15, 20, 25, and 30 cm. Prior to freezing, water content and sediment pH were determined. After being freeze-dried, all samples were separated into greater than 63-micron (μm) particle-size (coarse) and less than 63-μm particle-size (fine) fractions. In the surface samples (0.5 to 4.5 cm below the sediment water interface), approximately three-fourths of the particles were larger than 63-μm. The ratios of the coarse particle-size fraction (>63 μm) and the fine particle-size fraction (<63 μm) were approximately equal in samples at depths greater than 10 cm below the sediment water interface. Chemical analyses included both size fractions of freeze-dried samples. Chemical analyses included determination of total concentrations of aluminum (Al), calcium (Ca), carbon (C), iron (Fe), poorly crystalline Fe, nitrogen (N), P, and titanium (Ti). Total Fe concentrations were the largest in sediment from the northern portion of UKL, Howard Bay, and the southern portion of the lake. Concentrations of total Al, Ca, and Ti were largest in sediment from the northern, central, and southernmost portions of the lake and in sediment from Howard Bay. Concentrations of total C and N were largest in sediment from the embayments and in sediment from the northern arm and southern portion of the lake in the general region of Buck Island. Concentrations of total C were larger in the greater than 63-μm particle-size fraction than in the less than 63-μm particle-size fraction. Sediments were sequentially extracted to determine concentrations of inorganic forms of P, including loosely sorbed P, P associated with poorly crystalline Fe oxides, and P associated with mineral phases. The difference between the concentration of total P and sum of the concentrations of inorganic forms of P is referred to as residual P. Residual P was the largest fraction of P in all of the sediment samples. In UKL, the correlation between concentrations of total P and total Fe in sediment is poor (R2<0.1). The correlation between the concentrations of total P and P associated with poorly crystalline Fe oxides is good (R2=0.43) in surface sediment (0.5-4.5 cm below the sediment water interface) but poor (R2<0.1) in sediments at depths between 10 cm and 30 cm. Phosphorus associated with poorly crystalline Fe oxides is considered bioavailable because it is released when sediment conditions change from oxidizing to reducing, which causes dissolution of Fe oxides.
Specific surface area of a crushed welded tuff before and after aqueous dissolution
Reddy, M.M.; Claassen, H.C.
1994-01-01
Specific surface areas were measured for several reference minerals (anorthoclase, labradorite and augite), welded tuff and stream sediments from Snowshoe Mountain, near Creede, Colorado. Crushed and sieved tuff had an unexpectedly small variation in specific surface area over a range of size fractions. Replicate surface area measurements of the largest and smallest tuff particle size fractions examined (1-0.3 mm and <0.212 mm) were 2.3 ?? 0.2 m2/g for each size fraction. Reference minerals prepared in the same way as the tuff had smaller specific surface areas than that of the tuff of the same size fraction. Higher than expected tuff specific surface areas appear to be due to porous matrix. Tuff, reacted in solutions with pH values from 2 to 6, had little change in specific surface area in comparison with unreacted tuff. Tuff, reacted with solutions having high acid concentrations (0.1 M hydrochloric acid or sulfuric-hydrofluoric acid), exhibited a marked increase in specific surface area compared to unreacted tuff. ?? 1994.
Size distribution and sorption of polychlorinated biphenyls during haze episodes
NASA Astrophysics Data System (ADS)
Zhu, Qingqing; Liu, Guorui; Zheng, Minghui; Zhang, Xian; Gao, Lirong; Su, Guijin; Liang, Yong
2018-01-01
There is a lack of studies on the size distribution of polychlorinated biphenyls (PCBs) during haze days, and their sorption mechanisms on aerosol particles remain unclear. In this study, PCBs in particle-sized aerosols from urban atmospheres of Beijing, China were investigated during haze and normal days. The concentrations, gas/particle partitioning, size distribution, and associated human daily intake of PCBs via inhalation were compared during haze days and normal days. Compared with normal days, higher particle mass-associated PCB levels were measured during haze days. The concentrations of ∑PCBs in particulate fractions were 11.9-134 pg/m3 and 6.37-14.9 pg/m3 during haze days and normal days, respectively. PCBs increased with decreasing particle size (>10 μm, 10-2.5 μm, 2.5-1.0 μm, and ≤1.0 μm). During haze days, PCBs were overwhelmingly associated with a fine particle fraction of ≤1.0 μm (64.6%), while during normal days the contribution was 33.7%. Tetra-CBs were the largest contributors (51.8%-66.7%) both in the gas and particle fractions during normal days. The profiles in the gas fraction were conspicuously different than those in the PM fractions during haze days, with di-CBs predominating in the gas fraction and higher homologues (tetra-CBs, penta-CBs, and hexa-CBs) concurrently accounting for most of the PM fractions. The mean-normalized size distributions of particulate mass and PCBs exhibited unimodal patterns, and a similar trend was observed for PCBs during both days. They all tended to be in the PM fraction of 1.0-2.5 μm. Adsorption might be the predominating mechanism for the gas-particle partitioning of PCBs during haze days, whereas absorption might be dominative during normal days.
Effect of cold drawing ratio on γ′ precipitation in Inconel X-750
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ha, Jeong Won; Research and Development Center, KOS Limited, Yangsan 626-230; Seong, Baek Seok
2014-10-15
Inconel X-750 is a Ni-based precipitation-hardened superalloy having large tensile and fracture strengths. In the study, X-750 wires were cold drawn to different extents. Small angle neutron scattering was employed to quantitatively measure the size and volume fraction of the γ′ phase as a function of the cold drawing ratio (DR) and aging temperature. The presence and size of γ′ precipitates were confirmed by transmission electron microscopy. The drawing ratio had an important effect on the volume fraction of the γ′ precipitates. However, the size of the precipitates was independent on the drawing ratio. The specimen with the minimum drawingmore » ratio (DR0) produced the largest volume fraction of γ′ as compared with large drawing ratio (DR) specimens such as DR17 and DR42. The small volume fraction of the γ′ phase for a sizeable drawing ratio was associated with the large amount of nucleation sites for secondary carbides, M{sub 23}C{sub 6}, and the fast diffusion path, i.e., dislocation, needed to form M{sub 23}C{sub 6}. A Cr depletion zone around the secondary carbides raised the solubility of γ′. Therefore, the significant drawing ratio contributing to the large volume fraction of the secondary carbides decreased the volume fraction of the γ′ precipitates in Inconel X-750. - Highlights: • The volume fraction of secondary carbides increased with the drawing ratio. • The volume fraction of γ′ decreased as the drawing ratio increased. • The drawing ratio affected the γ′ volume fraction with no variation of the γ' size. • The volume fraction of γ′ was affected by the secondary carbide volume fraction.« less
NASA Astrophysics Data System (ADS)
Banerjee, Saikat; Furtado, Jonathan; Bagchi, Biman
2014-05-01
Water-tert-butyl alcohol (TBA) binary mixture exhibits a large number of thermodynamic and dynamic anomalies. These anomalies are observed at surprisingly low TBA mole fraction, with xTBA ≈ 0.03-0.07. We demonstrate here that the origin of the anomalies lies in the local structural changes that occur due to self-aggregation of TBA molecules. We observe a percolation transition of the TBA molecules at xTBA ≈ 0.05. We note that "islands" of TBA clusters form even below this mole fraction, while a large spanning cluster emerges above that mole fraction. At this percolation threshold, we observe a lambda-type divergence in the fluctuation of the size of the largest TBA cluster, reminiscent of a critical point. Alongside, the structure of water is also perturbed, albeit weakly, by the aggregation of TBA molecules. There is a monotonic decrease in the tetrahedral order parameter of water, while the dipole moment correlation shows a weak nonlinearity. Interestingly, water molecules themselves exhibit a reverse percolation transition at higher TBA concentration, xTBA ≈ 0.45, where large spanning water clusters now break-up into small clusters. This is accompanied by significant divergence of the fluctuations in the size of largest water cluster. This second transition gives rise to another set of anomalies around. Both the percolation transitions can be regarded as manifestations of Janus effect at small molecular level.
Banerjee, Saikat; Furtado, Jonathan; Bagchi, Biman
2014-05-21
Water-tert-butyl alcohol (TBA) binary mixture exhibits a large number of thermodynamic and dynamic anomalies. These anomalies are observed at surprisingly low TBA mole fraction, with x(TBA) ≈ 0.03-0.07. We demonstrate here that the origin of the anomalies lies in the local structural changes that occur due to self-aggregation of TBA molecules. We observe a percolation transition of the TBA molecules at x(TBA) ≈ 0.05. We note that "islands" of TBA clusters form even below this mole fraction, while a large spanning cluster emerges above that mole fraction. At this percolation threshold, we observe a lambda-type divergence in the fluctuation of the size of the largest TBA cluster, reminiscent of a critical point. Alongside, the structure of water is also perturbed, albeit weakly, by the aggregation of TBA molecules. There is a monotonic decrease in the tetrahedral order parameter of water, while the dipole moment correlation shows a weak nonlinearity. Interestingly, water molecules themselves exhibit a reverse percolation transition at higher TBA concentration, x(TBA) ≈ 0.45, where large spanning water clusters now break-up into small clusters. This is accompanied by significant divergence of the fluctuations in the size of largest water cluster. This second transition gives rise to another set of anomalies around. Both the percolation transitions can be regarded as manifestations of Janus effect at small molecular level.
A common mass scaling for satellite systems of gaseous planets.
Canup, Robin M; Ward, William R
2006-06-15
The Solar System's outer planets that contain hydrogen gas all host systems of multiple moons, which notably each contain a similar fraction of their respective planet's mass (approximately 10(-4)). This mass fraction is two to three orders of magnitude smaller than that of the largest satellites of the solid planets (such as the Earth's Moon), and its common value for gas planets has been puzzling. Here we model satellite growth and loss as a forming giant planet accumulates gas and rock-ice solids from solar orbit. We find that the mass fraction of its satellite system is regulated to approximately 10(-4) by a balance of two competing processes: the supply of inflowing material to the satellites, and satellite loss through orbital decay driven by the gas. We show that the overall properties of the satellite systems of Jupiter, Saturn and Uranus arise naturally, and suggest that similar processes could limit the largest moons of extrasolar Jupiter-mass planets to Moon-to-Mars size.
Hunagund, Shivakumar G.; Harstad, Shane M.; El-Gendy, Ahmed A.; ...
2018-01-11
Gadolinium silicide (Gd 5Si 4) nanoparticles (NPs) exhibit different properties compared to their parent bulk materials due to finite size, shape, and surface effects. NPs were prepared by high energy ball-milling of the as-cast Gd 5Si 4 ingot and size separated into eight fractions using time sensitive sedimentation in an applied dc magnetic field with average particle sizes ranging from 700 nm to 82 nm. The largest Gd 5Si 4 NPs order ferromagnetically at 316 K. A second anomaly observed at 110 K can be ascribed to a Gd 5Si 3 impurity. Here as the particle sizes decrease, the volumemore » fraction of Gd 5Si 3 phase increases at the expense of the Gd 5Si 4 phase, and the ferromagnetic transition temperature of Gd 5Si 4 is reduced from 316 K to 310 K, while the ordering of the minor phase is independent of the particle size, remaining at 110 K.« less
NASA Astrophysics Data System (ADS)
Hunagund, Shivakumar G.; Harstad, Shane M.; El-Gendy, Ahmed A.; Gupta, Shalabh; Pecharsky, Vitalij K.; Hadimani, Ravi L.
2018-05-01
Gadolinium silicide (Gd5Si4) nanoparticles (NPs) exhibit different properties compared to their parent bulk materials due to finite size, shape, and surface effects. NPs were prepared by high energy ball-milling of the as-cast Gd5Si4 ingot and size separated into eight fractions using time sensitive sedimentation in an applied dc magnetic field with average particle sizes ranging from 700 nm to 82 nm. The largest Gd5Si4 NPs order ferromagnetically at 316 K. A second anomaly observed at 110 K can be ascribed to a Gd5Si3 impurity. As the particle sizes decrease, the volume fraction of Gd5Si3 phase increases at the expense of the Gd5Si4 phase, and the ferromagnetic transition temperature of Gd5Si4 is reduced from 316 K to 310 K, while the ordering of the minor phase is independent of the particle size, remaining at 110 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunagund, Shivakumar G.; Harstad, Shane M.; El-Gendy, Ahmed A.
Gadolinium silicide (Gd 5Si 4) nanoparticles (NPs) exhibit different properties compared to their parent bulk materials due to finite size, shape, and surface effects. NPs were prepared by high energy ball-milling of the as-cast Gd 5Si 4 ingot and size separated into eight fractions using time sensitive sedimentation in an applied dc magnetic field with average particle sizes ranging from 700 nm to 82 nm. The largest Gd 5Si 4 NPs order ferromagnetically at 316 K. A second anomaly observed at 110 K can be ascribed to a Gd 5Si 3 impurity. Here as the particle sizes decrease, the volumemore » fraction of Gd 5Si 3 phase increases at the expense of the Gd 5Si 4 phase, and the ferromagnetic transition temperature of Gd 5Si 4 is reduced from 316 K to 310 K, while the ordering of the minor phase is independent of the particle size, remaining at 110 K.« less
Li, Baozhen; Ge, Tida; Xiao, Heai; Zhu, Zhenke; Li, Yong; Shibistova, Olga; Liu, Shoulong; Wu, Jinshui; Inubushi, Kazuyuki; Guggenberger, Georg
2016-04-01
Red soils are the major land resource in subtropical and tropical areas and are characterized by low phosphorus (P) availability. To assess the availability of P for plants and the potential stability of P in soil, two pairs of subtropical red soil samples from a paddy field and an adjacent uncultivated upland were collected from Hunan Province, China. Analysis of total P and Olsen P and sequential extraction was used to determine the inorganic and organic P fractions in different aggregate size classes. Our results showed that the soil under paddy cultivation had lower proportions of small aggregates and higher proportions of large aggregates than those from the uncultivated upland soil. The portion of >2-mm-sized aggregates increased by 31 and 20 % at Taoyuan and Guiyang, respectively. The total P and Olsen P contents were 50-150 and 50-300 % higher, respectively, in the paddy soil than those in the upland soil. Higher inorganic and organic P fractions tended to be enriched in both the smallest and largest aggregate size classes compared to the middle size class (0.02-0.2 mm). Furthermore, the proportion of P fractions was higher in smaller aggregate sizes (<2 mm) than in the higher aggregate sizes (>2 mm). In conclusion, soils under paddy cultivation displayed improved soil aggregate structure, altered distribution patterns of P fractions in different aggregate size classes, and to some extent had enhanced labile P pools.
Annual cycle of size-resolved organic aerosol characterization in an urbanized desert environment
NASA Astrophysics Data System (ADS)
Cahill, Thomas M.
2013-06-01
Studies of size-resolved organic speciation of aerosols are still relatively rare and are generally only conducted over short durations. However, size-resolved organic data can both suggest possible sources of the aerosols and identify the human exposure to the chemicals since different aerosol sizes have different lung capture efficiencies. The objective of this study was to conduct size-resolved organic aerosol speciation for a calendar year in Phoenix, Arizona to determine the seasonal variations in both chemical concentrations and size profiles. The results showed large seasonal differences in combustion pollutants where the highest concentrations were observed in winter. Summertime aerosols have a greater proportion of biological compounds (e.g. sugars and fatty acids) and the biological compounds represent the largest fraction of the organic compounds detected. These results suggest that standard organic carbon (OC) measurements might be heavily influenced by primary biological compounds particularly if the samples are PM10 and TSP samples. Several large dust storms did not significantly alter the organic aerosol profile since Phoenix resides in a dusty desert environment, so the soil and plant tracer of trehalose was almost always present. The aerosol size profiles showed that PAHs were generally most abundant in the smallest aerosol size fractions, which are most likely to be captured by the lung, while the biological compounds were almost exclusively found in the coarse size fraction.
Electrostatic Beneficiation of Lunar Simulant
NASA Technical Reports Server (NTRS)
Trigwell, Steve; Captain, James; Captain, Janine; Arens, Ellen; Quinn, Jacqueline; Calle, Carlos
2006-01-01
Electrostatic beneficiation of lunar regolith is a method allowing refinement of specific minerals in the material for processing on the moon. The use of tribocharging the regolith prior to separation was investigated on the lunar simulant MLS-I by passing the dust through static mixers constructed from different materials; aluminum, copper, stainless steel, and polytetrafluoroethylene (PTFE). The amount of charge acquired by the simulant was dependent upon the difference in the work function of the dust and the charging material. XPS and SEM were used to characterize the simulant after it was sieved into five size fractions (> 100 pm, 75-100 pm, 50- 75 pm, 50-25 pm, and < 25 pm), where very little difference in surface composition was observed between the sizes. Samples of the smallest (< 25 pm) and largest (> 100 pm) size fractions were beneficiated through a charge separator using the aluminum (charged the simulant negatively) and PTFE (charged positively) mixers. The mass fractions of the separated simulant revealed that for the larger particle size, significant unipolar charging was observed for both mixers, whereas for the smaller particle sizes, more bipolar charging was observed, probably due to the finer simulant adhering to the inside of the mixers shielding the dust from the charging material. Subsequent XPS analysis of the beneficiated fractions showed the larger particle size fraction having some species differentiation, but very little difference for the smaller.size. Although MLS-1 was made to have similar chemistry to actual lunar dust, its mineralogy is quite different. On-going experiments are using NASA JSC-1 lunar simulant. A vacuum chamber has been constructed, and future experiments are planned in a simulated lunar environment.
Grassberger, Clemens; Dowdell, Stephen; Lomax, Antony; Sharp, Greg; Shackleford, James; Choi, Noah; Willers, Henning; Paganetti, Harald
2013-01-01
Purpose Quantify the impact of respiratory motion on the treatment of lung tumors with spot scanning proton therapy. Methods and Materials 4D Monte Carlo simulations were used to assess the interplay effect, which results from relative motion of the tumor and the proton beam, on the dose distribution in the patient. Ten patients with varying tumor sizes (2.6-82.3cc) and motion amplitudes (3-30mm) were included in the study. We investigated the impact of the spot size, which varies between proton facilities, and studied single fractions and conventionally fractionated treatments. The following metrics were used in the analysis: minimum/maximum/mean dose, target dose homogeneity and 2-year local control rate (2y-LC). Results Respiratory motion reduces the target dose homogeneity, with the largest effects observed for the highest motion amplitudes. Smaller spot sizes (σ≈3mm) are inherently more sensitive to motion, decreasing target dose homogeneity on average by a factor ~2.8 compared to a larger spot size (σ≈13mm). Using a smaller spot size to treat a tumor with 30mm motion amplitude reduces the minimum dose to 44.7% of the prescribed dose, decreasing modeled 2y-LC from 87.0% to 2.7%, assuming a single fraction. Conventional fractionation partly mitigates this reduction, yielding a 2y-LC of 71.6%. For the large spot size, conventional fractionation increases target dose homogeneity and prevents a deterioration of 2y-LC for all patients. No correlation with tumor volume is observed. The effect on the normal lung dose distribution is minimal: observed changes in mean lung dose and lung V20 are <0.6Gy(RBE) and <1.7% respectively. Conclusions For the patients in this study, 2y-LC could be preserved in the presence of interplay using a large spot size and conventional fractionation. For treatments employing smaller spot sizes and/or in the delivery of single fractions, interplay effects can lead to significant deterioration of the dose distribution and lower 2y-LC. PMID:23462423
Topinka, Jan; Milcova, Alena; Schmuczerova, Jana; Krouzek, Jiri; Hovorka, Jan
2013-06-14
Some studies suggest that genotoxic effects of combustion-related aerosols are induced by carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) and their derivatives, which are part of the organic fraction of the particulate matter (PM) in ambient air. The proportion of the organic fraction in PM is known to vary with particle size. The ultrafine fraction is hypothesized to be the most important carrier of c-PAHs, since it possesses the highest specific surface area of PM. To test this hypothesis, the distribution of c-PAHs in organic extracts (EOMs) was compared for four size fractions of ambient-air aerosols: coarse (1
Niinemets, Ülo; Portsmuth, Angelika; Tena, David; Tobias, Mari; Matesanz, Silvia; Valladares, Fernando
2007-01-01
Background Broad scaling relationships between leaf size and function do not take into account that leaves of different size may contain different fractions of support in petiole and mid-rib. Methods The fractions of leaf biomass in petiole, mid-rib and lamina, and the differences in chemistry and structure among mid-ribs, petioles and laminas were investigated in 122 species of contrasting leaf size, life form and climatic distribution to determine the extent to which differences in support modify whole-lamina and whole-leaf structural and chemical characteristics, and the extent to which size-dependent support investments are affected by plant life form and site climate. Key Results For the entire data set, leaf fresh mass varied over five orders of magnitude. The percentage of dry mass in mid-rib increased strongly with lamina size, reaching more than 40 % in the largest laminas. The whole-leaf percentage of mid-rib and petiole increased with leaf size, and the overall support investment was more than 60 % in the largest leaves. Fractional support investments were generally larger in herbaceous than in woody species and tended to be lower in Mediterranean than in cool temperate and tropical plants. Mid-ribs and petioles had lower N and C percentages, and lower dry to fresh mass ratio, but greater density (mass per unit volume) than laminas. N percentage of lamina without mid-rib was up to 40 % higher in the largest leaves than the total-lamina (lamina and mid-rib) N percentage, and up to 60 % higher than whole-leaf N percentage, while lamina density calculated without mid-rib was up to 80 % less than that with the mid-rib. For all leaf compartments, N percentage was negatively associated with density and dry to fresh mass ratio, while C percentage was positively linked to these characteristics, reflecting the overall inverse scaling between structural and physiological characteristics. However, the correlations between N and C percentages and structural characteristics differed among mid-ribs, petioles and laminas, implying that the mass-weighted average leaf N and C percentage, density, and dry to fresh mass ratio can have different functional values depending on the importance of within-leaf support investments. Conclusions These data demonstrate that variation in leaf size is associated with major changes in within-leaf support investments and in large modifications in integrated leaf chemical and structural characteristics. These size-dependent alterations can importantly affect general leaf structure vs. function scaling relationships. These data further demonstrate important life-form effects on and climatic differentiation in foliage support costs. PMID:17586597
Flow and fouling in membrane filters: Effects of membrane morphology
NASA Astrophysics Data System (ADS)
Sanaei, Pejman; Cummings, Linda J.
2015-11-01
Membrane filters are widely-used in microfiltration applications. Many types of filter membranes are produced commercially, for different filtration applications, but broadly speaking the requirements are to achieve fine control of separation, with low power consumption. The answer to this problem might seem obvious: select the membrane with the largest pore size and void fraction consistent with the separation requirements. However, membrane fouling (an inevitable consequence of successful filtration) is a complicated process, which depends on many parameters other than membrane pore size and void fraction; and which itself greatly affects the filtration process and membrane functionality. In this work we formulate mathematical models that can (i) account for the membrane internal morphology (internal structure, pore size & shape, etc.); (ii) fouling of membranes with specific morphology; and (iii) make some predictions as to what type of membrane morphology might offer optimum filtration performance.
Duret, Manon T; Pachiadaki, Maria G; Stewart, Frank J; Sarode, Neha; Christaki, Urania; Monchy, Sébastien; Srivastava, Ankita; Edgcomb, Virginia P
2015-05-01
Oxygen minimum zones (OMZs) caused by water column stratification appear to expand in parts of the world's ocean, with consequences for marine biogeochemical cycles. OMZ formation is often fueled by high surface primary production, and sinking organic particles can be hotspots of interactions and activity within microbial communities. This study investigated the diversity of OMZ protist communities in two biomass size fractions (>30 and 30-1.6 μm filters) from the world's largest permanent OMZ in the Eastern Tropical North Pacific. Diversity was quantified via Illumina MiSeq sequencing of V4 region of 18S SSU rRNA genes in samples spanning oxygen gradients at two stations. Alveolata and Rhizaria dominated the two size fractions at both sites along the oxygen gradient. Community composition at finer taxonomic levels was partially shaped by oxygen concentration, as communities associated with versus anoxic waters shared only ∼32% of operational taxonomic unit (OTU) (97% sequence identity) composition. Overall, only 9.7% of total OTUs were recovered at both stations and under all oxygen conditions sampled, implying structuring of the eukaryotic community in this area. Size-fractionated communities exhibited different taxonomical features (e.g. Syndiniales Group I in the 1.6-30 μm fraction) that could be explained by the microniches created on the surface-originated sinking particles. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Fourier transform infrared analysis of aerosol formed in the photooxidation of 1-octene
NASA Astrophysics Data System (ADS)
Palen, Edward J.; Allen, David T.; Pandis, Spyros N.; Paulson, Suzanne; Seinfeld, John H.; Flagan, Richard C.
The chemical composition of aerosol generated in the photooxidation of 1-octene was examined using infrared microscopy interfaced with a low pressure impactor. The low pressure impactor segregated the aerosol into eight size fractions and deposited the aerosol onto ZnSe impaction substrates. The ZnSe surfaces were transparent in the mid-infrared region and therefore allowed direct analysis of the aerosol, with no extraction, using infrared microscopy. Infrared spectra of the size segregated aerosol showed strong absorbances due to ketone, alcohol, carboxylic acid and organonitrate functional groups. Absorbance features were relatively independent of particle size, with the exception of the carboxylic acid absorbances, which were found only in the largest aerosol size fractions. Molar loadings for each of the groups were estimated, based on model compound calibration standards. The molar loadings indicate that most aerosol species are multifunctional, with an average of one ketone group per molecule, an alcohol group in two of every three molecules and an organonitrate group in one of every three molecules.
Harnish, R.A.; McKnight, Diane M.; Ranville, James F.
1994-01-01
In November 1991, the initial phase of a study to determine the dominant aqueous phases that control the transport of plutonium (Pu), americium (Am), and uranium (U) in surface and groundwater at the Rocky Flats Plant was undertaken by the U.S. Geological Survey. By use of the techniques of stirred-cell spiral-flow filtration and crossflow ultrafiltration, particles of three size fractions were collected from a 60-liter sample of water from well 1587 at the Rocky Flats Plant. These samples and corresponding filtrate samples were analyzed for Pu and Am. As calculated from the analysis of filtrates, 65 percent of Pu 239 and 240 activity in the sample was associated with particulate and largest colloidal size fractions. Particulate (22 percent) and colloidal (43 percent) fractions were determined to have significant activities in relation to whole-water Pu activity. Am and Pu 238 activities were too low to be analyzed. Examination and analyses of the particulate and colloidal phases indicated the presence of mineral species (iron oxyhydroxides and clay minerals) and natural organic matter that can facilitate the transport of actinides in ground water. High concentrations of the transition metals copper and zinc in the smallest colloid fractions strongly indicate a potential for organic complexation of metals, and potentially of actinides, in this size fraction.
Coupled CFD-PBE Predictions of Renal Stone Size Distributions in the Nephron in Microgravity
NASA Technical Reports Server (NTRS)
Kassemi, Mohammad; Griffin, Elise; Thompson, David
2016-01-01
In this paper, a deterministic model is developed to assess the risk of critical renal stone formation for astronauts during space travel. A Population Balance Equation (PBE) model is used to compute the size distribution of a population of nucleating, growing and agglomerating renal calculi as they are transported through different sections of the nephron. The PBE model is coupled to a Computational Fluid Dynamics (CFD) model that solves for steady state flow of urine and transport of renal calculi along with the concentrations of ionic species, calcium and oxalate, in the nephron using an Eulerian two-phase mathematical framework. Parametric simulation are performed to study stone size enhancement and steady state volume fraction distributions in the four main sections of the nephron under weightlessness conditions. Contribution of agglomeration to the stone size distribution and effect of wall friction on the stone volume fraction distributions are carefully examined. Case studies using measured astronaut urinary calcium and oxalate concentrations in microgravity as input indicate that under nominal conditions the largest stone sizes developed in Space will be still considerably below the critical range for problematic stone development. However, results also indicate that the highest stone volume fraction occurs next to the tubule and duct walls. This suggests that there is an increased potential for wall adhesion with the possibility of evolution towards critical stone sizes.
THE DENSITY OF MID-SIZED KUIPER BELT OBJECT 2002 UX25 AND THE FORMATION OF THE DWARF PLANETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, M. E., E-mail: mbrown@caltech.edu
The formation of the largest objects in the Kuiper belt, with measured densities of ∼1.5 g cm{sup –3} and higher, from the coagulation of small bodies, with measured densities below 1 g cm{sup –3}, is difficult to explain without invoking significant porosity in the smallest objects. If such porosity does occur, measured densities should begin to increase at the size at which significant porosity is no longer supported. Among the asteroids, this transition occurs for diameters larger than ∼350 km. In the Kuiper belt, no density measurements have been made between ∼350 km and ∼850 km, the diameter range where porosities might first begin tomore » drop. Objects in this range could provide key tests of the rock fraction of small Kuiper belt objects (KBOs). Here we report the orbital characterization, mass, and density determination of the 2002 UX25 system in the Kuiper belt. For this object, with a diameter of ∼650 km, we find a density of 0.82 ± 0.11 g cm{sup –3}, making it the largest solid known object in the solar system with a measured density below that of pure water ice. We argue that the porosity of this object is unlikely to be above ∼20%, suggesting a low rock fraction. If the currently measured densities of KBOs are a fair representation of the sample as a whole, creating ∼1000 km and larger KBOs with rock mass fractions of 70% and higher from coagulation of small objects with rock fractions as low as those inferred from 2002 UX25 is difficult.« less
NASA Astrophysics Data System (ADS)
Scotti, A.; Gasser, U.; Herman, E. S.; Han, Jun; Menzel, A.; Lyon, L. A.; Fernandez-Nieves, A.
2017-09-01
We investigate the phase behavior of suspensions of poly(N -isopropylacrylamide) (pNIPAM) microgels with either bimodal or polydisperse size distribution. We observe a shift of the fluid-crystal transition to higher concentrations depending on the polydispersity or the fraction of large particles in suspension. Crystallization is observed up to polydispersities as high as 18.5%, and up to a number fraction of large particles of 29% in bidisperse suspensions. The crystal structure is random hexagonal close-packed as in monodisperse pNIPAM microgel suspensions. We explain our experimental results by considering the effect of bound counterions. Above a critical particle concentration, these cause deswelling of the largest microgels, which are the softest, changing the size distribution of the suspension and enabling crystal formation in conditions where incompressible particles would not crystallize.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelenyuk, Alla; Wilson, Jacqueline; Imre, Dan
This study presents detailed characterization of the chemical and physical properties of PM emitted by a 2.0L BMW lean-burn turbocharged GDI engine operated under a number of combustion strategies that include lean homogeneous, lean stratified, stoichiometric, and fuel rich conditions. We characterized PM number concentrations, size distributions, and the size, mass, compositions, and effective density of fractal and compact individual exhaust particles. For the fractal particles, these measurements yielded fractal dimension, average diameter of primary spherules, and number of spherules, void fraction, and dynamic shape factors as function of particle size. Overall, the PM properties were shown to vary significantlymore » with engine operation condition. Lean stratified operation yielded the most diesel-like size distribution and the largest PM number and mass concentrations, with nearly all particles being fractal agglomerates composed of elemental carbon with small amounts of ash and organics. In contrast, stoichiometric operation yielded a larger fraction of ash particles, especially at low speed and low load. Three distinct forms of ash particles were observed, with their fractions strongly dependent on engine operating conditions: sub-50 nm ash particles, abundant at low speed and low load, ash-containing fractal particles, and large compact ash particles that significantly contribute to PM mass loadings« less
Effects of epidemic threshold definition on disease spread statistics
NASA Astrophysics Data System (ADS)
Lagorio, C.; Migueles, M. V.; Braunstein, L. A.; López, E.; Macri, P. A.
2009-03-01
We study the statistical properties of SIR epidemics in random networks, when an epidemic is defined as only those SIR propagations that reach or exceed a minimum size sc. Using percolation theory to calculate the average fractional size
Leenheer, Jerry A.; Rostad, Colleen E.
2004-01-01
Organic matter in wastewater sampled from a swine waste-retention basin in Iowa was fractionated into 14 fractions on the basis of size (particulate, colloid, and dissolved); volatility; polarity (hydrophobic, transphilic, hydrophilic); acid, base, neutral characteristics; and precipitate or flocculates (floc) formation upon acidification. The compound-class composition of each of these fractions was determined by infrared and 13C-NMR spectral analyses. Volatile acids were the largest fraction with acetic acid being the major component of this fraction. The second most abundant fraction was fine particulate organic matter that consisted of bacterial cells that were subfractionated into extractable lipids consisting of straight chain fatty acids, peptidoglycans components of bacterial cell walls, and protein globulin components of cellular plasma. The large lipid content of the particulate fraction indicates that non-polar contaminants, such as certain pharmaceuticals added to swine feed, likely associate with the particulate fraction through partitioning interactions. Hydrocinnamic acid is a major component of the hydrophobic acid fraction, and its presence is an indication of anaerobic degradation of lignin originally present in swine feed. This is the first study to combine particulate organic matter with dissolved organic matter fractionation into a total organic matter fractionation and characterization.
Do one percent of the forest fires cause ninety-nine percent of the damage? Forest Science
David Strauss; Larry Bednar; Romain Mees
1989-01-01
A relatively small number of forest fires are responsible for a very high proportion of the total damage. The proportion due to the fraction p of largest fires, when plotted against p, is a measure of variability of fire sizes that is especially sensitive to the important extreme events. We find the theoretical form of the plot for several commonly used distributions...
Masking potency and whiteness of noise at various noise check sizes.
Kukkonen, H; Rovamo, J; Näsänen, R
1995-02-01
The masking effect of spatial noise can be increased by increasing either the rms contrast or check size of noise. In this study, the authors investigated the largest noise check size that still mimics the effect of white noise in grating detection and how it depends on the bandwidth and spatial frequency of a grating. The authors measured contrast energy thresholds, E, for vertical cosine gratings at various spatial frequencies and bandwidths. Gratings were embedded in two-dimensional spatial noise. The side length of the square noise checks was varied in the experiments. The spectral density, N(0,0), of white spatial noise at zero frequency was calculated by multiplying the noise check area by the rms contrast of noise squared. The physical signal-to-noise ratio at threshold [E/N(0,0)]0.5 was initially constant but then started to decrease. The largest noise check that still produced a constant physical signal-to-noise ratio at threshold was directly proportional to the spatial frequency. When expressed as a fraction of grating cycle, the largest noise check size depended only on stimulus bandwidth. The smallest number of noise checks per grating cycle needed to mimic the effect of white noise decreased from 4.2 to 2.6 when the number of grating cycles increased from 1 to 64. Spatial noise can be regarded as white in grating detection if there are at least four square noise checks per grating cycle at all spatial frequencies.
Kelly, Laura J; Renny-Byfield, Simon; Pellicer, Jaume; Macas, Jiří; Novák, Petr; Neumann, Pavel; Lysak, Martin A; Day, Peter D; Berger, Madeleine; Fay, Michael F; Nichols, Richard A; Leitch, Andrew R; Leitch, Ilia J
2015-10-01
Plants exhibit an extraordinary range of genome sizes, varying by > 2000-fold between the smallest and largest recorded values. In the absence of polyploidy, changes in the amount of repetitive DNA (transposable elements and tandem repeats) are primarily responsible for genome size differences between species. However, there is ongoing debate regarding the relative importance of amplification of repetitive DNA versus its deletion in governing genome size. Using data from 454 sequencing, we analysed the most repetitive fraction of some of the largest known genomes for diploid plant species, from members of Fritillaria. We revealed that genomic expansion has not resulted from the recent massive amplification of just a handful of repeat families, as shown in species with smaller genomes. Instead, the bulk of these immense genomes is composed of highly heterogeneous, relatively low-abundance repeat-derived DNA, supporting a scenario where amplified repeats continually accumulate due to infrequent DNA removal. Our results indicate that a lack of deletion and low turnover of repetitive DNA are major contributors to the evolution of extremely large genomes and show that their size cannot simply be accounted for by the activity of a small number of high-abundance repeat families. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Poorter, Hendrik; Jagodzinski, Andrzej M; Ruiz-Peinado, Ricardo; Kuyah, Shem; Luo, Yunjian; Oleksyn, Jacek; Usoltsev, Vladimir A; Buckley, Thomas N; Reich, Peter B; Sack, Lawren
2015-11-01
We compiled a global database for leaf, stem and root biomass representing c. 11 000 records for c. 1200 herbaceous and woody species grown under either controlled or field conditions. We used this data set to analyse allometric relationships and fractional biomass distribution to leaves, stems and roots. We tested whether allometric scaling exponents are generally constant across plant sizes as predicted by metabolic scaling theory, or whether instead they change dynamically with plant size. We also quantified interspecific variation in biomass distribution among plant families and functional groups. Across all species combined, leaf vs stem and leaf vs root scaling exponents decreased from c. 1.00 for small plants to c. 0.60 for the largest trees considered. Evergreens had substantially higher leaf mass fractions (LMFs) than deciduous species, whereas graminoids maintained higher root mass fractions (RMFs) than eudicotyledonous herbs. These patterns do not support the hypothesis of fixed allometric exponents. Rather, continuous shifts in allometric exponents with plant size during ontogeny and evolution are the norm. Across seed plants, variation in biomass distribution among species is related more to function than phylogeny. We propose that the higher LMF of evergreens at least partly compensates for their relatively low leaf area : leaf mass ratio. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Grain size of loess and paleosol samples: what are we measuring?
NASA Astrophysics Data System (ADS)
Varga, György; Kovács, János; Szalai, Zoltán; Újvári, Gábor
2017-04-01
Particle size falling into a particularly narrow range is among the most important properties of windblown mineral dust deposits. Therefore, various aspects of aeolian sedimentation and post-depositional alterations can be reconstructed only from precise grain size data. Present study is aimed at (1) reviewing grain size data obtained from different measurements, (2) discussing the major reasons for disagreements between data obtained by frequently applied particle sizing techniques, and (3) assesses the importance of particle shape in particle sizing. Grain size data of terrestrial aeolian dust deposits (loess and paleosoil) were determined by laser scattering instruments (Fritsch Analysette 22 Microtec Plus, Horiba Partica La-950 v2 and Malvern Mastersizer 3000 with a Hydro Lv unit), while particles size and shape distributions were acquired by Malvern Morphologi G3-ID. Laser scattering results reveal that the optical parameter settings of the measurements have significant effects on the grain size distributions, especially for the fine-grained fractions (<5 µm). Significant differences between the Mie and Fraunhofer approaches were found for the finest grain size fractions, while only slight discrepancies were observed for the medium to coarse silt fractions. It should be noted that the different instruments provided different grain size distributions even with the exactly same optical settings. Image analysis-based grain size data indicated underestimation of clay and fine silt fractions compared to laser measurements. The measured circle-equivalent diameter of image analysis is calculated from the acquired two-dimensional image of the particle. It is assumed that the instantaneous pulse of compressed air disperse the sedimentary particles onto the glass slide with a consistent orientation with their largest area facing to the camera. However, this is only one outcome of infinite possible projections of a three-dimensional object and it cannot be regarded as a representative one. The third (height) dimension of the particles remains unknown, so the volume-based weightings are fairly dubious in the case of platy particles. Support of the National Research, Development and Innovation Office (Hungary) under contract NKFI 120620 is gratefully acknowledged. It was additionally supported (for G. Varga) by the Bolyai János Research Scholarship of the Hungarian Academy of Sciences.
Subramanian, V; Madhavan, N; Saxena, Rajinder; Lundin, Lars-Christer
2003-06-01
Suspended Particulate Matter (SPM), surface (bed sediments) and short length cores of sediments collected from the largest tributary of the river Ganges, namely the river Yamuna, were analysed for total mercury as well as its fractionation in various size and chemical sites in the sediments following standard procedures. Also, attempts were made to determine the vertical distribution in sediments in relation to the recent timescale of a few decades. Our observations indicate that the SPM in general showed higher levels of total mercury compared to the surface sediments while at places the enhancement could be by a factor of 10, say around 25 microg g(-1) in the downstream region that integrates the industrial midstream and agricultural downstream terrain near its confluence with the Ganges. Surface sediments in the upstream direction near the Himalayan foothills and SPM in the lower reaches showed significant high Index of Geoaccumulation (Igeo) as defined by Müller. Size fractionation studies indicate that the finer fraction preferentially showed higher levels of mercury while in the lower reaches of the river, the total mercury is equitably distributed among all size fractions. The proportion of the residual fraction of mercury in relation to mobile fractions, in general decreases downstream towards its confluence with the Ganges river. In sediment cores, the vertical distribution show systematic peaks of mercury indicating that addition of this toxic metal to the aquatic system is in direct proportion to the increase in various types of human activities such as thermal power plants, land use changes (urbanisation) in the midstream region and intensive fertiliser application in lower reaches of this vast river basin.
Richey, Julie N.; Poore, Richard Z.; Flower, Benjamin P.; Hollander, David J.
2012-01-01
We evaluate the relationship between foraminiferal test size and shell geochemistry (δ13C, δ18O, and Mg/Ca) for two of the most commonly used planktonic foraminifers for paleoceanographic reconstruction in the subtropical Atlantic Ocean: the pink and white varieties of Globigerinoides ruber. Geochemical analyses were performed on foraminifera from modern core-top samples of high-accumulation rate basins in the northern Gulf of Mexico. Mg/Ca analysis indicates a positive relationship with test size, increasing by 1.1 mmol/mol (~ 2.5 °C) from the smallest (150–212 μm) to largest (> 500 μm) size fractions of G. ruber (pink), but with no significant relationship in G. ruber (white). In comparison, oxygen isotope data indicate a negative relationship with test size, decreasing by 0.6‰ across the size range of both pink and white G. ruber. The observed increase in Mg/Ca and decrease in δ18O are consistent with an increase in calcification temperature of 0.7 °C per 100 μm increase in test size, suggesting differences in the seasonal and/or depth distribution among size fractions. Overall, these results stress the necessity for using a consistent size fraction in downcore paleoceanographic studies. In addition, we compare downcore records of δ18O and Mg/Ca from pink and white G. ruber in a decadal-resolution 1000-year sedimentary record from the Pigmy Basin. Based on this comparison we conclude that pink G. ruber is calcifying in warmer waters than co-occurring white G. ruber, suggesting differences in the relative seasonal distribution and depth habitat of the two varieties.
NASA Astrophysics Data System (ADS)
Bayon, G.; Delvigne, C.; Ponzevera, E.; Borges, A. V.; Darchambeau, F.; De Deckker, P.; Lambert, T.; Monin, L.; Toucanne, S.; André, L.
2018-05-01
The δ30Si stable isotopic composition of silicon in soils and fine-grained sediments can provide insights into weathering processes on continents, with important implications on the Si budget of modern and past oceans. To further constrain the factors controlling the distribution of Si isotopes in sediments, we have analysed a large number (n = 50) of separate size-fractions of sediments and suspended particulate materials collected near the mouth of rivers worldwide. This includes some of the world's largest rivers (e.g. Amazon, Congo, Mackenzie, Mississippi, Murray-Darling, Nile, Yangtze) and rivers from the case study areas of the Congo River Basin and Northern Ireland. Silt-size fractions exhibit a mean Si isotopic composition (δ30Si = -0.21 ± 0.19‰; 2 s.d.) similar to that previously inferred for the upper continental crust. In contrast, clay-size fractions display a much larger range of δ30Si values from -0.11‰ to -2.16‰, which yield a global δ30Siclay of -0.57 ± 0.60‰ (2 s.d.) representative of the mean composition of the average weathered continental crust. Overall, these new data show that the Si isotopic signature transported by river clays is controlled by the degree of chemical weathering, as inferred from strong relationships with Al/Si ratios. At a global scale, the clay-bound Si isotopic composition of the world's largest river systems demonstrates a link with climate, defining a general correlation with mean annual temperature (MAT) in corresponding drainage basins. While the distribution of Si isotopes in river sediments also appears to be influenced by the tectonic setting, lithological effects and sediment recycling from former sedimentary cycles, our results pave the way for their use as paleo-weathering and paleo-climate proxies in the sedimentary record.
NASA Astrophysics Data System (ADS)
Stoliker, D.; Liu, C.; Kent, D. B.; Zachara, J. M.
2012-12-01
The aquifer below the 300-Area of the Hanford site (Richland, WA, USA) is plagued by a persistent plume of dissolved uranium (U(VI)) in excess of the Environmental Protection Agency drinking water maximum contamination level even after the removal of highly contaminated sediments. The aquifer sediments in the seasonally saturated lower vadose zone act as both a source and sink for uranium during stage changes in the nearby Columbia River. Diffusion limitation of uranium mass-transfer within these sediments has been cited as a potential cause of the plume's persistence. Equilibrium U(VI) sorption is a strong function of variable chemical conditions, especially carbonate, hydrogen, and uranyl ion activities. Field-contaminated sediments from the site require up to 1,000 hours to reach equilibrium in static batch reactors. Increases in U(VI) concentrations over longer time-scales result from changes in chemical conditions, which drive reactions with sediments that favor U(VI) desorption. Grain-scale U(VI) sorption/desorption rates are slow, likely owing to diffusion of U(VI) and other solutes through intra-granular pore domains. In order to improve understanding of the impact of intra-granular diffusion and chemical reactions controlling grain-scale U(VI) release, experiments were conducted on individual particle size fractions of a <8 mm composite of field-contaminated, lower vadose zone sediments. For each size fraction, equilibrium U(VI) sorption/desorption in static batch reactors was well-described by surface complexation models over a range of chemical conditions applicable to the field site. Desorption rates from individual size fractions in flow-through batch reactors, examined under a single set of constant chemical conditions with multiple stop-flow events, were similar for all size fractions <2 mm. Kinetic U(VI) desorption in flow-through batch reactors was modeled using a multi-rate surface complexation approach, where sorption/desorption rates were assumed to be proportional to the displacement from equilibrium and multiple diffusion domains were described with a two-parameter lognormal distribution of mass-transfer rate coefficients. Parameters describing mass transfer were the same for all size fractions <2 mm but differed for the largest (2-8 mm) size fraction. The evolution of pH, along with dissolved cation and carbonate concentrations, was modeled using equilibrium cation exchange, rate-limited calcite dissolution, aerobic respiration, and silica dissolution. Desorption and chemical reaction models calibrated with individual size fractions predicted U(VI) and chemical composition as a function of time for the bulk sediment sample. Volumes of pores less than 2.4 nm, quantified using nitrogen adsorption-desorption isotherms, were the same for all size fractions < 2 mm, nearly double that of the 2-8 mm size fraction. Similarity in the observed pore volumes and multi-rate mass-transfer parameters across all size fractions <2 mm suggest the importance of pores in this size class in controlling slow grain-scale U(VI) desorption rates. Models like these provide a means for testing the influence of grain-scale mass-transfer on the persistence of U(VI) plume at the site.
Percolation of disordered jammed sphere packings
NASA Astrophysics Data System (ADS)
Ziff, Robert M.; Torquato, Salvatore
2017-02-01
We determine the site and bond percolation thresholds for a system of disordered jammed sphere packings in the maximally random jammed state, generated by the Torquato-Jiao algorithm. For the site threshold, which gives the fraction of conducting versus non-conducting spheres necessary for percolation, we find {{p}\\text{c}}=0.3116(3) , consistent with the 1979 value of Powell 0.310(5) and identical within errors to the threshold for the simple-cubic lattice, 0.311 608, which shares the same average coordination number of 6. In terms of the volume fraction ϕ, the threshold corresponds to a critical value {φ\\text{c}}=0.199 . For the bond threshold, which apparently was not measured before, we find {{p}\\text{c}}=0.2424(3) . To find these thresholds, we considered two shape-dependent universal ratios involving the size of the largest cluster, fluctuations in that size, and the second moment of the size distribution; we confirmed the ratios’ universality by also studying the simple-cubic lattice with a similar cubic boundary. The results are applicable to many problems including conductivity in random mixtures, glass formation, and drug loading in pharmaceutical tablets.
NASA Astrophysics Data System (ADS)
Dong, Xufeng; Guan, Xinchun; Ou, Jinping
2009-03-01
In the past ten years, there have been several investigations on the effects of particle size on magnetostrictive properties of polymer-bonded Terfenol-D composites, but they didn't get an agreement. To solve the conflict among them, Terfenol-D/unsaturated polyester resin composite samples were prepared from Tb0.3Dy0.7Fe2 powder with 20% volume fraction in six particle-size ranges (30-53, 53-150, 150-300, 300-450, 450-500 and 30-500μm). Then their magnetostrictive properties were tested. The results indicate the 53-150μm distribution presents the largest static and dynamic magnetostriction among the five monodispersed distribution samples. But the 30-500μm (polydispersed) distribution shows even larger response than 53-150μm distribution. It indicates the particle size level plays a doubleedged sword on magnetostrictive properties of magnetostrictive composites. The existence of the optimal particle size to prepare polymer-bonded Terfenol-D, whose composition is Tb0.3Dy0.7Fe2, is resulted from the competition between the positive effects and negative effects of increasing particle size. At small particle size level, the voids and the demagnetization effect decrease significantly with increasing particle size and leads to the increase of magnetostriction; while at lager particle size level, the percentage of single-crystal particles and packing density becomes increasingly smaller with increasing particle size and results in the decrease of magnetostriction. The reason for the other scholars got different results is analyzed.
Size charge fractionation of metals in municipal solid waste landfill leachate.
Oygard, Joar Karsten; Gjengedal, Elin; Røyset, Oddvar
2007-01-01
Municipal solid waste landfill leachates from 9 Norwegian sites were size charge fractionated in the field, to obtain three fractions: particulate and colloidal matter >0.45microm, free anions/non-labile complexes <0.45microm and free cations/labile complexes <0.45microm. The fractionation showed that Cd and Zn, and especially Cu and Pb, were present to a large degree (63-98%) as particulate and colloidal matter >0.45microm. Cr, Co and Ni were on the contrary present mostly as non-labile complexes (69-79%) <0.45microm. The major cations Ca, Mg, K, and Mn were present mainly as free cations/labile complexes <0.45microm, while As and Mo were present to a large degree (70-90%) as free anions/non-labile complexes <0.45microm. Aluminium was present mainly as particulate and colloidal matter >0.45microm. The particulate and colloidal matter >0.45microm was mainly inorganic; indicating that the metals present in this fraction were bound as inorganic compounds. The fractionation gives important information on the mobility and potential bioavailability of the metals investigated, in contrast to the total metal concentrations usually reported. To study possible changes in respective metal species in leachate in aerated sedimentation tanks, freshly sampled leachate was stored for 48h, and subsequently fractionated. This showed that the free heavy metals are partly immobilized during storage of leachate with oxygen available. The largest effects were found for Cd and Zn. The proportion of As and Cr present as particulate matter or colloids >0.45microm also increased.
Multiplicity of the Galactic Senior Citizens: A high-resolution search for cool subdwarf companions
NASA Astrophysics Data System (ADS)
Ziegler, Carl; Law, Nicholas M.
2015-01-01
Cool subdwarfs, with spectral types late K and M, are the oldest members of the low-mass stellar population. Mostly present in the galactic halo, subdwarfs are characterized by their low metallicity and high proper-motions. Understanding their binary fraction could give key insights into the star formation process early in the Milky Way's history. However, because of their low luminosity and relative rarity in the solar neighborhood, binary surveys of cool subdwarfs have suffered from small sample sizes and large incompleteness gaps. It appears, however, that the binary fraction of red subdwarfs is much lower than for their main-sequence cousins. Using the highly efficient Robo-AO system, we present the largest high-resolution survey of subdwarfs yet. We find from 349 target cool subdwarfs, 39 are in multiple systems, 13 newly discovered, for a binary fraction of 11 ± 1.8%.
NASA Astrophysics Data System (ADS)
Wang, Nijing; Yu, Jian Zhen
2017-10-01
Water-soluble organic carbon (WSOC) is a significant part of ambient aerosol and plays an active role in contributing to aerosol's effect on visibility degradation and radiation budget through its interactions with atmospheric water. Size-segregated aerosol samples in the range of 0.056-18 μm were collected using a ten-stage impactor sampler at an urban site in Hong Kong over one-year period. The WSOC samples were separated into hydrophilic (termed WSOC_h) and hydrophobic fractions (i.e., the humic-like substances (HULIS) fraction) through solid-phase extraction procedure. Carbon in HULIS accounted for 40 ± 14% of WSOC. The size distribution of HULIS was consistently characterized in all seasons with a dominant droplet mode (46-71%) and minor condensation (9.0-18%) and coarse modes (20-35%). The droplet mode had a mass median aerodynamic diameter in the range of 0.7-0.8 μm. This size mode showed the largest seasonal variation in abundance, lowest in the summer (0.41 μg/m3) and highest in the winter (3.3 μg/m3). WSOC_h also had a dominant droplet mode, but was more evenly distributed among different size modes. Inter-species correlations within the same size mode suggest that the condensation-mode HULIS was partly associated with combustion sources and the droplet-mode was strongly associated with secondary sulfate formation and biomass burning particle aging processes. There is evidence to suggest that the coarse-mode HULIS largely originated from coagulation of condensation-mode HULIS with coarse soil/sea salt particles. The formation process and possible sources of WSOC_h was more complicated and multiple than HULIS and need further investigation. Our measurements indicate that WSOC components contributed a dominant fraction of water-soluble aerosol mass in particles smaller than 0.32 μm while roughly 20-30% in the larger particles.
Spranger, Tobias; van Pinxteren, Dominik; Herrmann, Hartmut
2017-05-02
Organic carbon in atmospheric particles comprises a large fraction of chromatographically unresolved compounds, often referred to as humic-like substances (HULIS), which influence particle properties and impact climate, human health, and ecosystems. To better understand its composition, a two-dimensional (2D) offline method combining size-exclusion (SEC) and reversed-phase liquid chromatography (RP-HPLC) using a new spiked gradient profile is presented. It separates HULIS into 55 fractions of different size and polarity, with estimated ranges of molecular weight and octanol/water partitioning coefficient (log P) from 160-900 g/mol and 0.2-3.3, respectively. The distribution of HULIS within the 2D size versus polarity space is illustrated with heat maps of ultraviolet absorption at 254 nm. It is found to strongly differ in a small example set of samples from a background site near Leipzig, Germany. In winter, the most intense signals were obtained for the largest molecules (>520 g/mol) with low polarity (log P ∼ 1.9), whereas in summer, smaller (225-330 g/mol) and more polar (log P ∼ 0.55) molecules dominate. The method reveals such differences in HULIS composition in a more detailed manner than previously possible and can therefore help to better elucidate the sources of HULIS in different seasons or at different sites. Analyzing Suwannee river fulvic acid as a common HULIS surrogate shows a similar polarity range, but the sizes are clearly larger than those of atmospheric HULIS.
Heavy metals in the gold mine soil of the upstream area of a metropolitan drinking water source.
Ding, Huaijian; Ji, Hongbing; Tang, Lei; Zhang, Aixing; Guo, Xinyue; Li, Cai; Gao, Yang; Briki, Mergem
2016-02-01
Pinggu District is adjacent to the county of Miyun, which contains the largest drinking water source of Beijing (Miyun Reservoir). The Wanzhuang gold field and tailing deposits are located in Pinggu, threatening Beijing's drinking water security. In this study, soil samples were collected from the surface of the mining area and the tailings piles and analyzed for physical and chemical properties, as well as heavy metal contents and particle size fraction to study the relationship between degree of pollution degree and particle size. Most metal concentrations in the gold mine soil samples exceeded the background levels in Beijing. The spatial distribution of As, Cd, Cu, Pb, and Zn was the same, while that of Cr and Ni was relatively similar. Trace element concentrations increased in larger particles, decreased in the 50-74 μm size fraction, and were lowest in the <2 μm size fraction. Multivariate analysis showed that Cu, Cd, Zn, and Pb originated from anthropogenic sources, while Cr, Ni, and Sc were of natural origin. The geo-accumulation index indicated serious Pb, As, and Cd pollution, but moderate to no Ni, Cr, and Hg pollution. The Tucker 3 model revealed three factors for particle fractions, metals, and samples. There were two factors in model A and three factors for both the metals and samples (models B and C, respectively). The potential ecological risk index shows that most of the study areas have very high potential ecological risk, a small portion has high potential ecological risk, and only a few sampling points on the perimeter have moderate ecological risk, with higher risk closer to the mining area.
Temporal pattern and memory in sediment transport in an experimental step-pool channel
NASA Astrophysics Data System (ADS)
Saletti, Matteo; Molnar, Peter; Zimmermann, André; Hassan, Marwan A.; Church, Michael; Burlando, Paolo
2015-04-01
In this work we study the complex dynamics of sediment transport and bed morphology in steep streams, using a dataset of experiments performed in a steep flume with natural sediment. High-resolution (1 sec) time series of sediment transport were measured for individual size classes at the outlet of the flume for different combinations of sediment input rates, discharges, and flume slopes. The data show that the relation between instantaneous discharge and sediment transport exhibits large variability on different levels. After dividing the time series into segments of constant water discharge, we quantify the statistical properties of transport rates by fitting the data with a Generalized Extreme Value distribution, whose 3 parameters are related to the average sediment flux. We analyze separately extreme events of transport rate in terms of their fractional composition; if only events of high magnitude are considered, coarse grains become the predominant component of the total sediment yield. We quantify the memory in grain size dependent sediment transport with variance scaling and autocorrelation analyses; more specifically, we study how the variance changes with different aggregation scales and how the autocorrelation coefficient changes with different time lags. Our results show that there is a tendency to an infinite memory regime in transport rate signals, which is limited by the intermittency of the largest fractions. Moreover, the structure of memory is both grain size-dependent and magnitude-dependent: temporal autocorrelation is stronger for small grain size fractions and when the average sediment transport rate is large. The short-term memory in coarse grain transport increases with temporal aggregation and this reveals the importance of the sampling frequency of bedload transport rates in natural streams, especially for large fractions.
2012-01-01
We model intraurban intake fraction (iF) values for distributed ground-level emissions in all 3646 global cities with more than 100 000 inhabitants, encompassing a total population of 2.0 billion. For conserved primary pollutants, population-weighted median, mean, and interquartile range iF values are 26, 39, and 14–52 ppm, respectively, where 1 ppm signifies 1 g inhaled/t emitted. The global mean urban iF reported here is roughly twice as large as previous estimates for cities in the United States and Europe. Intake fractions vary among cities owing to differences in population size, population density, and meteorology. Sorting by size, population-weighted mean iF values are 65, 35, and 15 ppm, respectively, for cities with populations larger than 3, 0.6–3, and 0.1–0.6 million. The 20 worldwide megacities (each >10 million people) have a population-weighted mean iF of 83 ppm. Mean intraurban iF values are greatest in Asia and lowest in land-rich high-income regions. Country-average iF values vary by a factor of 3 among the 10 nations with the largest urban populations. PMID:22332712
Yan, Ya Lu; Hu, Ying; Simpson, David J; Gänzle, Michael G
2017-06-28
Enterotoxigenic Escherichia coli (ETEC) K88 causes diarrhea in weaned piglets and represent a suitable model system for ETEC causing childhood diarrhea. This study aimed to evaluate the effects of oligosaccharides against ETEC K88 adhesion to porcine erythrocytes with two bioassays. Galactosylated chitosan-oligosaccharides (Gal-COS) were synthesized through transgalactosylation by β-galactosidase. Fractions 2-5 of Gal-COS were obtained through cation exchange and size exclusion chromatography. Fractions 2-5 of acetylated Gal-COS were obtained through chemical acetylation followed by size exclusion chromatography. Gal-COS F2 containing the largest oligosaccharides had the highest antiadhesion activity with the minimum inhibitory concentration of 0.22 g/L, followed by F3 and F4. Acetylation of Gal-COS decreased their ability to reduce ETEC K88 adhesion. The composition of active oligosaccharides was determined with LC-MS. Galactosylation of COS produces oligosaccharides which reduce ETEC K88 adhesion; moreover, resulting oligosaccharides match the composition of human milk oligosaccharides, which prevent adhesion of multiple pathogens.
Entropic effects in the electric double layer of model colloids with size-asymmetric monovalent ions
NASA Astrophysics Data System (ADS)
Guerrero-García, Guillermo Iván; González-Tovar, Enrique; Olvera de la Cruz, Mónica
2011-08-01
The structure of the electric double layer of charged nanoparticles and colloids in monovalent salts is crucial to determine their thermodynamics, solubility, and polyion adsorption. In this work, we explore the double layer structure and the possibility of charge reversal in relation to the size of both counterions and coions. We examine systems with various size-ratios between counterions and coions (ion size asymmetries) as well as different total ion volume fractions. Using Monte Carlo simulations and integral equations of a primitive-model electric double layer, we determine the highest charge neutralization and electrostatic screening near the electrified surface. Specifically, for two binary monovalent electrolytes with the same counterion properties but differing only in the coion's size surrounding a charged nanoparticle, the one with largest coion size is found to have the largest charge neutralization and screening. That is, in size-asymmetric double layers with a given counterion's size the excluded volume of the coions dictates the adsorption of the ionic charge close to the colloidal surface for monovalent salts. Furthermore, we demonstrate that charge reversal can occur at low surface charge densities, given a large enough total ion concentration, for systems of monovalent salts in a wide range of ion size asymmetries. In addition, we find a non-monotonic behavior for the corresponding maximum charge reversal, as a function of the colloidal bare charge. We also find that the reversal effect disappears for binary salts with large-size counterions and small-size coions at high surface charge densities. Lastly, we observe a good agreement between results from both Monte Carlo simulations and the integral equation theory across different colloidal charge densities and 1:1-elec-trolytes with different ion sizes.
SU-G-TeP3-14: Three-Dimensional Cluster Model in Inhomogeneous Dose Distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, J; Penagaricano, J; Narayanasamy, G
2016-06-15
Purpose: We aim to investigate 3D cluster formation in inhomogeneous dose distribution to search for new models predicting radiation tissue damage and further leading to new optimization paradigm for radiotherapy planning. Methods: The aggregation of higher dose in the organ at risk (OAR) than a preset threshold was chosen as the cluster whose connectivity dictates the cluster structure. Upon the selection of the dose threshold, the fractional density defined as the fraction of voxels in the organ eligible to be part of the cluster was determined according to the dose volume histogram (DVH). A Monte Carlo method was implemented tomore » establish a case pertinent to the corresponding DVH. Ones and zeros were randomly assigned to each OAR voxel with the sampling probability equal to the fractional density. Ten thousand samples were randomly generated to ensure a sufficient number of cluster sets. A recursive cluster searching algorithm was developed to analyze the cluster with various connectivity choices like 1-, 2-, and 3-connectivity. The mean size of the largest cluster (MSLC) from the Monte Carlo samples was taken to be a function of the fractional density. Various OARs from clinical plans were included in the study. Results: Intensive Monte Carlo study demonstrates the inverse relationship between the MSLC and the cluster connectivity as anticipated and the cluster size does not change with fractional density linearly regardless of the connectivity types. An initially-slow-increase to exponential growth transition of the MSLC from low to high density was observed. The cluster sizes were found to vary within a large range and are relatively independent of the OARs. Conclusion: The Monte Carlo study revealed that the cluster size could serve as a suitable index of the tissue damage (percolation cluster) and the clinical outcome of the same DVH might be potentially different.« less
The shape and size distribution of H II regions near the percolation transition
NASA Astrophysics Data System (ADS)
Bag, Satadru; Mondal, Rajesh; Sarkar, Prakash; Bharadwaj, Somnath; Sahni, Varun
2018-06-01
Using Shapefinders, which are ratios of Minkowski functionals, we study the morphology of neutral hydrogen (H I) density fields, simulated using seminumerical technique (inside-out), at various stages of reionization. Accompanying the Shapefinders, we also employ the `largest cluster statistic' (LCS), originally proposed in Klypin & Shandarin, to study the percolation in both neutral and ionized hydrogen. We find that the largest ionized region is percolating below the neutral fraction x_{H I}≲ 0.728 (or equivalently z ≲ 9). The study of Shapefinders reveals that the largest ionized region starts to become highly filamentary with non-trivial topology near the percolation transition. During the percolation transition, the first two Shapefinders - `thickness' (T) and `breadth' (B) - of the largest ionized region do not vary much, while the third Shapefinder - `length' (L) - abruptly increases. Consequently, the largest ionized region tends to be highly filamentary and topologically quite complex. The product of the first two Shapefinders, T × B, provides a measure of the `cross-section' of a filament-like ionized region. We find that, near percolation, the value of T × B for the largest ionized region remains stable at ˜7 Mpc2 (in comoving scale) while its length increases with time. Interestingly, all large ionized regions have similar cross-sections. However, their length shows a power-law dependence on their volume, L ∝ V0.72, at the onset of percolation.
Godri, Krystal J.; Harrison, Roy M.; Evans, Tim; Baker, Timothy; Dunster, Christina; Mudway, Ian S.; Kelly, Frank J.
2011-01-01
As the incidence of respiratory and allergic symptoms has been reported to be increased in children attending schools in close proximity to busy roads, it was hypothesised that PM from roadside schools would display enhanced oxidative potential (OP). Two consecutive one-week air quality monitoring campaigns were conducted at seven school sampling sites, reflecting roadside and urban background in London. Chemical characteristics of size fractionated particulate matter (PM) samples were related to the capacity to drive biological oxidation reactions in a synthetic respiratory tract lining fluid. Contrary to hypothesised contrasts in particulate OP between school site types, no robust size-fractionated differences in OP were identified due high temporal variability in concentrations of PM components over the one-week sampling campaigns. For OP assessed both by ascorbate (OPAA m−3) and glutathione (OPGSH m−3) depletion, the highest OP per cubic metre of air was in the largest size fraction, PM1.9–10.2. However, when expressed per unit mass of particles OPAA µg−1 showed no significant dependence upon particle size, while OPGSH µg−1 had a tendency to increase with increasing particle size, paralleling increased concentrations of Fe, Ba and Cu. The two OP metrics were not significantly correlated with one another, suggesting that the glutathione and ascorbate depletion assays respond to different components of the particles. Ascorbate depletion per unit mass did not show the same dependence as for GSH and it is possible that other trace metals (Zn, Ni, V) or organic components which are enriched in the finer particle fractions, or the greater surface area of smaller particles, counter-balance the redox activity of Fe, Ba and Cu in the coarse particles. Further work with longer-term sampling and a larger suite of analytes is advised in order to better elucidate the determinants of oxidative potential, and to fuller explore the contrasts between site types. PMID:21818283
Experimental investigation of air pressure affecting filtration performance of fibrous filter sheet.
Xu, Bin; Yu, Xiao; Wu, Ya; Lin, Zhongping
2017-03-01
Understanding the effect of air pressure on their filtration performance is important for assessing the effectiveness of fibrous filters under different practical circumstances. The effectiveness of three classes of air filter sheets were investigated in laboratory-based measurements at a wide range of air pressures (60-130 KPa). The filtration efficiency was found most sensitive to the air pressure change at smaller particle sizes. As the air pressure increased from 60 to 130 KPa, significant decrease in filtration efficiency (up to 15%) and increase in pressure drop (up to 90 Pa) were observed. The filtration efficiency of the filter sheet with largest fiber diameter and smallest solid volume fraction was affected most, while the pressure drop of the filter sheet with smallest fiber diameter and largest solid volume fraction was affected most. The effect of air pressure on the filtration efficiency was slightly larger at greater filter face air velocity. However, the effect of air pressure on the pressure drop was negligible. The filtration efficiency and pressure drop were explicitly expressed as functions of the air pressure. Two coefficients were empirically derived and successfully accounted for the effects of air pressure on filtration efficiency and pressure drop.
Li, Haiyan; Shi, Anbang; Zhang, Xiaoran
2015-06-01
Due to rapid urbanization and industrialization, heavy metals in road-deposited sediments (RDSs) of parks are emitted into the terrestrial, atmospheric, and water environment, and have a severe impact on residents' and tourists' health. To identify the distribution and characteristic of heavy metals in RDS and to assess the road environmental quality in Chinese parks, samples were collected from Beijing Olympic Park in the present study. The results indicated that particles with small grain size (<150 μm) were the dominant fraction. The length of dry period was one of the main factors affecting the particle size distribution, as indicated by the variation of size fraction with the increase of dry days. The amount of heavy metal (i.e., Cu, Zn, Pb and Cd) content was the largest in particles with small size (<150 μm) among all samples. Specifically, the percentage of Cu, Zn, Pb and Cd in these particles was 74.7%, 55.5%, 56.6% and 71.3%, respectively. Heavy metals adsorbed in sediments may mainly be contributed by road traffic emissions. The contamination levels of Pb and Cd were higher than Cu and Zn on the basis of the mean heavy metal contents. Specifically, the geoaccumulation index (Igeo) decreased in the order: Cd>Pb>Cu>Zn. This study analyzed the mobility of heavy metals in sediments using partial sequential extraction with the Tessier procedure. The results revealed that the apparent mobility and potential metal bioavailability of heavy metals in the sediments, based on the exchangeable and carbonate fractions, decreased in the order: Cd>Zn≈Pb>Cu. Copyright © 2015. Published by Elsevier B.V.
[Polychlorinated biphenyls in fractions of wheat grains and in selected bakery products].
Brandt, Elzbieta; Pietrzak-Fiećko, Renata; Smoczyński, S S
2012-01-01
Polychlorinated biphenyls (PCBs) form a group of synthetic aromatic chemical compounds, commonly occurring in the environment as a result of industrialisation. Despite the ban on PCBs production, their wide application in the past resulted in their common occurrence in all elements of the environment. The lipophilic nature of the compounds resulting in their accumulation in live organisms and in the human body may trigger many harmful effects. The aim of this study was to determine the PCBs content in the selected species of wheat and in bakery products. The studies aiming at confirming possible correlation between the size of the grain of the selected species of wheat and the content of polychlorinated biphenyls were presented in this paper. Moreover, PCBs concentration in cereals' grains and in bread was compared. The PCBs content was defined in different sizes of grains species of wheat i.e. Opatka, Zyta, Elena and Almari. The study included also two kinds of wheat bread. PCBs were determined after the extraction with n-hexane followed by sulphuric acid hydrolysis. Gas chromatography analysis was conducted on a PU 4600 Unicam apparatus with an electron capture detector. The large variations in PCBs content depending on the grain size were confirmed. In the Opatka species the increase in the content of all determined congeners and the size of grain was confirmed. The lowest PCBs concentrations were in smallest grains (0,0090 mg/kg of fat), and the highest in the largest grains (0,0264 mg/kg of fat). In Zyta species PCBs content was also lowest in the smallest grains, however these results were not statistically significant. In the Elena species the increase in the PCBs content together with the increase in the grain size was confirmed. Basing on the determination coefficient it was found that the concentration of PCBs depends on the size of grains in 24%. The highest concentration of PCBs (0,0366 mg/kg of fat) was found in the largest grains, however differences between the examined fractions were not statistically significant. Similar tendencies were observed in Almari species. PCBs content in wheat bread was on lower level than in all of the examined species. It was confirmed that fraction 2,8 x 25 mm of all species of wheat grain had the highest PCBs content. The tendency to decrease of PCBs content with the decrease of the grain in size was observed. The relation between qualitative class of species and PCBs content was not confirmed. There were statistically significant differences in the PCBs concentrations between the wheat species within one size fraction. The results of PCBs content in wheat bread were lower than in all examined species of wheat. One can assume that for the production of bread collected for the study, the wheat originating from areas with low PCBs contamination was used. Somewhat higher PCBs content was observed in the wheat bread with bran added, probably due to higher PCBs accumulation in the bran, which contain higher fat and contribute therefore to the overall PCBs in the bran containing bread.
Gravel Mobility in a High Sand Content Riverbed
NASA Astrophysics Data System (ADS)
Haschenburger, J. K.
2017-12-01
In sand-gravel channels, sand may modify gravel transport by changing conditions of entrainment and promoting longer displacements or gravel may inhibit sand transport if concentrated into distinct deposits, which restrict sand supply with consequences for migrating bedform size or form. This study reports on gravel mobility in the lower San Antonio River, Texas, where gravel content in the bed material ranges from about 1% to more than 20%. Sediment transport observations were collected at three U.S. Geological Survey gauging stations by deploying a Helley-Smith sampler with a 0.2 mm mesh bag from which transport rates and mobile grain sizes were determined. The flow rates sampled translate into an annual exceedance expectation from 0.2% to 98%. Gravel transport rates are generally two orders of magnitude smaller than the rates of sand transport. However, the finest gravels are transported at rates on the same order of magnitude as the coarsest sands. At all sites, the 2 and 2.8 mm fractions are transported at the lowest flow rate sampled, suggesting mobility for at least 38% to as much as 98% of the year. Fractions as large as 8 mm are mobilized at flow rates that are expected between 25% and 53% of the year. The largest fractions captured in the sampling (16 to 32 mm) require flows closer to bankfull conditions that occur no more than 0.8% of the year. Results document that some gravel sizes can be frequently transported in low gradient riverbeds with high sand content.
Assessing sources of airborne mineral dust and other aerosols, in Iraq
NASA Astrophysics Data System (ADS)
Engelbrecht, Johann P.; Jayanty, R. K. M.
2013-06-01
Most airborne particulate matter in Iraq comes from mineral dust sources. This paper describes the statistics and modeling of chemical results, specifically those from Teflon® filter samples collected at Tikrit, Balad, Taji, Baghdad, Tallil and Al Asad, in Iraq, in 2006/2007. Methodologies applied to the analytical results include calculation of correlation coefficients, Principal Components Analysis (PCA), and Positive Matrix Factorization (PMF) modeling. PCA provided a measure of the covariance within the data set, thereby identifying likely point sources and events. These include airborne mineral dusts of silicate and carbonate minerals, gypsum and salts, as well as anthropogenic sources of metallic fumes, possibly from battery smelting operations, and emissions of leaded gasoline vehicles. Five individual PMF factors (source categories) were modeled, four of which being assigned to components of geological dust, and the fifth to gasoline vehicle emissions together with battery smelting operations. The four modeled geological components, dust-siliceous, dust-calcic, dust-gypsum, and evaporate occur in variable ratios for each site and size fraction (TSP, PM10, and PM2.5), and also vary by season. In general, Tikrit and Taji have the largest and Al Asad the smallest percentages of siliceous dust. In contrast, Al Asad has the largest proportion of gypsum, in part representing the gypsiferous soils in that region. Baghdad has the highest proportions of evaporite in both size fractions, ascribed to the highly salinized agricultural soils, following millennia of irrigation along the Tigris River valley. Although dust storms along the Tigris and Euphrates River valleys originate from distal sources, the mineralogy bears signatures of local soils and air pollutants.
How the Assumed Size Distribution of Dust Minerals Affects the Predicted Ice Forming Nuclei
NASA Technical Reports Server (NTRS)
Perlwitz, Jan P.; Fridlind, Ann M.; Garcia-Pando, Carlos Perez; Miller, Ron L.; Knopf, Daniel A.
2015-01-01
The formation of ice in clouds depends on the availability of ice forming nuclei (IFN). Dust aerosol particles are considered the most important source of IFN at a global scale. Recent laboratory studies have demonstrated that the mineral feldspar provides the most efficient dust IFN for immersion freezing and together with kaolinite for deposition ice nucleation, and that the phyllosilicates illite and montmorillonite (a member of the smectite group) are of secondary importance.A few studies have applied global models that simulate mineral specific dust to predict the number and geographical distribution of IFN. These studies have been based on the simple assumption that the mineral composition of soil as provided in data sets from the literature translates directly into the mineral composition of the dust aerosols. However, these tables are based on measurements of wet-sieved soil where dust aggregates are destroyed to a large degree. In consequence, the size distribution of dust is shifted to smaller sizes, and phyllosilicates like illite, kaolinite, and smectite are only found in the size range 2 m. In contrast, in measurements of the mineral composition of dust aerosols, the largest mass fraction of these phyllosilicates is found in the size range 2 m as part of dust aggregates. Conversely, the mass fraction of feldspar is smaller in this size range, varying with the geographical location. This may have a significant effect on the predicted IFN number and its geographical distribution.An improved mineral specific dust aerosol module has been recently implemented in the NASA GISS Earth System ModelE2. The dust module takes into consideration the disaggregated state of wet-sieved soil, on which the tables of soil mineral fractions are based. To simulate the atmospheric cycle of the minerals, the mass size distribution of each mineral in aggregates that are emitted from undispersed parent soil is reconstructed. In the current study, we test the null-hypothesis that simulating the presence of a large mass fraction of phyllosilicates in dust aerosols in the size range 2 m, in comparison to a simple model assumption where this is neglected, does not yield a significant effect on the magnitude and geographical distribution of the predicted IFN number. Results from sensitivity experiments are presented as well.
Cena, Lorenzo G.; Chisholm, William P.; Keane, Michael J.; Cumpston, Amy; Chen, Bean T.
2016-01-01
A laboratory study was conducted to determine the mass of total Cr, Cr(VI), Mn, and Ni in 15 size fractions for mild and stainless steel gas-metal arc welding (GMAW) fumes. Samples were collected using a nano multi orifice uniform deposition impactor (MOUDI) with polyvinyl chloride filters on each stage. The filters were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and ion chromatography. Limits of detection (LODs) and quantitation (LOQs) were experimentally calculated and percent recoveries were measured from spiked metals in solution and dry, certified welding-fume reference material. The fraction of Cr(VI) in total Cr was estimated by calculating the ratio of Cr(VI) to total Cr mass for each particle size range. Expected, regional deposition of each metal was estimated according to respiratory-deposition models. The weight percent (standard deviation) of Mn in mild steel fumes was 9.2% (6.8%). For stainless steel fumes, the weight percentages were 8.4% (5.4%) for total Cr, 12.2% (6.5%) for Mn, 2.1% (1.5%) for Ni and 0.5% (0.4%) for Cr(VI). All metals presented a fraction between 0.04 and 0.6 μm. Total Cr and Ni presented an additional fraction <0.03 μm. On average 6% of the Cr was found in the Cr(VI) valence state. There was no statistical difference between the smallest and largest mean Cr(VI) to total Cr mass ratio (p-value D 0.19), hence our analysis does not show that particle size affects the contribution of Cr(VI) to total Cr. The predicted total respiratory deposition for the metal particles was ∼25%. The sites of principal deposition were the head airways (7–10%) and the alveolar region (11–14%). Estimated Cr(VI) deposition was highest in the alveolar region (14%). PMID:26848207
Cena, Lorenzo G; Chisholm, William P; Keane, Michael J; Cumpston, Amy; Chen, Bean T
A laboratory study was conducted to determine the mass of total Cr, Cr(VI), Mn, and Ni in 15 size fractions for mild and stainless steel gas-metal arc welding (GMAW) fumes. Samples were collected using a nano multi orifice uniform deposition impactor (MOUDI) with polyvinyl chloride filters on each stage. The filters were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and ion chromatography. Limits of detection (LODs) and quantitation (LOQs) were experimentally calculated and percent recoveries were measured from spiked metals in solution and dry, certified welding-fume reference material. The fraction of Cr(VI) in total Cr was estimated by calculating the ratio of Cr(VI) to total Cr mass for each particle size range. Expected, regional deposition of each metal was estimated according to respiratory-deposition models. The weight percent (standard deviation) of Mn in mild steel fumes was 9.2% (6.8%). For stainless steel fumes, the weight percentages were 8.4% (5.4%) for total Cr, 12.2% (6.5%) for Mn, 2.1% (1.5%) for Ni and 0.5% (0.4%) for Cr(VI). All metals presented a fraction between 0.04 and 0.6 μ m. Total Cr and Ni presented an additional fraction <0.03 μ m. On average 6% of the Cr was found in the Cr(VI) valence state. There was no statistical difference between the smallest and largest mean Cr(VI) to total Cr mass ratio ( p -value D 0.19), hence our analysis does not show that particle size affects the contribution of Cr(VI) to total Cr. The predicted total respiratory deposition for the metal particles was ∼25%. The sites of principal deposition were the head airways (7-10%) and the alveolar region (11-14%). Estimated Cr(VI) deposition was highest in the alveolar region (14%).
NASA Astrophysics Data System (ADS)
Klein, Johannes; Mueller, Sebastian P.; Castro, Jonathan M.
2017-11-01
This study examines the influence of particle-size distributions on the rheology of particle suspensions by using analog experiments with spherical glass beads in silicone oil as a magma equivalent. The analyses of 274 individual particle-bearing suspensions of varying modality (unimodality, bimodality, trimodality, and tetramodality), as well as of polymodal suspensions with specific defined skewness and variance, are the first data set of its kind and provide important insights into the relationship between the solid particles of a suspension and its rheological behavior. Since the relationship between the rheology of particle-bearing suspensions and its maximum packing fraction ϕm is well established by several theoretical models, the results of the analog experiments of this study reveal that the polydispersity γ exerts the largest influence on ϕm. Consequently, the estimation of the polydispersity γ of a particle-size distribution is essential for estimating the viscosity of that given suspension.
Prediction of Developmentally Competent Chromatin Conformation in Mouse Antral Oocytes.
Daszkiewicz, Regina; Szymoniak, Magdalena; Gąsior, Łukasz; Polański, Zbigniew
Mouse prophase oocytes isolated from antral follicles may possess two alternative types of chromatin configuration: NSN configuration represents more dispersed chromatin and is characteristic mainly for growing oocytes whereas SN configuration, attained upon oocyte growth, comprises more condensed chromatin with a significant fraction concentrated around the nucleolus. Importantly, fully grown oocytes isolated from antral follicles represent a non-homogenous population in which some oocytes posses NSN-type and others SN-type of chromatin conformation. From these two, only oocytes with SN configuration are able to complete full development upon fertilization. We show that among mouse oocytes isolated from antral follicles, those surrounded by cumulus cells were larger and more frequently possessed SN chromatin than oocytes lacking the complete cumulus cell layer. Females primed with PMSG gave a higher number of oocytes with a complete layer of cumulus cells and the frequency of oocytes with SN chromatin was also elevated. Within the whole population of isolated antral oocytes, we observed subtle variation in size which allowed fractionation of oocytes under a stereomicroscope into groups representing oocytes of slightly different sizes. The occurrence of SN chromatin configuration was highly dependent on the oocyte size and its frequency increased gradually in subsequent size groups reaching 95-100% in the group representing the largest oocytes. These findings demonstrate that the subtle differences in the size of antral oocytes allow prediction of the status of their chromatin, thus providing a simple, fast, non-invasive and non-expensive way to select good quality oocytes for ART purposes in mammals.
The enormous Chillos Valley Lahar: An ash-flow-generated debris flow from Cotopaxi Volcano, Ecuador
Mothes, P.A.; Hall, M.L.; Janda, R.J.
1998-01-01
The Chillos Valley Lahar (CVL), the largest Holocene debris flow in area and volume as yet recognized in the northern Andes, formed on Cotopaxi volcano's north and northeast slopes and descended river systems that took it 326 km north-northwest to the Pacific Ocean and 130+ km east into the Amazon basin. In the Chillos Valley, 40 km downstream from the volcano, depths of 80-160 m and valley cross sections up to 337000m2 are observed, implying peak flow discharges of 2.6-6.0 million m3/s. The overall volume of the CVL is estimated to be ???3.8 km3. The CVL was generated approximately 4500 years BP by a rhyolitic ash flow that followed a small sector collapse on the north and northeast sides of Cotopaxi, which melted part of the volcano's icecap and transformed rapidly into the debris flow. The ash flow and resulting CVL have identical components, except for foreign fragments picked up along the flow path. Juvenile materials, including vitric ash, crystals, and pumice, comprise 80-90% of the lahar's deposit, whereas rhyolitic, dacitic, and andesitic lithics make up the remainder. The sand-size fraction and the 2- to 10-mm fraction together dominate the deposit, constituting ???63 and ???15 wt.% of the matrix, respectively, whereas the silt-size fraction averages less than ???10 wt.% and the clay-size fraction less than 0.5 wt.%. Along the 326-km runout, these particle-size fractions vary little, as does the sorting coefficient (average = 2.6). There is no tendency toward grading or improved sorting. Limited bulking is recognized. The CVL was an enormous non-cohesive debris flow, notable for its ash-flow origin and immense volume and peak discharge which gave it characteristics and a behavior akin to large cohesive mudflows. Significantly, then, ash-flow-generated debris flows can also achieve large volumes and cover great areas; thus, they can conceivably affect large populated regions far from their source. Especially dangerous, therefore, are snowclad volcanoes with recent silicic ash-flow histories such as those found in the Andes and Alaska.
Genome size analyses of Pucciniales reveal the largest fungal genomes.
Tavares, Sílvia; Ramos, Ana Paula; Pires, Ana Sofia; Azinheira, Helena G; Caldeirinha, Patrícia; Link, Tobias; Abranches, Rita; Silva, Maria do Céu; Voegele, Ralf T; Loureiro, João; Talhinhas, Pedro
2014-01-01
Rust fungi (Basidiomycota, Pucciniales) are biotrophic plant pathogens which exhibit diverse complexities in their life cycles and host ranges. The completion of genome sequencing of a few rust fungi has revealed the occurrence of large genomes. Sequencing efforts for other rust fungi have been hampered by uncertainty concerning their genome sizes. Flow cytometry was recently applied to estimate the genome size of a few rust fungi, and confirmed the occurrence of large genomes in this order (averaging 225.3 Mbp, while the average for Basidiomycota was 49.9 Mbp and was 37.7 Mbp for all fungi). In this work, we have used an innovative and simple approach to simultaneously isolate nuclei from the rust and its host plant in order to estimate the genome size of 30 rust species by flow cytometry. Genome sizes varied over 10-fold, from 70 to 893 Mbp, with an average genome size value of 380.2 Mbp. Compared to the genome sizes of over 1800 fungi, Gymnosporangium confusum possesses the largest fungal genome ever reported (893.2 Mbp). Moreover, even the smallest rust genome determined in this study is larger than the vast majority of fungal genomes (94%). The average genome size of the Pucciniales is now of 305.5 Mbp, while the average Basidiomycota genome size has shifted to 70.4 Mbp and the average for all fungi reached 44.2 Mbp. Despite the fact that no correlation could be drawn between the genome sizes, the phylogenomics or the life cycle of rust fungi, it is interesting to note that rusts with Fabaceae hosts present genomes clearly larger than those with Poaceae hosts. Although this study comprises only a small fraction of the more than 7000 rust species described, it seems already evident that the Pucciniales represent a group where genome size expansion could be a common characteristic. This is in sharp contrast to sister taxa, placing this order in a relevant position in fungal genomics research.
Genome size analyses of Pucciniales reveal the largest fungal genomes
Tavares, Sílvia; Ramos, Ana Paula; Pires, Ana Sofia; Azinheira, Helena G.; Caldeirinha, Patrícia; Link, Tobias; Abranches, Rita; Silva, Maria do Céu; Voegele, Ralf T.; Loureiro, João; Talhinhas, Pedro
2014-01-01
Rust fungi (Basidiomycota, Pucciniales) are biotrophic plant pathogens which exhibit diverse complexities in their life cycles and host ranges. The completion of genome sequencing of a few rust fungi has revealed the occurrence of large genomes. Sequencing efforts for other rust fungi have been hampered by uncertainty concerning their genome sizes. Flow cytometry was recently applied to estimate the genome size of a few rust fungi, and confirmed the occurrence of large genomes in this order (averaging 225.3 Mbp, while the average for Basidiomycota was 49.9 Mbp and was 37.7 Mbp for all fungi). In this work, we have used an innovative and simple approach to simultaneously isolate nuclei from the rust and its host plant in order to estimate the genome size of 30 rust species by flow cytometry. Genome sizes varied over 10-fold, from 70 to 893 Mbp, with an average genome size value of 380.2 Mbp. Compared to the genome sizes of over 1800 fungi, Gymnosporangium confusum possesses the largest fungal genome ever reported (893.2 Mbp). Moreover, even the smallest rust genome determined in this study is larger than the vast majority of fungal genomes (94%). The average genome size of the Pucciniales is now of 305.5 Mbp, while the average Basidiomycota genome size has shifted to 70.4 Mbp and the average for all fungi reached 44.2 Mbp. Despite the fact that no correlation could be drawn between the genome sizes, the phylogenomics or the life cycle of rust fungi, it is interesting to note that rusts with Fabaceae hosts present genomes clearly larger than those with Poaceae hosts. Although this study comprises only a small fraction of the more than 7000 rust species described, it seems already evident that the Pucciniales represent a group where genome size expansion could be a common characteristic. This is in sharp contrast to sister taxa, placing this order in a relevant position in fungal genomics research. PMID:25206357
Size matters: concurrency and the epidemic potential of HIV in small networks.
Carnegie, Nicole Bohme; Morris, Martina
2012-01-01
Generalized heterosexual epidemics are responsible for the largest share of the global burden of HIV. These occur in populations that do not have high rates of partner acquisition, and research suggests that a pattern of fewer, but concurrent, partnerships may be the mechanism that provides the connectivity necessary for sustained transmission. We examine how network size affects the impact of concurrency on network connectivity. We use a stochastic network model to generate a sample of networks, varying the size of the network and the level of concurrency, and compare the largest components for each scenario to the asymptotic expected values. While the threshold for the growth of a giant component does not change, the transition is more gradual in the smaller networks. As a result, low levels of concurrency generate more connectivity in small networks. Generalized HIV epidemics are by definition those that spread to a larger fraction of the population, but the mechanism may rely in part on the dynamics of transmission in a set of linked small networks. Examples include rural populations in sub-Saharan Africa and segregated minority populations in the US, where the effective size of the sexual network may well be in the hundreds, rather than thousands. Connectivity emerges at lower levels of concurrency in smaller networks, but these networks can still be disconnected with small changes in behavior. Concurrency remains a strategic target for HIV combination prevention programs in this context.
Hansen, Henrik K; Yianatos, Juan B; Ottosen, Lisbeth M
2005-09-01
Mine tailing from the El Teniente-Codelco copper mine situated in VI Region of Chile was analysed in order to evaluate the mobility and speciation of copper in the solid material. Mine tailing was sampled after the rougher flotation circuits, and the copper content was measured to 1150 mg kg (-1) dry matter. This tailing was segmented into fractions of different size intervals: 0-38, 38-45, 45-53, 53-75, 75-106, 106-150, 150-212, and >212 microm, respectively. Copper content determination, sequential chemical extraction, and desorption experiments were carried out for each size interval in order to evaluate the speciation of copper. It was found that the particles of smallest size contained 50-60% weak acid leachable copper, whereas only 32% of the copper found in largest particles could be leached in weak acid. Copper oxides and carbonates were the dominating species in the smaller particles, and the larger particles contained considerable amounts of sulphides.
The largest glitch observed in the Crab pulsar
NASA Astrophysics Data System (ADS)
Shaw, B.; Lyne, A. G.; Stappers, B. W.; Weltevrede, P.; Bassa, C. G.; Lien, A. Y.; Mickaliger, M. B.; Breton, R. P.; Jordan, C. A.; Keith, M. J.; Krimm, H. A.
2018-05-01
We have observed a large glitch in the Crab pulsar (PSR B0531+21). The glitch occurred around MJD 58064 (2017 November 8) when the pulsar underwent an increase in the rotation rate of Δν = 1.530 × 10-5 Hz, corresponding to a fractional increase of Δν/ν = 0.516 × 10-6 making this event the largest glitch ever observed in this source. Due to our high-cadence and long-dwell time observations of the Crab pulsar we are able to partially resolve a fraction of the total spin-up of the star. This delayed spin-up occurred over a timescale of ˜1.7 days and is similar to the behaviour seen in the 1989 and 1996 large Crab pulsar glitches. The spin-down rate also increased at the glitch epoch by Δ \\dot{ν } / \\dot{ν } = 7 × 10^{-3}. In addition to being the largest such event observed in the Crab, the glitch occurred after the longest period of glitch inactivity since at least 1984 and we discuss a possible relationship between glitch size and waiting time. No changes to the shape of the pulse profile were observed near the glitch epoch at 610 MHz or 1520 MHz, nor did we identify any changes in the X-ray flux from the pulsar. The long-term recovery from the glitch continues to progress as \\dot{ν } slowly rises towards pre-glitch values. In line with other large Crab glitches, we expect there to be a persistent change to \\dot{ν }. We continue to monitor the long-term recovery with frequent, high quality observations.
NASA Astrophysics Data System (ADS)
Salma, Imre; Füri, Péter; Németh, Zoltán; Balásházy, Imre; Hofmann, Werner; Farkas, Árpád
2015-03-01
Realistic median particle number size distributions were derived by a differential mobility particle sizer in a diameter range of 6-1000 nm for near-city background, city centre, street canyon and road tunnel environments in Budapest. Deposition of inhaled particles within airway generations of an adult woman was determined by a stochastic lung deposition model for sleeping, sitting, light and heavy exercise breathing conditions. Deposition fractions in the respiratory tract were considerable and constant for all physical activities with a mean of 56%. Mean deposition fraction in the extra-thoracic region averaged for the urban environments was decreasing monotonically from 26% for sleeping to 9.4% for heavy exercise. The mean deposition fractions in the tracheobronchial region were constant for the physical activities and urban environments with an overall mean of 12.5%, while the mean deposition fraction in the acinar region averaged for the urban locations increased monotonically with physical activity from 14.7% for sleeping to 34% for heavy exercise. The largest contribution of the acinar deposition to the lung deposition was 75%. The deposition rates in the lung were larger than in the extra-thoracic region, and the deposition rate in the lung was increasingly realised in the AC region by physical activity. It was the extra-thoracic region that received the largest surface density deposition rates; its loading was higher by 3 orders of magnitude than for the lung. Deposition fractions in the airway generations exhibited a distinct peak in the acinar region. The maximum of the curves was shifted to peripheral airway generations with physical activity. The shapes of the surface density deposition rate curves were completely different from those for the deposition rates, indicating that the first few airway generations received the highest surface loading in the lung.
Endocranial Morphology of the Extinct North American Lion (Panthera atrox).
Cuff, Andrew R; Stockey, Christopher; Goswami, Anjali
2016-01-01
The extinct North American lion (Panthera atrox) is one of the largest felids (Mammalia, Carnivora) to have ever lived, and it is known from a plethora of incredibly well-preserved remains. Despite this abundance of material, there has been little research into its endocranial anatomy. CT scans of a skull of P. atrox from the Pleistocene La Brea Tar pits were used to generate the first virtual endocranium for this species and to elucidate previously unknown details of its brain size and gross structure, cranial nerves, and inner-ear morphology. Results show that its gross brain anatomy is broadly similar to that of other pantherines, although P. atrox displays less cephalic flexure than either extant lions or tigers, instead showing a brain shape that is reminiscent of earlier felids. Despite this unusual reduction in flexure, the estimated absolute brain size for this specimen is one of the largest reported for any felid, living or extinct. Its encephalization quotient (brain size as a fraction of the expected brain mass for a given body mass) is also larger than that of extant lions but similar to that of the other pantherines. The advent of CT scans has allowed nondestructive sampling of anatomy that cannot otherwise be studied in these extinct lions, leading to a more accurate reconstruction of endocranial morphology and its evolution. © 2017 S. Karger AG, Basel.
Vaillier, D; Daculsi, R; Gualde, N
1995-01-01
We have studied the relationship between cytotoxic activity, size and granularity of murine interleukin-2-activated adherent killer cells issued from spleen cells cultured with high levels of IL-2. The effects of prostaglandin E2 (PGE2) and forskolin upon these cells were assessed. All adherent spleen cells obtained after 5 days of culture were large granular lymphocytes but presented a heterogeneity in size and granularity. After fractionation on a discontinuous-density Percoll gradient, four cellular subpopulations were isolated. Fluorescence-activated cell sorting analysis showed that cells of the lightest fraction (F1) were the largest, while the cells found in the heaviest fraction (F4) were much more granular than the cells collected in the two intermediate fractions (F2 and F3). The serine esterases level was higher in F4 than in unfractionated cells and diminished to about 40% in cells of fractions F2 and F3, which expressed a cytotoxic activity against YAC-1 cells higher than that in unfractionated cells or in F1 or F4, which presented the lowest cytotoxic activity. When AK cells were cultured for 48 h in the presence of either PGE2 or forskolin, which induce an intracellular increase of cAMP, we observed that PGE2 (1 microM) inhibited the cytotoxic activity, but surprisingly forskolin (2 microM) exerted a stimulating effect on the induction of cytotoxic activity. After fractionation on a discontinuous Percoll gradient we observed the same cellular distribution among PGE2 or forskolin-treated or -untreated cells, but PGE2 induced an increase of size and granularity. This effect of PGE2 was more potent on the cells collected in F4. However this variation of granularity was not associated with any variation in the serine esterase level. The cytotoxic activity of PGE2- or forskolin-treated cells did not present any significant variation relative to the control for cells collected in F2 and F3; on the other hand, forskolin-treated cells collected in F4 showed a significantly higher cytotoxicity than did the corresponding untreated or PGE2-treated cells.
Fat-tailed fluctuations in the size of organizations: the role of social influence.
Mondani, Hernan; Holme, Petter; Liljeros, Fredrik
2014-01-01
Organizational growth processes have consistently been shown to exhibit a fatter-than-Gaussian growth-rate distribution in a variety of settings. Long periods of relatively small changes are interrupted by sudden changes in all size scales. This kind of extreme events can have important consequences for the development of biological and socio-economic systems. Existing models do not derive this aggregated pattern from agent actions at the micro level. We develop an agent-based simulation model on a social network. We take our departure in a model by a Schwarzkopf et al. on a scale-free network. We reproduce the fat-tailed pattern out of internal dynamics alone, and also find that it is robust with respect to network topology. Thus, the social network and the local interactions are a prerequisite for generating the pattern, but not the network topology itself. We further extend the model with a parameter δ that weights the relative fraction of an individual's neighbours belonging to a given organization, representing a contextual aspect of social influence. In the lower limit of this parameter, the fraction is irrelevant and choice of organization is random. In the upper limit of the parameter, the largest fraction quickly dominates, leading to a winner-takes-all situation. We recover the real pattern as an intermediate case between these two extremes.
NASA Astrophysics Data System (ADS)
Katsura, Takekuni; Nakamura, Akiko M.; Takabe, Ayana; Okamoto, Takaya; Sangen, Kazuyoshi; Hasegawa, Sunao; Liu, Xun; Mashimo, Tsutomu
2014-10-01
Iron meteorites and some M-class asteroids are generally understood to be fragments that were originally part of cores of differentiated planetesimals or part of local melt pools on primitive bodies. The parent bodies of iron meteorites may have formed in the terrestrial planet region, from which they were then scattered into the main belt (Bottke, W.F., Nesvorný, D., Grimm, R.E., Morbidelli, A., O'Brien, D.P. [2006]. Nature 439, 821-824). Therefore, a wide range of collisional events at different mass scales, temperatures, and impact velocities would have occurred between the time when the iron was segregated and the impact that eventually exposed the iron meteorites to interplanetary space. In this study, we performed impact disruption experiments of iron meteorite specimens as projectiles or targets at room temperature to increase understanding of the disruption process of iron bodies in near-Earth space. Our iron specimens (as projectiles or targets) were almost all smaller in size than their counterparts (as targets or projectiles, respectively). Experiments of impacts of steel specimens were also conducted for comparison. The fragment mass distribution of the iron material was different from that of rocks. In the iron fragmentation, a higher percentage of the mass was concentrated in larger fragments, probably due to the ductile nature of the material at room temperature. The largest fragment mass fraction f was dependent not only on the energy density but also on the size d of the specimen. We assumed a power-law dependence of the largest fragment mass fraction to initial peak pressure P0 normalized by a dynamic strength, Y, which was defined to be dependent on the size of the iron material. A least squares fit to the data of iron meteorite specimens resulted in the following relationship: f∝∝d, indicating a large size dependence of f. Additionally, the deformation of the iron materials in high-velocity shots was found to be most significant when the initial pressure greatly exceeded the dynamic strength of the material.
The interaction between cytotrophoblasts and their derived tumor cells.
Rachmilewitz, J; Goshen, R; Elkin, M; Gonik, B; Neaman, Z; Giloh, H; Strauss, B; Komitowsky, D; de Groot, N; Hochberg, A
1995-06-01
Previous experiments demonstrated that human cytotrophoblasts and cells of the choriocarcinoma cell line JAr interact in vitro. As a result of this interaction there is an increased synthesis of CG and hPL, probably as a result of the increased CG and hPL synthesis by the cytotrophoblasts. In the present investigation we studied this interaction in greater detail and found that both cytotrophoblasts and JAr cells undergo changes in their biological properties as a result of this interaction. JAr cells and cytotrophoblasts cocultured for 72 hr were fractionated according to their size by centrifugal elutriation. The number of cells in the fraction which contain the largest cells was very significantly increased as a result of the coculture. This increase was due to an increase in the number of cells of both cell types. This fraction was the most active one in the synthesis of CG and hPL. The synthesis of DNA by the JAr nuclei in this fraction of the cocultured cells was almost completely inhibited but in the parallel fraction of the JAr cells cultivated alone the level of DNA synthesis was equal to that of all other JAr cell fractions. Heterokaryons are formed in the coculture. In these heterokaryons a factor which inhibits DNA synthesis in the cytotrophoblasts may inhibit DNA synthesis in JAr nuclei and at least be partly responsible for the inhibition of DNA synthesis observed.
NASA Technical Reports Server (NTRS)
Redemann, Jens; Russell, Philip B.; Hamill, Patrick
2001-01-01
Atmospheric aerosols frequently contain hygroscopic sulfate species and black carbon (soot) inclusions. In this paper we report results of a modeling study to determine the change in aerosol absorption due to increases in ambient relative humidity (RH), for three common sulfate species, assuming that the soot mass fraction is present as a single concentric core within each particle. Because of the lack of detailed knowledge about various input parameters to models describing internally mixed aerosol particle optics, we focus on results that were aimed at determining the maximum effect that particle humidification may have on aerosol light absorption. In the wavelength range from 450 to 750 nm, maximum absorption humidification factors (ratio of wet to 'dry=30% RH' absorption) for single aerosol particles are found to be as large as 1.75 when the RH changes from 30 to 99.5%. Upon lesser humidification from 30 to 80% RH, absorption humidification for single particles is only as much as 1.2, even for the most favorable combination of initial ('dry') soot mass fraction and particle size. Integrated over monomodal lognormal particle size distributions, maximum absorption humidification factors range between 1.07 and 1.15 for humidification from 30 to 80% and between 1.1 and 1.35 for humidification from 30 to 95% RH for all species considered. The largest humidification factors at a wavelength of 450 nm are obtained for 'dry' particle size distributions that peak at a radius of 0.05 microns, while the absorption humidification factors at 700 nm are largest for 'dry' size distributions that are dominated by particles in the radius range of 0.06 to 0.08 microns. Single-scattering albedo estimates at ambient conditions are often based on absorption measurements at low RH (approx. 30%) and the assumption that aerosol absorption does not change upon humidification (i.e., absorption humidification equal to unity). Our modeling study suggests that this assumption alone can introduce absolute errors in estimates of the midvisible single-scattering albedo of up to 0.05 for realistic dry particle size distributions. Our study also indicates that this error increases with increasing wavelength. The potential errors in aerosol single-scattering albedo derived here are comparable in magnitude and in addition to uncertainties in single-scattering albedo estimates that are based on measurements of aerosol light absorption and scattering.
Rousseva, Michaela; Kontoudakis, Nikolaos; Schmidtke, Leigh M; Scollary, Geoffrey R; Clark, Andrew C
2016-07-15
Copper and iron in wine can influence oxidative, reductive and colloidal stability. The current study utilises a solid phase extraction technique to fractionate these metals into hydrophobic, cationic and residual forms, with quantification by ICP-OES. The impact of aspects of wine production on the metal fractions was examined, along with the relationship between metal fractions and oxygen decay rates. Addition of copper and iron to juice, followed by fermentation, favoured an increase in all of their respective metal fractions in the wine, with the largest increase observed for the cationic form of iron. Bentonite fining of the protein-containing wines led to a significant reduction in the cationic fraction of copper and an increase in the cationic form of iron. Total copper correlated more closely with oxygen consumption in the wine compared to total iron, and the residual and cationic forms of copper provided the largest contribution to this impact. Copyright © 2016 Elsevier Ltd. All rights reserved.
A generalized threshold model for computing bed load grain size distribution
NASA Astrophysics Data System (ADS)
Recking, Alain
2016-12-01
For morphodynamic studies, it is important to compute not only the transported volumes of bed load, but also the size of the transported material. A few bed load equations compute fractional transport (i.e., both the volume and grain size distribution), but many equations compute only the bulk transport (a volume) with no consideration of the transported grain sizes. To fill this gap, a method is proposed to compute the bed load grain size distribution separately to the bed load flux. The method is called the Generalized Threshold Model (GTM), because it extends the flow competence method for threshold of motion of the largest transported grain size to the full bed surface grain size distribution. This was achieved by replacing dimensional diameters with their size indices in the standard hiding function, which offers a useful framework for computation, carried out for each indices considered in the range [1, 100]. New functions are also proposed to account for partial transport. The method is very simple to implement and is sufficiently flexible to be tested in many environments. In addition to being a good complement to standard bulk bed load equations, it could also serve as a framework to assist in analyzing the physics of bed load transport in future research.
Vlaisavljevich, Eli; Maxwell, Adam; Mancia, Lauren; Johnsen, Eric; Cain, Charles; Xu, Zhen
2016-10-01
Histotripsy is a non-invasive ultrasonic ablation method that uses cavitation to mechanically fractionate tissue into acellular debris. With a sufficient number of pulses, histotripsy can completely fractionate tissue into a liquid-appearing homogenate with no cellular structures. The location, shape and size of lesion formation closely match those of the cavitation cloud. Previous work has led to the hypothesis that the rapid expansion and collapse of histotripsy bubbles fractionate tissue by inducing large stress and strain on the tissue structures immediately adjacent to the bubbles. In the work described here, the histotripsy bulk tissue fractionation process is visualized at the cellular level for the first time using a custom-built 2-MHz transducer incorporated into a microscope stage. A layer of breast cancer cells were cultured within an optically transparent fibrin-based gel phantom to mimic cells inside a 3-D extracellular matrix. To test the hypothesis, the cellular response to single and multiple histotripsy pulses was investigated using high-speed optical imaging. Bubbles were always generated in the extracellular space, and significant cell displacement/deformation was observed for cells directly adjacent to the bubble during both bubble expansion and collapse. The largest displacements were observed during collapse for cells immediately adjacent to the bubble, with cells moving more than 150-300 μm in less than 100 μs. Cells often underwent multiple large deformations (>150% strain) over multiple pulses, resulting in the bisection of cells multiple times before complete removal. To provide theoretical support to the experimental observations, a numerical simulation was conducted using a single-bubble model, which indicated that histotripsy exerts the largest strains and cell displacements in the regions immediately adjacent to the bubble. The experimental and simulation results support our hypothesis, which helps to explain the formation of the sharp lesions formed in histotripsy therapy localized to the regions directly exposed to the bubbles. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Biologically important compounds in synfuels processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, B R; Ho, C; Griest, W H
1980-01-01
Crude products, by-products and wastes from synfuel processes contain a broad spectrum of chemical compounds - many of which are active in biological systems. Discerning which compound classes are most important is necessary in order to establish effective control over release or exposure. Polycyclic aromatic hydrocarbons (PAH), multialkylated PAH, primary aromatic amines and N-heterocyclic PAH are significant contributors to the overall mutagenic activities of a large number of materials examined. Ames test data show that the basic, primary aromatic amine fraction is the most active. PAHs, multialkylated PAHs and N-heterocyclic PAHs are all components of the neutral fraction. In nearlymore » all cases, the neutral fractions contribute the largest portion of the mutagenic activity, while the basic primary aromatic amine fractions have the highest specific activity. Neutral fractions are usually the largest (wt %) whereas the total basic fractions are small by comparison; thus, the overall greater contribution of the neutral fraction to the mutagenic activity of most samples. Biologically active constituents are isolated in preparative scale amounts from complex mixtures utilizing combinations of liquid-liquid extraction and various liquid chromatographic column-eluant combinations. Fractions are characterized using a combination of spectroscopic techniques and gas chromatography/mass spectrometry.« less
The radiocarbon signature of microorganisms in the mesopelagic ocean.
Hansman, Roberta L; Griffin, Sheila; Watson, Jordan T; Druffel, Ellen R M; Ingalls, Anitra E; Pearson, Ann; Aluwihare, Lihini I
2009-04-21
Several lines of evidence indicate that microorganisms in the meso- and bathypelagic ocean are metabolically active and respiring carbon. In addition, growing evidence suggests that archaea are fixing inorganic carbon in this environment. However, direct quantification of the contribution from deep ocean carbon sources to community production in the dark ocean remains a challenge. In this study, carbon flow through the microbial community at 2 depths in the mesopelagic zone of the North Pacific Subtropical Gyre was examined by exploiting the unique radiocarbon signatures (Delta(14)C) of the 3 major carbon sources in this environment. The radiocarbon content of nucleic acids, a biomarker for viable cells, isolated from size-fractionated particles (0.2-0.5 microm and >0.5 microm) showed the direct incorporation of carbon delivered by rapidly sinking particles. Most significantly, at the 2 mesopelagic depths examined (670 m and 915 m), carbon derived from in situ autotrophic fixation supported a significant fraction of the free-living microbial community (0.2-0.5 microm size fraction), but the contribution of chemoautotrophy varied markedly between the 2 depths. Results further showed that utilization of the ocean's largest reduced carbon reservoir, (14)C-depleted, dissolved organic carbon, was negligible in this environment. This isotopic portrait of carbon assimilation by the in situ, free-living microbial community, integrated over >50,000 L of seawater, implies that recent, photosynthetic carbon is not always the major carbon source supporting microbial community production in the mesopelagic realm.
Clogging in constricted suspension flows
NASA Astrophysics Data System (ADS)
Marin, Alvaro; Lhuissier, Henri; Rossi, Massimiliano; Kähler, Christian J.
2018-02-01
The flow of a charged-stabilized suspension through a single constricted channel is studied experimentally by tracking the particles individually. Surprisingly, the behavior is found to be qualitatively similar to that of inertial dry granular systems: For small values of the neck-to-particle size ratio (D /d <3 ), clogs form randomly as arches of the particle span the constriction. The statistics of the clogging events are Poissonian as reported for granular systems and agree for moderate particle volume fraction (ϕ ≈20 % ) with a simple stochastic model for the number of particles at the neck. For larger neck sizes (D /d >3 ), even at the largest ϕ (≈60 %) achievable in the experiments, an uninterrupted particle flow is observed, which resembles that of an hourglass. This particularly small value of D /d (≃3 ) at the transition to a practically uninterrupted flow is attributed to the low effective friction between the particles, achieved by the particle's functionalization and lubrication.
Soft γ-ray selected radio galaxies: favouring giant size discovery
NASA Astrophysics Data System (ADS)
Bassani, L.; Venturi, T.; Molina, M.; Malizia, A.; Dallacasa, D.; Panessa, F.; Bazzano, A.; Ubertini, P.
2016-09-01
Using the recent INTEGRAL/IBIS and Swift/BAT surveys we have extracted a sample of 64 confirmed plus three candidate radio galaxies selected in the soft gamma-ray band. The sample covers all optical classes and is dominated by objects showing a Fanaroff-Riley type II radio morphology; a large fraction (70 per cent) of the sample is made of `radiative mode' or high-excitation radio galaxies. We measured the source size on images from the NRAO VLA Sky Survey, the Faint Images of the Radio Sky at twenty-cm and the Sydney University Molonglo Sky Survey images and have compared our findings with data in the literature obtaining a good match. We surprisingly found that the soft gamma-ray selection favours the detection of large size radio galaxies: 60 per cent of objects in the sample have size greater than 0.4 Mpc while around 22 per cent reach dimension above 0.7 Mpc at which point they are classified as giant radio galaxies (GRGs), the largest and most energetic single entities in the Universe. Their fraction among soft gamma-ray selected radio galaxies is significantly larger than typically found in radio surveys, where only a few per cent of objects (1-6 per cent) are GRGs. This may partly be due to observational biases affecting radio surveys more than soft gamma-ray surveys, thus disfavouring the detection of GRGs at lower frequencies. The main reasons and/or conditions leading to the formation of these large radio structures are still unclear with many parameters such as high jet power, long activity time and surrounding environment all playing a role; the first two may be linked to the type of active galactic nucleus discussed in this work and partly explain the high fraction of GRGs found in the present sample. Our result suggests that high energy surveys may be a more efficient way than radio surveys to find these peculiar objects.
NASA Technical Reports Server (NTRS)
Tedesco, Marco; Kim, Edward J.; Cline, Don; Graf, Tobias; Koike, Toshio; Armstrong, Richard; Brodzik, Mary Jo; Hardy, Janet
2003-01-01
The capabilities of the Dense Media Radiative Transfer model using the Quasi Crystalline Approximation with Coherent Potential (QCA-CP) to reproduce measured radiometric data were tested using the University of Tokyo Ground Based Microwave Radiometer (GBMR-7) during the third Intensive Observation Period (IOP3) of the NASA Cold-land Processes Field Experiment (CLPX). The data were collected at the Local-Scale Observation Site (LSOS), a 0.8-ha study site consisting of two open meadows separated by trees. Intensive measurements were also made of snow depth and temperature, density, and grain size profiles. A DMRT model is needed to describe radiative transfer in a medium such as snow because the assumption of independent scattering used in classical radiative transfer theory (CRT) is not valid. Validation of the DMRT approach requires a relationship between measured snow grain size and the DMRT approximation of snow grain radius as spherical particles with a mean radius of the log-normal particle-size distribution. This relationship is very important for a better understanding of snow modelling and for practical applications. DMRT simulations were compared with observations of microwave brightnesses at 18.7, 36.5 and 89-GHz (V and H polarizations) collected on February-1 9-25, 2003. Observation angles ranged from 30\\deg to 70\\deg. Model inputs included measured snow parameters except mean grain size. The average snow temperature, fractional volume and depth were held constant, together with the ice and soil permittivities. The minimum and maximum measured mean grain sizes were used to test the capabilities of the DMRT to reproduce the brightnesses as upper and lower limits. The sensitivity to the largest and smallest measured grain size in the three classes of minimum, medium and maximum observed grain sizes was also investigated. DMRT particle sizes yielding a best-fit to the experimental data for each date were computed. Results show that the measured brightnesses fall within the range of simulated brightnesses using the smallest and largest measured grain size values. The DMRT best-fit radii are comparable to the average radii for the medium observed grain sizes.
Discovery of the Largest Orbweaving Spider Species: The Evolution of Gigantism in Nephila
Kuntner, Matjaž; Coddington, Jonathan A.
2009-01-01
Background More than 41,000 spider species are known with about 400–500 added each year, but for some well-known groups, such as the giant golden orbweavers, Nephila, the last valid described species dates from the 19th century. Nephila are renowned for being the largest web-spinning spiders, making the largest orb webs, and are model organisms for the study of extreme sexual size dimorphism (SSD) and sexual biology. Here, we report on the discovery of a new, giant Nephila species from Africa and Madagascar, and review size evolution and SSD in Nephilidae. Methodology We formally describe N. komaci sp. nov., the largest web spinning species known, and place the species in phylogenetic context to reconstruct the evolution of mean size (via squared change parsimony). We then test female and male mean size correlation using phylogenetically independent contrasts, and simulate nephilid body size evolution using Monte Carlo statistics. Conclusions Nephila females increased in size almost monotonically to establish a mostly African clade of true giants. In contrast, Nephila male size is effectively decoupled and hovers around values roughly one fifth of female size. Although N. komaci females are the largest Nephila yet discovered, the males are also large and thus their SSD is not exceptional. PMID:19844575
Discovery of the largest orbweaving spider species: the evolution of gigantism in Nephila.
Kuntner, Matjaz; Coddington, Jonathan A
2009-10-21
More than 41,000 spider species are known with about 400-500 added each year, but for some well-known groups, such as the giant golden orbweavers, Nephila, the last valid described species dates from the 19(th) century. Nephila are renowned for being the largest web-spinning spiders, making the largest orb webs, and are model organisms for the study of extreme sexual size dimorphism (SSD) and sexual biology. Here, we report on the discovery of a new, giant Nephila species from Africa and Madagascar, and review size evolution and SSD in Nephilidae. We formally describe N. komaci sp. nov., the largest web spinning species known, and place the species in phylogenetic context to reconstruct the evolution of mean size (via squared change parsimony). We then test female and male mean size correlation using phylogenetically independent contrasts, and simulate nephilid body size evolution using Monte Carlo statistics. Nephila females increased in size almost monotonically to establish a mostly African clade of true giants. In contrast, Nephila male size is effectively decoupled and hovers around values roughly one fifth of female size. Although N. komaci females are the largest Nephila yet discovered, the males are also large and thus their SSD is not exceptional.
Kinetic Damage from Meteorites
NASA Technical Reports Server (NTRS)
Cooke, W.; Brown, P.; Matney, M.
2017-01-01
Comparing the natural meteorite flux at the Earth's surface to that of space debris, re-entering debris is 2 orders of magnitude less of a kinetic hazard at all but the very largest (and therefore rarest) sizes compared to natural impactors. Debris re-entries over several metric tonnes are roughly as frequent as natural impactors, but the survival fraction is expected to be much higher. Kinetic hazards from meteorites are very small, with only one recorded (indirect) injury reported. We expect fatalities to be even more rare, on the order of one person killed per several millennia. That several reports exist of small fragments/sand hitting people during meteorite falls is consistent with our prediction that this should occur every decade or so.
Kinetic Damage from Meteorites
NASA Technical Reports Server (NTRS)
Cooke, W.; Matney, M.; Brown, P.
2017-01-01
Comparing the natural meteorite flux at the Earth's surface to that of space debris, reentering debris is approx. 2 orders of magnitude less of a kinetic hazard at all but the very largest (and therefore rarest) sizes compared to natural impactors. Debris re-entries over several metric tonnes are roughly as frequent as natural impactors, but the survival fraction is expected to be much higher. Kinetic hazards from meteorites are very small, with only one recorded (indirect) injury reported. We expect fatalities to be even more rare, on the order of one person killed per several millennia. That several reports exist of small fragments/sand hitting people during meteorite falls is consistent with our prediction that this should occur every decade or so.
Molecular hydrogen sorption capacity of D-shwarzites
NASA Astrophysics Data System (ADS)
Krasnov, Pavel O.; Shkaberina, Guzel S.; Kuzubov, Alexander A.; Kovaleva, Evgenia A.
2017-09-01
Schwarzites are one of the most well-known forms of nanoporous carbon. High porosity and large surface area of these materials make them promising candidates for molecular hydrogen storage. Quantum-chemical modeling showed that hydrogen weight fraction inside D-schwarzite structure depends on the number of atoms per unit cell that determines its size and morphology. D480 schwarzite has demonstrated the largest value of hydrogen sorption capacity amongst the structures considered in this work. It reaches 7.65% at the technologically acceptable values of temperature and pressure (300 K and 10 MPa). Though being lower than that required by DOE (9%), this amount can be increased by using schwarzites with larger unit cell corresponding to the larger surface area.
Yutong, Zong; Qing, Xiao; Shenggao, Lu
2016-07-01
This study examines the distribution, mobility, and potential environmental risks of heavy metals in various particle size fractions of urban soils. Representative urban topsoils (ten) collected from Anshan, Liaoning (northeastern China), were separated into six particle size fractions and their heavy metal contents (Cr, Cu, Cd, Pb, and Zn) were determined. The bioaccessibility and leachability of heavy metals in particle size fractions were evaluated using the toxicity characteristic leaching procedure (TCLP) and ethylenediaminetetraacetic acid (EDTA) extraction, respectively. The results indicated that the contents of five heavy metals (Cd, Cr, Cu, Pb and Zn) in the size fractions increased with the decrease of particle size. The clay fraction of <2 μm had the highest content of heavy metals, indicating that the clay fraction was polluted by heavy metals more seriously than the other size fractions in urban topsoils. Cr also concentrated in the coarse fraction of 2000-1000 μm, indicating a lithogenic contribution. However, the dominant size fraction responsible for heavy metal accumulation appeared to belong to particle fraction of 50-2 μm. The lowest distribution factors (DFs) of heavy metals were recorded in the 2000- to 1000-μm size fraction, while the highest in the clay fraction. The DFs of heavy metals in the clay fraction followed Zn (3.22) > Cu (2.84) > Pb (2.61) > Cr (2.19) > Cd (2.05). The enrichment factor suggested that the enrichment degree of heavy metal increased with the decrease of the particle size, especially for Cd and Zn. The TCLP- and EDTA-extractable concentrations of heavy metals in the clay fraction were relatively higher than those in coarse particles. Cd bioavailability was higher in the clay fraction than in other fractions or whole soils. In contrast, Cr exhibits similar bioaccessibilities in the six size fractions of soils. The results suggested that fine particles were the main sources of potentially toxic metals in urban soils. The variation of heavy metals in various size fractions should be taken into account in environment assessments.
NASA Astrophysics Data System (ADS)
Diapouli, E.; Manousakas, M.; Vratolis, S.; Vasilatou, V.; Maggos, Th; Saraga, D.; Grigoratos, Th; Argyropoulos, G.; Voutsa, D.; Samara, C.; Eleftheriadis, K.
2017-09-01
Metropolitan Urban areas in Greece have been known to suffer from poor air quality, due to variety of emission sources, topography and climatic conditions favouring the accumulation of pollution. While a number of control measures have been implemented since the 1990s, resulting in reductions of atmospheric pollution and changes in emission source contributions, the financial crisis which started in 2009 has significantly altered this picture. The present study is the first effort to assess the contribution of emission sources to PM10 and PM2.5 concentration levels and their long-term variability (over 5-10 years), in the two largest metropolitan urban areas in Greece (Athens and Thessaloniki). Intensive measurement campaigns were conducted during 2011-2012 at suburban, urban background and urban traffic sites in these two cities. In addition, available datasets from previous measurements in Athens and Thessaloniki were used in order to assess the long-term variability of concentrations and sources. Chemical composition analysis of the 2011-2012 samples showed that carbonaceous matter was the most abundant component for both PM size fractions. Significant increase of carbonaceous particle concentrations and of OC/EC ratio during the cold period, especially in the residential urban background sites, pointed towards domestic heating and more particularly wood (biomass) burning as a significant source. PMF analysis further supported this finding. Biomass burning was the largest contributing source at the two urban background sites (with mean contributions for the two size fractions in the range of 24-46%). Secondary aerosol formation (sulphate, nitrate & organics) was also a major contributing source for both size fractions at the suburban and urban background sites. At the urban traffic site, vehicular traffic (exhaust and non-exhaust emissions) was the source with the highest contributions, accounting for 44% of PM10 and 37% of PM2.5, respectively. The long-term variability of emission sources in the two cities (over 5-10 years), assessed through a harmonized application of the PMF technique on recent and past year data, clearly demonstrates the effective reduction in emissions during the last decade due to control measures and technological development; however, it also reflects the effects of the financial crisis in Greece during these years, which has led to decreased economic activities and the adoption of more polluting practices by the local population in an effort to reduce living costs.
NASA Astrophysics Data System (ADS)
Chen, D.; Zhang, Y.
2008-12-01
The objective of this paper is to describe the statistical properties of experiments on non-uniform bed-load transport as well as the mechanism of bed armoring processes. Despite substantial effort made over the last two decades, the ability to compute the bed-load flux in a turbulent system remains poor. The major obstacles include the poor understanding of the formation of armor lays on bed surfaces. Such a layer is much flow-resistible than the underlying material and therefore significantly inhibits sediment transport from the reach. To study the problem, we conducted a flume study for mixed sand/gravel sediments. We observed that aggregated sediment blocks were the most common characters in armor layers - the largest sizes resist hydraulic forces, while the smaller sizes add interlocking support and prevent loss of fine material through gaps between the larger particles. Fractional transport rates with the existing of armor layers were measured with time by sediment trapping method at the end of flume. To address the intermittent and time-varying behavior of bed-load transport during bed armoring processes, we investigated the probability distribution of the fractional bed-load transport rates, and the underlying dynamic model derived from the continuous time random walk framework. Results indicate that it is critical to consider the impact of armor layers when a flow is sufficient to move some of the finer particles and yet insufficient to move all the larger particles on a channel bed.
NASA Astrophysics Data System (ADS)
Pokrovsky, O. S.; Shirokova, L. S.; Viers, J.; Gordeev, V. V.; Shevchenko, V. P.; Chupakov, A. V.; Vorobieva, T. Y.; Candaudap, F.; Casseraund, C.; Lanzanova, A.; Zouiten, C.
2013-10-01
The estuarine behavior of organic carbon (OC) and trace elements (TE) was studied for the largest European sub-Arctic river, which is the Severnaya Dvina; this river is a deltaic estuary covered in ice during several hydrological seasons: summer (July 2010, 2012) and winter (March 2009) baseflow, and the November-December 2011 ice-free period. Colloidal forms of OC and TE were assessed using three pore size cutoff (1, 10, and 50 kDa) using an in-situ dialysis procedure. Conventionally dissolved (< 0.22 μm) fractions demonstrated clear conservative behavior for Li, B, Na, Mg, K, Ca, Sr, Mo, Rb, Cs, and U during the mixing of freshwater with the White Sea; a significant (up to a factor of 10) concentration increase occurs with increases in salinity. Si and OC also displayed conservative behavior but with a pronounced decrease of concentration seawards. Rather conservative behavior, but with much smaller changes in concentration (variation within ±30%) over a full range of salinities, was observed for Ti, Ni, Cr, As, Co, Cu, Ga, Y, and heavy REE. Strong non-conservative behavior with coagulation/removal at low salinities (< 5‰) was exhibited by Fe, Al, Zr, Hf, and light REE. Finally, certain divalent metals exhibited non-conservative behavior with a concentration gain at low (~2-5‰, Ba, Mn) or intermediate (~10-15‰, Ba, Zn, Pb, Cd) salinities, which is most likely linked to TE desorption from suspended matter or sediment outflux. The most important result of this study is the elucidation of the behavior of the "truly" dissolved low molecular weight LMW< 1 kDa fraction containing Fe, OC, and a number of insoluble elements. The concentration of the LMW fraction either remains constant or increases its relative contribution to the overall dissolved (< 0.22 μm) pool as the salinity increases. Similarly, the relative proportion of colloidal (1 kDa-0.22 μm) pool for the OC and insoluble TE bound to ferric colloids systematically decreased seaward, with the largest decrease occurring at low (< 5‰) salinities. Overall, the observed decrease of the colloidal fraction may be related to the coagulation of organo-ferric colloids at the beginning of the mixing zone and therefore the replacement of the HMW1 kDa-0.22 μm portion by the LMW< 1 kDa fraction. These patterns are highly reproducible across different sampling seasons, suggesting significant enrichment of the mixing zone by the most labile (and potentially bioavailable) fraction of the OC, Fe and insoluble TE. The size fractionation of the colloidal material during estuarine mixing reflects a number of inorganic and biological processes, the relative contribution of which to element speciation varies depending on the hydrological stage and time of year. In particular, LMW< 1 kDa ligand production in the surface horizons of the mixing zone may be linked to heterotrophic mineralization of allochthonous DOM and/or photodestruction. Given the relatively low concentration of particulate vs. dissolved load of most trace elements, desorption from the river suspended material was less pronounced than in other rivers in the world. As a result, the majority of dissolved components exhibited either a conservative (OC and related elements such as divalent metals) or non-conservative, coagulation-controlled (Fe, Al, and insoluble TE associated with organo-ferric colloids) behavior. The climate warming in high latitudes is likely to intensify the production of LMW< 1 kDa organic ligands and the associated TE; therefore, the delivery of potentially bioavailable trace metal micronutrients from the land to the ocean may increase.
NASA Technical Reports Server (NTRS)
Cintala, Mark J.; Horz, Friedrich
2007-01-01
A fragment of an L6 chondrite (ALH 85017,13) with an initial mass (M(sub 0)) of 464.1 g was the target in a series of experimental impacts in which the largest remaining fragment (M(sub R)) after each shot was impacted by a 3.18-mm ceramic sphere at a nominal speed of 2 km/s. This continued until the mass of the largest remaining piece was less than half the mass of the target presented to that shot (M(sub S)). Two chunks of Bushveldt gabbro with similar initial masses were also impacted under the same conditions until M(sub R) was less than half M(sub 0). The two gabbro targets required a total of 1.51x10(exp 7) and 1.75x10(exp 7) erg/g to attain 0.27 and 0.33 M(sub R)/M(sub 0), respectively; the chondrite, however, was considerably tougher, reaching 0.40 and 0.21 M(sub R)/M(sub 0) only after receiving 2.37x10(exp 7) and 3.10x10(exp 7) erg g-1, respectively. The combined ejecta and spallation products from the gabbro impacts were coarser than those from the chondrite and in sufficient quantities that the new surface areas exceeded those from the meteorite until the fifth shot in the chondrite series, which was the number of impacts required to disrupt each gabbro target (i.e., MR/M0 = 0.5). Unlike the behavior shown in previous regolith-evolution series, neither gabbro target produced an enhancement in the size fraction reflecting the mean size of the crystals composing the rock (about 3 mm), an effect possibly related to the width of the shock pulse. The original chondrite was so fine-grained and fractured, and the variance in its grain-size distribution so large, that effects related to grain-size were relegated to the <63- m fraction. Impacts into ALH 85017 produced abundant, fine-grained debris, but otherwise the slopes of its size distributions were comparable to those from other experiments involving natural and fabricated terrestrial targets. The characteristic slopes of the chondrite's size distributions, however, were notably more constant over the entire nine-impact series than those from any of the terrestrial targets, a testament to the control over comminution apparently exerted by pre-existing fractures and other, microscopic damage in the meteorite. The enhancement in the finer fraction of debris from ALH 85017 indicates that ordinary chondrites in solar orbit would be very efficient contributors to the cosmic-dust complex. At the same time, the greater resistance to disruption displayed by ordinary chondrites relative to that exhibited by igneous rocks indicates that a selection effect could be operative between the annealed, ordinary-chondritic breccias and relatively weaker, differentiated meteorites. Preferential survival from their time in the regoliths of their parent bodies through their transit to Earth and passage through the atmosphere suggests that meteorite collections could be biased in favor of the ordinary chondrites.
Daily behavior of urban Fluorescing Aerosol Particles in northwest Spain
NASA Astrophysics Data System (ADS)
Calvo, A. I.; Baumgardner, D.; Castro, A.; Fernández-González, D.; Vega-Maray, A. M.; Valencia-Barrera, R. M.; Oduber, F.; Blanco-Alegre, C.; Fraile, R.
2018-07-01
Measurements of ambient aerosol particles at the University of León, León, Spain, were made in May and June 2015 with a Wideband Integrated Bioaerosol Spectrometer (WIBS). The WIBS detects Fluorescing Aerosol Particles (FAP) in the size range from 0.5 to 20 μm. These measurements were complemented with an analysis of pollen concentrations assessed with optical microscopy of samples captured with a volumetric Hirst spore trap. The total particle, FAP and pollen concentrations show clear, daily cycles. Whereas the total particle concentrations maximize at 0800 and 2200 UTC, the FAP concentrations have peaks at midnight and 0800 UTC while the pollen has a broad peak between 1200 and 2000 UTC. The FAP larger than 2 μm represent 15-35% of the total particle population in this size range, maximizing at midnight UTC. Similar to what has been found by investigators at other locations, there is a strong positive correlation of the WIBS measured FAP with relative humidity; however, the pollen concentration is positively correlated with the temperature and anti-correlated with the relative humidity. Back trajectory analysis indicates that the largest FAP to total particle fractions are found in air masses arriving from the northeast with the second largest coming from the southwest. Given the location of the university in relation to the city and forested areas, this implies that the higher concentration FAP are coming from rural, probably natural, sources; however, more local, anthropogenic sources cannot be ruled out as a secondary source. The majority of the FAP that are identified from microscopy are fungal spores (Cladosporium, Aspergillus, Alternaria, Oidium) and pollen grains (mainly Poaceae, Quercus, Plantago, Rumex and Urticaceae). A comparison of the fluorescence fingerprints between laboratory generated FAP and the ambient particles showed some similarities; however, a significant fraction of the FAP are those whose fluorescence patterns do not match any of those that have been previously classified in the laboratory.
16 CFR § 1633.4 - Prototype testing requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
.../foundation length and width, not depth (e.g., twin, queen, king); (2) Ticking, unless the ticking of the... § 1633.3(b). (c) All tests must be conducted on specimens that are no smaller than a twin size, unless the largest size mattress set produced is smaller than a twin size, in which case the largest size...
16 CFR 1633.4 - Prototype testing requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
.../foundation length and width, not depth (e.g., twin, queen, king); (2) Ticking, unless the ticking of the... § 1633.3(b). (c) All tests must be conducted on specimens that are no smaller than a twin size, unless the largest size mattress set produced is smaller than a twin size, in which case the largest size...
16 CFR 1633.4 - Prototype testing requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
.../foundation length and width, not depth (e.g., twin, queen, king); (2) Ticking, unless the ticking of the... § 1633.3(b). (c) All tests must be conducted on specimens that are no smaller than a twin size, unless the largest size mattress set produced is smaller than a twin size, in which case the largest size...
16 CFR 1633.4 - Prototype testing requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
.../foundation length and width, not depth (e.g., twin, queen, king); (2) Ticking, unless the ticking of the... § 1633.3(b). (c) All tests must be conducted on specimens that are no smaller than a twin size, unless the largest size mattress set produced is smaller than a twin size, in which case the largest size...
Occurrence of non extractable pesticide residues in physical and chemical fractions of two soils
NASA Astrophysics Data System (ADS)
Andreou, Kostas; Semple, Kirk; Jones, Kevin
2010-05-01
Soils are considered to be a significant sink for organic contaminants, including pesticides, in the environment. Understanding the distribution and localisation of aged pesticide residues in soil is of great importance for assessing the mobility and availability of these chemicals in the environment. This study aimed to characterise the distribution of radiolabeled herbicide isoproturon and the radiolabeled insecticides diazinon and cypermethrin in two organically managed soils. The soils were spiked and aged under laboratory conditions for 17 months. The labile fraction of the pesticides residues was recovered in CaCl2 (0.01M) and then subjected to physical size fractionation using sedimentation and centrifugation steps, with >20μm, 20-2μm and 2-0.1μm soil factions collected. Further, the distribution of the pesticide residues in the organic matter of the fractionated soil was investigated using a sequential alkaline extraction (0.1N NaOH) into humic and fulvic acid and humin. Soil fractions of 20-2μm and 2-0.1μm had the largest burden of the 14C-residues. Different soil constituents have different capacities to form non-extractable residues. Soil solid fractions of 20-2 µm and <2 µm had far greater affinity to the 14C-pesticide residues than the coarser fraction (>20 µm). Fulvic acid showed to play a vital role in the formation and stabilisation of non-extractable 14C-pesticide residues in most cases.Assessment of the likelihood of the pesticide residues to become available to soil biota requires an understanding of the structure of the SOM matrix and the definition of the kinetics of the pesticide residues in different SOM pools as a function of the time.
Multiplicity of the Galactic Senior Citizens: A High-resolution Search for Cool Subdwarf Companions
NASA Astrophysics Data System (ADS)
Ziegler, Carl; Law, Nicholas M.; Baranec, Christoph; Riddle, Reed L.; Fuchs, Joshua T.
2015-05-01
Cool subdwarfs are the oldest members of the low-mass stellar population. Mostly present in the galactic halo, subdwarfs are characterized by their low-metallicity. Measuring their binary fraction and comparing it to solar-metallicity stars could give key insights into the star formation process early in the Milky Way’s history. However, because of their low luminosity and relative rarity in the solar neighborhood, binarity surveys of cool subdwarfs have suffered from small sample sizes and incompleteness. Previous surveys have suggested that the binary fraction of red subdwarfs is much lower than for their main-sequence cousins. Using the highly efficient Robo-AO system, we present the largest high-resolution survey of subdwarfs, sensitive to angular separations (ρ ≥slant 0.″ 15) and contrast ratios ({Δ }{{m}i} ≤slant 6) invisible in past surveys. Of 344 target cool subdwarfs, 43 are in multiple systems, 19 of which are newly discovered, for a binary fraction of 12.5 ± 1.9%. We also discovered seven triple star systems for a triplet fraction of 2.0 ± 0.8%. Comparisons to similar surveys of solar-metallicity dwarf stars gives a ∼3σ disparity in luminosity between companion stars, with subdwarfs displaying a shortage of low-contrast companions. We also observe a lack of close subdwarf companions in comparison to similar-mass dwarf multiple systems.
Fujii, Manabu; Ono, Keisuke; Yoshimura, Chihiro; Miyamoto, Manami
2018-06-15
Anthropogenically released radioactive cesium (RCs) poses serious ecological and environmental concerns given its persistency in the environment. Although accumulation of RCs in aqueous and sedimentary environments is often reported to associate with organic matter (OM), the mechanisms responsible remain unclear. Here, we investigated RCs in fine sediments along the Abukuma River, the largest river near the Fukushima Daiichi Nuclear Power Plant, 1.5-4 years after the accident. Measuring the density-separated sediment fractions with a broad range of OM content (%) indicated that the RCs concentration (Bq·kg -1 ) is positively correlated with OM content for intermediate-density fractions in which OM is primarily characterized by autochthonous origin. This relationship, however, did not hold for light-density fractions containing a high proportion of large-size allochthonous OM. Furthermore, H 2 O 2 -assisted OM digestion and amorphous material dissolution treatments resulted in only a minor reduction in sedimentary RCs. These results along with the fact that sediments with high autochthonous OM content showed high specific surface area indicated that RCs is tightly associated with finer-grained and chemically non-labile inorganic fractions concurrently resident with autochthonous OM. Overall, our findings highlight that autochthonous OM exerts a significant control on the accumulation, transport, and fate of RCs in aqueous and sedimentary environments. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Johnson, J. P.; Aronovitz, A. C.
2012-12-01
We conducted laboratory flume experiments to quantify changes in multiple factors leading to mountain river bed stability (i.e., minimal bed changes in space and time), and to understand how stable beds respond to perturbations in sediment supply. Experiments were run in a small flume 4 m long by 0.1 m wide. We imposed an initial well-graded size distribution of sediment (from coarse sand to up to 4 cm clasts), a steady water discharge (0.9 L/s), and initial bed surface slopes (8% and 12%). We measured outlet sediment flux and size distribution, bed topography and surface size distributions, and water depths; from these we calculated total shear stress, form drag and skin friction stress partitioning, and hydraulic roughness. The bed was initially allowed to stabilize with no imposed upstream sediment flux. This stabilization occurred due to significant changes in all of the factors listed in the title, and resulted in incipient step-pool like bed morphologies. In addition, this study was designed to explore possible long-term effects of gravel augmentation on mountain channel morphology and surface grain size. While the short-term goal of gravel augmentation is usually to cause fining of surface sediment patches, we find that the long-term effects may be opposite. We perturbed the stabilized channels by temporarily imposing an upstream sediment flux of the finest sediment size fraction (sand to granules). Median surface sizes initially decreased due to fine sediment deposition, although transport rates of intermediate-sized grains increased. When the fine sediment supply was stopped, beds evolved to be both rougher and coarser than they had been previously, because the largest grains remained on the bed but intermediate-sized grains were preferentially transported out, leaving higher fractions of larger grains on the surface. Existing models for mixed grain size transport actually predict changes in mobilization reasonably well, but do not explicity account for surface roughness evolution. Our results indicate a nonlinear relationship between surface median grain size and bed roughness.
NASA Astrophysics Data System (ADS)
Nelson, Erica June; van Dokkum, Pieter G.; Brammer, Gabriel; Förster Schreiber, Natascha; Franx, Marijn; Fumagalli, Mattia; Patel, Shannon; Rix, Hans-Walter; Skelton, Rosalind E.; Bezanson, Rachel; Da Cunha, Elisabete; Kriek, Mariska; Labbe, Ivo; Lundgren, Britt; Quadri, Ryan; Schmidt, Kasper B.
2012-03-01
We investigate the buildup of galaxies at z ~ 1 using maps of Hα and stellar continuum emission for a sample of 57 galaxies with rest-frame Hα equivalent widths >100 Å in the 3D-HST grism survey. We find that the Hα emission broadly follows the rest-frame R-band light but that it is typically somewhat more extended and clumpy. We quantify the spatial distribution with the half-light radius. The median Hα effective radius re (Hα) is 4.2 ± 0.1 kpc but the sizes span a large range, from compact objects with re (Hα) ~ 1.0 kpc to extended disks with re (Hα) ~ 15 kpc. Comparing Hα sizes to continuum sizes, we find
Structural ordering of casein micelles on silicon nitride micro-sieves during filtration.
Gebhardt, Ronald; Holzmüller, Wolfgang; Zhong, Qi; Müller-Buschbaum, Peter; Kulozik, Ulrich
2011-11-01
The paper reports on the structure and formation of casein micelle deposits on silicon nitride micro-sieves during the frontal filtration. The most frequent radius of the fractionated casein micelles we use is R=60 nm as detected by static light scattering (SLS) and atomic force microscopy (AFM). We estimate the size and size distribution of the casein micelles which pass through the micro-sieve during the filtration process. A sharpening of the size distribution at the beginning of the filtration process (t=40s) is followed by a broadening and a shift of the most frequent radii towards smaller sizes at later times (t=840 s). The size distribution of the micelles deposited on the micro-sieve during filtration is bimodal and consists of the largest and smallest micelles. At larger filtration times, we observe a shift of both deposited size classes towards smaller sizes. The atomic force micrographs of the reference sample reveal a tendency of the casein micelles to order in a hexagonal lattice when deposited on the micro-sieves by solution casting. The deposition of two size classes can be explained by a formation of a mixed hexagonal lattice with large micelles building up the basis lattice and smaller sizes filling octahedral and tetrahedral holes of the lattice. The accompanied compression with increasing thickness of the casein layer could result from preferential deposition of smaller sizes in the course of the filtration. Copyright © 2011 Elsevier B.V. All rights reserved.
Single-particle characterization of the High Arctic summertime aerosol
NASA Astrophysics Data System (ADS)
Sierau, B.; Chang, R. Y.-W.; Leck, C.; Paatero, J.; Lohmann, U.
2014-01-01
Single-particle mass spectrometric measurements were carried out in the High Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS). The instrument deployed was an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) that provides information on the chemical composition of individual particles and their mixing state in real-time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 nm to 3000 nm in diameter showed mass spectrometric patterns indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the High Arctic. To assess the importance of long-range particle sources for aerosol-cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a~minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest a presence of a particle type of unknown composition and source. In general, the study suffered from low counting statistics due to the overall small number of particles found in this pristine environment, the small sizes of the prevailing aerosol below the detection limit of the ATOFMS and its low hit rate. To our knowledge, this study reports on the first in-situ single-particle mass spectrometric measurements in the marine boundary layer of the High-Arctic pack-ice region.
Single-particle characterization of the high-Arctic summertime aerosol
NASA Astrophysics Data System (ADS)
Sierau, B.; Chang, R. Y.-W.; Leck, C.; Paatero, J.; Lohmann, U.
2014-07-01
Single-particle mass-spectrometric measurements were carried out in the high Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS). The instrument deployed was an aerosol time-of-flight mass spectrometer (ATOFMS) that provides information on the chemical composition of individual particles and their mixing state in real time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 and 3000 nm in diameter showed mass-spectrometric patterns, indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the high Arctic. To assess the importance of long-range particle sources for aerosol-cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest the presence of a particle type of unknown composition and source. In general, the study suffered from low counting statistics due to the overall small number of particles found in this pristine environment, the small sizes of the prevailing aerosol below the detection limit of the ATOFMS, and its low hit rate. To our knowledge, this study reports on the first in situ single-particle mass-spectrometric measurements in the marine boundary layer of the high-Arctic pack ice region.
Sizing ocean giants: patterns of intraspecific size variation in marine megafauna
Balk, Meghan A.; Benfield, Mark C.; Branch, Trevor A.; Chen, Catherine; Cosgrove, James; Dove, Alistair D.M.; Gaskins, Lindsay C.; Helm, Rebecca R.; Hochberg, Frederick G.; Lee, Frank B.; Marshall, Andrea; McMurray, Steven E.; Schanche, Caroline; Stone, Shane N.; Thaler, Andrew D.
2015-01-01
What are the greatest sizes that the largest marine megafauna obtain? This is a simple question with a difficult and complex answer. Many of the largest-sized species occur in the world’s oceans. For many of these, rarity, remoteness, and quite simply the logistics of measuring these giants has made obtaining accurate size measurements difficult. Inaccurate reports of maximum sizes run rampant through the scientific literature and popular media. Moreover, how intraspecific variation in the body sizes of these animals relates to sex, population structure, the environment, and interactions with humans remains underappreciated. Here, we review and analyze body size for 25 ocean giants ranging across the animal kingdom. For each taxon we document body size for the largest known marine species of several clades. We also analyze intraspecific variation and identify the largest known individuals for each species. Where data allows, we analyze spatial and temporal intraspecific size variation. We also provide allometric scaling equations between different size measurements as resources to other researchers. In some cases, the lack of data prevents us from fully examining these topics and instead we specifically highlight these deficiencies and the barriers that exist for data collection. Overall, we found considerable variability in intraspecific size distributions from strongly left- to strongly right-skewed. We provide several allometric equations that allow for estimation of total lengths and weights from more easily obtained measurements. In several cases, we also quantify considerable geographic variation and decreases in size likely attributed to humans. PMID:25649000
Spiotto, Michael T; Koshy, Matthew
2017-05-01
Although chemoradiation regimens have used various fraction sizes, it remains unclear how differences in fraction size impact outcomes. Using the National Cancer Database, we identified patients with nasopharynx or oropharynx cancers treated between 2004 and 2012 with chemoradiation using fraction sizes of 1.8Gy (n=1612), 2Gy (n=8092) or 2.12Gy (n=1660). Comparisons between fraction sizes were made in the entire cohort and in a propensity matched cohort. Median follow-up was 38.1m. Patients receiving 2.12Gy per fraction were more likely to be treated from 2007 to 2012, to be treated at an academic center, to have T3-T4 tumors and to have oropharyngeal primaries. The 3year overall survival for patients treated with 1.8Gy, 2Gy and 2.12Gy fraction sizes was 72.9%, 77.8% and 83.3%, respectively (P<0.0001). 2.12Gy fraction size was associated with improved survival in patients with nasopharynx cancer (P=0.03), base of tongue cancer (P<0.0001) and tonsil cancer (P=0.0002). On multivariate analysis, improved survival was associated with 2.12Gy fraction sizes compared to 2Gy (HR 1.23, 95% CI 1.09-1.40, P=0.001) or 1.8Gy (HR 1.36, 95% CI 1.17-1.58; P<0.0001) fractions sizes. Chemoradiation regimens using 2.12Gy fraction sizes likely have a potential advantage in select nasopharynx and oropharynx cancer patients based on age, treatment facility and radiotherapy technique. However, it remains unclear if this survival advantage reflected improved disease control due to lack of locoregional control data. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Lina; Zheng, Xinran; Stevanovic, Svetlana; Xiang, Zhiyuan; Liu, Jing; Shi, Huiwen; Liu, Jing; Yu, Mingzhou; Zhu, Chun
2018-01-01
Mosquito-repellent incense is one of the most popular products used for dispelling mosquitos during summer in China. It releases large amounts of particulate and gaseous pollutants which constitute a potential hazard to human health. We conducted chamber experiment to characterize major pollutants from three types of mosquito-repellent incenses, further assessed the size-fractionated deposition in human respiratory system, and evaluated the indoor removing efficiency by fresh air. Results showed that the released pollutant concentrations were greater than permissible levels in regulations in GB3095-2012, as well as suggested by the World Health Organization (WHO). Formaldehyde accounted for 10-20% of the total amount of pollutants. Fine particles dominated in the total particulate concentrations. Geometric standard deviation (GSD) of particle number size distributions was in the range of 1.45-1.93. Count median diameter (CMD) ranged from 100 to 500 nm. Emission rates, burning rates and emission factors of both particulate and gaseous pollutants were compared and discussed. The deposition fractions in pulmonary airway from the disc solid types reached up to 52.7% of the total deposition, and the largest deposition appeared on juvenile group. Computational Fluid Dynamics (CFD) modellings indicated air-conditioner on and windows closed was the worst case. The highest concentration was 180-200 times over the standard limit. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mechanisms of thorium migration in a semiarid soil.
Bednar, A J; Gent, D B; Gilmore, J R; Sturgis, T C; Larson, S L
2004-01-01
Thorium concentrations at Kirtland Air Force Base training sites in Albuquerque, NM, have been previously described; however, the mechanisms of thorium migration were not fully understood. This work describes the processes affecting thorium mobility in this semiarid soil, which has implications for future remedial action. Aqueous extraction and filtration experiments have demonstrated the colloidal nature of thorium in the soil, due in part to the low solubility of thorium oxide. Colloidal material was defined as that removed by a 0.22-microm or smaller filter after being filtered to nominally dissolved size (0.45 microm). Additionally, association of thorium with natural organic matter is suggested by micro- and ultrafiltration methods, and electrokinetic data, which indicate thorium migration as a negatively charged particle or anionic complex with organic matter. Soil fractionation and digestion experiments show a bimodal distribution of thorium in the largest and smallest size fractions, most likely associated with detrital plant material and inorganic oxide particles, respectively. Plant uptake studies suggest this could also be a mode of thorium migration as plants grown in thorium-containing soil had a higher thorium concentration than those in control soils. Soil erosion laboratory experiments with wind and surface water overflow were performed to determine bulk soil material movement as a possible mechanism of mobility. Information from these experiments is being used to determine viable soil stabilization techniques at the site to maintain a usable training facility with minimal environmental impact.
Effects of Land Use on Concentrations and Chemical Forms of Phosphorus in Different-Size Aggregates
NASA Astrophysics Data System (ADS)
Ahmad, E. H.; Demisie, W.; Zhang, M.
2017-12-01
Land use has been recognized as an important driver of environmental change on all spatial and temporal scales. This study was conducted to determine the effects of land uses on phosphorus concentration in bulk soil and in water-stable aggregates in different soils. The study was conducted on three soil types (Ferrosols, Cambosols, and Primosols), which were collected from three different locations from southeast China and under three land uses (Uncultivated, Vegetable and forest land) the region is characterized as a hill and plain area. Accordingly, a total of 24 soil samples were collected. The results showed that average contents of total P were 0.55-1.55 g/kg, 0.28-1.03 g/kg and 0.14-0.8 g/kg for the soils: Cambosols, Ferrosols and Primosols respectively. Vegetable and forest land led to higher total phosphorus contents in these soils than in the uncultivated land. An aggregate fraction of >2 mm under forest land made up the largest percentage (30 up to 70%), whereas the size fraction <0.106 mm made the least contribution (5 up to 20%) in all soil types. Vegetable land increased the total phosphorus, organic phosphorus and Olsen P and phosphorus forms in the soils. It implies that the conversion of natural ecosystem to vegetable land increased the phosphorus proportion in the soils, which could have negative impact on the environmental quality.
Table-sized matrix model in fractional learning
NASA Astrophysics Data System (ADS)
Soebagyo, J.; Wahyudin; Mulyaning, E. C.
2018-05-01
This article provides an explanation of the fractional learning model i.e. a Table-Sized Matrix model in which fractional representation and its operations are symbolized by the matrix. The Table-Sized Matrix are employed to develop problem solving capabilities as well as the area model. The Table-Sized Matrix model referred to in this article is used to develop an understanding of the fractional concept to elementary school students which can then be generalized into procedural fluency (algorithm) in solving the fractional problem and its operation.
Feeding by larvae of intertidal invertebrates: assessing their position in pelagic food webs.
Vargas, Cristian A; Manríquez, Patricio H; Navarrete, Sergio A
2006-02-01
One of the leading determinants of the structure and dynamics of marine populations is the rate of arrival of new individuals to local sites. While physical transport processes play major roles in delivering larvae to the shore, these processes become most important after larvae have survived the perils of life in the plankton, where they usually suffer great mortality. The lack of information regarding larval feeding makes it difficult to assess the effects of food supply on larval survival, or the role larvae may play in nearshore food webs. Here, we examine the spectrum of food sizes and food types consumed by the larvae of two intertidal barnacle species and of the predatory gastropod Concholepas concholepas. We conducted replicated experiments in which larvae were exposed to the food size spectrum (phytoplankton, microprotozoan and autotrophic picoplankton) found in nearshore waters in central Chile. Results show that barnacle nauplii and gastropod veligers are omnivorous grazers, incorporating significant fractions of heterotrophs in their diets. In accordance with their feeding mechanisms and body size, barnacle nauplii were able to feed on autotrophic picoplankton (<5 microm) and did not consume the largest phytoplankton cells, which made the bulk of phytoplankton biomass in spring-summer blooms. Balanoid nauplii exhibited higher ingestion rates than the smaller-bodied chthamaloid larvae. Newly hatched C. concholepas larvae also consumed picoplankton cells, while competent larvae of this species ingested mostly the largest phytoplankton cells and heterotrophic protozoans. Results suggest that persistent changes in the structure of pelagic food webs can have important effects on the species-specific food availability for invertebrate larvae, which can result in large-scale differences in recruitment rates of a given species, and in the relative recruitment success of the different species that make up benthic communities.
D/H Ratios in Lipids as a Tool to Elucidate Microbial Metabolism
NASA Astrophysics Data System (ADS)
Wijker, R. S.; Sessions, A. L.
2015-12-01
Large D/H fractionations have been observed in the lipids and growth water of most organisms studied today. These fractionations have generally been assumed to be constant across most biota because they originate solely from isotope effects imposed by the highly conserved lipid biosynthetic pathway. Recent data is illustrating this conclusion as incomplete. Lipids from field and laboratory samples exhibit huge variations in D/H fractionation. In environmental samples, lipids vary in δD by up to 300 ‰ and in laboratory cultures the documented variation is up to 500 ‰ within the same organism. Remarkably, the isotope fractionation appears to be correlated with the type of metabolism employed by the host organism. However, the underlying biochemical mechanisms leading to these isotopic variations are not yet fully understood. Because the largest proportion of H-bound C in fatty acids is derived directly from NADPH during biosynthesis, the original hypothesis was that large differences in the isotopic composition of NADPH, generated by different central metabolic pathways, were the primary source of D/H variation in lipids. However, recent observations indicate that this cannot be the whole story and lead us to the conclusion that additional processes must affect the isotope composition of NADPH. These processes may include the isotopic exchange of NADPH with water as well as fractionation of NADPH by transhydrogenases, interconverting NADH to NADPH by exhibiting large isotope effects. In this project, our objective is to ascertain whether D/H fractionation and these biochemical processes are correlated. We investigate correlations between cellular NADPH/NADP+ as well as NADH/NAD+ pool sizes and the D/H fractionation in a set of different microorganisms and will present the first trends here. Our results will contribute to a more comprehensive understanding of the basic biological regulations over D/H fractionation and potentially enables their use as tracers and proxies across earth and biological sciences.
D/H Ratios in Lipids as a Tool to Elucidate Microbial Metabolism
NASA Astrophysics Data System (ADS)
Wijker, Reto S.; Sessions, Alex L.
2016-04-01
Large D/H fractionations have been observed in the lipids and growth water of most organisms studied today. These fractionations have generally been assumed to be constant across most biota because they originate solely from isotope effects imposed by the highly conserved lipid biosynthetic pathway. Recent data is illustrating this conclusion as incomplete. Lipids from field and laboratory samples exhibit huge variations in D/H fractionation. In environmental samples, lipids vary in δD by up to 300 ‰ and in laboratory cultures the documented variation is up to 500 ‰ within the same organism. Remarkably, the isotope fractionation appears to be correlated with the type of metabolism employed by the host organism. However, the underlying biochemical mechanisms leading to these isotopic variations are not yet fully understood. Because the largest proportion of H-bound C in fatty acids is derived directly from NADPH during biosynthesis, the original hypothesis was that large differences in the isotopic composition of NADPH, generated by different central metabolic pathways, were the primary source of D/H variation in lipids. However, recent observations indicate that this cannot be the whole story and lead us to the conclusion that additional processes must affect the isotope composition of NADPH. These processes may include the isotopic exchange of NADPH with water as well as fractionation of NADPH by transhydrogenases, interconverting NADH to NADPH by exhibiting large isotope effects. In this project, our objective is to ascertain whether D/H fractionation and these biochemical processes are correlated. We investigate correlations between cellular NADPH/NADP+ as well as NADH/NAD+ pool sizes and the D/H fractionation in a set of different microorganisms and will present the trends here. Our results will contribute to a more comprehensive understanding of the basic biological regulations over D/H fractionation and potentially enables their use as tracers and proxies across earth and biological sciences.
Ravndal, Kristin T; Opsahl, Eystein; Bagi, Andrea; Kommedal, Roald
2017-12-18
The potential for resource recovery from wastewater can be evaluated based on a detailed characterisation of wastewater. In this paper, results from fractionation and characterisation of two distinct wastewaters are reported. Using tangential flow filtration, the wastewater was fractionated into 10 size fractions ranging from 1 kDa to 1 mm, wherein the chemical composition and biodegradability were determined. Carbohydrates were dominant in particulate size fractions larger than 100 μm, indicating a potential of cellulose recovery from these fractions. While the particulate size fractions between 0.65 and 100 μm show a potential as a source for biofuel production due to an abundance of saturated C16 and C18 lipids. Both wastewaters were dominated by particulate (>0.65 μm), and oligo- and monomeric (<1 kDa) COD. Polymeric (1-1000 kDa) and colloidal (1000 kDa-0.65 μm) fractions had a low COD content, expected due to degradation in the sewer system upstream of the wastewater treatment plant. Biodegradation rates of particulate fractions increase with decreasing size. However, this was not seen in polymeric fractions where degradation rate was governed by chemical composition. Analytical validation of molecular weight and particle size distribution showed below filter cut-off retention of particles and polymers close to nominal cut-off, shifting the actual size distribution. Copyright © 2017. Published by Elsevier Ltd.
Fonseca-Azevedo, Karina; Herculano-Houzel, Suzana
2012-01-01
Despite a general trend for larger mammals to have larger brains, humans are the primates with the largest brain and number of neurons, but not the largest body mass. Why are great apes, the largest primates, not also those endowed with the largest brains? Recently, we showed that the energetic cost of the brain is a linear function of its numbers of neurons. Here we show that metabolic limitations that result from the number of hours available for feeding and the low caloric yield of raw foods impose a tradeoff between body size and number of brain neurons, which explains the small brain size of great apes compared with their large body size. This limitation was probably overcome in Homo erectus with the shift to a cooked diet. Absent the requirement to spend most available hours of the day feeding, the combination of newly freed time and a large number of brain neurons affordable on a cooked diet may thus have been a major positive driving force to the rapid increased in brain size in human evolution. PMID:23090991
Fonseca-Azevedo, Karina; Herculano-Houzel, Suzana
2012-11-06
Despite a general trend for larger mammals to have larger brains, humans are the primates with the largest brain and number of neurons, but not the largest body mass. Why are great apes, the largest primates, not also those endowed with the largest brains? Recently, we showed that the energetic cost of the brain is a linear function of its numbers of neurons. Here we show that metabolic limitations that result from the number of hours available for feeding and the low caloric yield of raw foods impose a tradeoff between body size and number of brain neurons, which explains the small brain size of great apes compared with their large body size. This limitation was probably overcome in Homo erectus with the shift to a cooked diet. Absent the requirement to spend most available hours of the day feeding, the combination of newly freed time and a large number of brain neurons affordable on a cooked diet may thus have been a major positive driving force to the rapid increased in brain size in human evolution.
NASA Astrophysics Data System (ADS)
Quinn, P.; Bates, T.; Coffman, D.; Covert, D.
2007-12-01
The impact of anthropogenic aerosol on cloud properties, cloud lifetime, and precipitation processes is one of the largest uncertainties in our current understanding of climate change. Aerosols affect cloud properties by serving as cloud condensation nuclei (CCN) thereby leading to the formation of cloud droplets. The process of cloud drop activation is a function of both the size and chemistry of the aerosol particles which, in turn, depend on the source of the aerosol and transformations that occur downwind. In situ field measurements that can lead to an improved understanding of the process of cloud drop formation and simplifying parameterizations for improving the accuracy of climate models are highly desirable. During the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS), the NOAA RV Ronald H. Brown encountered a wide variety of aerosol types ranging from marine near the Florida panhandle to urban and industrial in the Houston-Galveston area. These varied sources provided an opportunity to investigate the role of aerosol sources, aging, chemistry, and size in the activation of particles to form cloud droplets. Here, we use the correlation between variability in critical diameter for activation (determined empirically from measured CCN concentrations and the number size distribution) and aerosol composition to quantify the impact of composition on particle activation. Variability in aerosol composition is parameterized by the mass fraction of Hydrocarbon-like Organic Aerosol (HOA) for particle diameters less than 200 nm (vacuum aerodynamic). The HOA mass fraction in this size range is lowest for marine aerosol and higher for aerosol impacted by anthropogenic emissions. Combining all data collected at 0.44 percent supersaturation (SS) reveals that composition (defined in this way) explains 40 percent of the variance in the critical diameter. As expected, the dependence of activation on composition is strongest at lower SS. At the same time, correlations between HOA mass fraction and aerosol mean diameter show that these two parameters are essentially independent of one another for this data set. We conclude that, based on the variability of the HOA mass fraction observed during GoMACCS, composition plays a dominant role in determining the fraction of particles that are activated to form cloud droplets. Using Kohler theory, we estimate the error that results in calculated CCN concentrations if the organic fraction of the aerosol is neglected (i.e., a fully soluble composition of ammonium sulfate is assumed) for the range of organic mass fractions and mean diameters observed during GoMACCS. We then relate this error to the source and age of the aerosol. At 0.22 and 0.44 percent SS, the error is considerable for anthropogenic aerosol sampled near the source region as this aerosol has, on average, a high POM mass fraction and smaller particle mean diameter. The error is lower for more aged aerosol as it has a lower POM mass fraction and larger mean particle diameter. Hence, the percent error in calculated CCN concentration is expected to be larger for younger, organic- rich aerosol and smaller for aged, sulfate rich aerosol and for marine aerosol. We extend this analysis to continental and marine data sets recently reported by Dusek et al. [Science, 312, 1375, 2006] and Hudson [Geophys. Res., Lett., 34, L08801, 2007].
Fate of colloids during estuarine mixing in the Arctic
NASA Astrophysics Data System (ADS)
Pokrovsky, O. S.; Shirokova, L. S.; Viers, J.; Gordeev, V. V.; Shevchenko, V. P.; Chupakov, A. V.; Vorobieva, T. Y.; Candaudap, F.; Causserand, C.; Lanzanova, A.; Zouiten, C.
2014-02-01
The estuarine behavior of organic carbon (OC) and trace elements (TE) was studied for the largest European sub-Arctic river, which is the Severnaya Dvina; this river has a deltaic estuary covered in ice during several hydrological seasons: summer (July 2010, 2012) and winter (March 2009) baseflow, and the November-December 2011 ice-free period. Colloidal forms of OC and TE were assessed for three pore size cutoffs (1, 10, and 50 kDa) using an in situ dialysis procedure. Conventionally dissolved (< 0.22 μm) fractions demonstrated clear conservative behavior for Li, B, Na, Mg, K, Ca, Sr, Mo, Rb, Cs, and U during the mixing of freshwater with the White Sea; a significant (up to a factor of 10) concentration increase occurs with increases in salinity. Si and OC also displayed conservative behavior but with a pronounced decrease in concentration seawards. Rather conservative behavior, but with much smaller changes in concentration (variation within ±30%) over a full range of salinities, was observed for Ti, Ni, Cr, As, Co, Cu, Ga, Y, and heavy REE. Strong non-conservative behavior with coagulation/removal at low salinities (< 5‰) was exhibited by Fe, Al, Zr, Hf, and light REE. Finally, certain divalent metals exhibited non-conservative behavior with a concentration gain at low (~ 2-5‰, Ba, Mn) or intermediate (~ 10-15‰, Ba, Zn, Pb, Cd) salinities, which is most likely linked to TE desorption from suspended matter or sediment outflux. The most important result of this study is the elucidation of the behavior of the "truly" dissolved low molecular weight LMW< 1 kDa fraction containing Fe, OC, and a number of insoluble elements. The concentration of the LMW fraction either remains constant or increases its relative contribution to the overall dissolved (< 0.22 μm) pool as the salinity increases. Similarly, the relative proportion of colloidal (1 kDa-0.22 μm) pool for the OC and insoluble TE bound to ferric colloids systematically decreased seaward, with the largest decrease occurring at low (< 5‰) salinities. Overall, the observed decrease in the colloidal fraction may be related to the coagulation of organo-ferric colloids at the beginning of the mixing zone and therefore the replacement of the HMW1 kDa-0.22 μm portion by the LMW< 1 kDa fraction. These patterns are highly reproducible across different sampling seasons, suggesting significant enrichment of the mixing zone by the most labile (and potentially bioavailable) fraction of the OC, Fe and insoluble TE. The size fractionation of the colloidal material during estuarine mixing reflects a number of inorganic and biological processes, the relative contribution of which to element speciation varies depending on the hydrological stage and time of year. In particular, LMW< 1 kDa ligand production in the surface horizons of the mixing zone may be linked to heterotrophic mineralization of allochthonous DOM and/or photodestruction. Given the relatively low concentration of particulate versus dissolved load of most trace elements, desorption from the river suspended material was less pronounced than in other rivers in the world. As a result, the majority of dissolved components exhibited either conservative (OC and related elements such as divalent metals) or non-conservative, coagulation-controlled (Fe, Al, and insoluble TE associated with organo-ferric colloids) behavior. The climate warming at high latitudes is likely to intensify the production of LMW< 1 kDa organic ligands and the associated TE; therefore, the delivery of potentially bioavailable trace metal micronutrients from the land to the ocean may increase.
Optical properties of size fractions of suspended particulate matter in littoral waters of Québec
NASA Astrophysics Data System (ADS)
Mohammadpour, Gholamreza; Gagné, Jean-Pierre; Larouche, Pierre; Montes-Hugo, Martin A.
2017-11-01
Mass-specific absorption (ai∗(λ)) and scattering (bi∗(λ)) coefficients were derived for four size fractions (i = 0.2-0.4, 0.4-0.7, 0.7-10, and > 10 µm, λ = wavelength in nm) of suspended particulate matter (SPM) and with samples obtained from surface waters (i.e., 0-2 m depth) of the Saint Lawrence Estuary and Saguenay Fjord (SLE-SF) during June of 2013. For the visible-near-infrared spectral range (i.e., λ = 400-710 nm), mass-specific absorption coefficients of total SPM (i.e., particulates > 0.2 µm) (hereafter aSPM∗) had low values (e.g., < 0.01 m2 g-1 at λ = 440 nm) in areas of the lower estuary dominated by particle assemblages with relatively large mean grain size and high particulate organic carbon and chlorophyll a per unit of mass of SPM. Conversely, largest aSPM∗ values (i.e., > 0.05 m2 g-1 at λ = 440 nm) corresponded with locations of the upper estuary and SF where particulates were mineral-rich and/or their mean diameter was relatively small. The variability of two optical proxies (the spectral slope of particulate beam attenuation coefficient and the mass-specific particulate absorption coefficient, hereafter γ and Svis, respectively) with respect to changes in particle size distribution (PSD) and chemical composition was also examined. The slope of the PSD was correlated with bi∗(550) (Spearman rank correlation coefficient ρs up to 0.37) and ai∗(440) estimates (ρs up to 0.32) in a comparable way. Conversely, the contribution of particulate inorganic matter to total mass of SPM (FSPMPIM) had a stronger correlation with ai∗ coefficients at a wavelength of 440 nm (ρs up to 0.50). The magnitude of γ was positively related to FSPMi or the contribution of size fraction i to the total mass of SPM (ρs up to 0.53 for i = 0.2-0.4 µm). Also, the relation between γ and FSPMPIM variability was secondary (ρs = -0.34, P > 0.05). Lastly, the magnitude of Svis was inversely correlated with aSPM∗(440) (ρs = -0.55, P = 0.04) and FSPMPIM (ρs = -0.62, P = 0.018) in sampling locations with a larger marine influence (i.e., lower estuary).
NASA Astrophysics Data System (ADS)
Hill, Kimberly M.; Gaffney, John; Baumgardner, Sarah; Wilcock, Peter; Paola, Chris
2017-01-01
When fine sediment is added to a coarse-grained system, the mobility and composition of the bed can change dramatically. We conducted a series of flume experiments to determine how the size of fine particles introduced to an active gravel bed influences the mobility and composition of the bed. We initiated our experiments using a constant water discharge and feed rate of gravel. After the system reached steady state, we doubled the feed rate by supplying a second sediment of equal or lesser size, creating size ratios from 1:1 to 1:150. As we decreased the relative size of the fine particles, the system transitioned among three regimes: (1) For particle size ratios close to one, the bed slope increased to transport the additional load of similar-sized particles. The bed surface remained planar and unchanged. (2) For intermediate particle size ratios, the bed slope decreased with the additional fines. The bed surface became patchy with regions of fine and coarse grains. (3) For the largest particle size ratios (the smallest fines), the bed slope remained relatively unchanged. The subsurface became clogged with fine sediment, but fine particles were not present in the surface layer. This third regime constitutes washload, defined by those fractions that do not affect bed-material transport conditions. Our results indicate washload should be defined in terms of three conditions: small grain size relative to that of the bed material, full suspension based on the Rouse number, and a small rate of fine sediment supply relative to transport capacity.
Cheng, Zhibo; Zhang, Fenghua; Gale, William Jeffrey; Wang, Weichao; Sang, Wen; Yang, Haichang
2018-01-01
The objective of this study was to evaluate bacterial community structure and diversity in soil aggregate fractions when salinized farmland was reclaimed after >27 years of abandonment and then farmed again for 1, 5, 10, and 15 years. Illumina MiSeq high-throughput sequencing was performed to characterize the soil bacterial communities in 5 aggregate size classes in each treatment. The results indicated that reclamation significantly increased macro-aggregation (>0.25 mm), as well as soil organic C, available N, and available P. The 10-year field had the largest proportion (93.9%) of soil in the macro-aggregate size classes (i.e., >0.25 mm) and the highest soil electrical conductivity. The 5 most dominant phyla in the soil samples were Proteobacteria, Actinobacteria, Gemmatimonadetes, Acidobacteria, and Bacteroidetes. The phylogenetic diversity, Chao1, and Shannon indices increased after the abandoned land was reclaimed for farming, reaching maximums in the 15-year field. Among aggregate size classes, the 1-0.25 mm aggregates generally had the highest phylogenetic diversity, Chao1, and Shannon indices. Soil organic C and soil electrical conductivity were the main environmental factors affecting the soil bacterial communities. The composition and structure of the bacterial communities also varied significantly depending on soil aggregate size and time since reclamation.
Youn, Jong-sang; Csavina, Janae; Rine, Kyle P.; Shingler, Taylor; Taylor, Mark Patrick; Sáez, A. Eduardo; Betterton, Eric A.; Sorooshian, Armin
2016-01-01
This study examines size-resolved physicochemical data for particles sampled near mining and smelting operations and a background urban site in Arizona with a focus on how hygroscopic growth impacts particle deposition behavior. Particles with aerodynamic diameters between 0.056 – 18 μm were collected at three sites: (i) an active smelter operation in Hayden, AZ, (ii) a legacy mining site with extensive mine tailings in Iron King, AZ, and (iii) an urban site, inner-city Tucson, AZ. Mass size distributions of As and Pb exhibit bimodal profiles with a dominant peak between 0.32-0.56 μm and a smaller mode in the coarse range (> 3 μm). The hygroscopicity profile did not exhibit the same peaks owing to dependence on other chemical constituents. Sub-micrometer particles were generally more hygroscopic than super-micrometer ones at all three sites with finite water-uptake ability at all sites and particle sizes examined. Model calculations at a relative humidity of 99.5% reveal significant respiratory system particle deposition enhancements at sizes with the largest concentrations of toxic contaminants. Between dry diameters of 0.32 and 0.56 μm, for instance, ICRP and MPPD models predict deposition fraction enhancements of 171%-261% and 33%-63%, respectively, at the three sites. PMID:27700056
Evolution of Genome Size and Complexity in Pinus
Morse, Alison M.; Peterson, Daniel G.; Islam-Faridi, M. Nurul; Smith, Katherine E.; Magbanua, Zenaida; Garcia, Saul A.; Kubisiak, Thomas L.; Amerson, Henry V.; Carlson, John E.; Nelson, C. Dana; Davis, John M.
2009-01-01
Background Genome evolution in the gymnosperm lineage of seed plants has given rise to many of the most complex and largest plant genomes, however the elements involved are poorly understood. Methodology/Principal Findings Gymny is a previously undescribed retrotransposon family in Pinus that is related to Athila elements in Arabidopsis. Gymny elements are dispersed throughout the modern Pinus genome and occupy a physical space at least the size of the Arabidopsis thaliana genome. In contrast to previously described retroelements in Pinus, the Gymny family was amplified or introduced after the divergence of pine and spruce (Picea). If retrotransposon expansions are responsible for genome size differences within the Pinaceae, as they are in angiosperms, then they have yet to be identified. In contrast, molecular divergence of Gymny retrotransposons together with other families of retrotransposons can account for the large genome complexity of pines along with protein-coding genic DNA, as revealed by massively parallel DNA sequence analysis of Cot fractionated genomic DNA. Conclusions/Significance Most of the enormous genome complexity of pines can be explained by divergence of retrotransposons, however the elements responsible for genome size variation are yet to be identified. Genomic resources for Pinus including those reported here should assist in further defining whether and how the roles of retrotransposons differ in the evolution of angiosperm and gymnosperm genomes. PMID:19194510
Heavy metals in the finest size fractions of road-deposited sediments.
Lanzerstorfer, Christof
2018-08-01
The concentration of heavy metals in urban road-deposited sediments (RDS) can be used as an indicator for environmental pollution. Thus, their occurrence has been studied in whole road dust samples as well as in size fractions obtained by sieving. Because of the limitations of size separation by sieving little information is available about heavy metal concentrations in the road dust size fractions <20 μm. In this study air classification was applied for separation of dust size fractions smaller than 20 μm from RDS collected at different times during the year. The results showed only small seasonal variations in the heavy metals concentrations and size distribution. According to the Geoaccumulation Index the pollution of the road dust samples deceased in the following order: Sb » As > Cu ≈ Zn > Cr > Cd ≈ Pb ≈ Mn > Ni > Co ≈ V. For all heavy metals the concentration was higher in the fine size fractions compared to the coarse size fractions, while the concentration of Sr was size-independent. The enrichment of the heavy metals in the finest size fraction compared to the whole RDS <200 μm was up to 4.5-fold. The size dependence of the concentration decreased in the following order: Co ≈ Cd > Sb > (Cu) ≈ Zn ≈ Pb > As ≈ V » Mn. The approximation of the size dependence of the concentration as a function of the particle size by power functions worked very well. The correlation between particle size and concentration was high for all heavy metals. The increased heavy metals concentrations in the finest size fractions should be considered in the evaluation of the contribution of road dust re-suspension to the heavy metal contamination of atmospheric dust. Thereby, power functions can be used to describe the size dependence of the concentration. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Weinkauf, Manuel F. G.; Milker, Yvonne
2018-05-01
Benthic Foraminifera assemblages are employed for past environmental reconstructions, as well as for biomonitoring studies in recent environments. Despite their established status for such applications, and existing protocols for sample treatment, not all studies using benthic Foraminifera employ the same methodology. For instance, there is no broad practical consensus whether to use the >125 µm or >150 µm size fraction for benthic foraminiferal assemblage analyses. Here, we use early Pleistocene material from the Pefka E section on the Island of Rhodes (Greece), which has been counted in both size fractions, to investigate whether a 25 µm difference in the counted fraction is already sufficient to have an impact on ecological studies. We analysed the influence of the difference in size fraction on studies of biodiversity as well as multivariate assemblage analyses of the sample material. We found that for both types of studies, the general trends remain the same regardless of the chosen size fraction, but in detail significant differences emerge which are not consistently distributed between samples. Studies which require a high degree of precision can thus not compare results from analyses that used different size fractions, and the inconsistent distribution of differences makes it impossible to develop corrections for this issue. We therefore advocate the consistent use of the >125 µm size fraction for benthic foraminiferal studies in the future.
Logan, R; Briens, L
2012-11-01
Impeller speed was varied from 300 to 1500 rpm during the wet high shear granulation of a placebo formulation using a new vertical shaft PharmaMATRIX-1 granulator. The resulting granules were extensively analysed for differences caused by the varying impeller speed with emphasis on flowability. Microscopy showed that initial granules were formed primarily from microcrystalline cellulose at all tested impeller speeds. At low impeller speed of 300 rpm in the "bumpy" flow regime, forces from the impeller were insufficient to incorporate all the components of the formulation into the granules and to promote granule growth to a size that significantly improved flowability. The "roping" flow regime at higher impeller speeds promoted granule growth to a median particle size of at least 100 µm that improved the flowability of the mixture. Particle size distribution measurements and advanced indicators based on avalanching behavior, however, showed that an impeller speed of 700 rpm produced the largest fraction of optimal granules with the best flowability potential. This impeller speed allowed good development of "roping" flow for sufficient mixing, collision rates and kinetic energy for collisions while minimizing excessive centrifugal forces that promote buildup around the bowl perimeter.
NASA Astrophysics Data System (ADS)
Boswell, Steven M.; Toucanne, Samuel; Creyts, Timothy T.; Hemming, Sidney R.
2018-05-01
We introduce a methodology for determining the transport distance of subglacially comminuted and entrained sediments. We pilot this method on sediments from the terminal margin of the Baltic Ice Stream, the largest ice stream of the Fennoscandian Ice Sheet during the Last Glacial Maximum. A strong correlation (R2 = 0.83) between the εNd and latitudes of circum-Baltic river sediments enables us to use εNd as a calibrated measure of distance. The proportion of subglacially transported sediments in a sample is estimated from grain size ratios in the silt fraction (<63 μm). Coupled εNd and grain size analyses reveal a common erosion source for the Baltic Ice Stream sediments located near the Åland sill, more than 850 km upstream from the terminal moraines. This result is in agreement with both numerical modeling and geomorphological investigations of Fennoscandinavian erosion, and is consistent with rapid ice flow into the Baltic basins prior to the Last Glacial Maximum. The methodology introduced here could be used to infer the distances of glacigenic sediment transport from Late Pleistocene and earlier glaciations.
Analysis of hard coal quality for narrow size fraction under 20 mm
NASA Astrophysics Data System (ADS)
Niedoba, Tomasz; Pięta, Paulina
2018-01-01
The paper presents the results of an analysis of hard coal quality diversion in narrow size fraction by using taxonomic methods. Raw material samples were collected in selected mines of Upper Silesian Industrial Region and they were classified according to the Polish classification as types 31, 34.2 and 35. Then, each size fraction was characterized in terms of the following properties: density, ash content, calorific content, volatile content, total sulfur content and analytical moisture. As a result of the analysis it can be stated that the best quality in the entire range of the tested size fractions was the 34.2 coking coal type. At the same time, in terms of price parameters, high quality of raw material characterised the following size fractions: 0-6.3 mm of 31 energetic coal type and 0-3.15 mm of 35 coking coal type. The methods of grouping (Ward's method) and agglomeration (k-means method) have shown that the size fraction below 10 mm was characterized by higher quality in all the analyzed hard coal types. However, the selected taxonomic methods do not make it possible to identify individual size fraction or hard coal types based on chosen parameters.
NASA Technical Reports Server (NTRS)
Cecil, Daniel J.; Goodman, Steven J.; Boccippio, Dennis J.; Zipser, Edward J.; Nesbitt, Stephen W.
2004-01-01
During its first three years, the Tropical Rainfall Measuring Mission (TRMM) satellite observed nearly six million precipitation features. The population of precipitation features is sorted by lightning flash rate, minimum brightness temperature, maximum radar reflectivity, areal extent, and volumetric rainfall. For each of these characteristics, essentially describing the convective intensity or the size of the features, the population is broken into categories consisting of the top 0.001%, top 0.01%, top 0.1%, top 1%, top 2.4%, and remaining 97.6%. The set of 'weakest / smallest' features comprises 97.6% of the population because that fraction does not have detected lightning, with a minimum detectable flash rate 0.7 fl/min. The greatest observed flash rate is 1351 fl/min; the lowest brightness temperatures are 42 K (85-GHz) and 69 K (37- GHz). The largest precipitation feature covers 335,000 sq km and the greatest rainfall from an individual precipitation feature exceeds 2 x 10(exp 12) kg of water. There is considerable overlap between the greatest storms according to different measures of convective intensity. The largest storms are mostly independent of the most intense storms. The set of storms producing the most rainfall is a convolution of the largest and the most intense storms. This analysis is a composite of the global tropics and subtropics. Significant variability is known to exist between locations, seasons, and meteorological regimes. Such variability will be examined in Part II. In Part I, only a crude land / Ocean separation is made. The known differences in bulk lightning flash rates over land and Ocean result from at least two differences in the precipitation feature population: the frequency of occurrence of intense storms, and the magnitude of those intense storms that do occur. Even when restricted to storms with the same brightness temperature, same size, or same radar reflectivity aloft, the storms over water are considerably less likely to produce lightning than are comparable storms over land.
NASA Technical Reports Server (NTRS)
Cecil, Daniel J.; Goodman, Steven J.; Boccippio, Dennis J.; Zipser, Edward J.; Nesbitt, Stephen W.
2005-01-01
During its first three years, the Tropical Rainfall Measuring Mission (TRMM) satellite observed nearly six million precipitation features. The population of precipitation features is sorted by lightning flash rate, minimum brightness temperature, maximum radar reflectivity. areal extent, and volumetric rainfall. For each of these characteristics, essentially describing the convective intensity or the size of the features, the population is broken into categories consisting of the top 0.001%, top 0.01%, top 0.1%, top 1%, top 2.4%. and remaining 97.6%. The set of weakest/smallest features composes 97.6% of the population because that fraction does not have detected lightning, with a minimum detectable flash rate of 0.7 flashes (fl) per minute. The greatest observed flash rate is 1351 fl per minute; the lowest brightness temperatures are 42 K (85 GHz) and 69 K (37 GHz). The largest precipitation feature covers 335 000 square kilometers and the greatest rainfall from an individual precipitation feature exceeds 2 x 10 kg per hour of water. There is considerable overlap between the greatest storms according to different measures of convective intensity. The largest storms are mostly independent of the most intense storms. The set of storms producing the most rainfall is a convolution of the largest and the most intense storms. This analysis is a composite of the global Tropics and subtropics. Significant variability is known to exist between locations. seasons, and meteorological regimes. Such variability will be examined in Part II. In Part I, only a crude land-ocean separation is made. The known differences in bulk lightning flash rates over land and ocean result from at least two differences in the precipitation feature population: the frequency of occurrence of intense storms and the magnitude of those intense storms that do occur. Even when restricted to storms with the same brightness temperature, same size, or same radar reflectivity aloft, the storms over water are considerably less likely to produce lightning than are comparable storms over land.
Liao, Hao; Zhang, Yuchen; Zuo, Qinyan; Du, Binbin; Chen, Wenli; Wei, Dan; Huang, Qiaoyun
2018-04-20
Soils, with non-uniform distribution of nutrients across different aggregate-size fractions, provide spatially heterogeneous microhabitats for microorganisms. However, very limited information is available on microbial distributions and their response to fertilizations across aggregate-size fractions in agricultural soils. Here, we examined the structures of bacterial and fungal communities across different aggregate-size fractions (2000-250 μm, 250-53 μm and <53 μm) in response to 35-years organic and/or chemical fertilization regimes in the soil of northeastern China by phospholipid fatty acid (PLFA) and high throughput sequencing (HTS) technology. Our results show that larger fractions (>53 μm), especially 250-53 μm aggregates, which contain more soil C and N, are associated with greater microbial biomass and higher fungi/bacteria ratio. We firstly reported the fungal community composition in different aggregate-size fractions by HTS technology and found more Ascomycota but less Zygomycota in larger fractions with higher C content across all fertilization regimes. Fertilization and aggregate-size fractions significantly affect the compositions of bacterial and fungal communities although their effects are different. The bacterial community is mainly driven by fertilization, especially chemical fertilizers, and is closely related to the shifts of soil P (phosphorus). The fungal community is preferentially impacted by different aggregate-size fractions and is more associated with the changes of soil C and N. The distinct responses of microbial communities suggest different mechanisms controlling the assembly of soil bacterial and fungal communities at aggregate scale. The investigations of both bacterial and fungal communities could provide a better understanding on nutrient cycling across aggregate-size fractions. Copyright © 2018. Published by Elsevier B.V.
Fall, S; Nazaret, S; Chotte, J L; Brauman, A
2004-08-01
The building and foraging activities of termites are known to modify soil characteristics such as the heterogeneity. In tropical savannas the impact of the activity of soil-feeding termites ( Cubitermes niokoloensis) has been shown to affect the properties of the soil at the aggregate level by creating new soil microenvironments (aggregate size fractions) [13]. These changes were investigated in greater depth by looking at the microbial density (AODC) and the genetic structure (automated rRNA intergenic spacer analysis: ARISA) of the communities in the different aggregate size fractions (i.e., coarse sand, fine sand, coarse silt, fine silt, and dispersible clays) separated from compartments (internal and external wall) of three Cubitermes niokoloensis mounds. The bacterial density of the mounds was significantly higher (1.5 to 3 times) than that of the surrounding soil. Within the aggregate size fractions, the termite building activity resulted in a significant increase in bacterial density within the coarser fractions (>20 mum). Multivariate analysis of the ARISA profiles revealed that the bacterial genetic structures of unfractionated soil and soil aggregate size fractions of the three mounds was noticeably different from the savanna soil used as a reference. Moreover, the microbial community associated with the different microenvironments in the three termite mounds revealed three distinct clusters formed by the aggregate size fractions of each mound. Except for the 2-20 mum fraction, these results suggest that the mound microbial genetic structure is more dependent upon microbial pool affiliation (the termite mound) than on the soil location (aggregate size fraction). The causes of the specificity of the microbial community structure of termite mound aggregate size fractions are discussed.
Weidemann, E; Allegrini, E; Fruergaard Astrup, T; Hulgaard, T; Riber, C; Jansson, S
2016-03-01
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) formed in modern Waste-to-Energy plants are primarily found in the generated ashes and air pollution control residues, which are usually disposed of as hazardous waste. The objective of this study was to explore the occurrence of PCDD/F in different grain size fractions in the boiler ash, i.e. ash originating from the convection pass of the boiler. If a correlation between particle size and dioxin concentrations could be found, size fractionation of the ashes could reduce the total amount of hazardous waste. Boiler ash samples from ten sections of a boiler's convective part were collected over three sampling days, sieved into three different size fractions - <0.09 mm, 0.09-0.355 mm, and >0.355 mm - and analysed for PCDD/F. The coarse fraction (>0.355 mm) in the first sections of the horizontal convection pass appeared to be of low toxicity with respect to dioxin content. While the total mass of the coarse fraction in this boiler was relatively small, sieving could reduce the amount of ash containing toxic PCDD/F by around 0.5 kg per tonne input waste or around 15% of the collected boiler ash from the convection pass. The mid-size fraction in this study covered a wide size range (0.09-0.355 mm) and possibly a low toxicity fraction could be identified by splitting this fraction into more narrow size ranges. The ashes exhibited uniform PCDD/F homologue patterns which suggests a stable and continuous generation of PCDD/F. Copyright © 2016 Elsevier Ltd. All rights reserved.
Size and modal analyses of fines and ultrafines from some Apollo 17 samples
NASA Technical Reports Server (NTRS)
Greene, G. M.; King, D. T., Jr.; Banholzer, G. S., Jr.; King, E. A.
1975-01-01
Scanning electron and optical microscopy techniques have been used to determine the grain-size frequency distributions and morphology-based modal analyses of fine and ultrafine fractions of some Apollo 17 regolith samples. There are significant and large differences between the grain-size frequency distributions of the less than 10-micron size fraction of Apollo 17 samples, but there are no clear relations to the local geologic setting from which individual samples have been collected. This may be due to effective lateral mixing of regolith particles in this size range by micrometeoroid impacts. None of the properties of the frequency distributions support the idea of selective transport of any fine grain-size fraction, as has been proposed by other workers. All of the particle types found in the coarser size fractions also occur in the less than 10-micron particles. In the size range from 105 to 10 microns there is a strong tendency for the percentage of regularly shaped glass to increase as the graphic mean grain size of the less than 1-mm size fraction decreases, both probably being controlled by exposure age.
Consideration of Kaolinite Interference Correction for Quartz Measurements in Coal Mine Dust
Lee, Taekhee; Chisholm, William P.; Kashon, Michael; Key-Schwartz, Rosa J.; Harper, Martin
2015-01-01
Kaolinite interferes with the infrared analysis of quartz. Improper correction can cause over- or underestimation of silica concentration. The standard sampling method for quartz in coal mine dust is size selective, and, since infrared spectrometry is sensitive to particle size, it is intuitively better to use the same size fractions for quantification of quartz and kaolinite. Standard infrared spectrometric methods for quartz measurement in coal mine dust correct interference from the kaolinite, but they do not specify a particle size for the material used for correction. This study compares calibration curves using as-received and respirable size fractions of nine different examples of kaolinite in the different correction methods from the National Institute for Occupational Safety and Health Manual of Analytical Methods (NMAM) 7603 and the Mine Safety and Health Administration (MSHA) P-7. Four kaolinites showed significant differences between calibration curves with as-received and respirable size fractions for NMAM 7603 and seven for MSHA P-7. The quartz mass measured in 48 samples spiked with respirable fraction silica and kaolinite ranged between 0.28 and 23% (NMAM 7603) and 0.18 and 26% (MSHA P-7) of the expected applied mass when the kaolinite interference was corrected with respirable size fraction kaolinite. This is termed “deviation,” not bias, because the applied mass is also subject to unknown variance. Generally, the deviations in the spiked samples are larger when corrected with the as-received size fraction of kaolinite than with the respirable size fraction. Results indicate that if a kaolinite correction with reference material of respirable size fraction is applied in current standard methods for quartz measurement in coal mine dust, the quartz result would be somewhat closer to the true exposure, although the actual mass difference would be small. Most kinds of kaolinite can be used for laboratory calibration, but preferably, the size fraction should be the same as the coal dust being collected. PMID:23767881
Consideration of kaolinite interference correction for quartz measurements in coal mine dust.
Lee, Taekhee; Chisholm, William P; Kashon, Michael; Key-Schwartz, Rosa J; Harper, Martin
2013-01-01
Kaolinite interferes with the infrared analysis of quartz. Improper correction can cause over- or underestimation of silica concentration. The standard sampling method for quartz in coal mine dust is size selective, and, since infrared spectrometry is sensitive to particle size, it is intuitively better to use the same size fractions for quantification of quartz and kaolinite. Standard infrared spectrometric methods for quartz measurement in coal mine dust correct interference from the kaolinite, but they do not specify a particle size for the material used for correction. This study compares calibration curves using as-received and respirable size fractions of nine different examples of kaolinite in the different correction methods from the National Institute for Occupational Safety and Health Manual of Analytical Methods (NMAM) 7603 and the Mine Safety and Health Administration (MSHA) P-7. Four kaolinites showed significant differences between calibration curves with as-received and respirable size fractions for NMAM 7603 and seven for MSHA P-7. The quartz mass measured in 48 samples spiked with respirable fraction silica and kaolinite ranged between 0.28 and 23% (NMAM 7603) and 0.18 and 26% (MSHA P-7) of the expected applied mass when the kaolinite interference was corrected with respirable size fraction kaolinite. This is termed "deviation," not bias, because the applied mass is also subject to unknown variance. Generally, the deviations in the spiked samples are larger when corrected with the as-received size fraction of kaolinite than with the respirable size fraction. Results indicate that if a kaolinite correction with reference material of respirable size fraction is applied in current standard methods for quartz measurement in coal mine dust, the quartz result would be somewhat closer to the true exposure, although the actual mass difference would be small. Most kinds of kaolinite can be used for laboratory calibration, but preferably, the size fraction should be the same as the coal dust being collected.
Percolation of a general network of networks.
Gao, Jianxi; Buldyrev, Sergey V; Stanley, H Eugene; Xu, Xiaoming; Havlin, Shlomo
2013-12-01
Percolation theory is an approach to study the vulnerability of a system. We develop an analytical framework and analyze the percolation properties of a network composed of interdependent networks (NetONet). Typically, percolation of a single network shows that the damage in the network due to a failure is a continuous function of the size of the failure, i.e., the fraction of failed nodes. In sharp contrast, in NetONet, due to the cascading failures, the percolation transition may be discontinuous and even a single node failure may lead to an abrupt collapse of the system. We demonstrate our general framework for a NetONet composed of n classic Erdős-Rényi (ER) networks, where each network depends on the same number m of other networks, i.e., for a random regular network (RR) formed of interdependent ER networks. The dependency between nodes of different networks is taken as one-to-one correspondence, i.e., a node in one network can depend only on one node in the other network (no-feedback condition). In contrast to a treelike NetONet in which the size of the largest connected cluster (mutual component) depends on n, the loops in the RR NetONet cause the largest connected cluster to depend only on m and the topology of each network but not on n. We also analyzed the extremely vulnerable feedback condition of coupling, where the coupling between nodes of different networks is not one-to-one correspondence. In the case of NetONet formed of ER networks, percolation only exhibits two phases, a second order phase transition and collapse, and no first order percolation transition regime is found in the case of the no-feedback condition. In the case of NetONet composed of RR networks, there exists a first order phase transition when the coupling strength q (fraction of interdependency links) is large and a second order phase transition when q is small. Our insight on the resilience of coupled networks might help in designing robust interdependent systems.
Goldcamp, Michael J; Goldcamp, Diane M; Ashley, Kevin; Fernback, Joseph E; Agrawal, Anoop; Millson, Mark; Marlow, David; Harrison, Kenneth
2009-12-01
Beryllium exposure can cause a number of deleterious health effects, including beryllium sensitization and the potentially fatal chronic beryllium disease. Efficient methods for monitoring beryllium contamination in workplaces are valuable to help prevent dangerous exposures to this element. In this work, performance data on the extraction of beryllium from various size fractions of high-fired beryllium oxide (BeO) particles (from < 32 microm up to 212 microm) using dilute aqueous ammonium bifluoride (ABF) solution were obtained under various conditions. Beryllium concentrations were determined by fluorescence using a hydroxybenzoquinoline fluorophore. The effects of ABF concentration and volume, extraction temperature, sample tube types, and presence of filter or wipe media were examined. Three percent ABF extracts beryllium nearly twice as quickly as 1% ABF; extraction solution volume has minimal influence. Elevated temperatures increase the rate of extraction dramatically compared with room temperature extraction. Sample tubes with constricted tips yield poor extraction rates owing to the inability of the extraction medium to access the undissolved particles. The relative rates of extraction of Be from BeO of varying particle sizes were examined. Beryllium from BeO particles in fractions ranging from less than 32 microm up to 212 microm were subjected to various extraction schemes. The smallest BeO particles are extracted more quickly than the largest particles, although at 90 degrees C even the largest BeO particles reach nearly quantitative extraction within 4 hr in 3% ABF. Extraction from mixed cellulosic-ester filters, cellulosic surface-sampling filters, wetted cellulosic dust wipes, and cotton gloves yielded 90% or greater recoveries. Scanning electron microscopy of BeO particles, including partially dissolved particles, shows that dissolution in dilute ABF occurs not just on the exterior surface but also via accessing particles' interiors due to porosity of the BeO material. Comparison of dissolution kinetics data shows that as particle diameter approximately doubles, extraction time is increased by a factor of about 1.5, which is consistent with the influence of porosity on dissolution.
Formation and stability of nanoemulsions with mixed ionic-nonionic surfactants.
Wang, Lijuan; Tabor, Rico; Eastoe, Julian; Li, Xuefeng; Heenan, Richard K; Dong, Jinfeng
2009-11-14
A simple, low-energy two-step dilution process has been applied with binary mixtures of ionic-nonionic surfactants to prepare nanoemulsions. The systems consist of water/DDAB-C(12)E(5)/decane. Nanoemulsions were obtained by dilution of concentrates located in bicontinuous microemulsion or lamellar liquid crystal phase regions. The nanoemulsions generated were investigated both by contrast-variation small-angle neutron scattering (SANS) and dynamic light scattering (DLS). The SANS profiles show that C(12)E(5) nanodroplets suffer essentially no structural change on incorporation of the cationic DDAB surfactant, except for increased electrostatic repulsive interactions. Interestingly, SANS indicated that the preferred droplet sizes were hardly affected by the surfactant mixture composition (up to a DDAB molar ratio (m(DDAB)/(m(DDAB) + m(C(12)E(5))) of 0.40) and droplet volume fraction, phi, between 0.006 and 0.120. No notable changes in the structure or radius of nanoemulsion droplets were observed by SANS over the test period of 1 d, although the droplet number intensity decreased significantly in systems stabilized by C(12)E(5) only. However, the DLS sizing shows a marked increase with time, with higher droplet volume fractions giving rise to the largest changes. The discrepancy between apparent nanoemulsion droplet size determined by DLS and SANS data can be attributed to long-range droplet interactions occurring outside of the SANS sensitivity range. The combined SANS and DLS results suggest flocculation is the main mechanism of instability for these nanoemulsions. The flocculation rate is shown to be significantly retarded by addition of the charged DDAB, which may be due to enhanced electrostatic repulsive forces between droplets, leading to improved stability of the nanoemulsions.
Mastrolonardo, Giovanni; Hudspith, Victoria A; Francioso, Ornella; Rumpel, Cornelia; Montecchio, Daniela; Doerr, Stefan H; Certini, Giacomo
2017-10-01
Charcoal is a heterogeneous material exhibiting a diverse range of properties. This variability represents a serious challenge in studies that use the properties of natural charcoal for reconstructing wildfires history in terrestrial ecosystems. In this study, we tested the hypothesis that particle size is a sufficiently robust indicator for separating forest wildfire combustion products into fractions with distinct properties. For this purpose, we examined two different forest environments affected by contrasting wildfires in terms of severity: an eucalypt forest in Australia, which experienced an extremely severe wildfire, and a Mediterranean pine forest in Italy, which burned to moderate severity. We fractionated the ash/charcoal layers collected on the ground into four size fractions (>2, 2-1, 1-0.5, <0.5mm) and analysed them for mineral ash content, elemental composition, chemical structure (by IR spectroscopy), fuel source and charcoal reflectance (by reflected-light microscopy), and chemical/thermal recalcitrance (by chemical and thermal oxidation). At both sites, the finest fraction (<0.5mm) had, by far, the greatest mass. The C concentration and C/N ratio decreased with decreasing size fraction, while pH and the mineral ash content followed the opposite trend. The coarser fractions showed higher contribution of amorphous carbon and stronger recalcitrance. We also observed that certain fuel types were preferentially represented by particular size fractions. We conclude that the differences between ash/charcoal size fractions were most likely primarily imposed by fuel source and secondarily by burning conditions. Size fractionation can therefore serve as a valuable tool to characterise the forest wildfire combustion products, as each fraction displays a narrower range of properties than the whole sample. We propose the mineral ash content of the fractions as criterion for selecting the appropriate number of fractions to analyse. Copyright © 2016. Published by Elsevier B.V.
Coarsening of Ni(3)Si precipitates in binary Ni-Si alloys
NASA Astrophysics Data System (ADS)
Cho, Jin-Hoon
The coarsening behavior of coherent gammasp'\\ (Nisb3Si) precipitates with volume fractions, f, ranging from 0.017 to 0.32 in binary Ni-Si alloys was investigated. All of the alloys were aged at 650sp° C for times as long as 2760 h and measurements were made of the kinetics of coarsening, particle size distributions and the evolution of particle morphologies using transmission electron microscopy. The kinetics of solute depletion were investigated using measurements of the ferromagnetic Curie temperature. We successfully overcame the difficulties in obtaining uniform spatial distributions of precipitates at small f by employing an up-quenching treatment; alloys with f less than 0.1 were pre-aged at 530sp° C prior to re-aging at the normal aging temperature of 650sp° C. Almost identical coarsening behavior exhibited by an alloy subjected to both isothermal and up-quenching treatments confirm that the up-quenching treatments do not affect any aspect of the coarsening behavior. Consistent with previous studies, the particles are spherical in shape when small and evolve to a cuboidal shape, with flat faces parallel to {}, as they grow. This shape transition was characterized quantitatively by analyzing the intensity distributions of Fast Fourier Transform spectra generated from the digitized images of TEM micrographs. The precipitates display no tendency towards becoming plate-shaped and they resist coalescence even at the largest sizes, which approach 400 nm in diameter at 2760 h of aging for higher volume fraction alloys. For f < 0.1, the kinetics of coarsening and solute depletion as well as the standard deviation of the particle size distributions decrease as f increases. This anomalous behavior has been documented previously by other investigators, but is contrary to the predictions of theories that incorporate the volume fraction effect in coarsening kinetics. We find no convincing evidence to suggest that f influences any aspect of the coarsening behavior at larger f. It is suggested that the lack of agreement between the volume fraction effects observed experimentally and those predicted theoretically stems from the elastic interactions having a strong influence on the kinetics of coarsening, effectively counteracting the accelerating influence of f on the coarsening kinetics predicted by the theories.
Hansson, Mari; Pemberton, John; Engkvist, Ola; Feierberg, Isabella; Brive, Lars; Jarvis, Philip; Zander-Balderud, Linda; Chen, Hongming
2014-06-01
High-throughput screening (HTS) is widely used in the pharmaceutical industry to identify novel chemical starting points for drug discovery projects. The current study focuses on the relationship between molecular hit rate in recent in-house HTS and four common molecular descriptors: lipophilicity (ClogP), size (heavy atom count, HEV), fraction of sp(3)-hybridized carbons (Fsp3), and fraction of molecular framework (f(MF)). The molecular hit rate is defined as the fraction of times the molecule has been assigned as active in the HTS campaigns where it has been screened. Beta-binomial statistical models were built to model the molecular hit rate as a function of these descriptors. The advantage of the beta-binomial statistical models is that the correlation between the descriptors is taken into account. Higher degree polynomial terms of the descriptors were also added into the beta-binomial statistic model to improve the model quality. The relative influence of different molecular descriptors on molecular hit rate has been estimated, taking into account that the descriptors are correlated to each other through applying beta-binomial statistical modeling. The results show that ClogP has the largest influence on the molecular hit rate, followed by Fsp3 and HEV. f(MF) has only a minor influence besides its correlation with the other molecular descriptors. © 2013 Society for Laboratory Automation and Screening.
Haynes, R J; Belyaeva, O N; Zhou, Y-F
2015-01-01
In order to better characterize mechanically shredded municipal green waste used for composting, five samples from different origins were separated into seven particle size fractions (>20mm, 10-20mm, 5-10mm, 2-5mm, 1-2mm, 0.5-1.0mm and <0.5mm diameter) and analyzed for organic C and nutrient content. With decreasing particle size there was a decrease in organic C content and an increase in macronutrient, micronutrient and ash content. This reflected a concentration of lignified woody material in the larger particle fractions and of green stems and leaves and soil in the smaller particle sizes. The accumulation of nutrients in the smaller sized fractions means the practice of using large particle sizes for green fuel and/or mulch does not greatly affect nutrient cycling via green waste composting. During a 100-day incubation experiment, using different particle size fractions of green waste, there was a marked increase in both cumulative CO2 evolution and mineral N accumulation with decreasing particle size. Results suggested that during composting of bulk green waste (with a high initial C/N ratio such as 50:1), mineral N accumulates because decomposition and net N immobilization in larger particles is slow while net N mineralization proceeds rapidly in the smaller (<1mm dia.) fractions. Initially, mineral N accumulated in green waste as NH4(+)-N, but over time, nitrification proceeded resulting in accumulation of NO3(-)-N. It was concluded that the nutrient content, N mineralization potential and decomposition rate of green waste differs greatly among particle size fractions and that chemical analysis of particle size fractions provides important additional information over that of a bulk sample. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rajaneesh, K. M.; Mitbavkar, Smita; Anil, Arga Chandrashekar
2018-07-01
Phytoplankton size-fractionated biomass is an important determinant of the type of food web functioning in aquatic ecosystems. Knowledge about the effect of seasonal salinity gradient on the size-fractionated biomass dynamics is still lacking, especially in tropical estuaries experiencing monsoon. The phytoplankton size-fractionated chlorophyll a biomass (>3 μm and <3 μm) and picophytoplankton community structure were characterized in the monsoonal Zuari estuary, along the west coast of India, from October 2010 to September 2011 across the salinity gradient (0-35). On an annual scale, >3 μm size-fraction was the major contributor to the total phytoplankton chlorophyll a biomass with the ephemeral dominance of <3 μm size-fraction. During monsoon season, freshwater runoff and shorter water residence time resulted in a size-independent response. The lowest annual chlorophyll a biomass concentration of both size-fractions showed signs of recovery with increasing salinity downstream towards the end of the monsoon season. In contrast, the chlorophyll a biomass response was size-dependent during the non-monsoon seasons with the sporadic dominance (>50%) of <3 μm chlorophyll a biomass during high water temperature episodes from downstream to middle estuary during pre-monsoon and at low salinity and high nutrient conditions upstream during post-monsoon. These conditions also influenced the picophytoplankton community structure with picoeukaryotes dominating during the pre-monsoon, phycoerythrin containing Synechococcus during the monsoon and phycocyanin containing Synechococcus during the post-monsoon. This study highlights switching over of dominance in size-fractionated phytoplankton chlorophyll a biomass at intra, inter-seasonal and spatial scales which will likely govern the estuarine trophodynamics.
NASA Astrophysics Data System (ADS)
Schroth, A. W.; Crusius, J.; Kroeger, K. D.; Hoyer, I. R.; Osburn, C. L.
2010-12-01
Iron (Fe) is a micronutrient that is thought to limit phytoplankton productivity in offshore waters of the Gulf of Alaska (GoA). However, it has been proposed that in coastal regions where offshore, Fe-limited, nitrate-rich waters mix with relatively Fe-rich river plumes, productive ecosystems and fisheries result. Indeed, an observed northward increase in phytoplankton biomass along the pacific coast of North America has been attributed to higher input of riverine Fe to coastal waters, suggesting that many of the coastal ecosystems of the North Pacific rely heavily on this input of Fe as a nutrient source. Based on our studies of the Copper River (the largest point source of freshwater to the GoA) and its tributaries, it is clear that riverine Fe delivered to the GoA is primarily derived from fine glacial flour generated by glacial weathering, which imparts a unique partitioning of Fe species and Fe size fractionation in coastal river plumes. Furthermore, the distribution of Fe species and size fractionation exhibits significant seasonal and spatial variability based on the source of iron within the watershed, which varies from glacial mechanical weathering of bedrock to internal chemical processing in portions of watersheds with forest and wetland land covers. These findings are relevant to our understanding of the GoA biogeochemical system as it exists today and can help to predict how the system may evolve as glaciers within the GoA watershed continue to recede.
Díez, Beatriz; Nylander, Johan A. A.; Ininbergs, Karolina; Dupont, Christopher L.; Allen, Andrew E.; Yooseph, Shibu; Rusch, Douglas B.; Bergman, Birgitta
2016-01-01
Unicellular cyanobacteria are ubiquitous photoautotrophic microbes that contribute substantially to global primary production. Picocyanobacteria such as Synechococcus and Prochlorococcus depend on chlorophyll a-binding protein complexes to capture light energy. In addition, Synechococcus has accessory pigments organized into phycobilisomes, and Prochlorococcus contains chlorophyll b. Across a surface water transect spanning the sparsely studied tropical Indian Ocean, we examined Synechococcus and Prochlorococcus occurrence, taxonomy and habitat preference in an evolutionary context. Shotgun sequencing of size fractionated microbial communities from 0.1 μm to 20 μm and subsequent phylogenetic analysis indicated that cyanobacteria account for up to 15% of annotated reads, with the genera Prochlorococcus and Synechococcus comprising 90% of the cyanobacterial reads, even in the largest size fraction (3.0–20 mm). Phylogenetic analyses of cyanobacterial light-harvesting genes (chl-binding pcb/isiA, allophycocyanin (apcAB), phycocyanin (cpcAB) and phycoerythin (cpeAB)) mostly identified picocyanobacteria clades comprised of overlapping sequences obtained from Indian Ocean, Atlantic and/or Pacific Oceans samples. Habitat reconstructions coupled with phylogenetic analysis of the Indian Ocean samples suggested that large Synechococcus-like ancestors in coastal waters expanded their ecological niche towards open oligotrophic waters in the Indian Ocean through lineage diversification and associated streamlining of genomes (e.g. loss of phycobilisomes and acquisition of Chl b); resulting in contemporary small celled Prochlorococcus. Comparative metagenomic analysis with picocyanobacteria populations in other oceans suggests that this evolutionary scenario may be globally important. PMID:27196065
Binder, Harald; Sauerbrei, Willi; Royston, Patrick
2013-06-15
In observational studies, many continuous or categorical covariates may be related to an outcome. Various spline-based procedures or the multivariable fractional polynomial (MFP) procedure can be used to identify important variables and functional forms for continuous covariates. This is the main aim of an explanatory model, as opposed to a model only for prediction. The type of analysis often guides the complexity of the final model. Spline-based procedures and MFP have tuning parameters for choosing the required complexity. To compare model selection approaches, we perform a simulation study in the linear regression context based on a data structure intended to reflect realistic biomedical data. We vary the sample size, variance explained and complexity parameters for model selection. We consider 15 variables. A sample size of 200 (1000) and R(2) = 0.2 (0.8) is the scenario with the smallest (largest) amount of information. For assessing performance, we consider prediction error, correct and incorrect inclusion of covariates, qualitative measures for judging selected functional forms and further novel criteria. From limited information, a suitable explanatory model cannot be obtained. Prediction performance from all types of models is similar. With a medium amount of information, MFP performs better than splines on several criteria. MFP better recovers simpler functions, whereas splines better recover more complex functions. For a large amount of information and no local structure, MFP and the spline procedures often select similar explanatory models. Copyright © 2012 John Wiley & Sons, Ltd.
Diez, Beatriz; Nylander, Johan A. A.; Ininbergs, Karolina; ...
2016-05-19
Unicellular cyanobacteria are ubiquitous photoautotrophic microbes that contribute substantially to global primary production. Picocyanobacteria such as Synechococcus and Prochlorococcus depend on chlorophyll a-binding protein complexes to capture light energy. In addition, Synechococcus has accessory pigments organized into phycobilisomes, and Prochlorococcus contains chlorophyll b. Across a surface water transect spanning the sparsely studied tropical Indian Ocean, we examined Synechococcus and Prochlorococcus occurrence, taxonomy and habitat preference in an evolutionary context. Shotgun sequencing of size fractionated microbial communities from 0.1 μm to 20 μm and subsequent phylogenetic analysis indicated that cyanobacteria account for up to 15% of annotated reads, with the generamore » Prochlorococcus and Synechococcus comprising 90% of the cyanobacterial reads, even in the largest size fraction (3.0–20 mm). Phylogenetic analyses of cyanobacterial light-harvesting genes (chl-binding pcb/isiA, allophycocyanin ( apcAB), phycocyanin ( cpcAB) and phycoerythin ( cpeAB)) mostly identified picocyanobacteria clades comprised of overlapping sequences obtained from Indian Ocean, Atlantic and/or Pacific Oceans samples. Habitat reconstructions coupled with phylogenetic analysis of the Indian Ocean samples suggested that large Synechococcus-like ancestors in coastal waters expanded their ecological niche towards open oligotrophic waters in the Indian Ocean through lineage diversification and associated streamlining of genomes (e.g. loss of phycobilisomes and acquisition of Chl b); resulting in contemporary small celled Prochlorococcus. As a result, comparative metagenomic analysis with picocyanobacteria populations in other oceans suggests that this evolutionary scenario may be globally important.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diez, Beatriz; Nylander, Johan A. A.; Ininbergs, Karolina
Unicellular cyanobacteria are ubiquitous photoautotrophic microbes that contribute substantially to global primary production. Picocyanobacteria such as Synechococcus and Prochlorococcus depend on chlorophyll a-binding protein complexes to capture light energy. In addition, Synechococcus has accessory pigments organized into phycobilisomes, and Prochlorococcus contains chlorophyll b. Across a surface water transect spanning the sparsely studied tropical Indian Ocean, we examined Synechococcus and Prochlorococcus occurrence, taxonomy and habitat preference in an evolutionary context. Shotgun sequencing of size fractionated microbial communities from 0.1 μm to 20 μm and subsequent phylogenetic analysis indicated that cyanobacteria account for up to 15% of annotated reads, with the generamore » Prochlorococcus and Synechococcus comprising 90% of the cyanobacterial reads, even in the largest size fraction (3.0–20 mm). Phylogenetic analyses of cyanobacterial light-harvesting genes (chl-binding pcb/isiA, allophycocyanin ( apcAB), phycocyanin ( cpcAB) and phycoerythin ( cpeAB)) mostly identified picocyanobacteria clades comprised of overlapping sequences obtained from Indian Ocean, Atlantic and/or Pacific Oceans samples. Habitat reconstructions coupled with phylogenetic analysis of the Indian Ocean samples suggested that large Synechococcus-like ancestors in coastal waters expanded their ecological niche towards open oligotrophic waters in the Indian Ocean through lineage diversification and associated streamlining of genomes (e.g. loss of phycobilisomes and acquisition of Chl b); resulting in contemporary small celled Prochlorococcus. As a result, comparative metagenomic analysis with picocyanobacteria populations in other oceans suggests that this evolutionary scenario may be globally important.« less
Effects of Litter and Nutrient Additions on Soil Carbon Cycling in a Tropical Forest
NASA Astrophysics Data System (ADS)
Cusack, D. F.; Halterman, S.; Turner, B. L.; Tanner, E.; Wright, S. J.
2014-12-01
Soil carbon (C) dynamics present one of the largest sources of uncertainty in global C cycle models, with tropical forest soils containing some of the largest terrestrial C stocks. Drastic changes in soil C storage and loss are likely to occur if global change alters plant net primary production (NPP) and/or nutrient availability in these ecosystems. We assessed the effects of litter removal and addition, as well as fertilization with nitrogen (N), phosphorus (P), and/or potassium (K), on soil C stocks in a tropical seasonal forest in Panama after ten and sixteen years, respectively. We used a density fractionation scheme to assess manipulation effects on rapidly and slowly cycling pools of C. Soil samples were collected in the wet and dry seasons from 0-5 cm and 5-10 cm depths in 15- 45x45 m plots with litter removal, 2x litter addition, and control (n=5), and from 32- 40x40 m fertilization plots with factorial additions of N, P, and K. We hypothesized that litter addition would increase all soil C fractions, but that the magnitude of the effect on rapidly-cycling C would be dampened by a fertilization effect. Results for the dry season show that the "free light" C fraction, or rapidly cycling soil C pool, was significantly different among the three litter treatments, comprising 5.1 ± 0.9 % of total soil mass in the litter addition plots, 2.7 ± 0.3 % in control plots, and 1.0 ± 0.1 % in litter removal plots at the 0-5cm depth (means ± one standard error, p < 0.05). Bulk soil C results are similar to observed changes in the rapidly cycling C pool for the litter addition and removal. Fertilization treatments on average diminished this C pool size relative to control plots, although there was substantial variability among fertilization treatments. In particular, addition of N and P together did not significantly alter rapidly cycling C pool sizes (4.1 ± 1.2 % of total soil mass) relative to controls (3.5 ± 0.4 %), whereas addition of P alone resulted in significantly smaller rapidly cycling C pools (1.8 ± 0.4 %, p < 0.05). These results demonstrate that changes in tropical forest NPP have high potential to alter the storage and cycling of C in C-rich soils, and that secondary fertilization effects are likely.
Quantity and quality of phosphorus losses from an artificially drained lowland catchment
NASA Astrophysics Data System (ADS)
Nausch, Monika; Woelk, Jana; Kahle, Petra; Nausch, Günther; Leipe, Thomas; Lennartz, Bernd
2017-04-01
Currently, agricultural diffuse sources constitute the major portion of phosphorus (P) fluxes to the Baltic Sea and have to reach the good ecological status aimed by the Baltic Sea Action Plan and the Marine Strategy Framework Directive. The objective of this study was to uncover the change in phosphorus loading as well as in P fractions along the flow path of a mid-size river basin in order to derive risk assessment and management strategies for a sustainable P reduction. P-fractions and the mineral composition of particulate P were investigated in a sub-basin of the river Warnow, the second largest German catchment discharging to the Baltic Sea. Samples were collected from the sources (tile drain, ditch) and along the subsequent brook up to the river Warnow representing spatial scales of a few hectars up to 3300 km2. The investigations were performed during the discharge season from November 1th 2013 until April 30th 2014 covering a relative dry and mild winter period. We observed an increase of total phosphorus (TP) concentrations from 15.5 ± 3.9 µg L-1 in the drain outlet to 72.0 ± 7.2 µg L-1 in the river Warnow emphasizing the importance of sediment-bound P mobilization along the flow path. Particulate phosphorus (PP) of 36.6 - 61.2% accounted for the largest share of TP in the streams. Clay minerals and Fe(hydr)oxides were the main carrier of particle bound P followed by apatite. A transformation of dissolved inorganic phosphorus (DIP) into particulate organic P was observed in the river Warnow with the beginning of the growth season in February. Our investigations indicate that the overall P load could be reduced by half when PP is removed.
NASA Astrophysics Data System (ADS)
Keil, Richard G.; Tsamakis, Elizabeth; Giddings, J. Calvin; Hedges, John I.
1998-04-01
In order to examine relationships of organic matter source, composition, and diagenesis with particle size and mineralogy in modern marine depositional regimes, sediments from the continental shelf and slope along the Northwest Pacific rim (Washington coast, USA) were sorted into hydrodynamic size fractions (sand: >250, 63-250 μm; silt: 35-63, 17-35, 8-17, 3-8 μm; and clay-sized: 1-3, 0.5-1, <0.5 μm). The size fractions were then density fractionated to separate distinct organic debris from mineral-associated organic matter, and the various separates were analyzed for their amino acid, aldose, and lignin compositions. The composition of organic matter in the separates changes markedly as a function of particle size and density. Large compositional differences were observed between the clay-sized fractions (dominated mineralogically by smectites), the sand-sized mineral-associated isolates (quartz-rich), and floated coarse organic matter (dominated by vascular plant debris). Organic matter intimately associated with the clay-sized fractions shows the most extensive diagenetic alteration, as reflected in high abundances of nonprotein amino acids (especially β-alanine), elevated lignin phenol acid/aldehyde ratios, and high relative concentrations of the deoxyhexoses fucose and rhamnose. Organic matter in the silt fractions, though degraded, is not as diagenetically altered as in the clay fractions. Enrichment of pollen grains in the silt-size material is reflected by high cinnamic acid to ferulic acid lignin phenol ratios. The highest pollen biochemical signal is observed in the silt fractions of the deepest station (1835 m), where pollen abundances are also highest. Organic matter tightly bound in the silt and sand-sized fractions are enriched in aldoses and show indications of enhanced microbial biomass as reflected by high weight percentages of ribose. Distinct organic debris was composed of relatively unaltered vascular plant remains as reflected by high lignin phenol yields and low acid/aldehyde ratios. Clay-size fractions are enriched in nitrogenous components, as reflected by elevated yields of total and basic amino acids (especially lysine). Silt- and sand-size fractions rich in quartz and albite show slightly higher yields of neutral amino acids. Consistent trends across all size classes and among the different depositional settings illustrates that only a small portion of the organic matter is present as distinct organic debris (e.g. pollen, vascular plant tissues, etc.), but that this debris can be isolated in specific size classes. The data for surface-associated organic matter are consistent with, but not conclusive of, selective partitioning of some organic matter to specific mineral surfaces. The dominant size class-specific trends in organic matter composition are due to changes in both source and diagenetic alteration.
Halyo; Kim; Lee; Lee; Loomba; Perl
2000-03-20
We have carried out a direct search in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied-about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0. 16e ( e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71x10(-22) particles per nucleon with 95% confidence.
Post-Chelyabinsk Risk Assessment for Near Earth Objects (NEOs)
NASA Astrophysics Data System (ADS)
Boslough, M.; Harris, A. W.
2014-12-01
The widely-accepted NEO risk assessments published in the 1990s concluded that the largest asteroids (> 1 km) dominated the hazard. Even though large NEOs represent only a tiny fraction of the population because of a power-law size distribution, the potential for global catastrophe means that the contribution from these low-probability, high-consequence events is large. This conclusion led to the Spaceguard survey, which has now catalogued about 90% of these objects, none of which is on a collision course. The survey has reduced the assessed risk from this size range by more than an order of magnitude because completion is highest for the largest and most dangerous. The relative risk from objects tens of meters in diameter is therefore increasing.The absolute assessed risk from airbursts caused by objects of this size is also higher for two reasons. First, they may be more frequent than previously thought because of an underestimated population. Second, they are significantly more damaging than assumed in the original assessment because (in most cases) they more efficiently couple energy to the surface than nuclear explosions. Last year's half-megaton airburst over Chelyabinsk, Russia, appears to challenge the notion that such events are extremely rare—especially when also considering the 1908 Tunguska event along with decades of infrasound bolide data showing higher-than-expected numbers of large airbursts.We will present a new analysis of the risk based on updated estimates for the population of undiscovered NEOs, taking into account the enhanced damage potential of collisional airbursts. Merging the survey population estimates with the bolide frequency estimates suggests a population of tens-of-meters sized bodies that may be a factor of three or so greater than estimated from surveys alone. Uncertainty in the population of airburst-class NEOs remains quite large, and can only be unambiguously reduced by expanded surveys focused on objects in the tens-of-meters size range. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.
Koltun, G.F.; Helsel, Dennis R.
1986-01-01
Identical stream-bottom material samples, when fractioned to the same size by different techniques, may contain significantly different trace-metal concentrations. Precision of techniques also may differ, which could affect the ability to discriminate between size-fractioned bottom-material samples having different metal concentrations. Bottom-material samples fractioned to less than 0.020 millimeters by means of three common techniques (air elutriation, sieving, and settling) were analyzed for six trace metals to determine whether the technique used to obtain the desired particle-size fraction affects the ability to discriminate between bottom materials having different trace-metal concentrations. In addition, this study attempts to assess whether median trace-metal concentrations in size-fractioned bottom materials of identical origin differ depending on the size-fractioning technique used. Finally, this study evaluates the efficiency of the three size-fractioning techniques in terms of time, expense, and effort involved. Bottom-material samples were collected at two sites in northeastern Ohio: One is located in an undeveloped forested basin, and the other is located in a basin having a mixture of industrial and surface-mining land uses. The sites were selected for their close physical proximity, similar contributing drainage areas, and the likelihood that trace-metal concentrations in the bottom materials would be significantly different. Statistically significant differences in the concentrations of trace metals were detected between bottom-material samples collected at the two sites when the samples had been size-fractioned by means of air elutriation or sieving. Statistical analyses of samples that had been size fractioned by settling in native water were not measurably different in any of the six trace metals analyzed. Results of multiple comparison tests suggest that differences related to size-fractioning technique were evident in median copper, lead, and iron concentrations. Technique-related differences in copper concentrations most likely resulted from contamination of air-elutriated samples by a feed tip on the elutriator apparatus. No technique-related differences were observed in chromium, manganese, or zinc concentrations. Although air elutriation was the most expensive sizefractioning technique investigated, samples fractioned by this technique appeared to provide a superior level of discrimination between metal concentrations present in the bottom materials of the two sites. Sieving was an adequate lower-cost but more laborintensive alternative.
Luo, Ling; Zhou, Zhi-Chao; Gu, Ji-Dong
2015-10-01
This study investigated the diversity and abundance of bacterial lacasse-like genes in different particle size fractions, namely sand, silt, and clay of sediments in a subtropical mangrove ecosystem. Moreover, the effects of nutrient conditions on bacterial laccase-like communities as well as the correlation between nutrients and, both the abundance and diversity indices of laccase-like bacteria in particle size fractions were also studied. Compared to bulk sediments, Bacteroidetes, Caldithrix, Cyanobacteria and Chloroflexi were dominated in all 3 particle-size fractions of intertidal sediment (IZ), but Actinobacteria and Firmicutes were lost after the fractionation procedures used. The diversity index of IZ fractions decreased in the order of bulk > clay > silt > sand. In fractions of mangrove forest sediment (MG), Verrucomicrobia was found in silt, and both Actinobacteria and Bacteroidetes appeared in clay, but no new species were found in sand. The declining order of diversity index in MG fractions was clay > silt > sand > bulk. Furthermore, the abundance of lacasse-like bacteria varied with different particle-size fractions significantly (p < 0.05), and decreased in the order of sand > clay > silt in both IZ and MG fractions. Additionally, nutrient availability was found to significantly affect the diversity and community structure of laccase-like bacteria (p < 0.05), while the total organic carbon contents were positively related to the abundance of bacterial laccase-like genes in particle size fractions (p < 0.05). Therefore, this study further provides evidence that bacterial laccase plays a vital role in turnover of sediment organic matter and cycling of nutrients.
Deep horizons: Soil Carbon sequestration and storage potential in grassland soils
NASA Astrophysics Data System (ADS)
Torres-Sallan, Gemma; Schulte, Rogier; Lanigan, Gary J.; Byrne, Kenneth A.; Reidy, Brian; Creamer, Rachel
2016-04-01
Soil Organic Carbon (SOC) enhances soil fertility, holding nutrients in a plant-available form. It also improves aeration and water infiltration. Soils are considered a vital pool for C (Carbon) sequestration, as they are the largest pool of C after the oceans, and contain 3.5 more C than the atmosphere. SOC models and inventories tend to focus on the top 30 cm of soils, only analysing total SOC values. Association of C with microaggregates (53-250 μm) and silt and clay (<53 μm) is considered C sequestration as these fractions offer the greatest protection against mineralization. This study assessed the role of aggregation in C sequestration throughout the profile, down to 1 m depth, of 30 grassland sites divided in 6 soil types. One kg sample was collected for each horizon, sieved at 8 mm and dried at 40 °C. Through a wet sieving procedure, four aggregate sizes were isolated: large macroaggregates (>2000 μm); macroaggregates (250-2000 μm); microaggregates and silt & clay. Organic C associated to each aggregate fraction was analysed on a LECO combustion analyser. Sand-free C was calculated for each aggregate size. For all soil types, 84% of the SOC located in the first 30 cm was contained inside macroaggregates and large macroaggregates. Given that this fraction has a turnover time of 1 to 10 years, sampling at that depth only provides information on the labile fraction in soil, and does not consider the longer term C sequestration potential. Only when looking at the whole profile, two clear trends could be observed: 1) soils with a clay increase at depth had most of their C located in the silt and clay fractions, which indicate their enhanced C sequestration capacity, 2) free-draining soils had a bigger part of their SOC located in the macroaggregate fractions. These results indicate that current C inventories and models that focus on the top 30 cm, do not accurately measure soil C sequestration potential in soils, but rather the more labile fraction. However, at depth soil forming processes have been identified as a major factor influencing C sequestration potential in soils. This has a major impact in further quantifying and sustaining C sequestration into the future. Soils with a high sequestration potential at depth need to be managed to enhance the residence time to contribute to future off-setting of greenhouse gas emissions.
Structural changes in cell wall pectins during strawberry fruit development.
Paniagua, Candelas; Santiago-Doménech, Nieves; Kirby, Andrew R; Gunning, A Patrick; Morris, Victor J; Quesada, Miguel A; Matas, Antonio J; Mercado, José A
2017-09-01
Strawberry (Fragaria × anannasa Duch.) is one of the most important soft fruit. Rapid loss of firmness occurs during the ripening process, resulting in a short shelf life and high economic losses. To get insight into the role of pectin matrix in the softening process, cell walls from strawberry fruit at two developmental stages, unripe-green and ripe-red, were extracted and sequentially fractionated with different solvents to obtain fractions enriched in a specific component. The yield of cell wall material as well as the per fresh weight contents of the different fractions decreased in ripe fruit. The largest reduction was observed in the pectic fractions extracted with a chelating agent (trans-1,2- diaminocyclohexane-N,N,N'N'-tetraacetic acid, CDTA fraction) and those covalently bound to the wall (extracted with Na 2 CO 3 ). Uronic acid content of these two fractions also decreased significantly during ripening, but the amount of soluble pectins extracted with phenol:acetic acid:water (PAW) and water increased in ripe fruit. Fourier transform infrared spectroscopy of the different fractions showed that the degree of esterification decreased in CDTA pectins but increased in soluble fractions at ripen stage. The chromatographic analysis of pectin fractions by gel filtration revealed that CDTA, water and, mainly PAW polyuronides were depolymerised in ripe fruit. By contrast, the size of Na 2 CO 3 pectins was not modified. The nanostructural characteristics of CDTA and Na 2 CO 3 pectins were analysed by atomic force microscopy (AFM). Isolated pectic chains present in the CDTA fractions were significantly longer and more branched in samples from green fruit than those from red fruit. No differences in contour length were observed in Na 2 CO 3 strands between samples of both stages. However, the percentage of branched chains decreased from 19.7% in unripe samples to 3.4% in ripe fruit. The number of pectin aggregates was higher in green fruit samples of both fractions. These results show that the nanostructural complexity of pectins present in CDTA and Na 2 CO 3 fractions diminishes during fruit development, and this correlates with the solubilisation of pectins and the softening of the fruit. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Improving SLCF Science in the Himalayan Region: ICIMOD's Atmosphere Initiative
NASA Astrophysics Data System (ADS)
Panday, A. K.; Pradhan, B. B.; Surapipith, V.
2013-12-01
What fraction of the black carbon arriving on Yala Glacier in Langtang, Nepal, is from cooking fires in the houses in the valley below? What fraction is from elsewhere in rural Nepal? What fraction is from industrial and transport sources in Kathmandu? What fraction is from northern India and beyond? What fraction is from the high altitude forest fires that take place during March or April? Effectively mitigating the impacts of black carbon and other short-lived climate forcers requires detailed understanding not just of emissions and impacts, but also of the atmospheric transport pathways that connect the two. In mountainous areas of the Hindu-Kush Himalaya detailed quantitative knowledge about emissions, atmospheric processes, and impacts is still largely missing. The International Centre for Integrated Mountain Development (ICIMOD) is an intergovernmental organization covering Afghanistan, Pakistan, India, Nepal, China, Bhutan, Bangladesh, and Myanmar. ICIMOD's recently established Atmosphere Initiative not only assesses mitigation options and contributes to policy and capacity building in the region, but also works actively to promote collaboration among researchers in the region, while building up an in-house team whose research will address key questions about SLCF. In Spring 2013 ICIMOD's Atmosphere Initiative, in collaboration with the Institute for Advanced Sustainability Studies (IASS) in Potsdam, Germany, carried out the largest field campaign to date in Nepal, hosting instruments belonging to dozens of institutions around the world, at nine field site within and upwind of the Kathmandu Valley, Nepal. The dataset that has been collected gives unprecedented insights into the emissions and atmospheric processes taking place downwind of and within the largest urban agglomeration in the Himalaya region. Meanwhile, in collaboration with national partner institutions, ICIMOD is in the process of setting up one atmospheric observatory each in Bhutan and in Nepal. Each will be on a mountain peak overlooking the Indo-Gangetic Plains. A building will house laboratories and visitor space, and will have a small tower. Each site will be equipped with a Picarro G2401 analyzer for CO, CO¬2, methane and water vapor, aerosol filter samplers, as well as instruments to measure black carbon, ozone, aerosol size distribution, aerosol scattering, cloud condensation nuclei, solar radiation, aerosol optical depth, and meteorology. Together with output from ICIMOD's new atmospheric modeling centre, the data from the sites will allow quantifying the flux of pollutants from the Indo-Gangetic Plains towards the high Himalaya, and to estimate emissions of SLCFs within the Himalayan foothills region. The infrastructure at both observatory sites is designed to accommodate training and future expansion as well as to host visiting instruments.
Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone
Ganesh, Sangita; Parris, Darren J; DeLong, Edward F; Stewart, Frank J
2014-01-01
Marine oxygen minimum zones (OMZs) support diverse microbial communities with roles in major elemental cycles. It is unclear how the taxonomic composition and metabolism of OMZ microorganisms vary between particle-associated and free-living size fractions. We used amplicon (16S rRNA gene) and shotgun metagenome sequencing to compare microbial communities from large (>1.6 μm) and small (0.2–1.6 μm) filter size fractions along a depth gradient in the OMZ off Chile. Despite steep vertical redox gradients, size fraction was a significantly stronger predictor of community composition compared to depth. Phylogenetic diversity showed contrasting patterns, decreasing towards the anoxic OMZ core in the small size fraction, but exhibiting maximal values at these depths within the larger size fraction. Fraction-specific distributions were evident for key OMZ taxa, including anammox planctomycetes, whose coding sequences were enriched up to threefold in the 0.2–1.6 μm community. Functional gene composition also differed between fractions, with the >1.6 μm community significantly enriched in genes mediating social interactions, including motility, adhesion, cell-to-cell transfer, antibiotic resistance and mobile element activity. Prokaryotic transposase genes were three to six fold more abundant in this fraction, comprising up to 2% of protein-coding sequences, suggesting that particle surfaces may act as hotbeds for transposition-based genome changes in marine microbes. Genes for nitric and nitrous oxide reduction were also more abundant (three to seven fold) in the larger size fraction, suggesting microniche partitioning of key denitrification steps. These results highlight an important role for surface attachment in shaping community metabolic potential and genome content in OMZ microorganisms. PMID:24030599
Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone.
Ganesh, Sangita; Parris, Darren J; DeLong, Edward F; Stewart, Frank J
2014-01-01
Marine oxygen minimum zones (OMZs) support diverse microbial communities with roles in major elemental cycles. It is unclear how the taxonomic composition and metabolism of OMZ microorganisms vary between particle-associated and free-living size fractions. We used amplicon (16S rRNA gene) and shotgun metagenome sequencing to compare microbial communities from large (>1.6 μm) and small (0.2-1.6 μm) filter size fractions along a depth gradient in the OMZ off Chile. Despite steep vertical redox gradients, size fraction was a significantly stronger predictor of community composition compared to depth. Phylogenetic diversity showed contrasting patterns, decreasing towards the anoxic OMZ core in the small size fraction, but exhibiting maximal values at these depths within the larger size fraction. Fraction-specific distributions were evident for key OMZ taxa, including anammox planctomycetes, whose coding sequences were enriched up to threefold in the 0.2-1.6 μm community. Functional gene composition also differed between fractions, with the >1.6 μm community significantly enriched in genes mediating social interactions, including motility, adhesion, cell-to-cell transfer, antibiotic resistance and mobile element activity. Prokaryotic transposase genes were three to six fold more abundant in this fraction, comprising up to 2% of protein-coding sequences, suggesting that particle surfaces may act as hotbeds for transposition-based genome changes in marine microbes. Genes for nitric and nitrous oxide reduction were also more abundant (three to seven fold) in the larger size fraction, suggesting microniche partitioning of key denitrification steps. These results highlight an important role for surface attachment in shaping community metabolic potential and genome content in OMZ microorganisms.
Cena, L G; Chisholm, W P; Keane, M J; Chen, B T
2015-01-01
A field study was conducted to estimate the amount of Cr, Mn, and Ni deposited in the respiratory system of 44 welders in two facilities. Each worker wore a nanoparticle respiratory deposition (NRD) sampler during gas metal arc welding (GMAW) of mild and stainless steel and flux-cored arc welding (FCAW) of mild steel. Several welders also wore side-by-side NRD samplers and closed-face filter cassettes for total particulate samples. The NRD sampler estimates the aerosol's nano-fraction deposited in the respiratory system. Mn concentrations for both welding processes ranged 2.8-199 μg/m3; Ni concentrations ranged 10-51 μg/m3; and Cr concentrations ranged 40-105 μg/m3. Cr(VI) concentrations ranged between 0.5-1.3 μg/m3. For the FCAW process the largest concentrations were reported for welders working in pairs. As a consequence this often resulted in workers being exposed to their own welding fumes and to those generated from the welding partner. Overall no correlation was found between air velocity and exposure (R2 = 0.002). The estimated percentage of the nano-fraction of Mn deposited in a mild-steel-welder's respiratory system ranged between 10 and 56%. For stainless steel welding, the NRD samplers collected 59% of the total Mn, 90% of the total Cr, and 64% of the total Ni. These results indicate that most of the Cr and more than half of the Ni and Mn in the fumes were in the fraction smaller than 300 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genda, H.; Kobayashi, H.; Kokubo, E., E-mail: genda@elsi.jp
In our solar system, Mars-sized protoplanets frequently collided with each other during the last stage of terrestrial planet formation, called the giant impact stage. Giant impacts eject a large amount of material from the colliding protoplanets into the terrestrial planet region, which may form debris disks with observable infrared excesses. Indeed, tens of warm debris disks around young solar-type stars have been observed. Here we quantitatively estimate the total mass of ejected materials during the giant impact stages. We found that ∼0.4 times the Earth’s mass is ejected in total throughout the giant impact stage. Ejected materials are ground down bymore » collisional cascade until micron-sized grains are blown out by radiation pressure. The depletion timescale of these ejected materials is determined primarily by the mass of the largest body among them. We conducted high-resolution simulations of giant impacts to accurately obtain the mass of the largest ejected body. We then calculated the evolution of the debris disks produced by a series of giant impacts and depleted by collisional cascades to obtain the infrared excess evolution of the debris disks. We found that the infrared excess is almost always higher than the stellar infrared flux throughout the giant impact stage (∼100 Myr) and is sometimes ∼10 times higher immediately after a giant impact. Therefore, giant impact stages would explain the infrared excess from most observed warm debris disks. The observed fraction of stars with warm debris disks indicates that the formation probability of our solar-system-like terrestrial planets is approximately 10%.« less
NASA Astrophysics Data System (ADS)
Araya, Samuel N.; Fogel, Marilyn L.; Asefaw Berhe, Asmeret
2017-02-01
Fire is a major driver of soil organic matter (SOM) dynamics, and contemporary global climate change is changing global fire regimes. We conducted laboratory heating experiments on soils from five locations across the western Sierra Nevada climosequence to investigate thermal alteration of SOM properties and determine temperature thresholds for major shifts in SOM properties. Topsoils (0 to 5 cm depth) were exposed to a range of temperatures that are expected during prescribed and wild fires (150, 250, 350, 450, 550, and 650 °C). With increase in temperature, we found that the concentrations of carbon (C) and nitrogen (N) decreased in a similar pattern among all five soils that varied considerably in their original SOM concentrations and mineralogies. Soils were separated into discrete size classes by dry sieving. The C and N concentrations in the larger aggregate size fractions (2-0.25 mm) decreased with an increase in temperature, so that at 450 °C the remaining C and N were almost entirely associated with the smaller aggregate size fractions ( < 0.25 mm). We observed a general trend of 13C enrichment with temperature increase. There was also 15N enrichment with temperature increase, followed by 15N depletion when temperature increased beyond 350 °C. For all the measured variables, the largest physical, chemical, elemental, and isotopic changes occurred at the mid-intensity fire temperatures, i.e., 350 and 450 °C. The magnitude of the observed changes in SOM composition and distribution in three aggregate size classes, as well as the temperature thresholds for critical changes in physical and chemical properties of soils (such as specific surface area, pH, cation exchange capacity), suggest that transformation and loss of SOM are the principal responses in heated soils. Findings from this systematic investigation of soil and SOM response to heating are critical for predicting how soils are likely to be affected by future climate and fire regimes.
ERIC Educational Resources Information Center
Stewart, Vivien
2015-01-01
China has the largest population and largest labor force in the world. It has been highly successful in rapidly expanding both secondary and higher education to a significant fraction of the youth cohort. However, educational opportunities and standards across China are highly uneven. China has abundant labor power, but it will need a far more…
CD4+ Cell Count and HIV Load as Predictors of Size of Anal Warts Over Time in HIV-Infected Women
Luu, Hung N.; Amirian, E. Susan; Chan, Wenyaw; Beasley, R. Palmer; Piller, Linda B.
2012-01-01
Background. Little is known about the associations between CD4+ cell counts, human immunodeficiency virus (HIV) load, and human papillomavirus “low-risk” types in noncancerous clinical outcomes. This study examined whether CD4+ count and HIV load predict the size of the largest anal warts in 976 HIV-infected women in an ongoing cohort. Methods. A linear mixed model was used to determine the association between size of anal wart and CD4+ count and HIV load. Results. The incidence of anal warts was 4.15 cases per 100 person-years (95% confidence interval [CI], 3.83–4.77) and 1.30 cases per 100 person-years (95% CI, 1.00–1.58) in HIV-infected and HIV-uninfected women, respectively. There appeared to be an inverse association between size of the largest anal warts and CD4+ count at baseline; however, this was not statistically significant. There was no association between size of the largest anal warts and CD4+ count or HIV load over time. Conclusions. There was no evidence for an association between size of the largest anal warts and CD4+ count or HIV load over time. Further exploration on the role of immune response on the development of anal warts is warranted in a larger study. PMID:22246682
Uranium release from different size fractions of sediments in Hanford 300 area, Washington, USA.
Du, Jiangkun; Bao, Jianguo; Hu, Qinhong; Ewing, Robert P
2012-05-01
Stirred-flow cell tests were carried out to investigate uranium (U) release from different size fractions of sediments from the U.S. Department of Energy's Hanford 300 Area in Washington, USA. Results show that the measured concentration of U release varies with different size fractions, with the fine-grained mass fractions (<75 μm, 75-500 μm, and 500-2000 μm) being the main U carriers. However, because the sediment is mainly composed of gravel (2000-8000 μm) materials, the gravel fraction is a non-negligible U pool. Our elution experiments give a value of 8.7% of the total U being in the gravel fraction, significantly reducing the current uncertainty in evaluating U inventory. A log-log plot of released U concentration vs. elution volume (i.e., elution time) shows a power-law relationship for all size fractions, with identical exponents for the three fine size fractions (-0.875). For the <2000 μm mass fraction, comparing our eluted U values with reported total U concentrations, we estimate that a lower bound value 8.6% of the total uranium is labile. This compares well with the previously published value of 11.8% labile U after extraction with a dilute extractant for three weeks. Copyright © 2012 Elsevier Ltd. All rights reserved.
Greenfield, Thomas K.; Nayak, Madhabika B.; Bond, Jason; Patel, Vikram; Trocki, Karen; Pillai, Aravind
2010-01-01
Assessment of heavy drinking patterns is vital for HIV/AIDs studies in India and developing countries. A population survey in northern Goa included urban and rural male drinkers (n = 743) who completed a new Fractional Graduated Frequencies (F-GF) alcohol patterns measure assessing 7 beverage types and drink sizes for the largest daily amount, then drinking frequencies at fractional amounts. The new measure was compared to a simpler quantity-frequency (QF) summary and in a validity subsample of hazardous drinkers (n=56), 28-day diaries of drinking events. Approximately 56% of total volume came from peak drinking (averaging 60 g ethanol/day). For AUDIT-based Hazardous Drinkers, QF and F-GF volumes (drinks/day) were not significantly different from diary volume (correlations .65 and .57, respectively). F-GF well captured the profile of daily amounts in drinking event data. In addition, the F-GF showed evidence of better predicting any sexual risk behavior or partner violence perpetration than the QF measure. Summary drinking pattern measures, especially the new F-GF, are more cost efficient than intensive event records, and appear valid when carefully assessing quantities with local beverage types and drink ethanol content. PMID:20567894
NASA Astrophysics Data System (ADS)
Potter, C. S.
2016-12-01
The central California coastal landscape has a history of frequent large wildfires that have threatened or destroyed many residential structures at the wildland interface. This study starts with the largest wildfires on the Central Coast over the past 30 years and analyzes the fraction and landscape patterns of high severity burned (HBS) areas from the Landsat-based Monitoring Trends in Burn Severity (MTBS) data base as a function of weather conditions and topographic variations. Results indicate that maximum temperatures at the time of fire and the previous 12 months of rainfall explained a significant portion of the variation in total area burned and the fraction of HBS area. Average patch size and aggregation metrics of HBS areas were included in the analysis framework. Within each burned area, the Landsat (30-meter resolution) differenced Normalized Burn Ratio (dNBR), a continuous index of vegetation burn severity, was correlated against slope, aspect, and elevation to better understand landscape level-controls over HBS patches. The Landsat dNBR analysis framework is being extended next to the island of Sardinia, Italy for a comparison of Mediterranean climates and wildfire patterns since the mid-1980s.
Perfluorinated surfactants (PFSs) in size-fractionated street dust in Tokyo.
Murakami, Michio; Takada, Hideshige
2008-11-01
We investigated perfluorinated surfactants (PFSs) in size-fractionated street dust to identify their occurrence, contributions from traffic, and potential routes of entry into waters. Street dust was collected from residential areas and heavily trafficked areas in Tokyo and sorted into fine (<63 microm) and coarse fractions (63-2000 microm). Five PFS species were analyzed by liquid chromatography-tandem mass spectrometry: perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), and perfluoroundecanoate (PFUA). In fine fractions, PFS contents were significantly higher in heavily trafficked street dust than in residential street dust, but in coarse fractions, no significant differences were observed. Additionally, in heavily trafficked areas, PFS contents were significantly higher in fine fractions than in coarse fractions, but in residential areas, no significant differences were observed. PFS compositions differed between size fractions, not locations, indicating differences in sources between size fractions. Fine particles from traffic contributed to PFSs in street dust. Street dust possibly acts as the origin of PFSs in street runoff and eventually enters waters. This is the first report of PFSs in street dust.
Gram-scale fractionation of nanodiamonds by density gradient ultracentrifugation.
Peng, Wei; Mahfouz, Remi; Pan, Jun; Hou, Yuanfang; Beaujuge, Pierre M; Bakr, Osman M
2013-06-07
Size is a defining characteristic of nanoparticles; it influences their optical and electronic properties as well as their interactions with molecules and macromolecules. Producing nanoparticles with narrow size distributions remains one of the main challenges to their utilization. At this time, the number of practical approaches to optimize the size distribution of nanoparticles in many interesting materials systems, including diamond nanocrystals, remains limited. Diamond nanocrystals synthesized by detonation protocols - so-called detonation nanodiamonds (DNDs) - are promising systems for drug delivery, photonics, and composites. DNDs are composed of primary particles with diameters mainly <10 nm and their aggregates (ca. 10-500 nm). Here, we introduce a large-scale approach to rate-zonal density gradient ultracentrifugation to obtain monodispersed fractions of nanoparticles in high yields. We use this method to fractionate a highly concentrated and stable aqueous solution of DNDs and to investigate the size distribution of various fractions by dynamic light scattering, analytical ultracentrifugation, transmission electron microscopy and powder X-ray diffraction. This fractionation method enabled us to separate gram-scale amounts of DNDs into several size ranges within a relatively short period of time. In addition, the high product yields obtained for each fraction allowed us to apply the fractionation method iteratively to a particular size range of particles and to collect various fractions of highly monodispersed primary particles. Our method paves the way for in-depth studies of the physical and optical properties, growth, and aggregation mechanism of DNDs. Applications requiring DNDs with specific particle or aggregate sizes are now within reach.
From damselflies to pterosaurs: how burst and sustainable flight performance scale with size.
Marden, J H
1994-04-01
Recent empirical data for short-burst lift and power production of flying animals indicate that mass-specific lift and power output scale independently (lift) or slightly positively (power) with increasing size. These results contradict previous theory, as well as simple observation, which argues for degradation of flight performance with increasing size. Here, empirical measures of lift and power during short-burst exertion are combined with empirically based estimates of maximum muscle power output in order to predict how burst and sustainable performance scale with body size. The resulting model is used to estimate performance of the largest extant flying birds and insects, along with the largest flying animals known from fossils. These estimates indicate that burst flight performance capacities of even the largest extinct fliers (estimated mass 250 kg) would allow takeoff from the ground; however, limitations on sustainable power output should constrain capacity for continuous flight at body sizes exceeding 0.003-1.0 kg, depending on relative wing length and flight muscle mass.
Wang, Zhen; Alahdab, Fares; Almasri, Jehad; Haydour, Qusay; Mohammed, Khaled; Abu Dabrh, Abd Moain; Prokop, Larry J; Alfarkh, Wedad; Lakis, Sumaya; Montori, Victor M; Murad, Mohammad Hassan
2016-04-01
To evaluate the presence of extreme findings and fluctuation in effect size in endocrinology. We systematically identified all meta-analyses published in 2014 in the field of endocrinology. Within each meta-analysis, the effect size of the primary binary outcome was compared across studies according to their order of publication. We pooled studies using the DerSimonian and Laird random-effects method. Heterogeneity was evaluated using the I(2) and tau(2). Twelve percent of the included 100 meta-analyses reported the largest effect size in the very first published study. The largest effect size occurred in the first 2 earliest studies in 31% of meta-analyses. When the effect size was the largest in the first published study, it was three times larger than the final pooled effect (ratio of rates, 3.26; 95% confidence interval: 1.80, 5.90). The largest heterogeneity measured by I(2) was observed in 18% of the included meta-analyses when combining the first 2 studies or 17% when combing the first 3 studies. In endocrinology, early studies reported extreme findings with large variability. This behavior of the evidence needs to be taken into account when used to formulate clinical policies. Copyright © 2016 Elsevier Inc. All rights reserved.
Chemistry and petrology of size fractions of Apollo 17 deep drill core 70009-70006
NASA Technical Reports Server (NTRS)
Laul, J. C.; Vaniman, D. T.; Papike, J. J.; Simon, S.
1978-01-01
Instrumental neutron activation analysis was used to examine 34 major, minor and trace elements in 48 bulk soils and size fractions (90-1000 microns, 20-90 microns and less than 20 microns) of the Apollo 17 deep drill core sections 70009-70006 (upper 130 cm). Modal data were also obtained for the less than 20 micron size fraction. Preliminary results indicate that (1) the chemistry of the greater than 90 micron and 20-90 micron coarse fractions is identical but quite different from the less than 20 micron fine fraction; (2) the upper 50 cm of the drill core is highly enriched in mare material; (3) the dominant source of highland material is KREEPy instead of anorthositic; and (4) indigenous volatiles such as Zn are quite high in all size fractions.
2016-01-01
Background Inhaled ultrafine particles (UFP) may induce greater adverse respiratory effects than larger particles occurring in the ambient atmosphere. Due to this potential of UFP to act as triggers for diverse lung injuries medical as well as physical research has been increasingly focused on the exact deposition behavior of the particles in lungs of various probands. Main purpose of the present study was the presentation of experimental and theoretical data of total, regional, and local UFP deposition in the lungs of men and women. Methods Both experiments and theoretical simulations were carried out by using particle sizes of 0.04, 0.06, 0.08, and 0.10 µm [number median diameters (NMD)]. Inhalation of UFP took place by application of predefined tidal volumes (500, 750, and 1,000 mL) and respiratory flow rates (150, 250, 375, and 500 mL·s−1). For male subjects a functional residual capacity (FRC) of 3,911±892 mL was measured, whereas female probands had a FRC of 3,314±547 mL. Theoretical predictions were based on (I) a stochastic model of the tracheobronchial tree; (II) particle transport computations according to a random walk algorithm; and (III) empirical formulae for the description of UFP deposition. Results Total deposition fractions (TDF) are marked by a continuous diminution with increasing particle size. Whilst particles measuring 0.04 µm in size deposit in the respiratory tract by 40–70%, particles with a size of 0.10 µm exhibit deposition values ranging from 20% to 45%. Except for the largest particles studied here TDF of female probands are higher than those obtained for male probands. Differences between experimental and theoretical results are most significant for 0.10 µm particles, but never exceed 20%. Predictions of regional (extrathoracic, tracheobronchial, alveolar) UFP deposition show clearly that females tend to develop higher tracheobronchial and alveolar deposition fractions than males. This discrepancy is also confirmed by airway generation-specific deposition, which is permanently higher in women than in men. Conclusions From the experimental data and modeling predictions it can be concluded that females bear a slightly higher potential to develop lung insufficiencies after exposure to UFP than males. Besides higher deposition fractions occurring in female subjects, also total lung deposition dose is noticeably enhanced. PMID:27429960
Sturm, Robert
2016-06-01
Inhaled ultrafine particles (UFP) may induce greater adverse respiratory effects than larger particles occurring in the ambient atmosphere. Due to this potential of UFP to act as triggers for diverse lung injuries medical as well as physical research has been increasingly focused on the exact deposition behavior of the particles in lungs of various probands. Main purpose of the present study was the presentation of experimental and theoretical data of total, regional, and local UFP deposition in the lungs of men and women. Both experiments and theoretical simulations were carried out by using particle sizes of 0.04, 0.06, 0.08, and 0.10 µm [number median diameters (NMD)]. Inhalation of UFP took place by application of predefined tidal volumes (500, 750, and 1,000 mL) and respiratory flow rates (150, 250, 375, and 500 mL·s(-1)). For male subjects a functional residual capacity (FRC) of 3,911±892 mL was measured, whereas female probands had a FRC of 3,314±547 mL. Theoretical predictions were based on (I) a stochastic model of the tracheobronchial tree; (II) particle transport computations according to a random walk algorithm; and (III) empirical formulae for the description of UFP deposition. Total deposition fractions (TDF) are marked by a continuous diminution with increasing particle size. Whilst particles measuring 0.04 µm in size deposit in the respiratory tract by 40-70%, particles with a size of 0.10 µm exhibit deposition values ranging from 20% to 45%. Except for the largest particles studied here TDF of female probands are higher than those obtained for male probands. Differences between experimental and theoretical results are most significant for 0.10 µm particles, but never exceed 20%. Predictions of regional (extrathoracic, tracheobronchial, alveolar) UFP deposition show clearly that females tend to develop higher tracheobronchial and alveolar deposition fractions than males. This discrepancy is also confirmed by airway generation-specific deposition, which is permanently higher in women than in men. From the experimental data and modeling predictions it can be concluded that females bear a slightly higher potential to develop lung insufficiencies after exposure to UFP than males. Besides higher deposition fractions occurring in female subjects, also total lung deposition dose is noticeably enhanced.
Santos, Diana C; Silva, Lúcia; Albuquerque, António; Simões, Rogério; Gomes, Arlindo C
2013-11-01
Cork boiling wastewater pollutants were fractionated by sequential use of four ultrafiltration membranes and five fractions were obtained: four retentates (>100, 50-100, 20-50 and 10-20 kDa) and one permeate (<10 kDa); which were used to study the correlation of molecular size with biodegradability and toxicity before and after ozonation. The results show that molecular size is correlated with organic load and restrains biodegradability. The fraction with >100 kDa corresponds to 56% of the organic load and the one with <10 kDa only 8%. The biodegradability of fractions increased 182% with fractions molecular size reduction from >100 to <10 kDa and the chemical oxygen demand (COD) was from 3436 to 386 mg L(-1). For biodegradability enhancement the best outcome of ozonation was obtained with compounds having molecular size >20 kDa and range from 5% up to 175% for applied ozone doses to COD ratios between 0.15 and 0.38. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Negassa, Wakene; Guber, Andrey; Kravchenko, Alexandra; Rivers, Mark
2014-05-01
Soil's potential to sequester carbon (C) depends not only on quality and quantity of organic inputs to soil but also on the residence time of the applied organic inputs within the soil. Soil pore structure is one of the main factors that influence residence time of soil organic matter by controlling gas exchange, soil moisture and microbial activities, thereby soil C sequestration capacity. Previous attempts to investigate the fate of organic inputs added to soil did not allow examining their decomposition in situ; the drawback that can now be remediated by application of X-ray computed micro-tomography (µ-CT). The non-destructive and non-invasive nature of µ-CT gives an opportunity to investigate the effect of soil pore size distributions on decomposition of plant residues at a new quantitative level. The objective of this study is to examine the influence of pore size distributions on the decomposition of plant residue added to soil. Samples with contrasting pore size distributions were created using aggregate fractions of five different sizes (<0.05, 0.05-0.1, 0.10-05, 0.5-1.0 and 1.0-2.0 mm). Weighted average pore diameters ranged from 10 µm (<0.05 mm fraction) to 104 µm (1-2 mm fraction), while maximum pore diameter were in a range from 29 µm (<0.05 mm fraction) to 568 µm (1-2 mm fraction) in the created soil samples. Dried pieces of maize leaves 2.5 mg in size (equivalent to 1.71 mg C g-1 soil) were added to half of the studied samples. Samples with and without maize leaves were incubated for 120 days. CO2 emission from the samples was measured at regular time intervals. In order to ensure that the observed differences are due to differences in pore structure and not due to differences in inherent properties of the studied aggregate fractions, we repeated the whole experiment using soil from the same aggregate size fractions but ground to <0.05 mm size. Five to six replicated samples were used for intact and ground samples of all sizes with and without leaves. Two replications of the intact aggregate fractions of all sizes with leaves were subjected to µ-CT scanning before and after incubation, whereas all the remaining replications of both intact and ground aggregate fractions of <0.05, 0.05-0.1, and 1.0-2.0 mm sizes with leaves were scanned with µ-CT after the incubation. The µ-CT image showed that approximately 80% of the leaves in the intact samples of large aggregate fractions (0.5-1.0 and 1.0-2.0 mm) was decomposed during the incubation, while only 50-60% of the leaves were decomposed in the intact samples of smaller sized fractions. Even lower percent of leaves (40-50%) was decomposed in the ground samples, with very similar leaf decomposition observed in all ground samples regardless of the aggregate fraction size. Consistent with µ-CT results, the proportion of decomposed leaf estimated with the conventional mass loss method was 48% and 60% for the <0.05 mm and 1.0-2.0 mm soil size fractions of intact aggregates, and 40-50% in ground samples, respectively. The results of the incubation experiment demonstrated that, while greater C mineralization was observed in samples of all size fractions amended with leaf, the effect of leaf presence was most pronounced in the smaller aggregate fractions (0.05-0.1 mm and 0.05 mm) of intact aggregates. The results of the present study unequivocally demonstrate that differences in pore size distributions have a major effect on the decomposition of plant residues added to soil. Moreover, in presence of plant residues, differences in pore size distributions appear to also influence the rates of decomposition of the intrinsic soil organic material.
Maternal investment in reproduction and its consequences in leatherback turtles.
Wallace, Bryan P; Sotherland, Paul R; Tomillo, Pilar Santidrian; Reina, Richard D; Spotila, James R; Paladino, Frank V
2007-05-01
Maternal investment in reproduction by oviparous non-avian reptiles is usually limited to pre-ovipositional allocations to the number and size of eggs and clutches, thus making these species good subjects for testing hypotheses of reproductive optimality models. Because leatherback turtles (Dermochelys coriacea) stand out among oviparous amniotes by having the highest clutch frequency and producing the largest mass of eggs per reproductive season, we quantified maternal investment of 146 female leatherbacks over four nesting seasons (2001-2004) and found high inter- and intra-female variation in several reproductive characteristics. Estimated clutch frequency [coefficient of variation (CV) = 31%] and clutch size (CV = 26%) varied more among females than did egg mass (CV = 9%) and hatchling mass (CV = 7%). Moreover, clutch size had an approximately threefold higher effect on clutch mass than did egg mass. These results generally support predictions of reproductive optimality models in which species that lay several, large clutches per reproductive season should exhibit low variation in egg size and instead maximize egg number (clutch frequency and/or size). The number of hatchlings emerging per nest was positively correlated with clutch size, but fraction of eggs in a clutch yielding hatchlings (emergence success) was not correlated with clutch size and varied highly among females. In addition, seasonal fecundity and seasonal hatchling production increased with the frequency and the size of clutches (in order of effect size). Our results demonstrate that female leatherbacks exhibit high phenotypic variation in reproductive traits, possibly in response to environmental variability and/or resulting from genotypic variability within the population. Furthermore, high seasonal and lifetime fecundity of leatherbacks probably reflect compensation for high and unpredictable mortality during early life history stages in this species.
NASA Astrophysics Data System (ADS)
Liu, Yalong; Wang, Ping; Ding, Yuanjun; Lu, Haifei; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Filley, Timothy; Zhang, Xuhui; Zheng, Jinwei; Pan, Genxing
2016-12-01
While soil organic carbon (SOC) accumulation and stabilization has been increasingly the focus of ecosystem properties, how it could be linked to soil biological activity enhancement has been poorly assessed. In this study, topsoil samples were collected from a series of rice soils shifted from salt marshes for 0, 50, 100, 300 and 700 years from a coastal area of eastern China. Soil aggregates were fractioned into different sizes of coarse sand (200-2000 µm), fine sand (20-200 µm), silt (2-20 µm) and clay (< 2 µm), using separation with a low-energy dispersion protocol. Soil properties were determined to investigate niche specialization of different soil particle fractions in response to long-term rice cultivation, including recalcitrant and labile organic carbon, microbial diversity of bacterial, archaeal and fungal communities, soil respiration and enzyme activity. The results showed that the mass proportion both of coarse-sand (2000-200 µm) and clay (< 2 µm) fractions increased with prolonged rice cultivation, but the aggregate size fractions were dominated by fine-sand (200-20 µm) and silt (20-2 µm) fractions across the chronosequence. SOC was highly enriched in coarse-sand fractions (40-60 g kg-1) and moderately in clay fractions (20-25 g kg-1), but was depleted in silt fractions (˜ 10 g kg-1). The recalcitrant carbon pool was higher (33-40 % of SOC) in both coarse-sand and clay fractions than in fine-sand and silt fractions (20-29 % of SOC). However, the ratio of labile organic carbon (LOC) to SOC showed a weakly decreasing trend with decreasing size of aggregate fractions. Total soil DNA (deoxyribonucleic acid) content in the size fractions followed a similar trend to that of SOC. Despite the largely similar diversity between the fractions, 16S ribosomal gene abundance of bacteria and of archaeal were concentrated in both coarse-sand and clay fractions. Being the highest generally in coarse-sand fractions, 18S rRNA gene abundance of fungi decreased sharply but the diversity gently, with decreasing size of the aggregate fractions. The soil respiration quotient (ratio of respired CO2-C to SOC) was the highest in the silt fraction, followed by the fine-sand fraction, but the lowest in coarse-sand and clay fractions in the rice soils cultivated over 100 years, whereas the microbial metabolic quotient was lower in coarse-sand-sized fractions than in other fractions. Soil respiration was higher in the silt fraction than in other fractions for the rice soils. For the size fractions other than the clay fraction, enzyme activity was increased with prolonged rice cultivation, whereas soil respiration appeared to have a decreasing trend. Only in the coarse-sand fraction was both microbial gene abundance and enzyme activity well correlated to SOC and LOC content, although the chemical stability and respiratory of SOC were similar between coarse-sand and clay fractions. Thus, biological activity was generally promoted with LOC accumulation in the coarse-sand-sized macroaggregates of the rice soils, positively responding to prolonged rice cultivation management. The finding here provides a mechanistic understanding of soil organic carbon turnover and microbial community succession at fine scale of soil aggregates that have evolved along with anthropogenic activity of rice cultivation in the field.
Chitosan but not chitin activates the inflammasome by a mechanism dependent upon phagocytosis.
Bueter, Chelsea L; Lee, Chrono K; Rathinam, Vijay A K; Healy, Gloria J; Taron, Christopher H; Specht, Charles A; Levitz, Stuart M
2011-10-14
Chitin is an abundant polysaccharide found in fungal cell walls, crustacean shells, and insect exoskeletons. The immunological properties of both chitin and its deacetylated derivative chitosan are of relevance because of frequent natural exposure and their use in medical applications. Depending on the preparation studied and the end point measured, these compounds have been reported to induce allergic responses, inflammatory responses, or no response at all. We prepared highly purified chitosan and chitin and examined the capacity of these glycans to stimulate murine macrophages to release the inflammasome-associated cytokine IL-1β. We found that although chitosan was a potent NLRP3 inflammasome activator, acetylation of the chitosan to chitin resulted in a near total loss of activity. The size of the chitosan particles played an important role, with small particles eliciting the greatest activity. An inverse relationship between size and stimulatory activity was demonstrated using chitosan passed through size exclusion filters as well as with chitosan-coated beads of defined size. Partial digestion of chitosan with pepsin resulted in a larger fraction of small phagocytosable particles and more potent inflammasome activity. Inhibition of phagocytosis with cytochalasin D abolished the IL-1β stimulatory activity of chitosan, offering an explanation for why the largest particles were nearly devoid of activity. Thus, the deacetylated polysaccharide chitosan potently activates the NLRP3 inflammasome in a phagocytosis-dependent manner. In contrast, chitin is relatively inert.
Ho, Mei M; Kairo, Satnam K; Corbel, Michael J
2006-01-01
Tuberculin purified protein derivative (PPD) currently can only be standardised by delayed hypersensitivity skin reactions in sensitised guinea pigs. An in vitro dot blot immunoassay was developed for both identity and confirmation of potency estimation of PPD. Polyclonal antibodies (mainly IgG) were generated and immunoreacted with human, bovine and, to lesser extent, avian PPD preparations. Combining size exclusion chromatography (FPLC-SEC) and dot blot immunoassay, the results showed that PPD preparations were mixtures of very heterogeneous tuberculoproteins ranging in size from very large aggregates to very small degraded molecules. All individual fractions of PPD separated by size were immunoreactive, although those of the largest molecular sizes appeared the most immunoreactive in this in vitro dot blot immunoassay. This method is very sensitive and specific to tuberculoproteins and can be an in vitro alternative for the in vivo intradermal skin assay which uses guinea pigs for identity of PPD preparations. Although the capacity of PPD to elicit cell-mediated immune responses on intradermal testing has to be confirmed by in vivo assay, the dot blot immunoassay offers a rapid, sensitive and animal-free alternative to in vivo testing for confirming the identity of PPD preparations with appropriate potencies. This alternative assay would be particularly useful for national regulatory laboratories for confirming the data of manufacturers and thus reducing the use of animals.
NASA Astrophysics Data System (ADS)
Ziemba, L. D.; Griffin, R. J.; Whitlow, S.; Talbot, R. W.
2011-12-01
Size distributions up to 10-micron aerosol diameter ( DP) of organic carbon (OC) and water-soluble organic carbon (WSOC) were measured at two sites in coastal New England, slightly inland at Thompson Farm (TF) and offshore at Isles of Shoals (IOS). Significant OC concentrations were measured across the full size distribution at TF and IOS, respectively. The WSOC fraction (WSOC/OC) was largest in the accumulation mode with values of 0.86 and 0.93 and smallest in the coarse mode with values of 0.61 and 0.79 at TF and IOS, respectively. Dicarboxylic acids containing up to five carbon atoms (C 5) were concentrated in droplet and accumulation mode aerosol with only minor contributions in the coarse mode. C 1-C 3 monocarboxylic acids were generally near or below detection limits. Results from proton nuclear magnetic resonance (H +-NMR) spectroscopy analyses showed that the organic functional group characterized by protons in the alpha position to an unsaturated carbon atoms ([H-C-C dbnd ]) was the dominant WSOC functionality at both TF and IOS, constituting 34 and 43% of carbon-weighted H +-NMR signal, respectively. Size distributions of each H +-NMR-resolved organic functionality are presented. Source apportionment using H +-NMR fingerprints is also presented, and results indicate that nearly all of the WSOC at TF and IOS spectroscopically resembled secondary organic aerosol, regardless of DP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chetvertkov, M; Henry Ford Health System, Detroit, MI; Siddiqui, F
2015-06-15
Purpose: Using daily cone beam CTs (CBCTs) to develop principal component analysis (PCA) models of anatomical changes in head and neck (H&N) patients and to assess the possibility of using these prospectively in adaptive radiation therapy (ART). Methods: Planning CT (pCT) images of 4 H&N patients were deformed to model several different systematic changes in patient anatomy during the course of the radiation therapy (RT). A Pinnacle plugin was used to linearly interpolate the systematic change in patient for the 35 fraction RT course and to generate a set of 35 synthetic CBCTs. Each synthetic CBCT represents the systematic changemore » in patient anatomy for each fraction. Deformation vector fields (DVFs) were acquired between the pCT and synthetic CBCTs with random fraction-to-fraction changes were superimposed on the DVFs. A patient-specific PCA model was built using these DVFs containing systematic plus random changes. It was hypothesized that resulting eigenDVFs (EDVFs) with largest eigenvalues represent the major anatomical deformations during the course of treatment. Results: For all 4 patients, the PCA model provided different results depending on the type and size of systematic change in patient’s body. PCA was more successful in capturing the systematic changes early in the treatment course when these were of a larger scale with respect to the random fraction-to-fraction changes in patient’s anatomy. For smaller scale systematic changes, random changes in patient could completely “hide” the systematic change. Conclusion: The leading EDVF from the patientspecific PCA models could tentatively be identified as a major systematic change during treatment if the systematic change is large enough with respect to random fraction-to-fraction changes. Otherwise, leading EDVF could not represent systematic changes reliably. This work is expected to facilitate development of population-based PCA models that can be used to prospectively identify significant anatomical changes early in treatment. This work is supported in part by a grant from Varian Medical Systems, Palo Alto, CA.« less
NASA Astrophysics Data System (ADS)
Marvanová, Soňa; Kulich, Pavel; Skoupý, Radim; Hubatka, František; Ciganek, Miroslav; Bendl, Jan; Hovorka, Jan; Machala, Miroslav
2018-04-01
Size-segregated particulate matter (PM) is frequently used in chemical and toxicological studies. Nevertheless, toxicological in vitro studies working with the whole particles often lack a proper evaluation of PM real size distribution and characterization of agglomeration under the experimental conditions. In this study, changes in particle size distributions during the PM sample manipulation and also semiquantitative elemental composition of single particles were evaluated. Coarse (1-10 μm), upper accumulation (0.5-1 μm), lower accumulation (0.17-0.5 μm), and ultrafine (<0.17 μm) PM fractions were collected by high volume cascade impactor in Prague city center. Particles were examined using electron microscopy and their elemental composition was determined by energy dispersive X-ray spectroscopy. Larger or smaller particles, not corresponding to the impaction cut points, were found in all fractions, as they occur in agglomerates and are impacted according to their aerodynamic diameter. Elemental composition of particles in size-segregated fractions varied significantly. Ns-soot occurred in all size fractions. Metallic nanospheres were found in accumulation fractions, but not in ultrafine fraction where ns-soot, carbonaceous particles, and inorganic salts were identified. Dynamic light scattering was used to measure particle size distribution in water and in cell culture media. PM suspension of lower accumulation fraction in water agglomerated after freezing/thawing the sample, and the agglomerates were disrupted by subsequent sonication. Ultrafine fraction did not agglomerate after freezing/thawing the sample. Both lower accumulation and ultrafine fractions were stable in cell culture media with fetal bovine serum, while high agglomeration occurred in media without fetal bovine serum as measured during 24 h.
NASA Astrophysics Data System (ADS)
Durand, Marc; Kraynik, Andrew M.; van Swol, Frank; Käfer, Jos; Quilliet, Catherine; Cox, Simon; Ataei Talebi, Shirin; Graner, François
2014-06-01
Bubble monolayers are model systems for experiments and simulations of two-dimensional packing problems of deformable objects. We explore the relation between the distributions of the number of bubble sides (topology) and the bubble areas (geometry) in the low liquid fraction limit. We use a statistical model [M. Durand, Europhys. Lett. 90, 60002 (2010), 10.1209/0295-5075/90/60002] which takes into account Plateau laws. We predict the correlation between geometrical disorder (bubble size dispersity) and topological disorder (width of bubble side number distribution) over an extended range of bubble size dispersities. Extensive data sets arising from shuffled foam experiments, surface evolver simulations, and cellular Potts model simulations all collapse surprisingly well and coincide with the model predictions, even at extremely high size dispersity. At moderate size dispersity, we recover our earlier approximate predictions [M. Durand, J. Kafer, C. Quilliet, S. Cox, S. A. Talebi, and F. Graner, Phys. Rev. Lett. 107, 168304 (2011), 10.1103/PhysRevLett.107.168304]. At extremely low dispersity, when approaching the perfectly regular honeycomb pattern, we study how both geometrical and topological disorders vanish. We identify a crystallization mechanism and explore it quantitatively in the case of bidisperse foams. Due to the deformability of the bubbles, foams can crystallize over a larger range of size dispersities than hard disks. The model predicts that the crystallization transition occurs when the ratio of largest to smallest bubble radii is 1.4.
Modelling size-fractionated primary production in the Atlantic Ocean from remote sensing
NASA Astrophysics Data System (ADS)
Brewin, Robert J. W.; Tilstone, Gavin H.; Jackson, Thomas; Cain, Terry; Miller, Peter I.; Lange, Priscila K.; Misra, Ankita; Airs, Ruth L.
2017-11-01
Marine primary production influences the transfer of carbon dioxide between the ocean and atmosphere, and the availability of energy for the pelagic food web. Both the rate and the fate of organic carbon from primary production are dependent on phytoplankton size. A key aim of the Atlantic Meridional Transect (AMT) programme has been to quantify biological carbon cycling in the Atlantic Ocean and measurements of total primary production have been routinely made on AMT cruises, as well as additional measurements of size-fractionated primary production on some cruises. Measurements of total primary production collected on the AMT have been used to evaluate remote-sensing techniques capable of producing basin-scale estimates of primary production. Though models exist to estimate size-fractionated primary production from satellite data, these have not been well validated in the Atlantic Ocean, and have been parameterised using measurements of phytoplankton pigments rather than direct measurements of phytoplankton size structure. Here, we re-tune a remote-sensing primary production model to estimate production in three size fractions of phytoplankton (<2 μm, 2-10 μm and >10 μm) in the Atlantic Ocean, using measurements of size-fractionated chlorophyll and size-fractionated photosynthesis-irradiance experiments conducted on AMT 22 and 23 using sequential filtration-based methods. The performance of the remote-sensing technique was evaluated using: (i) independent estimates of size-fractionated primary production collected on a number of AMT cruises using 14C on-deck incubation experiments and (ii) Monte Carlo simulations. Considering uncertainty in the satellite inputs and model parameters, we estimate an average model error of between 0.27 and 0.63 for log10-transformed size-fractionated production, with lower errors for the small size class (<2 μm), higher errors for the larger size classes (2-10 μm and >10 μm), and errors generally higher in oligotrophic waters. Application to satellite data in 2007 suggests the contribution of cells <2 μm and >2 μm to total primary production is approximately equal in the Atlantic Ocean.
Hromadnikova, I; Zejskova, L; Doucha, J; Codl, D
2006-11-01
Fetal extracellular DNA is mainly derived from apoptotic bodies of trophoblast. Recent studies have shown size differences between fetal and maternal extracellular DNA. We have examined the quantification of fetal (SRY gene) and total (GLO gene) extracellular DNA in maternal plasma in different fractions (100-300, 300-500, 500-700, 700-900, and >900 bp) after size fractionation by agarose gel electrophoresis. DNA was extracted from maternal plasma samples from 11 pregnant women carrying male foetuses at the 16th week of gestation. Fetal circulatory DNA was mainly detected in the 100-300 bp fraction with the median concentration being 14.4 GE/ml. A lower median amount of 4.9 GE/ml was also found in the 300-500 bp fraction. Circulatory DNA extracted from the 100-300 bp fraction contained 4.2 times enriched fetal DNA when compared with unseparated DNA sample. Fetal DNA within the 300-500 bp fraction was 2.5 times enriched. Circulatory fetal DNA is predominantly present in a fraction with molecular size <500 bp, which can be used for the detection of paternally inherited alleles. However, the usage of size-separated DNA is not suitable for routine clinical applications because of risk of contamination.
Lost but can't be neglected: Huge quantities of small microplastics hide in the South China Sea.
Cai, Minggang; He, Haixia; Liu, Mengyang; Li, Siwei; Tang, Guowen; Wang, Weimin; Huang, Peng; Wei, Ge; Lin, Yan; Chen, Bin; Hu, Jiahui; Cen, Zhengnan
2018-08-15
Large quantities of microplastics with small particle sizes were found in the South China Sea (SCS). The abundances of microplastics in seawater were 0.045±0.093and 2569±1770particles/m 3 according to the bongo net and pumping sampling methods, respectively. Smaller-size fractions (size<0.3mm) contributed 92% of the number of microplastics to the total load. Continental slope is the largest reservoir of microplastics with an inventory of 295tons. 21 polymer types were found in the samples using the micro Fourier Transform Infrared Spectroscopy (FTIR), among which alkyds (22.5%) and polycaprolactone (PCL) (20.9%) accounted for almost half of the total polymer content. Lighter plastics would not only concentrate upon the coastal area, being more likely to drift further into open seas with ocean currents. The distribution characteristics showed that it was mainly controlled by terrestrial input of the Pearl River. This study, as the first report from SCS on microplastics in water for its distribution and influence factors, provided impetus for further research on the transportation fate and the behavior of this emerging pollutant from coastal zone to the open oceans. Copyright © 2018 Elsevier B.V. All rights reserved.
Fiorani, Fabio; Beemster, Gerrit T.S.; Bultynck, Lieve; Lambers, Hans
2000-01-01
We studied inherent variation in final leaf size among four Poa spp. that live at different elevations. The average final length of leaf 7 of the main stem of the smallest species (Poa alpina) was only one-half that of the largest species (Poa trivialis); it was correlated with leaf elongation rate, but not with the duration of leaf elongation. A faster rate of leaf elongation rate was associated with (a) larger size of the zone of cell expansion, and (b) faster rates of cell production (per cell file) in the meristem, which in turn were due to greater numbers of dividing cells, whereas average cell division rates were very similar for all species (except Poa annua). Also we found that the proliferative fraction equaled 1 throughout the meristem in all species. It was remarkable that rates of cell expansion tended to be somewhat higher in the species with slower growing leaves. We discuss the results by comparing the spatial and material viewpoints, which lead to different interpretations of the role of cell division. Although the presented data do not strictly prove it, they strongly suggest a regulatory role for cell division in determining differences in growth rate among the present four Poa spp. PMID:11027732
Waschbusch, Robert J.; Selbig, W.R.; Bannerman, Roger T.
1999-01-01
Street-dirt samples were collected using industrial vacuum equipment. Leaves in these samples were separated out and the remaining sediment was sieved into >250 mm, 250-63 mm, 63-25 mm, <25 mm size fractions and were analyzed for total phosphorus. Approximately 75 percent of the sediment mass resides in the >250 mm size fractions. Less than 5 percent of the mass can be found in the particle sizes less than 63 mm. The >250 mm size fraction also contributed nearly 50 percent of the total-phosphorus mass and the leaf fraction contributed an additional 30 percent. In each particle size, approximately 25 percent of the total-phosphorus mass is derived from leaves or other vegetation.
Disentangling controls on mineral-stabilized soil organic matter using a slurry incubation
NASA Astrophysics Data System (ADS)
Lavallee, J. M.; Cotrufo, M. F.; Paul, E. A.; Conant, R. T.
2014-12-01
Mineral-stabilized organic matter (OM) is the largest and oldest pool of soil carbon and nitrogen. Mineral stabilization limits OM availability to soil microbes, preventing its decomposition and prolonging its turnover. Thus, understanding controls on the decomposition of mineral-stabilized OM is key to understanding soil carbon and nitrogen dynamics. The very slow turnover of mineral-stabilized OM makes it challenging to study in a typical incubation, and as a result, many potential controls (temperature, OM chemistry, and mineralogy) on its turnover remain unclear. We aimed to better understand controls on decomposition of mineral-stabilized OM by employing a slurry incubation technique, which speeds up microbial processing of OM by maximizing OM accessibility to microbes. In a slurry incubation, we expect that any OM that is not stabilized on mineral surfaces will be available for decomposition and will be converted to CO2. Using this technique, we studied the interactive effects of incubation temperature, plant material type (aboveground vs. belowground), and soil fraction (silt vs. clay) on CO2 efflux and OM stabilization. We separated silt-sized and clay-sized fractions from an agricultural soil, added aboveground or belowground plant material to each, and incubated them at 15°C, 25°C and 35°C. The added plant material was isotopically labeled (13C and 15N), which allowed us to trace it through the system and distinguish between the responses of the new (derived from the plant material) and old (derived from what was already present in the silt and clay) OM to warming. We measured CO2 efflux and 13CO2 efflux throughout the incubation. We performed one short-term harvest at day 6 and one final harvest at day 60. Initial results show higher cumulative CO2 efflux at warmer temperatures regardless of plant material type or soil fraction. A larger fraction of that CO2 came from OM that was initially present in the silt and clay, rather than from the plant material that we added, which suggests faster turnover of that "old" OM at warmer temperatures. We will present CO2 efflux data in addition to total [C] and [N] and the isotopic ratios of 13C and 15N in the silt and clay at each harvest to explain how the interactions between warming, plant material type and soil fraction affect turnover of mineral stabilized OM.
Zhang, Guangwen; He, Yaqun; Wang, Haifeng; Zhang, Tao; Wang, Shuai; Yang, Xing; Xia, Wencheng
2017-06-01
Recycling of waste printed circuit boards is important for environmental protection and sustainable resource utilization. Corona electrostatic separation has been widely used to recycle metals from waste printed circuit boards, but it has poor separation efficiency for finer sized fractions. In this study, a new process of vibrated gas-solid fluidized bed was used to recycle residual metals from nonmetallic fractions, which were treated using the corona electrostatic separation technology. The effects of three main parameters, i.e., vibration frequency, superficial air flow velocity, and fluidizing time on gravity segregation, were investigated using a vibrating gas-solid fluidized bed. Each size fraction had its own optimum parameters. Corresponding to their optimal segregation performance, the products from each experiment were analyzed using an X-ray fluorescence (XRF) and a scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS). From the results, it can be seen that the metal recoveries of -1+0.5mm, -0.5+0.25mm, and -0.25mm size fractions were 86.39%, 82.22% and 76.63%, respectively. After separation, each metal content in the -1+0.5 or -0.5+0.25mm size fraction reduced to 1% or less, while the Fe and Cu contents are up to 2.57% and 1.50%, respectively, in the -0.25mm size fraction. Images of the nonmetallic fractions with a size of -0.25mm indicated that a considerable amount of clavate glass fibers existed in these nonmetallic fractions, which may explain why fine particles had the poorest segregation performance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Distribution of 28 elements in size fractions of lunar mare and highlands soils
NASA Technical Reports Server (NTRS)
Boynton, W. V.; Wasson, J. T.
1977-01-01
Four volatile, six siderophile and 18 generally lithophile elements were determined in six sieve fractions of mare soil 15100 (moderately mature) and seven sieve fractions of highlands soil 66080 (highly mature). Previous work (Boynton et al., 1976) showed that the volatile elements in lunar soils were enriched in the finest size fraction relative to the coarsest factors by up to about 20. The present investigation tests Boynton's interpretation that the distribution pattern of the volatiles indicates the presence of two components: a volume-correlated component having volatile concentrations independent of grain size and a surface-correlated component with concentration increasing with decreasing grain size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williamson, J. J., E-mail: johnjosephwilliamson@gmail.com; Evans, R. M. L.
We dynamically simulate fractionation (partitioning of particle species) during spinodal gas-liquid separation of a size-polydisperse colloid, using polydispersity up to ∼40% and a skewed parent size distribution. We introduce a novel coarse-grained Voronoi method to minimise size bias in measuring local volume fraction, along with a variety of spatial correlation functions which detect fractionation without requiring a clear distinction between the phases. These can be applied whether or not a system is phase separated, to determine structural correlations in particle size, and generalise easily to other kinds of polydispersity (charge, shape, etc.). We measure fractionation in both mean size andmore » polydispersity between the phases, its direction differing between model interaction potentials which are identical in the monodisperse case. These qualitative features are predicted by a perturbative theory requiring only a monodisperse reference as input. The results show that intricate fractionation takes place almost from the start of phase separation, so can play a role even in nonequilibrium arrested states. The methods for characterisation of inhomogeneous polydisperse systems could in principle be applied to experiment as well as modelling.« less
Opsahl, Stephen P.; Crow, Cassi L.
2014-01-01
During collection of streambed-sediment samples, additional samples from a subset of three sites (the SAR Elmendorf, SAR 72, and SAR McFaddin sites) were processed by using a 63-µm sieve on one aliquot and a 2-mm sieve on a second aliquot for PAH and n-alkane analyses. The purpose of analyzing PAHs and n-alkanes on a sample containing sand, silt, and clay versus a sample containing only silt and clay was to provide data that could be used to determine if these organic constituents had a greater affinity for silt- and clay-sized particles relative to sand-sized particles. The greater concentrations of PAHs in the <63-μm size-fraction samples at all three of these sites are consistent with a greater percentage of binding sites associated with fine-grained (<63 μm) sediment versus coarse-grained (<2 mm) sediment. The larger difference in total PAHs between the <2-mm and <63-μm size-fraction samples at the SAR Elmendorf site might be related to the large percentage of sand in the <2-mm size-fraction sample which was absent in the <63-μm size-fraction sample. In contrast, the <2-mm size-fraction sample collected from the SAR McFaddin site contained very little sand and was similar in particle-size composition to the <63-μm size-fraction sample.
NASA Astrophysics Data System (ADS)
Jafarzadeh-Haghighi, Amir Hossein; Shamshuddin, Jusop; Hamdan, Jol; Zainuddin, Norhazlin
2016-09-01
Information on structural composition of organic matter (OM) in particle-size fractions of soils along a climo-biosequence is sparse. The objective of this study was to examine structural composition and morphological characteristics of OM in particle-size fractions of soils along a climo-biosequence in order to better understand the factors and processes affecting structural composition of soil organic matter. To explore changes in structural composition of OM in soils with different pedogenesis, the A-horizon was considered for further analyses including particle-size fractionation, solid-state 13C nuclear magnetic resonance (NMR) spectroscopy and scanning electron microscopy (SEM). Due to the increase in the thickness of organic layer with increasing elevation, the A-horizon was situated at greater depth in soils of higher elevation. The relationship between relative abundances of carbon (C) structures and particle-size fractions was examined using principal component analysis (PCA). It was found that alkyl C (20.1-73.4%) and O-alkyl C (16.8-67.7%) dominated particle-size fractions. The proportion of alkyl C increased with increasing elevation, while O-alkyl C showed an opposite trend. Results of PCA confirmed this finding and showed the relative enrichment of alkyl C in soils of higher elevation. Increase in the proportion of alkyl C in 250-2000 μm fraction is linked to selective preservation of aliphatic compounds derived from root litter. SEM results showed an increase in root contribution to the 250-2000 μm fraction with increasing elevation. For the <53 μm fraction, pedogenic process of podzolization is responsible for the relative enrichment of alkyl C. This study demonstrates that changes in structural composition of OM in particle-size fractions of soils along the studied climo-biosequence are attributed to site-specific differences in pedogenesis as a function of climate and vegetation.
Probe measurements and numerical model predictions of evolving size distributions in premixed flames
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Filippo, A.; Sgro, L.A.; Lanzuolo, G.
2009-09-15
Particle size distributions (PSDs), measured with a dilution probe and a Differential Mobility Analyzer (DMA), and numerical predictions of these PSDs, based on a model that includes only coagulation or alternatively inception and coagulation, are compared to investigate particle growth processes and possible sampling artifacts in the post-flame region of a C/O = 0.65 premixed laminar ethylene-air flame. Inputs to the numerical model are the PSD measured early in the flame (the initial condition for the aerosol population) and the temperature profile measured along the flame's axial centerline. The measured PSDs are initially unimodal, with a modal mobility diameter ofmore » 2.2 nm, and become bimodal later in the post-flame region. The smaller mode is best predicted with a size-dependent coagulation model, which allows some fraction of the smallest particles to escape collisions without resulting in coalescence or coagulation through the size-dependent coagulation efficiency ({gamma}{sub SD}). Instead, when {gamma} = 1 and the coagulation rate is equal to the collision rate for all particles regardless of their size, the coagulation model significantly under predicts the number concentration of both modes and over predicts the size of the largest particles in the distribution compared to the measured size distributions at various heights above the burner. The coagulation ({gamma}{sub SD}) model alone is unable to reproduce well the larger particle mode (mode II). Combining persistent nucleation with size-dependent coagulation brings the predicted PSDs to within experimental error of the measurements, which seems to suggest that surface growth processes are relatively insignificant in these flames. Shifting measured PSDs a few mm closer to the burner surface, generally adopted to correct for probe perturbations, does not produce a better matching between the experimental and the numerical results. (author)« less
NASA Astrophysics Data System (ADS)
Ansari, R.; Faraji Oskouie, M.; Gholami, R.
2016-01-01
In recent decades, mathematical modeling and engineering applications of fractional-order calculus have been extensively utilized to provide efficient simulation tools in the field of solid mechanics. In this paper, a nonlinear fractional nonlocal Euler-Bernoulli beam model is established using the concept of fractional derivative and nonlocal elasticity theory to investigate the size-dependent geometrically nonlinear free vibration of fractional viscoelastic nanobeams. The non-classical fractional integro-differential Euler-Bernoulli beam model contains the nonlocal parameter, viscoelasticity coefficient and order of the fractional derivative to interpret the size effect, viscoelastic material and fractional behavior in the nanoscale fractional viscoelastic structures, respectively. In the solution procedure, the Galerkin method is employed to reduce the fractional integro-partial differential governing equation to a fractional ordinary differential equation in the time domain. Afterwards, the predictor-corrector method is used to solve the nonlinear fractional time-dependent equation. Finally, the influences of nonlocal parameter, order of fractional derivative and viscoelasticity coefficient on the nonlinear time response of fractional viscoelastic nanobeams are discussed in detail. Moreover, comparisons are made between the time responses of linear and nonlinear models.
Schilirò, T; Alessandria, L; Bonetta, S; Carraro, E; Gilli, G
2016-02-01
To contribute to a greater characterization of the airborne particulate matter's toxicity, size-fractionated PM10 was sampled during different seasons in a polluted urban site in Torino, a northern Italian city. Three main size fractions (PM10 - 3 μm; PM3 - 0.95 μm; PM < 0.95 μm) extracts (organic and aqueous) were assayed with THP-1 cells to evaluate their effects on cell proliferation, LDH activity, TNFα, IL-8 and CYP1A1 expression. The mean PM10 concentrations were statistically different in summer and in winter and the finest fraction PM<0.95 was always higher than the others. Size-fractionated PM10 extracts, sampled in an urban traffic meteorological-chemical station produced size-related toxicological effects in relation to season and particles extraction. The PM summer extracts induced a significant release of LDH compared to winter and produced a size-related effect, with higher values measured with PM10-3. Exposure to size-fractionated PM10 extracts did not induce significant expression of TNFα. IL-8 expression was influenced by exposure to size-fractionated PM10 extracts and statistically significant differences were found between kind of extracts for both seasons. The mean fold increases in CYP1A1 expression were statistically different in summer and in winter; winter fraction extracts produced a size-related effect, in particular for organic samples with higher values measured with PM<0.95 extracts. Our results confirm that the only measure of PM can be misleading for the assessment of air quality moreover we support efforts toward identifying potential effect-based tools (e.g. in vitro test) that could be used in the context of the different monitoring programs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mineralogical variation in the size fractions of a Ranong kaolin, southern Thailand
NASA Astrophysics Data System (ADS)
Pisutha-Arnond, Visut; Phuvichit, Suraphol; Leepowpanth, Quanchai
A representative crude Ranong kaolin from the Thungkla-Ranong mine was separated into > 2 mm (granule), 2-1 mm (very coarse sand), 1-0.5 mm (coarse sand), 0.5-0.25 mm (medium sand), 0.25-0.125 mm (fine sand), 0.125-0.062 mm (very fine sand) and 62-28, 28-14, 17-7, 7-4, 4-2, 2-1 and < 1 μ m size fractions. Those size fractions were analyzed by X-ray powder diffractometry (XRD), differential thermal analysis (DTA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with attached energy dispersive X-ray spectrometer (EDX). Kaolin group minerals were differentiated by using XRD in combination with various chemical and heat treatments together with TEM, SEM and DTA. The Ranong kaolin consists predominantly of tubular halloysite, poorly crystallized kaolinite and quartz with minor amounts of mica and K-feldspars. Other trace constituents include gibbsite, tourmaline, zircon and colored impurities (i.e. extractable iron hydroxide coating on clay mineral surface). The kaolin minerals are found in all size fractions by which their contents and halloysite/kaolinite ratios increase as the particle sizes become finer. Quartz and mica are also detected in almost all size fractions. They are, however, more abundant with coarsening particle size. Gibbsite, K-feldspar and tourmaline are mainly concentrated in the fine sand to silt size fractions. Crystallinity of kaolin minerals as measured by XRD varied moderately with size. Relatively pure kaolin minerals, predominantly halloysite and kaolinite, can be obtained in the particle size below 1 or 2 μm.
Dynamics of highly polydisperse colloidal suspensions as a model system for bacterial cytoplasm.
Hwang, Jiye; Kim, Jeongmin; Sung, Bong June
2016-08-01
There are various kinds of macromolecules in bacterial cell cytoplasm. The size polydispersity of the macromolecules is so significant that the crystallization and the phase separation could be suppressed, thus stabilizing the liquid state of bacterial cytoplasm. On the other hand, recent experiments suggested that the macromolecules in bacterial cytoplasm should exhibit glassy dynamics, which should be also affected significantly by the size polydispersity of the macromolecules. In this work, we investigate the anomalous and slow dynamics of highly polydisperse colloidal suspensions, of which size distribution is chosen to mimic Escherichia coli cytoplasm. We find from our Langevin dynamics simulations that the diffusion coefficient (D_{tot}) and the displacement distribution functions (P(r,t)) averaged over all colloids of different sizes do not show anomalous and glassy dynamic behaviors until the system volume fraction ϕ is increased up to 0.82. This indicates that the intrinsic polydispersity of bacterial cytoplasm should suppress the glass transition and help maintain the liquid state of the cytoplasm. On the other hand, colloids of each kind show totally different dynamic behaviors depending on their size. The dynamics of colloids of different size becomes non-Gaussian at a different range of ϕ, which suggests that a multistep glass transition should occur. The largest colloids undergo the glass transition at ϕ=0.65, while the glass transition does not occur for smaller colloids in our simulations even at the highest value of ϕ. We also investigate the distribution (P(θ,t)) of the relative angles of displacement for macromolecules and find that macromolecules undergo directionally correlated motions in a sufficiently dense system.
Dynamics of highly polydisperse colloidal suspensions as a model system for bacterial cytoplasm
NASA Astrophysics Data System (ADS)
Hwang, Jiye; Kim, Jeongmin; Sung, Bong June
2016-08-01
There are various kinds of macromolecules in bacterial cell cytoplasm. The size polydispersity of the macromolecules is so significant that the crystallization and the phase separation could be suppressed, thus stabilizing the liquid state of bacterial cytoplasm. On the other hand, recent experiments suggested that the macromolecules in bacterial cytoplasm should exhibit glassy dynamics, which should be also affected significantly by the size polydispersity of the macromolecules. In this work, we investigate the anomalous and slow dynamics of highly polydisperse colloidal suspensions, of which size distribution is chosen to mimic Escherichia coli cytoplasm. We find from our Langevin dynamics simulations that the diffusion coefficient (Dtot) and the displacement distribution functions (P (r ,t ) ) averaged over all colloids of different sizes do not show anomalous and glassy dynamic behaviors until the system volume fraction ϕ is increased up to 0.82. This indicates that the intrinsic polydispersity of bacterial cytoplasm should suppress the glass transition and help maintain the liquid state of the cytoplasm. On the other hand, colloids of each kind show totally different dynamic behaviors depending on their size. The dynamics of colloids of different size becomes non-Gaussian at a different range of ϕ , which suggests that a multistep glass transition should occur. The largest colloids undergo the glass transition at ϕ =0.65 , while the glass transition does not occur for smaller colloids in our simulations even at the highest value of ϕ . We also investigate the distribution (P (θ ,t ) ) of the relative angles of displacement for macromolecules and find that macromolecules undergo directionally correlated motions in a sufficiently dense system.
Bed material transport in the Virgin River, Utah
Andrews, E.D.
2000-01-01
Detailed information concerning the rate and particle size distribution of bed material transport by streamflows can be very difficult and expensive to obtain, especially where peak streamflows are brief and bed material is poorly sorted, including some very large boulders. Such streams, however, are common in steep, arid watersheds. Any computational approach must consider that (1) only the smaller particle sizes present on the streambed move even during large floods and (2) the largest bed particles exert a significant form drag on the flow. Conventional methods that rely on a single particle size to estimate the skin friction shear stress acting on the mobile fraction of the bed material perform poorly. Instead, for this study, the skin friction shear stress was calculated for the observed range of streamflows by calculating the form drag exerted on the reach‐averaged flow field by all particle sizes. Suspended and bed load transported rates computed from reach‐averaged skin friction shear stress are in excellent agreement with measured transport rates. The computed mean annual bed material load, including both bed load and suspended load, of the East Fork Virgin River for the water years 1992‐1996 was approximately 1.3×10 5 t. A large portion of the bed material load consists of sand‐sized particles, 0.062–1.0 mm in diameter, that are transported in suspension. Such particles, however, constituted only 10% of the surface bed material and less than 25% of the subsurface bed material. The mean annual quantity of bed load transported was 1060 t/yr with a median size of 15 mm.
Koarashi, Jun; Nishimura, Syusaku; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sato, Tsutomu; Nagao, Seiya
2018-08-01
The Fukushima Daiichi nuclear power plant accident caused serious radiocesium ( 137 Cs) contamination in soils in a range of terrestrial ecosystems. It is well documented that the interaction of 137 Cs with soil constituents, particularly clay minerals, in surface soil layers exerts strong control on the behavior of this radionuclide in the environment; however, there is little understanding of how soil aggregation-the binding of soil particles together into aggregates-can affect the mobility and bioavailability of 137 Cs in soils. To explore this, soil samples were collected at seven sites under different land-use conditions in Fukushima and were separated into four aggregate-size fractions: clay-sized (<2 μm); silt-sized (2-20 μm); sand-sized (20-212 μm); and macroaggregates (212-2000 μm). The fractions were then analyzed for 137 Cs content and extractability and mineral composition. In forest soils, aggregate formation was significant, and 69%-83% of 137 Cs was associated with macroaggregates and sand-sized aggregates. In contrast, there was less aggregation in agricultural field soils, and approximately 80% of 137 Cs was in the clay- and silt-sized fractions. Across all sites, the 137 Cs extractability was higher in the sand-sized aggregate fractions than in the clay-sized fractions. Mineralogical analysis showed that, in most soils, clay minerals (vermiculite and kaolinite) were present even in the larger-sized aggregate fractions. These results demonstrate that larger-sized aggregates are a significant reservoir of potentially mobile and bioavailable 137 Cs in organic-rich (forest and orchard) soils. Our study suggests that soil aggregation reduces the mobility of particle-associated 137 Cs through erosion and resuspension and also enhances the bioavailability of 137 Cs in soils. Copyright © 2018 Elsevier Ltd. All rights reserved.
Maximizing Tumor Immunity With Fractionated Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaue, Doerthe, E-mail: dschaue@mednet.ucla.edu; Ratikan, Josephine A.; Iwamoto, Keisuke S.
Purpose: Technologic advances have led to increased clinical use of higher-sized fractions of radiation dose and higher total doses. How these modify the pathways involved in tumor cell death, normal tissue response, and signaling to the immune system has been inadequately explored. Here we ask how radiation dose and fraction size affect antitumor immunity, the suppression thereof, and how this might relate to tumor control. Methods and Materials: Mice bearing B16-OVA murine melanoma were treated with up to 15 Gy radiation given in various-size fractions, and tumor growth followed. The tumor-specific immune response in the spleen was assessed by interferon-{gamma}more » enzyme-linked immunospot (ELISPOT) assay with ovalbumin (OVA) as the surrogate tumor antigen and the contribution of regulatory T cells (Tregs) determined by the proportion of CD4{sup +}CD25{sup hi}Foxp3{sup +} T cells. Results: After single doses, tumor control increased with the size of radiation dose, as did the number of tumor-reactive T cells. This was offset at the highest dose by an increase in Treg representation. Fractionated treatment with medium-size radiation doses of 7.5 Gy/fraction gave the best tumor control and tumor immunity while maintaining low Treg numbers. Conclusions: Radiation can be an immune adjuvant, but the response varies with the size of dose per fraction. The ultimate challenge is to optimally integrate cancer immunotherapy into radiation therapy.« less
Duka, Tetyana; Anderson, Sarah M.; Collins, Zachary; Raghanti, Mary Ann; Ely, John J.; Hof, Patrick R.; Wildman, Derek E.; Goodman, Morris; Grossman, Lawrence I.; Sherwood, Chet C.
2014-01-01
With the evolution of a relatively large brain size in haplorhine primates (i.e., tarsiers, monkeys, apes and humans), there have been associated changes in the molecular machinery that delivers energy to the neocortex. Here we investigated variation in lactate dehydrogenase (LDH) expression and isoenzyme composition of the neocortex and striatum in primates using quantitative Western blotting and isoenzyme analysis of total homogenates and synaptosomal fractions. Analysis of isoform expression revealed that LDH in the synaptosomal fraction from both forebrain regions shifted towards a predominance of the heart-type, aerobic isoforms, LDHB, among haplorhines as compared to strepsirrhines (i.e., lorises and lemurs), while in total homogenate of neocortex and striatum there was no significant difference in the LDH isoenzyme composition between the primate suborders. The largest increase occurred in synapse-associated LDH-B expression in the neocortex, displaying an especially remarkable elevation in the ratio of LDH-B to LDH-A in humans. The phylogenetic variation in LDH-B to LDH-A ratio was correlated with species typical brain mass, but not encephalization quotient. A significant LDHB increase in the sub-neuronal fraction from haplorhine neocortex and striatum suggests a relatively higher rate of aerobic glycolysis that is linked to synaptosomal mitochondrial metabolism. Our results indicate that there is differential composition of LDH isoenzymes and metabolism in synaptic terminals that evolved in primates to meet increased energy requirements in association with brain enlargement. PMID:24686273
NASA Astrophysics Data System (ADS)
Pan, Genxing; Liu, Yalong; Wang, Ping; Li, Lianqinfg; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Bian, Rongjun; Ding, Yuanjun; Ma, Chong
2016-04-01
Recent studies have shown soil carbon sequestration through physical protection of relative labile carbon intra micro-aggregates with formation of large sized macro-aggregates under good management of soil and agricultural systems. While carbon stabilization had been increasingly concerned as ecosystem properties, the mechanisms underspin bioactivity of soil carbon with increased carbon stability has been still poorly understood. In this study, topsoil samples were collected from rice soils derived from salt marsh under different length of rice cultivation up to 700 years from eastern China. Particle size fractions (PSF) of soil aggregates were separated using a low energy dispersion protocol. Carbon fractions in the PSFs were analyzed either with FTIR spectroscopy. Soil microbial community of bacterial, fungal and archaeal were analyzed with molecular fingerprinting using specific gene primers. Soil respiration and carbon gain from amended maize as well as enzyme activities were measured using lab incubation protocols. While the PSFs were dominated by the fine sand (200-20μm) and silt fraction (20-2μm), the mass proportion both of sand (2000-200μm) and clay (<2μm) fraction increased with prolonged rice cultivation, giving rise to an increasing trend of mean weight diameter of soil aggregates (also referred to aggregate stability). Soil organic carbon was found most enriched in coarse sand fraction (40-60g/kg), followed by the clay fraction (20-24.5g/kg), but depleted in the silt fraction (~10g/kg). Phenolic and aromatic carbon as recalcitrant pool were high (33-40% of total SOC) in both coarse sand and clay fractions than in both fine sand and silt fractions (20-29% of total SOC). However, the ratio of LOC/total SOC showed a weak decreasing trend with decreasing size of the aggregate fractions. Total gene content in the size fractions followed a similar trend to that of SOC. Bacterial and archaeal gene abundance was concentrated in both sand and clay fractions but that of fungi in sand fraction, and sharply decreased with the decreasing size of aggregate fraction. Gene abundance of archaeal followed a similar trend to that of bacterial but showing an increasing trend with prolonged rice cultivation in both sand and clay fractions. Change in community diversity with sizes of aggregate fractions was found of fungi and weakly of bacterial but not of archaeal. Soil respiration ratio (Respired CO2-C to SOC) was highest in silt fraction, followed by the fine sand fraction but lowest in sand and clay fractions in the rice soils cultivated over 100 years. Again, scaled by total gen concentration, respiration was higher in silt fraction than in other fractions for these rice soils. For the size fractions other than clay fraction, soil gene concentration, Archaeal gen abundance, normalized enzyme activity and carbon sequestration was seen increased but SOC- and gene- scaled soil respiration decreased, more or less with prolonged rice cultivation. As shown with regression analysis, SOC content was positively linearly correlated to recalcitrant carbon proportion but negatively linearly correlated to labile carbon, in both sand and clay fractions. However, soil respiration was found positively logarithmically correlated to total DNA contents and bacterial gen abundance in both sand and clay fractions. Total DNA content was found positively correlated to SOC and labile carbon content, recalcitrant carbon proportion and normalized enzyme activity but negatively to soil respiration, in sand fraction only. Our findings suggested that carbon accumulation and stabilization was prevalent in both sand and clay fraction, only the coarse sand fraction was found responsible for bioactivity dynamics in the rice soils. Thus, soil carbon sequestration was primarily by formation of the macro-aggregates, which again mediated carbon stability and bioactivity in the rice soils under long term rice cultivation.
NASA Astrophysics Data System (ADS)
Rita, Joice Cleide O.; Gama-Rodrigues, Emanuela Forestieri; Gama-Rodrigues, Antonio Carlos; Polidoro, Jose Carlos; Machado, Regina Cele R.; Baligar, Virupax C.
2011-07-01
Agroforestry systems (AFSs) have an important role in capturing above and below ground soil carbon and play a dominant role in mitigation of atmospheric CO2. Attempts has been made here to identify soil organic matter fractions in the cacao-AFSs that have different susceptibility to microbial decomposition and further represent the basis of understanding soil C dynamics. The objective of this study was to characterize the organic matter density fractions and soil size fractions in soils of two types of cacao agroforestry systems and to compare with an adjacent natural forest in Bahia, Brazil. The land-use systems studied were: (1) a 30-year-old stand of natural forest with cacao (cacao cabruca), (2) a 30-year-old stand of cacao with Erythrina glauca as shade trees (cacao + erythrina), and (3) an adjacent natural forest without cacao. Soil samples were collected from 0-10 cm depth layer in reddish-yellow Oxisols. Soil samples was separated by wet sieving into five fraction-size classes (>2000 μm, 1000-2000 μm, 250-1000 μm, 53-250 μm, and <53 μm). C and N accumulated in to the light (free- and intra-aggregate density fractions) and heavy fractions of whole soil and soil size fraction were determined. Soil size fraction obtained in cacao AFS soils consisted mainly (65 %) of mega-aggregates (>2000 μm) mixed with macroaggregates (32-34%), and microaggregates (1-1.3%). Soil organic carbon (SOC) and total N content increased with increasing soil size fraction in all land-use systems. Organic C-to-total N ratio was higher in the macroaggregate than in the microaggregate. In general, in natural forest and cacao cabruca the contribution of C and N in the light and heavy fractions was similar. However, in cacao + erythrina the heavy fraction was the most common and contributed 67% of C and 63% of N. Finding of this study shows that the majority of C and N in all three systems studied are found in macroaggregates, particularly in the 250-1000 μm size aggregate class. The heavy fraction was the most common organic matter fraction in these soils. Thus, in mature cacao AFS on highly weathered soils the main mechanisms of C stabilization could be the physical protection within macroaggregate structures thereby minimizing the impact of conversion of forest to cacao AFS.
Rita, Joice Cleide O; Gama-Rodrigues, Emanuela Forestieri; Gama-Rodrigues, Antonio Carlos; Polidoro, Jose Carlos; Machado, Regina Cele R; Baligar, Virupax C
2011-07-01
Agroforestry systems (AFSs) have an important role in capturing above and below ground soil carbon and play a dominant role in mitigation of atmospheric CO(2). Attempts has been made here to identify soil organic matter fractions in the cacao-AFSs that have different susceptibility to microbial decomposition and further represent the basis of understanding soil C dynamics. The objective of this study was to characterize the organic matter density fractions and soil size fractions in soils of two types of cacao agroforestry systems and to compare with an adjacent natural forest in Bahia, Brazil. The land-use systems studied were: (1) a 30-year-old stand of natural forest with cacao (cacao cabruca), (2) a 30-year-old stand of cacao with Erythrina glauca as shade trees (cacao + erythrina), and (3) an adjacent natural forest without cacao. Soil samples were collected from 0-10 cm depth layer in reddish-yellow Oxisols. Soil samples was separated by wet sieving into five fraction-size classes (>2000 μm, 1000-2000 μm, 250-1000 μm, 53-250 μm, and <53 μm). C and N accumulated in to the light (free- and intra-aggregate density fractions) and heavy fractions of whole soil and soil size fraction were determined. Soil size fraction obtained in cacao AFS soils consisted mainly (65 %) of mega-aggregates (>2000 μm) mixed with macroaggregates (32-34%), and microaggregates (1-1.3%). Soil organic carbon (SOC) and total N content increased with increasing soil size fraction in all land-use systems. Organic C-to-total N ratio was higher in the macroaggregate than in the microaggregate. In general, in natural forest and cacao cabruca the contribution of C and N in the light and heavy fractions was similar. However, in cacao + erythrina the heavy fraction was the most common and contributed 67% of C and 63% of N. Finding of this study shows that the majority of C and N in all three systems studied are found in macroaggregates, particularly in the 250-1000 μm size aggregate class. The heavy fraction was the most common organic matter fraction in these soils. Thus, in mature cacao AFS on highly weathered soils the main mechanisms of C stabilization could be the physical protection within macroaggregate structures thereby minimizing the impact of conversion of forest to cacao AFS.
NASA Astrophysics Data System (ADS)
Pedraza, A.; Kingsley, C.; Marchitto, T. M., Jr.; Lora, J. M.; Pollen, A.; Vollmer, T.; Leithold, E. L.; Mitchell, J.; Tripati, A. K.; Bhattacharya, A.
2017-12-01
Mineral dust accumulation is often causally associated with aridity. However, the relation might not be as straightforward. Consideration of grain sizes and geochemical fingerprinting of the coarse grain fraction will clearly have an impact on how we interpret the sedimentary record of mineral dust in depositional environments e.g. coarse grain fractions of mineral dust would most certainly be transported over relatively short distances and as such in depositional environments, the depositional rate of coarse grains must be determined in order to reliably understand erosional patterns associated with meteorological events (such as frequency of intense wind events such as tornadoes), climatological phenomenon (such as regional droughts) as well as more recently land-use changes. In this study we separate the two size fractions of mineral dust accumulation- fine fraction (typically <4 microns) and coarse fraction (typically >25 microns using grain size analysis from well-studied cores collected from several lake sites distributed across the western southwestern and the Great Plain regions; furthermore we use trace element analysis in each size fraction to identify contributing source regions. We find evidence that the coarser-grain size fraction in the studied lake cores could be of regional origin (and not just local in orgin);. the coarser fraction also appears to be related to intense meteorological events (i.e., the occurrence of cyclones). Analysis is underway to understand the impact of land-use changes on coarse grain fraction
Enrichment of spinal cord cell cultures with motoneurons
1978-01-01
Spinal cord cell cultures contain several types of neurons. Two methods are described for enriching such cultures with motoneurons (defined here simply as cholinergic cells that are capable of innervating muscle). In the first method, 7-day embryonic chick spinal cord neurons were separated according to size by 1 g velocity sedimentation. It is assumed that cholinergic motoneurons are among the largest cells present at this stage. The spinal cords were dissociated vigorously so that 95-98% of the cells in the initial suspension were isolated from one another. Cells in leading fractions (large cell fractions: LCFs) contain about seven times as much choline acetyltransferase (CAT) activity per unit cytoplasm as do cells in trailing fractions (small cell fractions: SCFs). Muscle cultures seeded with LCFs develop 10-70 times as much CAT as cultures seeded with SCFs and six times as much CAT as cultures seeded with control (unfractionated) spinal cord cells. More than 20% of the large neurons in LCF-muscle cultures innervate nearby myotubes. In the second method, neurons were gently dissociated from 4-day embryonic spinal cords and maintained in vitro. This approach is based on earlier observations that cholinergic neurons are among the first cells to withdraw form the mitotic cycle in the developing chick embryo (Hamburger, V. 1948. J. Comp. Neurol. 88:221- 283; and Levi-Montalcini, R. 1950. J. Morphol. 86:253-283). 4-Day spinal cord-muscle cultures develop three times as much CAT as do 7-day spinal cord-muscle plates, prepared in the same (gentle) manner. More than 50% of the relatively large 4-day neurons innervate nearby myotubes. Thus, both methods are useful first steps toward the complete isolation of motoneurons. Both methods should facilitate study of the development of cholinergic neurons and of nerve-muscle synapse formation. PMID:566275
Cena, L. G.; Chisholm, W. P.; Keane, M. J.; Chen, B. T.
2016-01-01
A field study was conducted to estimate the amount of Cr, Mn, and Ni deposited in the respiratory system of 44 welders in two facilities. Each worker wore a nanoparticle respiratory deposition (NRD) sampler during gas metal arc welding (GMAW) of mild and stainless steel and flux-cored arc welding (FCAW) of mild steel. Several welders also wore side-by-side NRD samplers and closed-face filter cassettes for total particulate samples. The NRD sampler estimates the aerosol's nano-fraction deposited in the respiratory system. Mn concentrations for both welding processes ranged 2.8–199 μg/m3; Ni concentrations ranged 10–51 μg/m3; and Cr concentrations ranged 40–105 μg/m3. Cr(VI) concentrations ranged between 0.5–1.3 μg/m3. For the FCAW process the largest concentrations were reported for welders working in pairs. As a consequence this often resulted in workers being exposed to their own welding fumes and to those generated from the welding partner. Overall no correlation was found between air velocity and exposure (R2 = 0.002). The estimated percentage of the nano-fraction of Mn deposited in a mild-steel-welder's respiratory system ranged between 10 and 56%. For stainless steel welding, the NRD samplers collected 59% of the total Mn, 90% of the total Cr, and 64% of the total Ni. These results indicate that most of the Cr and more than half of the Ni and Mn in the fumes were in the fraction smaller than 300 nm. PMID:25985454
Li, Yiwen; Shen, Yang; Pi, Lu; Hu, Wenli; Chen, Mengqin; Luo, Yan; Li, Zhi; Su, Shijun; Ding, Sanglan; Gan, Zhiwei
2016-01-01
A total of 27 settled dust samples were collected from urban roads, parks, and roofs in Chengdu, China to investigate particle size distribution and perchlorate levels in different size fractions. Briefly, fine particle size fractions (<250 μm) were the dominant composition in the settled dust samples, with mean percentages of 80.2%, 69.5%, and 77.2% for the urban roads, roofs, and the parks, respectively. Perchlorate was detected in all of the size-fractionated dust samples, with concentrations ranging from 73.0 to 6160 ng g(-1), and the median perchlorate levels increased with decreasing particle size. The perchlorate level in the finest fraction (<63 μm) was significantly higher than those in the coarser fractions. To our knowledge, this is the first report on perchlorate concentrations in different particle size fractions. The calculated perchlorate loadings revealed that perchlorate was mainly associated with finer particles (<125 μm). An exposure assessment indicated that exposure to perchlorate via settled road dust intake is safe to both children and adults in Chengdu, China. However, due to perchlorate mainly existing in fine particles, there is a potential for perchlorate to transfer into surface water and the atmosphere by runoff and wind erosion or traffic emission, and this could act as an important perchlorate pollution source for the indoor environment, and merits further study.
NASA Astrophysics Data System (ADS)
Hajipour, Ahmad; Tavakoli, Hamidreza
2017-12-01
In this study, the dynamic behavior and chaos control of a chaotic fractional incommensurate-order financial system are investigated. Using well-known tools of nonlinear theory, i.e. Lyapunov exponents, phase diagrams and bifurcation diagrams, we observe some interesting phenomena, e.g. antimonotonicity, crisis phenomena and route to chaos through a period doubling sequence. Adopting largest Lyapunov exponent criteria, we find that the system yields chaos at the lowest order of 2.15. Next, in order to globally stabilize the chaotic fractional incommensurate order financial system with uncertain dynamics, an adaptive fractional sliding mode controller is designed. Numerical simulations are used to demonstrate the effectiveness of the proposed control method.
Effect of flour particle size and damaged starch on the quality of cookies.
Barak, Sheweta; Mudgil, Deepak; Khatkar, B S
2014-07-01
Two wheat varieties 'C 306' and 'WH 542' were milled to obtain flour fractions of different particle sizes. Various physicochemical parameters such as wet and dry gluten, falling number, solvent retention capacity (SRC), alkaline water retention capacity (AWRC) and damaged starch content of the flour fractions were analyzed. The damaged starch values ranged from 5.14% to 14.79% for different flour fractions and increased significantly with decrease in particle size. AWRC and SRC of the flour fractions also increased with decrease in particle size. AWRC(r = 0.659) showed positive correlation and cookie spread ratio (r = -0.826) was strongly negatively correlated with the damaged starch levels. Hardness of the cookies in term of compression force showed increasing trend as damaged starch of the flour fractions increased. Spread ratio of the cookies ranged from 6.72 to 10.12. Wheat flour of particle size greater than 150 μm produced cookies with best quality.
Hawley, Brie; Schaeffer, Joshua; Poole, Jill A.; Dooley, Gregory P.; Reynolds, Stephen; Volckens, John
2015-01-01
Exposure to organic dusts is associated with increased respiratory morbidity and mortality in agricultural workers. Organic dusts in dairy farm environments are complex, polydisperse mixtures of toxic and immunogenic compounds. Previous toxicological studies focused primarily on exposures to the respirable size fraction, however, organic dusts in dairy farm environments are known to contain larger particles. Given the size distribution of dusts from dairy farm environments, the nasal and bronchial epithelia represent targets of agricultural dust exposures. In this study, well-differentiated normal human bronchial epithelial cells and human nasal epithelial cells were exposed to two different size fractions (PM10 and PM>10) of dairy parlor dust using a novel aerosol-to-cell exposure system. Levels of pro-inflammatory transcripts (IL-8, IL-6, and TNF-α) were measured two hr after exposure. Lactate dehydrogenase (LDH) release was also measured as an indicator of cytotoxicity. Cell exposure to dust was measured in each size fraction as a function of mass, endotoxin, and muramic acid levels. To our knowledge, this is the first study to evaluate the effects of distinct size fractions of agricultural dust on human airway epithelial cells. Our results suggest that both PM10 and PM>10 size fractions elicit a pro-inflammatory response in airway epithelial cells and that the entire inhalable size fraction needs to be considered when assessing potential risks from exposure to agricultural dusts. Further, data suggest that human bronchial cells respond differently to these dusts than human nasal cells and, therefore, the two cell types need to be considered separately in airway cell models of agricultural dust toxicity. PMID:25965193
Hurychová, Hana; Lebedová, Václava; Šklubalová, Zdenka; Dzámová, Pavlína; Svěrák, Tomáš; Stoniš, Jan
Flowability of powder excipients is directly influenced by their size and shape although the granulometric influence of the flow and shear behaviour of particulate matter is not studied frequently. In this work, the influence of particle size on the mass flow rate through the orifice of a conical hopper, and the cohesion and flow function was studied for four free-flowable size fractions of sorbitol for direct compression in the range of 0.080-0.400 mm. The particles were granulometricaly characterized using an optical microscopy; a boundary fractal dimension of 1.066 was estimated for regular sorbitol particles. In the particle size range studied, a non-linear relationship between the mean particle size and the mass flow rate Q10 (g/s) was detected having amaximum at the 0.245mm fraction. The best flow properties of this fraction were verified with aJenike shear tester due to the highest value of flow function and the lowest value of the cohesion. The results of this work show the importance of the right choice of the excipient particle size to achieve the best flow behaviour of particulate material.Key words: flowability size fraction sorbitol for direct compaction Jenike shear tester fractal dimension.
Michaud, S; Levasseur, M; Doucette, G; Cantin, G
2002-10-01
We determined the seasonal distribution of paralytic shellfish toxins (PSTs) and PST producing bacteria in > 15, 5-15, and 0.22-5 microm size fractions in the St Lawrence. We also measured PSTs in a local population of Mytilus edulis. PST concentrations were determined in each size fraction and in laboratory incubations of sub-samples by high performance liquid chromatography (HPLC), including the rigorous elimination of suspected toxin 'imposter' peaks. Mussel toxin levels were determined by mouse bioassay and HPLC. PSTs were detected in all size fractions during the summer sampling season, with 47% of the water column toxin levels associated with particles smaller than Alexandrium tamarense (< 15 microm). Even in the > 15 microm size fraction, we estimated that as much as 92% of PSTs could be associated with particles other than A. tamarense. Our results stress the importance of taking into account the potential presence of PSTs in size fractions other than that containing the known algal producer when attempting to model shellfish intoxication, especially during years of low cell abundance. Finally, our HPLC results confirmed the presence of bacteria capable of autonomous PST production in the St Lawrence as well as demonstrating their regular presence and apparent diversity in the plankton. Copyright 2002 Elsevier Science Ltd.
Ash reduction strategies in corn stover facilitated by anatomical and size fractionation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacey, Jeffrey A.; Emerson, Rachel M.; Thompson, David N.
There is growing interest internationally to produce fuels from renewable biomass resources. Inorganic components of biomass feedstocks, referred to collectively as ash, damage equipment and decrease yields in thermal conversion processes, and decrease feedstock value for biochemical conversion processes. Decreasing the ash content of feedstocks improves conversion efficiency and lowers process costs. Because physiological ash is unevenly distributed in the plant, mechanical processes can be used to separate fractions of the plant based on ash content. This study focuses on the ash separation that can be achieved by separating corn stover by particle size and anatomical fraction. Baled corn stovermore » was hand-separated into anatomical fractions, ground to <19.1 mm, and size separated using six sieves ranging from 9.5 to 0.150 mm. Size fractions were analyzed for total ash content and ash composition. Particle size distributions observed for the anatomical fractions varied considerably. Cob particles were primarily 2.0 mm or greater, while most of the sheath and husk particles were 2.0 mm and smaller. Particles of leaves greater than 0.6 mm contained the greatest amount of total ash, ranging from approximately 8 to 13% dry weight of the total original material, while the fractions with particles smaller than 0.6 mm contained less than 2% of the total ash of the original material. As a result, based on the overall ash content and the elemental ash, specific anatomical and size fractions can be separated to optimize the feedstocks being delivered to biofuels conversion processes and minimize the need for more expensive ash reduction treatments.« less
Ash reduction strategies in corn stover facilitated by anatomical and size fractionation
Lacey, Jeffrey A.; Emerson, Rachel M.; Thompson, David N.; ...
2016-04-22
There is growing interest internationally to produce fuels from renewable biomass resources. Inorganic components of biomass feedstocks, referred to collectively as ash, damage equipment and decrease yields in thermal conversion processes, and decrease feedstock value for biochemical conversion processes. Decreasing the ash content of feedstocks improves conversion efficiency and lowers process costs. Because physiological ash is unevenly distributed in the plant, mechanical processes can be used to separate fractions of the plant based on ash content. This study focuses on the ash separation that can be achieved by separating corn stover by particle size and anatomical fraction. Baled corn stovermore » was hand-separated into anatomical fractions, ground to <19.1 mm, and size separated using six sieves ranging from 9.5 to 0.150 mm. Size fractions were analyzed for total ash content and ash composition. Particle size distributions observed for the anatomical fractions varied considerably. Cob particles were primarily 2.0 mm or greater, while most of the sheath and husk particles were 2.0 mm and smaller. Particles of leaves greater than 0.6 mm contained the greatest amount of total ash, ranging from approximately 8 to 13% dry weight of the total original material, while the fractions with particles smaller than 0.6 mm contained less than 2% of the total ash of the original material. As a result, based on the overall ash content and the elemental ash, specific anatomical and size fractions can be separated to optimize the feedstocks being delivered to biofuels conversion processes and minimize the need for more expensive ash reduction treatments.« less
Malik, Ashish; Scheibe, Andrea; LokaBharathi, P A; Gleixner, Gerd
2012-09-18
Stable isotopic content of dissolved organic carbon (δ(13)C-DOC) provides valuable information on its origin and fate. In an attempt to get additional insights into DOC cycling, we developed a method for δ(13)C measurement of DOC size classes by coupling high-performance liquid chromatography (HPLC)-size exclusion chromatography (SEC) to online isotope ratio mass spectrometry (IRMS). This represents a significant methodological contribution to DOC research. The interface was evaluated using various organic compounds, thoroughly tested with soil-water from a C3-C4 vegetation change experiment, and also applied to riverine and marine DOC. δ(13)C analysis of standard compounds resulted in excellent analytical precision (≤0.3‰). Chromatography resolved soil DOC into 3 fractions: high molecular weight (HMW; 0.4-10 kDa), low molecular weight (LMW; 50-400 Da), and retained (R) fraction. Sample reproducibility for measurement of δ(13)C-DOC size classes was ±0.25‰ for HMW fraction, ± 0.54‰ for LMW fraction, and ±1.3‰ for R fraction. The greater variance in δ(13)C values of the latter fractions was due to their lower concentrations. The limit of quantification (SD ≤0.6‰) for each size fraction measured as a peak is 200 ng C (2 mg C/L). δ(13)C-DOC values obtained in SEC mode correlated significantly with those obtained without column in the μEA mode (p < 0.001, intercept 0.17‰), which rules out SEC-associated isotopic effects or DOC loss. In the vegetation change experiment, fractions revealed a clear trend in plant contribution to DOC; those in deeper soils and smaller size fractions had less plant material. It was also demonstrated that the technique can be successfully applied to marine and riverine DOC without further sample pretreatment.
Stoliker, Deborah L.; Liu, Chongxuan; Kent, Douglas B.; Zachara, John M.
2013-01-01
Rates of U(VI) release from individual dry-sieved size fractions of a field-aggregated, field-contaminated composite sediment from the seasonally saturated lower vadose zone of the Hanford 300-Area were examined in flow-through reactors to maintain quasi-constant chemical conditions. The principal source of variability in equilibrium U(VI) adsorption properties of the various size fractions was the impact of variable chemistry on adsorption. This source of variability was represented using surface complexation models (SCMs) with different stoichiometric coefficients with respect to hydrogen ion and carbonate concentrations for the different size fractions. A reactive transport model incorporating equilibrium expressions for cation exchange and calcite dissolution, along with rate expressions for aerobic respiration and silica dissolution, described the temporal evolution of solute concentrations observed during the flow-through reactor experiments. Kinetic U(VI) desorption was well described using a multirate SCM with an assumed lognormal distribution for the mass-transfer rate coefficients. The estimated mean and standard deviation of the rate coefficients were the same for all <2 mm size fractions but differed for the 2–8 mm size fraction. Micropore volumes, assessed using t-plots to analyze N2 desorption data, were also the same for all dry-sieved <2 mm size fractions, indicating a link between micropore volumes and mass-transfer rate properties. Pore volumes for dry-sieved size fractions exceeded values for the corresponding wet-sieved fractions. We hypothesize that repeated field wetting and drying cycles lead to the formation of aggregates and/or coatings containing (micro)pore networks which provided an additional mass-transfer resistance over that associated with individual particles. The 2–8 mm fraction exhibited a larger average and standard deviation in the distribution of mass-transfer rate coefficients, possibly caused by the abundance of microporous basaltic rock fragments.
Characterization of dust from blast furnace cast house de-dusting.
Lanzerstorfer, Christof
2017-10-01
During casting of liquid iron and slag, a considerable amount of dust is emitted into the cast house of a blast furnace (BF). Usually, this dust is extracted via exhaust hoods and subsequently separated from the ventilation air. In most BFs the cast house dust is recycled. In this study a sample of cast house dust was split by air classification into five size fractions, which were then analysed. Micrographs showed that the dominating particle type in all size fractions is that of single spherical-shaped particles. However, some irregular-shaped particles were also found and in the finest size fraction also some agglomerates were present. Almost spherical particles consisted of Fe and O, while highly irregular-shaped particles consisted of C. The most abundant element was Fe, followed by Ca and C. These elements were distributed relatively uniformly in the size fractions. As, Cd, Cu, K, Pb, S, Sb and Zn were enriched significantly in the fine size fractions. Thus, air classification would be an effective method for improved recycling. By separating a small fraction of fines (about 10-20%), a reduction of the mass of Zn in the coarse dust recycled in the range of 40-55% would be possible.
Shiau, Yo-Jin; Chen, Jenn-Shing; Chung, Tay-Lung; Tian, Guanglong; Chiu, Chih-Yu
2017-12-01
Soil organic carbon (SOC) and carbon (C) functional groups in different particle-size fractions are important indicators of microbial activity and soil decomposition stages under wildfire disturbances. This research investigated a natural Tsuga forest and a nearby fire-induced grassland along a sampling transect in Central Taiwan with the aim to better understand the effect of forest wildfires on the change of SOC in different soil particle scales. Soil samples were separated into six particle sizes and SOC was characterized by solid-state 13 C nuclear magnetic resonance spectroscopy in each fraction. The SOC content was higher in forest than grassland soil in the particle-size fraction samples. The O-alkyl-C content (carbohydrate-derived structures) was higher in the grassland than the forest soils, but the alkyl-C content (recalcitrant substances) was higher in forest than grassland soils, for a higher humification degree (alkyl-C/O-alkyl-C ratio) in forest soils for all the soil particle-size fractions. High humification degree was found in forest soils. The similar aromaticity between forest and grassland soils might be attributed to the fire-induced aromatic-C content in the grassland that offsets the original difference between the forest and grassland. High alkyl-C content and humification degree and low C/N ratios in the fine particle-size fractions implied that undecomposed recalcitrant substances tended to accumulate in the fine fractions of soils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dongsheng; Lavender, Curt
2015-05-08
Improving yield strength and asymmetry is critical to expand applications of magnesium alloys in industry for higher fuel efficiency and lower CO 2 production. Grain refinement is an efficient method for strengthening low symmetry magnesium alloys, achievable by precipitate refinement. This study provides guidance on how precipitate engineering will improve mechanical properties through grain refinement. Precipitate refinement for improving yield strengths and asymmetry is simulated quantitatively by coupling a stochastic second phase grain refinement model and a modified polycrystalline crystal viscoplasticity φ-model. Using the stochastic second phase grain refinement model, grain size is quantitatively determined from the precipitate size andmore » volume fraction. Yield strengths, yield asymmetry, and deformation behavior are calculated from the modified φ-model. If the precipitate shape and size remain constant, grain size decreases with increasing precipitate volume fraction. If the precipitate volume fraction is kept constant, grain size decreases with decreasing precipitate size during precipitate refinement. Yield strengths increase and asymmetry approves to one with decreasing grain size, contributed by increasing precipitate volume fraction or decreasing precipitate size.« less
Apollo 17 Soil Characterization for Reflectance Spectroscopy
NASA Technical Reports Server (NTRS)
Taylor, L. A.; Pieters, C.; Patchen, A.; Morris, R. V.; Keller, L. P.; Wentworth, S.; McKay, D. S.
1999-01-01
It is the fine fractions that dominate the observed spectral signatures of bulk lunar soil, and the next to the smallest size fractions are the most similar to the overall properties of the bulk soil. Thus, our Lunar Soil Characterization Consortium has concentrated on understanding the inter-relations of compositional, mineralogical, and optical properties of the <45-micron size fraction and its component sizes (20-44 micron, 10-20 micron, and <10 micron size fractions). To be able to generalize our results beyond the particular sample set studied, it is necessary to quantitatively identify the observed effects of space weathering and evaluate the processes involved. For this, it is necessary to know the chemistry of each size fraction, modal abundances of each phase, average compositions of the minerals and glasses, I(sub s)/FeO values, reflectance spectra, and the physical makeup of the individual particles and their patinas. This characterization includes the important dissection of the pyroxene minerals into four separate populations, with data on both modes and average chemical compositions. Armed with such data, it should be possible to effectively isolate spectral effects of space weathering from spectral properties related to mineral and glass chemistry. Four mare soils from the Apollo 17 site were selected for characterization based upon similarities in bulk composition and their contrasting maturities, ranging from immature to submature to mature. The methodology of our characterization has been discussed previously. Results of the Apollo 17 mare soils, outlined herein, are being prepared for publication in MAPS. As shown, with decreasing grain size, the agglutinitic (impact) glass content profoundly increases. This is the most impressive change for the mare soils. In several soils we have examined, there is an over two-fold increase in the agglutinitic glass contents between the 90-150- micron and the 10-20-micron size fractions. Accompanying this increase in agglutinitic glass is a definite decrease in pyroxenes and to lesser extents, the oxides (ilmenite), volcanic glass, and olivine. Unexpectedly, however, the absolute plagioclase abundances stay relatively constant throughout the different grain sizes, although the abundance of plagioclase relative to the mafic minerals increases with decreasing particle size. These soils were chosen for study based upon their similarities in FeO and Ti02 content, allowing for direct comparisons between evolutions of chemistry between size fractions and among different maturities of soils. The bulk chemistry of these fractions was determined by EMP analyses of fused glass beads. In contrast to the systematic variations in bulk chemistry discussed below, the relatively uniform composition of agglutinitic glass with grain size and soil maturity is illustrated. The composition of the bulk fraction of each size fraction becomes more feldspathic with increasing maturity, with the effect being most pronounced for the finest fractions. The composition of the agglutinitic glass, however, is relatively invariant and more feldspathic (i.e., rich in Al2O3) than even the <10-micron fraction. This relation not only strengthens the "fusion of the finest fraction" (F(sup 3)) hypothesis, but also highlights the important role of plagioclase in the formation of agglutinitic glass. With decreasing grain size, FeO, MgO, and TiO2 contents decrease, whereas CaO, Na2O, and Al2O3 (plag components) increase for all soils. These chemical variations would appear to be coupled with the significant increase in agglutinitic glass and decrease in oxide (ilmenite),pyroxene, and volcanic glass. These changes in chemistry do not appear to be due to distinct changes in the compositions of individual phases but to their abundances. Values of I(sub s)/FeO increase with decreasing grain size, even though the bulk FeO contents decrease. That is, the percentage of the total Fe that is present as nanophase Fe(sup O) has increased substantially in the smaller size fraction. Note that the increase in nanophase FeO in smaller size fractions is significantly greater than the increase in agglutinitic glass content, with its single-domain FeO component. This would seem to indicate that at least some of the FeO is surface correlated. To illustrate this effect, if it is assumed that the nanophase FeO is entirely surface correlated, then equal masses of 15-micron and 6-micron spheres should have about 3x as much FeO in the finer fraction. The recent findings of Kelleret al. of the major role of vapor-deposited, nanophase FeO-containing patinas on most soil particles is a major breakthrough in our understanding of the distribution of FeO within agglutinitic glass and upon grain surfaces. Bidirectional reflectance spectra for a representative Apollo 17 soil (70181) are shown. The size separates all have similar albedo in the blue and follow a regular sequence in which the continuum slope increases, ferrous bands weaken, and albedo, increases with decreasing particle size. The bulk <45-micron soil is typically close to the 10-20 micron spectrum. It is important to note that although the finest fraction (<10 micron) is close in composition to the abundant agglutinitic glass in each size fraction, this size fraction is relatively featureless and does not dominate the spectrum of the bulk <45-micron soil. It has long been suspected that agglutinitic glass, to a large extent, is the product of melting of the finest fraction of the soils, with a dominance of plagioclase. Given the low abundance of pyroxene in the finest fractions of each soil the source of the FeO in these Apollo 17 agglutinitic glasses is not fully identified. We suspect the abundant volcanic glass in these samples may be a significant contributor and this hypothesis will be tested with the suite under study from other Apollo sites.
Fernández-Ugalde, Oihane; Gartzia-Bengoetxea, Nahia; Arostegi, Javier; Moragues, Lur; Arias-González, Ander
2017-06-01
Biochar can largely contribute to enhance organic carbon (OC) stocks in soil and improve soil quality in forest and agricultural lands. Its contribution depends on its recalcitrance, but also on its interactions with minerals and other organic compounds in soil. Thus, it is important to study the link between minerals, natural organic matter and biochar in soil. In this study, we investigated the incorporation of biochar-derived carbon (biochar-C) into various particle-size fractions with contrasting mineralogy and the effect of biochar on the storage of total OC in the particle-size fractions in an acid loamy soil under Pinus radiata (C3 type) in the Spanish Atlantic area. We compared plots amended with biochar produced from Miscanthus sp. (C4 type) with control plots (not amended). We separated sand-, silt-, and clay-size fractions in samples collected from 0 to 20-cm depth. In each fraction, we analyzed clay minerals, metallic oxides and oxy-hydroxides, total OC and biochar-C. The results showed that 51% of the biochar-C was in fractions <20μm one year after the application of biochar. Biochar-C stored in clay-size fractions (0.2-2μm, 0.05-0.2μm, <0.05μm) was only 14%. Even so, we observed that biochar-C increased with decreasing particle-size in clay-size fractions, as it occurred with the vermiculitic phases and metallic oxides and oxy-hydroxides. Biochar also affected to the distribution of total OC among particle-size fractions. Total OC concentration was greater in fractions 2-20μm, 0.2-2μm, 0.05-0.2μm in biochar-amended plots than in control plots. This may be explained by the adsorption of dissolved OC from fraction <0.05μm onto biochar particles. The results suggested that interactions between biochar, minerals and pre-existing organic matter already occurred in the first year. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhou, Tong; Wu, Longhua; Luo, Yongming; Christie, Peter
2018-01-01
Soil particulate organic matter (POM) has rapid turnover and metal enrichment, but the interactions between organic matter (OM) and metals have not been well studied. The present study aimed to investigate changes in the OM concentration and composition of the POM fraction and their corresponding effects on metal distribution and extractability in long-term polluted paddy soils. Soil 2000-53 μm POM size fractions had higher contents of C-H and C=O bonds, C-H/C=O ratios and concentrations of fulvic acid (FA), humic acid (HA), cadmium (Cd) and zinc (Zn) than the bulk soils. Cadmium and Zn stocks in soil POM fractions were 24.5-27.9% and 7.12-16.7%, respectively, and were more readily EDTA-extractable. Compared with the control soil, the 2000-250 μm POM size fractions had higher organic carbon concentrations and C/N ratios in the polluted soils. However, there were no significant differences in the contents in C-H and C=O bonds or C-H/C=O ratios of POM fractions among the control, slightly and highly polluted soils. In accordance with the lower contents of C=O bonds and FA and HA concentrations, the Cd and Zn concentrations in 250-53 μm POM size fractions were lower than those in 2000-250 μm POM size fractions. Enrichment of Cd in POM fractions increased with increasing soil pollution level. These results support the view that changes in the OM concentration and the size and composition of POM fractions play a key role in determining the distribution of Cd and Zn in paddy soils. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Reitz, M. A.; Seeber, L.; Schaefer, J. M.; Ferguson, E. K.
2012-12-01
Early studies pioneering the method for catchment wide erosion rates by measuring 10Be in alluvial sediment were taken at river mouths and used the sand size grain fraction from the riverbeds in order to average upstream erosion rates and measure erosion patterns. Finer particles (<0.0625 mm) were excluded to reduce the possibility of a wind-blown component of sediment and coarser particles (>2 mm) were excluded to better approximate erosion from the entire upstream catchment area (coarse grains are generally found near the source). Now that the sensitivity of 10Be measurements is rapidly increasing, we can precisely measure erosion rates from rivers eroding active tectonic regions. These active regions create higher energy drainage systems that erode faster and carry coarser sediment. In these settings, does the sand-sized fraction fully capture the average erosion of the upstream drainage area? Or does a different grain size fraction provide a more accurate measure of upstream erosion? During a study of the Neto River in Calabria, southern Italy, we took 8 samples along the length of the river, focusing on collecting samples just below confluences with major tributaries, in order to use the high-resolution erosion rate data to constrain tectonic motion. The samples we measured were sieved to either a 0.125 mm - 0.710 mm fraction or the 0.125 mm - 4 mm fraction (depending on how much of the former was available). After measuring these 8 samples for 10Be and determining erosion rates, we used the approach by Granger et al. [1996] to calculate the subcatchment erosion rates between each sample point. In the subcatchments of the river where we used grain sizes up to 4 mm, we measured very low 10Be concentrations (corresponding to high erosion rates) and calculated nonsensical subcatchment erosion rates (i.e. negative rates). We, therefore, hypothesize that the coarser grain sizes we included are preferentially sampling a smaller upstream area, and not the entire upstream catchment, which is assumed when measurements are based solely on the sand sized fraction. To test this hypothesis, we used samples with a variety of grain sizes from the Shillong Plateau. We sieved 5 samples into three grain size fractions: 0.125 mm - 710 mm, 710 mm - 4 mm, and >4 mm and measured 10Be concentrations in each fraction. Although there is some variation in the grain size fraction that yields the highest erosion rate, generally, the coarser grain size fractions have higher erosion rates. More significant are the results when calculating the subcatchment erosion rates, which suggest that even medium sized grains (710 mm - 4 mm) are sampling an area smaller than the entire upstream area; this finding is consistent with the nonsensical results from the Neto River study. This result has numerous implications for the interpretations of 10Be erosion rates: most importantly, an alluvial sample may not be averaging the entire upstream area, even when using the sand size fraction - resulting erosion rates more pertinent for that sample point rather than the entire catchment.
Size- and density-distributions and sources of polycyclic aromatic hydrocarbons in urban road dust.
Murakami, Michio; Nakajima, Fumiyuki; Furumai, Hiroaki
2005-11-01
Polycyclic aromatic hydrocarbons (PAHs) present in size- and density-fractionated road dust were measured to identify the important fractions in urban runoff and to analyse their sources. Road dust was collected from a residential area (Shakujii) and a heavy traffic area (Hongo Street). The sampling of road dust from the residential area was conducted twice in different seasons (autumn and winter). The collected road dust was separated into three or four size-fractions and further fractionated into light (<1.7 g/cm3) and heavy (>1.7 g/cm3) fractions by using cesium chloride solution. Light particles constituted only 4.0+/-1.4%, 0.69+/-0.03% and 3.4+/-1.0% of the road dust by weight for Shakujii (November), Shakujii (February) and Hongo Street, respectively but contained 28+/-10%, 33+/-3% and 44+/-8% of the total PAHs, respectively. The PAH contents in the light fractions were 1-2 orders of magnitude higher than those in the heavy fractions. In the light fractions, the 12PAH contents in February were significantly higher than the 12PAH contents in November (P<0.01), whereas in the heavy fractions, no significant difference was found (P>0.05). Cluster analysis revealed that there was a significant difference in the PAH profiles between locations rather than between size-fractions, density-fractions and sampling times. Multiple regression analysis indicated that asphalt/pavement was the major source of Shakujii road dust, and that tyre and diesel vehicle exhaust were the major sources of finer and coarser fractions collected from Hongo Street road dust, respectively.
Gong, Dan-yan; Pan, Yang; Huang, Yong; Bao, Wei; Li, Qian-qian
2016-03-15
Grain size distribution characteristics of suspended particulate matter (SPM) reflects the apparent polluted condition of the urban landscape water. In order to explore the internal relationship between the eutrophication of urban landscape water's apparent pollution and grain size distribution of SPM, and its influencing factors, this paper selected five representative sampling sites in Feng Jin River which is a typical eutrophication river in Suzhou City, measured the grain size distribution of SPM, sensation pollution index (SPI) and water quality index, and analyzed their correlation. The results showed that: The rich nutrient water possessed a similar characteristics in grain size distribution. The grain size distribution of SPM in water was multimodal, and the the peak position was roughly the same; the grain size distribution of SPM was composed by multiple components. It could be roughly divided into six parts with the particle size range of every group being < 1.5 µm, 1.5-8 µm, 8-35 µm, 35-186 µm, 186-516 µm, > 516 µm. The component III was superior (with an average volume fraction of 38.3%-43.2%), and its volume fraction had a significant positive relation with the SPI value and the Chl-a content. The increase of component III volume fraction was the reflection of particle size's result of increasing SPI value. The increase of component III volume fraction was mainly derived from the increasing algal content. The volume fraction of group IV + group VI + group V was significantly higher under the condition of exogenous enter. When there was no exogenous component, the volume fraction of group IV + group VI + group V had a significant negative correlation with SPI value; when there were exogenous components, the volume fraction of group IV + group VI + group V had a weak positive correlation with SPI value, but the correlation did not reach a significant level. Environmental factors (Fv/Fm and DO) and exogenous factors had an influence by functioning on the algal content which signified the polluted material, and then affected the volume fraction of particle size's components and the quality of apparent water. Hydrodynamic conditions mainly had a certain influence on the median particle size, and had no effect on the apparent polluted condition of water.
Ultrasonically enhanced fractionation of milk fat in a litre-scale prototype vessel.
Leong, Thomas; Johansson, Linda; Mawson, Raymond; McArthur, Sally L; Manasseh, Richard; Juliano, Pablo
2016-01-01
The ultrasonic fractionation of milk fat in whole milk to fractions with distinct particle size distributions was demonstrated using a stage-based ultrasound-enhanced gravity separation protocol. Firstly, a single stage ultrasound gravity separation was characterised after various sonication durations (5-20 min) with a mass balance, where defined volume partitions were removed across the height of the separation vessel to determine the fat content and size distribution of fat droplets. Subsequent trials using ultrasound-enhanced gravity separation were carried out in three consecutive stages. Each stage consisted of 5 min sonication, with single and dual transducer configurations at 1 MHz and 2 MHz, followed by aliquot collection for particle size characterisation of the formed layers located at the bottom and top of the vessel. After each sonication stage, gentle removal of the separated fat layer located at the top was performed. Results indicated that ultrasound promoted the formation of a gradient of vertically increasing fat concentration and particle size across the height of the separation vessel, which became more pronounced with extended sonication time. Ultrasound-enhanced fractionation provided fat enriched fractions located at the top of the vessel of up to 13 ± 1% (w/v) with larger globules present in the particle size distributions. In contrast, semi-skim milk fractions located at the bottom of the vessel as low as 1.2 ± 0.01% (w/v) could be produced, containing proportionally smaller sized fat globules. Particle size differentiation was enhanced at higher ultrasound energy input (up to 347 W/L). In particular, dual transducer after three-stage operation at maximum energy input provided highest mean particle size differentiation with up to 0.9 μm reduction in the semi-skim fractions. Higher frequency ultrasound at 2 MHz was more effective in manipulating smaller sized fat globules retained in the later stages of skimming than 1 MHz. While 2 MHz ultrasound removed 59 ± 2% of the fat contained in the initial sample, only 47 ± 2% was removed with 1 MHz after 3 ultrasound-assisted fractionation stages. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chetvertkov, Mikhail A., E-mail: chetvertkov@wayne
2016-10-15
Purpose: To develop standard (SPCA) and regularized (RPCA) principal component analysis models of anatomical changes from daily cone beam CTs (CBCTs) of head and neck (H&N) patients and assess their potential use in adaptive radiation therapy, and for extracting quantitative information for treatment response assessment. Methods: Planning CT images of ten H&N patients were artificially deformed to create “digital phantom” images, which modeled systematic anatomical changes during radiation therapy. Artificial deformations closely mirrored patients’ actual deformations and were interpolated to generate 35 synthetic CBCTs, representing evolving anatomy over 35 fractions. Deformation vector fields (DVFs) were acquired between pCT and syntheticmore » CBCTs (i.e., digital phantoms) and between pCT and clinical CBCTs. Patient-specific SPCA and RPCA models were built from these synthetic and clinical DVF sets. EigenDVFs (EDVFs) having the largest eigenvalues were hypothesized to capture the major anatomical deformations during treatment. Results: Principal component analysis (PCA) models achieve variable results, depending on the size and location of anatomical change. Random changes prevent or degrade PCA’s ability to detect underlying systematic change. RPCA is able to detect smaller systematic changes against the background of random fraction-to-fraction changes and is therefore more successful than SPCA at capturing systematic changes early in treatment. SPCA models were less successful at modeling systematic changes in clinical patient images, which contain a wider range of random motion than synthetic CBCTs, while the regularized approach was able to extract major modes of motion. Conclusions: Leading EDVFs from the both PCA approaches have the potential to capture systematic anatomical change during H&N radiotherapy when systematic changes are large enough with respect to random fraction-to-fraction changes. In all cases the RPCA approach appears to be more reliable at capturing systematic changes, enabling dosimetric consequences to be projected once trends are established early in a treatment course, or based on population models.« less
NASA Technical Reports Server (NTRS)
Fahey, A. J.; Goswami, J. N.; Mckeegan, K. D.; Zinner, E. K.
1987-01-01
Ion probe measurements of the oxygen isotopic composition of seven hibonite samples from the CM chondrites Murchison and Murray are reported. All samples show large O-16 excesses relative to terrestrial oxygen. The data for all samples plot along the carbonaceous chondrite O-16-rich mixing line and show no evidence for isotopic mass fractionation effects characteristic of FUN inclusions. These hibonites have the largest Ca-48 and Ti-50 isotopic anomalies found to date; thus there is no intrinsic relationship between anomalies of a nucleosynthetic origin and isotopic mass fractionation effects. The large O-16 excess seen in the sample with the largest measured Ca-48 and Ti-50 depletions argues against a late injection of exotic material from a nearby supernova as a source for the isotopic anomalies.
Spontaneous deswelling of pNIPAM microgels at high concentrations
NASA Astrophysics Data System (ADS)
Gasser, Urs; Scotti, Andrea; Herman, Emily S.; Pelaez-Fernandez, Miguel; Han, Jun; Menzel, Andreas; Lyon, L. Andrew; Fernandez-Nieves, Alberto
Polydisperse suspensions of pNIPAM microgel particles show a unique, spontaneous particle deswelling behavior. Beyond a critical concentration, the largest microgels deswell and thereby reduce the polydispersity of the suspension. We have recently unraveled the mechanism of this spontaneous, selective deswelling. pNIPAM microgels carry charged sulfate groups originating from the ammonium persulfate starter used in particle synthesis. Most of the ammonium counterions are trapped close to the microgel surface, but a fraction of them escapes the electrostatic attraction and contributes to the osmotic pressure of the suspension. The counterion clouds of neighboring particles progressively overlap with increasing volume fraction, leading to an increase of free counterions and the osmotic pressure outside but not inside the microgel particles. We find particles to deswell when the resulting osmotic pressure difference between the inside and the outside becomes larger their bulk modulus. For pNIPAM microgels synthesized with the same protocol, the largest particles are the softest and deswell first.
Enhanced detection of terrestrial gamma-ray flashes by AGILE.
Marisaldi, M; Argan, A; Ursi, A; Gjesteland, T; Fuschino, F; Labanti, C; Galli, M; Tavani, M; Pittori, C; Verrecchia, F; D'Amico, F; Østgaard, N; Mereghetti, S; Campana, R; Cattaneo, P W; Bulgarelli, A; Colafrancesco, S; Dietrich, S; Longo, F; Gianotti, F; Giommi, P; Rappoldi, A; Trifoglio, M; Trois, A
2015-11-16
At the end of March 2015 the onboard software configuration of the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite was modified in order to disable the veto signal of the anticoincidence shield for the minicalorimeter instrument. The motivation for such a change was the understanding that the dead time induced by the anticoincidence prevented the detection of a large fraction of Terrestrial Gamma-Ray Flashes (TGFs). The configuration change was highly successful resulting in an increase of one order of magnitude in TGF detection rate. As expected, the largest fraction of the new events has short duration (<100 μs), and part of them has simultaneous association with lightning sferics detected by the World Wide Lightning Location Network. The new configuration provides the largest TGF detection rate surface density (TGFs/km 2 /yr) to date, opening prospects for improved correlation studies with lightning and atmospheric parameters on short spatial and temporal scales along the equatorial region.
Guenette, Estelle; Barrett, Andrew; Kraus, Debbie; Brody, Rachel; Harding, Ljiljana; Magee, Gavin
2009-10-01
Medicines for delivering therapeutic agents to the lung as dry powders primarily consist of a carrier and a micronised active pharmaceutical ingredient (API). The performance of an inhaled formulation will depend on a number of factors amongst which the particle size distribution (PSD) plays a key role. It is suggested that increasing the number of fine particles in the carrier can improve the aerosolisation of the API. In addition the effect of PSD upon a bulk powder is also broadly understood in terms of powder flow. Other aspects of functionality that different size fractions of the carrier affect are not clearly understood; for example, it is not yet clearly known how different size fractions contribute to the different functionalities of the carrier. It is the purpose of this investigation to examine the effects of different lactose size fractions on fine particle dose, formulation stability and the ability to process and fill the material in the preferred device. In order to understand the true impact of the size fractions of lactose on the performance of dry powder inhaled (DPI) products, a statistically designed study has been conducted. The study comprised various DPI blend formulations prepared using lactose monohydrate carrier systems consisting of mixtures of four size fractions. Interactive mixtures were prepared containing 1% (w/w) salbutamol sulphate. The experimental design enabled the evaluation of the effect of lactose size fractions on processing and performance attributes of the formulation. Furthermore, the results of the study demonstrate that an experimental design approach can be used successfully to support dry powder formulation development.
Inertial flow regimes of the suspension of finite size particles
NASA Astrophysics Data System (ADS)
Lashgari, Iman; Picano, Francesco; Brandt, Luca
2015-03-01
We study inertial flow regimes of the suspensions of finite size neutrally buoyant particles. These suspensions experience three different regimes by varying the Reynolds number, Re , and particle volume fraction, Φ. At low values of Re and Φ, flow is laminar-like where viscous stress is the dominating term in the stress budget. At high Re and relatively small Φ, the flow is turbulent-like where Reynolds stress has the largest contribution to the total stress. At high Φ, the flow regime is as a form of inertial shear-thickening characterized by a significant enhancement in the wall shear stress not due to the increment of Reynolds stress but to the particle stress. We further analyze the local behavior of the suspension in the three different regimes by studying the particle dispersion and collisions. Turbulent cases shows higher level of particle dispersion and higher values of the collision kernel (the radial distribution function times the particle relative velocity as a function of the distance between the particles) than those of the inertial shear-thickening regimes providing additional evidence of two different transport mechanisms in the Bagnoldian regime. Support from the European Research Council (ERC) is acknowledged.
NASA Astrophysics Data System (ADS)
Nazneen, Sadaf; Raju, N. Janardhana
2017-02-01
The present study investigated the spatial and vertical distribution of organic carbon (OC), total nitrogen (TN), total phosphorus (TP) and biogenic silica (BSi) in the sedimentary environments of Asia's largest brackish water lagoon. Surface and core sediments were collected from various locations of the Chilika lagoon and were analysed for grain-size distribution and major elements in order to understand their distribution and sources. Sand is the dominant fraction followed by silt + clay. Primary production within the lagoon, terrestrial input from river discharge and anthropogenic activities in the vicinity of the lagoon control the distribution of OC, TN, TP and BSi in the surface as well as in the core sediments. Low C/N ratios in the surface sediments (3.49-3.41) and cores (4-11.86) suggest that phytoplankton and macroalgae may be major contributors of organic matter (OM) in the lagoon. BSi is mainly associated with the mud fraction. Core C5 from Balugaon region shows the highest concentration of OC ranging from 0.58-2.34%, especially in the upper 30 cm, due to direct discharge of large amounts of untreated sewage into the lagoon. The study highlights that Chilika is a dynamic ecosystem with a large contribution of OM by autochthonous sources with some input from anthropogenic sources as well.
Zwingenberger, Allison L; Daniel, Leticia; Steffey, Michele A; Mayhew, Philipp D; Mayhew, Kelli N; Culp, William T N; Hunt, Geraldine B
2014-11-01
To correlate changes in hepatic volume, hepatic perfusion, and vascular anatomy of dogs with congenital extrahepatic portosystemic shunts, before and after attenuation with an ameroid constrictor. Prospective study. Dogs (n = 22) with congenital extrahepatic portosystemic shunts. CT angiography and perfusion scans were performed before and after attenuation of a portosystemic shunt with an ameroid constrictor. Changes in hepatic volume, hepatic perfusion, and vascular anatomy were measured. Portal scintigraphy was performed in 8 dogs preoperatively and 22 dogs postoperatively. Dogs with smaller preoperative liver volumes had greater increases in liver volume postoperatively compared with those with larger preoperative liver volumes. Hepatic arterial fraction was increased in dogs preoperatively and returned to normal range after shunt attenuation, and was correlated with increase in liver size and decreased shunt fraction. Three dogs with no visible portal vasculature preoperatively developed portal branches postoperatively. Dogs with smaller preoperative liver volumes had the largest postoperative increase in liver volume. Hepatic arterial perfusion and portal scintigraphy correlate with liver volume and are indicators of successful shunt attenuation. Dogs without visible vasculature on CT angiography had visible portal vasculature postoperatively. © Copyright 2014 by The American College of Veterinary Surgeons.
Chitosan but Not Chitin Activates the Inflammasome by a Mechanism Dependent upon Phagocytosis*
Bueter, Chelsea L.; Lee, Chrono K.; Rathinam, Vijay A. K.; Healy, Gloria J.; Taron, Christopher H.; Specht, Charles A.; Levitz, Stuart M.
2011-01-01
Chitin is an abundant polysaccharide found in fungal cell walls, crustacean shells, and insect exoskeletons. The immunological properties of both chitin and its deacetylated derivative chitosan are of relevance because of frequent natural exposure and their use in medical applications. Depending on the preparation studied and the end point measured, these compounds have been reported to induce allergic responses, inflammatory responses, or no response at all. We prepared highly purified chitosan and chitin and examined the capacity of these glycans to stimulate murine macrophages to release the inflammasome-associated cytokine IL-1β. We found that although chitosan was a potent NLRP3 inflammasome activator, acetylation of the chitosan to chitin resulted in a near total loss of activity. The size of the chitosan particles played an important role, with small particles eliciting the greatest activity. An inverse relationship between size and stimulatory activity was demonstrated using chitosan passed through size exclusion filters as well as with chitosan-coated beads of defined size. Partial digestion of chitosan with pepsin resulted in a larger fraction of small phagocytosable particles and more potent inflammasome activity. Inhibition of phagocytosis with cytochalasin D abolished the IL-1β stimulatory activity of chitosan, offering an explanation for why the largest particles were nearly devoid of activity. Thus, the deacetylated polysaccharide chitosan potently activates the NLRP3 inflammasome in a phagocytosis-dependent manner. In contrast, chitin is relatively inert. PMID:21862582
Submicrometer Particle Sizing by Multiangle Light Scattering following Fractionation
Wyatt
1998-01-01
The acid test for any particle sizing technique is its ability to determine the differential number fraction size distribution of a simple, well-defined sample. The very best characterized polystyrene latex sphere standards have been measured extensively using transmission electron microscope (TEM) images of a large subpopulation of such samples or by means of the electrostatic classification method as refined at the National Institute of Standards and Technology. The great success, in the past decade, of on-line multiangle light scattering (MALS) detection combined with size exclusion chromatography for the measurement of polymer mass and size distributions suggested, in the early 1990s, that a similar attack for particle characterization might prove useful as well. At that time, fractionation of particles was achievable by capillary hydrodynamic chromatography (CHDF) and field flow fractionation (FFF) methods. The latter has proven most useful when combined with MALS to provide accurate differential number fraction size distributions for a broad range of particle classes. The MALS/FFF combination provides unique advantages and precision relative to FFF, photon correlation spectroscopy, and CHDF techniques used alone. For many classes of particles, resolution of the MALS/FFF combination far exceeds that of TEM measurements. Copyright 1998 Academic Press. Copyright 1998Academic Press
NASA Technical Reports Server (NTRS)
McKinney, K. A.; Wennberg, P. O.; Dhaniyala, S.; Fahey, D. W.; Northway, M. J.; Kuenzi, K. F.; Kleinboehl, A.; Sinnhuber, M.; Kuellmann, H.; Bremer, H.;
2004-01-01
Large (5 to >20 micron diameter) nitric-acid-containing polar stratospheric cloud (PSC) particles were observed in the Arctic stratosphere during the winter of 1999-2000. We use a particle growth and sedimentation model to investigate the environment in which these particles grew and the likely phase of the largest particles. Particle trajectory calculations show that, while simulated nitric acid dihydrate (NAD) particle sizes are significantly smaller than the observed maximum particle sizes, nitric acid trihydrate (NAT) particle trajectories are consistent with the largest observed particle sizes.
NASA Astrophysics Data System (ADS)
Coscollà, Clara; Muñoz, Amalia; Borrás, Esther; Vera, Teresa; Ródenas, Milagros; Yusà, Vicent
2014-10-01
This work presents first data on the particle size distribution of 16 pesticides currently used in Mediterranean agriculture in the atmosphere. Particulate matter air samples were collected using a cascade impactor distributed into four size fractions in a rural site of Valencia Region, during July to September in 2012 and from May to July in 2013. A total of 16 pesticides were detected, including six fungicides, seven insecticides and three herbicides. The total concentrations in the particulate phase (TSP: Total Suspended Particulate) ranged from 3.5 to 383.1 pg m-3. Most of the pesticides (such as carbendazim, tebuconazole, chlorpyrifos-ethyl and chlorpyrifos-methyl) were accumulated in the ultrafine-fine (<1 μm) and coarse (2.5-10 μm) particle size fractions. Others like omethoate, dimethoate and malathion were presented only in the ultrafine-fine size fraction (<1 μm). Finally, diuron, diphenylamine and terbuthylazine-desethyl-2-OH also show a bimodal distribution but mainly in the coarse size fractions.
Guven, Duyusen E; Akinci, Gorkem
2013-09-01
The effect of sediment size on metals bioleaching from bay sediments was investigated by using fine (< 45 microm), medium (45-300 microm), and coarse (300-2000 microm) size fractions of a sediment sample contaminated with Cr, Cu, Pb, and Zn. Chemical speciation of the metals in bulk and size fractions of sediment were studied before and after bioleaching. Microbial activity was provided with mixed cultures of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans. The bioleaching process was carried out in flask experiments for 48 days, by using 5% (W/V) of solid concentration in suspension. Bioleaching was found to be efficient for the removal of selected heavy metals from every size fraction of sediments, where the experiments with the smaller particles resulted in the highest solubilization ratios. At the end of the experimental period, Cr, Cu, Pb and Zn were solubilized to the ratios of 68%, 88%, 72%, and 91% from the fine sediment, respectively. Higher removal efficiencies can be explained by the larger surface area provided by the smaller particles. The changes in the chemical forms of metals were determined and most of the metal releases were observed from the reducible and organic fractions independent from grain size. Higher concentrations were monitored in the residual fraction after bioleaching period, suggesting they are trapped in this fraction, and cannot be solubilized under natural conditions.
Heat exchange from the toucan bill reveals a controllable vascular thermal radiator.
Tattersall, Glenn J; Andrade, Denis V; Abe, Augusto S
2009-07-24
The toco toucan (Ramphastos toco), the largest member of the toucan family, possesses the largest beak relative to body size of all birds. This exaggerated feature has received various interpretations, from serving as a sexual ornament to being a refined adaptation for feeding. However, it is also a significant surface area for heat exchange. Here we show the remarkable capacity of the toco toucan to regulate heat distribution by modifying blood flow, using the bill as a transient thermal radiator. Our results indicate that the toucan's bill is, relative to its size, one of the largest thermal windows in the animal kingdom, rivaling elephants' ears in its ability to radiate body heat.
Coarse particle speciation at selected locations in the rural continental United States
NASA Astrophysics Data System (ADS)
Malm, William C.; Pitchford, Marc L.; McDade, Charles; Ashbaugh, Lowell L.
A few short-term special studies at National Parks have shown that coarse mass (CM) (2.5- 10μm) may not be just crustal minerals but may consist of a substantial amount ( ≈40-50%) of carbonaceous material and inorganic salts such as calcium nitrate and sodium nitrate. To more fully investigate the composition of coarse particles, a program of coarse particle sampling and speciation analysis at nine of the Interagency Monitoring of Protected Visual Environments (IMPROVE) sites was initiated 19 March 2003 and operated through the year 2004. Only the data for 2004 are reported here. Sites were selected to be representative of the continental United States and were operated according to IMPROVE protocol analytical procedures. Crustal minerals (soil) are the single largest contributor to CM at all but one monitoring location. The average fractional contributions range from a high of 76% at Grand Canyon National Park to a low of 34% at Mount Rainier National Park. The second largest contributor to CM is organic mass, which on an average annual fractional basis is highest at Mount Rainier at 59%. At Great Smoky Mountains National Park, organic mass contributes 40% on average, while at four sites organic mass concentrations contribute between 20% and 30% of the CM. Nitrates are on average the third largest contributor to CM concentrations. The highest fractional contributions of nitrates to CM are at Brigantine National Wildlife Refuge, Great Smoky Mountains, and San Gorgonio wilderness area at 10-12%. Sulfates contribute less than about 5% at all sites.
NASA Astrophysics Data System (ADS)
Liu, Zeyu; Xia, Tiecheng; Wang, Jinbo
2018-03-01
We propose a new fractional two-dimensional triangle function combination discrete chaotic map (2D-TFCDM) with the discrete fractional difference. Moreover, the chaos behaviors of the proposed map are observed and the bifurcation diagrams, the largest Lyapunov exponent plot, and the phase portraits are derived, respectively. Finally, with the secret keys generated by Menezes–Vanstone elliptic curve cryptosystem, we apply the discrete fractional map into color image encryption. After that, the image encryption algorithm is analyzed in four aspects and the result indicates that the proposed algorithm is more superior than the other algorithms. Project supported by the National Natural Science Foundation of China (Grant Nos. 61072147 and 11271008).
Kirychuk, Shelley P; Reynolds, Stephen J; Koehncke, Niels K; Lawson, Joshua; Willson, Philip; Senthilselvan, Ambikaipakan; Marciniuk, Darcy; Classen, Henry L; Crowe, Trever; Just, Natasha; Schneberger, David; Dosman, James A
2010-10-01
Individuals engaged in work in intensive animal houses experience some of the highest rates of occupationally related respiratory symptoms. Organic dust and in particular endotoxin has been most closely associated with respiratory symptoms and lung function changes in workers. It has previously been shown that for intensive poultry operations, type of poultry housing [cage-housed (CH) versus floor-housed (FH)] can influence the levels of environmental contaminants. The goal of the study was to determine the differences in endotoxin and dust levels at different size fractions between CH and FH poultry operations. Fifteen CH and 15 FH poultry operations were sampled for stationary measurements (area) of dust and associated endotoxin. Fractioned samples were collected utilizing Marple cascade impactors. Gravimetric and endotoxin analysis were conducted on each of the filters. When assessed by individual Marple stage, there was significantly greater airborne endotoxin concentration (endotoxin units per cubic meter) in the size fraction >9.8 μm for the FH operations whereas at the size fraction 1.6-3.5 μm, the CH operations had significantly greater airborne endotoxin concentration than the FH operations. Endotoxin concentration in the dust mass (endotoxin units per milligram) was significantly greater in the CH operations as compared to the FH operations for all size fractions >1.6 μm. As such, endotoxin in the respirable fraction accounted for 24% of the total endotoxin in the CH operations whereas it accounted for only 11% in the FH operations. There was significantly more dust in all size fractions in the FH operations as compared to the CH poultry operations. There is more endotoxin in the presence of significantly lower dust levels in the respirable particle size fractions in CH poultry operations as compared to the FH poultry operations. This difference in respirable endotoxin may be important in relation to the differential respiratory response experienced by CH and FH poultry operation workers.
NASA Technical Reports Server (NTRS)
Thompson, M. S.; Christoffersen, R.; Noble, S. K.; Keller, L. P.
2012-01-01
The morphology, mineralogy, chemical composition and optical properties of lunar soils show distinct correlations as a function of grain size and origin [1,2,3]. In the <20 m size fraction, there is an increased correlation between lunar surface properties observed through remote sensing techniques and those attributed to space weathering phenomenae [1,2]. Despite the establishment of recognizable trends in lunar grains <20 in size [1,2,3], the size fraction < 10 m is characterized as a collective population of grains without subdivision. This investigation focuses specifically on grains in the <1 m diameter size fraction for both highland and mare derived soils. The properties of these materials provide the focus for many aspects of lunar research including the nature of space weathering on surface properties, electrostatic grain transport [4,5] and dusty plasmas [5]. In this study, we have used analytical transmission and scanning transmission electron microscopy (S/TEM) to characterize the mineralogy type, microstructure and major element compositions of grains in this important size range in lunar soils.
NASA Astrophysics Data System (ADS)
Turner, Jefferson T.; Doucette, Gregory J.; Keafer, Bruce A.; Anderson, Donald M.
2005-09-01
During spring blooms of the toxic dinoflagellate Alexandrium fundyense in Casco Bay, Maine in 1998, we investigated vectorial intoxication of various zooplankton size fractions with PSP toxins, including zooplankton community composition from quantitative zooplankton samples (>102 μm), as well as zooplankton composition in relation to toxin levels in various size fractions (20-64, 64-100, 100-200, 200-500, >500 μm). Zooplankton abundance in 102 μm mesh samples was low (most values<10,000 animals m -3) from early April through early May, but increased to maxima in mid-June (cruise mean=121,500 animals m -3). Quantitative zooplankton samples (>102 μm) were dominated by copepod nauplii, and Oithona similis copepodites and adults at most locations except for those furthest inshore. At these inshore locations, Acartia hudsonica copepodites and adults were usually dominant. Larger copepods such as Calanus finmarchicus, Centropages typicus, and Pseudocalanus spp. were found primarily offshore, and at much lower abundances than O. similis. Rotifers, mainly present from late April to late May, were most abundant inshore. The marine cladoceran Evadne nordmani was sporadically abundant, particularly in mid-June. Microplankton in 20-64 μm size fractions was generally dominated by A. fundyense, non-toxic dinoflagellates, and tintinnids. Microplankton in 64-100 μm size fractions was generally dominated by larger non-toxic dinoflagellates, tintinnids, aloricate ciliates, and copepod nauplii, and in early May, rotifers. Some samples (23%) in the 64-100 μm size fractions contained abundant cells of A. fundyense, presumably due to sieve clogging, but most did not contain A. fundyense cells. This suggests that PSP toxin levels in those samples were due to vectorial intoxication of microzooplankters such as heterotrophic dinoflagellates, tintinnids, aloricate ciliates, rotifers, and copepod nauplii via feeding on A. fundyense cells. Dominant taxa in zooplankton fractions varied in size. Samples in the 100-200 μm size fraction were overwhelmingly dominated in most cases by copepod nauplii and small copepodites of O. similis, and during late May, rotifers. Samples in the 200-500 μm size fraction contained fewer copepod nauplii, but progressively more copepodites and adults of O. similis, particularly at offshore locations. At the most inshore stations, copepodites and adults of A. hudsonica were usual dominants. There were few copepod nauplii or O. similis in the>500 μm size fraction, which was usually dominated by copepodites and adults of C. finmarchicus, C. typicus, and Pseudocalanus spp. at offshore locations, and A. hudsonica inshore. Most of the higher PSP toxin concentrations were found in the larger zooplankton size fractions that were dominated by larger copepods such as C. finmarchicus and C. typicus. In contrast to our earlier findings, elevated toxin levels were also measured in numerous samples from smaller zooplankton size fractions, dominated by heterotrophic dinoflagellates, tintinnids and aloricate ciliates, rotifers, copepod nauplii, and smaller copepods such as O. similis and, at the most inshore locations, A. hudsonica. Thus, our data suggest that ingested PSP toxins are widespread throughout the zooplankton grazing community, and that potential vectors for intoxication of zooplankton assemblages include heterotrophic dinoflagellates, rotifers, protozoans, copepod nauplii, and small copepods.
Uncertainty associated with convective wet removal of entrained aerosols in a global climate model
NASA Astrophysics Data System (ADS)
Croft, B.; Pierce, J. R.; Martin, R. V.; Hoose, C.; Lohmann, U.
2012-11-01
The uncertainties associated with the wet removal of aerosols entrained above convective cloud bases are investigated in a global aerosol-climate model (ECHAM5-HAM) under a set of limiting assumptions for the wet removal of the entrained aerosols. The limiting assumptions for the wet removal of entrained aerosols are negligible scavenging and vigorous scavenging (either through activation, with size-dependent impaction scavenging, or with the prescribed fractions of the standard model). To facilitate this process-based study, an explicit representation of cloud-droplet-borne and ice-crystal-borne aerosol mass and number, for the purpose of wet removal, is introduced into the ECHAM5-HAM model. This replaces and is compared with the prescribed cloud-droplet-borne and ice-crystal-borne aerosol fraction scavenging scheme of the standard model. A 20% to 35% uncertainty in simulated global, annual mean aerosol mass burdens and optical depth (AOD) is attributed to different assumptions for the wet removal of aerosols entrained above convective cloud bases. Assumptions about the removal of aerosols entrained above convective cloud bases control modeled upper tropospheric aerosol concentrations by as much as one order of magnitude. Simulated aerosols entrained above convective cloud bases contribute 20% to 50% of modeled global, annual mean aerosol mass convective wet deposition (about 5% to 10% of the total dry and wet deposition), depending on the aerosol species, when including wet scavenging of those entrained aerosols (either by activation, size-dependent impaction, or with the prescribed fraction scheme). Among the simulations, the prescribed fraction and size-dependent impaction schemes yield the largest global, annual mean aerosol mass convective wet deposition (by about two-fold). However, the prescribed fraction scheme has more vigorous convective mixed-phase wet removal (by two to five-fold relative to the size-dependent impaction scheme) since nearly all entrained accumulation and coarse mode aerosols are assumed to be cloud-droplet borne or ice-crystal borne, and evaporation due to the Bergeron-Findeisen process is neglected. The simulated convective wet scavenging of entrained accumulation and coarse mode aerosols has feedbacks on new particle formation and the number of Aitken mode aerosols, which control stratiform and convective cloud droplet number concentrations and yield precipitation changes in the ECHAM5-HAM model. However, the geographic distribution of aerosol annual mean convective wet deposition change in the model is driven by changes to the assumptions regarding the scavenging of aerosols entrained above cloud bases rather than by precipitation changes, except for sea salt deposition in the tropics. Uncertainty in the seasonal, regional cycles of AOD due to assumptions about entrained aerosol wet scavenging is similar in magnitude to the estimated error in the AOD retrievals. The uncertainty in aerosol concentrations, burdens, and AOD attributed to different assumptions for the wet scavenging of aerosols entrained above convective cloud bases in a global model motivates the ongoing need to better understand and model the activation and impaction processes that aerosols undergo after entrainment into convective updrafts.
Liu, Xiaofeng; Peng, Lin; Bai, Huiling; Mu, Ling; Song, Chongfang
2014-06-01
The purpose of this study was to characterize the occurrence and size distributions of ten species of polycyclic aromatic hydrocarbons (PAHs) in the ambient air of coking plants. Particulate-matter samples of four size fractions, including ≤2.1, 2.1-4.2, 4.2-10.2, and ≥10.2 μm, were collected using a Staplex234 cascade impactor during August 2009 at two coking plants in Shanxi, China. The PAHs were analyzed by a gas chromatograph equipped with a mass-selective detector. The concentrations of total particulate-matter PAHs were 1,412.7 and 2,241.1 ng/m(3) for plants I and II, and the distributions showed a peak within the 0.1-2.1 μm size range for plant I and the 0.1-4.2 μm for plant II. The size distributions of individual PAHs (except fluoranthene) exhibited a considerable peak within the 0.1-2.1 μm size range in coking plant I, which can be explained by the gas-particle partition mechanism. The ambient air of the coking plant was heavily polluted by PAHs associated with fine particles (≤2.1 μm), and benzo[b]fluoranthene made the largest contribution to total PAHs. The exposure levels of coking-plant workers to PAHs associated with fine particles were higher than to PAHs associated with coarse particles. Benzo[b]fluoranthene, benzo[a]pyrene, and dibenzo[a,h]anthracene should be the primary pollutants monitored in the coking plant. This research constitutes a significant contribution to assessing the exposure risk of coking-plant workers and providing basic data for PAH standards for ambient air in coking plants.
Elvang, Philipp A; Hinna, Askell H; Brouwers, Joachim; Hens, Bart; Augustijns, Patrick; Brandl, Martin
2016-09-01
Knowledge about colloidal assemblies present in human intestinal fluids (HIFs), such as bile salt micelles and phospholipid vesicles, is regarded of importance for a better understanding of the in vivo dissolution and absorption behavior of poorly soluble drugs (Biopharmaceutics Classification System class II/IV drugs) because of their drug-solubilizing ability. The characterization of these potential drug-solubilizing compartments is a prerequisite for further studies of the mechanistic interplays between drug molecules and colloidal structures within HIFs. The aim of the present study was to apply asymmetrical flow field-flow fractionation (AF4) in combination with multiangle laser light scattering in an attempt to reveal coexistence of colloidal particles in both artificial and aspirated HIFs and to determine their sizes. Asymmetrical flow field-flow fractionation/multiangle laser light scattering analysis of the colloidal phase of intestinal fluids allowed for a detailed insight into the whole spectrum of submicron- to micrometer-sized particles. With respect to the simulated intestinal fluids mimicking fasted and fed state (FaSSIF-V1 and FeSSIF-V1, respectively), FaSSIF contained one distinct size fraction of colloidal assemblies, whereas FeSSIF contained 2 fractions of colloidal species with significantly different sizes. These size fractions likely represent (1) mixed taurocholate-phospholipid-micelles, as indicated by a size range up to 70 nm (in diameter) and a strong UV absorption and (2) small phospholipid vesicles of 90-210 nm diameter. In contrast, within the colloidal phase of the fasted state aspirate of a human volunteer, 4 different size fractions were separated from each other in a consistent and reproducible manner. The 2 fractions containing large particles showed mean sizes of approximately 50 and 200 nm, respectively (intensity-weighted mean diameter, Dz), likely representing mixed cholate/phospholipid micelles and phospholipid vesicles, respectively. The sizes of the smaller 2 fractions being below the size range of multiangle laser light scattering analysis (<20 nm) and their strong UV absorption indicates that they represent either pure cholate micelles or small mixed micelles. Within the colloidal fraction of the fed-state human aspirate, similar colloidal assemblies were detected as in the fasted state human aspirates. The observed differences between SIF and HIF indicate that the simulated intestinal fluids (FaSSIF-V1 and FeSSIF-V1) represent rather simplified models of the real human intestinal environment in terms of coexisting colloidal particles. It is hypothesized that the different supramolecular assemblies detected differ in their lipid composition, which may affect their affinity toward drug compounds and thus the drug-solubilizing capabilities. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Efficacy of catheter ablation of atrial fibrillation beyond HATCH score.
Tang, Ri-Bo; Dong, Jian-Zeng; Long, De-Yong; Yu, Rong-Hui; Ning, Man; Jiang, Chen-Xi; Sang, Cai-Hua; Liu, Xiao-Hui; Ma, Chang-Sheng
2012-10-01
HATCH score is an established predictor of progression from paroxysmal to persistent atrial fibrillation (AF). The purpose of this study was to determine if HATCH score could predict recurrence after catheter ablation of AF. The data of 488 consecutive paroxysmal AF patients who underwent an index circumferential pulmonary veins (PV) ablation were retrospectively analyzed. Of these patients, 250 (51.2%) patients had HATCH score = 0, 185 (37.9%) patients had HATCH score = 1, and 53 (10.9%) patients had HATCH score ≥ 2 (28 patients had HATCH score = 2, 23 patients had HATCH score = 3, and 2 patients had HATCH score = 4). The patients with HATCH score ≥ 2 had significantly larger left atrium size, the largest left ventricular end systolic diameter, and the lowest ejection fraction. After a mean follow-up of (823 ± 532) days, the recurrence rates were 36.4%, 37.8% and 28.3% from the HATCH score = 0, HATCH score = 1 to HATCH score ≥ 2 categories (P = 0.498). Univariate analysis revealed that left atrium size, body mass index, and failure of PV isolation were predictors of AF recurrence. After adjustment for body mass index, left atrial size and PV isolation, the HATCH score was not an independent predictor of recurrence (HR = 0.92, 95% confidence interval = 0.76 - 1.12, P = 0.406) in multivariate analysis. HATCH score has no value in prediction of AF recurrence after catheter ablation.
Characteristics of aerosol particles and trace gases in ship exhaust plumes
NASA Astrophysics Data System (ADS)
Drewnick, F.; Diesch, J.; Borrmann, S.
2011-12-01
Gaseous and particulate matter from marine vessels gain increasing attention due to their significant contribution to the anthropogenic burden of the atmosphere, implying the change of the atmospheric composition and the impact on local and regional air quality and climate (Eyring et al., 2010). As ship emissions significantly affect air quality of onshore regions, this study deals with various aspects of gas and particulate plumes from marine traffic measured near the Elbe river mouth in northern Germany. In addition to a detailed investigation of the chemical and physical particle properties from different types of commercial marine vessels, we will focus on the chemistry of ship plumes and their changes while undergoing atmospheric processing. Measurements of the ambient aerosol, various trace gases and meteorological parameters using a mobile laboratory (MoLa) were performed on the banks of the Lower Elbe which is passed on average, daily by 30 ocean-going vessels reaching the port of Hamburg, the second largest freight port of Europe. During 5 days of sampling from April 25-30, 2011 170 commercial marine vessels were probed at a distance of about 1.5-2 km with high temporal resolution. Mass concentrations in PM1, PM2.5 and PM10 and number as well as PAH and black carbon (BC) concentrations in PM1 were measured; size distribution instruments covered the size range from 6 nm up to 32 μm. The chemical composition of the non-refractory aerosol in the submicron range was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase species analyzers monitored various trace gas concentrations in the air and a weather station provided meteorological parameters. Additionally, a wide spectrum of ship information for each vessel including speed, size, vessel type, fuel type, gross tonnage and engine power was recorded via Automatic Identification System (AIS) broadcasts. Although commercial marine vessels powered by diesel engines consume high-sulfur fuel, the chemical submicron aerosol fraction is mainly composed of hydrocarbon-like organic aerosol (HOA) species. These include PAHs that are adsorbed onto the high number of ultrafine particles. Nevertheless, the chemical composition, typical particle sizes as well as emitted gaseous components vary substantially dependent on the engine or ship type, engine operation condition and fuel mixture. This results in cargo vessels compared to tankers, passenger ships and river boats being the largest polluters influencing the Elbe shipping lane areas by high amounts of NOx, SO2, CO2, PAH, BC and ultrafine particulate matter. The tropospheric ozone chemistry in this area is also substantially affected particularly due to the increasing number of Elbe-passing ships. As onshore regions can be influenced by aged shipping plumes, trajectory pathways and transportation times were examined. As a consequence of the plumes' aging, variations of the organic fraction of the mass spectral fingerprints were found. Eyring, V. et al. (2010), Atmospheric Environment, 44, 4735-4771.
Effects of alewife predation on zooplankton populations in Lake Michigan
Wells, LaRue
1970-01-01
The zooplankton populations in southeastern Lake Michigan underwent striking, size-related changes between 1954 and 1966. Forms that decline sharply were the largest cladocerans (Leptodora kindtii, Daphnia galeata, and D. retrocurva), the largest calanoid copepods (Limnocalanus macrurus, Epischura lacustris, and Diaptomus sicilis), and the largest cyclopoid copepod (Mesocyclops edax). Two of these, D. galeata and M. edax (both abundant in 1954), became extremely rare. Certain medium-sized or small species increased in numbers: Daphnia longiremis, Holopedium gibberum, Polyphemus pediculus, Bosmina longirostris, Bosmina coregoni, Ceriodaphnia sp., Cyclops bicuspidatus, Cyclops vernalis, and Diaptomus ashlandi. Evidence is strong that the changes were due to selective predation by alewives. The alewife was uncommon in southeastern Lake Michigan in 1954 but had increased to enormous proportions by 1966; there was a massive dieoff in spring 1967, and abundance remained relatively low in 1968. The composition of zooplankton populations in 1968 generally had shifted back toward that of 1954, although D. galeata and M. edax remained rare. The average size, and size at onset of maturity, of D. retrocurva decreased noticeably between 1954 and 1966 but increased between 1966 and 1968.
1978-01-01
Complexes of plasma membrane segments with desmosomes and attached tonofilaments were separated from the stratum spinosum cells of calf muzzle by means of moderately alkaline buffers of low ionic strength and mechanical homogenization. These structures were further fractionated by the use of various treatments including sonication, sucrose gradient centrifugation, and extraction with buffers containing high concentrations of salt, urea, citric acid, or detergents. Subfractions enriched in desmosome-tonofilament-complexes and tonofilament fragments were studied in detail. The desmosome structures such as the midline, the trilaminar membrane profile, and the desmosomal plaque appeared well preserved and were notably resistant to the various treatments employed. Fractions containing desmosome- tonofilament complexes were invariably dominated by the nonmembranous proteins of the tonofilaments which appeared as five major polypeptide bands (apparent molecular weights: 48,000; 51,000; 58,000; 60,000; 68,000) present in molar ratios of approx. 2:1:1:2:2. Four of these polypeptide bands showed electrophoretic mobilities similar to those of prekeratin polypeptides from bovine hoof. However, the largest polypeptide (68,000 mol wt) migrated significantly less in polyacrylamide gels than the largest component of the hoof prekeratin (approximately 63,000 mol wt). In addition, a series of minor bands, including carbohydrate-containing proteins, were identified and concluded to represent constituents of the desmosomal membrane. The analysis of protein-bound carbohydrates (total 270 microgram/mg phospholipid in desmosome-enriched subfractions) showed the presence of relatively high amounts of glucosamine, mannose, galactose, and sialic acids. These data as well as the lipid composition (e.g., high ratio of cholesterol to phospholipids, relatively high contents of sphingomyelin and gangliosides, and fatty acid pattern) indicate that the desmosomal membrane is complex in protein and lipid composition and has a typical plasma membrane character. The similarity of the desmosome-associated tonofilaments to prekeratin filaments and other forms of intermediate- sized filaments is discussed. PMID:569157
Drochmans, P; Freudenstein, C; Wanson, J C; Laurent, L; Keenan, T W; Stadler, J; Leloup, R; Franke, W W
1978-11-01
Complexes of plasma membrane segments with desmosomes and attached tonofilaments were separated from the stratum spinosum cells of calf muzzle by means of moderately alkaline buffers of low ionic strength and mechanical homogenization. These structures were further fractionated by the use of various treatments including sonication, sucrose gradient centrifugation, and extraction with buffers containing high concentrations of salt, urea, citric acid, or detergents. Subfractions enriched in desmosome-tonofilament-complexes and tonofilament fragments were studied in detail. The desmosome structures such as the midline, the trilaminar membrane profile, and the desmosomal plaque appeared well preserved and were notably resistant to the various treatments employed. Fractions containing desmosome-tonofilament complexes were invariably dominated by the nonmembranous proteins of the tonofilaments which appeared as five major polypeptide bands (apparent molecular weights: 48,000; 51,000; 58,000; 60,000; 68,000) present in molar ratios of approx. 2:1:1:2:2. Four of these polypeptide bands showed electrophoretic mobilities similar to those of prekeratin polypeptides from bovine hoof. However, the largest polypeptide (68,000 mol wt) migrated significantly less in polyacrylamide gels than the largest component of the hoof prekeratin (approximately 63,000 mol wt). In addition, a series of minor bands, including carbohydrate-containing proteins, were identified and concluded to represent constituents of the desmosomal membrane. The analysis of protein-bound carbohydrates (total 270 microgram/mg phospholipid in desmosome-enriched subfractions) showed the presence of relatively high amounts of glucosamine, mannose, galactose, and sialic acids. These data as well as the lipid composition (e.g., high ratio of cholesterol to phospholipids, relatively high contents of sphingomyelin and gangliosides, and fatty acid pattern) indicate that the desmosomal membrane is complex in protein and lipid composition and has a typical plasma membrane character. The similarity of the desmosome-associated tonofilaments to prekeratin filaments and other forms of intermediate-sized filaments is discussed.
Ultraviolet (UV) disinfection of grey water: particle size effects.
Winward, G P; Avery, L M; Stephenson, T; Jefferson, B
2008-02-01
The impact of water quality on the ultraviolet (UV) disinfection of grey water was investigated with reference to urban water reuse. Direct UV disinfection of grey water did not meet the stringent California State Title 22 criteria for unrestricted urban water reuse due to the presence of particulate material ranging from < 1 to > or = 2000 microm in size. Grey water was manipulated by settling to produce fractions of varying particle size distributions and blending was employed post-disinfection to extract particle-associated coliforms (PACs). The efficacy of UV disinfection was found to be linked to the particle size of the grey water fractions. The larger particle size fractions with a mean particle size of 262 microm and above were observed to shield more coliforms from UV light than did the smaller particles with a mean particle size below 119 microm. Up to 70% of total coliforms in the larger particle size fractions were particle-associated following a UV dose (fluence) of 260 mJ.cm(-2) and would remain undetected by standard coliform enumeration techniques. Implications for urban water reuse are discussed and recommendations made for grey water treatment to ensure removal of particle-associated indicator bacteria and pathogens prior to UV disinfection.
Sakhare, Suresh D; Inamdar, Aashitosh A; Soumya, C; Indrani, D; Rao, G Venkateswara
2014-12-01
Wheat flour fractioned by sieving into four different particle size fractions namely finer fractions (<75 and 75-118 μm), coarser fractions (118-150 and >150 μm) were analyzed for their chemical, rheological, bread & parotta making characteristics. The finer fractions had lower ash, higher dry gluten, damaged starch and sodium dodecysulphate (SDS)-sedimentation value than the coarser fractions. The flour from finer fractions gave bread with best sensory and textural attributes. The parottas from finer fractions showed significantly higher sensory scores for colour, texture, layers, mouthfeel and overall quality score than the coarser fractions. In the micrograph of finer flour fractions, higher number of loosened single starch granules than the aggregates of starch and protein matrix were seen as compared to coarser fractions. These studies indicate that the flour from the finer fractions produce higher quality bread, parotta owing to the presence of higher damaged starch content, quantity and quality of protein in these fractions than coarser fractions.
Krám, Pavel; Hruska, Jakub; Driscoll, Charles T; Johnson, Chris E; Oulehle, Filip
2009-11-01
Aluminum (Al) chemistry was studied in soils and waters of two catchments covered by spruce (Picea abies) monocultures in the Czech Republic that represent geochemical end-members of terrestrial and aquatic sensitivity to acidic deposition. The acid-sensitive Lysina catchment, underlain by granite, was compared to the acid-resistant Pluhův Bor catchment on serpentine. Organically-bound Al was the largest pool of reactive soil Al at both sites. Very high median total Al (Alt) concentrations (40 micromol L(-1)) and inorganic monomeric Al (Ali) concentrations (27 micromol L(-1)) were observed in acidic (pH 4.0) stream water at Lysina in the 1990s and these concentrations decreased to 32 micromol L(-1) (Alt) and 13 micromol L(-1) (Ali) in the 2000s. The potentially toxic Ali fraction decreased in response to long-term decreases in acidic deposition, but Ali remained the largest fraction. However, the organic monomeric (Alo) and particulate (Alp) fractions increased in the 2000s at Lysina. In contrast to Lysina, marked increases of Alt concentrations in circum-neutral waters at Pluhův Bor were observed in the 2000s in comparison with the 1990s. These increases were entirely due to the Alp fraction, which increased more than 3-fold in stream water and up to 8-fold in soil water in the A horizon. Increase of Alp coincided with dissolved organic carbon (DOC) increases. Acidification recovery may have increased the content of colloidal Al though the coagulation of monomeric Al.
NASA Astrophysics Data System (ADS)
Szabó, Judit Alexandra; Jakab, Gergely; Szabó, Boglárka
2015-04-01
Soil structure degradation has effect through the soil water balance and nutrient supply on the agricultural potential of an area. The soil erosion process comprises two phases: detachment and transport by water. To study the transport phase nozzle type laboratory-scale rainfall simulator was used with constant 80 mmhr-1 intensity on an arable haplic Cambisol. Measuring the aggregate and particle size distribution of the soil loss gives a good approach the erosion process. The primary objective of this study was to examine the sediment concentration, and detect the quality and quantity change of the soil loss during a single precipitation under six treatment combinations (recently tilled and crusty soil surface on two different slope steepness, inland inundation and drought soil conditions). Soil loss were collected continually, and separated per aggregate size fractions with sieves in three rounds during a rain to measure the weights. The particle size distribution was measured with Horiba LA-950 particle size analyzer. In general the ratio of the macro aggregates decreases and the ratio of the micro aggregates and clay fraction increases in the sediment with time during the precipitation due to the raindrop impact. Sediment concentration depends on the slope steepness, as from steeper slopes the runoff can transport bigger amount of sediment, but from the tilled surface bigger aggregates were washing down. Micro aggregate fraction is one of the indicators of good soil structure. The degradation of micro aggregates occurs in steeper slopes and the most erosive time period depends on the micromorphology of the surface. And while the aggregate size distribution of the soil loss of the treatments shows high variety of distribution and differs from the original soil, the particle size distribution of each aggregate size fraction shows similar trends except the 50-250 µm fraction where the fine sand fraction is dominating instead of the loam. This anomaly may be connected with the TC content of this fraction, but more research is needed. In agricultural areas micro aggregate fraction plays important role in nutrient supply thus understanding the erosion process is necessary because of the better protection in the future.
NASA Astrophysics Data System (ADS)
Carruba, V.; Aljbaae, S.; Souami, D.
2014-07-01
(31) Euphrosyne is the largest body of its namesake family, and contains more the 99.35% of the family mass. Among asteroid families, the Euphosyne group is peculiar because of its quite steep size frequency distribution, significantly depleted in large and medium- sized asteroids (8 < D < 12~km). The current steep size frequency distribution of the Euphrosyne family has been suggested to be the result of a grazing impact in which only the farthest, smallest members failed to accrete. The Euphrosyne family is however also very peculiar because of its dynamics: near its center it is crossed by the ν_6 = g -g_6 linear secular resonance, and it hosts the largest population (140 bodies) of asteroids in ν_6 anti-aligned librating states (or Tina-like asteroids) in the main belt. In this work we investigated the orbital evolution of newly obtained members of the dynamical family, with an emphasis on its interaction with the ν_6 resonance. Because of its unique resonant configuration, large and medium sized asteroids tend to migrate away from the family orbital region faster than small-sized objects, that were ejected further away from the family center. As a consequence, the size-frequency distribution of the Euphrosyne family becomes steeper in time, with a growing depletion in the number of the largest family members. We estimate that the current size-frequency distribution could be attained from a typical, initial size-frequency distribution in time-scales of the order of 1~Byr, consistently with estimates of the family age obtained with other, independent, methods.
Carbon storage in soil size fractions under two cacao agroforestry systems in Bahia, Brazil.
Gama-Rodrigues, Emanuela F; Ramachandran Nair, P K; Nair, Vimala D; Gama-Rodrigues, Antonio C; Baligar, Virupax C; Machado, Regina C R
2010-02-01
Shaded perennial agroforestry systems contain relatively high quantities of soil carbon (C) resulting from continuous deposition of plant residues; however, the extent to which the C is sequestered in soil will depend on the extent of physical protection of soil organic C (SOC). The main objective of this study was to characterize SOC storage in relation to soil fraction-size classes in cacao (Theobroma cacao L.) agroforestry systems (AFSs). Two shaded cacao systems and an adjacent natural forest in reddish-yellow Oxisols in Bahia, Brazil were selected. Soil samples were collected from four depth classes to 1 m depth and separated by wet-sieving into three fraction-size classes (>250 microm, 250-53 microm, and <53 microm)-corresponding to macroaggregate, microaggregate, and silt-and-clay size fractions-and analyzed for C content. The total SOC stock did not vary among systems (mean: 302 Mg/ha). On average, 72% of SOC was in macroaggregate-size, 20% in microaggregate-size, and 8% in silt-and-clay size fractions in soil. Sonication of aggregates showed that occlusion of C in soil aggregates could be a major mechanism of C protection in these soils. Considering the low level of soil disturbances in cacao AFSs, the C contained in the macroaggregate fraction might become stabilized in the soil. The study shows the role of cacao AFSs in mitigating greenhouse gas (GHG) emission through accumulation and retention of high amounts of organic C in the soils and suggests the potential benefit of this environmental service to the nearly 6 million cacao farmers worldwide.
Patel, Vipulkumar; Celec, Peter; Grunt, Magdalena; Schwarzenbach, Heidi; Jenneckens, Ingo; Hillebrand, Timo
2016-01-01
Circulating cell-free DNA (ccfDNA) is a promising diagnostic tool and its size fractionation is of interest. However, kits for isolation of ccfDNA available on the market are designed for small volumes hence processing large sample volumes is laborious. We have tested a new method that enables enrichment of ccfDNA from large volumes of plasma and subsequently allows size-fractionation of isolated ccfDNA into two fractions with individually established cut-off levels of ccfDNA length. This method allows isolation of low-abundant DNA as well as separation of long and short DNA molecules. This procedure may be important e.g., in prenatal diagnostics and cancer research that have been already confirmed by our primary experiments. Here, we report the results of selective separation of 200- and 500-bp long synthetic DNA fragments spiked in plasma samples. Furthermore, we size-fractionated ccfDNA from the plasma of pregnant women and verified the prevalence of fetal ccfDNA in all fractions.
Particle Size Distribution of Heavy Metals and Magnetic Susceptibility in an Industrial Site.
Ayoubi, Shamsollah; Soltani, Zeynab; Khademi, Hossein
2018-05-01
This study was conducted to explore the relationships between magnetic susceptibility and some soil heavy metals concentrations in various particle sizes in an industrial site, central Iran. Soils were partitioned into five fractions (< 28, 28-75, 75-150, 150-300, and 300-2000 µm). Heavy metals concentrations including Zn, Pb, Fe, Cu, Ni and Mn and magnetic susceptibility were determined in bulk soil samples and all fractions in 60 soil samples collected from the depth of 0-5 cm. The studied heavy metals except for Pb and Fe displayed a substantial enrichment in the < 28 µm. These two elements seemed to be independent of the selected size fractions. Magnetic minerals are specially linked with medium size fractions including 28-75, 75-150 and 150-300 µm. The highest correlations were found for < 28 µm and heavy metals followed by 150-300 µm fraction which are susceptible to wind erosion risk in an arid environment.
Water holding capacities of fly ashes: Effect of size fractionation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, A.; Rano, R.
2007-07-01
Water holding capacities of fly ashes from different thermal power plants in Eastern India have been compared. Moreover, the effect of size fractionation (sieving) on the water holding capacities has also been determined. The desorption rate of water held by the fly ash fractions at ambient temperature (25-30{sup o}C) has been investigated. The effect of mixing various size fractions of fly ash in increasing the water holding capacities of fly ash has been studied. It is observed that the fly ash obtained from a thermal power plant working on stoker-fired combustor has the highest water holding capacity, followed by themore » one that works on pulverized fuel combustor. Fly ash collected from super thermal power plant has the least water holding capacity (40.7%). The coarser size fractions of fly ashes in general have higher water holding capacities than the finer ones. An attempt has been made to correlate the results obtained, with the potential use in agriculture.« less
Kostoglou, M; Varka, E-M; Kalogianni, E P; Karapantsios, T D
2010-09-01
Destabilization of hexane-in-water emulsions is studied by a continuous, non-intrusive, multi-probe, electrical conductance technique. Emulsions made of different oil fractions and surfactant (C(10)E(5)) concentrations are prepared in a stirred vessel using a Rushton turbine to break and agitate droplets. During the separation of phases, electrical signals from pairs of ring electrodes mounted at different heights onto the vessel wall, are recorded. The evolution of the local water volume fractions at the locations of the electrodes is estimated from these signals. It is found that in the absence of coalescence, the water fraction evolution curve from the bottom pair of electrodes is compatible with a bidisperse oil droplet size distribution. The sizes and volume fractions of the two droplet modes are estimated using theoretical arguments. The electrically determined droplet sizes are compared to data from microscopy image analysis. Results are discussed in detail. Copyright 2010 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The particle size effects of high-amylose rice (Goami 2) flour on quality attributes of frying batters were characterized in terms of physicochemical, rheological, and oil-resisting properties. High-amylose rice flours were fractionated into four fractions (70, 198, 256, and 415 µm) of which morpho...
Tall fescue seed extraction and partial purification of ergot alkaloids
NASA Astrophysics Data System (ADS)
Bush, Lowell
2014-12-01
Many substances in the tall fescue/endophyte association (Schedonorus arundinaceus/Epichloë coenophiala) have biological activity. Of these compounds only the ergot alkaloids are known to have significant mammalian toxicity and the predominant ergot alkaloids are ergovaline and ergovalinine. Because synthetically produced ergovaline is difficult to obtain, we developed a seed extraction and partial purification protocol for ergovaline/ergovalinine that provided a biologically active product. Tall fescue seed was ground and packed into several different sized columns for liquid extraction. Smaller particle size and increased extraction time increased efficiency of extraction. Our largest column was a 114 × 52 × 61 cm (W×L×D) stainless steel tub. Approximately 150 kg of seed could be extracted in this tub. The extraction was done with 80% ethanol. When the solvent front migrated to bottom of the column, flow was stopped and seed was allowed to steep for at least 48 h. Light was excluded from the solvent from the beginning of this step to the end of the purification process. Following elution, ethanol was removed from the eluate by evaporation at room temperature. Resulting syrup was freeze-dried. About 80% recovery of alkaloids was achieved with 18-fold increase in concentration of ergovaline. Initial purification of the dried product was accomplished by extracting with hexane/water (6:1, v/v) and the hexane fraction was discarded. The aqueous fraction was extracted with chloroform, the aqueous layer discarded, after which the chloroform was removed with a resulting 20-fold increase of ergovaline. About 65% of the ergovaline was recovered from the chloroform residue for an overall recovery of 50%. The resultant partially purified ergovaline had biological activities in in vivo and in vitro bovine bioassays that approximate that of synthetic ergovaline.
Ferreira, Diogo C; van der Linden, Marx G; de Oliveira, Leandro C; Onuchic, José N; de Araújo, Antônio F Pereira
2016-04-01
Recent ab initio folding simulations for a limited number of small proteins have corroborated a previous suggestion that atomic burial information obtainable from sequence could be sufficient for tertiary structure determination when combined to sequence-independent geometrical constraints. Here, we use simulations parameterized by native burials to investigate the required amount of information in a diverse set of globular proteins comprising different structural classes and a wide size range. Burial information is provided by a potential term pushing each atom towards one among a small number L of equiprobable concentric layers. An upper bound for the required information is provided by the minimal number of layers L(min) still compatible with correct folding behavior. We obtain L(min) between 3 and 5 for seven small to medium proteins with 50 ≤ Nr ≤ 110 residues while for a larger protein with Nr = 141 we find that L ≥ 6 is required to maintain native stability. We additionally estimate the usable redundancy for a given L ≥ L(min) from the burial entropy associated to the largest folding-compatible fraction of "superfluous" atoms, for which the burial term can be turned off or target layers can be chosen randomly. The estimated redundancy for small proteins with L = 4 is close to 0.8. Our results are consistent with the above-average quality of burial predictions used in previous simulations and indicate that the fraction of approachable proteins could increase significantly with even a mild, plausible, improvement on sequence-dependent burial prediction or on sequence-independent constraints that augment the detectable redundancy during simulations. © 2016 Wiley Periodicals, Inc.
Riihinen, Kaisu; Ryynänen, Anu; Toivanen, Marko; Könönen, Eija; Törrönen, Riitta; Tikkanen-Kaukanen, Carina
2011-01-01
Coaggregation is an interspecies adhesion process, which is essential to the development of dental plaque. This is an in vitro study of the composition of the soluble solids in the berry juice molecular size fractions (<10 kDa, FI; 10-100 kDa, FII; >100 kDa, FIII) derived from apple, bilberry, blackcurrant, cloudberry, crowberry and lingonberry and their ability to inhibit and reverse coaggregation of the pairs of common species in dental plaque: Streptococcus mutans with Fusobacterium nucleatum or Actinomyces naeslundii. Inhibitory and reversal activity was found in the molecular size fractions FII and FIII of bilberry, blackcurrant, crowberry and lingonberry. The active fractions contained higher amounts of polyphenols (5-12% of soluble solids) than those without activity (<2% of soluble solids). Proanthocyanidins dominated in the active lingonberry juice fractions FII and FIII and also small amounts of anthocyanins were detected. Anthocyanins, proanthocyanidins and flavonol glycosides were prevalent in FII and FIII fractions of bilberry, blackcurrant and crowberry juices. Comparable amounts of sugars and titratable acids were present in the latter three berry juice fractions of different size. The results indicate that the high molecular size fractions of lingonberry, bilberry, blackcurrant and crowberry juices have antiaggregation potential on common oral bacteria, the potential being associated with their polyphenolic content. Copyright © 2010 John Wiley & Sons, Ltd.
Packing Fraction of a Two-dimensional Eden Model with Random-Sized Particles
NASA Astrophysics Data System (ADS)
Kobayashi, Naoki; Yamazaki, Hiroshi
2018-01-01
We have performed a numerical simulation of a two-dimensional Eden model with random-size particles. In the present model, the particle radii are generated from a Gaussian distribution with mean μ and standard deviation σ. First, we have examined the bulk packing fraction for the Eden cluster and investigated the effects of the standard deviation and the total number of particles NT. We show that the bulk packing fraction depends on the number of particles and the standard deviation. In particular, for the dependence on the standard deviation, we have determined the asymptotic value of the bulk packing fraction in the limit of the dimensionless standard deviation. This value is larger than the packing fraction obtained in a previous study of the Eden model with uniform-size particles. Secondly, we have investigated the packing fraction of the entire Eden cluster including the effect of the interface fluctuation. We find that the entire packing fraction depends on the number of particles while it is independent of the standard deviation, in contrast to the bulk packing fraction. In a similar way to the bulk packing fraction, we have obtained the asymptotic value of the entire packing fraction in the limit NT → ∞. The obtained value of the entire packing fraction is smaller than that of the bulk value. This fact suggests that the interface fluctuation of the Eden cluster influences the packing fraction.
Particle size effects on bioaccessible amounts of ingestible soil-borne toxic elements.
Qin, Junhao; Nworie, Obinna Elijah; Lin, Chuxia
2016-09-01
The unified BARGE method was used to examine the effects of soil particle size on the bioaccessible amounts of potentially toxic elements in multi-contaminated soils from a closed landfill site. The results show that bioaccessible As, Al, Cd, Cr, Cu, Mn, Ni, Pb and Zn increased with decreasing soil particle size and the <0.002 mm soil fraction contained much greater amounts of the bioaccessible elements, as compared to other soil fractions (0.002-0.063 mm, 0.063-0.125 mm, and 0.125-0.250 mm). As, Al and Cr had much lower bioaccessibility, as compared to the six cationic heavy metals. In contrast with other elements, As bioaccessibility tended to be higher in the gastrointestinal phase than in the gastric phase. There was a significant soil particle size effect on bioaccessibility of As and Al in the gastrointestinal phase: As bioaccessibility decreased with decreasing particle size, and the finer soil fractions tended to have a higher Al bioaccessibility, as compared to the coarser soil fractions. The research findings prompt the need for further division of soil particle size fractions in order to more accurately assess the bioaccessible amounts of soil-borne potentially toxic elements in contaminated lands. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kumar, Pawan; Kumar, Sushil; Yadav, Sudesh
2018-02-01
Size distribution, water-soluble inorganic ions (WSII), and organic carbon (OC) and elemental carbon (EC) in size-segregated aerosols were investigated during a year-long sampling in 2010 over New Delhi. Among different size fractions of PM 10 , PM 0.95 was the dominant fraction (45%) followed by PM 3-7.2 (20%), PM 7.2-10 (15%), PM 0.95-1.5 (10%), and PM 1.5-3 (10%). All size fractions exceeded the ambient air quality standards of India for PM 2.5 . Annual average mass size distributions of ions were specific to size and ion(s); Ca 2+ , Mg 2+ , K + , NO 3 - , and Cl - followed bimodal distribution while SO 4 2- and NH 4 + ions showed one mode in PM 0.95 . The concentrations of secondary WSII (NO 3 - , SO 4 2- , and NH 4 + ) increased in winters due to closed and moist atmosphere whereas open atmospheric conditions in summers lead to dispersal of pollutants. NH 4 + and Ca 2+ were dominant neutralization ions but in different size fractions. The summer-time dust transport from upwind region by S SW winds resulted in significantly high concentrations of PM 0.95 and PM 3-7.2 and PM 7.2-10 . This indicted influence of dust generation in Thar Desert and its transport is size selective in nature in downwind direction. The mixing of different sources (geogenic, coal combustions, biomass burning, plastic burning, incinerators, and vehicular emissions sources) for soluble ions in different size fractions was noticed in principle component analysis. Total carbon (TC = EC + OC) constituted 8-31% of the total PM 0.95 mass, and OC dominated over EC. Among EC, char (EC1) dominated over soot (EC2 + EC3). High SOC contribution (82%) to OC and OC/EC ratio of 2.7 suggested possible role of mineral dust and high photochemical activity in SOC production. Mass concentrations of aerosols and WSII and their contributions to each size fraction of PM 10 are governed by nature of sources, emission strength of source(s), and seasonality in meteorological parameters.
How networks split when rival leaders emerge
NASA Astrophysics Data System (ADS)
Krawczyk, Malgorzata J.; Kułakowski, Krzysztof
2018-02-01
In a model social network, two hubs are appointed as leaders. Consecutive cutting of links on a shortest path between them splits the network in two. Next, the network is growing again till the initial size. Both processes are cyclically repeated. We investigate the size of a cluster containing the largest hub, the degree, the clustering coefficient, the closeness centrality and the betweenness centrality of the largest hub, as dependent on the number of cycles. The results are interpreted in terms of the leader's benefits from conflicts.
Zhang, Jingtao; Pei, Yi; Zhang, Hangchun; Wang, Lei; Arrington, Leticia; Zhang, Ye; Glass, Angela; Leone, Anthony M
2013-01-07
A primary consideration when developing lipid nanoparticle (LNP) based small interfering RNA (siRNA) therapeutics is formulation polydispersity or heterogeneity. The level of heterogeneity of physicochemical properties within a pharmaceutical batch could greatly affect the bioperformance, quality, and ability of a manufacturer to consistently control and reproduce the formulations. This article studied the heterogeneity in the size, composition, and in vitro performance of siRNA containing LNPs, by conducting preparative scale fractionation using a sephacryl S-1000 based size-exclusion chromatography (SEC) method. Eight LNPs with size in the range of 60-190 nm were first evaluated by the SEC method for size polydispersity characterization, and it was found that LNPs in the range of 60-150 nm could be well-resolved. Two LNPs (LNP A and LNP B) with similar bulk properties were fractionated, and fractions were studied in-depth for potential presence of polydispersity in size, composition, and in vitro silencing, as well as cytotoxicity. LNP A was deemed to be monodisperse following results of a semipreparative SEC fractionation that showed similar size, chemical composition, in vitro silencing activity, and cytotoxicity across the fractions. Therefore, LNP A represents a relatively homogeneous formulation and offers less of a challenge in its pharmaceutical development. In contrast, LNP B fractions were shown to be significantly more polydisperse in size distribution. Interestingly, LNP B SEC fractions also exhibited profound compositional variations (e.g., 5 fold difference in N/P ratio and 3 fold difference in lipid composition) along with up to 40 fold differences in the in vitro silencing activity. The impact of LNP size and formulation composition on in vitro performance is also discussed. The present results demonstrate the complexity and potential for presence of heterogeneity in LNP-based siRNA drug products. This underscores the need for tools that yield a detailed characterization of LNP formulations. This capability in tandem with the pursuit of improved formulation and process design can lead to more facile development of LNP-based siRNA pharmaceuticals of higher quality.
Outcome of impact disruption of iron meteorites at room temperature
NASA Astrophysics Data System (ADS)
Katsura, T.; Nakamura, A.; Takabe, A.; Okamoto, T.; Sangen, K.; Hasegawa, S.; Liu, X.; Mashimo, T.
2014-07-01
The iron meteorites and some M-class asteroids are generally understood to originate in the cores of differentiated planetesimals or in the local melt pools of primitive bodies. On these primitive bodies and planetesimals, a wide range of collisional events at different mass scales, temperatures, and impact velocities would have occurred. Iron materials have a brittle-ductile transition at a certain temperature, which depends on metallurgical factors such as grain size and purity, and on conditions such as strain-rate and confining pressure [1]. An evolutional scenario of iron meteorite parent bodies was proposed in which they formed in the terrestrial planet region, after which they were scattered into the main belt by collisions, Yarkovsky thermal forces, and resonances [2]. In this case, they may have experienced collisional evolution in the vicinity of the Earth before they were scattered into the main belt. The size distribution of iron bodies in the main belt may therefore have depended on the disruption threshold of iron bodies at temperature above the brittle-ductile transition. This paper presents the results of impact-disruption experiments of iron meteorite and steel specimens mm-cm in size as projectiles or targets conducted at room temperature using three light-gas guns and one powder gun. Our iron specimens were almost all smaller in size than their counterparts (as targets or projectiles, respectively). The fragment size distribution of iron material was different from that of rocks. In iron fragmentation, a higher percentage of the mass is concentrated in larger fragments, i.e., the mass fraction of fine fragments is much less than that of rocks shown in the Figure (left). This is probably due to the ductile nature of the iron materials at room temperature. Furthermore, the Figure (right) shows that the largest fragment mass fraction f is dependent not only on the energy density but also on the size of the specimens. In order to obtain a generalized empirical relationship for f, we assumed a power-law dependence of f on initial peak pressure P_0 normalized by a dynamic strength, Y, which was defined to be dependent on the size of the iron material. A least-squares fit to the data of iron meteorite specimens resulted in the following relationship: f∝ ({P_0}/{Y})^{-2.1}. The deformation of the iron materials was found to be most significant when the initial pressure greatly exceeded the dynamic strength of the material.
To determine the behavior of nanoparticles in environmental systems, methods must be developed to measure nanoparticle size. Asymmetric Flow Field Flow Fractionation (AF4) is an aqueous compatible size separation technique which is able to separate particles from 1 nm to 10 µm in...
Mezza, Gabriela N; Borgarello, Ana V; Grosso, Nelson R; Fernandez, Héctor; Pramparo, María C; Gayol, María F
2018-03-01
The objective of this study was to evaluate the antioxidant activity of rosemary essential oil fractions obtained by molecular distillation (MD) and investigate their effect on the oxidative stability of sunflower oil. MD fractions were prepared in a series of low-pressure stages where rosemary essential oil was the first feed. Subsequently, a distillate (D1) and residue (R1) were obtained and the residue fraction from the previous stage used as the feed for the next. The residue fractions had the largest capacity to capture free radicals, and the lowest peroxide values, conjugated dienes and conjugated trienes. The antioxidant activity of the fractions was due to oxygenated monoterpenes, specifically α-terpineol and cis-sabinene hydrate. Oxidative stability results showed the residues (R1 and R4) and butylated hydroxytoluene had greater antioxidant activity than either the distillate fractions or original rosemary essential oil. The residue fractions obtained by short path MD of rosemary essential oil could be used as a natural antioxidants by the food industry. Copyright © 2017. Published by Elsevier Ltd.
Analysis misconception of integers in microteaching activities
NASA Astrophysics Data System (ADS)
Setyawati, R. D.; Indiati, I.
2018-05-01
This study view to analyse student misconceptions on integers in microteaching activities. This research used qualitative research design. An integers test contained questions from eight main areas of integers. The Integers material test includes (a) converting the image into fractions, (b) examples of positive numbers including rational numbers, (c) operations in fractions, (d) sorting fractions from the largest to the smallest, and vice versa; e) equate denominator, (f) concept of ratio mark, (g) definition of fraction, and (h) difference between fractions and parts. The results indicated an integers concepts: (1) the students have not been able to define concepts well based on the classification of facts in organized part; (2) The correlational concept: students have not been able to combine interrelated events in the form of general principles; and (3) theoretical concepts: students have not been able to use concepts that facilitate in learning the facts or events in an organized system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaoying; Liu, Chongxuan; Hu, Bill X.
This study statistically analyzed a grain-size based additivity model that has been proposed to scale reaction rates and parameters from laboratory to field. The additivity model assumed that reaction properties in a sediment including surface area, reactive site concentration, reaction rate, and extent can be predicted from field-scale grain size distribution by linearly adding reaction properties for individual grain size fractions. This study focused on the statistical analysis of the additivity model with respect to reaction rate constants using multi-rate uranyl (U(VI)) surface complexation reactions in a contaminated sediment as an example. Experimental data of rate-limited U(VI) desorption in amore » stirred flow-cell reactor were used to estimate the statistical properties of multi-rate parameters for individual grain size fractions. The statistical properties of the rate constants for the individual grain size fractions were then used to analyze the statistical properties of the additivity model to predict rate-limited U(VI) desorption in the composite sediment, and to evaluate the relative importance of individual grain size fractions to the overall U(VI) desorption. The result indicated that the additivity model provided a good prediction of the U(VI) desorption in the composite sediment. However, the rate constants were not directly scalable using the additivity model, and U(VI) desorption in individual grain size fractions have to be simulated in order to apply the additivity model. An approximate additivity model for directly scaling rate constants was subsequently proposed and evaluated. The result found that the approximate model provided a good prediction of the experimental results within statistical uncertainty. This study also found that a gravel size fraction (2-8mm), which is often ignored in modeling U(VI) sorption and desorption, is statistically significant to the U(VI) desorption in the sediment.« less
ERIC Educational Resources Information Center
Garofano, Anthony; Sable, Jennifer
2008-01-01
This report describes the characteristics of the 100 largest public elementary and secondary school districts in the United States and its jurisdictions. These districts are defined as the 100 largest according to the size of their student population. The information in this report was provided by state education agency officials to the National…
ERIC Educational Resources Information Center
Sable, Jennifer; Plotts, Chris; Mitchell, Lindsey
2010-01-01
This report describes the characteristics of the 100 largest public elementary and secondary school districts in the United States and its jurisdictions. These districts are defined as the 100 largest according to the size of their student population. The information in this report was provided by state education agency officials to the National…
ERIC Educational Resources Information Center
Plotts, Chris; Sable, Jennifer
2010-01-01
This report describes the characteristics of the 100 largest public elementary and secondary school districts in the United States and its jurisdictions. These districts are defined as the 100 largest according to the size of their student population. The information in this report was provided by state education agency officials to the National…
A technique for production of nanocrystalline cellulose with a narrow size distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Wen; Holbery, James D.; Li, Kaichang
2009-02-01
Nanocrystalline cellulose (NCC) was prepared by sulfuric acid hydrolysis of microcrystalline cellulose. A differential centrifugation technique was studied to obtain NCC whiskers with a narrow size distribution. It was shown that the volume of NCC in different fractions had an inverse relationship with relative centrifugal force (RCF). The length of NCC whiskers was also fractionized by differential RCF. The aspect ratio of NCC in different fractions had a relatively narrow range. This technique provides an easy way of producing NCC whiskers with a narrow size distribution.
PM10 emissions from aggregate fractions of an Entic Haplustoll under two contrasting tillage systems
NASA Astrophysics Data System (ADS)
Mendez, Mariano J.; Aimar, Silvia B.; Buschiazzo, Daniel E.
2015-12-01
Tillage systems affect physical and chemical properties of soils modifying its aggregation. How changes of the aggregate size distribution affect the capacity of the soil to emit fine particulate matter (PM10) to the atmosphere during wind erosion processes, is a less investigated issue. In order to answer this question, PM10 emissions from an Entic Haplustoll submitted to 25 years of continuous conventional tillage (LC) and no-till (NT) were analyzed. Soil samples were sieved with a rotary sieve in order to determine the aggregate size distribution (fractions : <0.42 mm, 0.42-0.84 mm, 0.84-2 mm, 2-6.4 mm, 6.4-19.2 mm, and >19.2 mm), the dry aggregate stability (DAS) and the erodible fraction (EF). The organic matter contents (OM), the particle size composition and the PM10 emission of each aggregate fraction were also measured. Results showed that NT promoted OM accumulations in all aggregate fractions which favored DAS and soil aggregation. The <0.42 mm sized aggregates (27%) predominated in CT and the >19.2 mm (41.7%) in NT, while the proportion of the other aggregate fractions was similar in both tillage systems. As a consequence of the smaller proportion of the <0.42 mm aggregates, the erodible fraction was lower in NT (EF: 17.3%) than in CT (30.8%). PM10 emissions of each aggregate fraction (AE) decreased exponentially with increasing size of the fractions in both tillage systems, mainly as a consequence of the smaller size and higher specific surface. AE was higher in CT than in NT for all aggregate fractions, but the higher differences were found in the <0.42 mm aggregates (18 μg g-1 in CT vs 8 μg g-1 in NT). The PM10 emission of the whole soil was three times higher in CT than in NT, while the emission of the erodible fraction (EFE) was in CT four times higher than in NT. PM10 emissions of the <0.42 mm aggregates represented over 50% of SE and 90% of EFE. We concluded that NT reduced the capacity of soils of the semiarid Pampas to emit PM10 because it produced a better aggregation that reduced the proportion and emission of the <0.42 mm aggregates. These aggregates had, by far, the highest emission potential.
NASA Astrophysics Data System (ADS)
Zan, Jinbo; Fang, Xiaomin; Yan, Maodu; Shen, Miaomiao
2018-05-01
Hysteresis, thermomagnetic and low-temperature magnetic experiments on particle-size fractioned samples from the Chinese Loess Plateau (CLP) can be used to better characterize the magnetic mineralogy and magnetic granulometry of Chinese loess/paleosols. However, a systematic study of the grain-size-dependent magnetic mineralogy of the Central Asian loess deposits has not been undertaken. In this paper, four size fractions of seventeen loess and paleosol samples from Central Asia and the CLP were subjected to aforementioned rock magnetic measurements. Our findings are as follows: (1) In Central Asia, the fractionated samples from loess and paleosol couplets exhibit no obvious differences in their magnetic mineralogy due to weak pedogenesis. (2) Thermomagnetic analyses suggest that the content of maghemite in the clay fraction of paleosols from the CLP is one or two orders of magnitude larger than that of the loess samples from the CLP and Central Asia. This result does not support the view that maghemite in the loess/palaeosol sequences of the CLP originated mainly from eolian sources. (3) Both hysteresis and low-temperature magnetic experiments demonstrate that detrital ferrimagnetic grains are mostly enriched in the 20-75 μm fraction of loess/paleosols from Central Asia and the CLP. The relative paucity of coarser magnetic grains in the > 75 μm fractions indicate that a positive correlation does not always exist between the magnetic concentration parameters and the sedimentological particle size in Chinese loess deposits. (4) The regional variations in the magnetic properties of the 20-75 μm fraction suggest that the supply of clastic sediments is the main control on the magnetic properties of loess deposits in Central Asia.
Anand, Madhu; McLeod, M Chandler; Bell, Philip W; Roberts, Christopher B
2005-12-08
This paper presents an environmentally friendly, inexpensive, rapid, and efficient process for size-selective fractionation of polydisperse metal nanoparticle dispersions into multiple narrow size populations. The dispersibility of ligand-stabilized silver and gold nanoparticles is controlled by altering the ligand tails-solvent interaction (solvation) by the addition of carbon dioxide (CO2) gas as an antisolvent, thereby tailoring the bulk solvent strength. This is accomplished by adjusting the CO2 pressure over the liquid, resulting in a simple means to tune the nanoparticle precipitation by size. This study also details the influence of various factors on the size-separation process, such as the types of metal, ligand, and solvent, as well as the use of recursive fractionation and the time allowed for settling during each fractionation step. The pressure range required for the precipitation process is the same for both the silver and gold particles capped with dodecanethiol ligands. A change in ligand or solvent length has an effect on the interaction between the solvent and the ligand tails and therefore the pressure range required for precipitation. Stronger interactions between solvent and ligand tails require greater CO2 pressure to precipitate the particles. Temperature is another variable that impacts the dispersibility of the nanoparticles through changes in the density and the mole fraction of CO2 in the gas-expanded liquids. Recursive fractionation for a given system within a particular pressure range (solvent strength) further reduces the polydispersity of the fraction obtained within that pressure range. Specifically, this work utilizes the highly tunable solvent properties of organic/CO2 solvent mixtures to selectively size-separate dispersions of polydisperse nanoparticles (2 to 12 nm) into more monodisperse fractions (+/-2 nm). In addition to providing efficient separation of the particles, this process also allows all of the solvent and antisolvent to be recovered, thereby rendering it a green solvent process.
Łuszczewska-Sierakowska, Iwona; Wawrzyniak-Gacek, Agata; Guz, Tomasz; Tatara, Marcin R; Charuta, Anna
2015-01-01
The aim of the study was a quantitative examination of neurons of hippocampal subfields (CA1-CA4) in mature male Arctic fox (Vulpes lagopus; syn. Alopex lagopus). The preparations were dyed using cresyl violet. Histological preparations were used to morphometricaly analyze the neurons of hippocampus. This analysis included the following parameters: average size of cells in μm, periphery of cells in μm, average cell area in μm2, percentage of cells in area and size of the largest and smallest cells in μm in CA1-CA4 fields. Morphometric observations show that the cells involved in hippocampal formation in polar fox in all layers CA1 -CA4 differ in size, shape, cell area and nucleus area. The size of the cell area in CA3 is the largest and fluctuates around 249.4 μm2, whereas in CA2 the cell area is 184.1 μm2. The cells of the CA2 field are densely arranged, pyramidal and contain a small amount of cytoplasm; their size fluctuates. Cells of CA2 and CA4 had the largest diameter of about 23.6 μm, whereas cells of the CA3 field had the smallest diameter of about 8.3 μm.
75 FR 36698 - Draft Regulatory Guide: Issuance, Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-28
... information based on the likelihood of pipe breaks of different sizes. The rule would divide all coolant... to and including a ``transition break size,'' and breaks larger than the transition size up to the largest pipe in the reactor coolant system. Selection of the transition size was based upon pipe break...
Code of Federal Regulations, 2011 CFR
2011-01-01
... cherry tomatoes and Pyriforme type tomatoes commonly referred to as pear shaped tomatoes, and other... Standards for Fresh Tomatoes 1 Size § 51.1859 Size. (a) The size of tomatoes packed in any standard type... measurement for minimum diameter shall be the largest diameter of the tomato measured at right angles to a...
Code of Federal Regulations, 2010 CFR
2010-01-01
... cherry tomatoes and Pyriforme type tomatoes commonly referred to as pear shaped tomatoes, and other... Standards for Fresh Tomatoes 1 Size § 51.1859 Size. (a) The size of tomatoes packed in any standard type... measurement for minimum diameter shall be the largest diameter of the tomato measured at right angles to a...
Kang, Dukjin; Oh, Sunok; Ahn, Sung-Min; Lee, Bong-Hee; Moon, Myeong Hee
2008-08-01
Exosomes, small membrane vesicles secreted by a multitude of cell types, are involved in a wide range of physiological roles such as intercellular communication, membrane exchange between cells, and degradation as an alternative to lysosomes. Because of the small size of exosomes (30-100 nm) and the limitations of common separation procedures including ultracentrifugation and flow cytometry, size-based fractionation of exosomes has been challenging. In this study, we used flow field-flow fractionation (FlFFF) to fractionate exosomes according to differences in hydrodynamic diameter. The exosome fractions collected from FlFFF runs were examined by transmission electron microscopy (TEM) to morphologically confirm their identification as exosomes. Exosomal lysates of each fraction were digested and analyzed using nanoflow LC-ESI-MS-MS for protein identification. FIFFF, coupled with mass spectrometry, allows nanoscale size-based fractionation of exosomes and is more applicable to primary cells and stem cells since it requires much less starting material than conventional gel-based separation, in-gel digestion and the MS-MS method.
Effective Thermal Conductivity of an Aluminum Foam + Water Two Phase System
NASA Technical Reports Server (NTRS)
Moskito, John
1996-01-01
This study examined the effect of volume fraction and pore size on the effective thermal conductivity of an aluminum foam and water system. Nine specimens of aluminum foam representing a matrix of three volume fractions (4-8% by vol.) and three pore sizes (2-4 mm) were tested with water to determine relationships to the effective thermal conductivity. It was determined that increases in volume fraction of the aluminum phase were correlated to increases in the effective thermal conductivity. It was not statistically possible to prove that changes in pore size of the aluminum foam correlated to changes in the effective thermal conductivity. However, interaction effects between the volume fraction and pore size of the foam were statistically significant. Ten theoretical models were selected from the published literature to compare against the experimental data. Models by Asaad, Hadley, and de Vries provided effective thermal conductivity predictions within a 95% confidence interval.
Jones, Jeffery I.; Gardner, Michael S.; Schieltz, David M.; Parks, Bryan A.; Toth, Christopher A.; Rees, Jon C.; Andrews, Michael L.; Carter, Kayla; Lehtikoski, Antony K.; McWilliams, Lisa G.; Williamson, Yulanda M.; Bierbaum, Kevin P.; Pirkle, James L.; Barr, John R.
2018-01-01
Lipoproteins are complex molecular assemblies that are key participants in the intricate cascade of extracellular lipid metabolism with important consequences in the formation of atherosclerotic lesions and the development of cardiovascular disease. Multiplexed mass spectrometry (MS) techniques have substantially improved the ability to characterize the composition of lipoproteins. However, these advanced MS techniques are limited by traditional pre-analytical fractionation techniques that compromise the structural integrity of lipoprotein particles during separation from serum or plasma. In this work, we applied a highly effective and gentle hydrodynamic size based fractionation technique, asymmetric flow field-flow fractionation (AF4), and integrated it into a comprehensive tandem mass spectrometry based workflow that was used for the measurement of apolipoproteins (apos A-I, A-II, A-IV, B, C-I, C-II, C-III and E), free cholesterol (FC), cholesterol esters (CE), triglycerides (TG), and phospholipids (PL) (phosphatidylcholine (PC), sphingomyelin (SM), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and lysophosphatidylcholine (LPC)). Hydrodynamic size in each of 40 size fractions separated by AF4 was measured by dynamic light scattering. Measuring all major lipids and apolipoproteins in each size fraction and in the whole serum, using total of 0.1 ml, allowed the volumetric calculation of lipoprotein particle numbers and expression of composition in molar analyte per particle number ratios. Measurements in 110 serum samples showed substantive differences between size fractions of HDL and LDL. Lipoprotein composition within size fractions was expressed in molar ratios of analytes (A-I/A-II, C-II/C-I, C-II/C-III. E/C-III, FC/PL, SM/PL, PE/PL, and PI/PL), showing differences in sample categories with combinations of normal and high levels of Total-C and/or Total-TG. The agreement with previous studies indirectly validates the AF4-LC-MS/MS approach and demonstrates the potential of this workflow for characterization of lipoprotein composition in clinical studies using small volumes of archived frozen samples. PMID:29634782
A survey of size-fractionated dust levels in the U.S. wood processing industry.
Kalliny, Medhat I; Brisolara, Joseph A; Glindmeyer, Henry; Rando, Roy
2008-08-01
A survey of size-fractionated dust exposure was carried out in 10 wood processing plants across the United States as part of a 5-year longitudinal respiratory health study. The facilities included a sawmill, plywood assembly plants, secondary wood milling operations, and factories producing finished wood products such as wood furniture and cabinets. Size-fractionated dust exposures were determined using the RespiCon Personal Particle Sampler. There were 2430 valid sets of respirable, thoracic, and inhalable dust samples collected. Overall, geometric mean (geometric standard deviation) exposure levels were found to be 1.44 (2.67), 0.35 (2.65), and 0.18 (2.54) mg/m, for the inhalable, thoracic, and respirable fractions, respectively. Averaged across all samples, the respirable fraction accounted for 16.7% of the inhalable dust mass, whereas the corresponding figure for thoracic fraction as a percentage of the inhalable fraction was 28.7%. Exposures in the furniture manufacturing plants were significantly higher than those in sawmill and plywood assembly plants, wood milling plants, and cabinet manufacturing plants, whereas the sawmill and plywood assembly plants exhibited significantly lower dust levels than the other industry segments. Among work activities, cleaning with compressed air and sanding processes produced the highest size-fractionated dust exposures, whereas forklift drivers demonstrated the lowest respirable and inhalable dust fractions and shipping processes produced the lowest thoracic dust fraction. Other common work activities such as sawing, milling, and clamping exhibited intermediate exposure levels, but there were significant differences in relative ranking of these across the various industry segments. Processing of hardwood and mixed woods generally were associated with higher exposures than were softwood and plywood, although these results were confounded with industry segment also.
Wei, Yuquan; Zhao, Yue; Wang, Huan; Lu, Qian; Cao, Zhenyu; Cui, Hongyang; Zhu, Longji; Wei, Zimin
2016-12-01
The study was conducted to investigate the influence of biochar and/or phosphate-solubilizing bacteria (PSB) inoculants on microbial biomass, bacterial community composition and phosphorus (P) fractions during kitchen waste composting amended with rock phosphate (RP). There were distinct differences in the physic-chemical parameters, the proportion of P fractions and bacterial diversity in different treatments. The contribution of available P fractions increased during composting especially in the treatment with the addition of PSB and biochar. Redundancy analysis showed that bacterial compositions were significantly influenced by P content, inoculation and biochar. Variance partitioning further showed that synergy of inoculated PSB and indigenous bacterial communities and the joint effect between biochar and bacteria explained the largest two proportion of the variation in P fractions. Therefore, the combined application of PSB and biochar to improve the inoculation effect and an optimized regulating method were suggested based on the distribution of P fractions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Corfield, M. C.; Fletcher, J. C.; Robson, A.
1967-01-01
1. A tryptic digest of the protein fraction U.S.3 from oxidized wool has been separated into 32 peptide fractions by cation-exchange resin chromatography. 2. Most of these fractions have been resolved into their component peptides by a combination of the techniques of cation-exchange resin chromatography, paper chromatography and paper electrophoresis. 3. The amino acid compositions of 58 of the peptides in the digest present in the largest amounts have been determined. 4. The amino acid sequences of 38 of these have been completely elucidated and those of six others partially derived. 5. These findings indicate that the parent protein in wool from which the protein fraction U.S.3 is derived has a minimum molecular weight of 74000. 6. The structures of wool proteins are discussed in the light of the peptide sequences determined, and, in particular, of those sequences in fraction U.S.3 that could not be elucidated. PMID:16742497
Sorption of chlorobenzenes to cape cod aquifer sediments
Barber, L.B.
1994-01-01
Sorption of tetra- and pentachlorobenzene by sediment from a glacial outwash aquifer on Cape Cod, MA, was evaluated. Particle size and mineralogical fractions (separated based on paramagnetic susceptibility) were characterized with respect to sediment organic carbon (SOC), mineralogy, surface area, metal oxide coatings, and spatial variability. SOC increases by a factor of 10 as particle size decreases from 500-1000 to ?? 25 % in the <63-??m fraction, and SOC is preferentially associated with the magnetic minerals. Sorption increases with decreasing particle size (increasing SOC, magnetic minerals, surface area, and metal oxyhydroxides), and the magnetic mineral fraction has greater sorption than the bulk or nonmagnetic fractions. Removal of SOC decreases sorption proportional to the decrease in SOC and results in a nonlinear isotherm.
Enhanced cellular uptake of size-separated lipophilic silicon nanoparticles
NASA Astrophysics Data System (ADS)
Kusi-Appiah, Aubrey E.; Mastronardi, Melanie L.; Qian, Chenxi; Chen, Kenneth K.; Ghazanfari, Lida; Prommapan, Plengchart; Kübel, Christian; Ozin, Geoffrey A.; Lenhert, Steven
2017-03-01
Specific size, shape and surface chemistry influence the biological activity of nanoparticles. In the case of lipophilic nanoparticles, which are widely used in consumer products, there is evidence that particle size and formulation influences skin permeability and that lipophilic particles smaller than 6 nm can embed in lipid bilayers. Since most nanoparticle synthetic procedures result in mixtures of different particles, post-synthetic purification promises to provide insights into nanostructure-function relationships. Here we used size-selective precipitation to separate lipophilic allyl-benzyl-capped silicon nanoparticles into monodisperse fractions within the range of 1 nm to 5 nm. We measured liposomal encapsulation and cellular uptake of the monodisperse particles and found them to have generally low cytotoxicities in Hela cells. However, specific fractions showed reproducibly higher cytotoxicity than other fractions as well as the unseparated ensemble. Measurements indicate that the cytotoxicity mechanism involves oxidative stress and the differential cytotoxicity is due to enhanced cellular uptake by specific fractions. The results indicate that specific particles, with enhanced suitability for incorporation into lipophilic regions of liposomes and subsequent in vitro delivery to cells, are enriched in certain fractions.
Ua-Arak, Tharalinee; Jakob, Frank; Vogel, Rudi F.
2017-01-01
Bacterial levan has gained an increasing interest over the last decades due to its unique characteristics and multiple possible applications. Levan and other exopolysaccharides (EPSs) production are usually optimized to obtain the highest concentration or yield while a possible change of the molecular size and mass during the production process is mostly neglected. In this study, the molar mass and radius of levan samples were monitored during fermentations with the food-grade, levan-producing acetic acid bacterium Gluconobacter (G.) albidus TMW 2.1191 in shake flasks (without pH control) and bioreactors (with pH control at 4.5, 5.5 and 6.5, respectively). In uncontrolled fermentations, the levan size/molar mass continuously decreased concomitantly with the continuous acidification of the nutrient medium. On the contrary, the amount, molar mass and size of levan could be directly influenced by controlling the pH during fermentation. Using equal initial substrate amounts, the largest weight average molar mass and geometric radius of levan were observed at constant pH 6.5, while the highest levan concentration was obtained at constant pH 4.5. Since there is a special demand to find suitable hydrocolloids from food-grade bacteria to develop novel gluten-free (GF) products, these differently produced levans were used for baking of GF breads, and the best quality improvement was obtained by addition of levan with the highest mass and radius. This work, therefore, demonstrates for the first time that one bacterial strain can produce specific high molecular weight fractions of one EPS type, which differ in properties and sizes among each other in dependence of the controllable production conditions. PMID:28522999
Daszkiewicz, Karol; Maquer, Ghislain; Zysset, Philippe K
2017-06-01
Boundary conditions (BCs) and sample size affect the measured elastic properties of cancellous bone. Samples too small to be representative appear stiffer under kinematic uniform BCs (KUBCs) than under periodicity-compatible mixed uniform BCs (PMUBCs). To avoid those effects, we propose to determine the effective properties of trabecular bone using an embedded configuration. Cubic samples of various sizes (2.63, 5.29, 7.96, 10.58 and 15.87 mm) were cropped from [Formula: see text] scans of femoral heads and vertebral bodies. They were converted into [Formula: see text] models and their stiffness tensor was established via six uniaxial and shear load cases. PMUBCs- and KUBCs-based tensors were determined for each sample. "In situ" stiffness tensors were also evaluated for the embedded configuration, i.e. when the loads were transmitted to the samples via a layer of trabecular bone. The Zysset-Curnier model accounting for bone volume fraction and fabric anisotropy was fitted to those stiffness tensors, and model parameters [Formula: see text] (Poisson's ratio) [Formula: see text] and [Formula: see text] (elastic and shear moduli) were compared between sizes. BCs and sample size had little impact on [Formula: see text]. However, KUBCs- and PMUBCs-based [Formula: see text] and [Formula: see text], respectively, decreased and increased with growing size, though convergence was not reached even for our largest samples. Both BCs produced upper and lower bounds for the in situ values that were almost constant across samples dimensions, thus appearing as an approximation of the effective properties. PMUBCs seem also appropriate for mimicking the trabecular core, but they still underestimate its elastic properties (especially in shear) even for nearly orthotropic samples.
Khan, Khalid Saifullah; Joergensen, Rainer Georg
2009-01-01
The present study was conducted to evaluate the changes in microbial biomass indices (C, N, and especially P) and in P fractions in compost amended with inorganic P fertilizers. In the non-amended control, the average contents of microbial biomass C, N, and P were 1744, 193, and 63 microg g(-1) compost, respectively. On average, 1.3% of total P was stored as microbial biomass P. The addition of KH(2)PO(4) and TSP (triple super phosphate) led to immediate significant increases in microbial biomass C, N, and P. Approximately, 4.6% of the added TSP and 5.8% of the added KH(2)PO(4) were incorporated on average into the microbial biomass throughout the incubation. Approximately, 4.7% of the 1mg and 5.8% of the 2mg addition rate were incorporated on average into the microbial biomass. In the amendment treatments, the average contents of microbial biomass C, N, and P declined by 44%, 64%, and 49%, respectively. Initially, the average size of the P fractions in the non-amended compost increased in the order (% of total P in brackets) resin P (0.7%)
Environment Partitioning and Reactivity of Polybrominated Diphenylethers
NASA Technical Reports Server (NTRS)
Hua, Inez; Iraci, Laura T.; Jafvert, Chad; Bezares-Cruz, Juan
2004-01-01
Polybrominated diphenyl ethers (PBDEs) are an important class of flame retardants. Annual global demand for these compounds was over 67,000 metric tons in 2001. PBDEs have recently been extensively investigated as environmental contaminants because they have been detected in air, sediment, and tissue samples from urban and remote areas. Important issues include quantifying PBDE partitioning in various environmental compartments, and elucidating transformation pathways. The partitioning of PBDE congeners to aerosols was estimated for 16 sites in the United States, Canada, and Mexico. The aerosol particles were PM2.5, the total suspended particle (TSP) concentration varied between 3.0 - 55.4 micro g/cubic meter, and the organic fraction ranged from 11 - 41%; these data are published values for each site. It is estimated that the largest fraction of each PBDE associated with the aerosol particles occurs in Mexico City, and the smallest fraction in Colorado Plateau. Although the organic fraction in Mexico City is about 60% of that observed in the Colorado Plateau, the TSP is larger by a factor of about 18.5, and it is the difference in TSP that strongly influences the fraction of particle-bound PBDE in this case. PBDE partitioning to PM2.5 particles also varies seasonally because of temperature variations. For the less brominated congeners the percentage that is particle-bound is relatively low, regardless of air temperature. In contrast, the heavier congeners exhibit a significant temperature dependence: as the temperature decreases (fall, winter) the percentage of PBDE that is particle-bound increases. The partitioning calculations complement experimental data indicating that decabromodiphenyl ether (DBDE) dissolved in hexane transforms very rapidly when irradiated with solar light. DBDE is the most highly brominated PBDE congener (10 bromine atoms) and occurs in the commercial formulation which is subject to the largest global demand.
Environmental Partitioning and Reactivity of Polybrominated Diphenylethers
NASA Astrophysics Data System (ADS)
Hua, I.; Iraci, L.; Jafvert, C.; Bezares-Cruz, J.
2004-05-01
Polybrominated diphenyl ethers (PBDEs) are an important class of flame retardants. Annual global demand for these compounds was over 67,000 metric tons in 2001. PBDEs have recently been extensively investigated as environmental contaminants because they have been detected in air, sediment, and tissue samples from urban and remote areas. Important issues include quantifying PBDE partitioning in various environmental compartments, and elucidating transformation pathways. The partitioning of PBDE congeners to aerosols was estimated for 16 sites in the United States, Canada, and Mexico. The aerosol particles were PM2.5, the total suspended particle (TSP) concentration varied between 3.0 - 55.4 μ g m-3, and the organic fraction ranged from 11 - 41%; these data are published values for each site. It is estimated that the largest fraction of each PBDE associated with the aerosol particles occurs in Mexico City, and the smallest fraction in Colorado Plateau. Although the organic fraction in Mexico City is about 60% of that observed in the Colorado Plateau, the TSP is larger by a factor of about 18.5, and it is the difference in TSP that strongly influences the fraction of particle-bound PBDE in this case. PBDE partitioning to PM2.5 particles also varies seasonally because of temperature variations. For the less brominated congeners, the percentage that is particle-bound is relatively low, regardless of air temperature. In contrast, the heavier congeners exhibit a significant temperature dependence: as the temperature decreases (fall, winter) the percentage of PBDE that is particle-bound increases. The partitioning calculations complement experimental data indicating that decabromodiphenyl ether (DBDE) dissolved in hexane transforms very rapidly when irradiated with solar light. DBDE is the most highly brominated PBDE congener (10 bromine atoms) and occurs in the commercial formulation which is subject to the largest global demand.
NASA Technical Reports Server (NTRS)
Perlwitz, J. P.; Garcia-Pando, C. Perez; Miller, R. L.
2015-01-01
A global compilation of nearly sixty measurement studies is used to evaluate two methods of simulating the mineral composition of dust aerosols in an Earth system model. Both methods are based upon a Mean Mineralogical Table (MMT) that relates the soil mineral fractions to a global atlas of arid soil type. The Soil Mineral Fraction (SMF) method assumes that the aerosol mineral fractions match the fractions of the soil. The MMT is based upon soil measurements after wet sieving, a process that destroys aggregates of soil particles that would have been emitted from the original, undisturbed soil. The second method approximately reconstructs the emitted aggregates. This model is referred to as the Aerosol Mineral Fraction (AMF) method because the mineral fractions of the aerosols differ from those of the wet-sieved parent soil, partly due to reaggregation. The AMF method remedies some of the deficiencies of the SMF method in comparison to observations. Only the AMF method exhibits phyllosilicate mass at silt sizes, where they are abundant according to observations. In addition, the AMF quartz fraction of silt particles is in better agreement with measured values, in contrast to the overestimated SMF fraction. Measurements at distinct clay and silt particle sizes are shown to be more useful for evaluation of the models, in contrast to the sum over all particles sizes that is susceptible to compensating errors, as illustrated by the SMF experiment. Model errors suggest that allocation of the emitted silt fraction of each mineral into the corresponding transported size categories is an important remaining source of uncertainty. Evaluation of both models and the MMT is hindered by the limited number of size-resolved measurements of mineral content that sparsely sample aerosols from the major dust sources. The importance of climate processes dependent upon aerosol mineral composition shows the need for global and routine mineral measurements.
Perlwitz, J. P.; Perez Garcia-Pando, C.; Miller, R. L.
2015-10-21
A global compilation of nearly sixty measurement studies is used to evaluate two methods of simulating the mineral composition of dust aerosols in an Earth system model. Both methods are based upon a Mean Mineralogical Table (MMT) that relates the soil mineral fractions to a global atlas of arid soil type. The Soil Mineral Fraction (SMF) method assumes that the aerosol mineral fractions match the fractions of the soil. The MMT is based upon soil measurements after wet sieving, a process that destroys aggregates of soil particles that would have been emitted from the original, undisturbed soil. The second methodmore » approximately reconstructs the emitted aggregates. This model is referred to as the Aerosol Mineral Fraction (AMF) method because the mineral fractions of the aerosols differ from those of the wet-sieved parent soil, partly due to reaggregation. The AMF method remedies some of the deficiencies of the SMF method in comparison to observations. Only the AMF method exhibits phyllosilicate mass at silt sizes, where they are abundant according to observations. In addition, the AMF quartz fraction of silt particles is in better agreement with measured values, in contrast to the overestimated SMF fraction. Measurements at distinct clay and silt particle sizes are shown to be more useful for evaluation of the models, in contrast to the sum over all particles sizes that is susceptible to compensating errors, as illustrated by the SMF experiment. Model errors suggest that allocation of the emitted silt fraction of each mineral into the corresponding transported size categories is an important remaining source of uncertainty. Evaluation of both models and the MMT is hindered by the limited number of size-resolved measurements of mineral content that sparsely sample aerosols from the major dust sources. In conclusion, the importance of climate processes dependent upon aerosol mineral composition shows the need for global and routine mineral measurements.« less
NASA Astrophysics Data System (ADS)
Samonova, Olga; Aseyeva, Elena
2017-04-01
A detailed study of heavy metals distribution in various soil grain-size fractions helps to increase the knowledge about the complex nature of metals' occurrence and their distribution pathways in the environment. On the basis of particle size fractionation of topsoil horizons we examined the specific behavior of heavy metals in a small erosional landform located in the humid temperate zone of the Russian Plain. The object of the study is a 400 m small U-shaped dry valley (balka in Russian) with a catchment area of 32.8 ha located in the central part of the Protva river basin, 100 km southwest of Moscow. The uppermost parts of the landform are incised in Late Pleistocene loessial loams, which cover significant portions of interfluve area in the region, while the middle and the lower parts cut through Middle Pleistocene glacial sediments. A total of 50 samples were collected from topsoil horizons of different landform geomorphic units along three cross-sections as well as along the bottom of the landform and its detrital fan. Samples were analyzed for Mn, Cu, Ni, Co, Cr, Zn, Pb, Ti, Zr, and Fe content. Eleven samples were chosen for physical fractionation into 5 grain-size fractions (1-0.25 mm, 0.25-0.05 mm, 0.05-0.01 mm, 0.01-0.001 mm and <0.001 mm) and further analysis for fractionized metal contents. Across the grain-size fractions the maximum Zr content was observed in the coarse silt fraction and Ti - in the medium and fine silt fraction, while other metals, such as Fe, Mn, Co, Ni, Cr, Pb, and Zn revealed their highest concentrations in the clay fraction. For Fe, Mn, Co and Ni a second concentration peak was observed in the coarse and medium sand fraction. Due to probably eolian genesis and (or) transformation during weathering, the coarse silt fraction in comparison to other fractions showed a depletion of the majority of metals while the minimum concentrations of Ti, Zr and Cr were limited to the coarse and medium sand. Statistical analysis showed that the variation of metal contents depends on particle sizes: the Cv coefficients calculated for Cu, Ni, Co, Fe, Mn, Ti and Zr reach their maximum in the 1-0.25 mm fraction (for Cu and Ni exceeding 75%, for Ti, Zr being around 40%). For Zn, Cr and Pb the maximum variation (50-60%) was found in the 0.25-0.05 mm fraction. In contrast, the two studied silt fractions and also the clay showed very low variations of all metal contents (except for Mn) characteristically in the range between 6% (Cr) and 23.5% (Zn). Unlike the finer fractions, which displayed very poor geochemical differentiation across the landform's geomorphic units, the coarser (sand) fractions showed distinct spatial patterns in the elements' distribution, possibly related to migration processes, the depletion of metals in the landforms' slopes and their prevalent enrichment in the bottom unit is observed.
Decontamination of metals and polycyclic aromatic hydrocarbons from slag-polluted soil.
Bisone, Sara; Mercier, Guy; Blais, Jean-François
2013-01-01
Metallurgy is an industrial activity that is one of the largest contributors to soil contamination by metals. This contamination is often associated with organic compound contamination; however, little research has been aimed at the development of simultaneous processes for decontamination as opposed to treatments to heavy metals or organic compounds alone. This paper presents an efficient process to decontaminate the soils polluted with smelting by-products rich in Cu, Zn and polycyclic aromatic hydrocarbons (PAHs). A simultaneous treatment for metals and PAHs was also tested. The process is mainly based on physical techniques, such as crushing, gravimetric separation and attrition. For the finest particle size fractions, an acid extraction with H2SO4 was used to remove metals. The PAH removal was enhanced by adding surfactant during attrition. The total metal removals varied from 49% to 73% for Cu and from 43% to 63% for Zn, whereas a removal yield of 92% was measured for total PAHs. Finally, a technical-economic evaluation was done for the two processes tested.
Sakuma, Noritsugu; Ohshima, Tsubasa; Shoji, Tetsuya; Suzuki, Yoshihito; Sato, Ryota; Wachi, Ayako; Kato, Akira; Kawai, Yoichiro; Manabe, Akira; Teranishi, Toshiharu
2011-04-26
Nanocomposite magnets (NCMs) consisting of hard and soft magnetic phases are expected to be instrumental in overcoming the current theoretical limit of magnet performance. In this study, structural analyses were performed on L1(0)-FePd/α-Fe NCMs with various hard/soft volume fractions, which were formed by annealing Pd/γ-Fe(2)O(3) heterostructured nanoparticles and pure Pd nanoparticles. The sample with a hard/soft volume ratio of 82/18 formed by annealing at 773 K had the largest maximum energy product (BH(max) = 10.3 MGOe). In such a sample, the interface between the hard and soft phases was coherent and the phase sizes were optimized, both of which effectively induced exchange coupling. This exchange coupling was directly observed by visualizing the magnetic interaction between the hard and soft phases using a first-order reversal curve diagram, which is a valuable tool to improve the magnetic properties of NCMs.
NASA Astrophysics Data System (ADS)
Elferink, Stephanie; Neuhaus, Stefan; Wohlrab, Sylke; Toebe, Kerstin; Voß, Daniela; Gottschling, Marc; Lundholm, Nina; Krock, Bernd; Koch, Boris P.; Zielinski, Oliver; Cembella, Allan; John, Uwe
2017-03-01
Arctic regions have experienced pronounced biological and biophysical transformations as a result of global change processes over the last several decades. Current hypotheses propose an elevated impact of those environmental changes on the biodiversity, community composition and metabolic processes of species. The effects on ecosystem function and services, particularly when invasive or toxigenic harmful species become dominant, can be expressed over a wide range of temporal and spatial scales in plankton communities. Our study focused on the comparison of molecular biodiversity of three size-fractions (micro-, nano-, picoplankton) in the coastal pelagic zone of West Greenland and their association with environmental parameters. Molecular diversity was assessed via parallel amplicon sequencing the 28S rRNA hypervariable D1/D2 region. We showed that biodiversity distribution within the area of Uummannaq Fjord, Vaigat Strait and Disko Bay differed markedly within and among size-fractions. In general, we observed a higher diversity within the picoplankton size fraction compared to the nano- and microplankton. In multidimensional scaling analysis, community composition of all three size fractions correlated with cell size, silicate and phosphate, chlorophyll a (chl a) and dinophysistoxin (DTX). Individually, each size fraction community composition also correlated with other different environmental parameters, i.e. temperature and nitrate. We observed a more homogeneous community of the picoplankton across all stations compared to the larger size classes, despite different prevailing environmental conditions of the sampling areas. This suggests that habitat niche occupation for larger-celled species may lead to higher functional trait plasticity expressed as an enhanced range of phenotypes, whereas smaller organisms may compensate for lower potential plasticity with higher diversity. The presence of recently identified toxigenic harmful algal bloom (HAB) species (such as Alexandrium fundyense and A. ostenfeldii) in the area points out the potential risk for this vulnerable ecosystem in a changing world.
Thoracic and respirable particle definitions for human health risk assessment.
Brown, James S; Gordon, Terry; Price, Owen; Asgharian, Bahman
2013-04-10
Particle size-selective sampling refers to the collection of particles of varying sizes that potentially reach and adversely affect specific regions of the respiratory tract. Thoracic and respirable fractions are defined as the fraction of inhaled particles capable of passing beyond the larynx and ciliated airways, respectively, during inhalation. In an attempt to afford greater protection to exposed individuals, current size-selective sampling criteria overestimate the population means of particle penetration into regions of the lower respiratory tract. The purpose of our analyses was to provide estimates of the thoracic and respirable fractions for adults and children during typical activities with both nasal and oral inhalation, that may be used in the design of experimental studies and interpretation of health effects evidence. We estimated the fraction of inhaled particles (0.5-20 μm aerodynamic diameter) penetrating beyond the larynx (based on experimental data) and ciliated airways (based on a mathematical model) for an adult male, adult female, and a 10 yr old child during typical daily activities and breathing patterns. Our estimates show less penetration of coarse particulate matter into the thoracic and gas exchange regions of the respiratory tract than current size-selective criteria. Of the parameters we evaluated, particle penetration into the lower respiratory tract was most dependent on route of breathing. For typical activity levels and breathing habits, we estimated a 50% cut-size for the thoracic fraction at an aerodynamic diameter of around 3 μm in adults and 5 μm in children, whereas current ambient and occupational criteria suggest a 50% cut-size of 10 μm. By design, current size-selective sample criteria overestimate the mass of particles generally expected to penetrate into the lower respiratory tract to provide protection for individuals who may breathe orally. We provide estimates of thoracic and respirable fractions for a variety of breathing habits and activities that may benefit the design of experimental studies and interpretation of particle size-specific health effects.
Thoracic and respirable particle definitions for human health risk assessment
2013-01-01
Background Particle size-selective sampling refers to the collection of particles of varying sizes that potentially reach and adversely affect specific regions of the respiratory tract. Thoracic and respirable fractions are defined as the fraction of inhaled particles capable of passing beyond the larynx and ciliated airways, respectively, during inhalation. In an attempt to afford greater protection to exposed individuals, current size-selective sampling criteria overestimate the population means of particle penetration into regions of the lower respiratory tract. The purpose of our analyses was to provide estimates of the thoracic and respirable fractions for adults and children during typical activities with both nasal and oral inhalation, that may be used in the design of experimental studies and interpretation of health effects evidence. Methods We estimated the fraction of inhaled particles (0.5-20 μm aerodynamic diameter) penetrating beyond the larynx (based on experimental data) and ciliated airways (based on a mathematical model) for an adult male, adult female, and a 10 yr old child during typical daily activities and breathing patterns. Results Our estimates show less penetration of coarse particulate matter into the thoracic and gas exchange regions of the respiratory tract than current size-selective criteria. Of the parameters we evaluated, particle penetration into the lower respiratory tract was most dependent on route of breathing. For typical activity levels and breathing habits, we estimated a 50% cut-size for the thoracic fraction at an aerodynamic diameter of around 3 μm in adults and 5 μm in children, whereas current ambient and occupational criteria suggest a 50% cut-size of 10 μm. Conclusions By design, current size-selective sample criteria overestimate the mass of particles generally expected to penetrate into the lower respiratory tract to provide protection for individuals who may breathe orally. We provide estimates of thoracic and respirable fractions for a variety of breathing habits and activities that may benefit the design of experimental studies and interpretation of particle size-specific health effects. PMID:23575443
Granule fraction inhomogeneity of calcium carbonate/sorbitol in roller compacted granules.
Bacher, C; Olsen, P M; Bertelsen, P; Sonnergaard, J M
2008-02-12
The granule fraction inhomogeneity of roller compacted granules was examined on mixtures of three different morphologic forms of calcium carbonate and three particle sizes of sorbitol. The granule fraction inhomogeneity was determined by the distribution of the calcium carbonate in each of the 10 size fractions between 0 and 2000 microm and by calculating the demixing potential. Significant inhomogeneous occurrence of calcium carbonate in the size fractions was demonstrated, depending mostly on the particles sizes of sorbitol but also on the morphological forms of calcium carbonate. The heterogeneous distribution of calcium carbonate was related to the decrease in compactibility of roller compacted granules in comparison to the ungranulated materials. This phenomenon was explained by a mechanism where fracturing of the ribbon during granulation occurred at the weakest interparticulate bonds (the calcium carbonate: calcium carbonate bonds) and consequently exposed the weakest areas of bond formation on the surface of the granules. Accordingly, the non-uniform allocation of the interparticulate attractive forces in a tablet would cause a lowering of the compactibility. Furthermore, the ability of the powder to agglomerate in the roller compactor was demonstrated to be related to the ability of the powder to be compacted into a tablet, thus the most compactable calcium carbonate and the smallest sized sorbitol improved the homogeneity by decreasing the demixing potential.
Alonso-Miravalles, Loreto; O'Mahony, James A
2018-05-07
The objectives of this study were to investigate the nutrient composition, protein profile, morphology, and pasting properties of protein-rich pseudocereal ingredients (quinoa, amaranth, and buckwheat) and compare them to the more common rice and maize flours. Literature concerning protein-rich pseudocereal ingredients is very limited, mainly to protein profiling. The concentrations of macronutrients (i.e., ash, fat, and protein, as well as soluble, insoluble and total dietary fibre) were significantly higher for the protein-rich variants of pseudocereal-based flours than their regular protein content variants and the rice and maize flours. On profiling the protein component using sodium dodecyl sulfate⁻polyacrylamide gel electrophoresis (SDS-PAGE), all samples showed common bands at ~50 kDa and low molecular weight bands corresponding to the globulin fraction (~50 kDa) and albumin fraction (~10 kDa), respectively; except rice, in which the main protein was glutelin. The morphology of the starch granules was studied using scanning electron microscopy with quinoa and amaranth showing the smallest sized granules, while buckwheat, rice, and maize had the largest starch granules. The pasting properties of the ingredients were generally similar, except for buckwheat and amaranth, which showed the highest and lowest final viscosity, respectively. The results obtained in this study can be used to better understand the functionality and food applications of protein-rich pseudocereal ingredients.
NASA Astrophysics Data System (ADS)
Shen, Xiaojing; Sun, Junying; Zhang, Xiaoye; Zhang, Yangmei; Wang, Yaqiang; Tan, Kaiyan; Wang, Peng; Zhang, Lu; Qi, Xuefei; Che, Haochi; Zhang, Zhouxiang; Zhong, Junting; Zhao, Huarong; Ren, Sanxue
2018-02-01
An extensive field experiment for measurement of physical and chemical properties of aerosols was conducted at an urban site in the Chinese Academy of Meteorological Sciences (CAMS) in Beijing and at a rural site in Gucheng (GC), Hebei Province in December 2016. This paper compares the number size distribution of submicron particle matter (PM1, diameter < 1 μm) between the two sites. The results show that the mean PM1 number concentration at GC was twice that at CAMS, and the mass concentration was three times the amount at CAMS. It is found that the accumulation mode (100-850 nm) particles constituted the largest fraction of PM1 at GC, which was significantly correlated with the local coal combustion, as confirmed by a significant relationship between the accumulation mode and the absorption coefficient of soot particles. The high PM1 concentration at GC prevented the occurrence of new particle formation (NPF) events, while eight such events were observed at CAMS. During the NPF events, the mass fraction of sulfate increased significantly, indicating that sulfate played an important role in NPF. The contribution of regional transport to PM1 mass concentration was approximately 50% at both sites, same as that of the local emission. However, during the red-alert period when emission control took place, the contribution of regional transport was notably higher.
NASA Astrophysics Data System (ADS)
Silvester, S. A.; Lowndes, I. S.; Hargreaves, D. M.
2009-12-01
The extraction of minerals from surface mines and quarries can produce significant fugitive dust emissions as a result of site activities such as blasting, road haulage, loading, crushing and stockpiling. If uncontrolled, these emissions can present serious environmental, health, safety and operational issues impacting both site personnel and the wider community. The dispersion of pollutant emissions within the atmosphere is principally determined by the background wind systems characterized by the atmospheric boundary layer (ABL). This paper presents an overview of the construction and solution of a computational fluid dynamics (CFD) model to replicate the development of the internal ventilation regime within a surface quarry excavation due to the presence of a neutral ABL above this excavation. This model was then used to study the dispersion and deposition of fugitive mineral dust particles generated during rock blasting operations. The paths of the mineral particles were modelled using Lagrangian particle tracking. Particles of four size fractions were released from five blast locations for eight different wind directions. The study concluded that dependent on the location of the bench blast within the quarry and the direction of the wind, a mass fraction of between 0.3 and 0.6 of the emitted mineral particles was retained within the quarry. The retention was largest when the distance from the blast location to the downwind pit boundary was greatest.
Size segregation of component coals during pulverization of high volatile/low volatile blends
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, A.; Orban, P.C.
1995-12-31
Samples of single high volatile (hvb) and low volatile (lvb) coals and binary blends in proportions ranging from 75%hvb/25%lvb to 25%hvb/75%lvb were pulverized in a Raymond 271 bowl mill and then screened into different size fractions. The ranks of two of the feed coals were sufficiently different that individual particles could be distinguished microscopically. This enabled the proportions of each feed coal in the various blend size fractions to be determined. The difference in rank and therefore grindability of the components (Hardgrove indices of 99 versus 50) was such that significant segregation resulted. For example, the 25%hvb/75%lvb blend, upon grinding,more » produced a +50 mesh (300 {micro}m) fraction with 30% lvb coal, and a {minus}325 mesh (45 {micro}m) fraction with 84% lvb coal. The effect of this segregation according to size was a notable progressive decrease in volatility towards the finer fractions, consistent with an increase in the proportion of lvb particles; differences in volatile matter (d.b.) between coarsest and finest fractions of up to 6.9% were encountered. Although most of the segregation is attributable to rank difference between the component coals, part appears to be due to the lower grindability of liptinite-rich lithotypes in the hvb coal.« less
Schindler, Torben; Walter, Johannes; Peukert, Wolfgang; Segets, Doris; Unruh, Tobias
2015-12-10
Properties of small semiconductor nanoparticles (NPs) are strongly governed by their size. Precise characterization is a key requirement for tailored dispersities and thus for high-quality devices. Results of a careful analysis of particle size distributions (PSDs) of ZnO are presented combining advantages of UV/vis absorption spectroscopy, analytical ultracentrifugation, and small-angle X-ray scattering (SAXS). Our study reveals that careful cross-validation of these different methods is mandatory to end up with reliable resolution. PSDs of ZnO NPs are multimodal on a size range of 2-8 nm, a finding that is not yet sufficiently addressed. In the second part of our work the evolution of PSDs was studied using in situ SAXS. General principles for the appearance of multimodalities covering a temperature range between 15 and 45 °C were found which are solely determined by the aging state indicated by the size of the medium-sized fraction. Whenever this fraction exceeds a critical diameter, a new multimodality is identified, independent of the particular time-temperature combination. A fraction of larger particles aggregates first before a fraction of smaller particles is detected. Fixed multimodalities have not yet been addressed adequately and could only be evidenced due to careful size analysis.
Characterisation of Fine Ash Fractions from the AD 1314 Kaharoa Eruption
NASA Astrophysics Data System (ADS)
Weaver, S. J.; Rust, A.; Carey, R. J.; Houghton, B. F.
2012-12-01
The AD 1314±12 yr Kaharoa eruption of Tarawera volcano, New Zealand, produced deposits exhibiting both plinian and subplinian characteristics (Nairn et al., 2001; 2004, Leonard et al., 2002, Hogg et al., 2003). Their widespread dispersal yielded volumes, column heights, and mass discharge rates of plinian magnitude and intensity (Sahetapy-Engel, 2002); however, vertical shifts in grain size suggest waxing and waning within single phases and time-breaks on the order of hours between phases. These grain size shifts were quantified using sieve, laser diffraction, and image analysis of the fine ash fractions (<1 mm in diameter) of some of the most explosive phases of the eruption. These analyses served two purposes: 1) to characterise the change in eruption intensity over time, and 2) to compare the three methods of grain size analysis. Additional analyses of the proportions of components and particle shape were also conducted to aid in the interpretation of the eruption and transport dynamics. 110 samples from a single location about 6 km from source were sieved at half phi intervals between -4φ to 4φ (16 mm - 63 μm). A single sample was then chosen to test the range of grain sizes to run through the Mastersizer 2000. Three aliquots were tested; the first consisted of each sieve size fraction ranging between 0φ (1000 μm) and <4φ (<63 μm, i.e. the pan). For example, 0, 0.5, 1, …, 4φ, and the pan were ran through the Mastersizer and then their results, weighted according to their sieve weight percents, were summed together to produce a total distribution. The second aliquot included 3 samples ranging between 0-2φ (1000-250 μm), 2.5-4φ (249-63 μm), and the pan. A single sample consisting of the total range of grain sizes between 0φ and the pan was used for the final aliquot. Their results were compared and it was determined that the single sample consisting of the broadest range of grain sizes yielded an accurate grain size distribution. This data was then compared with the sieve weight percent data, and revealed that there is a significant difference in size characterisation between sieving and the Mastersizer for size fractions between 0-3φ (1000-125 μm). This is due predominantly to the differing methods that sieving and the Mastersizer use to characterise a single particle, to inhomogeneity in grain density in each grain-size fraction, and to grain-shape irregularities. This led the Mastersizer to allocate grains from a certain sieve size fraction into coarser size fractions. Therefore, only the Mastersizer data from 3.5φ and below were combined with the coarser sieve data to yield total grain size distributions. This high-resolution analysis of the grain size data enabled subtle trends in grain size to be identified and related to short timescale eruptive processes.
Assessing the stability of soil organic matter by fractionation and 13C isotope techniques
NASA Astrophysics Data System (ADS)
Larionova, A. A.; Zolotareva, B. N.; Kvitkina, A. K.; Evdokimov, I. V.; Bykhovets, S. S.; Stulin, A. F.; Kuzyakov, Ya. V.; Kudeyarov, V. N.
2015-02-01
Carbon pools of different stabilities have been separated from the soil organic matter of agrochernozem and agrogray soil samples. The work has been based on the studies of the natural abundance of the carbon isotope composition by C3-C4 transition using the biokinetic, size-density, and chemical fractionation (6 M HCl hydrolysis) methods. The most stable pools with the minimum content of new carbon have been identified by particle-size and chemical fractionation. The content of carbon in the fine fractions has been found to be close to that in the nonhydrolyzable residue. This pool makes up 65 and 48% of Corg in the agrochernozems and agrogray soils, respectively. The combination of the biokinetic approach with particle-size fractionation or 6 M HCl hydrolysis has allowed assessing the size of the medium-stable organic carbon pool with a turnover time of several years to several decades. The organic matter pool with this turnover rate is usually identified from the variation in the 13C abundance by C3-C4 transition. In the agrochernozems and agrogray soils, the medium-stable carbon pool makes up 35 and 46% of Corg, respectively. The isotope indication may be replaced by a nonisotope method to significantly expand the study of the inert and mediumstable organic matter pools in the geographical aspect, but this requires a comparative analysis of particle-size and chemical fractionation data for all Russian soils.
Respiration in heterotrophic unicellular eukaryotic organisms.
Fenchel, Tom
2014-08-01
Surface:volume quotient, mitochondrial volume fraction, and their distribution within cells were investigated and oxygen gradients within and outside cells were modelled. Cell surface increases allometrically with cell size. Mitochondrial volume fraction is invariant with cell size and constitutes about 10% and mitochondria are predominantly found close to the outer membrane. The results predict that for small and medium sized protozoa maximum respiration rates should be proportional to cell volume (scaling exponent ≈1) and access to intracellular O2 is not limiting except at very low ambient O2-tensions. Available data do not contradict this and some evidence supports this interpretation. Cell size is ultimately limited because an increasing fraction of the mitochondria becomes exposed to near anoxic conditions with increasing cell size. The fact that mitochondria cluster close to the cell surface and the allometric change in cell shape with increasing cell size alleviates the limitation of aerobic life at low ambient O2-tension and for large cell size. Copyright © 2014 Elsevier GmbH. All rights reserved.
Comparative Analysis of Vertebrate Dystrophin Loci Indicate Intron Gigantism as a Common Feature
Pozzoli, Uberto; Elgar, Greg; Cagliani, Rachele; Riva, Laura; Comi, Giacomo P.; Bresolin, Nereo; Bardoni, Alessandra; Sironi, Manuela
2003-01-01
The human DMD gene is the largest known to date, spanning > 2000 kb on the X chromosome. The gene size is mainly accounted for by huge intronic regions. We sequenced 190 kb of Fugu rubripes (pufferfish) genomic DNA corresponding to the complete dystrophin gene (FrDMD) and provide the first report of gene structure and sequence comparison among dystrophin genomic sequences from different vertebrate organisms. Almost all intron positions and phases are conserved between FrDMD and its mammalian counterparts, and the predicted protein product of the Fugu gene displays 55% identity and 71% similarity to human dystrophin. In analogy to the human gene, FrDMD presents several-fold longer than average intronic regions. Analysis of intron sequences of the human and murine genes revealed that they are extremely conserved in size and that a similar fraction of total intron length is represented by repetitive elements; moreover, our data indicate that intron expansion through repeat accumulation in the two orthologs is the result of independent insertional events. The hypothesis that intron length might be functionally relevant to the DMD gene regulation is proposed and substantiated by the finding that dystrophin intron gigantism is common to the three vertebrate genes. [Supplemental material is available online at www.genome.org.] PMID:12727896
Defining the quality of soil organic matter
Soils represent the largest terrestrial pool of carbon (C) and hold approximately two-thirds of all C held in these ecosystems. However, not all C in soils is of equal quality. Some fractions of the organic forms, i.e., soil organic carbon (SOC) have long residence times while ...
CONCENTRATIONS AND ENANTIOMERIC FRACTIONS OF CHLORDANE IN SEDIMENTS FROM LONG ISLAND SOUND
Long Island Sound (LIS) is one of the largest estuarine systems on the Atlantic coast of the United States, providing vital transportation and rich fishing and shell-fishing grounds for commercial interests. The Sound, however, has been contaminated with various pollutants, in...
Impact of friction stir welding on the microstructure of ODS steel
NASA Astrophysics Data System (ADS)
Dawson, H.; Serrano, M.; Cater, S.; Iqbal, N.; Almásy, L.; Tian, Q.; Jimenez-Melero, E.
2017-04-01
We have assessed the impact of the welding parameters on the nano-sized oxide dispersion and the grain size in the matrix of an ODS steel after friction stir welding. Our results, based on combined small angle neutron scattering and electron microscopy, reveal a decrease in the volume fraction of the particles smaller than 80 nm in the welds, mainly due to particle agglomeration. The increase in tool rotation speed or decrease in transverse speed leads to a higher reduction in nano-sized particle fraction, and additionally to the occurrence of particle melting. The dependence of the average grain size in the matrix on the particle volume fraction follows a Zener pinning-type relationship. This result points to the principal role that the particles have in pinning grain boundary movement, and consequently in controlling the grain size during welding.
A study on venom proteins of Iurus dufoureius asiaticus Birula, 1903 (Scorpiones: Iuridae).
Keskin, Nurşen Alpagut; Koç, Halil
2006-01-01
The scorpion Iurus dufoureius asiaticus (Birula 1903) which is the largest scorpion in Europe and Turkey belongs to the family Iuridae and is endemic in Turkey. No data has been found about the venom components of I. d. asiaticus. In this study, the venom extract ob-tained from I. d. asiaticus specimens collected from Aydin were analyzed using the Tris tricine SDS-PAGE method. A total of 28 protein fractions or fraction groups were detected in the range of 6.5-205 kDa.
Breulmann, Marc; Masyutenko, Nina Petrovna; Kogut, Boris Maratovich; Schroll, Reiner; Dörfler, Ulrike; Buscot, François; Schulz, Elke
2014-11-01
The quality, stability and availability of organic carbon (OC) in soil organic matter (SOM) can vary widely between differently managed ecosystems. Several approaches have been developed for isolating SOM fractions to examine their ecological roles, but links between the bioavailability of the OC of size-density fractions and soil microbial communities have not been previously explored. Thus, in the presented laboratory study we investigated the potential bioavailability of OC and the structure of associated microbial communities in different particle-size and density fractions of SOM. For this we used samples from four grassland ecosystems with contrasting management intensity regimes and two soil types: a Haplic Cambisol and a typical Chernozem. A combined size-density fractionation protocol was applied to separate clay-associated SOM fractions (CF1, <1 μm; CF2, 1-2 μm) from light SOM fractions (LF1, <1.8 g cm(-3); LF2, 1.8-2.0 g cm(-3)). These fractions were used as carbon sources in a respiration experiment to determine their potential bioavailability. Measured CO2-release was used as an index of substrate accessibility and linked to the soil microbial community structure, as determined by phospholipid fatty acids (PLFA) analysis. Several key factors controlling decomposition processes, and thus the potential bioavailability of OC, were identified: management intensity and the plant community composition of the grasslands (both of which affect the chemical composition and turnover of OC) and specific properties of individual SOM fractions. The PLFA patterns highlighted differences in the composition of microbial communities associated with the examined grasslands, and SOM fractions, providing the first broad insights into their active microbial communities. From observed interactions between abiotic and biotic factors affecting the decomposition of SOM fractions we demonstrate that increasing management intensity could enhance the potential bioavailability of OC, not only in the active and intermediate SOM pools, but also in the passive pool. Copyright © 2014 Elsevier B.V. All rights reserved.
Separation and characterization of gold nanoparticle mixtures by flow-field-flow fractionation.
Calzolai, Luigi; Gilliland, Douglas; Garcìa, César Pascual; Rossi, François
2011-07-08
We show that using asymmetric flow-field-flow fractionation and UV-vis detector it is possible to separate, characterize, and quantify the correct number size distribution of gold nanoparticle (AuNP) mixtures of various sizes in the 5-60 nm range for which simple dynamic light scattering measurements give misleading information. The size of the collected nanoparticles fractions can be determined both in solution and in the solid state, and their surface chemistry characterized by NMR. This method will find widespread applications both in the process of "size purification" after the synthesis of AuNP and in the identification and characterization of gold-based nanomaterials in consumer products. Copyright © 2011 Elsevier B.V. All rights reserved.
Using a Blender to Assess the Microbial Density of Encapsulated Organisms
NASA Technical Reports Server (NTRS)
Benardini, James N.; Koukol, Robert C.; Kazarians, Gayane A.; Schubert, Wayne W.; Morales, Fabian
2013-01-01
There are specific NASA requirements for source-specific encapsulated microbial density for encapsulated organisms in non-metallic materials. Projects such as the Mars Science Laboratory (MSL) that use large volumes of non-metallic materials of planetary protection concern pose a challenge to their bioburden budget. An optimized and adapted destructive hardware technology employing a commercial blender was developed to assess the embedded bioburden of thermal paint for the MSL project. The main objective of this optimization was to blend the painted foil pieces in the smallest sizes possible without excessive heating. The small size increased the surface area of the paint and enabled the release of the maximum number of encapsulated microbes. During a trial run, a piece of foil was placed into a blender for 10 minutes. The outside of the blender was very hot to the touch. Thus, the grinding was reduced to five 2-minute periods with 2-minute cooling periods between cycles. However, almost 20% of the foil fraction was larger (>2 mm). Thus, the largest fractions were then put into the blender and reground, resulting in a 71% increase in particles less than 1 mm in size, and a 76% decrease in particles greater than 2 mm in size. Because a repeatable process had been developed, a painted sample was processed with over 80% of the particles being <2 mm. It was not perceived that the properties (i.e. weight and rubber-like nature) of the painted/foil pieces would allow for a finer size distribution. With these constraints, each section would be ground for a total of 10 minutes with five cycles of a 2-minute pulse followed by a 2-minute pause. It was observed on several occasions that a larger blade affected the recovery of seeded spores by approximately half an order of magnitude. In the standard approach, each piece of painted foil was aseptically removed from the bag and placed onto a sterile tray where they were sized, cut, and cleaned. Each section was then weighed and placed into a sterile Waring Laboratory Blender. Samples were processed on low speed. The ground-up samples were then transferred to a 500-mL bottle using a sterile 1-in. (.2.5-cm) trim brush. To each of the bottles sterile planetary protection rinse solution was added and a modified NASA Standard Assay (NASA HBK 6022) was performed. Both vegetative and spore plates were analyzed.
2009-12-11
5 Measuring the Size of China’s Economy .....................................................................................6...29 Table A-4. China’s Top Five African Export Markets : 2004-2008 .............................................. 30 Table A-5...partner, its third largest export market , and its largest source of imports. Many U.S. companies have extensive operations in China in order to sell
Cloud Chemistry of Fallout Formation
1968-01-31
SILICATES ....... 19 LEACHING STUDIES ..... ............................ 26 HIGH-TEMPERATURE MASS SPECTROMETRY ............... 31 Rare-Earth Oxide ...reactions between technetium oxides ................. 39 TABLES 1 . Small Boy particle size-weight fraction description (each particle size fraction...29 9. Rare-earth oxide thermodynamics (Reaction 15) ............... 32 10. Enthalpies for gas-phase reactions
Century scale char and non-char C co-stabilization in soil free C fractions
NASA Astrophysics Data System (ADS)
Vasilyeva, N. A.; Chenu, C.
2012-04-01
Fate of char particles and reasons of char C stabilization in soils is not well understood especially due to difficulties of its quantification. In this study we showed how char C content could be estimated from elemental analysis along with its size redistribution and co-stabilization with non-char C in long-term. We studied C dynamics in the size and density fractons of soil samples from a historical collection of 80 years bare fallow (no plant input plus tillage) experiment in Versailles, France (1929, 1939, 1949, 1962, 1972, 1991, 2008 years). Coarse char particles were observed in the soil substantially contributing to total organic C. Thus, char C study in this soil was carried out as a nessessary step for estimation of non-char C dynamics. Physical fraction allowed us to follow separately the dynamics of mineral-associated and free C. We analyzed bulk soils, fractions and picked out char particles for C, N and 13C contents. Total organic carbon concentrations in fractions pointed to char C input during 1939-1949 years. After that patterns of C and C/N and δ 13C changes in all fractions suggested redistribution of char C from coarse to finer fractions. Evolution of C/N and δ 13C suggested that all free C fractions, although enriched in char, still contained non-char C in the end of the 80 years C depletion chronosequence. Especially high proportion of non-char C was observed in the silt-size free C fraction. Linear combinations of contrasting char and non-char C C/N values allowed estimation of their proportions from the C/N evolution in the fractions. No substantial admixture of char C was observed for mineral-associated C fractions. Stable C pool in 2008 comprised of 4.6 g C kg-1 soil and was composed of mineral-associated C (3.5 g C kg-1 soil) and char-associated C (1.1 g C kg-1 soil). In both cases organic matter could be stabilized through adsorption and/or occlusion with solid particles (mineral or char). Stabilization capacities of different size class minerals reflected in C concentrations of fractions were 1.2 g C kg-1 for silt-size minerals and 19.4 g C kg-1 for clay-size minerals, contrastingly three orders of magnitude more C was associated with char particles or about 1.2 kg non-char C kg-1 sand-size char and about 1.4 to 3.5 kg non-char C kg-1 silt-size char. Such a high capacity of stabilization by char particles could not be explained by adorbtion alone. In conclusion, combination of C/N and δ13C signature allowed estimation of char content in this soil. Total char C content (sum up of redistributed char C in free fractions) remained not significantly different in the C depletion experiment during five decades after char input. Century scale char and non-char C co-stabilization in this soil could be explained by combination of adsorption and physical protection in microaggregates constructed of mineral and char particles.
Sarvar, Mojtaba; Salarirad, Mohammad Mehdi; Shabani, Mohammad Amin
2015-11-01
In this paper, a novel mechanical process is proposed for enriching metal content of computer Printed Circuit Boards (PCBs). The PCBs are crushed and divided into three different size fractions namely: -0.59, +0.59 to 1.68 and +1.68 mm. Wet jigging and froth flotation methods are selected for metal enrichment. The coarse size fraction (+1.68 mm) is processed by jigging. The plastic free product is grinded and screened. The oversized product is separated as the first concentrate. It was rich of metal because the grinding process was selective. The undersized product is processed by froth flotation. Based on the obtained results, the middle size fraction (+0.59 to 1.68 mm) and the small size fraction (-0.59 mm) are processed by wet jigging and froth flotation respectively. The wet jigging process is optimized by investigating the effect of pulsation frequency and water flow rate. The results of examining the effect of particle size, solid to liquid ratio, conditioning time and using apolar collector showed that collectorless flotation is a promising method for separating nonmetals of PCBs. 95.6%, 97.5% and 85% of metal content of coarse size, middle size and small size fraction are recovered. The grades of obtained concentrates were 63.3%, 92.5% and 75% respectively. The total recovery is calculated as 95.64% and the grade of the final concentrate was 71.26%. Determining the grade of copper and gold in the final product reveals that 4.95% of copper and 24.46% of gold are lost during the concentration. The major part of the lost gold is accumulated in froth flotation tail. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kaialy, Waseem; Nokhodchi, Ali
2015-02-20
The purpose of this work was to evaluate the physicochemical and inhalation characteristics of different size fractions of a promising carrier, i.e., freeze-dried mannitol (FDM). FDM was prepared and sieved into four size fractions. FDMs were then characterized in terms of micromeritic, solid-state and bulk properties. Dry powder inhaler (DPI) formulations were prepared using salbutamol sulphate (SS) and then evaluated in terms of drug content homogeneity and in vitro aerosolization performance. The results showed that the crystalline state of mannitol was maintained following freeze-drying for all size fractions of FDM. All FDM particles showed elongated morphology and contained mixtures of α-, β- and δ-mannitol. In comparison to small FDM particles, FDMs with larger particle sizes demonstrated narrower size distributions, higher bulk and tap densities, lower porosities and better flowability. Regardless of particle size, all FDMs generated a significantly higher (2.2-2.9-fold increase) fine particle fraction (FPF, 37.5 ± 0.9%-48.6 ± 2.8%) of SS in comparison to commercial mannitol. The FPFs of SS were related to the shape descriptors of FDM particles; however, FPFs did not prove quantitative apparent relationships with either particle size or powder bulk descriptors. Large FDM particles were more favourable than smaller particles because they produced DPI formulations with better flowability, better drug content homogeneity, lower amounts of the drug depositing on the throat and contained lower fine-particle-mannitol. Optimized stable DPI formulations with superior physicochemical and pharmaceutical properties can be achieved using larger particles of freeze-dried mannitol (FDM). Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collen, Christine, E-mail: ccollen@uzbrussel.be; Ampe, Ben; Gevaert, Thierry
2011-11-15
Purpose: To evaluate and compare outcomes for patients with vestibular schwannoma (VS) treated in a single institution with linac-based stereotactic radiosurgery (SRS) or by fractionated stereotactic radiotherapy (SRT). Methods and Materials: One hundred and nineteen patients (SRS = 78, SRT = 41) were treated. For both SRS and SRT, beam shaping is performed by a mini-multileaf collimator. For SRS, a median single dose of 12.5 Gy (range, 11-14 Gy), prescribed to the 80% isodose line encompassing the target, was applied. Of the 42 SRT treatments, 32 treatments consisted of 10 fractions of 3-4 Gy, and 10 patients received 25 sessionsmore » of 2 Gy, prescribed to the 100% with the 95% isodose line encompassing the planning target volume. Mean largest tumor diameter was 16.6 mm in the SRS and 24.6 mm in the SRT group. Local tumor control, cranial nerve toxicity, and preservation of useful hearing were recorded. Any new treatment-induced cranial nerve neuropathy was scored as a complication. Results: Median follow-up was 62 months (range, 6-136 months), 5 patients progressed, resulting in an overall 5-year local tumor control of 95%. The overall 5-year facial nerve preservation probability was 88% and facial nerve neuropathy was statistically significantly higher after SRS, after prior surgery, for larger tumors, and in Koos Grade {>=}3. The overall 5-year trigeminal nerve preservation probability was 96%, not significantly influenced by any of the risk factors. The overall 4-year probability of preservation of useful hearing (Gardner-Robertson score 1 or 2) was 68%, not significantly different between SRS or SRT (59% vs. 82%, p = 0.089, log rank). Conclusion: Linac-based RT results in good local control and acceptable clinical outcome in small to medium-sized vestibular schwannomas (VSs). Radiosurgery for large VSs (Koos Grade {>=}3) remains a challenge because of increased facial nerve neuropathy.« less
Magnesium isotope fractionation in bacterial mediated carbonate precipitation experiments
NASA Astrophysics Data System (ADS)
Parkinson, I. J.; Pearce, C. R.; Polacskek, T.; Cockell, C.; Hammond, S. J.
2012-12-01
Magnesium is an essential component of life, with pivotal roles in the generation of cellular energy as well as in plant chlorophyll [1]. The bio-geochemical cycling of Mg is associated with mass dependant fractionation (MDF) of the three stable Mg isotopes [1]. The largest MDF of Mg isotopes has been recorded in carbonates, with foraminiferal tests having δ26Mg compositions up to 5 ‰ lighter than modern seawater [2]. Magnesium isotopes may also be fractionated during bacterially mediated carbonate precipitation and such carbonates are known to have formed in both modern and ancient Earth surface environments [3, 4], with cyanobacteria having a dominant role in carbonate formation during the Archean. In this study, we aim to better constrain the extent to which Mg isotope fractionation occurs during cellular processes, and to identify when, and how, this signal is transferred to carbonates. To this end we have undertaken biologically-mediated carbonate precipitation experiments that were performed in artificial seawater, but with the molar Mg/Ca ratio set to 0.6 and with the solution spiked with 0.4% yeast extract. The bacterial strain used was marine isolate Halomonas sp. (gram-negative). Experiments were run in the dark at 21 degree C for two to three months and produced carbonate spheres of various sizes up to 300 μm in diameter, but with the majority have diameters of ~100 μm. Control experiments run in sterile controls (`empty` medium without bacteria) yielded no precipitates, indicating a bacterial control on the precipitation. The carbonate spheres are produced are amenable to SEM, EMP and Mg isotopic analysis by MC-ICP-MS. Our new data will shed light on tracing bacterial signals in carbonates from the geological record. [1] Young & Galy (2004). Rev. Min. Geochem. 55, p197-230. [2] Pogge von Strandmann (2008). Geochem. Geophys. Geosys. 9 DOI:10.1029/2008GC002209. [3] Castanier, et al. (1999). Sed. Geol. 126, 9-23. [4] Cacchio, et al. (2003). Geomicrobiol. J. 20, 85-98.
Evaluation of attenuation and scatter correction requirements in small animal PET and SPECT imaging
NASA Astrophysics Data System (ADS)
Konik, Arda Bekir
Positron emission tomography (PET) and single photon emission tomography (SPECT) are two nuclear emission-imaging modalities that rely on the detection of high-energy photons emitted from radiotracers administered to the subject. The majority of these photons are attenuated (absorbed or scattered) in the body, resulting in count losses or deviations from true detection, which in turn degrades the accuracy of images. In clinical emission tomography, sophisticated correction methods are often required employing additional x-ray CT or radionuclide transmission scans. Having proven their potential in both clinical and research areas, both PET and SPECT are being adapted for small animal imaging. However, despite the growing interest in small animal emission tomography, little scientific information exists about the accuracy of these correction methods on smaller size objects, and what level of correction is required. The purpose of this work is to determine the role of attenuation and scatter corrections as a function of object size through simulations. The simulations were performed using Interactive Data Language (IDL) and a Monte Carlo based package, Geant4 application for emission tomography (GATE). In IDL simulations, PET and SPECT data acquisition were modeled in the presence of attenuation. A mathematical emission and attenuation phantom approximating a thorax slice and slices from real PET/CT data were scaled to 5 different sizes (i.e., human, dog, rabbit, rat and mouse). The simulated emission data collected from these objects were reconstructed. The reconstructed images, with and without attenuation correction, were compared to the ideal (i.e., non-attenuated) reconstruction. Next, using GATE, scatter fraction values (the ratio of the scatter counts to the total counts) of PET and SPECT scanners were measured for various sizes of NEMA (cylindrical phantoms representing small animals and human), MOBY (realistic mouse/rat model) and XCAT (realistic human model) digital phantoms. In addition, PET projection files for different sizes of MOBY phantoms were reconstructed in 6 different conditions including attenuation and scatter corrections. Selected regions were analyzed for these different reconstruction conditions and object sizes. Finally, real mouse data from the real version of the same small animal PET scanner we modeled in our simulations were analyzed for similar reconstruction conditions. Both our IDL and GATE simulations showed that, for small animal PET and SPECT, even the smallest size objects (˜2 cm diameter) showed ˜15% error when both attenuation and scatter were not corrected. However, a simple attenuation correction using a uniform attenuation map and object boundary obtained from emission data significantly reduces this error in non-lung regions (˜1% for smallest size and ˜6% for largest size). In lungs, emissions values were overestimated when only attenuation correction was performed. In addition, we did not observe any significant improvement between the uses of uniform or actual attenuation map (e.g., only ˜0.5% for largest size in PET studies). The scatter correction was not significant for smaller size objects, but became increasingly important for larger sizes objects. These results suggest that for all mouse sizes and most rat sizes, uniform attenuation correction can be performed using emission data only. For smaller sizes up to ˜ 4 cm, scatter correction is not required even in lung regions. For larger sizes if accurate quantization needed, additional transmission scan may be required to estimate an accurate attenuation map for both attenuation and scatter corrections.
Germany Country Analysis Brief
2016-01-01
Germany was the largest energy consumer in Europe and the seventh-largest energy consumer in the world in 2015, according to BP Statistical Review of World Energy. It was also the fourth-largest economy in the world by nominal gross domestic product (GDP) after the United States, China, and Japan in 2015. Its size and location give it considerable influence over the European Union’s energy sector. However, Germany must rely on imports to meet the majority of its energy demand.
The Area Coverage of Geophysical Fields as a Function of Sensor Field-of View
NASA Technical Reports Server (NTRS)
Key, Jeffrey R.
1994-01-01
In many remote sensing studies of geophysical fields such as clouds, land cover, or sea ice characteristics, the fractional area coverage of the field in an image is estimated as the proportion of pixels that have the characteristic of interest (i.e., are part of the field) as determined by some thresholding operation. The effect of sensor field-of-view on this estimate is examined by modeling the unknown distribution of subpixel area fraction with the beta distribution, whose two parameters depend upon the true fractional area coverage, the pixel size, and the spatial structure of the geophysical field. Since it is often not possible to relate digital number, reflectance, or temperature to subpixel area fraction, the statistical models described are used to determine the effect of pixel size and thresholding operations on the estimate of area fraction for hypothetical geophysical fields. Examples are given for simulated cumuliform clouds and linear openings in sea ice, whose spatial structures are described by an exponential autocovariance function. It is shown that the rate and direction of change in total area fraction with changing pixel size depends on the true area fraction, the spatial structure, and the thresholding operation used.
Carbon Storage in Soil Size Fractions Under Two Cacao Agroforestry Systems in Bahia, Brazil
NASA Astrophysics Data System (ADS)
Gama-Rodrigues, Emanuela F.; Ramachandran Nair, P. K.; Nair, Vimala D.; Gama-Rodrigues, Antonio C.; Baligar, Virupax C.; Machado, Regina C. R.
2010-02-01
Shaded perennial agroforestry systems contain relatively high quantities of soil carbon (C) resulting from continuous deposition of plant residues; however, the extent to which the C is sequestered in soil will depend on the extent of physical protection of soil organic C (SOC). The main objective of this study was to characterize SOC storage in relation to soil fraction-size classes in cacao ( Theobroma cacao L.) agroforestry systems (AFSs). Two shaded cacao systems and an adjacent natural forest in reddish-yellow Oxisols in Bahia, Brazil were selected. Soil samples were collected from four depth classes to 1 m depth and separated by wet-sieving into three fraction-size classes (>250 μm, 250-53 μm, and <53 μm)—corresponding to macroaggregate, microaggregate, and silt-and-clay size fractions—and analyzed for C content. The total SOC stock did not vary among systems (mean: 302 Mg/ha). On average, 72% of SOC was in macroaggregate-size, 20% in microaggregate-size, and 8% in silt-and-clay size fractions in soil. Sonication of aggregates showed that occlusion of C in soil aggregates could be a major mechanism of C protection in these soils. Considering the low level of soil disturbances in cacao AFSs, the C contained in the macroaggregate fraction might become stabilized in the soil. The study shows the role of cacao AFSs in mitigating greenhouse gas (GHG) emission through accumulation and retention of high amounts of organic C in the soils and suggests the potential benefit of this environmental service to the nearly 6 million cacao farmers worldwide.
NASA Astrophysics Data System (ADS)
Verma, Kamlesh; Bhattacharya, Sanjeeb; Biswas, P.; Shrivastava, Prakash K.; Pandey, Mayuri; Pant, N. C.
2014-11-01
Core U1359 collected from the continental rise off Wilkes Land, east Antarctica, is analyzed for the clay mineralogy and carbon content. The temporal variation of the clay mineralogical data shows a dominance of illite with chlorite, smectite and kaolinite in decreasing concentration. Clay mineral illite is negatively correlated with smectite which shows enrichment during 6.2-6.8, 5.5-5.8, 4.5 and 2.5 Ma. The mineralogical analyses on the silt size fraction (2-53 μm) of some selected samples were also carried out. The combined result of both the size fractions shows the presence of chlorite and illite in both size fractions, smectite and kaolinite only in clay size fraction (<2 μm) and similarity in the crystallinity and chemistry of illite in both fractions. Similar nature of illite in both fractions suggests negligible role of sorting probably due to the deposition from the waxing ice sheet. During times of ice growth, nearby cratonic east Antarctica shield provided biotite-rich sediments to the depositional site. On the other hand, the presence of smectite, only in the clay size fraction, suggests the effective role of sorting probably due to the deposition from distal source in ice retreat condition. During times of ice retreat, smectite-rich sediment derived from Ross Orogen is transported to the core site through surface or bottom water currents. Poor crystallinity of illite due to degradation further corroborates the ice retreat condition. The ice sheet proximal sediments of U1359 show that in the eastern part of Wilkes Land, the `warming' was initiated during late Miocene.
Velali, Ekaterini; Papachristou, Eleni; Pantazaki, Anastasia; Choli-Papadopoulou, Theodora; Argyrou, Nikoleta; Tsourouktsoglou, Theodora; Lialiaris, Stergios; Constantinidis, Alexandros; Lykidis, Dimitrios; Lialiaris, Thedore S; Besis, Athanasios; Voutsa, Dimitra; Samara, Constantini
2016-11-01
Three organic fractions of different polarity, including a non polar organic fraction (NPOF), a moderately polar organic fraction (MPOF), and a polar organic fraction (POF) were obtained from size-segregated (<0.49, 0.49-0.97, 0.97-3 and >3 μm) urban particulate matter (PM) samples, and tested for cytotoxicity and genotoxicity using a battery of in vitro assays. The cytotoxicity induced by the organic PM fractions was measured by the mitochondrial dehydrogenase (MTT) cell viability assay applied on MRC-5 human lung epithelial cells. DNA damages were evaluated through the comet assay, determination of the poly(ADP-Ribose) polymerase (PARP) activity, and the oxidative DNA adduct 8-hydroxy-deoxyguanosine (8-OHdG) formation, while pro-inflammatory effects were assessed by determination of the tumor necrosis factor-alpha (TNF-α) mediator release. In addition, the Sister Chromatid Exchange (SCE) inducibility of the solvent-extractable organic matter was measured on human peripheral lymphocyte. Variations of responses were assessed in relation to the polarity (hence the expected composition) of the organic PM fractions, particle size, locality, and season. Organic PM fractions were found to induce rather comparable Cytotoxicity and genotoxicity of PM appeared to be rather independent from the polarity of the extractable organic PM matter (EOM) with POF often being relatively more toxic than NPOF or MPOF. All assays indicated stronger mass-normalized bioactivity for fine than coarse particles peaking in the 0.97-3 and/or the 0.49-0.97 μm size ranges. Nevertheless, the air volume-normalized bioactivity in all assays was highest for the <0.49 μm size range highlighting the important human health risk posed by the inhalation of these quasi-ultrafine particles. Copyright © 2016 Elsevier Ltd. All rights reserved.
Impact of particle size on distribution and human exposure of flame retardants in indoor dust.
He, Rui-Wen; Li, Yun-Zi; Xiang, Ping; Li, Chao; Cui, Xin-Yi; Ma, Lena Q
2018-04-01
The effect of dust particle size on the distribution and bioaccessibility of flame retardants (FRs) in indoor dust remains unclear. In this study, we analyzed 20 FRs (including 6 organophosphate flame retardants (OPFRs), 8 polybrominated diphenyl ethers (PBDEs), 4 novel brominated flame retardants (NBFRs), and 2 dechlorane plus (DPs)) in composite dust samples from offices, public microenvironments (PME), and cars in Nanjing, China. Each composite sample (one per microenvironment) was separated into 6 size fractions (F1-F6: 200-2000µm, 150-200µm, 100-150µm, 63-100µm, 43-63µm, and <43µm). FRs concentrations were the highest in car dust, being 16 and 6 times higher than those in offices and PME. The distribution of FRs in different size fractions was Kow-dependent and affected by surface area (Log Kow=1-4), total organic carbon (Log Kow=4-9), and FR migration pathways into dust (Log Kow>9). Bioaccessibility of FRs was measured by the physiologically-based extraction test, with OPFR bioaccessibility being 1.8-82% while bioaccessible PBDEs, NBFRs, and DPs were under detection limits due to their high hydrophobicity. The OPFR bioaccessibility in 200-2000µm fraction was significantly higher than that of <43µm fraction, but with no difference among the other four fractions. Risk assessment was performed for the most abundant OPFR-tris(2-chloroethyl) phosphate. The average daily dose (ADD) values were the highest for the <43µm fraction for all three types of dust using total concentrations, but no consistent trend was found among the three types of dust if based on bioaccessible concentrations. Our results indicated that dust size impacted human exposure estimation of FRs due to their variability in distribution and bioaccessibility among different fractions. For future risk assessment, size selection for dust sampling should be standardized and bioaccessibility of FRs should not be overlooked. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ding, Wei; Jiang, Longtao; Liao, Yaqin; Song, Jiabin; Li, Bingqing; Wu, Gaohui
2015-03-01
Fe/silicate glass soft magnetic composites (SMC) were fabricated by powder metallurgy with 1000 MPa pressure at room temperature, and then annealed at 700 °C for 90 min. The iron particles distributed uniformly in the composites, and have been separated from each other by a continuous silicate glass insulating layer. Fe/glass interface was well bonded and a quasi-continuous layer Fe3O4 and FeO exited. Very fine crystalline phases Na12Ca3Fe2(Si6O18)2 were formed in silicate glass. Composite containing 57 vol% 75 μm iron particles demonstrated highest resistivity of 7.8×10-3 Ω m. The μm, Bs and Bt increased while Hc of Fe/silicate glass composites decreased with the increase of average size of iron particles. The composite with highest amount (82 vol%) and largest average size (140 μm) of iron particles demonstrated best μm, Bs and Bt and Hc, which were 622, 1.57 T, 1.43 T, 278 A/m, respectively. The composite containing 57 vol% 75 μm iron particles demonstrated minimum core loss of 3.5 W/kg at 50 Hz and 28.1 W/kg at 400 Hz, while the composite containing 82 vol% 140 μm iron particles exhibited maximum core loss of 5.2 W/kg at 50 Hz and 67.7 W/kg at 400 Hz.
NASA Astrophysics Data System (ADS)
Huang, Shaoxiong; Akridge, Glen; Sears, Derek W. G.
Some of the most primitive solar system materials available for study in the laboratory are the ordinary chondrites, the largest meteorite class. The size and distribution of the chondrules (silicate beads) and metal, which leads to the definition of the H, L, and LL classes, suggest sorting before or during aggregation. We suggest that meteorite parent bodies (probably asteroids) had thick dusty surfaces during their early evolution that were easily mobilized by gases evolving from their interiors. Density and size sorting would have occurred in the surface layers as the upward drag forces of the gases (mainly water) acted against the downward force of gravity. The process is analogous to the industrially important process of fluidization and sorting in pyroclastic volcanics. We calculate that gas flow velocities and gas fluxes for the regolith of an asteroid-sized object heated by the impact of accreting objects or by 26Al would have been sufficient for fluidization. It can also explain, quantitatively in some cases, the observed metal-silicate sorting of ordinary chondrites, which has long been ascribed to processes occurring in the primordial solar nebula. Formation of the chondrites in the thick dynamic regolith is consistent with the major properties of chondritic meteorites (i.e., redox state, petrologic type, cooling rate, matrix abundance). These ideas have implications for the nature of asteroid surfaces and the virtual lack of asteroids with ordinary chondrite-like surfaces.
Yamaguchi, Sachi; Seki, Satoko; Sawada, Kota; Takahashi, Satoshi
2013-01-21
Sex change is known from various fish species. In many polygynous species, the largest female usually changes sex to male when the dominant male disappeared, as predicted by the classical size-advantage model. However, in some fishes, the disappearance of male often induces sex change by a smaller female, instead of the largest one. The halfmoon triggerfish Sufflamen chrysopterum is one of such species. We conducted both field investigation and theoretical analysis to test the hypothesis that variation in female fecundity causes the sex change by less-fertile females, even if they are not the largest. We estimated the effect of body length and residual body width (an indicator of nutrition status) on clutch size based on field data. Sex-specific growth rates were also estimated from our investigation and a previous study. We incorporated these estimated value into an evolutionarily stable strategy model for status-dependent size at sex change. As a result, we predict that rich females change sex at a larger size than poor ones, since a rich fish can achieve high reproductive success as a female. In some situations, richer females no longer change sex (i.e. lifelong females), and poorer fish changes sex just after maturation (i.e. primary males). We also analyzed the effect of size-specific growth and mortality. Copyright © 2012 Elsevier Ltd. All rights reserved.
Polysaccharides Isolated from Açaí Fruit Induce Innate Immune Responses
Holderness, Jeff; Schepetkin, Igor A.; Freedman, Brett; Kirpotina, Liliya N.; Quinn, Mark T.; Hedges, Jodi F.; Jutila, Mark A.
2011-01-01
The Açaí (Acai) fruit is a popular nutritional supplement that purportedly enhances immune system function. These anecdotal claims are supported by limited studies describing immune responses to the Acai polyphenol fraction. Previously, we characterized γδ T cell responses to both polyphenol and polysaccharide fractions from several plant-derived nutritional supplements. Similar polyphenol and polysaccharide fractions are found in Acai fruit. Thus, we hypothesized that one or both of these fractions could activate γδ T cells. Contrary to previous reports, we did not identify agonist activity in the polyphenol fraction; however, the Acai polysaccharide fraction induced robust γδ T cell stimulatory activity in human, mouse, and bovine PBMC cultures. To characterize the immune response to Acai polysaccharides, we fractionated the crude polysaccharide preparation and tested these fractions for activity in human PBMC cultures. The largest Acai polysaccharides were the most active in vitro as indicated by activation of myeloid and γδ T cells. When delivered in vivo, Acai polysaccharide induced myeloid cell recruitment and IL-12 production. These results define innate immune responses induced by the polysaccharide component of Acai and have implications for the treatment of asthma and infectious disease. PMID:21386979
Miller, L.G.; Kalin, Robert M.; McCauley, S.E.; Hamilton, John T.G.; Harper, D.B.; Millet, D.B.; Oremland, R.S.; Goldstein, Allen H.
2001-01-01
The largest biological fractionations of stable carbon isotopes observed in nature occur during production of methane by methanogenic archaea. These fractionations result in substantial (as much as ???70???) shifts in ??13C relative to the initial substrate. We now report that a stable carbon isotopic fractionation of comparable magnitude (up to 70???) occurs during oxidation of methyl halides by methylotrophic bacteria. We have demonstrated biological fractionation with whole Cells of three methylotrophs (strain IMB-1, strain CC495, and strain MB2) and, to a lesser extent, with the purified cobalamin-dependent methyltransferase enzyme obtained from strain CC495. Thus, the genetic similarities recently reported between methylotrophs, and methanogens with respect to their pathways for C1-unit metabolism are also reflected in the carbon isotopic fractionations achieved by these organisms. We found that only part of the observed fractionation of carbon isotopes could be accounted for by the activity of the corrinoid methyltransferase enzyme, suggesting fractionation by enzymes further along the degradation pathway. These observations are of potential biogeochemical significance in the application of stable carbon isotope ratios to constrain the tropospheric budgets for the ozone-depleting halocarbons, methyl bromide and methyl chloride.
Makan, Ashwell C; Spallek, Markus J; du Toit, Madeleine; Klein, Thorsten; Pasch, Harald
2016-04-15
Field flow fractionation (FFF) is an advanced fractionation technique for the analyses of very sensitive particles. In this study, different FFF techniques were used for the fractionation and analysis of polymer emulsions/latexes. As model systems, a pure acrylic emulsion and emulsions containing titanium dioxide were prepared and analyzed. An acrylic emulsion polymerization was conducted, continuously sampled from the reactor and subsequently analyzed to determine the particle size, radius of gyration in specific, of the latex particles throughout the polymerization reaction. Asymmetrical flow field-flow fractionation (AF4) and sedimentation field-flow fractionation (SdFFF), coupled to a multidetector system, multi-angle laser light scattering (MALLS), ultraviolet (UV) and refractive index (RI), respectively, were used to investigate the evolution of particle sizes and particle size distributions (PSDs) as the polymerization progressed. The obtained particle sizes were compared against batch-mode dynamic light scattering (DLS). Results indicated differences between AF4 and DLS results due to DLS taking hydration layers into account, whereas both AF4 and SdFFF were coupled to MALLS detection, hence not taking the hydration layer into account for size determination. SdFFF has additional separation capabilities with a much higher resolution compared to AF4. The calculated radii values were 5 nm larger for SdFFF measurements for each analyzed sample against the corresponding AF4 values. Additionally a low particle size shoulder was observed for SdFFF indicating bimodality in the reactor very early during the polymerization reaction. Furthermore, different emulsions were mixed with inorganic species used as additives in cosmetics and coatings such as TiO2. These complex mixtures of species were analyzed to investigate the retention and particle interaction behavior under different AF4 experimental conditions, such as the mobile phase. The AF4 system was coupled online to inductively coupled plasma mass spectrometry (ICP-MS) for elemental speciation and identification of the inorganic additive. SdFFF had a larger separation power to distinguish different particle size populations whereas AF4 had the capability of separating the organic particles and inorganic TiO2 particles, with high resolution. Copyright © 2016 Elsevier B.V. All rights reserved.
Barber, L.B.; Thurman, E.M.; Runnells, D.R.; ,
1992-01-01
The effect of particle size, mineralogy and sediment organic carbon (SOC) on solution of tetrachlorobenzene and pentachlorobenzene was evaluated using batch-isotherm experiments on sediment particle-size and mineralogical fractions from a sand and gravel aquifer, Cape Cod, Massachusetts. Concentration of SOC and sorption of chlorobenzenes increase with decreasing particle size. For a given particle size, the magnetic fraction has a higher SOC content and sorption capacity than the bulk or non-magnetic fractions. Sorption appears to be controlled by the magnetic minerals, which comprise only 5-25% of the bulk sediment. Although SOC content of the bulk sediment is < 0.1%, the observed sorption of chlorobenzenes is consistent with a partition mechanism and is adequately predicted by models relating sorption to the octanol/water partition coefficient of the solute and SOC content. A conceptual model based on preferential association of dissolved organic matter with positively-charged mineral surfaces is proposed to describe micro-scale, intergranular variability in sorption properties of the aquifer sediments.The effect of particle size, mineralogy and sediment organic carbon (SOC) on sorption of tetrachlorobenzene and pentachlorobenzene was evaluated using batch-isotherm experiments on sediment particle-size and mineralogical fractions from a sand and gravel aquifer, Cape Cod, Massachusetts. Concentration of SOC and sorption of chlorobenzenes increase with decreasing particle size. For a given particle size, the magnetic fraction has a higher SOC content and sorption capacity than the bulk or non-magnetic fractions. Sorption appears to be controlled by the magnetic minerals, which comprise only 5-25% of the bulk sediment. Although SOC content of the bulk sediment is <0.1%, the observed sorption of chlorobenzenes is consistent with a partition mechanism and is adequately predicted by models relating sorption to the octanol/water partition coefficient of the solute and SOC content. A conceptual model based on preferential association of dissolved organic matter with positively-charged mineral surfaces is proposed to describe micro-scale, intergranular variability in sorption properties of the aquifer sediments.
Effects of forest structure on hydrological processes in China
NASA Astrophysics Data System (ADS)
Sun, Jiamei; Yu, Xinxiao; Wang, Henian; Jia, Guodong; Zhao, Yang; Tu, Zhihua; Deng, Wenping; Jia, Jianbo; Chen, Jungang
2018-06-01
There are serious concerns between forest and water quantity, Chinese extensive land area makes the relationship more complicated, thus, the effects of forest structure on hydrological processes in China were not fully comprehended. In this research, forest's hydrological functions, including rainfall partitioning, litter interception, evapotranspiration (ET), were analyzed in China. The results showed that throughfall was the largest proportion of gross precipitation with fraction between 69.3 ± 8.8% and 84.4 ± 5.6%. Then was canopy interception which varied from 14.6 ± 1.4% to 29.1 ± 3.3%. Throughfall was correlated with gross precipitation, canopy thickness and canopy density. Canopy interception was correlated with gross precipitation, LAI, canopy density, biomass, mixed degree, uniform angle index, aggregation index. Stemflow accounted for only 1.2 ± 0.32% of gross precipitation, with the greatest fraction of 2.1 ± 0.2% in XBH site and the least fraction of 0.3 ± 0.1% in DB site. Gross precipitation was the main factor in determining stemflow. DB site had the greatest litter interception (7.7 ± 0.8 mm) and HB site had the least (0.9 ± 0.3 mm). Litter interception had closer correlation with undecomposed litter mass (0.66) than total litter mass (0.46). Path-coefficient analysis showed that stand density, Shannon-Wiener index, litter mass, size ratio had greater impact on litter interception than other factors. ET was mainly influenced by precipitation, and it also correlated with LAI, canopy density and biomass. In north China, ET percentage (the ratio of ET and precipitation) was 82.7-109.5%, while it decreased to 63.1-88.5% in south China, ET demand in XBS site was larger than precipitation. ET percentage increased with increasing latitude and elevation, decreased with increasing temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lou Ziyang; State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092; Chai Xiaoli
2009-01-15
Leachate was collected from an anaerobic lagoon at Shanghai Laogang refuse landfill, the largest landfill in China, and the sample was separated into six fractions using micro-filtration membranes, followed by ultra-filtration membranes. Several parameters of the samples were measured, including chemical oxygen demand (COD), total organic carbon (TOC), total solids (TS), pH, total phosphate (TP), total nitrogen (TN), fixed solids (FS), NH{sub 4}{sup +}, orthophosphate, color, turbidity, and conductivity. These parameters were then quantitatively correlated with the molecular weight cutoff of the membrane used. Organic matter in the dissolved fraction (MW < 1 kDa) predominated in the leachate, accounting formore » 65% of TOC. Thermal infrared spectroscopy was used to characterize the filter residues. Asymmetric and symmetric stretching of methyl and methylene groups, and of functional groups containing nitrogen and oxygen atoms, were observed. In addition, the ability of two different samples to adsorb heavy metals was tested. Cu{sup 2+} was chosen as the representative heavy metal in this study, and the samples were soil; aged refuse, which had spent 8 years in a conventional sanitary landfill; and samples of soil and aged refuse treated for 48 h with leachate in the ratio of 5 g of sample per 50 ml of leachate. Cu{sup 2+} uptake by the raw soil was {approx}4.60 {mu}g/g, while uptake by the leachate-contacted soil and leachate-contacted aged refuse were 5.66 and 5.11 {mu}g/g, respectively. These results show that the organic matter in the leachate enhanced the capacity of aqueous solutions to adsorb Cu{sup 2+}.« less
NASA Astrophysics Data System (ADS)
Fichtner, Thomas; Stefan, Catalin; Goersmeyer, Nora
2015-04-01
Rate and extent of the biological degradation of organic substances during transport through the unsaturated soil zone is decisively influenced by the chemical and physical properties of the pollutants such as water solubility, toxicity and molecular structure. Furthermore microbial degradation processes are also influenced by soil-specific properties. An important parameter is the soil grain size distribution on which the pore volume and the pore size depends. Changes lead to changes in air and water circulation as well as preferred flow paths. Transport capacity of water inclusive nutrients is lower in existing bad-drainable fine pores in soils with small grain size fractions than in well-drainable coarse pores in a soil with bigger grain size fractions. Because fine pores are saturated with water for a longer time than the coarse pores and oxygen diffusion in water is ten thousand times slower than in air, oxygen is replenished much slower in soils with small grain size fractions. As a result life and growth conditions of the microorganisms are negatively affected. This leads to less biological activity, restricted degradation/mineralization of pollutants or altered microbial processes. The aim of conducted laboratory column experiments was to study the correlation between the grain size fractions respectively pore sizes, the oxygen content and the biodegradation rate of infiltrated organic substances. Therefore two columns (active + sterile control) were filled with different grain size fractions (0,063-0,125 mm, 0,2-0,63 mm and 1-2 mm) of soils. The sterile soil was inoculated with a defined amount of a special bacteria culture (sphingobium yanoikuae). A solution with organic substances glucose, oxalic acid, sinaphylic alcohol and nutrients was infiltrated from the top in intervals. The degradation of organic substances was controlled by the measurement of dissolved organic carbon in the in- and outflow of the column. The control of different pore volumes respectively pore sizes in the soil samples occurred by air pycnometer measurement and determination of soil moisture characteristic by evaporation method according to Wind/Schindler. The present study results can be useful to find a correlation between various soil types with different grain size distributions and the suitability of these soils for example for the infiltration of treated wastewater in the context of managed aquifer recharge (MAR) measures.
ANALYSIS OF RESPIRATORY DESPOSITION DOSE OF INHALED AMBIENT AEROSOLS FOR DIFFERENT SIZE FRACTIONS
ANALYSIS OF RESPIRATORY DEPOSITION DOSE OF INHALED AMBIENT AEROSOLS FOR DIFFERENT SIZE FRACTIONS. Chong S. Kim, SC. Hu**, PA Jaques*, US EPA, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC 27711; **IIT Research Institute, Chicago, IL; *S...
The role of particle-size soil fractions in the adsorption of heavy metals
NASA Astrophysics Data System (ADS)
Mandzhieva, Saglara; Minkina, Tatiana; Pinsky, David; Batukaev, Abdulmalik; Kalinitchenko, Valeriy; Sushkova, Svetlana; Chaplygin, Viktor; Dikaev, Zaurbek; Startsev, Viktor; Bakoev, Serojdin
2014-05-01
Ion-exchange adsorption phenomena are important in the immobilization of heavy metals (HMs) by soils. Numerous works are devoted to the study of this problem. However, the interaction features of different particle-size soil fractions and their role in the immobilization of HMs studied insufficiently. Therefore, the assessment of the effect of the particle-size distribution on the adsorption properties of soils is a vital task. The parameters of Cu2+, Pb2+ and Zn2+ adsorption by chernozems of the south of Russia and their particle-size fractions were studied. In the particle-size fractions separated from the soils, the concentrations of Cu2+, Pb2+, and Zn2 decreased with the decreasing particle size. The parameters of the adsorption values of k (the constant of the affinity)and Cmax.(the maximum adsorption of the HMs) characterizing the adsorption of HMs by the southern chernozem and its particle-size fractions formed the following sequence: silt > clay > entire soil. The adsorption capacity of chernozems for Cu2+, Pb2+, and Zn2+ depending on the particle-size distribution decreased in the following sequence: clay loamy ordinary chernozem clay loamy southern chernozem> loamy southern chernozem> loamy sandy southern chernozem. According to the parameters of the adsorption by the different particle-size fractions, the heavy metal cations form a sequence analogous to that obtained for the entire soils: Cu2+ ≥ Pb2+ > Zn2+. The parameters of the heavy metal adsorption by similar particle-size fractions separated from different soils decreased in the following order: clay loamy chernozem> loamy chernozem> loamy sandy chernozem. The analysis of the changes in the parameters of the Cu2+, Pb2+, and Zn2+ adsorption by the studied soils and their particle-size fractions showed that the extensive adsorption characteristic - the maximum adsorption (Cmax.) - is a less sensitive parameter characterizing the adsorption capacity of the soils than the intensive characteristic of the process - the adsorption equilibrium constant (k).The ratio between the content of exchangeable cations displaced from the soil adsorbing complex (SAC) into the solution and the content of adsorbed HMs decreased with the increasing concentration of adsorbed HMs. These values could be higher (for Cu2+ and Pb2+), equal, or lower than 1 (for Zn2+) and depend on the properties of HMs. At the first case, this was due to the dissolution of readily soluble salts at low HM concentrations in the SAC. In the latter case, this was related to the adsorption of associated forms HMs and the formation of new phases localized on the surface of soil particles at high HM concentrations in the SAC. Soil solution equilibrium (SSE) accords to the soil fine fraction composition. SSE thermodynamics causes the ratio of free and associated forms of ions and ion's activity in soil solution influencing composition, concentration and adsorption of HMs salts by SAC. This study was supported by the Russian Foundation for Basic Research, project no. 12-05-33078,14-05-00586_a, grant of President of MK-6448.2014.4
Winne, Christopher T; Willson, John D; Whitfield Gibbons, J
2010-04-01
The causes and consequences of body size and sexual size dimorphism (SSD) have been central questions in evolutionary ecology. Two, often opposing selective forces are suspected to act on body size in animals: survival selection and reproductive (fecundity and sexual) selection. We have recently identified a system where a small aquatic snake species (Seminatrix pygaea) is capable of surviving severe droughts by aestivating within dried, isolated wetlands. We tested the hypothesis that the lack of aquatic prey during severe droughts would impose significant survivorship pressures on S. pygaea, and that the largest individuals, particularly females, would be most adversely affected by resource limitation. Our findings suggest that both sexes experience selection against large body size during severe drought when prey resources are limited, as nearly all S. pygaea are absent from the largest size classes and maximum body size and SSD are dramatically reduced following drought. Conversely, strong positive correlations between maternal body size and reproductive success in S. pygaea suggest that females experience fecundity selection for large size during non-drought years. Collectively, our study emphasizes the dynamic interplay between selection pressures that act on body size and supports theoretical predictions about the relationship between body size and survivorship in ectotherms under conditions of resource limitation.
USDA-ARS?s Scientific Manuscript database
Humin is the largest and also the least understood fraction of soil organic matter. The humin structure and its correlation with microbiological properties are particularly uncertain. We applied advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy to investigate the structural chan...
Chemical biotransformation represents the single largest source of uncertainty in chemical bioaccumulation assessments for fish. In vitro methods employing isolated hepatocytes and liver subcellular fractions (S9) can be used to estimate whole-body rates of chemical metabolism, ...
Effects of food resources on the fatty acid composition, growth and survival of freshwater mussels
Bartsch, Michelle; Bartsch, Lynn; Richardson, William B.; Vallazza, Jon; Moraska Lafrancois, Brenda
2017-01-01
Increased nutrient and sediment loading in rivers have caused observable changes in algal community composition, and thereby, altered the quality and quantity of food resources available to native freshwater mussels. Our objective was to characterize the relationship between nutrient conditions and mussel food quality and examine the effects on fatty acid composition, growth and survival of juvenile mussels. Juvenile Lampsilis cardium and L. siliquoidea were deployed in cages for 28 d at four riverine and four lacustrine sites in the lower St. Croix River, Minnesota/Wisconsin, USA. Mussel foot tissue and food resources (four seston fractions and surficial sediment) were analyzed for quantitative fatty acid (FA) composition. Green algae were abundant in riverine sites, whereas cyanobacteria were most abundant in the lacustrine sites. Mussel survival was high (95%) for both species. Lampsilis cardium exhibited lower growth relative to L. siliquoidea (p <0.0001), but growth of L. cardium was not significantly different across sites (p = 0.13). In contrast, growth of L. siliquoidea was significantly greater at the most upstream riverine site compared to the lower three lacustrine sites (p = 0.002). In situ growth of Lampsilis siliquoidea was positively related to volatile solids (10 – 32 μm fraction), total phosphorus (<10 and 10 – 32 μm fractions), and select FA in the seston (docosapentaeonic acid, DPA, 22:5n3; 4,7,10,13,16-docosapentaenoic, 22:5n6; arachidonic acid, ARA, 20:4n6; and 24:0 in the <10 and 10 – 32 μm fractions). Our laboratory feeding experiment also indicated high accumulation ratios for 22:5n3, 22:5n6, and 20:4n6 in mussel tissue relative to supplied algal diet. In contrast, growth of L. siliquiodea was negatively related to nearly all FAs in the largest size fraction (i.e., >63 μm) of seston, including the bacterial FAs, and several of the FAs associated with sediments. Reduced mussel growth was observed in L. siliquoidea when the abundance of cyanobacteria exceeded 9% of the total phytoplankton biovolume. Areas dominated by cyanobacteria may not provide sufficient food quality to promote or sustain mussel growth.
NASA Astrophysics Data System (ADS)
Bradford-Grieve, Janet; Murdoch, Rob; James, Mark; Oliver, Megan; McLeod, Jeff
1998-10-01
The biomass, composition, and grazing rates of three size fractions of mesozooplankton (200-500, 500-1000, and some >1000 μm) were estimated in shelf waters and the water masses associated with Subtropical Convergence east of New Zealand, in the austral winter and spring of 1993, as part of a larger New Zealand study of ocean carbon flux that contributes to the Joint Global Ocean Flux Study (JGOFS). The total biomass was largest in spring in all water types. It was similar to the biomass measurements made previously in subantarctic and subtropical water masses in the Southwest Pacific and those from the North Atlantic, except for the spring biomass in subtropical water which was unusually large (86.5 and 101.3 mg m -3 dry weight). Biomass was concentrated in the upper 100 m, especially within the 0-25 or 25-50 m layers, both day and night. Night/day biomass ratios in the surface 100 m were often >2, and are presumed to be the result of sampling patchy populations as well as vertical migration. Biomass was greatest for the >1000 μm fraction of the mesozooplankton population, followed by the 500-1000, and 200-500 μm fractions, respectively. The unusually small fraction of biomass residing in the 200-500 μm fraction is assumed to be the result of predation by larger mesozooplankton. The mesozooplankton community had maximum gut fluorescence at night only at stations where chlorophyll a was >2 mg m -3 and at many of the stations gut fluorescence was persistently low. This was probably the result of the poor feeding environment, since a large proportion of the primary production resided in the <2 μm fraction. The total meaningestion of phytoplankton was calculated to be 1-40 mgC m -2 d -1, based mainly on ingestion by the 200-500 and 500-1000 μm fractions, which were dominated by herbivores or herbivores and omnivores. The heaviest grazing pressure was in subtropical and Subtropical Convergence waters, in spring. Total grazing represented <1-4% of daily total integrated primary production. Phytoplankton carbon ingested usually met only a small fraction of the basic metabolic requirements of the mesozooplankton. These data, and the fact that spring populations were apparently actively growing, since they contained a large proportion of developmental stages, imply that mesozooplankton diets were mainly microzooplankton.
van Rooij, Daan; Anagnostou, Evdokia; Arango, Celso; Auzias, Guillaume; Behrmann, Marlene; Busatto, Geraldo F; Calderoni, Sara; Daly, Eileen; Deruelle, Christine; Di Martino, Adriana; Dinstein, Ilan; Duran, Fabio Luis Souza; Durston, Sarah; Ecker, Christine; Fair, Damien; Fedor, Jennifer; Fitzgerald, Jackie; Freitag, Christine M; Gallagher, Louise; Gori, Ilaria; Haar, Shlomi; Hoekstra, Liesbeth; Jahanshad, Neda; Jalbrzikowski, Maria; Janssen, Joost; Lerch, Jason; Luna, Beatriz; Martinho, Mauricio Moller; McGrath, Jane; Muratori, Filippo; Murphy, Clodagh M; Murphy, Declan G M; O'Hearn, Kirsten; Oranje, Bob; Parellada, Mara; Retico, Alessandra; Rosa, Pedro; Rubia, Katya; Shook, Devon; Taylor, Margot; Thompson, Paul M; Tosetti, Michela; Wallace, Gregory L; Zhou, Fengfeng; Buitelaar, Jan K
2018-04-01
Neuroimaging studies show structural differences in both cortical and subcortical brain regions in children and adults with autism spectrum disorder (ASD) compared with healthy subjects. Findings are inconsistent, however, and it is unclear how differences develop across the lifespan. The authors investigated brain morphometry differences between individuals with ASD and healthy subjects, cross-sectionally across the lifespan, in a large multinational sample from the Enhancing Neuroimaging Genetics Through Meta-Analysis (ENIGMA) ASD working group. The sample comprised 1,571 patients with ASD and 1,651 healthy control subjects (age range, 2-64 years) from 49 participating sites. MRI scans were preprocessed at individual sites with a harmonized protocol based on a validated automated-segmentation software program. Mega-analyses were used to test for case-control differences in subcortical volumes, cortical thickness, and surface area. Development of brain morphometry over the lifespan was modeled using a fractional polynomial approach. The case-control mega-analysis demonstrated that ASD was associated with smaller subcortical volumes of the pallidum, putamen, amygdala, and nucleus accumbens (effect sizes [Cohen's d], 0.13 to -0.13), as well as increased cortical thickness in the frontal cortex and decreased thickness in the temporal cortex (effect sizes, -0.21 to 0.20). Analyses of age effects indicate that the development of cortical thickness is altered in ASD, with the largest differences occurring around adolescence. No age-by-ASD interactions were observed in the subcortical partitions. The ENIGMA ASD working group provides the largest study of brain morphometry differences in ASD to date, using a well-established, validated, publicly available analysis pipeline. ASD patients showed altered morphometry in the cognitive and affective parts of the striatum, frontal cortex, and temporal cortex. Complex developmental trajectories were observed for the different regions, with a developmental peak around adolescence. These findings suggest an interplay in the abnormal development of the striatal, frontal, and temporal regions in ASD across the lifespan.
The interaction of triethyltin with components of animal tissues
Rose, M. S.; Aldridge, W. N.
1968-01-01
1. The distribution of triethyl[113Sn]tin chloride in the rat, guinea pig and hamster is not uniform, the highest concentrations being in rat blood and the liver of all three species. 2. Subcellular fractionation of rat liver, brain and kidney shows that triethyltin binds to all fractions to different extents. In the liver of the rat and guinea pig the supernatant fraction contains the largest amount and the highest specific concentration; this triethyltin is bound to a non-diffusible component. 3. Rat haemoglobin is responsible for the binding of triethyltin in rat blood (2 moles of triethyltin/mole of haemoglobin). Haemoglobins from other species have much less affinity for triethyltin. 4. A variety of other proteins do not bind triethyltin. PMID:5637365
46 CFR 108.233 - Location and size.
Code of Federal Regulations, 2012 CFR
2012-10-01
... EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.233 Location and size. (a) Each helicopter deck must be— (1) At least the size of the rotor diameter of the largest single main rotor helicopter that will be used on the facility; or (2) If tandem main rotor helicopters use the facility, at...
46 CFR 108.233 - Location and size.
Code of Federal Regulations, 2011 CFR
2011-10-01
... EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.233 Location and size. (a) Each helicopter deck must be— (1) At least the size of the rotor diameter of the largest single main rotor helicopter that will be used on the facility; or (2) If tandem main rotor helicopters use the facility, at...
46 CFR 108.233 - Location and size.
Code of Federal Regulations, 2014 CFR
2014-10-01
... EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.233 Location and size. (a) Each helicopter deck must be— (1) At least the size of the rotor diameter of the largest single main rotor helicopter that will be used on the facility; or (2) If tandem main rotor helicopters use the facility, at...
46 CFR 108.233 - Location and size.
Code of Federal Regulations, 2010 CFR
2010-10-01
... EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.233 Location and size. (a) Each helicopter deck must be— (1) At least the size of the rotor diameter of the largest single main rotor helicopter that will be used on the facility; or (2) If tandem main rotor helicopters use the facility, at...
46 CFR 108.233 - Location and size.
Code of Federal Regulations, 2013 CFR
2013-10-01
... EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.233 Location and size. (a) Each helicopter deck must be— (1) At least the size of the rotor diameter of the largest single main rotor helicopter that will be used on the facility; or (2) If tandem main rotor helicopters use the facility, at...
DARK MATTER MASS FRACTION IN LENS GALAXIES: NEW ESTIMATES FROM MICROLENSING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiménez-Vicente, J.; Mediavilla, E.; Kochanek, C. S.
2015-02-01
We present a joint estimate of the stellar/dark matter mass fraction in lens galaxies and the average size of the accretion disk of lensed quasars based on microlensing measurements of 27 quasar image pairs seen through 19 lens galaxies. The Bayesian estimate for the fraction of the surface mass density in the form of stars is α = 0.21 ± 0.14 near the Einstein radius of the lenses (∼1-2 effective radii). The estimate for the average accretion disk size is R{sub 1/2}=7.9{sub −2.6}{sup +3.8}√(M/0.3 M{sub ⊙}) light days. The fraction of mass in stars at these radii is significantly largermore » than previous estimates from microlensing studies assuming quasars were point-like. The corresponding local dark matter fraction of 79% is in good agreement with other estimates based on strong lensing or kinematics. The size of the accretion disk inferred in the present study is slightly larger than previous estimates.« less
Arifin, Dian R; Palmer, Andre F
2003-01-01
In this study, we investigated the size distribution, encapsulation efficiency, and oxygen affinity of liposome-encapsulated tetrameric hemoglobin (LEHb) dispersions and correlated the data with the variation in extruder membrane pore size, ionic strength of the extrusion buffer, and hemoglobin (Hb) concentration. Asymmetric flow field-flow fractionation (AFFF) in series with multi-angle static light scattering (MASLS) was used to study the LEHb size distribution. We also introduced a novel method to measure the encapsulation efficiency using a differential interferometric refractive index (DIR) detector coupled to the AFFF-MASLS system. This technique was nondestructive toward the sample and easy to implement. LEHbs were prepared by extrusion using a lipid combination of dimyristoyl-phosphatidylcholine, cholesterol, and dimyristoyl-phosphatidylglycerol in a 10:9:1 molar ratio. Five initial Hb concentrations (50, 100, 150, 200, and 300 mg Hb per mL of buffer) extruded through five different membrane pore diameters (400, 200, 100, 80, and 50 nm) were studied. Phosphate buffered saline (PBS) and phosphate buffer (PB) both at pH 7.3 were used as extrusion buffers. Despite the variation, extrusion through 400-nm pore diameter membranes produced LEHbs smaller than the pore size, extrusion through 200-nm membranes produced LEHbs with diameters close to the pore diameter, and extrusion through 100-, 80-, and 50-nm membranes produced LEHbs larger than the pore sizes. We found that the choice of extrusion buffer had the greatest effect on the LEHb size distribution compared to either Hb concentration or extruder membrane pore size. Extrusion in PBS produced larger LEHbs and more monodisperse LEHb dispersions. However, LEHbs extruded in PB generally had higher Hb encapsulation efficiencies and lower methemoglobin (metHb) levels. The choice of extrusion buffer also affected how the encapsulation efficiency correlated with Hb concentration, extruder pore size, and the metHb level. The most optimum encapsulation efficiency and amount of Hb entrapped were achieved at the highest Hb concentration and the largest pore size for both extrusion buffers (62.38% and 187.14 mg Hb/mL of LEHb dispersion extruded in PBS, and 69.98% and 209.94 mg Hb/mL of LEHb dispersion extruded in PB). All LEHbs displayed good oxygen-carrying properties as indicated by their P(50) and cooperativity coefficients. LEHbs extruded in PB had an average P(50) of 23.04 mmHg and an average Hill number of 2.29, and those extruded in PBS had average values of 27.25 mmHg and 2.49. These oxygen-binding properties indicate that LEHbs possess strong potential as artificial blood substitutes. In addition, the metHb levels in PB-LEHb dispersions are significantly low even in the absence of antioxidants such as N-acetyl-L-cysteine.
This paper is the result of a collaboration to assess effects of size fractionated PM from different locations on murine pulmonary inflammatory responses. In the course of this, they also determined the chemical makeup of each of the samples.
OpenMP Performance on the Columbia Supercomputer
NASA Technical Reports Server (NTRS)
Haoqiang, Jin; Hood, Robert
2005-01-01
This presentation discusses Columbia World Class Supercomputer which is one of the world's fastest supercomputers providing 61 TFLOPs (10/20/04). Conceived, designed, built, and deployed in just 120 days. A 20-node supercomputer built on proven 512-processor nodes. The largest SGI system in the world with over 10,000 Intel Itanium 2 processors and provides the largest node size incorporating commodity parts (512) and the largest shared-memory environment (2048) with 88% efficiency tops the scalar systems on the Top500 list.
Hong, Seung Woo; Lee, Seung Bum; Jee, Dong-Hyun; Ahn, Myung Douk
2016-09-01
The purpose of study was to measure the diagnostic utility of interocular retinal nerve fiber layer (RNFL) symmetry and interocular RNFL thickness comparison. Both eyes of 103 normal subjects and 106 glaucoma patients (31 patients with early glaucoma and 75 patients with moderate to severe glaucoma) received comprehensive ophthalmologic evaluation including visual field testing and optic disc scanning using optical coherence tomography. RNFL thickness values for 256 measurement points were rearranged according to a new reference line connecting the optic disc center and the foveola. The interocular RNFL thickness symmetry value and absolute and fractional interocular difference in RNFL thickness were calculated and compared between groups. Area under the receiver operating characteristic curves (AUROCs) were calculated and compared. Among the parameters reflecting whole RNFL status, the corrected interocular RNFL thickness symmetry exhibited the largest AUROCs at all glaucoma stages. RNFL thickness and absolute and fractional interocular difference in RNFL thickness exhibited largest AUROC in the inferotemporal area, regardless of glaucoma stage. In the early glaucoma group, absolute and fractional interocular RNFL thickness differences in the temporal and superotemporal areas exhibited equal to or larger AUROCs than RNFL thickness. The AUROCs for RNFL thickness were greater than those for absolute and fractional interocular RNFL thickness differences in the moderate to severe glaucoma group except in the nasal and temporal area. The corrected interocular RNFL thickness symmetry value is an effective diagnostic tool for glaucoma. Interocular comparison of RNFL thickness has good diagnostic performance and gives information about the RNFL beyond just the RNFL thickness itself.
Turrión, María-Belén; Bueis, Teresa; Lafuente, Francisco; López, Olga; San José, Esther; Eleftheriadis, Alexandros; Mulas, Rafael
2018-06-12
The main aim of this research was to assess the effects of municipal solid waste compost (MSWC) addition to a burnt and unburnt calcareous soil, on the distribution of soil P forms in particle-size and extractable fractions. Three MSWC doses (1, 2 and 4% w/w) were added to burnt and unburnt soil samples and were incubated for 92 days at 29 °C and 75% of field capacity moisture. A particle-size fractionation followed by a sequential P extraction procedure was carried out. The burnt soil showed significantly lower concentrations of organic P forms (P org ) and significantly higher concentrations of stable P forms than the unburnt soil. Besides, in both burnt and unburnt soils, most P-forms presented higher concentrations in the clay fractions than in the sand and silt fractions, possibly due to the different proportions of microbial synthesized and plant-derived substances in the different particle-size fractions. Finer fractions of MSWC showed higher total P and P org concentrations than coarser fractions. Our results showed that the highest dose of MSWC was the most effective one for the rehabilitation of the burnt soil. MSWC amendment also caused an increase in soil P availability in the unburnt soil which initially contained relatively low levels of P. During the incubation process, a high proportion of organic P contained in the MSWC was mineralized into inorganic P forms. These forms were precipitated with Ca cations which are very abundant in these calcareous soils, significantly increasing the P fraction extracted by HCl in both amended soils. Hence, adding compost to the soil involved an increase in the available P reservoir in the long term. The combination of particle-size fractionation, chemical sequential extraction and incubation experiments can be a valuable tool for splitting soil phosphorus into different fractions regarding their availability in relation to short and long-term transformations in soil. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Via, W. N.; Taylor, L. A.
1976-01-01
Attention is centered on the nature and intensity of geochemical fractionation accompanying agglutination of several size fractions of the immature Apollo-16 soil sample 67460, from North Ray Crater. The soil features coarse mean grain size about 150 microns, low (20 wt.%) magnetic agglutinate content, and a bimodal grain size distribution. The magnetic fraction included both agglutinates and magnetic non-agglutinates (glass-free microbreccias with 30-60 micron native FeNi grains hosted in a matrix of pyroxene, ilmenite, and olivine). The separation process residue contained nonmagnetic agglutinates with compositions near pure plagioclase. The magnetic agglutinate fraction appears selectively enriched in ferromagnesian elements to the partial exclusion of plagioclase elements. Agglutinate glass chemistry based solely on magnetic separation is deprecated on the basis of the results.
Safaei, M. R.; Mahian, O.; Garoosi, F.; Hooman, K.; Karimipour, A.; Kazi, S. N.; Gharehkhani, S.
2014-01-01
This paper addresses erosion prediction in 3-D, 90° elbow for two-phase (solid and liquid) turbulent flow with low volume fraction of copper. For a range of particle sizes from 10 nm to 100 microns and particle volume fractions from 0.00 to 0.04, the simulations were performed for the velocity range of 5–20 m/s. The 3-D governing differential equations were discretized using finite volume method. The influences of size and concentration of micro- and nanoparticles, shear forces, and turbulence on erosion behavior of fluid flow were studied. The model predictions are compared with the earlier studies and a good agreement is found. The results indicate that the erosion rate is directly dependent on particles' size and volume fraction as well as flow velocity. It has been observed that the maximum pressure has direct relationship with the particle volume fraction and velocity but has a reverse relationship with the particle diameter. It also has been noted that there is a threshold velocity as well as a threshold particle size, beyond which significant erosion effects kick in. The average friction factor is independent of the particle size and volume fraction at a given fluid velocity but increases with the increase of inlet velocities. PMID:25379542
Figueirôa, Evellyne de Oliveira; de Melo, Cristiane Moutinho Lagos; Neves, Juliana Kelle de Andrade Lemoine; da Silva, Nicácio Henrique; Pereira, Valéria Rêgo Alves; Correia, Maria Tereza dos Santos
2013-01-01
An increasing number of biological activities presented by medicinal plants has been investigated over the years, and they are used in the search for new substances with lower side effects. Eugenia uniflora L. and Eugenia malaccensis L. (Myrtaceae) have many folk uses in various countries. This current study was designed to quantify the polyphenols and flavonoids contents and evaluate the immunomodulatory, antioxidant, and cytotoxic potentials of fractions from E. uniflora L. and E. malaccensis L. It was observed that the polyphenol content was higher in ethyl acetate fractions. These fractions have high antioxidant potential. E. malaccensis L. seeds showed the largest DPPH radical scavenger capacity (EC50 = 22.62). The fractions of E. malaccensis L. leaves showed lower antioxidant capacity. The samples did not alter the profile of proinflammatory cytokines and nitric oxide release. The results indicate that species of the family Myrtaceae are rich in compounds with antioxidant capacity, which can help reduce the inflammatory response. PMID:24089599
Supporting Students to Reason about the Relative Size of Proper and Improper Fractions
ERIC Educational Resources Information Center
Cortina, Jose Luis; Visnovska, Jana
2015-01-01
Fractions are a well-researched area; yet, student learning of fractions remains problematic. We outline a novel path to initial fraction learning and document its promise. Building on Freudenthal's analysis of the fraction concept, we regard "comparing," rather than "fracturing," as the primary activity from which students are…
Rural Health Care in Texas: The Facts--1984.
ERIC Educational Resources Information Center
Morrison, Nolan; And Others
The size of Texas and the distribution of its population result in service delivery, economic, educational, transportation, communication, and health problems. Texas is the second largest state in the nation, is third largest in population, has a population growing at a faster rate than the national average, and is a primarily rural state--20% of…
The Incalculable Benefits of Revitalizing Your Board
ERIC Educational Resources Information Center
Holtschneider, Dennis H.
2013-01-01
DePaul University has grown in size and stature in the last decade. Chicago's "little school under the El," as DePaul was once known, is now the nation's largest Catholic university and the largest private, nonprofit university in the Midwest. DePaul University restructured its board, enabling it to play an important role in the…
Radioactivities in returned lunar materials
NASA Technical Reports Server (NTRS)
Fireman, E. L.
1977-01-01
Results from a carbon-14 study in size fractions of lunar soil are reported. The 10 to 30 micrometers and 74 to 124 micrometers size fraction results were supplemented by 30 to 37 micrometers results that are given in this report. The gases from the less than 10 micrometers fraction were extracted and purified and carbon-14 counting is now in progress. Meteorites were also studied using carbon-14, with emphasis directed to those recently discovered in the Antarctic.
Predation by fallfish (Semotilus corporalis) on Pacific salmon eggs in the Salmon River, New York
Johnson, J. H.; Nack, C.C.; Chalupnicki, M.A.
2009-01-01
Fallfish (Semotilus corporalis) are the largest native cyprinid in the northeastern United States and are the most abundant native species in the Salmon River, New York. The Salmon River is a high-quality spawning and nursery river for Pacific salmon (Oncorhynchus spp.) migrating from Lake Ontario. Because of the large number of Pacific salmon spawning in the river in the fall extensive redd superimposition occurs resulting in salmonid eggs being available on the substrate. We examined the fall diet of 647 fallfish in 2007 and 2008 to determine the extent of predation on Pacific salmon eggs. The contribution of eggs in the diet significantly increased once fallfish attained a size of 100 mm total length. The largest size category of fallfish examined (≥150 mm) had the highest proportion (86.1%) of salmon eggs in their diet. The contribution of Zooplankton and chironomids in the diet of fallfish decreased with fish size. Except for the two largest groups of fallfish examined (i.e., 100–149 mm and ≥150 mm) diet overlap among size groups was low. The high contribution in the diet during the fall and high caloric value of Pacific salmon eggs could increase growth and survival of this species in the Salmon River.
Liberation characteristic and physical separation of printed circuit board (PCB).
Guo, Chao; Wang, Hui; Liang, Wei; Fu, Jiangang; Yi, Xin
2011-01-01
Recycling of printed circuit board (PCB) is an important subject and to which increasing attention is paid, both in treatment of waste as well as recovery of valuable material terms. Precede physical and mechanical method, a good liberation is the premise to further separation. In this study, two-step crushing process is employed, and standard sieve is applied to screen crushed material to different size fractions, moreover, the liberation situation and particles shape in different size are observed. Then metal of the PCB is separated by physical methods, including pneumatic separation, electrostatic separation and magnetic separation, and major metal contents are characterized by inductively coupled plasma emission spectrometry (ICP-AES). Results show that the metal and nonmetal particles of PCB are dissociated completely under the crush size 0.6mm; metal is mainly enriched in the four size fractions between 0.15 and 1.25 mm; relatively, pneumatic separation is suitable for 0.6-0.9 mm size fraction, while the electrostatic separation is suitable for three size fractions that are 0.15-0.3mm, 0.3-0.6mm and 0.9-1.25 mm. The whole process that involves crushing, electrostatic and magnetic separation has formed a closed cycle that can return material and provide salable product. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen,B.; Miller, M.; Gross, R.
2007-01-01
Polystyrene resins with varied particle sizes (35 to 350-600 {mu}m) and pore diameters (300-1000 {angstrom}) were employed to study the effects of immobilization resin particle size and pore diameter on Candida antarctica Lipase B (CALB) loading, distribution within resins, fraction of active sites, and catalytic properties for polyester synthesis. CALB adsorbed rapidly (saturation time {<=}4 min) for particle sizes 120 {mu}m (pore size = 300 {angstrom}). Infrared microspectroscopy showed that CALB forms protein loading fronts regardless of resin particle size at similar enzyme loadings ({approx}8%). From the IR images, the fractions of total surface area available to the enzyme aremore » 21, 33, 35, 37, and 88% for particle sizes 350-600, 120, 75, 35 {mu}m (pore size 300 {angstrom}), and 35 {mu}m (pore size 1000 {angstrom}), respectively. Titration with methyl p-nitrophenyl n-hexylphosphate (MNPHP) showed that the fraction of active CALB molecules adsorbed onto resins was {approx}60%. The fraction of active CALB molecules was invariable as a function of resin particle and pore size. At {approx}8% (w/w) CALB loading, by increasing the immobilization support pore diameter from 300 to 1000 {angstrom}, the turnover frequency (TOF) of {var_epsilon}-caprolactone ({var_epsilon}-CL) to polyester increased from 12.4 to 28.2 s{sup -1}. However, the {var_epsilon}-CL conversion rate was not influenced by changes in resin particle size. Similar trends were observed for condensation polymerizations between 1,8-octanediol and adipic acid. The results herein are compared to those obtained with a similar series of methyl methacrylate resins, where variations in particle size largely affected CALB distribution within resins and catalyst activity for polyester synthesis.« less
Practical implications of theoretical consideration of capsule filling by the dosator nozzle system.
Jolliffe, I G; Newton, J M
1982-05-01
Eight lactose size fractions with mean particle sizes ranging from 15.6 to 155.2 micrometers were characterized by their failure properties using a Jenike shear cell. The effective angle of internal friction was found to be constant for all size fractions, with a mean value of 36.2 degrees. Jenike flow factors could only be obtained for the two most cohesive size fractions presumably due to limitations of the shear cell. Angles of wall friction, phi, were determined for all size fractions on face ground and turned stainless steel surfaces. These decreased with increasing particle size up to around 40 micrometers, above which they became effectively constant for both surfaces. The rougher turned plate gave consistently higher values of phi for each particle size. Simple retention experiments with a dosator nozzle and a range of powder bed bulk densities showed good retention was possible only up to a particle size of around 40 micrometers. Retention was difficult or impossible above this size. Values of phi were applied to equations derived in the theoretical approach described previously (Jolliffe et al 1980). This showed that the strength required within a powder to ensure arching increases with increasing particle size up to around 40 micrometers. Above this size, this strength requirement becomes constant. This is related to the powder retention observations. Finally, the failure data was used to calculate the minimum compressive stresses required to ensure powder retention within the dosator nozzle, by employing the equations described by Jolliffe et al (1980). This suggested that, as powders became more free flowing, a larger compressive stress is necessary and that the angle of wall friction should be lower to ensure stress is transmitted to the arching zone.
Dumas-Mallet, Estelle; Button, Katherine; Boraud, Thomas; Munafo, Marcus; Gonon, François
2016-01-01
There are growing concerns about effect size inflation and replication validity of association studies, but few observational investigations have explored the extent of these problems. Using meta-analyses to measure the reliability of initial studies and explore whether this varies across biomedical domains and study types (cognitive/behavioral, brain imaging, genetic and "others"). We analyzed 663 meta-analyses describing associations between markers or risk factors and 12 pathologies within three biomedical domains (psychiatry, neurology and four somatic diseases). We collected the effect size, sample size, publication year and Impact Factor of initial studies, largest studies (i.e., with the largest sample size) and the corresponding meta-analyses. Initial studies were considered as replicated if they were in nominal agreement with meta-analyses and if their effect size inflation was below 100%. Nominal agreement between initial studies and meta-analyses regarding the presence of a significant effect was not better than chance in psychiatry, whereas it was somewhat better in neurology and somatic diseases. Whereas effect sizes reported by largest studies and meta-analyses were similar, most of those reported by initial studies were inflated. Among the 256 initial studies reporting a significant effect (p<0.05) and paired with significant meta-analyses, 97 effect sizes were inflated by more than 100%. Nominal agreement and effect size inflation varied with the biomedical domain and study type. Indeed, the replication rate of initial studies reporting a significant effect ranged from 6.3% for genetic studies in psychiatry to 86.4% for cognitive/behavioral studies. Comparison between eight subgroups shows that replication rate decreases with sample size and "true" effect size. We observed no evidence of association between replication rate and publication year or Impact Factor. The differences in reliability between biological psychiatry, neurology and somatic diseases suggest that there is room for improvement, at least in some subdomains.
Dumas-Mallet, Estelle; Button, Katherine; Boraud, Thomas; Munafo, Marcus; Gonon, François
2016-01-01
Context There are growing concerns about effect size inflation and replication validity of association studies, but few observational investigations have explored the extent of these problems. Objective Using meta-analyses to measure the reliability of initial studies and explore whether this varies across biomedical domains and study types (cognitive/behavioral, brain imaging, genetic and “others”). Methods We analyzed 663 meta-analyses describing associations between markers or risk factors and 12 pathologies within three biomedical domains (psychiatry, neurology and four somatic diseases). We collected the effect size, sample size, publication year and Impact Factor of initial studies, largest studies (i.e., with the largest sample size) and the corresponding meta-analyses. Initial studies were considered as replicated if they were in nominal agreement with meta-analyses and if their effect size inflation was below 100%. Results Nominal agreement between initial studies and meta-analyses regarding the presence of a significant effect was not better than chance in psychiatry, whereas it was somewhat better in neurology and somatic diseases. Whereas effect sizes reported by largest studies and meta-analyses were similar, most of those reported by initial studies were inflated. Among the 256 initial studies reporting a significant effect (p<0.05) and paired with significant meta-analyses, 97 effect sizes were inflated by more than 100%. Nominal agreement and effect size inflation varied with the biomedical domain and study type. Indeed, the replication rate of initial studies reporting a significant effect ranged from 6.3% for genetic studies in psychiatry to 86.4% for cognitive/behavioral studies. Comparison between eight subgroups shows that replication rate decreases with sample size and “true” effect size. We observed no evidence of association between replication rate and publication year or Impact Factor. Conclusion The differences in reliability between biological psychiatry, neurology and somatic diseases suggest that there is room for improvement, at least in some subdomains. PMID:27336301
The largest Silurian vertebrate and its palaeoecological implications
Choo, Brian; Zhu, Min; Zhao, Wenjin; Jia, Liaotao; Zhu, You'an
2014-01-01
An apparent absence of Silurian fishes more than half-a-metre in length has been viewed as evidence that gnathostomes were restricted in size and diversity prior to the Devonian. Here we describe the largest pre-Devonian vertebrate (Megamastax amblyodus gen. et sp. nov.), a predatory marine osteichthyan from the Silurian Kuanti Formation (late Ludlow, ~423 million years ago) of Yunnan, China, with an estimated length of about 1 meter. The unusual dentition of the new form suggests a durophagous diet which, combined with its large size, indicates a considerable degree of trophic specialisation among early osteichthyans. The lack of large Silurian vertebrates has recently been used as constraint in palaeoatmospheric modelling, with purported lower oxygen levels imposing a physiological size limit. Regardless of the exact causal relationship between oxygen availability and evolutionary success, this finding refutes the assumption that pre-Emsian vertebrates were restricted to small body sizes. PMID:24921626
The study of nanomaterials in environmental systems requires robust and specific analytical methods. Analytical methods which discriminate based on particle size and molecular composition are not widely available. Asymmetric Flow Field-Flow Fractionation (AF4) is a separation...
CHARACTERIZATION OF HUMIC ACID SIZE FRACTIONS BY SEC AND MALS (R822832)
Latahco silt-loam humic acid was separated on a preparatory scale by size exclusion chromatography (SEC) on a gravity-fed Sepharose column. Four fractions from this separation were collected and further analyzed, along with whole humic acid, by high-performance SEC coupled with a...
Gigault, Julien; El Hadri, Hind; Reynaud, Stéphanie; Deniau, Elise; Grassl, Bruno
2017-11-01
In the last 10 years, asymmetrical flow field flow fractionation (AF4) has been one of the most promising approaches to characterize colloidal particles. Nevertheless, despite its potentialities, it is still considered a complex technique to set up, and the theory is difficult to apply for the characterization of complex samples containing submicron particles and nanoparticles. In the present work, we developed and propose a simple analytical strategy to rapidly determine the presence of several submicron populations in an unknown sample with one programmed AF4 method. To illustrate this method, we analyzed polystyrene particles and fullerene aggregates of size covering the whole colloidal size distribution. A global and fast AF4 method (method O) allowed us to screen the presence of particles with size ranging from 1 to 800 nm. By examination of the fractionating power F d , as proposed in the literature, convenient fractionation resolution was obtained for size ranging from 10 to 400 nm. The global F d values, as well as the steric inversion diameter, for the whole colloidal size distribution correspond to the predicted values obtained by model studies. On the basis of this method and without the channel components or mobile phase composition being changed, four isocratic subfraction methods were performed to achieve further high-resolution separation as a function of different size classes: 10-100 nm, 100-200 nm, 200-450 nm, and 450-800 nm in diameter. Finally, all the methods developed were applied in characterization of nanoplastics, which has received great attention in recent years. Graphical Absract Characterization of the nanoplastics by asymmetrical flow field flow fractionation within the colloidal size range.
NASA Astrophysics Data System (ADS)
McGurk, Ross; Seco, Joao; Riboldi, Marco; Wolfgang, John; Segars, Paul; Paganetti, Harald
2010-03-01
The purpose of this work was to create a computational platform for studying motion in intensity modulated radiotherapy (IMRT). Specifically, the non-uniform rational B-spline (NURB) cardiac and torso (NCAT) phantom was modified for use in a four-dimensional Monte Carlo (4D-MC) simulation system to investigate the effect of respiratory-induced intra-fraction organ motion on IMRT dose distributions as a function of diaphragm motion, lesion size and lung density. Treatment plans for four clinical scenarios were designed: diaphragm peak-to-peak amplitude of 1 cm and 3 cm, and two lesion sizes—2 cm and 4 cm diameter placed in the lower lobe of the right lung. Lung density was changed for each phase using a conservation of mass calculation. Further, a new heterogeneous lung model was implemented and tested. Each lesion had an internal target volume (ITV) subsequently expanded by 15 mm isotropically to give the planning target volume (PTV). The PTV was prescribed to receive 72 Gy in 40 fractions. The MLC leaf sequence defined by the planning system for each patient was exported and used as input into the MC system. MC simulations using the dose planning method (DPM) code together with deformable image registration based on the NCAT deformation field were used to find a composite dose distribution for each phantom. These composite distributions were subsequently analyzed using information from the dose volume histograms (DVH). Lesion motion amplitude has the largest effect on the dose distribution. Tumor size was found to have a smaller effect and can be mitigated by ensuring the planning constraints are optimized for the tumor size. The use of a dynamic or heterogeneous lung density model over a respiratory cycle does not appear to be an important factor with a <= 0.6% change in the mean dose received by the ITV, PTV and right lung. The heterogeneous model increases the realism of the NCAT phantom and may provide more accurate simulations in radiation therapy investigations that use the phantom. This work further evaluates the NCAT phantom for use as a tool in radiation therapy research in addition to its extensive use in diagnostic imaging and nuclear medicine research. Our results indicate that the NCAT phantom, combined with 4D-MC simulations, is a useful tool in radiation therapy investigations and may allow the study of relative effects in many clinically relevant situations.
Particle concentration in the asteroid belt from Pioneer 10
NASA Technical Reports Server (NTRS)
Soberman, R. K.; Neste, S. L.; Lichtenfeld, K.
1974-01-01
The spatial concentration and size distribution for particles measured by the asteroid/meteoroid detector on Pioneer 10 between 2 and 3.5 AU are presented. The size distribution is from about 35 micrometers to 10 centimeters. The exponent of the size dependence varies from approximately -1.7 for the smallest to approximately -3.0 for the largest size measured.
Particle concentration in the asteroid belt from pioneer 10.
Soberman, R K; Neste, S L; Lichtenfeld, K
1974-01-25
The spatial concentration and size distribution for particles measured by the asteroid/meteoroid detector on Pioneer 10 between 2 and 3.5 astronomical units are presented. The size distribution is from about 35 micrometers to 10 centimeters. The exponent of the size dependence varies from approximately -1.7 for the smallest to approximately -3.0 for the largest size measured.
Wei, Qunshan; Wang, Dongsheng; Wei, Qia; Qiao, Chunguang; Shi, Baoyou; Tang, Hongxiao
2008-06-01
Dissolved organic matter (DOM) and its potential to form disinfection by-products (DBPs) during drinking water treatment raise challenges to water quality control. Understanding both chemical and physical characteristics of DOM in source waters is key to better water treatment. In this study, the DOM from four typical source waters in China was fractionated by XAD resin adsorption (RA) and ultrafiltration (UF) techniques. The trihalomethane formation potential (THMFP) of all fractions in the DOM were investigated to reveal the major THM precursors. The fraction distributions of DOM could be related to their geographical origins in a certain extent. The dominant chemical fraction as THM precursors in the DOM from south waters (East-Lake reservoir in Shenzhen and Peal rivers in Guangzhou) was hydrophobic acid (HoA). The size fraction with molecular weight (MW) <1 kDa in both south waters had the highest THMFP. The results of cluster analysis showed that the parameters of fractions including DOC percentage (DOC%), UV254%, SUVA254 (specific UV254 absorbance) and THMFP were better for representing the differences of DOM from the studied waters than specific THMFP (STHMFP). The weak correlation between SUVA254 and STHMFP for either size or XAD fractions suggests that whether SUVA254 can be used as an indicator for the reactivity of THM formation is highly dependent on the nature of organic matter.
NASA Astrophysics Data System (ADS)
Hong, D. H.; Park, J. K.
2018-04-01
The purpose of the present work was to verify the grain size distribution (GSD) method, which was recently proposed by one of the present authors as a method for evaluating the fraction of dynamic recrystallisation (DRX) in a microalloyed medium carbon steel. To verify the GSD-method, we have selected a 304 stainless steel as a model system and have measured the evolution of the overall grain size distribution (including both the recrystallised and unrecrystallised grains) during hot compression at 1,000 °C in a Gleeble machine; the DRX fraction estimated using the GSD method is compared with the experimentally measured value via EBSD. The results show that the previous GSD method tends to overestimate the DRX fraction due to the utilisation of a plain lognormal distribution function (LDF). To overcome this shortcoming, we propose a modified GSD-method wherein an area-weighted LDF, in place of a plain LDF, is employed to model the evolution of GSD during hot deformation. Direct measurement of the DRX fraction using EBSD confirms that the modified GSD-method provides a reliable method for evaluating the DRX fraction from the experimentally measured GSDs. Reasonable agreement between the DRX fraction and softening fraction suggests that the Kocks-Mecking method utilising the Voce equation can be satisfactorily used to model the work hardening and dynamic recovery behaviour of steels during hot deformation.
Chen, Junhui; He, Feng; Zhang, Xuhui; Sun, Xuan; Zheng, Jufeng; Zheng, Jinwei
2014-01-01
Chemical and microbial characterisations of particle-size fractions (PSFs) from a rice paddy soil subjected to long-term heavy metal pollution (P) and nonpolluted (NP) soil were performed to investigate whether the distribution of heavy metals (Cd, Cu, Pb and Zn) regulates microbial community activity, abundance and diversity at the microenvironment scale. The soils were physically fractionated into coarse sand, fine sand, silt and clay fractions. Long-term heavy metal pollution notably decreased soil basal respiration (a measurement of the total activity of the soil microbial community) and microbial biomass carbon (MBC) across the fractions by 3-45% and 21-53%, respectively. The coarse sand fraction was more affected by pollution than the clay fraction and displayed a significantly lower MBC content and respiration and dehydrogenase activity compared with the nonpolluted soils. The abundances and diversities of bacteria were less affected within the PSFs under pollution. However, significant decreases in the abundances and diversities of fungi were noted, which may have strongly contributed to the decrease in MBC. Sequencing of denaturing gradient gel electrophoresis bands revealed that the groups Acidobacteria, Ascomycota and Chytridiomycota were clearly inhibited under pollution. Our findings suggest that long-term heavy metal pollution decreased the microbial biomass, activity and diversity in PSFs, particularly in the large-size fractions. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Neurophysiological Organization of the Middle Face Patch in Macaque Inferior Temporal Cortex
Aparicio, Paul L.; Issa, Elias B.
2016-01-01
While early cortical visual areas contain fine scale spatial organization of neuronal properties, such as orientation preference, the spatial organization of higher-level visual areas is less well understood. The fMRI demonstration of face-preferring regions in human ventral cortex and monkey inferior temporal cortex (“face patches”) raises the question of how neural selectivity for faces is organized. Here, we targeted hundreds of spatially registered neural recordings to the largest fMRI-identified face-preferring region in monkeys, the middle face patch (MFP), and show that the MFP contains a graded enrichment of face-preferring neurons. At its center, as much as 93% of the sites we sampled responded twice as strongly to faces than to nonface objects. We estimate the maximum neurophysiological size of the MFP to be ∼6 mm in diameter, consistent with its previously reported size under fMRI. Importantly, face selectivity in the MFP varied strongly even between neighboring sites. Additionally, extremely face-selective sites were ∼40 times more likely to be present inside the MFP than outside. These results provide the first direct quantification of the size and neural composition of the MFP by showing that the cortical tissue localized to the fMRI defined region consists of a very high fraction of face-preferring sites near its center, and a monotonic decrease in that fraction along any radial spatial axis. SIGNIFICANCE STATEMENT The underlying organization of neurons that give rise to the large spatial regions of activity observed with fMRI is not well understood. Neurophysiological studies that have targeted the fMRI identified face patches in monkeys have provided evidence for both large-scale clustering and a heterogeneous spatial organization. Here we used a novel x-ray imaging system to spatially map the responses of hundreds of sites in and around the middle face patch. We observed that face-selective signal localized to the middle face patch was characterized by a gradual spatial enrichment. Furthermore, strongly face-selective sites were ∼40 times more likely to be found inside the patch than outside of the patch. PMID:27810930
Autologous bone marrow-derived stem cell therapy in heart disease: discrepancies and contradictions.
Francis, Darrel P; Mielewczik, Michael; Zargaran, David; Cole, Graham D
2013-10-09
Autologous bone marrow stem cell therapy is the greatest advance in the treatment of heart disease for a generation according to pioneering reports. In response to an unanswered letter regarding one of the largest and most promising trials, we attempted to summarise the findings from the most innovative and prolific laboratory. Amongst 48 reports from the group, there appeared to be 5 actual clinical studies ("families" of reports). Duplicate or overlapping reports were common, with contradictory experimental design, recruitment and results. Readers cannot always tell whether a study is randomised versus not, open-controlled or blinded placebo-controlled, or lacking a control group. There were conflicts in recruitment dates, criteria, sample sizes, million-fold differences in cell counts, sex reclassification, fractional numbers of patients and conflation of competitors' studies with authors' own. Contradictory results were also common. These included arithmetical miscalculations, statistical errors, suppression of significant changes, exaggerated description of own findings, possible silent patient deletions, fractional numbers of coronary arteries, identical results with contradictory sample sizes, contradictory results with identical sample sizes, misrepresented survival graphs and a patient with a negative NYHA class. We tabulate over 200 discrepancies amongst the reports. The 5 family-flagship papers (Strauer 2002, STAR, IACT, ABCD, BALANCE) have had 2665 citations. Of these, 291 citations were to the pivotal STAR or IACT-JACC papers, but 97% of their eligible citing papers did not mention any discrepancies. Five meta-analyses or systematic reviews covered these studies, but none described any discrepancies and all resolved uncertainties by undisclosed methods, in mutually contradictory ways. Meta-analysts disagreed whether some studies were randomised or "accepter-versus-rejecter". Our experience of presenting the discrepancies to journals is that readers may remain unaware of such problems. Modern reporting of clinical research can still be imperfect. The scientific literature absorbs such reports largely uncritically. Even meta-analyses seem to resolve contradictions haphazardly. Discrepancies communicated to journals are not guaranteed to reach the scientific community. Journals could consider prioritising systematic reporting of queries even if seemingly minor, and establishing a policy of "habeas data". Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Neurophysiological Organization of the Middle Face Patch in Macaque Inferior Temporal Cortex.
Aparicio, Paul L; Issa, Elias B; DiCarlo, James J
2016-12-14
While early cortical visual areas contain fine scale spatial organization of neuronal properties, such as orientation preference, the spatial organization of higher-level visual areas is less well understood. The fMRI demonstration of face-preferring regions in human ventral cortex and monkey inferior temporal cortex ("face patches") raises the question of how neural selectivity for faces is organized. Here, we targeted hundreds of spatially registered neural recordings to the largest fMRI-identified face-preferring region in monkeys, the middle face patch (MFP), and show that the MFP contains a graded enrichment of face-preferring neurons. At its center, as much as 93% of the sites we sampled responded twice as strongly to faces than to nonface objects. We estimate the maximum neurophysiological size of the MFP to be ∼6 mm in diameter, consistent with its previously reported size under fMRI. Importantly, face selectivity in the MFP varied strongly even between neighboring sites. Additionally, extremely face-selective sites were ∼40 times more likely to be present inside the MFP than outside. These results provide the first direct quantification of the size and neural composition of the MFP by showing that the cortical tissue localized to the fMRI defined region consists of a very high fraction of face-preferring sites near its center, and a monotonic decrease in that fraction along any radial spatial axis. The underlying organization of neurons that give rise to the large spatial regions of activity observed with fMRI is not well understood. Neurophysiological studies that have targeted the fMRI identified face patches in monkeys have provided evidence for both large-scale clustering and a heterogeneous spatial organization. Here we used a novel x-ray imaging system to spatially map the responses of hundreds of sites in and around the middle face patch. We observed that face-selective signal localized to the middle face patch was characterized by a gradual spatial enrichment. Furthermore, strongly face-selective sites were ∼40 times more likely to be found inside the patch than outside of the patch. Copyright © 2016 the authors 0270-6474/16/3612729-17$15.00/0.
Importance of clay size minerals for Fe(III) respiration in a petroleum-contaminated aquifer
Shelobolina, Evgenya S.; Anderson, Robert T.; Vodyanitskii, Yury N.; Sivtsov, Anatolii V.; Yuretich, Richard; Lovely, Derek R.
2004-01-01
The availability of Fe(III)-bearing minerals for dissimilatory Fe(III) reduction was evaluated in sediments from a petroleum-contaminated sandy aquifer near Bemidji, Minnesota (USA). First, the sediments from a contaminated area of the aquifer, in which Fe(III) reduction was the predominant terminal electron accepting process, were compared with sediments from a nearby, uncontaminated site. Data from 0.5 m HCl extraction of different size fractions of the sediments revealed that the clay size fraction contributed a significant portion of the ‘bio-available’ Fe(III) in the background sediment and was the most depleted in ‘bio-available’ Fe(III) in the iron-reducing sediment. Analytical transmission electron microscopy (TEM) revealed the disappearance of thermodynamically unstable Fe(III) and Mn(IV) hydroxides (ferrihydrite and Fe vernadite), as well as a decrease in the abundance of goethite and lepidocrocite in the clay size fraction from the contaminated sediment. TEM observations and X-ray diffraction examination did not provide strong evidence of Fe(III)-reduction-related changes within another potential source of ‘bio-available’ Fe(III) in the clay size fraction – ferruginous phyllosilicates. However, further testing in the laboratory with sediments from the methanogenic portion of the aquifer that were depleted in microbially reducible Fe(III) revealed the potential for microbial reduction of Fe(III) associated with phyllosilicates. Addition of a clay size fraction from the uncontaminated sediment, as well as Fe(III)-coated kaolin and ferruginous nontronite SWa-1, as sources of poorly crystalline Fe(III) hydroxides and structural iron of phyllosilicates respectively, lowered steady-state hydrogen concentrations consistent with a stimulation of Fe(III) reduction in laboratory incubations of methanogenic sediments. There was no change in hydrogen concentration when non-ferruginous clays or no minerals were added. This demonstrated that Fe(III)-bearing clay size minerals were essential for microbial Fe(III) reduction and suggested that both potential sources of ‘bio-available’ Fe(III) in the clay size fraction, poorly crystalline Fe(III) hydroxides and structural Fe(III) of phyllosilicates, were important sources of electron acceptor for indigenous iron-reducing microorganisms in this aquifer.
Bergamaschi, B.A.; Tsamakis, E.; Keil, R.G.; Eglinton, T.I.; Montlucon, D.B.; Hedges, J.I.
1997-01-01
A C-rich sediment sample from the Peru Margin was sorted into nine hydrodynamically-determined grain size fractions to explore the effect of grain size distribution and sediment surface area on organic matter content and composition. The neutral monomeric carbohydrate composition, lignin oxidation product yields, total organic carbon, and total nitrogen contents were determined independently for each size fraction, in addition to sediment surface area and abundance of biogenic opal. The percent organic carbon and percent total nitrogen were strongly related to surface area in these sediments. In turn, the distribution of surface area closely followed mass distribution among the textural size classes, suggesting hydrodynamic controls on grain size also control organic carbon content. Nevertheless, organic compositional distinctions were observed between textural size classes. Total neutral carbohydrate yields in the Peru Margin sediments were found to closely parallel trends in total organic carbon, increasing in abundance among grain size fractions in proportion to sediment surface area. Coincident with the increases in absolute abundance, rhamnose and mannose increased as a fraction of the total carbohydrate yield in concert with surface area, indicating these monomers were preferentially represented in carbohydrates associated with surfaces. Lignin oxidation product yields varied with surface area when normalized to organic carbon, suggesting that the terrestrially-derived component may be diluted by sorption of marine derived material. Lignin-based parameters suggest a separate source for terrestrially derived material associated with sand-size material as opposed to that associated with silts and clays. Copyright ?? 1997 Elsevier Science Ltd.
NASA Astrophysics Data System (ADS)
Bergamaschi, Brian A.; Tsamakis, Elizabeth; Keil, Richard G.; Eglinton, Timothy I.; Montluçon, Daniel B.; Hedges, John I.
1997-03-01
A C-rich sediment sample from the Peru Margin was sorted into nine hydrodynamically-determined grain size fractions to explore the effect of grain size distribution and sediment surface area on organic matter content and composition. The neutral monomeric carbohydrate composition, lignin oxidation product yields, total organic carbon, and total nitrogen contents were determined independently for each size fraction, in addition to sediment surface area and abundance of biogenic opal. The percent organic carbon and percent total nitrogen were strongly related to surface area in these sediments. In turn, the distribution of surface area closely followed mass distribution among the textural size classes, suggesting hydrodynamic controls on grain size also control organic carbon content. Nevertheless, organic compositional distinctions were observed between textural size classes. Total neutral carbohydrate yields in the Peru Margin sediments were found to closely parallel trends in total organic carbon, increasing in abundance among grain size fractions in proportion to sediment surface area. Coincident with the increases in absolute abundance, rhamnose and mannose increased as a fraction of the total carbohydrate yield in concert with surface area, indicating these monomers were preferentially represented in carbohydrates associated with surfaces. Lignin oxidation product yields varied with surface area when normalized to organic carbon, suggesting that the terrestrially-derived component may be diluted by sorption of marine derived material. Lignin-based parameters suggest a separate source for terrestrially derived material associated with sand-size material as opposed to that associated with silts and clays.
NASA Astrophysics Data System (ADS)
Rios, K. L.; Feineman, M. D.; Bybee, G. M.
2016-12-01
Dated at 2.056 Ga and encompassing an estimated 65,000 km2 in surface area and 650,000 km3 in volume the Bushveld Igneous Complex in South Africa contains the largest and most unique layered mafic intrusion in the world. It contains 80-90% of the world's minable platinum group elements. Scientists are interested in understanding the origin of this intrusion due to its massive size, unique assemblage of minerals, and strongly zoned stratigraphy. Iron isotopes may help us to understand the roles of partial mantle melting and fractional crystallization in magma genesis and differentiation. For example, it may be possible to determine what role fractional crystallization of oxides and sulfides played in the formation of the Rustenburg Layered Suite (RLS) by comparing δ56Fe in samples from the Lower, Critical, Main and Upper Zones. The use of MC-ICPMS has made it more routine to study the fractionation of stable iron isotopes in natural systems; however, this technique has only been applied in a few studies of the RLS, mostly restricted to the Upper Main and Upper Zones. In this study δ56Fe was determined in Upper Zone magnetite, Critical Zone chromitite and Critical Zone sulfides using MC-ICP-MS. Previous research has shown that early crystallizing mafic phases incorporate the lighter 54Fe isotope leaving a residual magma with a higher δ56Fe value. Therefore, if the Upper Zone magma represents a high-degree differentiate of the parental Bushveld magma, then magmas from the Upper Zone would be expected to have a higher δ56Fe than magmas contributing to the Lower, Critical and Main Zones. The results of this experiment were indeed consistent with this hypothesis. The δ56Fe values recorded for the three sample types were: magnetite 0.19 ±0.03‰; sulfides -0.45 ±0.03‰ to -0.81 ±0.03‰; and chromitite 0.03 ±0.05‰. The sulfides of the Critical Zone are isotopically lighter than would be predicted based on equilibrium sulfide-melt fractionation, if the parental melt of the Critical Zone were in equilibrium with previously published whole rock data for Upper Zone. This is consistent with interpretations of the Upper Zone as a high degree differentiate of the Bushveld Parental Magma.
Zhou, Zhengzhen; Guo, Laodong
2015-06-19
Colloidal retention characteristics, recovery and size distribution of model macromolecules and natural dissolved organic matter (DOM) were systematically examined using an asymmetrical flow field-flow fractionation (AFlFFF) system under various membrane size cutoffs and carrier solutions. Polystyrene sulfonate (PSS) standards with known molecular weights (MW) were used to determine their permeation and recovery rates by membranes with different nominal MW cutoffs (NMWCO) within the AFlFFF system. Based on a ≥90% recovery rate for PSS standards by the AFlFFF system, the actual NMWCOs were determined to be 1.9 kDa for the 0.3 kDa membrane, 2.7 kDa for the 1 kDa membrane, and 33 kDa for the 10 kDa membrane, respectively. After membrane calibration, natural DOM samples were analyzed with the AFlFFF system to determine their colloidal size distribution and the influence from membrane NMWCOs and carrier solutions. Size partitioning of DOM samples showed a predominant colloidal size fraction in the <5 nm or <10 kDa size range, consistent with the size characteristics of humic substances as the main terrestrial DOM component. Recovery of DOM by the AFlFFF system, as determined by UV-absorbance at 254 nm, decreased significantly with increasing membrane NMWCO, from 45% by the 0.3 kDa membrane to 2-3% by the 10 kDa membrane. Since natural DOM is mostly composed of lower MW substances (<10 kDa) and the actual membrane cutoffs are normally larger than their manufacturer ratings, a 0.3 kDa membrane (with an actual NMWCO of 1.9 kDa) is highly recommended for colloidal size characterization of natural DOM. Among the three carrier solutions, borate buffer seemed to provide the highest recovery and optimal separation of DOM. Rigorous calibration with macromolecular standards and optimization of system conditions are a prerequisite for quantifying colloidal size distribution using the flow field-flow fractionation technique. In addition, the coupling of AFlFFF with fluorescence EEMs could provide new insights into DOM heterogeneity in different colloidal size fractions. Copyright © 2015 Elsevier B.V. All rights reserved.
Size dependent biodistribution and toxicokinetics of iron oxide magnetic nanoparticles in mice
NASA Astrophysics Data System (ADS)
Yang, Lin; Kuang, Huijuan; Zhang, Wanyi; Aguilar, Zoraida P.; Xiong, Yonghua; Lai, Weihua; Xu, Hengyi; Wei, Hua
2014-12-01
In spite of the immense benefits from iron oxide magnetic nanoparticles (IOMNs), there is scanty information regarding their metabolic activities and toxicity in vivo. In this study, we investigated the size dependent in vivo biodistribution, toxicokinetics, and toxicity and gene expression changes of various sizes of carboxyl coated IOMNs (diameters of 10, 20, 30, and 40 nm). Our findings demonstrated that the various sizes of IOMNs accumulated primarily in the liver and spleen on the first day post-injection. Interestingly, size dependent biodistribution and transport were observed: the smallest IOMNs (10 nm) showed the highest uptake by the liver, whereas the largest IOMNs (40 nm) showed the highest uptake by the spleen. Moreover, the IOMNs with the smallest size (10 nm) were cleared faster from the liver and kidneys, but more readily entered the brain and the uterus. IOMNs with the largest size (40 nm) accumulated more readily but were easily eliminated in the spleen. However, the level of iron in the heart decreased in all IOMN exposed groups. In addition, blood biochemistry, hematological analyses and histological examination demonstrated that there was no apparent acute toxicity caused by IOMNs in mice. However, smaller IOMNs (10 nm and 20 nm) more effectively changed the expression level of sensitive genes related to oxidant stress, iron transport, metabolic process, apoptosis, and others.In spite of the immense benefits from iron oxide magnetic nanoparticles (IOMNs), there is scanty information regarding their metabolic activities and toxicity in vivo. In this study, we investigated the size dependent in vivo biodistribution, toxicokinetics, and toxicity and gene expression changes of various sizes of carboxyl coated IOMNs (diameters of 10, 20, 30, and 40 nm). Our findings demonstrated that the various sizes of IOMNs accumulated primarily in the liver and spleen on the first day post-injection. Interestingly, size dependent biodistribution and transport were observed: the smallest IOMNs (10 nm) showed the highest uptake by the liver, whereas the largest IOMNs (40 nm) showed the highest uptake by the spleen. Moreover, the IOMNs with the smallest size (10 nm) were cleared faster from the liver and kidneys, but more readily entered the brain and the uterus. IOMNs with the largest size (40 nm) accumulated more readily but were easily eliminated in the spleen. However, the level of iron in the heart decreased in all IOMN exposed groups. In addition, blood biochemistry, hematological analyses and histological examination demonstrated that there was no apparent acute toxicity caused by IOMNs in mice. However, smaller IOMNs (10 nm and 20 nm) more effectively changed the expression level of sensitive genes related to oxidant stress, iron transport, metabolic process, apoptosis, and others. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05061d
Aly, Ibrahim; Taher, Eman E; El-Sayed, Hoda; Mohammed, Faten A; ELnain, Gehan; Hamad, Rabab S; Bayoumy, Elsayed M
2017-06-01
In this work, the efficiency of crude MeOH extracts and soluble glycoprotein fraction of Allium sativum purified by size-exclusion chromatography (SEC) on parasitological, histopathological and some biochemical parameters in Schistosoma mansoni infected mice were investigated. Animals were infected by tail immersion with 100 cercariae/each mouse and divided into five groups in addition to the normal control. The results revealed a significant decrease in mean worm burden in all treated mice especially in the group treated with soluble glycoprotein fraction of A. sativum as compared to infected non-treated control with the disappearance of female worms. Administration of the studied extracts revealed remarkable amelioration in the levels of all the measured parameters in S. mansoni infected mice. In addition, treatment of mice with crude A. sativum MeOH extract and soluble glycoprotein fraction of A. sativum decreased significantly the activities of studied enzymes as compared to the infected untreated group. The highest degrees of enhancement in pathological changes was observed in the treated one with soluble glycoprotein fraction of A. sativum compared to the infected group represented by small sized, late fibro-cellular granuloma, the decrease in cellular constituents and degenerative changes in eggs. In conclusion, A. sativum treatment had effective schistosomicidal activities, through reduction of worm burden and tissue eggs, especially when it was given in purified glycoprotein fraction. Moreover, the soluble glycoprotein fraction of A. sativum largely modulates both the size and the number of granulomas. Copyright © 2017 Elsevier Ltd. All rights reserved.
Quang, Viet Ly; Choi, Ilhwan; Hur, Jin
2015-11-01
In this study, five different dissolved organic matter (DOM) fractions, defined based on a size exclusion chromatography with simultaneous detection of organic carbon (OCD) and ultraviolet (UVD), were quantitatively tracked with a treatment train of coagulation/flocculation-sand filtration-ozonation-granular activated carbon (GAC) filtration in a full-scale advanced drinking water treatment plant (DWTP). Five DOM samples including raw water were taken after each treatment process in the DWTP every month over the period of three years. A higher abundance of biopolymer (BP) fraction was found in the raw water during spring and winter than in the other seasons, suggesting an influence of algal bloom and/or meltwater on DOM composition. The greater extent of removal was observed upon the coagulation/flocculation for high-molecular-weight fractions including BP and humic substances (HS) and aromatic moieties, while lower sized fractions were preferentially removed by the GAC filtration. Ozone treatment produced the fraction of low-molecular-weight neutrals probably resulting from the breakdown of double-bonded carbon structures by ozone oxidation. Coagulation/flocculation was the only process that revealed significant effects of influent DOM composition on the treatment efficiency, as revealed by a high correlation between the DOM removal rate and the relative abundance of HS for the raw water. Our study demonstrated that SEC-OCD-UVD was successful in monitoring size-based DOM composition for the advanced DWTP, providing an insight into optimizing the treatment options and the operational conditions for the removal of particular fractions within the bulk DOM.
Thornburg, Christopher C; Britt, John R; Evans, Jason R; Akee, Rhone K; Whitt, James A; Trinh, Spencer K; Harris, Matthew J; Thompson, Jerell R; Ewing, Teresa L; Shipley, Suzanne M; Grothaus, Paul G; Newman, David J; Schneider, Joel P; Grkovic, Tanja; O'Keefe, Barry R
2018-06-13
The US National Cancer Institute's (NCI) Natural Product Repository is one of the world's largest, most diverse collections of natural products containing over 230,000 unique extracts derived from plant, marine, and microbial organisms that have been collected from biodiverse regions throughout the world. Importantly, this national resource is available to the research community for the screening of extracts and the isolation of bioactive natural products. However, despite the success of natural products in drug discovery, compatibility issues that make extracts challenging for liquid handling systems, extended timelines that complicate natural product-based drug discovery efforts and the presence of pan-assay interfering compounds have reduced enthusiasm for the high-throughput screening (HTS) of crude natural product extract libraries in targeted assay systems. To address these limitations, the NCI Program for Natural Product Discovery (NPNPD), a newly launched, national program to advance natural product discovery technologies and facilitate the discovery of structurally defined, validated lead molecules ready for translation will create a prefractionated library from over 125,000 natural product extracts with the aim of producing a publicly-accessible, HTS-amenable library of >1,000,000 fractions. This library, representing perhaps the largest accumulation of natural-product based fractions in the world, will be made available free of charge in 384-well plates for screening against all disease states in an effort to reinvigorate natural product-based drug discovery.
NASA Astrophysics Data System (ADS)
Merico, E.; Donateo, A.; Gambaro, A.; Cesari, D.; Gregoris, E.; Barbaro, E.; Dinoi, A.; Giovanelli, G.; Masieri, S.; Contini, D.
2016-08-01
Ship emissions are a growing concern, especially in coastal areas, for potential impacts on human health and climate. International mitigation strategies to curb these emission, based on low-sulphur content fuels, have proven useful to improve local air quality. However, the effect on climate forcing is less obvious. Detailed information on the influence of shipping to particles of different sizes is needed to investigate air quality and climate interaction. In this work, the contributions of maritime emissions to atmospheric concentrations of gaseous pollutants (NO, NO2, SO2, and O3) and of particles (sizes from 0.009 μm to 30 μm) were investigated considering manoeuvring (arrival and departure of ships) and hotelling phases (including loading/unloading activities). Results showed that the size distributions of shipping contributions were different for the two phases and could be efficiently described, using measured data, considering four size-ranges. The largest contribution to particles concentration was observed for Dp < 0.25 μm, however, a secondary maximum was observed at Dp = 0.35 μm. The minimum contribution was observed at Dp around 0.8-0.9 μm with a negligible contribution from hotelling for size range 0.4-1 μm. The comparison of 2012 and 2014 datasets showed no significant changes of gaseous and particulate pollutant emissions and of the contribution to particle mass concentration. However, an increase of the contribution to particle number concentration (PNC) was observed. Results suggested that harbour logistic has a relevant role in determining the total impact of shipping on air quality of the nearby coastal areas. Additionally, future policies should focus on PNC that represents an important fraction of emissions also for low-sulphur fuels. DOAS remote sensing proved a useful tool to directly measure NO2 and SO2 ship emissions giving estimates comparable with those of emission inventory approach.
Tierney, Emily P
2011-07-01
Fractional photothermolysis has been reported in the literature to improve pigmentary and textural changes associated with acne scarring. To review the literature for the treatment of acne scarring using nonablative fractional laser (NAFL) and ablative fractional laser (AFL) resurfacing. Review of the Medline literature evaluating NAFL and AFL for acne scarring. NAFL and AFL are safe and effective treatments for acne scarring. It is likely that the controlled, limited dermal heating of fractional resurfacing initiates a cascade of events in which normalization of the collagenesis-collagenolysis cycle occurs. We present the results of a patient treated using a novel dual-spot-size AFL device. Three months after the final treatment, the patient reported 75% improvement in acne scarring and 63% overall improvement in photoaging. Fractionated resurfacing for the treatment of acne scarring is associated with lesser risks of side effects of prolonged erythema and risks of delayed-onset dyspigmentation and scarring which complicate traditional ablative laser resurfacing approaches. We present herein preliminary data suggesting that a dual-spot-size AFL device presents novel advantages of improving texture and pigmentation in acne scarring and photoaging. © 2011 by the American Society for Dermatologic Surgery, Inc.
Hargreaves, Andrew J; Vale, Peter; Whelan, Jonathan; Constantino, Carlos; Dotro, Gabriela; Campo, Pablo; Cartmell, Elise
2017-05-01
The distribution of Cu, Pb, Ni and Zn between particulate, colloidal and truly dissolved size fractions in wastewater from a trickling filter treatment plant was investigated. Samples of influent, primary effluent, humus effluent, final effluent and sludge holding tank returns were collected and separated into particulate (i.e. > 0.45 μm), colloidal (i.e. 1 kDa to 0.45 μm), and truly dissolved (i.e. < 1 kDa) fractions using membrane filters. In the influent, substantial proportions of Cu (60%), Pb (67%), and Zn (32%) were present in the particulate fraction which was removed in conjunction with suspended particles at the works in subsequent treatment stages. In final effluent, sizeable proportions of Cu (52%), Pb (32%), Ni (44%) and Zn (68%) were found within the colloidal size fraction. Calculated ratios of soluble metal to organic carbon suggest the metal to be adsorbed to or complexed with non-humic macromolecules typically found within the colloidal size range. These findings suggest that technologies capable of removing particles within the colloidal fraction have good potential to enhance metals removal from wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.
Williams, P Stephen
2016-05-01
Asymmetrical flow field-flow fractionation (As-FlFFF) has become the most commonly used of the field-flow fractionation techniques. However, because of the interdependence of the channel flow and the cross flow through the accumulation wall, it is the most difficult of the techniques to optimize, particularly for programmed cross flow operation. For the analysis of polydisperse samples, the optimization should ideally be guided by the predicted fractionating power. Many experimentalists, however, neglect fractionating power and rely on light scattering detection simply to confirm apparent selectivity across the breadth of the eluted peak. The size information returned by the light scattering software is assumed to dispense with any reliance on theory to predict retention, and any departure of theoretical predictions from experimental observations is therefore considered of no importance. Separation depends on efficiency as well as selectivity, however, and efficiency can be a strong function of retention. The fractionation of a polydisperse sample by field-flow fractionation never provides a perfectly separated series of monodisperse fractions at the channel outlet. The outlet stream has some residual polydispersity, and it will be shown in this manuscript that the residual polydispersity is inversely related to the fractionating power. Due to the strong dependence of light scattering intensity and its angular distribution on the size of the scattering species, the outlet polydispersity must be minimized if reliable size data are to be obtained from the light scattering detector signal. It is shown that light scattering detection should be used with careful control of fractionating power to obtain optimized analysis of polydisperse samples. Part I is concerned with isocratic operation of As-FlFFF, and part II with programmed operation.
Jimenez, Ana Gabriela; Williams, Joseph B
2014-01-01
Tropical and temperate birds provide a unique system to examine mechanistic consequences of life-history trade-offs at opposing ends of the pace-of-life spectrum; tropical birds tend to have a slow pace of life whereas temperate birds the opposite. Birds in the tropics have a lower whole-animal basal metabolic rate and peak metabolic rate, lower rates of reproduction, and longer survival than birds in temperate regions. Although skeletal muscle has a relatively low tissue-specific metabolism at rest, it makes up the largest fraction of body mass and therefore contributes more to basal metabolism than any other tissue. A principal property of muscle cells that influences their rate of metabolism is fiber size. The optimal fiber size hypothesis attempts to link whole-animal basal metabolic rate to the cost of maintaining muscle mass by stating that larger fibers may be metabolically cheaper to maintain since the surface area∶volume ratio (SA∶V) is reduced compared with smaller fibers and thus the amount of area to transport ions is also reduced. Because tropical birds have a reduced whole-organism metabolism, we hypothesized that they would have larger muscle fibers than temperate birds, given that larger muscle fibers have reduced energy demand from membrane Na(+)-K(+) pumps. Alternatively, smaller muscle fibers could result in a lower capacity for shivering and exercise. To test this idea, we examined muscle fiber size and Na(+)-K(+)-ATPase activity in 16 phylogenetically paired species of tropical and temperate birds. We found that 3 of the 16 paired comparisons indicated that tropical birds had significantly larger fibers, contrary to our hypothesis. Our data show that SA∶V is proportional to Na(+)-K(+)-ATPase activity in muscles of birds.
Kid-Friendly Cities Report Card, 2001.
ERIC Educational Resources Information Center
Polansky, Lee S., Ed.
2001-01-01
This report examines the health and wellbeing of children in the United States' largest cities, covering every city with a population of 100,000 or more, as well as the largest cities in states without any cities of this size. Research shows that many cities are becoming more child-friendly, with better access to good education, jobs, and health…
NASA Astrophysics Data System (ADS)
Anand, Madhu
Nanoparticles have received significant attention because of their unusual characteristics including high surface area to volume ratios. Materials built from nanoparticles possess unique chemical, physical, mechanical and optical properties. Due to these properties, they hold potential in application areas such as catalysts, sensors, semiconductors and optics. At the same time, CO 2 in the form of supercritical fluid or CO2 gas-expanded liquid mixtures has gained significant attention in the area of processing nanostructures. This dissertation focuses on the synthesis and processing of nanoparticles using CO2 tunable solvent systems. Nanoparticle properties depend heavily on their size and, as such, the ability to finely control the size and uniformity of nanoparticles is of utmost importance. Solution based nanoparticle formation techniques are attractive due to their simplicity, but they often result in the synthesis of particles with a wide size range. To address this limitation, a post-synthesis technique has been developed in this dissertation to fractionate polydisperse nanoparticles ( s . = 30%) into monodisperse fractions ( s . = 8%) using tunable physicochemical properties of CO 2 expanded liquids, where CO2 is employed as an antisolvent. This work demonstrates that by controlling the addition of CO2 (pressurization) to an organic dispersion of nanoparticles, the ligand stabilized nanoparticles can be size selectively precipitated within a novel high pressure apparatus that confines the particle precipitation to a specified location on a surface. Unlike current techniques, this CO2 expanded liquid approach provides faster and more efficient particle size separation, reduction in organic solvent usage, and pressure tunable size selection in a single process. To improve our fundamental understanding and to further refine the size separation process, a detailed study has been performed to identify the key parameters enabling size separation of various nanoparticle populations. This study details the influence of various factors on the size separation process, such as the types of nanoparticles, ligand type and solvent type as well as the use of recursive fractionation and the time allowed for settling during each fractionation step. This size selective precipitation technique was also applied to fractionate and separate polydisperse dispersions of CdSe/ZnS semiconductor nanocrystals into very distinct size and color fractions based solely on the pressure tunable solvent properties of CO2 expanded liquids. This size selective precipitation of nanoparticles is achieved by finely tuning the solvent strength of the CO2/organic solvent medium by simply adjusting the applied CO2 pressure. These subtle changes affect the balance between osmotic repulsive and van der Waals attractive forces thereby allowing fractionation of the nanocrystals into multiple narrow size populations. Thermodynamic analysis of nanoparticle size selective fractionation was performed to develop a theoretical model based on the thermodynamic properties of gas expanded liquids. We have used the general phenomenon of nanoparticle precipitation with CO2 expanded liquids to create dodecanethiol stabilized gold nanoparticle thin films. This method utilizes CO2 as an anti-solvent for low defect, wide area gold nanoparticle film formation employing monodisperse gold nanoparticles. Dodecanethiol stabilized gold particles are precipitated from hexane by controllably expanding the solution with carbon dioxide. Subsequent addition of carbon dioxide as a dense supercritical fluid then provides for removal of the organic solvent while avoiding the dewetting effects common to evaporating solvents. Unfortunately, the use of carbon dioxide as a neat solvent in nanoparticles synthesis and processing is limited by the very poor solvent strength of dense phase CO2. As a result, most current techniques employed to synthesize and disperse nanoparticles in neat carbon dioxide require the use of environmentally persistent fluorinated compounds as metal precursors and/or stabilizing ligands. This dissertation presents the first report of the simultaneous synthesis and stabilization of metallic nanoparticles in carbon dioxide solvent without the use of any fluorinated compounds thereby further enabling the use of CO 2 as a green solvent medium in nanomaterials synthesis and processing.
THE EFFECT OF SIZE FRACTIONED PARTICULATE MATTER ON HUMAN AIRWAY EPITHELIAL CELLS IN VITRO
THE EFFECT OF SIZE FRACTIONATED PARTICULATE MATTER ON HUMAN AIRWAY EPITHELIAL CELLS IN VITRO. LA Dailey1, C Sioutas2, JM Soukup1, S Becker1, RB Devlin1. 1National Health & Environmental Effects Research Laboratory, USEPA, RTP, NC,USA; 2USC, Civil & Environmental Engineering, LA, ...
This study was initiated to determine the effect of size fractionated particulate matter (PM) obtained at different distances from a highway on acute cardiopulmonary toxicity in mice. PM was collected for 2 weeks using a three-stage (ultrafine: <0.1µm; fine: 0.1-2.5µm; and coarse...
Mercury Isotopes in Earth and Environmental Sciences
NASA Astrophysics Data System (ADS)
Blum, Joel D.; Sherman, Laura S.; Johnson, Marcus W.
2014-05-01
Virtually all biotic, dark abiotic, and photochemical transformations of mercury (Hg) produce Hg isotope fractionation, which can be either mass dependent (MDF) or mass independent (MIF). The largest range in MDF is observed among geological materials and rainfall impacted by anthropogenic sources. The largest positive MIF of Hg isotopes (odd-mass excess) is caused by photochemical degradation of methylmercury in water. This signature is retained through the food web and measured in all freshwater and marine fish. The largest negative MIF of Hg isotopes (odd-mass deficit) is caused by photochemical reduction of inorganic Hg and has been observed in Arctic snow and plant foliage. Ratios of MDF to MIF and ratios of 199Hg MIF to 201Hg MIF are often diagnostic of biogeochemical reaction pathways. More than a decade of research demonstrates that Hg isotopes can be used to trace sources, biogeochemical cycling, and reactions involving Hg in the environment.
Zhu, Qingqing; Zheng, Minghui; Liu, Guorui; Zhang, Xian; Dong, Shujun; Gao, Lirong; Liang, Yong
2017-01-01
Size-fractionated samples of urban particulate matter (PM; ≤1.0, 1.0-2.5, 2.5-10, and >10 μm) and gaseous samples were simultaneously obtained to study the distribution of polychlorinated biphenyls (PCBs) in the atmosphere in Beijing, China. Most recent investigations focused on the analysis of gaseous PCBs, and much less attention has been paid to the occurrence of PCBs among different PM fractions. In the present study, the gas-particle partitioning and size-specific distribution of PCBs in atmosphere were investigated. The total concentrations (gas + particle phase fractions) of Σ 12 dioxin-like PCBs, Σ 7 indicator PCBs, and ΣPCBs were 1.68, 42.1, and 345 pg/m 3 , respectively. PCBs were predominantly in the gas phase (86.8-99.0 % of the total concentrations). The gas-particle partition coefficients (K p ) of PCBs were found to be a significant linear correlated with the subcooled liquid vapor pressures (P L 0 ) (R 2 = 0.83, P < 0.01). The slope (m r ) implied that the gas-particle partitioning of PCBs was affected both by the mechanisms of adsorption and absorption. In addition, the concentrations of PCBs increased as the particle size decreased (>10, 2.5-10, 1.0-2.5, and ≤1.0 μm), with most of the PCBs contained in the fraction of ≤1.0 μm (53.4 % of the total particulate concentrations). Tetra-CBs were the main homolog in the air samples in the gas phase and PM fractions, followed by tri-CBs. This work will contribute to the knowledge of PCBs among different PM fractions and fill the gap of the size distribution of particle-bound dioxin-like PCBs in the air.
Faust, James J; Doudrick, Kyle; Yang, Yu; Capco, David G; Westerhoff, Paul
2016-01-01
Recent studies indicate the presence of nano-scale titanium dioxide (TiO2) as an additive in human foodstuffs, but a practical protocol to isolate and separate nano-fractions from soluble foodstuffs as a source of material remains elusive. As such, we developed a method for separating the nano and submicron fractions found in commercial-grade TiO2 (E171) and E171 extracted from soluble foodstuffs and pharmaceutical products (e.g., chewing gum, pain reliever, and allergy medicine). Primary particle analysis of commercial-grade E171 indicated that 54% of particles were nano-sized (i.e., < 100 nm). Isolation and primary particle analysis of five consumer goods intended to be ingested revealed differences in the percent of nano-sized particles from 32%‒58%. Separation and enrichment of nano- and submicron-sized particles from commercial-grade E171 and E171 isolated from foodstuffs and pharmaceuticals was accomplished using rate-zonal centrifugation. Commercial-grade E171 was separated into nano- and submicron-enriched fractions consisting of a nano:submicron fraction of approximately 0.45:1 and 3.2:1, respectively. E171 extracted from gum had nano:submicron fractions of 1.4:1 and 0.19:1 for nano- and submicron-enriched, respectively. We show a difference in particle adhesion to the cell surface, which was found to be dependent on particle size and epithelial orientation. Finally, we provide evidence that E171 particles are not immediately cytotoxic to the Caco-2 human intestinal epithelium model. These data suggest that this separation method is appropriate for studies interested in isolating the nano-sized particle fraction taken directly from consumer products, in order to study separately the effects of nano and submicron particles.
Yang, Yu; Capco, David G.; Westerhoff, Paul
2016-01-01
Recent studies indicate the presence of nano-scale titanium dioxide (TiO2) as an additive in human foodstuffs, but a practical protocol to isolate and separate nano-fractions from soluble foodstuffs as a source of material remains elusive. As such, we developed a method for separating the nano and submicron fractions found in commercial-grade TiO2 (E171) and E171 extracted from soluble foodstuffs and pharmaceutical products (e.g., chewing gum, pain reliever, and allergy medicine). Primary particle analysis of commercial-grade E171 indicated that 54% of particles were nano-sized (i.e., < 100 nm). Isolation and primary particle analysis of five consumer goods intended to be ingested revealed differences in the percent of nano-sized particles from 32%‒58%. Separation and enrichment of nano- and submicron-sized particles from commercial-grade E171 and E171 isolated from foodstuffs and pharmaceuticals was accomplished using rate-zonal centrifugation. Commercial-grade E171 was separated into nano- and submicron-enriched fractions consisting of a nano:submicron fraction of approximately 0.45:1 and 3.2:1, respectively. E171 extracted from gum had nano:submicron fractions of 1.4:1 and 0.19:1 for nano- and submicron-enriched, respectively. We show a difference in particle adhesion to the cell surface, which was found to be dependent on particle size and epithelial orientation. Finally, we provide evidence that E171 particles are not immediately cytotoxic to the Caco-2 human intestinal epithelium model. These data suggest that this separation method is appropriate for studies interested in isolating the nano-sized particle fraction taken directly from consumer products, in order to study separately the effects of nano and submicron particles. PMID:27798677
Critical Motor Number for Fractional Steps of Cytoskeletal Filaments in Gliding Assays
Li, Xin; Lipowsky, Reinhard; Kierfeld, Jan
2012-01-01
In gliding assays, filaments are pulled by molecular motors that are immobilized on a solid surface. By varying the motor density on the surface, one can control the number of motors that pull simultaneously on a single filament. Here, such gliding assays are studied theoretically using Brownian (or Langevin) dynamics simulations and taking the local force balance between motors and filaments as well as the force-dependent velocity of the motors into account. We focus on the filament stepping dynamics and investigate how single motor properties such as stalk elasticity and step size determine the presence or absence of fractional steps of the filaments. We show that each gliding assay can be characterized by a critical motor number, . Because of thermal fluctuations, fractional filament steps are only detectable as long as . The corresponding fractional filament step size is where is the step size of a single motor. We first apply our computational approach to microtubules pulled by kinesin-1 motors. For elastic motor stalks that behave as linear springs with a zero rest length, the critical motor number is found to be , and the corresponding distributions of the filament step sizes are in good agreement with the available experimental data. In general, the critical motor number depends on the elastic stalk properties and is reduced to for linear springs with a nonzero rest length. Furthermore, is shown to depend quadratically on the motor step size . Therefore, gliding assays consisting of actin filaments and myosin-V are predicted to exhibit fractional filament steps up to motor number . Finally, we show that fractional filament steps are also detectable for a fixed average motor number as determined by the surface density (or coverage) of the motors on the substrate surface. PMID:22927953
NASA Astrophysics Data System (ADS)
Sim, M.; Ono, S.; Bosak, T.
2012-12-01
A large fraction of anaerobic mineralization of organic compounds relies on microbial sulfate reduction. Sulfur isotope fractionation by these microbes has been widely used to trace the biogeochemical cycling of sulfur and carbon, but intracellular mechanisms behind the wide range of fractionations observed in nature and cultures are not fully understood. In this study, we investigated the influence of electron transport chain components on the fractionation of sulfur isotopes by culturing Desulfovibrio vulgaris Hildenborough mutants lacking hydrogenases or type I tetraheme cytochrome c3 (Tp1-c3). The mutants were grown both in batch and continuous cultures. All tested mutants grew on lactate or pyruvate as the sole carbon and energy sources, generating sulfide. Mutants lacking cytoplasmic and periplasmic hydrogenases exhibited similar growth physiologies and sulfur isotope fractionations to their parent strains. On the other hand, a mutant lacking Tp1-c3 (ΔcycA) fractionated the 34S/32S ratio more than the wild type, evolving H2 in the headspace and exhibiting a lower specific respiration rate. In the presence of high concentrations of pyruvate, the growth of ΔcycA relied largely on fermentation rather than sulfate reduction, even when sulfate was abundant, producing the largest sulfur isotope effect observed in this study. Differences between sulfur isotope fractionation by ΔcycA and the wild type highlight the effect of electron transfer chains on the magnitude of sulfur isotope fractionation. Because Tp1-c3 is known to exclusively shuttle electrons from periplasmic hydrogenases to transmembrane complexes, electron transfers in the absence of Tp1-c3 should bypass the periplasmic hydrogen cycling, and the loss of reducing equivalents in the form of H2 can impair the flow of electrons from organic acids to sulfur, increasing isotope fractionation. Larger fractionation by ΔcycA can inform interpretations of sulfur isotope data at an environmental scale as well, because intracellular concentrations of electron transport components can be altered by environmental factors such as iron availability. Simultaneous sulfate reduction and fermentation, and their corresponding sulfur isotope effects, also generate a hypothesis that links sulfur isotope fractionation to the cellular energy budget. Theoretically, the largest fractionation during microbial sulfate reduction occurs when the backward fluxes equal the forward fluxes in sulfate reduction pathway. However, when the generation of ATP depends exclusively on sulfate respiration, a minimum respiration rate is required to fulfill the maintenance energy requirement. In contrast, when sulfate reduction occurs simultaneously with fermentation, the latter process may contribute toward maintenance energy, enabling slower and more reversible sulfate reduction, and leading to larger fractionation. Given that many sulfate-reducing microbes are also facultative fermenters, fermentation by sulfate reducing microbes in natural habitats and sulfur isotope signatures produced by such communities deserve further exploration.
Lee, Bo-Mi; Seo, Young-Soo; Hur, Jin
2015-04-15
In this study, the adsorptive fractionation of a humic acid (HA, Elliott soil humic acid) on graphene oxide (GO) was examined at pH 4 and 6 using absorption spectroscopy and fluorescence excitation-emission matrix (EEM)-parallel factor analysis (PARAFAC). The extent of the adsorption was greater at pH 4.0 than at pH 6.0. Aromatic molecules within the HA were preferentially adsorbed onto the GO surface, and the preferential adsorption was more pronounced at pH 6, which is above the zero point of charge of GO. A relative ratio of two PARAFAC humic-like components (ex/em maxima at 270/510 nm and at (250, 265)/440 nm) presented an increasing trend with larger sizes of ultrafiltered humic acid fractions, suggesting the potential for using fluorescence EEM-PARAFAC for tracking the changes in molecular sizes of aromatic HA molecules. The individual adsorption behaviors of the two humic-like components revealed that larger sized aromatic components within HA had a higher adsorption affinity and more nonlinear isotherms compared to smaller sized fractions. Our results demonstrated that adsorptive fractionation of HA occurred on the GO surface with respect to their aromaticity and the sizes, but the degree was highly dependent on solution pH as well as the amount of adsorbed HS (or available surface sites). The observed adsorption behaviors were reasonably explained by a combination of different mechanisms previously suggested. Copyright © 2015 Elsevier Ltd. All rights reserved.
Estrada, Nicolas
2016-12-01
Using discrete element methods, the effects of the grain size distribution on the density and the shear strength of frictionless disk packings are analyzed. Specifically, two recent findings on the relationship between the system's grain size distribution and its rheology are revisited, and their validity is tested across a broader range of distributions than what has been used in previous studies. First, the effects of the distribution on the solid fraction are explored. It is found that the distribution that produces the densest packing is not the uniform distribution by volume fractions as suggested in a recent publication. In fact, the maximal packing fraction is obtained when the grading curve follows a power law with an exponent close to 0.5 as suggested by Fuller and Thompson in 1907 and 1919 [Trans Am. Soc. Civ. Eng. 59, 1 (1907) and A Treatise on Concrete, Plain and Reinforced (1919), respectively] while studying mixtures of cement and stone aggregates. Second, the effects of the distribution on the shear strength are analyzed. It is confirmed that these systems exhibit a small shear strength, even if composed of frictionless particles as has been shown recently in several works. It is also found that this shear strength is independent of the grain size distribution. This counterintuitive result has previously been shown for the uniform distribution by volume fractions. In this paper, it is shown that this observation keeps true for different shapes of the grain size distribution.
The trophic role of mesozooplankton at 47°N, 20°W during the North Atlantic Bloom Experiment
NASA Astrophysics Data System (ADS)
Dam, Hans G.; Miller, Carolyn A.; Jonasdottir, Sigrun H.
The biomass and grazing rates of three size classes of mesozooplankton—0.2-0.5 mm (small), 0.5-1.0 mm (medium) and 1.0-2.0 mm (large)—were quantified in the vicinity of 47°N, 20°W, from 25 April to 7 May (leg 4) and from 18 to 31 May 1989 (leg 5) as part of the North Atlantic Bloom Experiment (NABE) of the Joint Global Ocean Flux Study (JGOFS). Biomass was inversely related to body size, with the small size fraction accounting for > 50% of the entire mesozooplankton biomass. Diel differences in biomass, however, were directly related to body size, indicating that vertical migration became more pronounced as the size of the animals increased. Total zooplankton biomass increased by almost a factor of 3 from the beginning to the end of the study. The average carbon-weight of individuals increased six-fold from leg 4 to leg 5 of the study. Carbon-specific rates of phytoplankton ingestion were (1) inversely related to body size; (2) greater at night for all size fractions; and (3) generally greater on leg 4 than on leg 5, particularly for the small size fraction. Grazing was dominated by the small size fraction (66% of the total grazing) on leg 4 and by the medium size fraction (44% of the total grazing) on leg 5. The removal of the daily primary production by mesozooplankton was not different from leg 4 to leg 5, averaging 2.7% day -1 (range 0.6-5.2% day -1). Comparisons of (1) estimated metabolic rates and (2) measured nitrogen excretion rates with daily rations of carbon and nitrogen, respectively, for zooplankton suggest that a phytoplankton diet only contributed about 50% of the daily carbon and nitrogen rations of animals. We hypothesize that mesozooplankton fecal pellets contributed < 5% of the POC flux out of the euphotic zone measured with particle traps. However, we estimate that during leg 5, the active flux of dissolved nitrogen out of the euphotic zone due to mesozooplankton diel vertical migration was 26% of the passive PON flux.
Radiocarbon content of lignin-enriched fraction in core sediment from Lake Biwa, central Japan
NASA Astrophysics Data System (ADS)
Kitagawa, Hiroyuki; Lim, Jaesoo; Takemura, Keiji; Hayashida, Akira; Haraguchi, Tsuyoshi
2010-04-01
The transport and deposition of terrestrially derived organic matter (TOM) into lake and ocean is a key but poorly constrained aspect of the modern global carbon cycle. An attempt has been done for estimating a transport time of TOM from the drainage basin of Lake Biwa, the largest lake in Japan. We have determined the 14C contents of the lignin-enriched fraction of the core sediment from the central part of Lake Biwa. The age of lignin-enriched fraction at the deposition time was estimated to be 7.5 × 10 3 years for the last glacial interval. Even in Lake Biwa with more than 100 rivers from the relatively small drainage basin (3850 km 2), TOM was transported at very long time (>10 3 years).
Three tiers of genome evolution in reptiles
Organ, Chris L.; Moreno, Ricardo Godínez; Edwards, Scott V.
2008-01-01
Characterization of reptilian genomes is essential for understanding the overall diversity and evolution of amniote genomes, because reptiles, which include birds, constitute a major fraction of the amniote evolutionary tree. To better understand the evolution and diversity of genomic characteristics in Reptilia, we conducted comparative analyses of online sequence data from Alligator mississippiensis (alligator) and Sphenodon punctatus (tuatara) as well as genome size and karyological data from a wide range of reptilian species. At the whole-genome and chromosomal tiers of organization, we find that reptilian genome size distribution is consistent with a model of continuous gradual evolution while genomic compartmentalization, as manifested in the number of microchromosomes and macrochromosomes, appears to have undergone early rapid change. At the sequence level, the third genomic tier, we find that exon size in Alligator is distributed in a pattern matching that of exons in Gallus (chicken), especially in the 101—200 bp size class. A small spike in the fraction of exons in the 301 bp—1 kb size class is also observed for Alligator, but more so for Sphenodon. For introns, we find that members of Reptilia have a larger fraction of introns within the 101 bp–2 kb size class and a lower fraction of introns within the 5–30 kb size class than do mammals. These findings suggest that the mode of reptilian genome evolution varies across three hierarchical levels of the genome, a pattern consistent with a mosaic model of genomic evolution. PMID:21669810
Constraining the global bromomethane budget from carbon stable isotopes
NASA Astrophysics Data System (ADS)
Bahlmann, Enno; Wittmer, Julian; Greule, Markus; Zetzsch, Cornelius; Seifert, Richard; Keppler, Frank
2016-04-01
Despite intense research in the last two decades, the global bromomethane (CH3Br) budget remains unbalanced with the known sinks exceeding the known sources by about 25%. The reaction with OH is the largest sink for CH3Br. We have determined the kinetic isotope effects for the reactions of CH3Br with the OH and Cl radical in order to better constrain the global CH3Br budget from an isotopic perspective. The isotope fractionation experiments were performed at 20±1°C in a 3500 L Teflon smog-chamber with initial CH3Br mixing ratios of about 2 and 10 ppm and perflourohexane (25 ppb) as internal standard. Atomic chlorine (Cl) was generated via photolysis of molecular chlorine (Cl2) using a solar simulator with an actinic flux comparable to that of the sun in mid-summer in Germany. OH radicals were generated via the photolysis of ozone (O3) at 253.7 nm in the presence of water vapor (RH = 70%).The mixing ratios of CH3Br, and perflourohexane were monitored by GC-MS with a time resolution of 15 minutes throughout the experiments. From each experiment 10 to 15 sub samples were taken in regular time intervals for subsequent carbon isotope ratio determinations by GC-IRMS performed at two independent laboratories in parallel. We found a kinetic isotope effect (KIE) of 17.6±3.3‰ for the reaction of CH3Br with OH and a KIE of 9.8±1.4 ‰ for the reaction with Cl*. We used these fractionation factors along with new data on the isotopic composition of CH3Br in the troposphere (-34±7‰) and the surface ocean (-26±7‰) along with reported source signatures, to constrain the unknown source from an isotopic perspective. The largest uncertainty in estimating the isotopic composition of the unknown source arises from the soil sink. Microbial degradation in soils is the second largest sink and assigned with a large fractionation factors of about 50‰. However, field experiments revealed substantially smaller apparent fractionation factors ranging from 11 to 22‰. In addition, simple model studies suggest that the soil uptake of CH3Br and hence its isotopic effect is largely controlled by diffusion resulting in an even smaller apparent isotopic fractionation. As a consequence, the estimated source signature for the unknown source is discussed with respect to the assumptions made for the soil sink.
Investigation of radionuclide distribution in soil particles in different landscapes
NASA Astrophysics Data System (ADS)
Shkinev, V. M.; Korobova, E. M.; Linnik, V. G.
2012-04-01
Russian and foreign publications have been analyzed for understanding the role of micro- and nano- particles in distribution and migration of technogenic elements in soils in different landscape conditions. A technique for application of various fractionation methods to separate and study -particles of different size down to micro- and nano-level has been developed. The dry sit method on the first stage of particle separation is recommend to be followed by the membrane filtration method. For obtaining more comprehensive information, combinations of fractionation technique should be chosen taking into account that (1) the efficiency of particles' separation using subsequent technique would be higher than using the preceding one; (2) separation methods should preferably be based on different principles (separation according size, density, charge etc.); (3) initial fractionation should separate particles according to their size, that makes possible to create an even scale for various samples. A study of distribution and balance of technogenic radionuclides' in soil particles of the size intervals 1.0—0.25, 0.25-0.1, 0.1-0.05, 0.05-0.01, 0.01-0.005, 0.005-0.001 and <0.001 mm in the Yenisey flood plain landscapes proved a significant role of both the particle size and the portion of contaminated fraction in contribution to the total radionuclide inventory in the soil layers. Contribution of the silt particles (0,05-0,01 mm) to Cs-137 contamination ranged from 26 to 33,8%, 45% maximum due to "optimal" combination of both factors. Clay fraction was responsible for approximately 30% of Cs-137 contained in soil horizons due to higher sorption capacity. Relatively high correlation between the activity of 152,154Eu and 60 and the content of silt and clay allowed suggesting their incorporation mainly in clay fraction. Selected experimental plots near the Kola NPP (northern taiga) were used to compare soil particles (fractions 140-71; 71-40 and < 40 µm) in their ability to concentrate technogenic radionuclides and heavy metals. Maximum radioactivity found in soil litter appeared to be related to the Chernobyl contamination. Concentration of s-137 was higher in small size fractions. Obtained results were considered to be useful for understanding of radionuclide migration in the environment and decision making on radioecological monitoring, rehabilitation and landuse in the contaminated areas.
Exceptional body sizes but typical trophic structure in a Pleistocene food web.
Segura, Angel M; Fariña, Richard A; Arim, Matías
2016-05-01
In this study, we focused on the exceptionally large mammals inhabiting the Americas during the Quaternary period and the paramount role of body size in species ecology. We evaluated two main features of Pleistocene food webs: the relationship between body size and (i) trophic position and (ii) vulnerability to predation. Despite the large range of species sizes, we found a hump-shaped relationship between trophic position and body size. We also found a negative trend in species vulnerability similar to that observed in modern faunas. The largest species lived near the boundary of energetic constraints, such that any shift in resource availability could drive these species to extinction. Our results reinforce several features of megafauna ecology: (i) the negative relationship between trophic position and body size implies that large-sized species were particularly vulnerable to changes in energetic support; (ii) living close to energetic imbalance could favour the incorporation of additional energy sources, for example, a transition from a herbivorous to a scavenging diet in the largest species (e.g. Megatherium) and (iii) the interactions and structure of Quaternary megafauna communities were shaped by similar forces to those shaping modern fauna communities. © 2016 The Author(s).
Study on characteristics of printed circuit board liberation and its crushed products.
Quan, Cui; Li, Aimin; Gao, Ningbo
2012-11-01
Recycling printed circuit board waste (PCBW) waste is a hot issue of environmental protection and resource recycling. Mechanical and thermo-chemical methods are two traditional recycling processes for PCBW. In the present research, a two-step crushing process combined with a coarse-crushing step and a fine-pulverizing step was adopted, and then the crushed products were classified into seven different fractions with a standard sieve. The liberation situation and particle shape in different size fractions were observed. Properties of different size fractions, such as heating value, thermogravimetric, proximate, ultimate and chemical analysis were determined. The Rosin-Rammler model was applied to analyze the particle size distribution of crushed material. The results indicated that complete liberation of metals from the PCBW was achieved at a size less than 0.59 mm, but the nonmetal particle in the smaller-than-0.15 mm fraction is liable to aggregate. Copper was the most prominent metal in PCBW and mainly enriched in the 0.42-0.25 mm particle size. The Rosin-Rammler equation adequately fit particle size distribution data of crushed PCBW with a correlation coefficient of 0.9810. The results of heating value and proximate analysis revealed that the PCBW had a low heating value and high ash content. The combustion and pyrolysis process of PCBW was different and there was an obvious oxidation peak of Cu in combustion runs.
NASA Astrophysics Data System (ADS)
Steffens, M.; Kölbl, A.; Kögel-Knabner, I.
2009-04-01
Grazing is one of the most important factors that may reduce soil organic matter (SOM) stocks and subsequently deteriorate aggregate stability in grassland topsoils. Land use management and grazing reduction are assumed to increase the input of OM, improve the soil aggregation and change species composition of vegetation (changes depth of OM input). Many studies have evaluated the impact of grazing cessation on SOM quantity. But until today little is known about the impact of grazing cessation on the chemical quality of SOM in density fractions, aggregate size classes and different horizons. The central aim of this study was to analyse the quality of SOM fractions in differently sized aggregates and horizons as affected by increased inputs of organic matter due to grazing exclusion. We applied a combined aggregate size, density and particle size fractionation procedure to sandy steppe topsoils with different organic matter inputs due to different grazing intensities (continuously grazed = Cg, winter grazing = Wg, ungrazed since 1999 = Ug99, ungrazed since 1979 = Ug79). Three different particulate organic matter (POM; free POM, in aggregate occluded POM and small in aggregate occluded POM) and seven mineral-associated organic matter fractions were separated for each of three aggregate size classes (coarse = 2000-6300 m, medium = 630-2000 m and fine =
Impact of sediment particle size on biotransformation of 17β-estradiol and 17β-trenbolone.
Zhang, Yun; Sangster, Jodi L; Gauza, Lukasz; Bartelt-Hunt, Shannon L
2016-12-01
Soil/sediment particle size has been reported to influence the sorption and bioavailability of steroid hormones in the environment. However, the impact of particle size on biotransformation has not been well elucidated. The present study investigated the dissipation of 17β-estradiol and 17β-trenbolone and the formation and degradation of the subsequent transformation products in different size fractions of a sandy and a silt loam sediment. The results showed that the decay of 17β-estradiol and 17β-trenbolone associated with fine particles followed a biphasic pattern with more rapid decay in the initial phase followed by a second phase with slower decay of the residues compared to their decay rates in the sand fraction. Estrone and trendione were detected as a primary biotransformation product for 17β-estradiol and 17β-trenbolone, respectively. The parent-to-product conversion ratios and the degradation rates of estrone and trendione varied among different size fractions, but no consistent correlation was observed between decay rates and sediment particle size. Estrone and trendione decayed in the whole sediments at rates not statistically different from those associated with the fine fractions. These results indicate that fine particles may play an important role in influencing the persistence of and the potential risk posed by steroid hormones in the aquatic systems. Copyright © 2016 Elsevier B.V. All rights reserved.
Size-Dependency of the Surface Ligand Density of Liposomes Prepared by Post-insertion.
Lee, Shang-Hsuan; Sato, Yusuke; Hyodo, Mamoru; Harashima, Hideyoshi
2017-01-01
In the active targeting of a drug delivery system (DDS), the density of the ligand on the functionalized liposome determines its affinity for binding to the target. To evaluate these densities on the surface of different sized liposomes, 4 liposomes with various diameters (188, 137, 70, 40 nm) were prepared and their surfaces were modified with fluorescently labeled ligand-lipid conjugates by the post-insertion method. Each liposomal mixture was fractionated into a series of fractions using size exclusion chromatography (SEC), and the resulting liposome fractions were precisely analyzed and the surface ligand densities calculated. The data collected using this methodology indicate that the density of the ligand on a particle is greatly dependent on the size of the liposome. This, in turn, indicates that smaller liposomes (75-40 nm) tend to possess higher densities. For developing active targeting systems, size and the density of the ligands are two important and independent factors that can affect the efficiency of a system as it relates to medical use.
Tedim, Fantina; Remelgado, Ruben; Martins, João; Carvalho, Salete
2015-01-01
Portugal is a European country with highest forest fires density and burned area. Since beginning of official forest fires database in 1980, an increase in number of fires and burned area as well as appearance of large and catastrophic fires have characterized fire activity in Portugal. In 1980s, the largest fires were just a little bit over 10,000 ha. However, in the beginning of 21st century several fires occurred with a burned area over 20,000 ha. Some of these events can be classified as mega-fires due to their ecological and socioeconomic severity. The present study aimed to discuss the characterization of large forest fires trend, in order to understand if the largest fires that occurred in Portugal were exceptional events or evidences of a new trend, and the constraints of fire size to characterize fire effects because, usually, it is assumed that larger the fire higher the damages. Using Portuguese forest fire database and satellite imagery, the present study showed that the largest fires could be seen at the same time as exceptional events and as evidence of a new fire regime. It highlighted the importance of size and patterns of unburned patches within fire perimeter as well as heterogeneity of fire ecological severity, usually not included in fire regime description, which are critical to fire management and research. The findings of this research can be used in forest risk reduction and suppression planning.
Size distribution of planktonic autotrophy and microheterotrophy in DeGray Reservoir, Arkansas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimmel, B.L.; Groeger, A.W.
1983-01-01
Naturally occurring assemblages of phytoplankton and bacterioplankton were radiolabelled with sodium /sup 14/C-bicarbonate and sodium /sup 3/H-acetate and size fractionated to determine the size structure of planktonic autotrophy and microheterotrophy in DeGray Reservoir, an oligotrophic impoundment of the Caddo River in south-central Arkansas. Size distributions of autotrophy and microheterotrophy were remarkably uniform seasonally, vertically within the water column, and along the longitudinal axis of the reservoir despite significant changes in environmental conditions. Planktonic autotrophy was dominated by small algal cells with usually >50% of the photosynthetic carbon uptake accounted for by organisms <8.0 ..mu..m. Microheterotrophic activity in the 0.2- tomore » 1.0-..mu..m size fraction, presumably associated with free-living bacterioplankton not attached to suspended particles, usually accounted for >75% of the planktonic microheterotrophy. Longitudinal patterns in autotrophic and microheterotrophic activities associated with >3-..mu..m and >1-..mu..m size fractions, respectively, suggest an uplake to downlake shift from riverine to lacustrine environmental influences within the reservoir. 83 references, 7 figures.« less
An experimental study of the flow boiling of refrigerant-based nanofluids
NASA Astrophysics Data System (ADS)
Kolekar, Rahul Dadasaheb
The use of nanofluids for various heat transfer applications has been a topic of intense research over the last decade. A number of studies to evaluate the thermophysical properties and single-phase heat transfer behavior of nanofluids have been reported. The current study is focused on the use of nanofluids in flow boiling applications, with CO2 and R134a used as the base refrigerants. CuO nanoparticles 40nm in size, and TiO2 nanoparticles 200nm in size are used to create partially stable CO2-based nanofluids. Stable nanofluids are created in R134a by mixing it with dispersions of surface-treated nanoparticles in polyolester (POE) oil (RL22H and RL68H). The particles (Al 2O3, ZnO, CuO, and ATO) at particle mass fractions from 0.08% to 1.34%, with particle sizes of 20nm and 40nm are coated with polar and non-polar surface treatments. The thermal properties of R134a-based nanofluids are measured. Thermal conductivity shows limited improvements; the largest increase of 13% is observed with CuO nanoparticles. Significant increases in viscosity, as high as 2147%, are observed due to CuO nanoparticles. Only the ATO nanofluid exhibited a decrease in the measured viscosity. Heat transfer coefficients during flow boiling of nanofluids are measured over a range of mass flux from 100 to 1000 kg/m2s, with a heat flux from 5 to 25kW/m2, and vapor quality up to 1. The test section is a smooth copper tube, 6.23mm in diameter and 1.8m in length. Average decreases of 5% and 28% are observed in heat transfer coefficients during flow boiling of CuO/CO2 and TiO2/CO2 nanofluids, respectively. For the R134a-based nanofluids, average decreases in heat transfer during flow boiling at the highest particle mass fraction are 15% and 22% for Al2O3 and ZnO nanoparticles, respectively. CuO nanoparticles exhibit an average decrease of 7% for particle mass fraction of 0.08%. An average increase of 10% is observed with ATO nanoparticles at a 0.22% mass fraction. Heat transfer performance deteriorates with increase in viscosity and particle number density. The performance is also worse for partially stable nanofluids that modify the test section surface. Modifications to the thermophysical properties is the primary mechanism that affects heat transfer performance during flow boiling of nanofluids; increased thermal conductivity enhances while increased viscosity and surface tension reduce heat transfer in nucleate boiling-dominated flows. A secondary mechanism of nanoparticles filling up the micro-cavities on test surface is also responsible for decreased heat transfer and is a strong function of particle number density.
NASA Astrophysics Data System (ADS)
Zigah, Prosper K.; Minor, Elizabeth C.; Abdulla, Hussain A. N.; Werne, Josef P.; Hatcher, Patrick G.
2014-02-01
This study investigated the concentration and isotopic composition of different size fractions of organic matter (OM) in Lake Superior and in one of its many tributary streams and rivers (Amity Creek, Duluth, Minnesota, USA). Structural compositional drivers of the Δ14C of high molecular weight (HMW, >1 kDa) dissolved organic carbon (DOC) in the lake were also evaluated. Low molecular weight (LMW, <1 kDa) DOC was the fraction containing the largest proportion (68-88%) of organic carbon (OC) in the lake. Particulate organic carbon (POC, >0.7 μm) was generally 13C-depleted (-29 ± 1.2‰) relative to “bulk” (<0.7 μm) DOC (-26.4 ± 0.7‰), “init” (<0.2 μm) DOC (-26.6 ± 0.8‰), HMW DOC (-26.9 ± 0.3‰) and LMW DOC (-26.5 ± 0.9‰), and had more variable 14C content (Δ14C of -94‰ to 53‰; 735 years BP to modern) than the other size fractions. Init DOC (Δ14C of 17-59‰), HMW DOC (Δ14C of 23-64‰) and LMW DOC (Δ14C of 16-62‰) all reflected contemporary (modern) radiocarbon signatures. Bulk DOC (Δ14C of -19‰ to 57‰; 90 years BP to modern) had modern radiocarbon values in the offshore sites (Δ14C of 2-57‰) with pre-aged samples (Δ14C of -8‰ to -19‰) seen at the nearshore site. HMW DOM was relatively N-poor (C:N of 12-19) compared to particulate organic matter (POM, C:N of 8-10) revealing either a more diagenetically altered state or contrasting sources. 13C NMR data showed that biochemical composition of HMW DOC in Lake Superior was dominated by carbohydrates (53-65%) with only trace aromatic components (2-4%). Structurally complex components such as heteropolysaccharides (HPS), amide/peptides and amino sugars (AMS) constitute 75-84% of HMW DOC whereas carboxylic-rich alicyclic molecules (CRAM) made up 16-25% of HMW DOC in the lake. Combined HPS and AMS, O-alkyl carbohydrate carbon, and total carbohydrate carbon contents were significantly positively correlated to the Δ14C of HMW DOC suggesting they contribute a contemporary 14C-enriched component to the HMW DOC in the lake. In contrast, CRAM and aliphatic carbons were significantly inversely correlated with Δ14C of HMW DOC implying that these represent 14C-depleted (older) components of HMW DOC in the lake. At Amity Creek, storm events led to larger loads of bulk DOC and POC, which were both 14C-enriched (modern). However, in baseflow conditions 14C-depleted bulk DOC and POC were exported. LMW DOC from the creek was considerably 14C-depleted compared to concurrent HMW DOC.
NASA Astrophysics Data System (ADS)
Wacha, K.; Papanicolaou, T.; Hatfield, J.; Cambardella, C.; Abban, B. K.; Wilson, C. G.; Filley, T. R.; Hou, T.; Dold, C.
2017-12-01
The abundance and distribution of surface soil size fractions has been shown to be reflective of changes in management practices and landscape position. Soil size fractions exist in both un-aggregated and aggregated forms that differ in textural and biological composition, which can impact soil hydrology and aggregation processes. Soils with higher stocks of soil organic matter (SOM) promote higher biological activity, infiltration, and soil structure due to stronger, more resilient aggregates. Within ag-systems, intensive cultivation and steep gradients can negatively impact the formation/stability of aggregates and amplify erosion processes, which redistributes material along downslope flowpathways to varying degrees, based on the amount of available surface cover during a rainfall event. The innate variability in SOM composition found amongst the size fractions combined with these highly active flowpathways, produces a symphony of interactive biogeochemical and hydrologic processes, which promote spatial landscape heterogeneity. Due to this intricacy, accurately assessing changes in SOM stocks within high energy ag-systems is extremely challenging, and could greatly impact soil carbon budgets at the hillslope and greater spatial scales. To address this, in part, we utilize a systematic approach that isolates the role of management in building aggregate resilience to hydrologic forcing. Soil samples were collected from farm fields with varying slopes (1-20%) and management conditions, and then isolated into seven aggregate size fractions. Each aggregate fraction was tested for resilience to raindrop impact with corresponding SOM composition and biological activity. Rainfall simulations were conducted on plots under representative management and gradient to capture the dynamicity of the size fractions being transported during an applied rainfall event. Results found that small macroaggregate fractions were most indicative of changes in management, and erosion rates from plots were inversely proportional to SOM enrichment. These experiments not only promote our fundamental understanding on the dynamics of surface soil and SOM redistribution but also can provide guidance into best management practices that promote aggregate stability, decrease soil loss, and enhance soil health.
NASA Technical Reports Server (NTRS)
Hughes, David; Perez, Xavier
2007-01-01
This presentation evaluates the parameters that affect visual inspection of cleanliness. Factors tested include surface reflectance, surface roughness, size of the largest particle, exposure time, inspector and distance from sample surface. It is concluded that distance predictions were not great, particularly because the distance at which contamination is seen may depend on more variables than those tested. Most parameters estimates had confidence of 95% or better, except for exposure and reflectance. Additionally, the distance at which surface is visibly contaminated decreases with increasing reflectance, roughness, and exposure. The distance at which the surface is visually contaminated increased with the largest particle size. These variables were only slightly affected the observer.
NASA Astrophysics Data System (ADS)
Letzel, Alexander; Gökce, Bilal; Menzel, Andreas; Plech, Anton; Barcikowski, Stephan
2018-03-01
For a known material, the size distribution of a nanoparticle colloid is a crucial parameter that defines its properties. However, measured size distributions are not easy to interpret as one has to consider weighting (e.g. by light absorption, scattering intensity, volume, surface, number) and the way size information was gained. The radius of a suspended nanoparticle can be given as e.g. sphere equivalent, hydrodynamic, Feret or radius of gyration. In this study, gold nanoparticles in water are synthesized by pulsed-laser ablation (LAL) and fragmentation (LFL) in liquids and characterized by various techniques (scanning transmission electron microscopy (STEM), small-angle X-ray scattering (SAXS), analytical disc centrifugation (ADC), dynamic light scattering (DLS) and UV-vis spectroscopy with Mie-Gans Theory) to study the comparability of different analytical techniques and determine the method that is preferable for a given task related to laser-generated nanoparticles. In particular, laser-generated colloids are known to be bimodal and/or polydisperse, but bimodality is sometimes not analytically resolved in literature. In addition, frequently reported small size shifts of the primary particle mode around 10 nm needs evaluation of its statistical significance related to the analytical method. Closely related to earlier studies on SAXS, different colloids in defined proportions are mixed and their size as a function of the nominal mixing ratio is analyzed. It is found that the derived particle size is independent of the nominal mixing ratio if the colloid size fractions do not overlap considerably. Conversely, the obtained size for colloids with overlapping size fractions strongly depends on the nominal mixing ratio since most methods cannot distinguish between such fractions. Overall, SAXS and ADC are very accurate methods for particle size analysis. Further, the ability of different methods to determine the nominal mixing ratio of sizes fractions is studied experimentally.
Wang, Jiang; Gayatri, Mohit A; Ferguson, Andrew L
2017-05-11
Asphaltenes constitute the heaviest fraction of the aromatic group in crude oil. Aggregation and precipitation of asphaltenes during petroleum processing costs the petroleum industry billions of dollars each year due to downtime and production inefficiencies. Asphaltene aggregation proceeds via a hierarchical self-assembly process that is well-described by the Yen-Mullins model. Nevertheless, the microscopic details of the emergent cluster morphologies and their relative stability under different processing conditions remain poorly understood. We perform coarse-grained molecular dynamics simulations of a prototypical asphaltene molecule to establish a phase diagram mapping the self-assembled morphologies as a function of temperature, pressure, and n-heptane:toluene solvent ratio informing how to control asphaltene aggregation by regulating external processing conditions. We then combine our simulations with graph matching and nonlinear manifold learning to determine low-dimensional free energy surfaces governing asphaltene self-assembly. In doing so, we introduce a variant of diffusion maps designed to handle data sets with large local density variations, and report the first application of many-body diffusion maps to molecular self-assembly to recover a pseudo-1D free energy landscape. Increasing pressure only weakly affects the landscape, serving only to destabilize the largest aggregates. Increasing temperature and toluene solvent fraction stabilizes small cluster sizes and loose bonding arrangements. Although the underlying molecular mechanisms differ, the strikingly similar effect of these variables on the free energy landscape suggests that toluene acts upon asphaltene self-assembly as an effective temperature.
Dosimetric characteristics with spatial fractionation using electron grid therapy.
Meigooni, A S; Parker, S A; Zheng, J; Kalbaugh, K J; Regine, W F; Mohiuddin, M
2002-01-01
Recently, promising clinical results have been shown in the delivery of palliative treatments using megavoltage photon grid therapy. However, the use of megavoltage photon grid therapy is limited in the treatment of bulky superficial lesions where critical radiosensitive anatomical structures are present beyond tumor volumes. As a result, spatially fractionated electron grid therapy was investigated in this project. Dose distributions of 1.4-cm-thick cerrobend grid blocks were experimentally determined for electron beams ranging from 6 to 20 MeV. These blocks were designed and fabricated at out institution to fit into a 20 x 20-cm(2) electron cone of a commercially available linear accelerator. Beam profiles and percentage depth dose (PDD) curves were measured in Solid Water phantom material using radiographic film, LiF TLD, and ionometric techniques. Open-field PDD curves were compared with those of single holes grid with diameters of 1.5, 2.0, 2.5, 3.0, and 3.5 cm to find the optimum diameter. A 2.5-cm hole diameter was found to be the optimal size for all electron energies between 6 and 20 MeV. The results indicate peak-to-valley ratios decrease with depth and the largest ratio is found at Dmax. Also, the TLD measurements show that the dose under the blocked regions of the grid ranged from 9.7% to 39% of the dose beneath the grid holes, depending on the measurement location and beam energy.
Discovery of a glitch in the accretion-powered pulsar SXP 1062
NASA Astrophysics Data System (ADS)
Serim, M. M.; Şahiner, Ş.; ćerri-Serim, D.; Inam, S. ć.; Baykal, A.
2017-11-01
We present timing analysis of the accretion-powered pulsar SXP 1062, based on the observations of Swift, XMM-Newton and Chandra satellites covering a time span of about 2 yr. We obtain a phase coherent timing solution that shows that SXP 1062 has been steadily spinning down with a rate -4.29(7) × 10-14 Hz s-1 leading to a surface magnetic field estimate of about 1.5 × 1014 G. We also resolve the binary orbital motion of the system from X-ray data that confirms an orbital period of 656(2) d. On MJD 56834.5, a sudden change in pulse frequency occurs with Δν = 1.28(5) × 10-6 Hz, which indicates a glitch event. The fractional size of the glitch is Δν/ν ˜ 1.37(6) × 10-3 and SXP 1062 continues to spin-down with a steady rate after the glitch. A short X-ray outburst 25 d prior to the glitch does not alter the spin-down of the source; therefore, the glitch should be associated with the internal structure of the neutron star. While glitch events are common for isolated pulsars, the glitch of SXP 1062 is the first confirmation of the observability of this type of events among accretion-powered pulsars. Furthermore, the value of the fractional change of pulse frequency ensures that we discover the largest glitch reported up to now.
Dropout Rates in Texas School Districts: Influences of School Size and Ethnic Group.
ERIC Educational Resources Information Center
Toenjes, Laurence A.
Longitudinal dropout rates (LDR's) for public school students and LDR's of pupil membership by ethnic group based on two Texas Education Agency reports are estimated. LDR's are calculated for the state, by school district size, for the 21 largest districts, and by average high school size. Findings dispel the prevalent perception of the dropout…
Coppola, Laurent; Gustafsson, Orjan; Andersson, Per; Axelsson, Pär
2005-05-01
In traditional sediment grain-size separation using sieve technique, the bulk of the organic matter passes through the smallest mesh size (generally 38 microm) and is not further fractionated. In this study, a common sieve separation has therefore been coupled with an extra high capacity split flow thin cell fractionation (EHC-SPLITT) instrument to separate the bulk surface sediment not only into size-based sieve fractions (> 100, 63-100, 38-63 and < 38 microm) but particularly to further fractionate hydrodynamically the fine fraction (< 38 microm) using the EHC-SPLITT. Compared to the few previous studies using a smaller high capacity (HC) SPLITT cell, the EHC-SPLITT evaluated in detail here has several advantages (e.g., 23 times higher throughput and allowance for large particle diameters). First, the EHC-SPLITT was calibrated with particle standards. Then, its ability to fractionate fine surface sediments hydrodynamically was demonstrated with material from biogeochemically distinct regimes using two cutoff velocities (1 and 6 m d(-1)). The results from particle standards indicated a good agreement between theory and experiment and a satisfactory mass recovery for the sieve-SPLITT method (80-97%) was observed for sediment samples. The mass distributions revealed that particles < 38 microm were predominant (70-90%), indicating the large need for a technique such as the EHC-SPLITT to further fractionate the fine particles. There were clearly different compositions in the EHC-SPLITT-mediated sub-fractions of the sediment fines as indicated by analyses of organic and inorganic parameters (POC, Si, Fe and Al). The EHC-SPLITT technique has the potential to provide information of great utility to studies of benthic boundary layer transport and off-shelf export and how such processes fractionate geochemical signals.
Atmospheric trace metals measured at a regional background site (Welgegund) in South Africa
NASA Astrophysics Data System (ADS)
Venter, Andrew D.; van Zyl, Pieter G.; Beukes, Johan P.; Josipovic, Micky; Hendriks, Johan; Vakkari, Ville; Laakso, Lauri
2017-03-01
Atmospheric trace metals can cause a variety of health-related and environmental problems. Only a few studies on atmospheric trace metal concentrations have been conducted in South Africa. Therefore the aim of this study was to determine trace metal concentrations in aerosols collected at a regional background site, i.e. Welgegund, South Africa. PM1, PM1-2. 5 and PM2. 5-10 samples were collected for 13 months, and 31 atmospheric trace metal species were detected. Atmospheric iron (Fe) had the highest concentrations in all three size fractions, while calcium (Ca) was the second-most-abundant species. Chromium (Cr) and sodium (Na) concentrations were the third- and fourth-most-abundant species, respectively. The concentrations of the trace metal species in all three size ranges were similar, with the exception of Fe, which had higher concentrations in the PM1 size fraction. With the exception of titanium (Ti), aluminium (Al) and manganese (Mg), 70 % or more of the trace metal species detected were in the smaller size fractions, which indicated the influence of industrial activities. However, the large influence of wind-blown dust was reflected by 30 % or more of trace metals being present in the PM2. 5-10 size fraction. Comparison of trace metals determined at Welgegund to those in the western Bushveld Igneous Complex indicated that at both locations similar species were observed, with Fe being the most abundant. However, concentrations of these trace metal species were significantly higher in the western Bushveld Igneous Complex. Fe concentrations at the Vaal Triangle were similar to levels thereof at Welgegund, while concentrations of species associated with pyrometallurgical smelting were lower. Annual average Ni was 4 times higher, and annual average As was marginally higher than their respective European standard values, which could be attributed to regional influence of pyrometallurgical industries in the western Bushveld Igneous Complex. All three size fractions indicated elevated trace metal concentrations coinciding with the end of the dry season, which could partially be attributed to decreased wet removal and increases in wind generation of particulates. Principal component factor analysis (PCFA) revealed four meaningful factors in the PM1 size fraction, i.e. crustal, pyrometallurgical-related and Au slimes dams. No meaningful factors were determined for the PM1-2. 5 and PM2. 5-10 size fractions, which was attributed to the large influence of wind-blown dust on atmospheric trace metals determined at Welgegund. Pollution roses confirmed the influence of wind-blown dust on trace metal concentrations measured at Welgegund, while the impact of industrial activities was also substantiated.
Hower, J.C.; Trimble, A.S.; Eble, C.F.; Palmer, C.A.; Kolker, A.
1999-01-01
Fly ash samples were collected in November and December of 1994, from generating units at a Kentucky power station using high- and low-sulfur feed coals. The samples are part of a two-year study of the coal and coal combustion byproducts from the power station. The ashes were wet screened at 100, 200, 325, and 500 mesh (150, 75, 42, and 25 ??m, respectively). The size fractions were then dried, weighed, split for petrographic and chemical analysis, and analyzed for ash yield and carbon content. The low-sulfur "heavy side" and "light side" ashes each have a similar size distribution in the November samples. In contrast, the December fly ashes showed the trend observed in later months, the light-side ash being finer (over 20 % more ash in the -500 mesh [-25 ??m] fraction) than the heavy-side ash. Carbon tended to be concentrated in the coarse fractions in the December samples. The dominance of the -325 mesh (-42 ??m) fractions in the overall size analysis implies, though, that carbon in the fine sizes may be an important consideration in the utilization of the fly ash. Element partitioning follows several patterns. Volatile elements, such as Zn and As, are enriched in the finer sizes, particularly in fly ashes collected at cooler, light-side electrostatic precipitator (ESP) temperatures. The latter trend is a function of precipitation at the cooler-ESP temperatures and of increasing concentration with the increased surface area of the finest fraction. Mercury concentrations are higher in high-carbon fly ashes, suggesting Hg adsorption on the fly ash carbon. Ni and Cr are associated, in part, with the spinel minerals in the fly ash. Copyright ?? 1999 Taylor & Francis.
Single Droplet Combustion of Decane in Microgravity: Experiments and Numerical Modeling
NASA Technical Reports Server (NTRS)
Dietrich, D. L.; Struk, P. M.; Ikegam, M.; Xu, G.
2004-01-01
This paper presents experimental data on single droplet combustion of decane in microgravity and compares the results to a numerical model. The primary independent experiment variables are the ambient pressure and oxygen mole fraction, pressure, droplet size (over a relatively small range) and ignition energy. The droplet history (D(sup 2) history) is non-linear with the burning rate constant increasing throughout the test. The average burning rate constant, consistent with classical theory, increased with increasing ambient oxygen mole fraction and was nearly independent of pressure, initial droplet size and ignition energy. The flame typically increased in size initially, and then decreased in size, in response to the shrinking droplet. The flame standoff increased linearly for the majority of the droplet lifetime. The flame surrounding the droplet extinguished at a finite droplet size at lower ambient pressures and an oxygen mole fraction of 0.15. The extinction droplet size increased with decreasing pressure. The model is transient and assumes spherical symmetry, constant thermo-physical properties (specific heat, thermal conductivity and species Lewis number) and single step chemistry. The model includes gas-phase radiative loss and a spherically symmetric, transient liquid phase. The model accurately predicts the droplet and flame histories of the experiments. Good agreement requires that the ignition in the experiment be reasonably approximated in the model and that the model accurately predict the pre-ignition vaporization of the droplet. The model does not accurately predict the dependence of extinction droplet diameter on pressure, a result of the simplified chemistry in the model. The transient flame behavior suggests the potential importance of fuel vapor accumulation. The model results, however, show that the fractional mass consumption rate of fuel in the flame relative to fuel vaporized is close to 1.0 for all but the lowest ambient oxygen mole fractions.
Bidisperse and polydisperse suspension rheology at large solid fraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pednekar, Sidhant; Chun, Jaehun; Morris, Jeffrey F.
At the same solid volume fraction, bidisperse and polydisperse suspensions display lower viscosities, and weaker normal stress response, compared to monodisperse suspensions. The reduction of viscosity associated with size distribution can be explained by an increase of the maximum flowable, or jamming, solid fraction. In this work, concentrated or "dense" suspensions are simulated under strong shearing, where thermal motion and repulsive forces are negligible, but we allow for particle contact with a mild frictional interaction with interparticle friction coefficient of 0.2. Aspects of bidisperse suspension rheology are first revisited to establish that the approach reproduces established trends; the study ofmore » bidisperse suspensions at size ratios of large to small particle radii (2 to 4) shows that a minimum in the viscosity occurs for zeta slightly above 0.5, where zeta=phi_{large}/phi is the fraction of the total solid volume occupied by the large particles. The simple shear flows of polydisperse suspensions with truncated normal and log normal size distributions, and bidisperse suspensions which are statistically equivalent with these polydisperse cases up to third moment of the size distribution, are simulated and the rheologies are extracted. Prior work shows that such distributions with equivalent low-order moments have similar phi_{m}, and the rheological behaviors of normal, log normal and bidisperse cases are shown to be in close agreement for a wide range of standard deviation in particle size, with standard correlations which are functionally dependent on phi/phi_{m} providing excellent agreement with the rheology found in simulation. The close agreement of both viscosity and normal stress response between bi- and polydisperse suspensions demonstrates the controlling in influence of the maximum packing fraction in noncolloidal suspensions. Microstructural investigations and the stress distribution according to particle size are also presented.« less
Petitpas, Christian M; Turner, Jefferson T; Deeds, Jonathan R; Keafer, Bruce A; McGillicuddy, Dennis J; Milligan, Peter J; Shue, Vangie; White, Kevin D; Anderson, Donald M
2014-05-01
As part of the Gulf of Maine Toxicity (GOMTOX) project, we determined Alexandrium fundyense abundance, paralytic shellfish poisoning (PSP) toxin levels in various plankton size fractions, and the community composition of potential grazers of A. fundyense in plankton size fractions during blooms of this toxic dinoflagellate in the coastal Gulf of Maine and on Georges Bank in spring and summer of 2007, 2008, and 2010. PSP toxins and A. fundyense cells were found throughout the sampled water column (down to 50 m) in the 20-64 μm size fractions. While PSP toxins were widespread throughout all size classes of the zooplankton grazing community, the majority of the toxin was measured in the 20-64 μm size fraction. A. fundyense cellular toxin content estimated from field samples was significantly higher in the coastal Gulf of Maine than on Georges Bank. Most samples containing PSP toxins in the present study had diverse assemblages of grazers. However, some samples clearly suggested PSP toxin accumulation in several different grazer taxa including tintinnids, heterotrophic dinoflagellates of the genus Protoperidinium , barnacle nauplii, the harpacticoid copepod Microsetella norvegica , the calanoid copepods Calanus finmarchicus and Pseudocalanus spp., the marine cladoceran Evadne nordmanni , and hydroids of the genus Clytia . Thus, a diverse assemblage of zooplankton grazers accumulated PSP toxins through food-web interactions. This raises the question of whether PSP toxins pose a potential human health risk not only from nearshore bivalve shellfish, but also potentially from fish and other upper-level consumers in zooplankton-based pelagic food webs.
Particle size affects structural and in vitro digestion properties of cooked rice flours.
Farooq, Adil Muhammad; Li, Chao; Chen, Siqian; Fu, Xiong; Zhang, Bin; Huang, Qiang
2018-06-14
The aim of this study was to identify the contributions made by size fractions of four milled rice (i.e., waxy, white, black and brown rice) to structural and in vitro starch digestion properties after cooking. Rice grains were hammer-milled in a controlled manner, and the coarse (300-450 μm), medium (150-300 μm) and fine size (<150 μm) fractions were segregated through vertical sieving. All samples displayed monophasic digestograms, and starch digestion rate and extent for size fractionated rice flours were predicted through the Logarithm of Slope model. It was found that digestion rate and extent were markedly reduced with increasing particle size within each rice variety. Of the four rice varieties, non-waxy rice flour fractions showed lower digestion rate and extent compared to the waxy counterpart, possibly due to the formation starch-lipid complexes as judged by XRD with ca. 4%-8% V-type crystalline structure remained after cooking. We suggested that the less rigid morphological structure and almost amorphous conformation lead to the high digestion rate and extent during simulated intestinal starch digestion. These findings will help develop functional rice ingredients with desirable digestion behaviour and attenuated postprandial glycemic responses. Copyright © 2017. Published by Elsevier B.V.
Acosta, Jose A; Faz, Ángel; Kalbitz, Karsten; Jansen, Boris; Martínez-Martínez, Silvia
2011-11-01
Street dust has been sampled from six different types of land use of the city of Murcia (Spain). The samples were fractionated into eleven particle size fractions (<2, 2-10, 10-20, 20-50, 50-75, 75-106, 106-150, 150-180, 180-425, 425-850 μm and 850-2000 μm) and analyzed for Pb, Cu, Zn and Cd. The concentrations of these four potentially toxic metals were assessed, as well as the effect of particle size on their distribution. A severe enrichment of all metals was observed for all land-uses (industrial, suburban, urban and highways), with the concentration of all metals affected by the type of land-use. Coarse and fine particles in all cases showed concentrations of metals higher than those found in undisturbed areas. However, the results indicated a preferential partitioning of metals in fine particle size fractions in all cases, following a logarithmic distribution. The accumulation in the fine fractions was higher when the metals had an anthropogenic origin. The strong overrepresentation of metals in particles <10 μm indicates that if the finest fractions are removed by a vacuum-assisted dry sweeper or a regenerative-air sweeper the risk of metal dispersion and its consequent risk for humans will be highly reduced. Therefore, we recommend that risk assessment programs include monitoring of metal concentrations in dust where each land-use is separately evaluated. The finest particle fractions should be examined explicitly in order to apply the most efficient measures for reducing the risk of inhalation and ingestion of dust for humans and risk for the environment.
Popovic, Olga; Jensen, Lars Stoumann
2012-08-01
Chemical-mechanical separation of pig slurry into a solid fraction rich in dry matter, P, Cu and Zn and a liquid fraction rich in inorganic N but poor in dry matter may allow farmers to manage surplus slurry by exporting the solid fraction to regions with no nutrient surplus. Pig slurry can be applied to arable land only in certain periods during the year, so it is commonly stored prior to field application. This study investigated the effect of storage duration and temperature on chemical characteristics and P, Cu and Zn distribution between particle size classes of raw slurry and its liquid separation fraction. Dry matter, VFA, total N and ammonium content of both slurry products decreased during storage and were affected by temperature, showing higher losses at higher storage temperatures. In both products, total P, Cu and Zn concentrations were not significantly affected by storage duration or temperature. Particle size distribution was affected by slurry separation, storage duration and temperature. In raw slurry, particles larger than 1 mm decreased, whereas particles 250 μm-1 mm increased. The liquid fraction produced was free of particles >500 μm, with the highest proportions of P, Cu and Zn in the smallest particle size class (<25 μm). The proportion of particles <25 μm increased when the liquid fraction was stored at 5 °C, but decreased at 25 °C. Regardless of temperature, distribution of P, Cu and Zn over particle size classes followed a similar pattern to dry matter. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Varnai, Tamas; Yang, Weidong; Marshak, Alexander
2016-01-01
CALIOP shows stronger near-cloud changes in aerosol properties at higher cloud fractions. Cloud fraction variations explain a third of near-cloud changes in overall aerosol statistics. Cloud fraction and aerosol particle size distribution have a complex relationship.
Developing Systems of Notation as a Trace of Reasoning
ERIC Educational Resources Information Center
Tillema, Erik; Hackenberg, Amy
2011-01-01
In this paper, we engage in a thought experiment about how students might notate their reasoning for composing fractions multiplicatively (taking a fraction of a fraction and determining its size in relation to the whole). In the thought experiment we differentiate between two levels of a fraction composition scheme, which have been identified in…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yiyu; Kannan, Rangasayee; Li, Leijun, E-mail
Non-equilibrium microstructure of the heat-affected zone (HAZ) in the as-welded modified 9Cr–1Mo–V–Nb pipe steel (P91) weldment deposited by gas tungsten arc welding (GTAW) and flux core arc welding (FCAW) has been characterized by field-emission scanning electron microscope (FESEM) and electron backscatter diffraction (EBSD). The heterogeneous structures in the sub-layers of the as-welded HAZ are attributable to phase transformations caused by the welding thermal cycles and the local structure variations in the as-received base metal. Coarse-grained heat-affected zone (CGHAZ) has a prior austenite grain (PAG) size of 20 μm. Fine uniformly-distributed precipitates and a higher fraction of MX carbonitrides are observedmore » in the CGHAZ. Fine-grained heat-affected zone (FGHAZ) consists of the finest grains (1.22 μm measured by EBSD, 5 μm PAG size), coarse undissolved M{sub 23}C{sub 6} carbides within the PAG boundaries and fine nucleated M{sub 23}C{sub 6} particles within the martensite laths. Inter-critical heat-affected zone (ICHAZ) consists of partially austenitized grains and over-tempered martensite laths. EBSD kernel average misorientation (KAM) map in the FGHAZ close to the ICHAZ illustrates the greatest local strain variations with a moderate normalized KAM value of 0.92°. The majority (88.1%) of the matrix grains in the CGHAZ are classified as deformed grains by EBSD grain average misorientation (GAM) evaluation. The FGHAZ close to the ICHAZ has the most recrystallized grains with an area fraction of 14.4%. The highest density variation of precipitates within grains in the FGHAZ originates from the inhomogeneous chemistry in the base metal. - Highlights: •A comprehensive characterization of the as-welded HAZ of P91 weldment is conducted. •Structural features in the each layer of the HAZ are quantified by EBSD. •Structural heterogenities in HAZ are due to welding cycle and base metal structure. •FGHAZ contains the finest grain structure and largest precipitate density variation.« less
Howley, Lisa W; Khoo, Nee Scze; Moon-Grady, Anita J; Patel, Sonali S; Alrais, Fayeza; Tworetzky, Wayne; Colen, Timothy; Brooks, Paul; Trines, Jean; Ojala, Tiina; Hornberger, Lisa K
2017-06-01
In severe right heart obstruction (RHO), redistribution of cardiac output to the left ventricle (LV) is well tolerated by the fetal circulation. Although the same should be true of severely regurgitant tricuspid valve disease (rTVD) with reduced or no output from the right ventricle, affected fetuses more frequently develop hydrops or suffer intrauterine demise. We hypothesized that right atrium (RA) function is altered in rTVD but not in RHO, which could contribute to differences in outcomes. Multi-institutional retrospective review of fetal echocardiograms performed over a 10-year period on fetuses with rTVD (Ebstein's anomaly, tricuspid valve dysplasia) or RHO (pulmonary atresia/intact ventricular septum, tricuspid atresia) and a healthy fetal control group. Offline velocity vector imaging and Doppler measurements of RA size and function and LV function were made. Thirty-four fetuses with rTVD, 40 with RHO, and 79 controls were compared. The rTVD fetuses had the largest RA size and lowest RA expansion index, fractional area of change, and RA indexed filling and emptying rates compared with fetuses with RHO and controls. The rTVD fetuses had the shortest LV ejection time and increased Tei index with a normal LV ejection fraction. RA dilation (odds ratio, 1.27; 95% CI, 1.05-1.54) and reduced indexed emptying rate (odds ratio, 2.49; 95% CI, 1.07-5.81) were associated with fetal or neonatal demise. Fetal rTVD is characterized by more severe RA dilation and dysfunction compared with fetal RHO and control groups. RA dysfunction may be an important contributor to reduced ventricular filling and output, potentially playing a critical role in the worsened outcomes observed in fetal rTVD. Copyright © 2017 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Battista, Jerry J; Johnson, Carol; Turnbull, David; Kempe, Jeff; Bzdusek, Karl; Van Dyk, Jacob; Bauman, Glenn
2013-12-01
To examine a range of scenarios for image-guided adaptive radiation therapy of prostate cancer, including different schedules for megavoltage CT imaging, patient repositioning, and dose replanning. We simulated multifraction dose distributions with deformable registration using 35 sets of megavoltage CT scans of 13 patients. We computed cumulative dose-volume histograms, from which tumor control probabilities and normal tissue complication probabilities (NTCPs) for rectum were calculated. Five-field intensity modulated radiation therapy (IMRT) with 18-MV x-rays was planned to achieve an isocentric dose of 76 Gy to the clinical target volume (CTV). The differences between D95, tumor control probability, V70Gy, and NTCP for rectum, for accumulated versus planned dose distributions, were compared for different target volume sizes, margins, and adaptive strategies. The CTV D95 for IMRT treatment plans, averaged over 13 patients, was 75.2 Gy. Using the largest CTV margins (10/7 mm), the D95 values accumulated over 35 fractions were within 2% of the planned value, regardless of the adaptive strategy used. For tighter margins (5 mm), the average D95 values dropped to approximately 73.0 Gy even with frequent repositioning, and daily replanning was necessary to correct this deficit. When personalized margins were applied to an adaptive CTV derived from the first 6 treatment fractions using the STAPLE (Simultaneous Truth and Performance Level Estimation) algorithm, target coverage could be maintained using a single replan 1 week into therapy. For all approaches, normal tissue parameters (rectum V(70Gy) and NTCP) remained within acceptable limits. The frequency of adaptive interventions depends on the size of the CTV combined with target margins used during IMRT optimization. The application of adaptive target margins (<5 mm) to an adaptive CTV determined 1 week into therapy minimizes the need for subsequent dose replanning. Copyright © 2013 Elsevier Inc. All rights reserved.
Plant canopy gap-size analysis theory for improving optical measurements of leaf-area index
NASA Astrophysics Data System (ADS)
Chen, Jing M.; Cihlar, Josef
1995-09-01
Optical instruments currently available for measuring the leaf-area index (LAI) of a plant canopy all utilize only the canopy gap-fraction information. These instruments include the Li-Cor LAI-2000 Plant Canopy Analyzer, Decagon, and Demon. The advantages of utilizing both the canopy gap-fraction and gap-size information are shown. For the purpose of measuring the canopy gap size, a prototype sunfleck-LAI instrument named Tracing Radiation and Architecture of Canopies (TRAC), has been developed and tested in two pure conifer plantations, red pine (Pinus resinosa Ait.) and jack pine (Pinus banksiana Lamb). A new gap-size-analysis theory is presented to quantify the effect of canopy architecture on optical measurements of LAI based on the gap-fraction principle. The theory is an improvement on that of Lang and Xiang [Agric. For. Meteorol. 37, 229 (1986)]. In principle, this theory can be used for any heterogeneous canopies.
Ensemble brightening and enhanced quantum yield in size-purified silicon nanocrystals
Miller, Joseph B.; Van Sickle, Austin R.; Anthony, Rebecca J.; ...
2012-07-18
Here, we report on the quantum yield, photoluminescence (PL) lifetime and ensemble photoluminescent stability of highly monodisperse plasma-synthesized silicon nanocrystals (SiNCs) prepared though density-gradient ultracentrifugation in mixed organic solvents. Improved size uniformity leads to a reduction in PL line width and the emergence of entropic order in dry nanocrystal films. We find excellent agreement with the anticipated trends of quantum confinement in nanocrystalline silicon, with a solution quantum yield that is independent of nanocrystal size for the larger fractions but decreases dramatically with size for the smaller fractions. We also find a significant PL enhancement in films assembled from themore » fractions, and we use a combination of measurement, simulation and modeling to link this ‘brightening’ to a temporally enhanced quantum yield arising from SiNC interactions in ordered ensembles of monodisperse nanocrystals. Using an appropriate excitation scheme, we exploit this enhancement to achieve photostable emission.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cicek, T.
2008-07-01
This study dealt with the upgrading of two different type of Turkish coal by a dry cleaning method using a modified air table. The industrial size air table used in this study is a device for removing stones from agricultural products. This study investigates the technical and economical feasibility of the dry cleaning method which has never been applied before on coals in Turkey. The application of a dry cleaning method on Turkish coals designated for power generation without generating environmental pollution and ensuring a stable coal quality are the main objectives of this study. The size fractions of 5-8,more » 3-5, and 1-3 mm of the investigated coals were used in the upgrading experiments. Satisfactory results were achieved with coal from the Soma region, whereas the upgrading results of Hsamlar coal were objectionable for the coarser size fractions. However, acceptable results were obtained for the size fraction 1-3 mm of Hsamlar coal.« less
NASA Technical Reports Server (NTRS)
Heymann, D.; Lakatos, S.; Walton, J. R.
1973-01-01
Review of the results of inert gas measurements performed on six grain-size fractions and two single particles from four samples of Luna 20 material. Presented and discussed data include the inert gas contents, element and isotope systematics, radiation ages, and Ar-36/Ar-40 systematics.
New Technology/Old Technology: Comparing Lunar Grain Size Distribution Data and Methods
NASA Technical Reports Server (NTRS)
Fruland, R. M.; Cooper, Bonnie L.; Gonzalexz, C. P.; McKay, David S.
2011-01-01
Laser diffraction technology generates reproducible grain size distributions and reveals new structures not apparent in old sieve data. The comparison of specific sieve fractions with the Microtrac distribution curve generated for those specific fractions shows a reasonable match for the mean of each fraction between the two techniques, giving us confidence that the large existing body of sieve data can be cross-correlated with new data based on laser diffraction. It is well-suited for lunar soils, which have as much as 25% of the material in the less than 20 micrometer fraction. The fines in this range are of particular interest because they may contain a record of important space weathering processes.
Effects of chlorpyrifos on soil carboxylesterase activity at an aggregate-size scale.
Sanchez-Hernandez, Juan C; Sandoval, Marco
2017-08-01
The impact of pesticides on extracellular enzyme activity has been mostly studied on the bulk soil scale, and our understanding of the impact on an aggregate-size scale remains limited. Because microbial processes, and their extracellular enzyme production, are dependent on the size of soil aggregates, we hypothesized that the effect of pesticides on enzyme activities is aggregate-size specific. We performed three experiments using an Andisol to test the interaction between carboxylesterase (CbE) activity and the organophosphorus (OP) chlorpyrifos. First, we compared esterase activity among aggregates of different size spiked with chlorpyrifos (10mgkg -1 wet soil). Next, we examined the inhibition of CbE activity by chlorpyrifos and its metabolite chlorpyrifos-oxon in vitro to explore the aggregate size-dependent affinity of the pesticides for the active site of the enzyme. Lastly, we assessed the capability of CbEs to alleviate chlorpyrifos toxicity upon soil microorganisms. Our principal findings were: 1) CbE activity was significantly inhibited (30-67% of controls) in the microaggregates (<0.25mm size) and smallest macroaggregates (<1.0 - 0.25mm), but did not change in the largest macroaggregates (>1.0mm) compared with the corresponding controls (i.e., pesticide-free aggregates), 2) chlorpyrifos-oxon was a more potent CbE inhibitor than chlorpyrifos; however, no significant differences in the CbE inhibition were found between micro- and macroaggregates, and 3) dose-response relationships between CbE activity and chlorpyrifos concentrations revealed the capability of the enzyme to bind chlorpyrifos-oxon, which was dependent on the time of exposure. This chemical interaction resulted in a safeguarding mechanism against chlorpyrifos-oxon toxicity on soil microbial activity, as evidenced by the unchanged activity of dehydrogenase and related extracellular enzymes in the pesticide-treated aggregates. Taken together, these results suggest that environmental risk assessments of OP-polluted soils should consider the fractionation of soil in aggregates of different size to measure the CbE activity, and other potential soil enzyme activities. Copyright © 2017 Elsevier Inc. All rights reserved.
Drought effect on weaning weight and efficiency relative to cow size in semiarid rangeland.
Scasta, J D; Henderson, L; Smith, T
2015-12-01
Cow size has been suggested to be an important consideration for selecting cattle to match their production environment. Over the last several decades, the trend in genetic selection for maximum growth has led to gradual increases in beef cow size. An unrelated trend during this same period in the western United States has been an increase in temperature, drought frequency, and drought severity. Due to the potential influence of the increasing cow size trend on nutritional maintenance costs and production, we assessed the effect of cow size on weaning weight and efficiency in relation to drought on a semiarid high-elevation ranch in Wyoming. This study addresses a lack of empirical studies on the interaction between cow size and drought. We measured calf weaning weights of 80 Angus × Gelbvieh cows from 2011 to 2014 and assessed how drought affected weaning weights, efficiency (considered as calf weight relative to cow weight), intake requirements, and potential herd sizes relative to cow size. We stratified cows into 5 weight classes (453, 498, 544, 589, and 634 kg) as a proxy for cow size and adjusted weaning weights to a 210-d calf sex adjusted value. Cow size was a significant factor every year, with different cow sizes having advantages or disadvantages different years relative to weaning weight. However, efficiency for the smallest cows (453 kg) was always greater than efficiency for largest cows (634 kg; < 0.001). Efficiency for the smallest cows was greater in the driest year (0.41 ± 0.02) than efficiency of the largest cows in the wettest years (0.37 ± 0.01). The change in efficiency (ΔE) between wet and dry years was 0.18 for the smallest cow size and 0.02 for the largest cow size, and ΔE decreased as cow size increased. This is an indication of the ability of smaller cows to lower maintenance requirements in response to changes in the production environment but with optimal upside potential when conditions are favorable. These results indicate large cows (589 to 634 kg) do not maximize genetic potential in this production environment when conditions are optimum or provide any advantage over small or moderate size cows (453 to 544 kg) across the drought gradient.
NASA Astrophysics Data System (ADS)
Bhattacharya, A.; Lora, J. M.; Pollen, A.; Vollmer, T.; Thomas, M.; Leithold, E. L.; Mitchell, J.; Tripati, A.
2016-12-01
The net amount of mineral dust accumulation in arid and semi-arid regions might not be entirely sourced locally or even regionally; in fact, new evidence suggests that there could be significant contributions from distal sources. The contribution from the distal sources needs to be identified, and accounted for, in order to accurately understand the meteorological and climatologic factors, both regional and global, that control mineral dust accumulation in arid and semi-arid regions. Most importantly, if identified, the two components of mineral dust accumulation- fine fraction (typically <4 microns) and coarse fraction (typically >25 microns)- could provide critical information about regional as well as global climate. There are large-scale climatological controls on the finer fraction of mineral dust, while the coarser fraction is related to intense invents (i.e., the occurrence of cyclones). However, studies attempting to separate these two size fractions in terrestrial archives have been limited. Here we separate the two size fractions using grain size analysis, and use trace element analysis in each size fraction to identify contributing source regions. We apply this technique to well-dated cores collected from three lakes that are distributed across the western, southwestern and Great Plains in the United States: Pear Lake in the Sierra Nevada Mountains (CA), Senator Beck Lake in the San Juan Mountains (CO), and North Lake (WY). These lakes are uniquely situated to monitor dust fluxes; previous studies have demonstrated that sedimentation in these lakes are dominated by mineral dust accumulation; there is also evidence of remotely and locally sourced dust in these lakes, and of textural differences between the two types of dust fractions. We compare our results with previously published data on dust from loess deposits in the United States, and isotopic modeling (LMDZ). We find evidence that the finer-grain size fraction in alpine lake cores could be of remote origin; work is underway to quantify this contribution. Most importantly, we find that during the Last Glacial Maximum (LGM) the Great Plains may not have witnessed an increase in the incidence of tornado frequency. Acknowledgements: James Sigman, Jacob Ashford, Jason Neff and Amato Evan
Size of the great white shark (carcharodon).
Randall, J E
1973-07-13
The maximum length of 36.5 feet (11.1 meters) attributed to the white shark (Carcharodon carcharias) by Günther and others is a mistake. Examination of the jaws and teeth of the specimen referred to by Günther and comparison with the jaws of white sharks of known length revealed a length of about 17 feet ( approximately 5 meters). The largest white shark reliably measured was a 21-foot (6.4-meter) individual from Cuba. Bites on whale carcasses found off southern Australia suggest that white sharks as long as 25 or 26 feet (7 (1/2) or 8 meters) exist today. The size of extinct Carcharodon has also been grossly exaggerated. Based on a projection of a curve of tooth size of Recent Carcharodon carcharias, the largest fossil Carcharodon were about 43 feet ( approximately 13 meters) long.
Size characterization of inclusion bodies by sedimentation field-flow fractionation
Margreiter, Gerd; Messner, Paul; Caldwell, Karin D.; Bayer, Karl
2015-01-01
Sedimentation field-flow fractionation (sedFFF) was evaluated to characterize the size of Δ(4–23)TEM-β-lactamase inclusion bodies (IBs) overexpressed in fed-batch cultivations of Escherichia coli. Heterologous Δ(4–23)TEM-β-lactamase protein formed different sizes of IBs, depending upon the induction conditions. In the early phases of recombinant protein expression, induced with low concentrations of IPTG (isopropyl-β-d-thiogalactoside), IB masses were larger than expected and showed heterogeneous size distributions. During cultivation, IB sizes showed a Gaussian distribution and reached a broad range by the end of the fed-batch cultivations. The obtained result proved the aptitude of sedFFF to rapidly assess the size distribution of IBs in a culture. PMID:18760314
NASA Astrophysics Data System (ADS)
Jonell, T. N.; Li, Y.; Blusztajn, J.; Giosan, L.; Clift, P. D.
2017-12-01
Rare earth element (REE) radioisotope systems, such as neodymium (Nd), have been traditionally used as powerful tracers of source provenance, chemical weathering intensity, and sedimentary processes over geologic timescales. More recently, the effects of physical fractionation (hydraulic sorting) of sediments during transport have called into question the utility of Nd isotopes as a provenance tool. Is source terrane Nd provenance resolvable if sediment transport strongly induces noise? Can grain-size sorting effects be quantified? This study works to address such questions by utilizing grain size analysis, trace element geochemistry, and Nd isotope geochemistry of bulk and grain-size fractions (<63μm, 63-125 μm, 125-250 μm) from the Indus delta of Pakistan. Here we evaluate how grain size effects drive Nd isotope variability and further resolve the total uncertainties associated with Nd isotope compositions of bulk sediments. Results from the Indus delta indicate bulk sediment ɛNd compositions are most similar to the <63 µm fraction as a result of strong mineralogical control on bulk compositions by silt- to clay-sized monazite and/or allanite. Replicate analyses determine that the best reproducibility (± 0.15 ɛNd points) is observed in the 125-250 µm fraction. The bulk and finest fractions display the worst reproducibility (±0.3 ɛNd points). Standard deviations (2σ) indicate that bulk sediment uncertainties are no more than ±1.0 ɛNd points. This argues that excursions of ≥1.0 ɛNd points in any bulk Indus delta sediments must in part reflect an external shift in provenance irrespective of sample composition, grain size, and grain size distribution. Sample standard deviations (2s) estimate that any terrigenous bulk sediment composition should vary no greater than ±1.1 ɛNd points if provenance remains constant. Findings from this study indicate that although there are grain-size dependent Nd isotope effects, they are minimal in the Indus delta such that resolvable provenance-driven trends can be identified in bulk sediment ɛNd compositions over the last 20 k.y., and that overall provenance trends remain consistent with previous findings.
In Search of the Largest Possible Tsunami: An Example Following the 2011 Japan Tsunami
NASA Astrophysics Data System (ADS)
Geist, E. L.; Parsons, T.
2012-12-01
Many tsunami hazard assessments focus on estimating the largest possible tsunami: i.e., the worst-case scenario. This is typically performed by examining historic and prehistoric tsunami data or by estimating the largest source that can produce a tsunami. We demonstrate that worst-case assessments derived from tsunami and tsunami-source catalogs are greatly affected by sampling bias. Both tsunami and tsunami sources are well represented by a Pareto distribution. It is intuitive to assume that there is some limiting size (i.e., runup or seismic moment) for which a Pareto distribution is truncated or tapered. Likelihood methods are used to determine whether a limiting size can be determined from existing catalogs. Results from synthetic catalogs indicate that several observations near the limiting size are needed for accurate parameter estimation. Accordingly, the catalog length needed to empirically determine the limiting size is dependent on the difference between the limiting size and the observation threshold, with larger catalog lengths needed for larger limiting-threshold size differences. Most, if not all, tsunami catalogs and regional tsunami source catalogs are of insufficient length to determine the upper bound on tsunami runup. As an example, estimates of the empirical tsunami runup distribution are obtained from the Miyako tide gauge station in Japan, which recorded the 2011 Tohoku-oki tsunami as the largest tsunami among 51 other events. Parameter estimation using a tapered Pareto distribution is made both with and without the Tohoku-oki event. The catalog without the 2011 event appears to have a low limiting tsunami runup. However, this is an artifact of undersampling. Including the 2011 event, the catalog conforms more to a pure Pareto distribution with no confidence in estimating a limiting runup. Estimating the size distribution of regional tsunami sources is subject to the same sampling bias. Physical attenuation mechanisms such as wave breaking likely limit the maximum tsunami runup at a particular site. However, historic and prehistoric data alone cannot determine the upper bound on tsunami runup. Because of problems endemic to sampling Pareto distributions of tsunamis and their sources, we recommend that tsunami hazard assessment be based on a specific design probability of exceedance following a pure Pareto distribution, rather than attempting to determine the worst-case scenario.
Gape-limitation, foraging tactics and prey size selectivity of two microcarnivorous species of fish.
Schmitt, Russell J; Holbrook, Sally J
1984-07-01
Patterns of prey size selectivity were quantified in the field for two species of marine microcarnivorous fish, Embiotoca jacksoni and Embiotoca lateralis (Embiotocidae) to test Scott and Murdoch's (1983) size spectrum hypothesis. Two mechanisms accounted for observed selectivity: the relative size of a fish in relation to its prey, and the type of foraging behavior used. Juvenile E. jacksoni were gape limited and newborn individuals achieved highest selectivity for the smallest prey size by using a visual picking foraging strategy. As young E. jacksoni grew, highest preference shifted to the next larger prey sizes. When E. jacksoni reached adulthood, the principal mode of foraging changed from visual picking to relatively indiscriminant winnowing behavior. The shift in foraging behavior by adults was accompanied by a decline in overall preference for prey size; sizes were taken nearly in proportion to their relative abundance. Adult E. lateralis retained a visual picking strategy and achieved highest selectivity for the largest class of prey. These differences in selectivity patterns by adult fish were not explained by gape-limination since adults of both species could ingest the largest prey items available to them. These results support Scott and Murdoch's (1983) hypothesis that the qualitative pattern of size selectivity depends largely on the range of available prey sizes relative to that a predator can effectively harvest.
NASA Astrophysics Data System (ADS)
Asefaw Berhe, Asmeret; Kaiser, Michael; Ghezzehei, Teamrat; Myrold, David; Kleber, Markus
2013-04-01
The effectiveness of charcoal and calcium carbonate applications to improve soil conditions has been well documented. However, their influence on the formation of silt-sized aggregates and the amount and protection of associated organic matter (OM) against microbial decomposition is still largely unknown. For sustainable management of agricultural soils, silt-sized aggregates (2-53 µm) are of particularly large importance because they store up to 60% of soil organic carbon with mean residence times between 70 and 400 years. The objectives are i) to analyze the ability of CaCO3 and/or charcoal application to increase the amount of silt-sized aggregates and associated OM, ii) vary soil mineral conditions to establish relevant boundary conditions for amendment-induced aggregation processes, iii) to determine how amendment-induced changes in formation of silt-sized aggregates relate to microbial decomposition of OM. We set up artificial high reactive (HR, clay: 40%, sand: 57%, OM: 3%) and low reactive soils (LR, clay: 10%, sand: 89%, OM: 1%) and mixed them with charcoal (CC, 1%) and/or calcium carbonate (Ca, 0.2%). The samples were adjusted to a water potential of 0.3 bar and sub samples were incubated with microbial inoculum (MO). After a 16-weeks aggregation experiment, size fractions were separated by wet-sieving and sedimentation. Since we did not use mineral compounds in the artificial mixtures within the size range of 2 to 53 µm, we consider material recovered in this fraction as silt-sized aggregates, which was confirmed by SEM analyses. For the LR mixtures, we detected increasing N concentrations within the 2-53 µm fractions of the charcoal amended samples (CC, CC+Ca, and CC+Ca+MO) as compared to the Control sample with the strongest effect for the CC+Ca+MO sample. This indicates an association of N-containing microbial derived OM with silt-sized aggregates. For the charcoal amended LR and HR mixtures, the C concentrations of the 2-53 µm fractions are larger than those of the respective fractions of the Control samples but the effect is several times stronger for the LR mixtures. The C concentrations of the 2-53 µm fractions relative to the total C amount of the LR and HR mixtures are between 30 and 50%. The charcoal amended samples show generally larger relative C amounts associated with the 2-53 µm fractions than the Control samples. Benefits for aggregate formation and OM storage were larger for sand (LR) than for clay soil (HR). The gained data are similar to respective data for natural soils. Consequently, the suggested microcosm experiments are suitable to analyze mechanisms within soil aggregation processes.
Atmospheric Fragmentation of the Gold Basin Meteoroid as Constrained from Cosmogenic Nuclides
NASA Technical Reports Server (NTRS)
Welten, K. C.; Hillegonds, D. J.; Jull, A. J. T.; Kring, D. A.
2005-01-01
Since the discovery of the Gold Basin L4 chondrite shower almost ten years ago in the northwestern corner of Arizona, many thousands of L-chondrite specimens have been recovered from an area of approx.22 km long and approx.10 km wide. Concentrations of cosmogenic 14C and 10Be in a number of these samples indicated a terrestrial age of approx.15,000 years and a large pre-atmospheric size [1]. Additional measurements of cosmogenic Be-10, Al-26, Cl-36, and Ca-41 in the metal and stone fractions of fifteen Gold Basin samples constrained the pre-atmospheric radius to 3-5 m [2]. This implies that Gold Basin is by far the largest stone meteorite in the present meteorite collection, providing us with an opportunity to study the fragmentation process of a large chondritic object during atmospheric entry. Knowledge about the fragmentation process provides information about the mechanical strength of large meteoroids, which is important for the evaluation of future hazards of small asteroid impacts on Earth and possible defensive scenarios to avoid those impacts.
PIXE analysis of airborne particulate matter from Monterrey, Mexico. A first survey
NASA Astrophysics Data System (ADS)
Aldape, F.; Flores M, J.; Díaz, R. V.; Hernández-Méndez, B.; Montoya Z, J. M.; Blanco, E. E.; Fuentes, A. F.; Torres-Martínez, L. M.
1999-04-01
A first survey of elemental contents in airborne particulate matter from Monterrey, Nuevo León, Mexico, was performed using PIXE. This second largest industrial city is located 715 km north of Mexico City, and counts with a population of nearly three million inhabitants in its conurbation. Air pollution in the place comes from a great variety of industries ranging from iron smelters to furniture manufacturing, as well as from fuel combustion in vehicles and industries. This study presents results of elemental contents in airborne particulate matter in two particle size fractions: PM 2.5 and PM 15. The samples were collected during five weeks on working days, Monday-Friday, from 9 December 1996 to 14 January 1997. Two samples a day were collected, 12 h each, night-time and day-time. These first results show local pollution as typical from a large urban area in conjunction with an active industry. Thirteen elements were consistently detected in most of the samples and some episodes due to both industrial and human activities were identified. A general discussion about the results obtained is presented.
Using large spectroscopic surveys to test the double degenerate model for Type Ia supernovae
NASA Astrophysics Data System (ADS)
Breedt, E.; Steeghs, D.; Marsh, T. R.; Gentile Fusillo, N. P.; Tremblay, P.-E.; Green, M.; De Pasquale, S.; Hermes, J. J.; Gänsicke, B. T.; Parsons, S. G.; Bours, M. C. P.; Longa-Peña, P.; Rebassa-Mansergas, A.
2017-07-01
An observational constraint on the contribution of double degenerates to Type Ia supernovae requires multiple radial velocity measurements of ideally thousands of white dwarfs. This is because only a small fraction of the double degenerate population is massive enough, with orbital periods short enough, to be considered viable Type Ia progenitors. We show how the radial velocity information available from public surveys such as the Sloan Digital Sky Survey can be used to pre-select targets for variability, leading to a 10-fold reduction in observing time required compared to an unranked or random survey. We carry out Monte Carlo simulations to quantify the detection probability of various types of binaries in the survey and show that this method, even in the most pessimistic case, doubles the survey size of the largest survey to date (the SPY Survey) in less than 15 per cent of the required observing time. Our initial follow-up observations corroborate the method, yielding 15 binaries so far (eight known and seven new), as well as orbital periods for four of the new binaries.
NASA Astrophysics Data System (ADS)
de La Rocha, Christina L.
2003-05-01
The silicon isotope composition (δ30Si) of biogenic opal provides a view of the silica cycle at times in the past. Reconstructions require the knowledge of silicon isotope fractionation during opal biomineralization. The δ30Si of specimens of hexactinellid sponges and demosponges growing in the modern ocean ranged from -1.2‰ to -3.7‰ (n = 6), corresponding to the production of opal that has a δ30Si value 3.8‰ ± 0.8‰ more negative than seawater silicic acid and a fractionation factor (α) of 0.9964. This is three times the fractionation observed during opal formation by marine diatoms and terrestrial plants and is the largest fractionation of silicon isotopes observed for any natural process on Earth. The δ30Si values of sponge spicules across the Eocene-Oligocene boundary at Ocean Drilling Program Site 689 on Maud Rise range from -1.1‰ to -3.0‰, overlapping the range observed for sponges growing in modern seawater.
Herckes, P.; Leenheer, J.A.; Collett, J.L.
2007-01-01
Fine particulate matter (PM2.5) samples were collected during a three week winter period in Fresno (CA). A composite sample was characterized by isolating several distinct fractions and characterizing them by infrared and nuclear magnetic resonance (NMR) spectroscopy. More than 80% of the organic matter in the aerosol samples was recovered and characterized. Only 35% of the organic matter was water soluble with another third soluble in dichloromethane and the remainder insoluble. Within the isolated water soluble material, hydrophobic acid and hydrophilic acids plus neutrals fractions contained the largest amounts of carbon. The hydrophobic acids fraction appears to contain significant amounts of lignin type structures, spectra of the hydrophilic acids plus neutrals fraction are indicative of carbohydrates and secondary organic material. The dichloromethane soluble fraction contains a variety of organic compound families typical of many previous studies of organic aerosol speciation, including alkanes, alkanols, alkanals and alkanoic acids. Finally the water and solvent insoluble fraction exhibits a strong aromaticity as one would expect from black or elemental carbon like material; however, these spectra also show a substantial amount of aliphaticity consistent with linear side chains on the aromatic structures.
Nwachukwu, Ifeanyi D.; Girgih, Abraham T.; Malomo, Sunday A.; Onuh, John O.; Aluko, Rotimi E.
2014-01-01
Thermoase-digested flaxseed protein hydrolysate (FPH) samples and ultrafiltration membrane-separated peptide fractions were initially evaluated for in vitro inhibition of angiotensin I-converting enzyme (ACE) and renin activities. The two most active FPH samples and their corresponding peptide fractions were subsequently tested for in vivo antihypertensive activity in spontaneously hypertensive rats (SHR). The FPH produced with 3% thermoase digestion showed the highest ACE- and renin-inhibitory activities. Whereas membrane ultrafiltration resulted in significant (p < 0.05) increases in ACE inhibition by the <1 and 1–3 kDa peptides, only a marginal improvement in renin-inhibitory activity was observed for virtually all the samples after membrane ultrafiltration. The FPH samples and membrane fractions were also effective in lowering systolic blood pressure (SBP) in SHR with the largest effect occurring after oral administration (200 mg/kg body weight) of the 1–3 kDa peptide fraction of the 2.5% FPH and the 3–5 kDa fraction of the 3% FPH. Such potent SBP-lowering capacity indicates the potential of flaxseed protein-derived bioactive peptides as ingredients for the formulation of antihypertensive functional foods and nutraceuticals. PMID:25302619
Insight into dissolved organic matter fractions in Lake Wivenhoe during and after a major flood.
Aryal, Rupak; Grinham, Alistair; Beecham, Simon
2016-03-01
Dissolved organic matter is an important component of biogeochemical processes in aquatic environments. Dissolved organic matter may consist of a myriad of different fractions and resultant processing pathways. In early January 2011, heavy rainfall occurred across South East Queensland, Australia causing significant catchment inflow into Lake Wivenhoe, which is the largest water supply reservoir for the city of Brisbane, Australia. The horizontal and vertical distributions of dissolved organic matter fractions in the lake during the flood period were investigated and then compared with stratified conditions with no catchment inflows. The results clearly demonstrate a large variation in dissolved organic matter fractions associated with inflow conditions compared with stratified conditions. During inflows, dissolved organic matter concentrations in the reservoir were fivefold lower than during stratified conditions. Within the dissolved organic matter fractions during inflow, the hydrophobic and humic acid fractions were almost half those recorded during the stratified period whilst low molecular weight neutrals were higher during the flood period compared to during the stratified period. Information on dissolved organic matter and the spatial and vertical variations in its constituents' concentrations across the lake can be very useful for catchment and lake management and for selecting appropriate water treatment processes.
Klaassen, Petra; Duijff, Sasja; Swanenburg de Veye, Henriëtte; Beemer, Frits; Sinnema, Gerben; Breetvelt, Elemi; Schappin, Renske; Vorstman, Jacob
2016-09-01
The role of rare genetic variants, in particular copy number variants (CNVs), in the etiology of neurodevelopmental disorders is becoming increasingly clear. While the list of these disorder-related CNVs continues to lengthen, it has also become clear that in nearly all genetic variants the proportion of carriers who express the associated phenotype is far from 100%. To understand this variable penetrance of CNVs it is important to realize that even the largest CNVs represent only a tiny fraction of the entire genome. Therefore, part of the mechanism underlying the variable penetrance of CNVs is likely the modulatory impact of the rest of the genome. In the present study we used the 22q11DS as a model to examine whether the observed penetrance of intellectual impairment-one of the main phenotypes associated with 22q11DS-is modulated by the intellectual level of their parents, for which we used the parents' highest level of education as a proxy. Our results, based on data observed in 171 children with 22q11DS in the age range of 5-15 years, showed a significant association between estimated parental cognitive level and intelligence in offspring (full scale, verbal and performance IQ), with the largest effect size for verbal IQ. These results suggest that possible mechanisms involved in the variable penetrance observed in CNVs include the impact of genetic background and/or environmental influences. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Padoan, Elio; Romè, Chiara; Ajmone-Marsan, Franco
2017-12-01
Road dust (RD), together with surface soils, is recognized as one of the main sinks of pollutants in urban environments. Over the last years, many studies have focused on total and bioaccessible concentrations while few have assessed the bioaccessibility of size-fractionated elements in RD. Therefore, the distribution and bioaccessibility of Fe, Mn, Cd, Cr, Cu, Ni, Pb, Sb and Zn in size fractions of RD and roadside soils (<2.5μm, 2.5-10μm and 10-200μm) have been studied using aqua regia extraction and the Simple Bioaccessibility Extraction Test. Concentrations of metals in soils are higher than legislative limits for Cu, Cr, Ni, Pb and Zn. Fine fractions appear enriched in Fe, Mn, Cu, Pb, Sb and Zn, and 2.5-10μm particles are the most enriched. In RD, Cu, Pb, Sb and Zn derive primarily from non-exhaust sources, while Zn is found in greater concentrations in the <2.5μm fraction, where it most likely has an industrial origin. Elemental distribution across soils is dependent on land use, with Zn, Ni, Cu and Pb being present in higher concentrations at traffic sites. In addition, Fe, Ni and Cr feature greater bioaccessibility in the two finer fractions, while anthropic metals (Cu, Pb, Sb and Zn) do not. In RD, only Zn has significantly higher bioaccessibility at traffic sites compared to background, and the finest particles are always the most bioaccessible; >90% of Pb, Zn and Cu is bioaccessible in the <2.5μm fraction, while for Mn, Ni, Sb, Fe and Cr, values vary from 76% to 5%. In the 2.5-10μm fraction, the values were 89% for Pb, 67% for Zn and 60% for Cu. These results make the evaluation of the bioaccessibility of size-fractionated particles appear to be a necessity for correct estimation of risk in urban areas. Copyright © 2017 Elsevier B.V. All rights reserved.
Aoki, Masahiko; Sato, Mariko; Hirose, Katsumi; Akimoto, Hiroyoshi; Kawaguchi, Hideo; Hatayama, Yoshiomi; Ono, Shuichi; Takai, Yoshihiro
2015-04-22
Radiation-induced rib fracture after stereotactic body radiotherapy (SBRT) for lung cancer has been recently reported. However, incidence of radiation-induced rib fracture after SBRT using moderate fraction sizes with a long-term follow-up time are not clarified. We examined incidence and risk factors of radiation-induced rib fracture after SBRT using moderate fraction sizes for the patients with peripherally located lung tumor. During 2003-2008, 41 patients with 42 lung tumors were treated with SBRT to 54-56 Gy in 9-7 fractions. The endpoint in the study was radiation-induced rib fracture detected by CT scan after the treatment. All ribs where the irradiated doses were more than 80% of prescribed dose were selected and contoured to build the dose-volume histograms (DVHs). Comparisons of the several factors obtained from the DVHs and the probabilities of rib fracture calculated by Kaplan-Meier method were performed in the study. Median follow-up time was 68 months. Among 75 contoured ribs, 23 rib fractures were observed in 34% of the patients during 16-48 months after SBRT, however, no patients complained of chest wall pain. The 4-year probabilities of rib fracture for maximum dose of ribs (Dmax) more than and less than 54 Gy were 47.7% and 12.9% (p = 0.0184), and for fraction size of 6, 7 and 8 Gy were 19.5%, 31.2% and 55.7% (p = 0.0458), respectively. Other factors, such as D2cc, mean dose of ribs, V10-55, age, sex, and planning target volume were not significantly different. The doses and fractionations used in this study resulted in no clinically significant rib fractures for this population, but that higher Dmax and dose per fraction treatments resulted in an increase in asymptomatic grade 1 rib fractures.
Petersen, Kevin E; Manangon, Eliana; Hood, Joshua L; Wickline, Samuel A; Fernandez, Diego P; Johnson, William P; Gale, Bruce K
2014-12-01
Exosomes participate in cancer metastasis, but studying them presents unique challenges as a result of their small size and purification difficulties. Asymmetrical field flow fractionation with in-line ultraviolet absorbance, dynamic light scattering, and multi-angle light scattering was applied to the size separation and characterization of non-labeled B16-F10 exosomes from an aggressive mouse melanoma cell culture line. Fractions were collected and further analyzed using batch mode dynamic light scattering, transmission electron microscopy and compared with known size standards. Fractogram peak positions and computed radii show good agreement between samples and across fractions. Ultraviolet absorbance fractograms in combination with transmission electron micrographs were able to resolve subtle heterogeneity of vesicle retention times between separate batches of B16-F10 exosomes collected several weeks apart. Further, asymmetrical field flow fractionation also effectively separated B16-F10 exosomes into vesicle subpopulations by size. Overall, the flow field flow fractionation instrument combined with multiple detectors was able to rapidly characterize and separate exosomes to a degree not previously demonstrated. These approaches have the potential to facilitate a greater understanding of exosome function by subtype, as well as ultimately allow for "label-free" isolation of large scale clinical exosomes for the purpose of developing future exosome-based diagnostics and therapeutics.
Manangon, Eliana; Hood, Joshua L.; Wickline, Samuel A.; Fernandez, Diego P.; Johnson, William P.; Gale, Bruce K.
2015-01-01
Exosomes participate in cancer metastasis, but studying them presents unique challenges as a result of their small size and purification difficulties. Asymmetrical field flow fractionation with in-line ultraviolet absorbance, dynamic light scattering, and multi-angle light scattering was applied to the size separation and characterization of non-labeled B16-F10 exosomes from an aggressive mouse melanoma cell culture line. Fractions were collected and further analyzed using batch mode dynamic light scattering, transmission electron microscopy and compared with known size standards. Fractogram peak positions and computed radii show good agreement between samples and across fractions. Ultraviolet absorbance fractograms in combination with transmission electron micrographs were able to resolve subtle heterogeneity of vesicle retention times between separate batches of B16-F10 exosomes collected several weeks apart. Further, asymmetrical field flow fractionation also effectively separated B16-F10 exosomes into vesicle subpopulations by size. Overall, the flow field flow fractionation instrument combined with multiple detectors was able to rapidly characterize and separate exosomes to a degree not previously demonstrated. These approaches have the potential to facilitate a greater understanding of exosome function by subtype, as well as ultimately allow for “label-free” isolation of large scale clinical exosomes for the purpose of developing future exosome-based diagnostics and therapeutics. PMID:25084738
Yang, X. M.; Drury, C. F.; Reynolds, W. D.; Yang, J. Y.
2016-01-01
We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2–53 μm) and sand (53–2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg−1 soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg−1, but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation. PMID:27251365
NASA Astrophysics Data System (ADS)
Yang, X. M.; Drury, C. F.; Reynolds, W. D.; Yang, J. Y.
2016-06-01
We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2-53 μm) and sand (53-2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg-1 soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg-1, but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation.
Suspended sediments from upstream tributaries as the source of downstream river sites
NASA Astrophysics Data System (ADS)
Haddadchi, Arman; Olley, Jon
2014-05-01
Understanding the efficiency with which sediment eroded from different sources is transported to the catchment outlet is a key knowledge gap that is critical to our ability to accurately target and prioritise management actions to reduce sediment delivery. Sediment fingerprinting has proven to be an efficient approach to determine the sources of sediment. This study examines the suspended sediment sources from Emu Creek catchment, south eastern Queensland, Australia. In addition to collect suspended sediments from different sites of the streams after the confluence of tributaries and outlet of the catchment, time integrated suspended samples from upper tributaries were used as the source of sediment, instead of using hillslope and channel bank samples. Totally, 35 time-integrated samplers were used to compute the contribution of suspended sediments from different upstream waterways to the downstream sediment sites. Three size fractions of materials including fine sand (63-210 μm), silt (10-63 μm) and fine silt and clay (<10 μm) were used to find the effect of particle size on the contribution of upper sediments as the sources of sediment after river confluences. And then samples were analysed by ICP-MS and -OES to find 41 sediment fingerprints. According to the results of Student's T-distribution mixing model, small creeks in the middle and lower part of the catchment were major source in different size fractions, especially in silt (10-63 μm) samples. Gowrie Creek as covers southern-upstream part of the catchment was a major contributor at the outlet of the catchment in finest size fraction (<10 μm) Large differences between the contributions of suspended sediments from upper tributaries in different size fractions necessitate the selection of appropriate size fraction on sediment tracing in the catchment and also major effect of particle size on the movement and deposition of sediments.